Emanuela Tuong Vi Thi Tran

Testing and further development on
the Sensor Data Acquisition Board
for an nRF52840 SLAM Robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Onshus

June 2023

.ﬂ
(7]
()

i o
)

0
[&
(]
=
(7))
©

=

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology

Emanuela Tuong Vi Thi Tran

Testing and further development on
the Sensor Data Acquisition Board for
an nRF52840 SLAM Robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Onshus
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology

Preface

This master’s thesis forms the foundation for evaluation in the 30-credit course TTK4900
- Engineering Cybernetics, Master’s Thesis. It concludes a two-year master’s degree pro-
gram for the Department of Electronic Systems at the Norwegian University of Science
and Technology (NTNU). This thesis continues a specialisation project and directly con-
tinues the previous work.

During my five years at NTNU, developing and implementing the Sensor Data Acquisi-
tion Board, the first embedded system on a large scale that I have undertaken has been
a valuable and rewarding experience. This thesis has allowed me to test, debug, design,
review, and create a new system, further enhancing my knowledge and skills in the field.
Within the embedded systems field, my background knowledge has primarily leaned to-
ward the hardware aspect. However, through this master’s thesis, I have been able to
delve into connecting hardware to software.

I want to thank my supervisor, Tor Onshus, for his unwavering availability and guidance
throughout this thesis. Additionally, I thank the personnel at the mechanical workshop
in the Department of Engineering Cybernetics for their assistance, equipment lending,
and discussions that have helped me overcome various challenges encountered during
my work.

I want to thank the students involved in the SLAM project and the students with whom I
have shared the study hall. Their explanations and knowledge sharing have significantly
shaped my perspective on embedded systems from a cybernetics and robotics standpoint.
Their contributions and my background knowledge from the Department of Electronics
Systems have made it possible to realise this master’s thesis.

Lastly, I thank my family and friends for their encouragement and support throughout
my five years at NTNU. Their presence and encouragement have been invaluable in my
journey, and I am deeply grateful for their continuous support.

Problem Statement

In this master’s thesis, a sensor data acquisition board will be developed for maze-mapping
robots. The embedded system is based on Nordic Semiconductor’s nRF52840 System on
a Chip (SoC) and is in its prototype phase. This project involves further development
and includes hardware testing, hardware implementation, software analysis, and soft-
ware design. In addition to developing an embedded system for the robot’s sensor tower,
a cleanup and structuring of the whole project will be done with the cooperation of this
year’s students on the Simultaneous Localization and Mapping (SLAM) robot project.

The specific tasks outlined for the project are as follows:

« Hardware assembling and testing of the Sensor Data Acquisition Board.
« Consider a new revision of the Sensor Data Acquisition Board.

« Software analysis of the robot with a focus on the software concerning the robots
servo tower.

« Software design for the robot’s Infrared (IR) sensor tower.
« Project and code improvements on the SLAM robot project.

Software implementation of SLAM is not within this project’s scope, nor is the production
of a new revision of a Printed Circuit Board (PCB).

ii

Summary and Conclusion

The purpose of this master thesis has been to further develop a new system, called Sensor
Data Acquisition Board, such that it can be integrated on the nRF52840DK SLAM robots.
In the autumn of 2022, the first prototype was designed. It features two nRF52840 SoCs
where one is designated to run the task concerning the IR-sensor tower, while the second
is designated to run SLAM algorithms. Design faults were discovered after the first de-
sign, but it was not concluded the need for a second revision. The objective of this thesis
has been to test this new system further, review the need for a second revision of the
printed circuit board, and start the software development of the system. If critical design
faults were to be discovered, a second revision of the system must be started.

Extensive hardware testing has been done on the first prototype of the Sensor Data Ac-
quisition Board. In addition to the known minor faults in the design, critical design faults
were discovered. The layout design for the nRF52840 SoC was done incorrectly, such that
specific pins were not accessible. The design fault concerns the two nRF52840 that are
available on the board. This led to circuit faults for several critical circuit modules such as
Serial Peripheral Interface (SPI), Pulse Width Modulation (PWM), Inter-Integrated Cir-
cuit (I2C) and Universal Asynchronous Receiver-Transmitter (UART). After identifying
the faults in the initial design, a second revision was developed to rectify the issues.

The second revision of the system has now corrected the layout around the nRF52840.
With the use of uVias, all pins not accessible by routing on the top layer are available on
other layers. The second revision has also addressed the minor faults that were known
earlier and the ones discovered during testing. A priority list was made to distribute the
time used effectively.

To begin the software development, an analysis of the current software, which is relevant
to this thesis, was conducted on the SLAM robots. The analysis resulted in a requirement
and specifications list for the new system, and this thesis has formulated a design pro-
posal.

In parallel, a collaborative side project aimed at improving and organizing the SLAM
robot project was initiated with the involvement of the four students on the project. This
thesis presents the enhancements, modifications, and contributions made by the author
of this thesis to the overall robot project, addressing its poor maintainability.

This thesis concludes the first phase of a new embedded design, establishing the ground-
work for the second revision of the Sensor Data Acquisition Board and initiating the
software development for the new system. Integrating the new system with the current
robot poses challenges since the robot project does not have the modularity needed for
integrating new systems.

il

Sammendrag og Konklusjon

Hensikten med denne masteroppgaven har veert & videreutvikle et nytt system, kalt Sen-
sor Data Acquisition Board, slik at det kan integreres pa nRF52840DK SLAM-robotene.
Hosten 2022 ble den forste prototypen designet. Den har to nRF52840 SoCs der den ene
er utpekt til a kjore oppgaven vedrerende IR-sensortarnet, mens den andre er utpekt til
a kjore SLAM-algoritmer. Designfeil ble oppdaget etter det forste designet, men det ble
ikke konkludert med behov for en ny revisjon. Malet med denne oppgaven har veert &
teste det nye systemet videre, vurdere behovet for en ny revisjon av kretskortet, og starte
programvareutviklingen av systemet. Dersom kritiske designfeil skulle oppdages, ma en
ny revisjon av systemet startes.

Omfattende maskinvaretesting har blitt utfert pa den ferste prototypen av Sensor Data
Acquisition Board. I tillegg til de kjente mindre feilene i konstruksjonen, ble det op-
pdaget kritiske konstruksjonsfeil. Layoutdesignet for nRF52840 SoC ble gjort feil, slik
at spesifikke pinner ikke var tilgjengelige. Designfeilen gjelder de to nRF52840 som er
tilgjengelig pa kretkortet. Dette forte til kretsfeil for flere kritiske kretsmoduler som SPI,
PWM, I2C og UART. Etter & ha identifisert feilene i det opprinnelige designet, ble det
utviklet en ny revisjon for a rette opp problemene.

Den andre revisjonen av systemet har na korrigert oppsettet rundt nRF52840. Ved bruk av
uVias er alle pinner som ikke er tilgjengelige ved ruting pa topplaget tilgjengelig pa andre
lag. Den andre revisjonen har ogsa adressert de mindre feilene som var kjent tidligere
og de som ble oppdaget under testing. Det ble laget en prioriteringsliste for & fordele
tidsbruken effektivt.

For a starte programvareutviklingen ble det utfert en analyse av gjeldende programvare,
som er relevant for denne oppgaven, pa SLAM-robotene. Analysen resulterte i en krav-
og spesifikasjonsliste for det nye systemet, og denne oppgaven har formulert et design-

forslag.

Parallelt ble det satt i gang et samarbeidende sideprosjekt med sikte pa & forbedre og or-
ganisere SLAM robotprosjektet med involvering av de fire studentene i prosjektet. Denne
oppgaven presenterer forbedringene, modifikasjonene og bidragene fra forfatteren av
denne oppgaven til det overordnede robotprosjektet, og tar for seg dets darlige vedlike-
holdsmuligheter.

Denne oppgaven avslutter den forste fasen av et nytt innebygd design, og etablerer
grunnlaget for den andre revisjonen av Sensor Data Acquisition Board og starter pro-
gramvareutviklingen for det nye systemet. Integrering av det nye systemet med den
naveerende roboten byr pa utfordringer siden robotprosjektet ikke har den modulariteten
som trengs for a integrere nye systemer.

iv

Contents

Preface i
Problem Statement ii
Summary and Conclusion iii
Sammendrag og Konklusjon iv
List of Figures xiii
List of Tables xiv
List of Listings XV
Acronyms XV
1 Introduction 1

1.1 Motivation 1

1.2 Structureof thereport 2
2 Background 3

2.1 SLAMrobotproject 3

3

2.2 Components and tools used in the project
221 nRF52840DK
222 L298N Motordriver.
2.23 DC Motors with rotary encoders
224 IR-sensortower
2.25 ICM-20948 Inertial Measurement Unit
2.2.6 Custom peripheral shield
227 Jlink . ..
2.28 SEGGEREmbeddedstudio
229 nRF5SDK
2.3 Robotapplication
2.4 Sensor Data Acquisition Board Lo
241 Specifications of the customPCB
2.5 Testing from previouswork L Lo L
Theory
3.1 Serial Peripheral Interface
31,1 SPImodes
3.2 PCBFundamentals
3.21 Defining the layerstack
3.2.2 Blind, buried and micro via definition.
3.23 PCBdesign: schematic
3.24 PCBdesign:layout
3.25 PCBdesignrules
3.3 Real-time operating systems L.
3.4 Code quality: variables L o
3.4.1 Naming conventions
3.4.2 Informal naming conventions

11

14

15

16

vi

3.43 Creating short names that are readable

4 Hardware testing

4.1

4.2

4.3

44

Testplan

Soldering and programming the nRF52840

42.1 Development environment

Testing SPI communication . .

43.1 SPI example code provided by nRF5SDK

43.2 Testing SPI with examplecodes

433 Debugging SPI communication

Additional errors discovered during hardware testing

5 Second revision of the Sensor Data Acquisition Board

5.1

5.2

Schematic

5.1.1 Add correct footprint for the P24 connector

5.1.2 Changed pin matching on motor driver connector

5.13 Added 2LEDsfortesting.

5.1.4 Added informativenotes

5.1.5 Name changes fornetnames

5.1.6 Changes for modules and descriptive names

5.1.7 Set to 1-based indexing

5.1.8 Rearrangement of modules

5.2.1 Rerouting

5.2.2 Correcting the pads for the nRF52840SOC

5.2.3 Silk layer changes . . .

6 Software analysis and design

6.1

Brief analysis of the robot code

29

29

31

32

34

35

36

38

43

45

46

46

46

47

48

48

49

49

50

50

52

54

55

57

58

vii

6.2

6.3

6.4

6.1.1 Analysing the task vMainSensorTowerTask

6.1.2 Deciding between continuing development or rewriting the soft-
WATE . o vt i e e e e

Requirements and specifications for the new system
6.21 Requirements
6.2.2 Specifications
Proposalofdesign
Creating a new software project

6.4.1 Testing the software project

Improving and structuring of the robot project

7.1 GitHub and GitHub Organizations
7.2 Structuring and sorting the code project: robot-code
721 Modified SDK
7.2.2 The final structure of the robotcode
7.3 Documentation of the project (wiki)
74 Nameconventions
Results
8.1 Results: Hardware testing
8.2 Results: The second revision of the PCB
8.3 Results: Softwaredesign L oo
8.4 Results: Improving and structuring the robot project
Discussion
9.1 Hardwaretesting
9.2 Thesecond revisionof the PCB
9.3 Softwaredesign
9.4 Improving and structuring the robot project

64

66

71

73

73

75

76

77

77

79

79

80

81

viii

10 Future work

10.1 Future work for the system Sensor Data Acquisition Board

10.2 Future work for the robot project

Bibliography

Appendices
A Schematic revision 1:
B Schematic revision 1:
C Schematic revision 1:
D Schematic revision 1:
E Schematic revision 2:
F Schematic revision 2:
G Schematic revision 2:
H Schematic revision 2:
I
J
K Documentation (wiki)

10.2.1 Documenting the work on the "wiki"

10.2.2 Name conventions

10.2.3 Theuseof GitHub

10.2.4 Modularisation

mainsheet.
powersheet,
servo_towersheet
SLAMsheet
mainsheet
powersheet L.
sensor_towersheet

SLAMsheet

Tutorial on creating a new software project method 1

Tutorial on creating a new software project method2

85

85

87

87

87

87

88

89

91

ix

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

31

3.2

3.3

Robottopview [1] o o
Robotbotview[1]
Robotside view[1]

Connecting a computer and the target Central Processing Unit (CPU) us-
ing regular J-Link([2] oo

Connecting a computer and the target CPU using a Jlink OB[2]
Interactions between the tasks concerning the robots behaviour[3, p.13]

Interface between mqttsn_task and tasks concerning the robot behaviour.
[3,p16] . o

System structure over Sensor Data Acquisition Board [4, p.14]
Custom board placed on top of the SLAM-robot: back view[4, p.37]
Custom board placed on top of the SLAM-robot: side view [4, p.38]
PCBfront [4,p.36] o o

Test plan for hardware testing[4, p.31]

SPI configuration with master andslave
SPI transmission[5]

SPI Mode 0, CPOL = 0, CPHA = 0: CLK idle state = low, data sampled on
rising edge and shifted on falling edge[6].

34

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

SPI Mode 1, CPOL = 0, CPHA = 1: CLK idle state = low, data sampled on
the falling edge and shifted on the rising edge [6].

SPI Mode 2, CPOL = 1, CPHA = 0: CLK idle state = high, data sampled on
the rising edge and shifted on the falling edge [6].

SPI Mode 3, CPOL = 1, CPHA = 1: CLK idle state = high, data sampled on
the falling edge and shifted on the rising edge [6]

3D view of the layer stack up on a PCB with visible vias[7]
The three types of vias that can be created: blind (1), buried (2) and thru-
hole[7]
Updated test plan for hardware testing
Soldering of nRF52840 circuit
Connection between computer and Sensor Data Acquisition Board
Setup for debugging/programming with two nRF52840DK

Setup for debugging/progamming the sensor data acquisition board with
anRF52840DK

SPI connection between two nRF52840DKs
Resoldered pins on the Sensor Data Acquisition Board
Capturing SPI communication with a oscilloscope: two nRF52840DK

Capturing SPI communication with oscilloscope: Sensor Data Acquisi-
tionasmaster

Capturing SPI communication with oscilloscope: Sensor Data Acquisi-
tionasslave

Capturing attempt to set SPI pins in high state
SPI traces close to 5 Vbuck regulator
Close up of the layout around the nRF52840
Layout revision 1: Connector for motor driver
Different pin counting Lo

Motor driver connector occupies more space

Schematic revision 1: Connector for motor driver

Xi

5.2

53

54

55

5.6

5.7

5.8

5.9

5.10

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

6.1

6.2

7.1

7.2

7.3

7.4

Schematic revision 2: Connector for motor driver
Schematic revision 2: The available LEDsonthe PCB
Schematic 2nd revision: Informative note in the main sheet
Layout revision 2: Top layer
Layoutrevision 2: Layer 1,
Layoutrevision 2: Layer2,
Layout Revision 2: Botlayer

PCB Layout revision 2: Layout around the PCB’s Light Emitting Diodes
(LEDs) and connector P24

Layout revision 2: Connector for motor driver

Layout revision 2: New placement for connectors concerning motor driver
and IR Sensors i

Layout revision2: Routing on bot layer under the 5 V buck regulator . . .
Altium Designer: Stakcup - Impedance - Viatypes
Altium Designer: Layer stack manager - Viatypes
Altium Designer: Layer stack manager - Properties of apvia
Layout revision 2: nRF52840 with the use of pVias
Layout revision 2: Power circuitin3D,
Layout revision 2: The available LEDsonthe PCB
Layout revision 2: Connectors for motor driver and IR sensors
Simplified diagram of the interactions concerning the task vMainSensor-
TowerTask
Data transmission between development kit and the sensor data acquisi-
tion board, ideal scenario
GitHub Organization: SLAMRobotProject
Folder structure of the SLAM Project
Repositories of the GitHub Organization: SLAMRobotProject

README-file from the SLAM project

xii

7.5 Path to the code concerning the robots nRF52840DK 72
7.6 Properties of the folder nrf5sdk_thread 72
7.7 New folder structure for the code concerning the robots nRF52840DK . . 74
7.8 Path to the code concerning the nRF52830DK robot 75
8.1 Testplanwithresults 78
8.2 Layout revision 2: 3D version with components 79
10.1 Jumpers/zero-ohm resistor are marked withacross 86

xiii

List of Tables

2.1

3.1

3.2

4.1

4.2

4.3

44

5.1

5.2

53

7.1

7.2

Task overview of the software 8
SPI-mode configurations L L 18
Naming conventionsfor C 27
Equipment used for soldering L. 31
Component list for soldering the circuit around the nRF52840 31
Equipment used fortesting L. 34
SPI pins on the nRF52840 SOC serving the IR-sensor tower 37
Netnamechanges 49
Module name changes L L L oL 49
Descriptive name changes 49
New names for the different code projects 69
Size different for the code project after the cleanup 71

Xiv

Listings

4.1 Pin configuration for SPI

4.2 Setting SPIpininhighstate,

XV

Acronyms

CAN
CPU

DC
DRC

ESD

GPIO
GUI

HDI
I2C
IDE
IMU
IR
JTAG
LED
NTNU
OLED

PCB
PWM

Controller Area Network
Central Processing Unit

Direct Current
Design Rule Check

Electrostatic Discharge

General Purpose Input/Output
Graphical User Interface

High Density Interconnect

Inter-Integrated Circuit

Integrated Development Environment

Inertial Measurement Unit

Infrared

Joint Test Action Group

Light Emitting Diode

Norwegian University of Science and Technology

Organic Light-Emitting Diode

Printed Circuit Board
Pulse Width Modulation

xvi

RTOS

SDK
SLAM
SMD
SoC
SPI
SWD

UART
USB

ZIpP

Radio Frequency
Real Time Operating System

Software Development Kit
Simultaneous Localization and Mapping
Surface Mount Device

System on a Chip

Serial Peripheral Interface

Serial Wire Debug

Universal Asynchronous Receiver-Transmitter
Universal Serial Bus

Zoological Information Processing

xvii

Chapter

Introduction

The SLAM robot project, arranged by the Department of Engineering Cybernetics, is an
ongoing project dating back to its start in 2004. It involves using small, autonomous ve-
hicles to map an unknown area. These robots, which are based on the nRF52840 SoC,
are responsible for navigating to specific coordinates provided by the server without re-
lying on external localization technology. They also collect and transmit measurements
of their surroundings, including distances to nearby objects. By combining these mea-
surements from multiple robots, the central server can build a detailed map of the area,
which enables the robots to explore and map new environments independently.

1.1 Motivation

It is desired to separate the software on the development kit and have desired nRF52840
SoC for specific tasks. As the system has become more complex over time, dividing it
into smaller parts will make it easier to iterate, debug, and further develop the system
without encountering significant setbacks.

With additional hardware, the robot can access more than one SoC to perform its soft-
ware. The first step towards dividing the software is to have one SoC running the soft-
ware concerning the IR-sensor tower and a second SoC running the SLAM algorithms.

Chapter 1. Introduction

1.2 Structure of the report

« chapter 2 introduces the background.

« chapter 3 covers the relevant theory.

« chapter 4 covers the hardware testing of the Sensor Data Acquisition Board.
« chapter 5 covers the second revision of the printed circuit board.

« chapter 6 presents a software analysis and a proposal of the software design for
the new system.

« chapter 7 covers the project and code base improvements, a collaborative work
with the student on the SLAM Robot Project. The work done by the author of this
thesis will be presented and discussed.

« chapter 8 presents the results.
« chapter 9 covers the discussion of the method and results.

« chapter 10 presents the suggested future work.

Chapter

Background

This section presents the background information for this master’s thesis and provides
an overview of the relevant previous work. It introduces the SLAM Robot Project, in-
cluding a system overview and the supporting components and tools used in the project.
Furthermore, this chapter will present the previous work on developing the new system
Sensor Data Acquisition Board.

2.1 SLAM robot project

The SLAM robot project is a student project supervised by Professor Tor Onshus from
the Department of Engineering Cybernetics. The students working on the project have
been fifth-year students writing their project and master’s thesis. Throughout the project
and master’s thesis, various areas have been covered. These include the construction of
hardware-focused robots, developing low-level embedded software to create drivers for
interfacing with hardware components, high-level embedded software for control, navi-
gation, and communication, and implementing various server-side logic functionalities.

As briefly described in the introduction, chapter 1, the goal of the SLAM-project is to
make multiple low-end robots cooperate with a local server to map out an unknown
indoor area. The server application enables remote control of the robots to investigate
their surrounding environment while also receiving updates on the robot’s location and
information about their observed local surroundings. The robots currently in use are
the ones constructed by Jolgard (2020)[8], and the recent software is based on the work
done by Frestad(2022) [3], which continues the work from Andersen’s master thesis(2022)
[1]. Figure 2.1, 2.2, and 2.3 illustrates the robot from different perspectives providing
descriptions of the components in use as well as their dimensions.

Chapter 2. Background

NRF52840 DK:

.96" OLED screen

Peripheral shield R sensor tower

Machifit 25GA370 DC motors
w/ encoders

.‘LPD\NEF switch

[]
Charge switch:

L298N motor driver

Figure 2.1: Robot top view [1]

Ball :asters——b
I |I o calm

1CM-20948 IMU
L J (]

'
1
NSRRI PR,
'
'
'
'
'
'
'
'
]

Figure 2.2: Robot bot view[1]

2YA21 Sharp IR sensor:
SOSNF servo motor

Movement detection balls=—y

Battery 1/2 swmchL 3
e

GND/12.6V connectors:

o

Li-ion 3INR19/68 batter|

Figure 2.3: Robot side view[1]

2.2 Components and tools used in the project

In the previous semester (Autumn 2022), students working on the SLAM-project indi-
cated that considerable attention should be given to enhancing code quality, software ar-
chitecture, and documentation. Knowledge about the project has in the past been shared
through Zoological Information Processing (ZIP)-files, resulting in the accumulation of
multiple ZIP-files dating as far back as 2004. As an alternative approach to sharing soft-
ware within the project organization, H. Frestad suggested in his project thesis [3] the
use of GitHub as it offers valuable features for cooperative software development.

For this year’s master students, four students are working on the SLAM-project with their
specific areas: Marte Nordbotten Ruud-Olsen, Kristian Forsdahl, Magnus Isdal Kolbein-
sen and the author of this thesis Emanuela Tuong Vi Thi Tran. The students have been
encouraged to collaborate and organize the SLAM-robot project in a way that promotes
a more conducive work environment, in addition to working on their respective areas of
responsibility.

2.2 Components and tools used in the project

2.2.1 nRF52840DK

The SLAM-robots are all based on Nordic Semiconductor’s development kit nRF52840DK
board PCA10056 [9]. This development kit is utilized to develop embedded applications
tailored for the nRF52840 SoC, which embeds a powerful 32-bit ARM Cortex-M4 CPU.
It features an onboard Segger J-Link debugger, which allows for easy debugging and
programming of the nRF52840 SoC. Further explanation on the J-link debugger can be
found in section 2.2.7.

2.2.2 L298N Motor driver

The L298 motor driver, based on the L298 Dual H-Bridge Motor Driver Integrated Circuit
[10], is a bi-directional motor driver. It is specifically designed for robotic applications
and offers seamless integration with a microcontroller, requiring only a few control lines
per motor. As per the datasheet, it can control two motors in both directions, each capable
of handling up to 2 A of current.

2.2.3 DC Motors with rotary encoders

The robot uses two Machifit 12 V Direct Current (DC) motors[11], which are rated up to
100 rpm. These motors are equipped with built-in quadrature encoders, enabling wheel
angle and speed measurement.

Chapter 2. Background

2.2.4 IR-sensor tower

The IR-sensor tower consists of four Sharp 2YA21 infrared sensors[12]. These sensors are
mounted on an SO5NF servo motor[13] and arranged in a radial configuration, enabling
the entire set of IR-sensors to rotate. The sensor tower has a maximum rotation angle of
90°. Each of the IR-sensors has a valid measurement range of 0.1 to 0.8 meters.

2.2.5 ICM-20948 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) used in the robot is the ICM-20948[14]. It comprises
a 3-axis MEMS-based gyroscope, accelerometer, and compass. The IMU is positioned be-
neath the robot’s chassis and is equipped with a digital motion processor. This processor
performs basic filtering of sensor measurements and manages power consumption.

2.2.6 Custom peripheral shield

The nRF52840 shield, developed by Jelsgard[15], is specifically designed to be mounted
on top of the nRF52840DK. Its primary function is to facilitate the connection of various
peripherals to the General Purpose Input/Output (GPIO) headers of the development kit.

2.2.7 J-link

J-Link [16] is a family of hardware debugging tools developed by SEGGER Microcon-
troller. J-Link supports various target interfaces, including Joint Test Action Group (JTAG),
Serial Wire Debug (SWD), and SPI, and it can be connected to a host computer via Uni-
versal Serial Bus (USB), Ethernet, or RS232 interface. J-Link provides high-speed flash
programming and debugging capabilities and is suitable for professional and industrial
use. Figure 2.4 illustrates how the J-link connects a computer with a target CPU.

Figure 2.4: Connecting a computer and the target CPU using regular J-Link[2]

2.2 Components and tools used in the project

J-Link comes in various models, each offering different capabilities and features. J-Link
OB [2] is a model that serves as an onboard debug interface that is incorporated into the
target system. It is designed to work with microcontrollers with a built-in debug inter-
face, like the ARM Cortex-M microcontrollers. Figure 2.5 illustrates how the computer is
connected to the target CPU with the J-link OB.

USE

Figure 2.5: Connecting a computer and the target CPU using a Jlink OB[2]

2.2.8 SEGGER Embedded studio

The project utilizes SEGGER Embedded Studio[17] as its Integrated Development Envi-
ronment (IDE) to create and test software on the robot. The IDE is designed for devel-
oping embedded software on various microcontroller platforms. It provides a complete
development environment, including an editor, debugger, and project management tools
for various microcontrollers.

2.2.9 nRF5 SDK

The nRF5 Software Development Kit (SDK) [18] is a collection of software development
tools, libraries, and example code provided by Nordic Semiconductor. The SDK is de-
signed to help developers quickly and easily build applications based on Nordic Semi-
conductor’s nRF5 series of SoC devices.

The provided example code demonstrates how to use the various features and capabilities
of the nRF5 series devices. This code can be used as a starting point for developing custom
applications. It can help developers get up to speed quickly with the various features and
capabilities of the nRF5 series devices.

Chapter 2. Background

2.3 Robot application

The existing software application, developed for several years by multiple students, com-
prises a collection of seven FreeRTOS Tasks. An overview of these tasks can be found in
Table 2.1. During the code implementation process, the SEGGER Embedded Studio ARM
version 3.34a was used as the IDE and the supporting SDK version that was used where
nRF5 SDK Thread and Zigbee version 4.1.0.

H Task name \ Description H
MainPoseEstimateTask Estimate position of the robot
MainPoseControllerTask Controlling the robots behaviour
MainSpeedControllerTask | Control speed of the motors on the robot
MainSensorTowerTask Scanning the environment around the robot
mapping_task Extracting line segments from IR-sensor data
mgqttsn_task Execution of the MQTT-SN client
thread_stack_task Initializing the thread interface

Table 2.1: Task overview of the software

mgqttsn_task and thread_stack_task are tasks concerning mqtt and thread, while the re-
maining tasks concern the robot’s behaviour. The interactions between the tasks con-
cerning the robot’s behaviour are illustrated in Figure 2.6.

Figure 2.7 shows the interface between the task concerning the robot behaviour and the
MQTTSN task. The interface with thread_stack_task is simplified as the details do not
affect the overall understanding of the robot application.

2.3 Robot application

encoder_with_counter_
get_ticks_since_last_time()

A
EncoderTicks ToE stimatorTaskQ encoderTicks ToMotorSpeedControllerQ
1 . I
! xTickBSem
1
vMainPoseEstimateTask Jl Function call L vMotorSpeedControlerTask
. tMotorSpeed-
Function call “(se
xControllerBSem - Reference()
xPoseMute:
vMainPoseControllerTask scanStatusQ vMainSensorTowerTask
ir_measurment_queue GiveNotify
—Queue ——p
Caller Function
>
mapping_task
Semaphore

Figure 2.6: Interactions between the tasks concerning the robots behaviour(3, p.13]

Chapter 2. Background

vMainPoseControllerTask vMainPoseEstimateTask mapping_task vMainSensorTowerTask

queue based on topic
"v2/server/NRF_5/cmd"

Y Y 4 h 4
| publish() ‘

publish_line() publish_update()

publish_estimator() | | publish_cluster_point()

mqttsn_outgoing_message_gueue

Each function have
maqttsn_task their respective
queue. Omitted to
reduce clutter.

'

thread_stack_task

thread_mgttsn.c

Figure 2.7: Interface between mqttsn_task and tasks concerning the robot behaviour. [3, p.16]

10

2.4 Sensor Data Acquisition Board

2.4 Sensor Data Acquisition Board

The Sensor Data Acquisition Board [4], which utilizes two nRF52840 SoCs, is a new sys-
tem under development. The purpose of the new system is to collect data from a IR-sensor
tower (equipped with four IR-sensors) and an IMU. It also includes a dedicated nRF52840
SoC specifically designed for SLAM algorithms. The schematics for the PCB can be found
in appendices A, B, C and D.

This new system is currently in a prototype phase and the custom PCB still needs to be
integrated into the robots. Further hardware testing, software development and integra-
tion remain.

Figure 2.8 visually represents the system’s structure. Signals concerning the encoder,
motor driver and Organic Light-Emitting Diode (OLED) will pass through the PCB and
can be accessed by connectors dedicated to a nRF52840DK. The rest of the signals will
pass through one of the SoCs on the board. The acquired data can either be sent directly
to the SoC on the board or to another device.

IR - sensor-
connector

A

Servo Tower ——

Handler -—

Servo-
connector

F

IMU-
connector

Connectors to SLAM

B UART-
Handl —

nRF52840DK AR connector

Encoder-
connector

Fy
h

Motordriver-
connector

A

OLED-
connector

Figure 2.8: System structure over Sensor Data Acquisition Board [4, p.14]

11

Chapter 2. Background

The communication protocol used is SPI, where both SoCs on the board can serve as
either:

« master - slave
« slave - master

« slave - slave (requires an additional device to serve as the master)

The following list is the description on the remaining future work described in the project
thesis Sensor Data Acquisition Board for nRF52840 maze mapping robots [4]:

1. Most of the hardware on the system is done and software development can be

further developed. Additional hardware testing is still needed but can now be tested
simultaneously with new software.

2. It is important to divide the testing into different phases. First, the main goal is to

have running software on one of the SoC on the board.

3. The next phase would be testing the PCB with the development kit and testing for

communication. Testing the SPI communication between both SoC on the board
might be better and easier as is almost little to nothing of software to handle. After
figuring out the SPI setup for both SoCs, then testing with the development kit
might be easier.

4. The last phase is testing the board with the robot and seeing how the software on

the board cooperates with the rest of the robot.

5. During hardware testing, if more faults are found, a new revision of the PCB should

be considered. Here are some fixes that should be considered if a new revision is
necessary:

+ Change descriptive titles in the schematic for both SoCs.
+ Add + - signs in the silkscreen for the power connector.

+ The connector P24 must be changed to be the same pitch as the connector
below on the development kit. It is also possible to physically modify the
connector to connect the used pinouts to the development kit, but these are
short-term modifications.

« Consider using the 0402 packages around the nRF52840 if it is known that
these components can be soldered at a manufacturer. This is to make the use
of Radio Frequency (RF)-technology available for future development.

« Consider using a solder oven than hand soldering. A stencil might be neces-
sary to be ordered.

+ More describing text around connectors, such as around the stackable head-
ers.

12

2.4 Sensor Data Acquisition Board

Figure 2.9 and Figure 2.10 show the custom PCB attached on top of the robots develop-
ment kit from different angles.

Figure 2.10: Custom board placed on top of the SLAM-robot: side view [4, p.38]

13

Chapter 2. Background

2.4.1 Specifications of the custom PCB

Listed below are the specifications of the custom PCB:

Board size: 130mm x 67 mm.

Four layer PCB : top, ground, power and bottom.

1 Oz copper thickness

All components on the PCB are placed on one side.

The PCB must be powered with 12 V DC to function.

Can be put on top of an nRF52840DK and deliver power to the development kit.
PCB can deliver both 5 V and 3.3 V

Two nRF52840 SoCs with debug connector

Total of 11 connectors for peripherals such as servo, motor driver, IR-sensors, IMU,
encoders, OLED and UART

Test point for 0 V, 5V and 3.3V
Debug LEDs for 5V and 3.3V
Indication LEDs for the robot

Board cutout for accessing debug connectors from the nRF52840DK

Figure 2.11 illustrates the front side of the custom PCB.

il]

Designed by
Emanuela Tran

nRF52840_MCUO

C © X
) H HE

Figure 2.11: PCB front [4, p.36]

14

2.5 Testing from previous work

2.5 Testing from previous work

The custom board has yet to undergo complete soldering and testing. However, according
to the project thesis Sensor data acquisition board for nRF52840 maze mapping robots[4],
previous testing indicates that both regulators on the PCB are functioning correctly. Fig-
ure 2.12 shows the test plan that was made for the PCB.

What

How

Equipment

Comments

Pass/Fail

5V buck regulator

Solder on components far the 5V
buck regulator. Deliver 12 V to
input. Measure stable 5 V from
output. Solder on 5V jumper.

Soldering Iron,
microscope, solder, flux,
multimeter

3v3 linear regulator

Solder on components for the 3v3
regulator. Deliver 12 to input.
Measure stable 3.3V from output.
Solder on 3V3 jumper.

Soldering Iron,
microscope, solder, flux,
multimeter

MCU0

Solder on components for MCUO.
Check for shortcircuit around the
MCU. Connect to MCUO with
debugger.

Soldering Iron,
microscope, salder, flux,
multimeter, nRF
debugger

Program MCUO

Turn on one LED, set high from
MCUO

computer, nRF
debugger

MCU1

Solder on components for MCU1.
Check for shortcircuit around the
MC1. Connect to MCU1 with
debugger.

Soldering Iron,
microscope, solder, flux,
multimeter, nRF
debugger

Program MCU1

Turn on one LED, set high from
MCU1

computer, nRF
debugger

Figure 2.12: Test plan for hardware testing[4, p.31]

15

Chapter

Theory

Within this chapter, the following sections will present the reader with relevant theories
for this master thesis. These sections will cover the topics such as the communication
protocol SPI, fundamental aspects of PCB-design, Real Time Operating System (RTOS),
and code quality considerations.

3.1 Serial Peripheral Interface

SPIis a synchronous, full duplex master-slave-based interface. The data from the master
or slave is synchronized on the rising or falling clock edge[6]. The physical connection
between a master and a slave device consists of 4 wires; SCLK, CS, MOSI and MISO. The
4-wire SPI devices have four signals:

« System clock or clock (SCLK, CLK)

« Chip select (CS)

« Master out, slave in (MOSI)

« Slave out, master in (MISO)

16

3.1 Serial Peripheral Interface

In addition to the four wires, common ground is needed. Figure 3.1 illustrates the SPI
communication between a master and a slave device.

SPI cs »| Cs SPI
Master Slave
SCLK » SCLK
MOSI » MOSI
MISO <« MISO

Figure 3.1: SPI configuration with master and slave

With the SPI interface, it is possible to have one master device and one or multiple slave
devices. The chip-select signal from the master device is used to select the slave device.
The signal is usually an active low signal and is pulled high to disconnect the slave device
from the SPI bus. When multiple slave devices are used, an individual chip-select signal
for each slave is required from the master.

Data transmitted between the master and slave device is synchronized to the clock gen-
erated by the master device and the data lines are called MOSI and MISO. MOSI transmits
data from the master to the slave and MISO transmits data from the slave to the master.

Both masters and slaves contain a serial shift register. The master begins a byte transfer
by writing the data to its SPI shift register. As the register transmits the byte to the
slave on the MOSI signal line, the slave transfers the contents of its shift register back
to the master on the MISO signal line [5]. In this way, the contents of the two shift
registers are exchanged. Both a write and a read operation are performed with the slave
simultaneously. Figure 3.2 illustrates the SPI transmission between a master and a slave
with its SPI shift register.

Master shift register
In Out

MISO MOSI

Out In

Slave shift register

Figure 3.2: SPI transmission[5]

17

Chapter 3. Theory

3.1.1 SPImodes

The communication protocol has four modes which differ by what logic level signals the
start of a transaction and on which clock edge the data should be sampled. The master
device can select the clock polarity and clock phase.

The CPOL bit sets the polarity of the clock signal during the idle state. The idle state is de-
fined as the period when CS is high and transitions to low at the start of the transmission
and when CS is low and transitioning to high at the end of the transmission.

The CPHA bit selects the clock phase. Depending on the CPHA bit, the rising or falling
clock edge is used to sample and/or shift the data. The master device must select the clock
polarity and clock phase, as per the requirement of the slave device. The four modes are
shown in table Table 3.1.

SPI CPOL | CPHA | Clock polarity | Clock phase used to sample

mode in idle state and/or shift the data

SPI0 0 0 Logic low Data sampled on rising eadge and
shifted out on the falling edge.

SPI1 0 1 Logic low Data samples on the falling edge
and shifted out on the rising edge.

SPI2 1 0 Logic high Data sampled on the rising edge
and shifted out on the falling edge.

SPI3 1 1 Logic high Data sampled on the falling edge
and shifted out on the rising edge.

Table 3.1: SPI-mode configurations

An example of SPI communication with the four SPI modes can be seen in Figure 3.3
through Figure 3.6. The data is shown on the MOSI and MISO lines in the example.
The dotted green line indicates the start and end of transmission, the sampling edge is
indicated in orange, and the shifting edge is indicated in blue.

Figure 3.3 shows the timing diagram for SPI mode 0. In this mode, the clock polarity is 0,
which indicates that the idle state of the clock signal is low. The clock phase is 0, which
indicates that the data is sampled on the rising edge (shown by the orange dotted line),
and the data is shifted on the falling edge (shown by the dotted blue line) of the clock

signal.

Figure 3.4 shows the timing diagram for SPI Mode 1. In this mode, the clock polarity is 0,
which indicates that the idle state of the clock signal is low. The clock phase in this mode
is 1, indicating that the data is sampled on the falling edge and shifted on the rising edge
of the clock signal.

18

3.1 Serial Peripheral Interface

Figure 3.3: SPI Mode 0, CPOL = 0, CPHA = 0: CLK idle state = low, data sampled on rising edge
and shifted on falling edge[6].

Figure 3.4: SPI Mode 1, CPOL = 0, CPHA = 1: CLK idle state = low, data sampled on the falling
edge and shifted on the rising edge [6].

Figure 3.5 shows the timing diagram for SPI Mode 2. In this mode, the clock polarity is
1, which indicates that the idle state of the clock signal is high. The clock phase in this
mode is 0, which indicates that the data is sampled on the rising edge and the data is
shifted on the falling edge of the clock signal.

Figure 3.5: SPI Mode 2, CPOL = 1, CPHA = 0: CLK idle state = high, data sampled on the rising
edge and shifted on the falling edge [6].

19

Chapter 3. Theory

Figure 3.6 shows the timing diagram for SPI Mode 3. In this mode, the clock polarity is
1, which indicates that the idle state of the clock signal is high. The clock phase in this
mode is 1, indicating that the data is sampled on the falling edge and shifted on the rising
edge of the clock signal.

-\ —
- AT T

‘
: : ;

MISO] 1 1 1 |

0xBA | Wz 1 0 [1 " E \ o [\ o HH-Z

Figure 3.6: SPI Mode 3, CPOL = 1, CPHA = 1: CLK idle state = high, data sampled on the falling
edge and shifted on the rising edge [6]

3.2 PCB Fundamentals

PCBs are an essential part of modern electronics. They are used to connect and mount
electronic components to create functional circuits. PCBs are epoxy-bonded fiberglass
sheets plated with copper. The copper plating is etched away, leaving tracks (traces) that
form the interconnections of the circuit [5].

To ensure effective circuit operation, it is essential to appropriately design the conductive
pathways on a PCB. Typically, engineers use specialized software to create a schematic
representation of the circuit, which is then converted into a physical layout of the PCB.
In order to guarantee the circuit’s proper operation, the layout design is crucial. After
the design is completed, components can be mounted on the PCB using techniques such
as through-hole mounting or surface mounting. Once the components are mounted, the
PCB undergoes testing to ensure that it functions properly and meets the design specifi-
cations.

This section will cover the fundamentals a PCB, emphasizing the elements related to the
second revision of the custom PCB for this master’s thesis.

3.2.1 Defining the layer stack

The PCB is designed and formed as a stack of layers. PCBs can either be single-sided
(one layer), double-sided (two layers), or 4-layered, 6-layered, 8-layers, or more. The
layer stack defines how the layers are arranged in the vertical direction.

20

3.2 PCB Fundamentals

3.2.2 Blind, buried and micro via definition

Vias are used to span or connect between the copper layers. If the via passes from the top
surface of the board to the bottom surface, it is called a through hole via. It is possible to
create vias that span other layers by creating the via at a specific point during fabrication.
These types of vias fall into these groups: blind, buried, and micro vias (uVias). Figure 3.7
illustrates a 3D view of the layers on a printed circuit board where the vias are visible.

Figure 3.7: 3D view of the layer stack up on a PCB with visible vias[7]

The possible layers a via can span depend on the fabrication technology used to fabricate
the board. Figure 3.8 shows a six-layer board with the layer names on the left side. The
figure illustrates the three types of vias: blind, buried and through hole.

Blind vias - via spans from a surface layer to an inner layer.
Buried vias - via spans from one internal layer to another internal layer.

Through hole vias - vias spans through the whole PCB.

Top Layer —=

Internal Plane 1 [GND} —=
MidLayerl —s

MidlLayer2 —s

Internal Plane 2 (3V3] —=

Bottom Layer —=

Figure 3.8: The three types of vias that can be created: blind (1), buried (2) and thru-hole[7]

21

Chapter 3. Theory

The fourth type of via that can be created is called micro via or pVia. They are used as
the interconnects between layers in High Density Interconnect (HDI) designs. The pVias
accommodate the high input/output(I/O) density of advanced components packaged and
board designs.

3.2.3 PCB design: schematic

A schematic is utilized as a graphical representation of a circuit design to specify the
electrical connections and components of the circuit.

Creating a clear schematic provides many benefits, especially for systems, projects, and
teams. Clear schematics provide a concise and standardized way to communicate the
details of a circuit design, making it easier for different team members to understand and
work with the design. In addition to improved communication, a well-designed schematic
reduces the risk of errors during the assembly process, which can save time and money
by minimizing the rework and troubleshooting. Listed below are some other benefits of
having a clear and neat schematic:

Easier debugging and modification - Can help isolate circuit design issues, mak-
ing it easier to debug and modify as needed.

+ Better documentation - This can be helpful documentation for the design, mak-
ing it easier to review the design later or share it with others needing to work with
the circuit.

« Improved quality control - Can help ensure that the final product meets the
design specifications and requirements, improving the overall quality of the circuit

« Faster development - Can help to speed up the development process by reducing
the time required for design, prototyping, and testing,.

Overall, creating a clear schematic is an essential aspect of circuit design an can provide
significant benefits in terms of communication, quality, control and efficiency.

Guidelines for developing clear schematic:

« Start with a clear understanding of the circuit requirements and specifications be-
fore beginning the schematic design. This will ensure that the final schematic
meets the desired functionality and performance.

« To make the circuit easier to follow, it is important to have a clear and consistent
layout for the schematic. Organizing it logically will also help with readability.

« Use standard symbols and conventions, which will help to make the schematic
more universally understandable to others.

22

3.2 PCB Fundamentals

« Label all components, connections, and nodes clearly to minimize confusion and
errors during the assembly process.

« Use colors and shading to differentiate between different circuit parts, such as
power supplies, input/output, and signal paths.

« Consider using hierarchical design techniques, which allow for the separation of
the circuit into smaller, more manageable blocks. This approach can make it easier
to debug and modify the circuit later on.

Developing a good schematic involves careful planning, attention to detail, and a focus
on clear and consistent design practices. By following these guidelines, engineers can
create schematics that are easy to read, understand, and build.

3.2.4 PCB design: layout

A PCB layout refers to the physical arrangement and placement of electronic compo-
nents, traces and other elements on a PCB. Layout design involves designing the specific
arrangement and interconnection of components and traces to ensure proper function-
ality and optimal performance of the electronic circuits.

The PCB layout is crucial in determining the electrical and mechanical integrity of the
circuit design. It considers factors such as component placement, routing of electrical
connections (traces), power and ground planes, signal integrity, thermal management,
and manufacturability.

Guidelines for developing good layout

+ Component placement: Carefully place components on the PCB, considering
factors such as functionality, signal integrity, thermal management, and ease of as-
sembly. Group related components together and allocate sufficient space between
them.

« Signal integrity: Pay attention to signal paths and minimize trace length to reduce
signal degradation. Avoid crossing signal traces, and use proper ground and power
planes.

« Routing: Rout traces in a logical and organized manner. Use appropriate trace
width and layer stack up to handle current carrying capacity and signal integrity
requirements.

+ Design for manufacturability: Ensure ease of PCB fabrication and assembly.
Consider manufacturing constraints such as minimum trace widths, minimum clear-
ances, and component footprints recommended by the manufacturer.

23

Chapter 3. Theory

« Testability: Incorporating features and test points in the design to facilitate test-
ing, inspection, and debugging during the manufacturing and assembly stages.

« Documentation: Maintain clear and detailed documentation of the PCB layout,
including component placement, trace routing, layer stack up, and design con-
straints. This aids in future revisions, troubleshooting, and collaboration with other
team members.

It is worth noting that PCB design can be complex and it is often helpful to use specialized
PCB design software that provides Design Rule Check (DRC). DRCs are explained in
section 3.2.5.

3.2.5 PCB design rules

Most PCB editor uses the concept of Design Rules to define the requirements of a design.
These rules form an "instruction set" for the PCB editor to follow. The design rules can
include minimum trace widths, minimum clearance between traces, minimum drill size,
and other design specifications.

DRCs, in most PCB editors, can run a batch test at any time to generate DRC reports.
The purpose of the DRC is to identify potential design errors or violations of design rules
before the PCB is manufactured to avoid costly rework of manufacturing issues.

3.3 Real-time operating systems

A RTOS is an operating system designed for applications that require timing and deter-
ministic behaviour. These applications often involve real-time control of physical sys-
tems, such as industrial automation, aerospace and automotive systems.

An RTOS provides services that allow applications to run predictably and efficiently on
the underlying hardware. Listed below are some key features of an RTOS:

« Task scheduling

« Interrupt handling

« Inter-process communications

« Memory management

« Timing and synchronization
The advantage of an RTOS is its ability to provide deterministic behaviour, which means
that the timing and execution of tasks can be guaranteed. Even the slightest delay or

missed deadline can lead to system failure or safety risks in real-time systems. Therefore,
it is crucial to prioritize timeliness and accuracy.

24

3.4 Code quality: variables

3.4 Code quality: variables

Good variable names are a vital element of program readability. Names should be as
specific as possible. Names that are vague or general enough to be used for multiple pur-
poses are usually bad names. Regardless of the kind of project one works on, one should
adopt a variable naming convention. The convention one chooses to adopt depends on
the size of the program and the number of people involved in working on it. In this
section, guidelines on naming conventions will be introduced.

3.4.1 Naming conventions

Naming conventions play a considerable part in code quality as they structure the code.
Any conventions at all are often better than no conventions. The power of naming con-
ventions does not come from the specific convention chosen but rather the fact that a
convention exists [19].

Conventions offer several benefits:

« Transferring knowledge across the project: The similarity in names gives a
more accessible and more confident understanding of what unknown variables

should do.

+ Learning code more quickly on a new project: Rather than learning that sev-
eral person types of code look like this and that, one can work with a more consis-
tent set of code.

+ Reducing the amount of name proliferation: The same thing can be called
without name conventions by two different names. For example, one might call
total points both pointTotal and totalPoints. This might not be confusing for the
one writing the code, but it can be enormously confusing to a new programmer
who reads it later.

+ Emphasize relationships among related items: Names like address, phone, and
name does not indicate that the variables are related. Suppose that one decides that
employee-data variables should begin with an Empolyee prefix, employeeAddress,
employeePhone and employeeName leave no doubt that the variables are related.

25

Chapter 3. Theory

Listed below are the cases where conventions are worthwhile:

When multiple programmers are working on a project.

When one plans to turn a program over to another programmer for modifications
and maintenance.

When other programmers are reviewing own code

Then the program will be long-lived enough that one might put it aside for a few
weeks or months before working on it again.

When on has a lot of unusual terms that are common on a project and want to have
a standard term or abbreviations to use in coding.

3.4.2 Informal naming conventions

The language used to program the nRF52840DK on the robots is C. The guidelines for
informal naming conventions will focus on the programming language C.

Several naming conventions apply specifically to the C programming language, such as
[19]:

¢ and ch are character variables

i and j are integer indexes

n is a number of something

p is a pointer

s is a string

Variables and routine names are in all_lowercase

The underscore (_) is used as a separator: letters_in_lowercase is more readable than
lettersinlowercase

The naming conventions for C, which were adapted from the earlier guidelines, are pro-
vided in Table 3.2. These specifications are not necessarily recommended but give an idea
of what an informal naming convention includes.

26

3.4 Code quality: variables

\ Entity Description H
TypeName Type definitions use mixed uppercase and lowercase
with an initial capital letter.

GlobalRoutineName() Public routines are in mixed uppercase and lowercase.
f_FileRoutineName() Routines that are private to a single module(file) are pre-

fixed with an f .

LocalVariable Local variables are in mixed uppercase and lowercase.
The name should refer to whatever the variable repre-
sents.

RoutineParameter Routine parameters are formatted the same as local vari-
ables.

f_FileStaticVariable Module (file) variables are prefixed with an f_.

G_Global _GlobalVariable

LOCAL_CONSTANT

G_GLOBALCONSTANT

LOCALMACRO()

G_GLOBAL_MACRO()

Global variables are prefixed with a G_ and a mnemonic
of the module (file) that defines the variable in all upper-
case—for example, SCREEN_Dimensions.

Named constants that are private to a single rou-
tine or module (file) are in all uppercase—for example,
ROWS_MAX.

Global named constants are in all uppercase and are pre-
fixed with G_ and a mnemonic of the module (file) that
defines the name constant in all uppercase—for example,
G_SCREEN_ROWS_MAX.

Macro definitions that are private to a single routing or
module (file) are in all uppercase.

Global macro definitions are in all uppercase and are
prefixed with G_ and a mnemonic of the module(file)
that defines the macro in all uppercase-for example,
G_SCREEN_LOCATION().

Table 3.2: Naming conventions for C

27

Chapter 3. Theory

3.4.3 Creating short names that are readable

It is essential to prioritize readability when choosing names for code, as it is read more
often than it is written. Here are some general guidelines for abbreviations. Some of
them contract others, so do not try to use them all at the same time[19]:

Use standard abbreviations (the ones in common use, which are listed in a dictio-
nary)

Remove all non-leading vowels. (computer becomes cmprt, screen becomes scrn,
and integer becomes intgr.

Remove articles: and, or, the, and so on.
Use the first letter and the last letters of each word.

Truncate consistently after the first, second, or third (whichever is appropriate)
letter of each word

Keep the first and last letter of each word.

Use every significant word in the name, up to three words.

To clarify, try removing any unnecessary suffixes such as -ing, -ed, etc.
Keep the most noticeable sound in each syllable.

Be sure not to change the meaning of the variable.

Iterate through these techniques until every variable name is shortened to between
8 and 20 characters or the maximum number of characters allowed by the program-
ming language used.

28

Chapter

Hardware testing

This chapter will explore the method used for further testing on the Sensor Data Acquisi-
tion Board. As this thesis is a direct continuation of E.Tran’s project thesis [4], the testing
will continue where it was left. Testing that involves software will be limited as the focus
is testing hardware circuits.

4.1 Test plan

Based on the test plan and the conclusions drawn by E. Tran in her project thesis, the
conclusion was drawn that both regulators on the custom PCB are operational and func-
tion as intended. However, verifying the condition of the PCB is a good practice based
on the previous work and test results before proceeding with further testing.

A test was performed on the Sensor Data Acquisition Board using the test plan displayed
in Figure 2.12. The latest test results are available in Figure 4.1. The 5 V buck and 3.3 V
linear regulators have passed the tests successfully. Green indicates pass, while red indi-
cates red. The test plan has also been updated to include more descriptions and further
tests for testing communication.

29

Chapter 4. Hardware testing

Equipment

Comments

Pass/Fail

5V buck regulator

Solder on components for the 5V
buck regulator. Deliver 12 V to
input. Measure stable 5 V from
output. Solder on 5V jumper.

Soldering Iron, microscope, solder,
flux, multimeter

3v3 linear regulator

Solder on components for the 3v3
regulator. Deliver 12 to input.
Measure stable 3.3V from output.
Solder on 3V3 jumper.

Soldering Iron, microscope, solder,
flux, multimeter

1. Solder on components
necesarry for MCUO to function
Optional : circuit concerning 2nd

Soldering Iron, microscope, solder,

Mcuo XTAL and RF. 2. Check for flux, multimeter, nRF debugger
shortcircuit around the MCU. 3.
Connect to MCUO with debugger.
computer, usbA to microUSB cable,
Program MCUO Set a pin high and measure. nRF52840DK(debugger). 10pin

cable from debugger to debug
connecter, mulitmeter

Communication (SPI)

Write code for SPI. Set MCUOD as
master. Test SPI to a device

Compouter, Oscilloscope, usbA to
microUSB cable, nRF52840DK
(debugger), 10pin cable from
debugger to debug connecter

1. Solder on components
necesarry for MCU1 to function
Optional : circuit concerning 2nd

Soldering Iron, microscope, solder,

MeU XTAL and RF. 2. Check for flux, multimeter, nRF debugger
shortcircuit around the MCU1. 3.
Connect to MCU1 with debugger.
computer, usbA to microUSB cable,
Program MCU1 Set a pin high and measure. nRF528400K(debugger), 10pin

cable from debugger to debug
connecter, mulitmeter

Communication (SPI)
between both SoC on
board

Write code for SPI. Set MCUO as
master and MCU1 slave.

Compouter, Oscilloscope, usbA to
microUSB cable, nRF52840DK
(debugger), 10pin cable from
debugger to debug connecter

Figure 4.1: Updated test plan for hardware testing

30

4.2 Soldering and programming the nRF52840

4.2 Soldering and programming the nRF52840

After confirming that the board’s regulators were operating correctly, the subsequent
step in the testing process was to solder around the MCUO. Certain components sur-
rounding the nRF52840 had already been soldered on from previous work. However,
the focus was on soldering only the essential components to validate that the SoC was
functioning as planned. As a result, the circuit associated with the antenna and addi-
tional crystal was not soldered on. The SoC do not need to rely on these two circuits to
function or be programmed. Table 4.1 shows the equipment used for soldering.

H Equipment \ Function H

Solder Metal to connect components to the copper
on the PCB

Solder iron Melt the solder

Microscope Solder Surface Mount Device (SMD) compo-
nents as they are small

Tweezer Hold components in place

Fume extractor Extract the fumes that are dangerous and
toxic while soldering

Flux Prepare the metal surfaces for soldering by
cleaning and removing any oxides and im-
purities

ESD - band Disperse static electricity generated from a
person safely to ground

Schematics and layout of the PCB | Reference when soldering components

Table 4.1: Equipment used for soldering

Table 4.2 lists the components that were soldered and Figure 4.2 shows the soldering
done to the nRF52840_MCUO circuit. The soldering took place at the Department of
Engineering Cybernetics’ mechanical workshop.

H Component number \ Type \ Value H
Ceo Capacitor 1.0 pF 10% X7R
C7 Capacitor 12 pf 2% NP0
C9 Capacitor 12 pf 2% NP0
C11 Capacitor 1.0 uF 10% X7R
X1 Crystal 32 MHz
Debug MCU0 Header 10 pin

Table 4.2: Component list for soldering the circuit around the nRF52840

31

Chapter 4. Hardware testing

' oo nRF52840_MCUO

c11 o'-’I:I

o6

Debug F“ICUOn IUFI w s (§

= D4| €17, BN o o, W —|| L2

'7""-n‘22|c23|'||:‘!"-.-" e

- O

Fiirap5) €24 18

Figure 4.2: Soldering of nRF52840 circuit

4.2.1 Development environment

This section describes preparing and configuring the development environment to test
the Sensor Data Acquisition Board. For testing the custom PCB the IDE used was SEGGER
Embedded Studio. To flash the software onto the hardware, the nRF52840DK was used
as it has an onboard debugger. Figure 4.3 illustrates the connection between a computer
and the Sensor Data Acquisition Board.

SWIy 55| Debuz 55| Debus
USBA E
J-Link
On board SoC Deb:nm SoC SoC
USB debugger EI\,
Development kit e
WRF32840-DK Sensor Data Acquisition Board

Figure 4.3: Connection between computer and Sensor Data Acquisition Board

To use the nRF52840DK as a debugger, the external SoC must be connected to the debug-
out connector on the development kit. Once the external SoC is detected, the debugger
will automatically switch the connection and ignore the onboard SoC. It is not possible
to see this "switch" visually on some Graphical User Interface (GUI) and to assure that
this setup was done correctly, it was first tested against two nRF52840DKs.

One of the development kits was used as the debugger and the other was used as the
external device/SoC. The nRf52840DK has different switches on the development kit for
different modes. As the nRF52840DK, used as the non-debugger, also has an onboard
debugger, one must set the development kit in a mode where the onboard debugger is
deactivated.

32

4.2 Soldering and programming the nRF52840

The development kit utilized as the debugger will now be referred to as nRF52840DK(1),
while the one used as the external device will be referred to as nRF52840DK(2). Both
development kit does not share the same power source.

Below are the settings for the two development kits:

+ Powering the nRF52840DK(1) with pUSB from a computer.

« Powering the nRF52840DK(2) with pUSB from a computer.

« 10 pin cable from debug out on nRF52840DK(1) to debug in on nRF52840DK(2).
« SW8 is switched to ON for both development kits.

« SW6 is switched to DEFAULT for nRF52840DK(1).

« SW6 is switched on to nRF ONLY for nRF52840DK(2).

« SW9 is switched to VDD for both development kits.

Figure 4.4 shows the setup for two nRF52840DK.

nRF52840DK (2)

nRF52840DK (1)

Figure 4.4: Setup for debugging/programming with two nRF52840DK

The nRF52840DK has four LEDs available on the board, and one of the LEDs on the
nRF52840DK(2) was used for visual testing. The nRF52840DK(1) programmed a blinking
LED on the nRF52840DK(2).

Once it was confirmed that the setup for utilizing the onboard debugger on the devel-
opment kit was accurate, the next step involved testing with the custom PCB. Table 4.3

33

Chapter 4. Hardware testing

shows the equipment used when testing the PCB and Figure 4.5 shows the setup between

the custom PCB and a nRF52840DK.

H Equipment ‘ Function H
Power supply Power source
Test lead set Connect equipment to device
Wires Connect the equipment to device
Multimeter Electrical verification
Oscilloscope Measure and visualize electrical signals
Electrostatic Discharge (ESD) - band Prevent ESD damage
Computer Writing code and debugging
nRF52840-DK Development kit with debugger

Table 4.3: Equipment used for testing

Figure 4.5:
nRF52840DK

Setup for debugging/progamming the sensor data acquisition board with a

4.3 Testing SPI communication

To verify the functionality of SPI communication on the Sensor Data Acquisition board,
testing was done with an nRF52840DK. Nordic Semiconductor’s nRF5 SDK provides ex-
ample codes for running the nRF52840 as both a master and a slave device. The details
of these example codes are explained in section 4.3.1.

By utilizing the provided example code, the process of verifying the SPI communication
becomes straightforward and effortless. However, in the occasion where the test results

34

4.3 Testing SPI communication

are not expected, further debugging and testing are required using measurement tools.
This section will cover the method used for testing the SPI communication on the Sensor
Data Acquisition Board.

4.3.1 SPI example code provided by nRF5 SDK

The source code and the project file for the SPI example codes can be found in the fol-
lowing folder of the nRF5 SDK:

<InstallFolder>\examples\peripheral

The example code used for the master device is called spi, and for the slave device, it is
called spis.

SPI Master example code

The SPI Master Example [20] demonstrates using the SPIM peripheral. It uses the SPI
master driver. The application executes SPI transactions every 200 ms and toggles the
LED when the transfer is completed.

Testing the SPI Master example application by performing the following steps:

1. Compile and program the application.

2. Observe that the LED is toggled every 200 ms.

SPI Slave example code

The SPI Slave Example [21] demonstrates using the SPIS peripheral. In the main loop,
the application prepares the SPIS for a transfer and waits until the transfer is completed.
Every time a transfer is completed, the LED is toggled.

Hardware configurations must be done to enable the SPI slave device. The following
configurations are listed below:

« Slave SCLK pin must be connected to Master SCLK.

« Slave CS pin must be connected to Master CS.

Slave MOSI pin must be connected to Master MOSI.

« Slave MISO pin must be connected to Master MISO.

Figure 4.6 shows the physical SPI connection between two development kits.

35

Chapter 4. Hardware testing

Figure 4.6: SPI connection between two nRF52840DKs

The default pin assignment for the SCLK, MOSI and MISO lines can be found in the file
sdk_config.h whereas the CS pin can be found in the file main.c.

Testing the SPI Slave Example application by performing the following steps:
1. Compile and program the application.
2. Observe that no LED is toggled.
3. Connect the board to another board that runs the SPI Master Example.

4. Observe that the LED is toggled every 200 ms.

4.3.2 Testing SPI with example codes

For testing the SPI communication with the example codes provided by nRF5 SDK, two
tests were conducted:

1. Test with two development kits (nRF52840DK) to verify both example codes.

2. Test with the Sensor Data Acquisition Board and a development kit (nRF52840DK).

36

4.3 Testing SPI communication

Upon performing the first test, one could observe a toggling LED on the master device
and that the slave device was toggling as well. Both devices were behaving as expected.

For the second test to achieve identical test results, it is essential for both devices to be
equipped with LEDs. Unfortunately, the Sensor Data Acquisition Board does not have
programmable LEDs, rendering it impossible to generate identical outcomes. However,
SPI communication can still be verified by configuring the custom board as the master
device and utilizing the development kit as the slave device. The slave device is dependent
on the master device and will toggle its LED every time a transfer is completed.

The SPI pins available on the tested SoC are presented in Table 4.4. These pins can be
located in the schematics provided in the appendix C.

H SPI pin \ Pin \ Name \ Software pin number H

SPI_CS1 K2 P0.05 5
SPI_SCK | M2 | P0.07 7
SPI_MOSI | N1 P0.08 8
SPI_MISO | P2 P1.08 40

Table 4.4: SPI pins on the nRF52840 SOC serving the IR-sensor tower

Due to variations in the SPI pins between the custom board and the development kit, the
SPI Master example code cannot be utilized without making the necessary configurations.
These configurations can be observed in Listing 4.1, where the SPI pins are defined to
correspond with those on the SoC and are utilized as SPI pins in the code.

#define CHIP_SELECT PIN 5

> #define MOSI_PIN 8

; #define MISO_PIN 40

#define SCK_PIN 7

s spi_config.ss_pin = CHIP_SELECT_PIN;
7 spi_config.miso_pin

MOSI_PIN;

s spi_config.mosi_pin = MISO_PIN;

spi_config.sck_pin = SCK_PIN;
Listing 4.1: Pin configuration for SPI

During the second test, it was noticed that the slave device either toggled at a rate faster
than 200 ms or stopped toggling for specific periods. Depending solely on the LED on the
slave device as a confirmation of SPI communication was no longer a reliable approach.
Consequently, additional debugging of the SPI communication was deemed necessary.

37

Chapter 4. Hardware testing

4.3.3 Debugging SPI communication

A prioritised testing list had to be created to identify and isolate the cause of the ob-
served behaviour during SPI communication testing. The list considers both hardware
and software factors that could contribute to the issue.

1. Check the connections: Ensure that all connections between the SPI master and
slave are correctly connected and have good solder joints.

2. Recreate the SPI communication with two development kits and use an oscilloscope
to monitor the SPI signals.

3. Configure the custom PCB as the master and a development kit as the slave. Use
an oscilloscope to monitor the SPI signals and compare the observations to those
in step 2.

4. Same as step 3 but configure the custom PCB as the slave and development kit as
the master.

5. Set each SPI pin of the custom board to a high state to confirm that the SPI lines
are functioning properly.

6. Inlayout: review each SPI line in terms of design for signal integrity. List on things
to look for when reviewing:

+ Minimize trace length: SPI traces should be as short as possible, and avoid
routing them near noisy components such as voltage regulators or switching
power supplies.

» Match trace length: Ensure that the length of the traces for each SPI signals
are matches to minimize skew.

« Keep traces close together: Keep traces for the SPI signals close together to
minimize crosstalk and noise.

« Avoid using vias on SPI signals to reduce the impedance of the trace and
minimize signal reflections.

STEP 1: Check the connections

During testing, to ensure the integrity of the wires, a replacement of new wires was
carried out to eliminate the possibility of any broken connections. Figure 4.7 illustrates
the resoldering of the SPI pins, ensuring a secure connection between the headers and
the PCB.

38

4.3 Testing SPI communication

Figure 4.7: Resoldered pins on the Sensor Data Acquisition Board

STEP 2: Recreating the SPI communication with two development kits

An oscilloscope was used to capture the SPI communication. The oscilloscope used had
both analogue and logic channels. During this test, one analogue channel and three logic
channels were used.

Channel 1 measured the clock, while the remaining logic channels measured MOSI, MISO
and the chip select. With the built-in logic analyzer, decoded the message sent with
SPI communication was possible. Figure 4.8 shows the capturing of SPI communication
between two nRF52840DK, and one can observe that the text string "Nordic" is sent from
the master device and sent back from the slave device.

STEP 3: Sensor Data Acquisition as master

Configuring the Sensor Data Acquisition Board as master results in no data being trans-
ferred, as seen in Figure 4.9. Channel 1 displayed no indication of a clock signal among
the channels observed. Out of the tree logic channels, only Channel D1 were active.

STEP 4: Sensor Data Acquisition Board as slave

When configuring the Sensor Data Acquisition Board as the slave, data transfer is ob-
served only from the master device, while no data is transmitted from the slave device.
The captured SPI communication for this specific configuration can be observed in Figure
4.10. In the figure, one can observe the text string "Nordic" is sent from the master and
none are sent from the slave.

39

Chapter 4. Hardware testing

L m Q ls & Auto 2ps/ Complete ;

&
BT Awnotation . Setup 1.25 GSa/s 16 ps Sample

Undo Delete Toom

I A1

Cursor

)

=
=
f
i

Protocol

=
Display

Figure 4.8: Capturing SPI communication with a oscilloscope: two nRF52840DK

RTB2004; 1333.1005K04; 201645 (02.300 2020-10-05)
T
N i Q (T y Auto 2 psf Complete 2

&
Undo Delete v FT Awnotation . Setup 1.25 GSafs 15.2 ps Sample

.2 us = 19.2 us

1.4Y

< D7 _____t=_ D0 SPI {with Cﬂmshnnﬂl M

Figure 4.9: Capturing SPI communication with oscilloscope: Sensor Data Acquisition as master

40

4.3 Testing SPI communication

« m Q [& ° Auto 2ps/ Complete ?

Undo Delete Zoom BT Annotation . 1.25 GSafs 14.8 ps Sample

Figure 4.10: Capturing SPI communication with oscilloscope: Sensor Data Acquisition as slave

STEP 5: Setting each SPI pins in high state

All the SPI pins were set to a high state during this test, as seen in the Listing 4.2. Fig-
ure 4.11 shows the capturing of the attempt to set all SPI pins high where channel D1 is
the only one in a high state. Here DO is the clock signal, D1 is MISO, D2 is MOSI and D3
is the chip select.

#define CHIP_SELECT PIN 5

» #define MOSI_PIN 8

; #define MISO_PIN 40
#define SCK_PIN 7

o nrf_gpio_cfg_output (CHIP_SELECT_PIN) ;
7 nrf_gpio_cfg_output (MOSI_PIN) ;

; nrf_gpio_cfg_output (MISO_PIN);

s nrf_gpio_cfg_output(SCK_PIN) ;

1(
1
1
1
1

nrf_gpio_set (CHIP_SELECT_PIN);
nrf_gpio_set(MOSI_PIN);

s nrf_gpio_set (MISO_PIN);

» nrf_gpio_set(SCK_PIN);

Listing 4.2: Setting SPI pin in high state

41

Chapter 4. Hardware testing

RTB2004; 1333.1005K04; 201645 (02.300 2020-10-05)
. 2003-03-
«] Q & I Auto 20 ps/ Complete %0217

Undo Delete Zoom BT Annotation 20my 1.25 GSafs 200 ns Sample

3V
D7 ______3_ D0

Figure 4.11: Capturing attempt to set SPI pins in high state

STEP 6: Layout review

List of observed things in the layout:

« SPI traces are kept close to each other

« Traces for MOSI, MISO and SCK are close to the 5 V buck voltage regulator. How-
ever, it is on the bottom layer and separated by a ground layer. Seen in Figure 4.12.

« Maximum two vias are used per trace for SPI data lines.

« The pins on the SoC that utilize layer 1 for tracing have been inaccurately defined,
making these pins unusable on the SoC.
Figure 4.13 shows a close up on the nRF52840’s footprint in both 2D and 3D layout
mode. In 3D mode, one can observe that layer 1(brown) pins are not visible.

42

4.4 Additional errors discovered during hardware testing

000000

(a) Close up of the nRF52840 2D layout (b) Close up of the nRF52840 in 3D lay-
mode out mode

Figure 4.13: Close up of the layout around the nRF52840

4.4 Additional errors discovered during hardware test-
ing

While testing the custom board, it was noticed that there was an error in the pin-out
configuration of the motor driver connector. Although the footprint size and pin count
were accurate, the pin numbering was not as initially assumed. The selected connector
had a continuous pin numbering scheme, which was expected to have an alternating pin
count. Figure 4.14 shows the connector for the motor driver with continuous pin num-
bering, while Figure 4.15 illustrates the distinction between alternating and continuous
pin numbering in a connector.

43

Chapter 4. Hardware testing

Figure 4.14: Layout revision 1: Connector for motor driver

Alternating Continuous
count count

© O 1 IO

Q00O
ENENE)
QOO
Q00O

o 10 @ 0

Figure 4.15: Different pin counting

Before soldering the connectors onto the custom board, all connectors and headers were
placed. It was already known that the P24 connector needed to fit correctly due to an
incorrect footprint selection from E.Tran’s project thesis [4]. However, during the test-
ing phase of the remaining connectors, it was realized that the motor driver connector
occupies more space than initially anticipated, as seen in Figure 4.16.

Figure 4.16: Motor driver connector occupies more space

44

Chapter

Second revision of the Sensor Data
Acquisition Board

The need for a second revision has been recognized to address the various issues and
enhance the overall functionality of the design. This chapter will be divided into two
sections where section 5.1 will cover the schematic changes while section 5.2 will cover
the layout modifications. For the second revision of the PCB, the software tool utilized
was Altium Designer, which was also used for the first revision. It is important to note
that the second revision does not involve the production of the printed circuit board.

Refining the schematic and modifying layout can be time-consuming as it can take up to
several hours if there are no recitations when it comes to time. The changes made to the
second revision have therefore been categorized into a high, medium and low priority to
distribute the time usage of each change.

Listed below are the different tasks, their prioritization and if the changes are made in
the schematic or the layout:

Priority high - must be done to correct hardware failure:

« (Schematic) Add the correct footprint for connector P24.

« (Schematic) Change pin matching on motor driver connector.

« (Layout) Reroute the circuits cornering the connector P24.

« (Layout) Reroute the circuits concerning the motor driver connector.

« (Layout) Reroute the circuits concerning the IR connectors due to the direct effect
of rerouting the circuit concerning the motor driver connector.

45

Chapter 5. Second revision of the Sensor Data Acquisition Board

« (Layout) Correct the design fault concerning the pads for the two nRF52840 SoCs
on the PCB and reroute the affected signals. The following signals are affected:
PWM, SPI_CS1, SPI_CS2, SPI_SCK, SPI_MISO, IR2, IR4, I2C_SDA, TX, nrf _reset.

Priority medium - enhances the development of the system:

+ (Schematic) Add two test LEDs.
 (Schematic) Add informative notes.

+ (Schematic) Change net names.

(

(

(
« (Schematic) Change module and descriptive names.
« (Layout) Reroute the SPI signals were they are close to the buck regulator.
(

« (Layout) Adding silk layer with polarity symbols concerning the power connector.
Priority low - optional, will not affect overall functionality:

« (Schematic) Set to 1-based indexing.
+ (Schematic) Rearrangement of modules.

+ (Layout) Modify the silk layer to fit the connectors and components that have been
modified or added.

5.1 Schematic

This section will cover the schematic changes for the second revision of the PCB. The
schematic sheets for the second revision can be seen in the appendices from E to H.

5.1.1 Add correct footprint for the P24 connector

The P24 connector previously had a pitch of 2.00 mm, which has now been replaced with
a connector with the correct pitch of 2.54 mm. The change does not affect the circuits on
the schematic. The net names and pins remain the same.

5.1.2 Changed pin matching on motor driver connector

To resolve the issue with the motor driver connector, where the pin mapping was incor-
rect, this problem has been solved in the schematic by changing the placement of the
net names. Figure 5.1 shows the schematic for the motor driver connector and Figure 5.2

46

5.1 Schematic

shows the changes made for the second revision. A note in the second revision has been
added for explanation.

Motor_bypass_connector

68021-210HLF

|

I Motor -

| M NI ; e .421 M _ENA

| i N 5 : : 5 M CSA
N5 7o el f MENE

| N0 el 0N CsE

|

|

Figure 5.1: Schematic revision 1: Connector for motor driver

Motor_bypass_connector _

5V l

l Motor '
l M IN4 1 e 2 M IN3

MIN2__3 7 M NI |
| s o
l M ENA 7 e o 8 M CSA l
l M ENB 9 o o 10 M CSB l

A
68021-210HLF | Pinnumber does
l oV not match with
I previous work.
They are changed

L X X X X X N X XN X _J

to match the
connector used for
the motor driver.

Figure 5.2: Schematic revision 2: Connector for motor driver

5.1.3 Added 2 LEDs for testing

Figure 5.3 shows a cut out of the schematic of the second revision where two tests LEDs
have been added. In order to have a more clear schematic, all LEDs have been parted
such that the two LEDs connected to the nRF52840DK and the LED connected to the
board are separated. The LEDs under "LED_nRF52840DK" can only be accessed and used
with another development board, while the two added LEDs can be controlled by the
SoCs on the PCB. The purpose of the remaining LEDs is to indicate whether 5V and 3.3
V can be accessed from the board.

47

Chapter 5. Second revision of the Sensor Data Acquisition Board

LED nRF52840DK LED Indicators
| e —— e e e e e e e e e e e e e
| g g |
|]]]
I E E |5 (S - 4 W sy |
| S o 5 E :
73] o 7]
I v v w | = :
) N W
I —— I W Dl W D W DS!\\D‘SZ |
I development kit '
I Rl 4RI2 (RI3 | connected with 1]
208 $220R $220R | thestackable
R9 R10 R20 R10
I e) 220R 220R 220R K =
|)]
| l v v v V.]
1 i o o av oy

Figure 5.3: Schematic revision 2: The available LEDs on the PCB

5.1.4 Added informative notes

In order to provide additional information and aid user navigation, informative notes
have been added to the main schematic. These notes serve to describe the overall system
and assist users in understanding its various components. An example of an informative
note can be observed in Figure 5.4, while all new notes can be found in the main schematic
shown in the appendix E. These informative notes contribute to a more comprehensive
and user-friendly documentation of the main schematic.

AThe controller unit consists of two nRF52840 SoCs

The stackable headers on the left side are connected to an
external development kit, wereas the connecters marked
with bypass are connected to the stackable headers. They
do not concern the controller unit.

The connectors on the right side are connected to the
controller unit

Figure 5.4: Schematic 2nd revision: Informative note in the main sheet

5.1.5 Name changes for net names

Table 5.1 shows the net names that have been changed. It is worth mentioning that the
table does not present a list of all net names starting with MCUO and MCU1. However,
it emphasizes the modification of net names commencing with MCUO or MCU1, which
correspondingly have been substituted with SOC1 and SOC2.

48

5.1 Schematic

H Previous net name | New net name H

MCUO_... SOC1 ...
MCU1 ... SOC2._ ...
ENC1 1 ENC L 1
ENC1_2 ENC L 2
ENC2 1 ENC R 1
ENC2 2 ENC R 2

Table 5.1: Net name changes

5.1.6 Changes for modules and descriptive names

In order to adopt a more informal and descriptive naming, the modules and descriptive
names have been modified. Rather than using names like Encoder 1 and Encoder 2, more
descriptive names such as Encoder Left and Encoder Right have been implemented. This
change aims to provide clearer and more informative labels for the respective modules.
Table 5.2 provides an overview of the modifications made to the module names, whereas
Table 5.3 displays the modifications made to the descriptive names.

H Previous module name ‘ New module name H

Microcontroller unit Controller unit
nRF52840_Servo_Tower | nRF52840_sensor_tower

Table 5.2: Module name changes

H Previous descriptive name \ New descriptive name H

MCU _servo_tower SOC_sensor_tower
Encoder 1 Encoder Left
Encoder 2 Encoder Right

Table 5.3: Descriptive name changes

5.1.7 Set to 1-based indexing

It was discovered that there was no consistency in using 0-based indexing or 1-base in-
dexing. For consistency and to avoid confusion, 1-based indexing was chosen. The choice
was decided based on the authors’ preference.

49

Chapter 5. Second revision of the Sensor Data Acquisition Board

5.1.8 Rearrangement of modules

The main schematic has been improved by reorganizing and modifying the modules for
clarity. The schematic has been improved through careful rearrangement to provide a
more coherent and easily understandable representation of the system. This revision en-
sures that the relationships between modules are better illustrated, making the schematic
more user-friendly and facilitating efficient analysis and troubleshooting. The second re-
vision of the main schematic can be seen in the appendix E.

5.2 Layout

This section will present the layout changes implemented in the second revision of the
custom board. Figure 5.5, Figure 5.6, Figure 5.7, and Figure 5.8 shows the four layers of
the second revision of the PCB. DRC was performed after the layout design to ensure
proper design. Modifications and changes will be addressed in this section.

Figure 5.5: Layout revision 2: Top layer

50

5.2 Layout

Figure 5.6: Layout revision 2: Layer 1

00000000l 0000O0OCOONm OOOOOOOUO\ﬁ

moeoo
(o}

000000000

00000000

eo0oo0coco0co0o0om 00000l

Figure 5.7: Layout revision 2: Layer 2

51

Chapter 5. Second revision of the Sensor Data Acquisition Board

Figure 5.8: Layout Revision 2: Bot layer

5.2.1 Rerouting

Figure 5.9 shows the layout for the correct connector for P24 and the newly added LEDs:
SOC1 and SOC2.

LEDs

°S0C! |5 LED2

X
Qo
O
q—

Qo
N
o}

5 Lo
a?

11

O

Figure 5.9: PCB Layout revision 2: Layout around the PCB’s LEDs and connector P24

Figure 5.10 shows the exact pin mapping for the motor driver connector as in the first
revision. Instead of changing the pin counting to alternating count, the different net
names were shuffled to fit the motor connector. The placement of the net names was
modified in the schematic, as described in section 5.1.2.

52

5.2 Layout

Figure 5.10: Layout revision 2: Connector for motor driver

Due to the size of the package of the motor driver connector, the IR-sensor connectors
had to be moved. The IR-sensor connectors are moved closer to each other, giving the
motor driver connector more space. The new connector layout can be seen in Figure 5.11.

Figure 5.11: Layout revision 2: New placement for connectors concerning motor driver and IR
sensors

To assure that the SPI are not affected by signal integrity, parts of the SPI lines have been
rerouted to address the previous revision where the SPI lines were routed right beneath
the components regarding the buck regulator. Figure 5.12 shows the new routing for the
SPI lines where the traces avoid the components concerning the buck regulator.

Figure 5.12: Layout revision2: Routing on bot layer under the 5 V buck regulator

53

Chapter 5. Second revision of the Sensor Data Acquisition Board

5.2.2 Correcting the pads for the nRF52840 SOC

The datasheet of the nRF52840 does not specify how different layers are connected to the
pads. Nordic Semiconductor does, however, have a document on guidelines for circuit
boards for aQFN package[22], which is the package for the nRF52840 SoC that is used.
In the guidelines for PCB land pattern design, it is specified that a four-layer board with
micro vias are used. From the guild lines and the example picture which is provided in
the datasheet for the SoC, all pads are set to be available on the top layer and to connect
to other layers pVias are used.

The following list describes how to configure pvias in Altium Designer:

1. Click on Design— Layer Stack Manager

2. In the layer stack manager bar (see Figure 5.13) click on Via types (see Figure 5.14).
3. Add a via by clicking on +add

4. Go to Properties and choose the newly added via

5. Choose the first layer as the top layer and the last layer as layer 1.
Check off pvia (see Figure 5.15).

Stackup Impedance Wia Types

Figure 5.13: Altium Designer: Stakcup - Impedance - Via types

Mame Type Thickness Thru 1:4
Top Overlay Overlay

Top Solder Solder Mask 0.01016mm

Top Layer Signal 0.035mm

Dielectric 2 Prepreg 0.07112mm

Layer 1 Signal 0.035mm

Dielectric 1 0.889mm

Layer 2 i 0.035mm

Dielectric 3 0.07112mm
Bottom Layer i 0.035mm

0.01016mm

Figure 5.14: Altium Designer: Layer stack manager - Via types

54

5.2 Layout

Layer Stack Manager

h

“Via Type

Name
First layer 1 -Top Layer

~Layer1

Dielectric Thicks
Total Thicks

Figure 5.15: Altium Designer: Layer stack manager - Properties of a pvia

The used pads on the nRF52840 are set to be available on the top layer (in red) see Fig-
ure 5.16a, while the pads that use the layer 1 or power layer (in brown) to route have pvia
attached to the pad as seen in Figure 5.16b. One can observe that the pads where a pvia is
attached are half red and half brown. Note that this is done to both the SoCs on the PCB.
The figures seen below illustrate the SoC designated for the IR-sensor tower and not the
SLAM SoC.

(a) Top layer for the nRf52840 (b) Layer 1 for the nRF52840

Figure 5.16: Layout revision 2: nRF52840 with the use of pVias

5.2.3 Silk layer changes

Figure 5.17 shows the silk layer where the polarity symbols are added to the power con-
nector. Visible polarity symbols are crucial because they provide essential information
about a component’s correct orientation and polarity, in this case, a power connector. If
voltage with the wrong polarity is connected, it can cause several negative consequences,
such as damaging the circuit, overheating or electric shocks.

55

Chapter 5. Second revision of the Sensor Data Acquisition Board

Figure 5.17: Layout revision 2: Power circuit in 3D

Figure 5.18 shows the silk layer around the LEDs available on the custom board. Observe
how the Debug LEDs are separated from the LEDs that can be connected to an external
nRF5284DK.

Debug LEDsI

R1Oe I 1 imm o5V Ipy3 LED3
R20e [1 Imm o3U3 [o[1
R1Se I 1 Imm SOC2

RS e I 1 imm oSOC1 |55 L2

nNRF52840DK

Figure 5.18: Layout revision 2: The available LEDs on the PCB

Figure 5.19 shows the silk layer around the motor driver and IR connectors.

Figure 5.19: Layout revision 2: Connectors for motor driver and IR sensors

56

Chapter

Software analysis and design

This chapter focuses on the software design for the new system, particularly the devel-
opment of new software for one of the two SoCs on the custom board. Before proceeding
with the software design and implementation, a comprehensive analysis of the existing
code is essential since certain portions are intended to be transferred to the new sys-
tem. Assessing how introducing the new system will impact the current code base on
the robots’ nRF52840DK is crucial. Additionally, it is vital to identify the potential chal-
lenges that may arise during the integration process. The project can effectively navigate
the integration by addressing these considerations, ensuring a seamless transition and
successfully incorporating the new system.

The following topics will be covered in this chapter:

« A brief analysis of the code on the nRF52840DK
+ Requirements and specifications for the new system
« Proposal of new design

« Creating a new software project

57

Chapter 6. Software analysis and design

6.1 Brief analysis of the robot code

In the current robot code, running on the nRF52840DK, the task vMainSensorTowerTask is
responsible for scanning the environment using the IR-sensors. This responsibility is in-
tended to be delegated to one of the SoC on the new custom board. Before implementing
this responsibility to a new system, it is necessary to analyse how the task vMainSensor-
TowerTask are integrated with the current code base. This is essential to determine the
code’s reusability and compatibility with the new system and the nRF52840DK.

6.1.1 Analysing the task vMainSensorTowerTask

A scanning sequence consists of a 90° rotation and results in one measurement for each
degree of rotation. Each measurement contains sensor data from four IR-sensors and in-
formation on the current robot position. The current position is estimated in task PoseEs-
timateTask and shared through global variables. These global variables are protected by
the mutex xPoseMutex [3]. Figure 6.1 illustrates a simplified overview of the interactions
concerning the task vMainSensorTowerTask. Note that this figure does not include the
remaining tasks and their interactions.

RELELL vMainPoseEstimatorTask

xPoseMutex

vMainPoseControllerTask I canStatusQ)-

l |

ir_measurement_gqueue GiveNotify

vMainSensorTowerTask

{ mapping_task

Figure 6.1: Simplified diagram of the interactions concerning the task vMainSensorTowerTask

58

6.1 Brief analysis of the robot code

Scanning begins when the robot is stationary and ends when it is in motion. With the
queue scanStatusQ, the task vMainPoseController updates the task vMainSensorTowerTask
with the latest robot movements.

The scanned data can be distributed to the server with two different methods. The first
method involves sending each measurement to the task mapping task for processing
using the queue ir_measurement_queue. After 90 measurements, the task vMainSensor-
TowerTask will notify the task mapping task that the scanning sequence is completed,
and the task will send the processed data to the server. The second method sends each
measurement to the server as they are generated. The server will then start processing
the sent data and draw the map. This method is not described in Figure 6.1. The preferred
method can be configured in the file robot_config.h.

Through analysis, it is revealed that the code has extensive dependencies and lacks mod-
ularity. The task vMainSensorTowerTask relies on three tasks for its operation, whereas
in the ideal scenario with the new system, data transmission would occur between two
devices. Upon a request from the robot’s nRF52830DK, the custom board would send the
processed, scanned data as seen in Figure 6.2.

nRF52840DK Sensor Data Acquistion board
Request N
Robot scanned sequence ”| IR Sensor g ae
Tower '

(nRF52840) ! (NRF2840) |

Send (nRF52840)
scanned sequence , 1

Figure 6.2: Data transmission between development kit and the sensor data acquisition board,
ideal scenario

The current robot project lacks a framework defining the desired structure of the code
base, making it challenging to design a new code project that can be seamlessly integrated
into the existing robot project. It is proposed that the drivers for the vMainSensorTower-
Task can be reused, although their use would need to be developed from scratch.

6.1.2 Deciding between continuing development or rewriting the
software

Given that the new system is integrated, it should be considered whether the integration
should be developed in alignment with the current code base or if a complete overhaul is
required. In making this decision, one should evaluate the compatibility and scalability
of the current code to new and future systems. Code complexity, maintainability, and
potential conflicts must be analysed thoroughly.

59

Chapter 6. Software analysis and design

The new system is designed to rely on SPI communication for collecting data sequences
from sensor measurements. However, simply developing a SPI driver on the nRF52840DK
does not resolve the integration challenges of incorporating the new system. Based on
the analysis conducted in section 6.1.1, it is evident that the code base lacks modularity.
Therefore, it is proposed to restructure and modularise parts of the robot’s code base,
considering the project’s absence of a current software design framework.

Due to the absence of modularisation in the existing code base, various adverse effects
arise, including:

+ Lack of reusability : Non-modular code is often difficult to reuse. It can result in
reinventing the wheel for similar functionalities across different projects or within
the same project, leading to efficient use of development resources.

« Poor maintainability: Non-modular code tends to be more difficult to maintain.
Making changes or fixing issues can be challenging as the codebase needs more
precise separation and organization. This can result in longer debugging and trou-
bleshooting times.

« Scalability issues: Non-modular code is less flexible and scalable. Integrating
new features or making substantial changes to the system becomes more compli-
cated and error-prone, potentially introducing more bugs and increasing the time
required for the development.

« Reduced collaboration: Non-modular code can hinder collaboration among de-
velopers. Working on a monolithic codebase without clear boundaries and inter-
faces between components can lead to conflicts and difficulties in coordinating ef-
forts among team members.

« Testing challenges: Testing non-modular code can be more complex. It may be
difficult to isolate specific functionalities for testing, resulting in longer test cycles
and increased chances of undetected bugs.

« Limited flexibility: Non-modular code is less adaptable to future changes. Intro-
ducing new technologies, frameworks, or architectures may be harder, limiting the
system’s ability to evolve and adapt to evolving requirements.

6.2 Requirements and specifications for the new sys-
tem

Defining the systems requirements and specifications is crucial for several reasons:

« Clarity of purpose: Clearly defining the functionality helps ensure a shared un-
derstanding of what the software should achieve and establishes the purpose and
goals of the project.

60

6.2 Requirements and specifications for the new system

« Scope management: The process of defining requirements and specifications sets
clear boundaries for the software project, outlining the specific elements that fall
within the scope of work and identifying those excluded.

+ Quality assurance: Specifications and requirements provide a basis for evaluat-
ing the quality and performance of the software system. They serve as criteria
for testing and validation, enabling objective assessment of whether the software
meets the desired standards and fulfils the specified requirements.

The system design requirement and specification are specifically focused on the new
system involving the sensor tower. It is important to note that the system design and any
software modifications related to the nRF52840DK are not part of this project’s scope.

6.2.1 Requirements

Requirements refer to the descriptions of what a system or software should achieve or
what characteristics it should have. The focus of requirements is to identify the needs
and expectations of the system.

The objective of the IR-sensor tower is to perform a scanning sequence comprising 90
measurements. The initiation of a scanning sequence is triggered by request from the
nR52840DK. Compared to the task vMainSensorTowerTask on the current software on the
nRF52840DK, the transmitted data does not include information about the position of
the robots. The position is not included as it is irrelevant for the IR-sensor tower, as its
responsibility is to deliver scanned measurement sequences.

From the analysis covered in 6.1.1, the task vMainSensorTowerTask sends the data re-
garding the scanned sequence and information on the current robot position to the task
mapping_task. Considering that the task mapping_task requires both the scanned data
and information about the current robot position, it is recommended to address this in-
ternally within the nRF52840DK to modularize the operations of the SoC running the
software for the IR-sensor tower.

The requirements of the software system are the following:

1. The initiation of a scanning sequence is triggered by request from the nR52840DK.
2. Perform a scanning sequence comprising 90 measurements.

3. Once the scanning sequence is completed, transmit the scanned sequence to the
nRF52840DK.

61

Chapter 6. Software analysis and design

6.2.2 Specifications

While requirements establish the system’s objectives, specifications define the methods
and approaches to achieve those goals. They specify the technical details, standards,
interfaces, and protocols to be used in the development process.

The following specifications for the software system are:

« SPI communication protocol must be used for data transmission.

« An operating system is not needed for this application. However, if an operating
system is employed, FreeRTOS is the preferred choice as it is the used RTOS in the
project.

6.3 Proposal of design

This section will present the proposed design for the software that will run on one of
the SOC of the custom board. Based on the requirements and specifications described in
section 6.2, the following design recommendations are:

« Reuse the drivers: servo and IR-sensors from the original robot code base running
on the nRF52840DK

« Write SPI drivers for communication. Either use the one provided by Nordic Semi-
conductor’s SDK or develop own SPI drivers.

« Write the application that uses these drivers.

6.4 Creating a new software project

This thesis has explored two methods for developing a new software project intended to
run on an nRF52840 SoC. The first method consists of creating a new blank project and
manually downloading and including libraries as needed. The second method uses an
example project with built-in libraries as a base.

Both methods were developed using the FreeRTOS operating system. Despite the uncer-
tainty of whether the new system will require an operating system, it was still imple-
mented as a precautionary measure. FreeRTOS was chosen due to its familiarity with the
project. Implementing FreeRTOS does not affect software that does not use the operating
system. The FreeRTOS package can be included in the file main.c if needed.

The IDE used to develop both methods was the SEGGER Embedded Studio. Detailed
instructions for both methods can be found in the appendices I and J.

62

6.4 Creating a new software project

6.4.1 Testing the software project

Each method was tested with a nRF52840DK with these test cases:

1. Blink a LED every 500 ms. Does the project compile, build and run as intended?

2. Blink two LEDs with the use of two FreeRTOS-tasks. Does the project compile
with the use of FreeROTS?

3. Blink tree LEDs using three FreeRTOS-tasks with significantly different priorities.
Does the project compile, build and run FreeRTOS tasks as intended?

Method 2 was the only method that successfully passed the second and third tests, whereas
both cleared the first test. When running the software created with method 1, more chal-
lenges were encountered, and more troubleshooting and debugging were required. On
the other hand, running method 2 went seamlessly without issues.

63

Chapter

Improving and structuring of the
robot project

As described in chapter 2 the robot project has been under development since 2004 and
consist of several project and master theses. The robot project was initially a group
project. However, over the years, the work structure has changed the project to indi-
vidual tasks where the common denominator is the robot. Over time, the progress of
robot development has slowed down. Although new features and technologies are be-
ing added, there is a need to establish a cohesive structure to integrate them all. During
the autumn of 2022, the student writing their thesis expressed that the project needed a
standard structure. The students recommended that next year’s students for the spring
semester of 2023 take a step back, analyse the state of the project and structure the project
rather than developing additional new features.

This chapter will discuss the collaborative efforts of four students who worked on the
robot project in the spring of 2023. It will also explain the author’s contribution and
reasoning behind their work in this project. The collaborative work has naturally been
distributed unevenly, given that the master’s theses of these students have different fo-
cuses, with some being more reliant on the structural aspects. The four students have
collaboratively written the following text, an introduction to the work contributed to the
robot project.

‘ c The four students working on the SLAM Robot project this semester, Spring
2023, have made an attempt to improve the overall quality of the project,
alongside our individual projects. The goal through this collaborative effort
has been to ease the process of any future students, and to make the code
easier to develop and maintain.

The project contains large amounts of code with little to no regulation of

64

code quality. Consequently, it has been regarded as hard to comprehend for
newer students. This has in turn affected the progress of the SLAM-project
over time. Ideally, new students should be starting on the project where
the previous students left off, but this has not been the case. Students have
reported that a lot of time has been spent in the initial stage of learning how
the robots work, which could be prevented if necessary information was easy
to find.

There is a large amount of information available regarding how the code
works, and the reasoning behind certain features. However, there was no
overview of which theses contained what information, and to get a full un-
derstanding of the current code you would have to read through a lot thesis
in order to find what is relevant. Additionally, it was up to each person to
decide how to document their code and to write the code in any way they
liked. This has caused a complete lack of structure, making it unnecessarily
difficult to understand the code.

Upon completion of the project a student would submit their work as a zip
file containing their entire project. As multiple students were working on
different parts of the robot, this would result in multiple zip files of code be-
ing delivered separately, with necessarily no designated main project. The
following semester, the new students would then be presented with the ques-
tion as to which project to base their work with, leaving documentation and
work from the other prior projects behind. As follows, the general project
would miss out on useful features and bug fixes throughout the revisions.

Making use of the GitHub organization, one would open for version control
and collaborative work on the projects, with the possibility of creating new
repositories for experimental work, and merging these into the main project
if they are decided to become a main feature. This way, new students will al-
ways have one place to look for their project material, and all documentation
and code features will be preserved and accessible down the line.

Listed below are the work that has been done to improve the project and its
workflow:

« Weekly meetings to update on workflow and the state of the project

+ Setname conventions for the software running on the robots nRF52840DK.

— Change the code to comply with the name conventions
— Deleted unnecessary comments

» Changed the file structure of the project

— Changed file names

— Divided the project into parts

— Changed the path of software running on the robots nRF52840DK.
« Created a GitHub organization

— Added the projects code to GitHub

65

Chapter 7. Improving and structuring of the robot project

Created git ignores

Deleted unnecessary and unused files in the project

Created repository name

Added informal readMe files to each repository.
« Created a Wiki for documentation of the project

— Added relevant project an master theses that has contributed the
project

— Added information of the project in parts such as: software, hard-
ware, known bugs etc.

— Added HowTos:
+ How to start and end the project after a work period or semester
+ How to create a new software project with FreeRTOS
+ How to edit the Wiki ,,

Ruud-Olsen, Forsdahl, Kolbeinsen, Tran

In the upcoming sections of this chapter, I will explain the reasoning and methods behind
the tasks I have contributed to. Below is a detailed list of the specific tasks I have worked
on:

+ Created GitHub organization

« Restructuring the robot code on the nRF52840DK

« Code cleanup of the robot code on the nRF52840DK in collaboration with M.Olsen

« Pushed the IR-sensor tower code project to GitHub

« Written part of the documentation to the wiki

Robot HW

Robot SW - tutorials on how to create a software project

Sensor Data Acquisition Board

Added information about previous projects and master theses

7.1 GitHub and GitHub Organizations

Since the earlier students on the project have submitted their theses in the form of ZIP-
files, the upcoming students working on the project will face difficulties in determining
which one to base their project on. Furthermore, different ZIP-files often contain varying
types of code that might be necessary for further development. With limited knowledge

66

7.1 GitHub and GitHub Organizations

of the project, students might arbitrarily choose a ZIP-file, potentially leading to the loss
of important work done by other students that are located in other varies ZIP-files. Ad-
ditionally, there are no guidelines indicating the level of collaboration among previous
students or whether the project code has been merged effectively.

By the use of GitHub, these problems can be solved as GitHub enables collaborations
on software development projects. GitHub is a web-based platform and version control
system. It provides developers with a centralized hub to store, manage and track changes
to their codebase. Listed below are some of the functionalities with the use of GitHub:

« Version control: GitHub utilizes Git, a distributed version control system, allow-
ing developers to track changes, manage different versions of their code and col-
laborate seamlessly with others.

« Repository hosting: GitHub provides a platform to host repositories, which are
collections of code and related files.

« Collaborations: GitHub enables seamless collaboration among developers. Mul-
tiple individuals can work on the same project, make changes to code, and merge
their contributions using pull requests.

« Branching and merging: Developers can create separate branches to work on
specific features or bug fixes and then merge them back into the main codebase.

In addition to delivering work in the form of ZIP-files, the project has made the decision
to host all software on GitHub. This approach ensures that future students on the project
will have clear access to the codebase on which they should base their projects. The
intention is to encourage students to actively push and pull the most recent code changes,
thereby keeping the entire project’s code synchronized until the next iteration when new
students join the project.

GitHub is great if the project consists of one code project. However, the robot project it-
self actually consists of several code projects. It was therefore decided to create a GitHub
organization. GitHub organization are a feature provided by GitHub that allows individ-
uals and teams to collaborate on software development projects. It provides a centralized
platform to manage repositories, teams, and access permissions within an organization.

Currently, the robot project comprises a total of seven code projects. Each of these
projects has its own repositories, which are all located in the Git organization. Figure 7.1
shows the organization created in GitHub, which is called SLAMRobotProject.

67

Chapter 7. Improving and structuring of the robot project

[
"8 ¥ SLAMRobotProject

I I Aa 2 followers @) Norway

() Overview EJ] Repositories 9 [Projects) Packages Ax Teams A People 5 9 Settings

README . md j
Welcome to the team!

This is a collection of the code used for the SLAM Robot Project. Some of the repos are necessary to make the setup work,
some are there for inspiration.

Start by reading through the wiki. It contains a lot of useful information, such as how to get started and as description of the
different compeonents. The README in each repo is describing how to set everything up.

Acknowledgement

This GitHub organization was created spring 2023, on top of our individual master projects. We did the best we could with
limited time. If you find any errors somewhere, unclear instructions in a README or have a better idea for organizing, please
update the corresponding repe to make it easier for future students.

-Emanuela, Kristian, Magnus and Marte

Figure 7.1: GitHub Organization: SLAMRobotProject

The seven code projects that are located in the GitHub organization are the most recent
and updated code projects from the previous students on the SLAM robot project. Out
of the seven code projects, four were previously located in one folder, whereas the re-
maining three were located in other ZIP-files belonging to other previous students on
the project. The folder that consists of the four code projects is based on H.Frestad’s
work folder from his project thesis[3]. Figure 7.2 shows the original folder structure of
the SLAM project.

(C) » Users » ettran » Documents » SLAM-Project »

.

Mame Date modified Type Size
.git 16.01.2023 11:52 File folder
EKF 16.01.2023 11:52 File folder
nrf3sdk_thread 16.01.2023 11:52 File folder
rebot-contrel-mott 16.01.2023 11:52 File folder
Server 16.01.2023 11:52 File folder
SetupGuide_ServerBiMetwork 16.01.2023 11:52 File folder
|:] .gitignore 16.01.2023 11:52 Text Docurment 1KB
Detailed guide for setting up thread netw... 16.01.2023 11:52 Adobe Acrobat D... 433 KB
*| README 16.01.2023 11:52 Markdown Source... 1KB

Figure 7.2: Folder structure of the SLAM Project

68

7.1 GitHub and GitHub Organizations

Without prior knowledge about the project, navigating and understanding the content
of this project folder is not necessarily intuitive. This folder contains the following code
projects:

« EKF: python code for implementing EKF SLAM on the robot
« nrf5sdk_thread: robot code on the nRF52840DK + nRF SDK
o Server: C++ sever

« robot-control-mqtt: communication with robots without the use of C++ server

In addition to the four code projects listed above, there are additional code projects lo-
cated within ZIP-folders that belong to previous students. These are:

« Sensor tower: new system under development for the IR sensor tower on the
robots

+ java server: java server

- matlab-robot-code: MATLAB generated code for the robot

The current workflow lacks a guarantee of preserving all work and ensuring seamless
functionality without the risk of introducing new bugs or failures. However, by actively
utilizing GitHub organization, these challenges can be mitigated, and a more reliable
process can be established. Figure 7.3 shows the current repositories available in the
GitHub organization SLAMRobotProject.

In addition to the seven repositories, there are two repositories, one for the informative
text when entering the organization, shown in Figure 7.1 and the second serving as the
link for the documentation of the project. More about the documentation of the project
will be covered in section 7.3.

The seven repositories contain the project codes that have been mentioned. However, the
names of these code projects have been modified to provide more descriptive information,
and each repository contains additional relevant details. Table 7.1 shows the new names
that the code projects have been given.

H Previous folder name \ New repository name H

EKF EKF SLAM
nrf5sdk_thread robot-code
server cpp-server

robot-control-mqtt python-robot-control

sensor data acquisition board ir-sensor-tower
java server java-server
matlab-robot-code matlab-robot-code

Table 7.1: New names for the different code projects

69

Chapter 7. Improving and structuring of the robot project

2'5 SLAMRobotProject

(@) Overview [l Repositories 9 [Projects @ Packages A Teams A People 5 8 Settings

Q, Find a repository... Type ~ Language ~ Sort ~ [Q New repository

ir-sensor-tower | Private
New system for the sensor tower

®c %o o o 10 Updstednow

documentation-wiki Private
The HTML file for the documentaticn{wiki) of the SLAM Robot Project

®HML ¥o Wo (Do 110 Updated Bminutes ago

robot-code ' private N
Compatible with the C++ server

®c ¥Fo wo (Do 10 Updated 38 minutes ago

matlab-robot-code Private
Robot code for MATLAB robot

@assembly ¥0 tv0 0 §00 Updated 2 days ago

.github-private Private
Home page readme for the github organization
$o 0 (D0 110 UpdatedonApr23

EKF-SLAM | Private

@®rhon F0 0 (D0 10 Updated on Apr 18

cpp-server Private
The C++ Server for the robots

®c-+ ¥o Yo 0 110 Updatedonlpri?

java-server | Private
Java Server for Robot.

@l ¥o Y0 (D0 110 Updated onspr 17

python-robot-control ' private

Alternative Python code for publishing and subscribing to robot topics

@rthon W0 0 (0 110 UpdatedonApr 17

Figure 7.3: Repositories of the GitHub Organization: SLAMRobotProject

In addition to having all code on GitHub, unused files were deleted, and the paths of
the folders were sorted out in collaboration with M. Ruud-Olsen. It is important to note
that this effort is just the beginning of the process to improve the clarity of the project’s
codebase and is not yet considered complete. Table 7.2 shows the difference in the size
of each code project after the cleanup.

70

7.2 Structuring and sorting the code project: robot-code

Previous folder name | Current repository | Previous Current
name size size
nrf5sdk_thread robot-code 1,33 GB 522 MB
robot-control-mqtt python-robot-control 332 KB 18 KB
Server cpp-server 82,7 MB 2.76 MB
EKD EKF-SLAM 5,5 MB 5.5 MB

Table 7.2: Size different for the code project after the clean up

Section 7.2 will discuss the methodology used for structuring the code project robot-
code. The code base of the robot code was extensive such that the workload had to
be distributed. M. Ruud-Olsen was therefore assigned to structure the remaining code
projects; robot-control-mqtt, cpp-server and EKF-SLAM, while the author of this thesis
was assigned to structure the code project: robot-code.

7.2 Structuring and sorting the code project: robot-code

Previously, the robot code was referred to as nrf5sdk_thread, and its source file was lo-
cated within an example folder in Nordic Semiconductors nRF5 Software Development
Kit. The reasoning behind this approach was that dependencies are automatically fixed
with this solution, as seen in Figure 7.4, which is a screenshot of the README-file located
in the SLAM-project folder.

LT

Yes, the project is located in the examples folder of a library... According to students that came
before us, the reason is that dependencies is automatically fixed. Someone with the right knowledge
should definitely try to fix this.

Figure 7.4: README-file from the SLAM project

Given the information that dependencies are fixed and a brief look at the code, it was
assumed and considered that the source code could be parted from the SDK since it only
uses some of its libraries and drivers. The source code would then be the code base that
should be changed while the SDK would be downloaded and used from Nordic Semicon-
ductors website. That way, one will minimize the size of the project and only change the
code that is needed.

Figure 7.5 shows the previous path and the location of the robot code, which runs on
the robot’s nRF52840DK. The properties, as shown in Figure 7.6, reveal that the folder
comprises 14 261 files and 6183 folders. Navigating through this extensive folder structure
can be extremely challenging without proper instructions, and even with knowledge of
the project, it requires a total of seven mouse clicks before accessing the actual code.

71

Chapter 7. Improving and structuring of the robot project

o(C:) » Users » ettran » Documents » SLAM-Project » nrfSsdk_thread » examples » thread » freertos_mqttsn » pcal0056 » blank » ses

~

Mame Date modified Type Size

NS File folder

V5CedeCounter File folder

Output File folder
|| appiinc INC File 0KB
c| ControllerTask C Source File 16 KB
c| ControllerTask C Header Source F... 1KB
c| DBSCAN C Source File 10KB
c| DBSCAN C Header Source F... 1KB
| defines C Header Source F... 2KB
| encoder C Source File KB
| encoder C Header Seurce F... 2KE
€ encoder_with_counter C Source File S KB
€ encoder_with_counter C Header Source F... 2KB
Cl example_task C Source File 4 KB
Cl example_task C Header Source F... TKB
€ ExtendedKalmanFilter C Source File GKE
€ ExtendedKalmanFilter C Header Source F... TKE
& flash_placement XML Source File S5KB

Figure 7.5: Path to the code concerning the robots nRF52840DK

nifSsdk _thread

Type: File folder
Location: Chlsershettran™Documents™SLAM-Project
Size: 1,33 GB (1 434 822 468 bytes)

Size ondigk: 1,36 GB (1 460 695 040 bytes)
Contains: 14 261 Files, 6 133 Folders|

Figure 7.6: Properties of the folder nrf5sdk_thread

In Andersen’s master thesis [1], he explains how he has implemented the MQTTT-SN
client for the nrf52840-robot which was based on two example projects: Thread MQTT-
SN and FreeRTOS CoAP. The SDK that were used were the version NRF5SDK for Thread
and Zigbee version 4.1.0. From these two example projects, the freertos_mgqttsn-project
was made.

Since the folder project for freertos_mqttsn has the same structure as any example project
in Nordic’s SDK, and Andersen states that he used two example projects, it was assumed
that one of the example projects Andersen mentioned were copied and integrated with
the other to make the project folder freertos_mgqttsn. Given that the assumptions are true,
the project folder freertos_mqttsn can be kept and everything else can be deleted.

72

7.2 Structuring and sorting the code project: robot-code

Even if the freertos_mqttsn folder remains and most of the unused files are removed, there
are still unnecessary files inside this folder. Inside the project folder freertos_mqttsn, there
are two PCA folders. PCA100xx indicates which board the software is made for. On the
nRF52840DK, the board number indicated is PCA10056. Meaning the remaining PCA
folders can be deleted.

7.2.1 Modified SDK

It was later discovered that the SDK used in this code project was modified and the re-
fined code project was not compatible with the downloaded SDK version from Nordic
Semiconductor. It is generally bad practice to modify standard libraries and should be
avoided as it can cause different obstacles such as:

« Compatibility: Libraries are extensively tested. Modifying them can introduce
compatibility issues, making the code incompatible with other systems or versions.

Stability: Standard libraries are typically reliable and stable, as they have under-
gone rigorous testing and bug fixing. Modifying them may introduce bugs or er-
rors, compromising the stability and reliability of the code.

« Maintenance: Modifying standard libraries makes it harder to maintain and up-
date the code in the future. When a new version of the library is released, it be-
comes challenging to incorporate the updates and bug fixes if the code has been

modified.

« Code readability and collaboration: Modifying standard libraries can make the
code less readable and harder to understand for other developers. It can also hin-
der collaboration, as team members may have different versions of the modified
libraries, leading to confusion and compatibility problems.

Due to time constraints, the modified SDK are still available and are the ones compatible
with the robot code. The robot code has not been modified to fit one of the existing SDKs
that Nordic Semiconductor’s have available on their website.

7.2.2 The final structure of the robot code

After breaking down all the files and folders inside the project folder nrf5sdk_tread, one
could separate the folder into two separate folders: the robot code and the modified SDK,
which is compatible with the robot code. It was, however, decided to separate into two
folders, but both folders share the same root folder.

It should be noted that restructuring and moving files and folders in the explorer will not
change the path of the code project. This must be manually done in the IDE: SEGGER
Embedded Studio. Every single file the robot code uses must be manually dragged and

73

Chapter 7. Improving and structuring of the robot project

dropped to ensure the right path. The current number of files the robot code uses is 298
files. To match the path of the new folder structure, this must be done in the IDE as well.

Figure 7.7 shows the new folder while Figure 7.8 shows the path for the robot code. Note
that the code project folder is named robot_code with the symbol underscore, while the
root folder is named robot-code with the symbol hyphen.

Initially, it was not necessary to have the robot code inside another robot_code folder,
but the compatible SDK used had modifications. It was therefore decided to have the SDK
inside this folder to ensure the right SDK were used when running the project.

In addition to restructuring the robot code files, names were changed to be more descrip-
tive. All file names are written in snake_case and the file name that opens the software
in the IDE, are changed from thread_freertos_coap_server_pcal0056m to robot_code.

<(C) » Users » ettran » Documents » robot-code »

#

Mame Date modified Type Size
.git 14.04.2023 16:07 File folder
robot_code File folder
SDK File folder
SetupGuide File folder
=] .gitignore Text Document TKB
=] license Text Document TKB
ﬁ! nRF_MDE_8_27 0_IAR_Mordiclicense Windows Installer ... 2340 KB
ﬁ! nRF_MDE_8 27 0_Keild_MordicLicense Windows Installer ... 3268 KB
*| README Markdown Source... 5KB

Figure 7.7: New folder structure for the code concerning the robots nRF52840DK

74

7.3 Documentation of the project (wiki)

((C:) » Users » ettran » Documents * robot-code » robot_code »

-~

MName Date medified Type Size

wscode File folder

armgec File folder

config File folder

iar File folder

Output File folder

src File folder
| | app.inc INC File 0 KB
c| DBSCAN C Source File S KB
c| DBSCAN C Header Source F.. 1KE
C defines C Header Source F... 2 KB
C| encoder C Source File IKB
c| encoder C Header Source F... 2 KB
C encoder_with_counter C Source File SKB
C| encoder_with_counter C Header Source F... 2 KB
C| extended_kalman_filter C Source File 6 KB
C extended_kalman_filter C Header Source F... 1KB
w flash_placement XML Source File SEKB

Figure 7.8: Path to the code concerning the nRF52830DK robot

7.3 Documentation of the project (wiki)

Knowledge about the project has been passed through ZIP-files, and each year the num-
ber of ZIP-files has increased. In addition, there is currently no system that categorizes
the different project and master’s theses and usually, only the latest project/master’ the-
ses are used as the base knowledge for next year’s students.

The documentation, called wiki, consists of a summary of all continuous systems and
projects on the SLAM robot project. It serves as a "wikipendium" for the project. The
previous students on the project expressed that it was difficult to read about the project
by reading different projects and master theses without knowing which one gives an
overall understanding of the project or focuses on the parts their interested in. It was
therefore decided to have a page where one should list the relevant project and master
theses and point out relevant topics they cover.

Additionally, the documentation covers several topics and information regarding the
SLAM Robot project. All documentation is available for the GitHub organisation SLAM-
Robot Project members but can be seen in the appendix K. I have contributed to the
following documentation:

« Robot HW
« Robot SW

75

Chapter 7. Improving and structuring of the robot project

« Previous work
« Sensor Data Acquisition Board
« How to create new nRF software project method 1

« How to create new nRF software project method 2

7.4 Name conventions

Early on, the four students collectively agreed that implementing a naming convention
would benefit the project. M. Ruud-Olsen had the main responsibility to propose a nam-
ing convention while the modifications on the code itself were done in collaboration. The
workload was divided between two persons to minimize fault and review each other’s
changes.

Most of the names in the original code base have informal names. However, there is no
clear distinction or differentiation on what is a task, function, queue etc. For example,
the tasks mapping_task and vNewMainPoseEstimatorTask in the code base are both FreeR-
TOS tasks, but they follow different naming schemes. Similarly, ir_measurement_queue,
scanStatusQ and queue_display are all queues, but here one can observe three different
types of the naming scheme concerning queues. As described in section 3.4.1, having
different naming schemes might not be confusing for the one writing the code, but it can
be enormously confusing to a new programmer who reads it later.

The naming conventions for the robot code are the following:

« xName for semaphores and mutexes

« gName for global variables

« pName for pointers

« gName for queues

« Snake case (snake_case) for functions and structs
« CamelCase (camelCase) for name variables

« Definitions are in uppercase (UPPERCASE)

This naming convention has been adapted and implemented in the current robot code.
The work was divided between M. Ruud-Olsen and the author of this thesis.

76

Chapter

Results

This chapter will present the results regarding the hardware testing, the second revi-
sion of the PCB, the software design, and the improvement and structuring of the robot
project.

8.1 Results: Hardware testing

The results from the hardware testing were recorded in the utilized test plan. Figure 8.1
shows the final test results. The tests that passed are highlighted in green and marked
with PASS, while the tests that failed are highlighted in red and marked with FAIL.
The other tests that were not tested are highlighted with grey and marked with NOT
TESTED.

To comprehend the reasoning behind the failed test case Communication (SPI), additional
debugging were conducted. A debug list were established to debug the SPI issue. As
described in the comments in the test plan, the MISO-line where the signal that was
available when measuring SPI with an oscilloscope. It was later seen during a layout
review of the PCB that the pads concerning the other lines were not connected to the
SoC. Additionally all signal lines that were connected to the SoC with other layers that
the top layer were affected.

During the testing phase, other faults were identified. Specifically, the motor driver had
an incorrect pin count, and the measurements for the design space of the connector were
inaccurately.

The test results from the test plan and additional physical review resulted in a second
revision of the PCB to correct the faults discovered.

77

Chapter 8. Results

5V buck regulator

Solder on components for the 5V
buck regulator. Deliver 12 V to
input. Measure stable 5 V from
output. Solder on 5V jumper.

Soldering Iron, microscope, solder,
flux, multimeter

3v3 linear regulator

Solder on components for the 3v3
regulator. Deliver 12 to input.
Measure stable 3.3V from output.
Solder on 3V3 jumper.

Soldering Iron, microscope, solder,
flux, multimeter

MCuo

1. Solder on components
necesarry for MCUO to function.
Optional : circuit conceming 2nd
XTAL and RF. 2. Check for
shortcircuit around the MCU. 3.
Connect to MCUO with debugger.

Soldering Iron, microscope, solder,
flux, multimeter, nRF debugger

Did not solder the circuit
concerning the 2nd crystal and
RF circuit

Program MCUOQ

Set a pin high and measure.

computer, usbA to microUSB cable,
nRF52840DK(debugger), 10pin
cable from debugger to debug
connecter, mulitmeter

Set pin high for one of the IR
pins and measured voltage(3.3
V) over the high pin. The pins
that were not set as high
measured OV

Communication (SPI)

Write code for SPI. Set MCUO as
master. Test SPI to a device.

Compouter, Oscilloscope, usbA to
microUSB cable, nRF52840DK
(debugger), 10pin cable from

to debug connecter

Used a development kit type
nRF528400DK for test support.
Used SPI code from SDK
exmaple. MISO line are the
only available signal that are
measured with the
oscilloscope. Reviewing the
layout discover that theres a
fault in the layout design, such
that the signals : system clk,
MOSI and CS are not
connected to the pads on the
leled

1. Solder on components
necesarry for MCU1 to function.
Optional : circuit concerning 2nd

Soldering Iron, microscope, solder,

MCU1 XTAL and RF. 2. Check for flux, multimeter, nRF debugger
shortcircuit around the MCU1. 3.
Connect to MCU1 with debugger.
computer, usbA to microUSB gahle,
Program MCU1 Set a pin high and measure. nRF52840DK(debugger), 10pin

cable from debugger to debug
connecter, mulitmeter

‘Communication (SPI)
between both SoC on
board

Write code for SPI. Set MCUO as
master and MCU1 slave.

Compouter, Oscilloscope, usbA to
microUSB cable, nRF52840DK
(debugger), 10pin cable from
debugger to debug connecter

Figure 8.1: Testplan with results

78

8.2 Results: The second revision of the PCB

8.2 Results: The second revision of the PCB

The modifications on the second revision were done according to the tasks described in
chapter 5. Figure 8.2 shows the final design of the second revision of the Sensor Data Ac-
quisition board. The second revision of the design closely resembles the first revision in
terms of visual appearance. It retains its original design layout, with modules occupying
the same positions. While some modules, such as motor driver, IR and LEDs have been
resized and modified.

In the second revision, the silk layer maintains its emphasis on user-friendliness. Every
component and module has a title. If there is only one component in a module the titles
are shared. The schematics of the second revision can be found in the appendices E, F,
G and H. The layout design of the four layers were presented in section 5.2 shown in
Figure 5.5, Figure 5.6, Figure 5.7 and Figure 5.8.

Debug LEDs!

b10o n_1 ymm o5V Ipga LE]
a

Emanuela Tran
Rev2 2023 [

2
a
v

[]

c

o
ot

u

(]
[=]

Q
3

===

°C39

—— C34e

CRe £l

—C33 e
Debug SOC2 4

E2 L5 L6
* /15| mIE!

Debug SoCt, Iulil -x
o0 B4 Cl7o W oo, o° .o HEC2I, B -

= D2 o
o T ol

S

|° &
EEEEEEEE =

Figure 8.2: Layout revision 2: 3D version with components

8.3 Results: Software design

A FreeRTOS software project has been established to develop further software for the
new system, where the proposed design was described in section 6.3. The software
project is available on the project’s GitHub organisation: SLAMRobotProject. The soft-
ware project pushed to the GitHub organisation uses the method 2, which was described
in section 6.4. FreeRTOS and all drivers provided by nRF5 SDK are available and can be
included and used. The code project ir-sensor-tower in the GitHub repository have been
used for testing the custom PCB, where the latest code show cases the test case for SPI.

79

Chapter 8. Results

8.4 Results: Improving and structuring the robot project

The work done by the author of this thesis to improve and structure the robot project are
the following:

« A GitHub organisation has been established to host the latest code from the project.

« The latest code projects are pushed to the GitHub organisation are available.

« The code on the robot’s nRF52840DK has been restructured such that all unneces-
sary files have been deleted and the compatible SDK are available in the root folder
of the robot code.

« Naming conventions has been established and adapted with collaboration with M.
Ruud-Olsen.

« Documentation on the overall project, the system overview of the Sensor Data
Acquisition Board, tutorials and information regarding previous work has been
written.

The details of the work done to improve and structure the robot project has been de-
scribed in chapter 7.

80

Chapter

Discussion

This chapter will discuss the method and results around the topics hardware testing, the
second revision of the custom PCB, software design, and improvement and structuring
of the robot project.

9.1 Hardware testing

The test plan developed in E.Tran’s project thesis was the foundation for the testing pro-
cess. However, after carefully reviewing the test plan, several adjustments and modifica-
tions were made to align it with the current state of the hardware. Testing the SoC was
challenging as I was not familiar with using a development kit to program a SoC. Due
to this, I assumed that the testing would take longer than usual. Programming the SoC
involved a lot of trial and error. The setup was complex and not necessarily intuitive. If
something went wrong, it was not always clear whether it was a user error or a design
flaw.

During the testing of SPI, it was challenging to determine what to test to identify the
source of the error. Therefore, I paused the testing and created a debugging checklist
outlining what I believed would be the most logical tests to conduct before concluding.
This approach allowed me to eliminate and isolate the problem.

The decision to interrupt testing was made to allocate time for new hardware and soft-
ware development. If I had more time, even though I knew that the pins on SOC2 were
not correctly designed, I would have tested those that I knew might work to ensure that
the circuits I designed functioned as expected. In addition to the test cases specified in
the test plan, a visual inspection was conducted. In hindsight, I could have considered
including it in the test plan.

81

Chapter 9. Discussion

From a personal perspective, the presence of a test plan and a place for documenting
results and equipment requirements during testing was reassuring. It offered a clear
roadmap for conducting tests with efficiency, enabling me to follow steps without any
unnecessary time wastage.

9.2 The second revision of the PCB

The need for a new revision emerged due to the test results. By prioritizing the different
tasks, it became easier to allocate time effectively. It is easy to become too detail-oriented
and strive for perfection when making changes. The prioritization list was formulated
based on how critical each modification was. If there was a time constraint, the least pri-
oritized tasks that did not directly affect the circuit’s functionality would be disregarded.
However, it is essential to note that even low-priority tasks are still necessary and should
be considered, as they contribute to the overall user experience.

The future work list, from E.Tran project thesis[4], mentioned in section 2.4 has also
been considered when designing the second revision. The components regarding the
nRF52840 SoCs have not been changed to package 0402, as the first revision of the board
was not affected by component package 0603.

The connector’s net names were rearranged to resolve the problem regarding the motor
driver connector’s pin mapping. This approach was the simplest and most effective. An-
other solution is looking for a connector with the correct pin mapping, but this was not
done to avoid the risk of selecting the wrong connector or searching for a new one.

Additional notes were added to the schematics to provide more precise explanations for
future students who will study the schematics for further system development or as in-
spiration for designing a new system. It can be more challenging to extract information
solely from a master’s thesis and study the schematics compared to having concise ex-
planations directly in the schematics. The overall changes in the schematics offer a more
explanatory and intuitive understanding of how the board functions and the purpose of
various signals.

Regarding the layout changes, the main focus was only on making the necessary changes.
It can be tempting to adjust everything during the layout process, and having a prioriti-
zation plan proved helpful. Occasionally, minor imperfections can be observed, but they
are often not crucial faults that affect circuits and can be considered nitpicking. For ex-
ample, the length of a trace may be shortened to enhance the aesthetics of the circuit, but
it may not significantly impact performance. It is often required to reroute traces when
new components are imported or reallocated. In Altium Designer, moving the compo-
nents and the connection traces is possible. However, given the modified component
placement, the traces were rerouted manually to ensure the circuit’s accuracy.

82

9.3 Software design

9.3 Software design

While it is possible to begin a software project by simply diving into code writing, in this
case, I recognised the significance of outlining specifications and requirements for the
system. Planning a project is essential as it establishes a solid foundation for future work.
It makes the implementation phase much easier and organised and facilitates smoother
integration with other systems in the robot project. Since the new system’s objective is
to take over specific tasks performed on the robot’s nRf52840DK, I acknowledged the im-
portance of analysing how the task is currently executed. This involves comprehending
the task’s actual functionality and interactions with other tasks on the robot.

When developing a software project, two different approaches were explored. Without
clearly understanding which method was the most correct or efficient, the initial option
was to build the project from scratch, which might seem more intuitive. However, the
first method posed challenges in debugging and ensuring the availability of all the desired
packages.

On the other hand, method 2 relied on an example project. Following the provided guide
resulted in a project not being integrated with the example projects that the robot code
had previously relied on. I found method 1 to be more intuitive, but method 2 proved
more straightforward to work with and made it easier to add drivers and libraries and
run FreeRTOS.

Due to time constraints, further development on the Sensor Data Acquisition Board soft-
ware project was not performed. This has been left for future work.

Both methods on how to create software project are presented so that future students can
choose how they create their projects. However, the new students must decide which
method to establish a standard for all new projects. This ensures maintainability and
facilitates collaboration among students working on different projects, enabling them to
support each other with code if needed.

As presented in section 6.2.2, FreeRTOS was chosen as the recommended RTOS for adap-
tation. This decision was based on the fact that FreeRTOS is the RTOS utilized in the robot
project. However, it should be noted that this choice also ensures consistency across var-
ious systems and allows for knowledge sharing.

9.4 Improving and structuring the robot project

The efforts invested in improving and structuring the SLAM robot project have resulted
in a more structured project. It is important to emphasise that this work is the first step
towards making the project easier to start, understand, develop and document.

It is difficult to distribute the work in this project since no project management or leader
is present. Generally, the individuals who take the initiative in a group usually do the

83

Chapter 9. Discussion

most work. Some tasks naturally fall on different individuals. Despite my specific focus
on this project, I have contributed to tasks that may not directly relate to my area of
expertise, but I have made an effort to assist where it was needed. An example of taking
the initiative was when I suggested creating a GitHub organisation for the project. As a
result, it naturally became my responsibility to take charge of that task.

Since I created a new software project from scratch, I was familiar with how the IDE and
its settings worked, making it easier for me than for others to delve into cleaning up the
robot code structure. However, it was more challenging to participate in the clean-up
and implementation of the name conventions for the robot code.

Regarding the project’s documentation, known as the wiki, I contributed what I believed
necessary. However, upon reflection, the information I selected and wrote may not be
the most relevant or comprehensible for most students participating in the project. The
relevance and clarity of the documentation depend on the individual’s background and
area of focus. Looking back, I should have reached out to my fellow student on the project
for their insights on my topics and how I could have better presented it. There may have
been aspects that I overlooked or assumed were common knowledge but needed further
explanation.

The effort to clean up the project has not directly impacted my work during this master’s
thesis, but it has provided me with insights into the structure and planning required for
integrating new systems. It became even more apparent to me that integrating a new
system would require a significant effort after working with and becoming familiar with
the codebase of the robot code. Currently, it is not possible to efficiently integrate the
new system I have been working on. It is unfortunately not sufficient to write a few
drivers or lines of code; it essentially requires restructuring the entire robot code.

84

v 10

Future work

This chapter will present the future work for this project and is divided into two parts.
The first part will present the future work concerning the system Sensor Data Acquisition
Board, while the second part will present the overall future work concerning the robot
project.

10.1 Future work for the system Sensor Data Acquisi-
tion Board

Although the design of the second revision of the Sensor Data Acquisition Board is fin-
ished, reviewing the board before producing it is recommended. If all the components
are accessible at the production site, it is recommended to order PCBs with pre-soldered
components. However, in cases where specific components are unavailable, the mechan-
ical workshop at the Department of Engineering Cybernetics offers a reflow oven as an
alternative. This allows soldering components onto the PCB without the requirement for
hand soldering. Unless the person performing the soldering is experienced and confident
in soldering and desoldering the nRF52840 package, using the reflow oven for soldering
purposes is not advisable. The footprint of the nRF52840 package presents challenges
that require specialized skills for successful soldering and desoldering.

Additionally, further testing of the first revision of the board such be considered. Circuits
that are more likely to work should be tested to ensure the correct circuit design before
the second revision goes into production.

A test plan should be created for the second revision after its production. If all com-
ponents are soldered at the production site, it is recommended to leave the unsoldering
jumpers(zero-ohm resistor). Those components that should not be soldered are marked

85

Chapter 10. Future work

with an X on the board as seen in Figure 10.1. That way, it is possible to test the 5 V and
3.3 V without harming other circuits if they are not soldered correctly.

Figure 10.1: Jumpers/zero-ohm resistor are marked with a cross

The software development for the IR-sensor tower can begin as it is possible to accom-
plish this without producing a second version of the system. The nRF52840DK and the
custom PCB utilize the same SoC. To enhance the efficiency of the software development
and testing, it is recommend to create a test plan. This will ensure the coverage of all
software features, facilitating smoother development and testing procedures.

Despite the development of the software for the new system, challenges may arise during
the integration process with the robot. The robot code must also be modified so the new
system can be integrated. It is not advisable for a new student who receives this system
as a project and master’s thesis to immediately undertake tasks such as producing a new
revision, conducting extensive testing, developing code, and modifying the code on the
robot.

The workload associated with these activities is significant, and it is essential to gradually
approach the development of a new system to establish a solid foundation and ensure its
success. Moreover, the current state of the robot code poses challenges when it comes
to integrating SPI, which is essential for communication between the robot and new sys-
tems. Given the project’s structure, it is anticipated that comprehending and modifying
the current robot code will present significant challenges in addition to mastering a new
system.

86

10.2 Future work for the robot project

10.2 Future work for the robot project

The work described in chapter 9.4 highlight the work undertaken to improve and re-
structure the robot project. However, further work is required to achieve a thoroughly
structured project. This section will present the recommend future work regarding the
robot project.

10.2.1 Documenting the work on the "wiki"

All efforts to make the " wiki " documentation will only be valuable if further documen-
tation is done. It is recommended that the new students on the project continue and uses
the documentation made. By actively updating the "wiki", it will ensure that information
about the project will not be lost. Next year’s students can decide whether to update it
regularly or do this at the end of the semester.

10.2.2 Name conventions

The name conventions presented in section 7.4 should be continued when further devel-
oping the robot code. Other code projects that are written in the programming language
C should implement this name convention. Creating new naming conventions for other
software projects should be considered, as they are written in different languages.

10.2.3 The use of GitHub

As described in section 7.1, all known code bases had been pushed to the project’s own
Github Organization. While having the entire code base available on GitHub may seem
organized, without proper rules and regulations for its usage, it can quickly devolve into
chaos.

It is recommended that the new student taking over the project sit down and establish
some rules and guidelines regarding the use of GitHub. Here are some rules that should
be considered:

« Branching strategy: Define a branching strategy that outlines how branches
should be created, named, and merged.

« Code review: Require code reviews before merging any changes into the main
branch. This helps ensure code quality, catch errors, and share knowledge among
team members.

+ Pull request guidelines: Establish guidelines for creating pull requests, including
a description of the changes, any required tests or documentation updates, and the
reviewers who need to approve the changes.

87

Chapter 10. Future work

« Access control: Define who can push changes directly to specific branches. Con-

sider limiting direct push access to the main branch and requiring pull requests for
other branches.

« Commit messages: Encourage descriptive and meaningful commit messages that

clearly explain the purpose and impact of the changes.

10.2.4 Modularisation

Modularisation is crucial in large projects that involve multiple components and mul-
tiple users working on them. In this context, components are defined as both software
components within a project and components in terms of applications in software. This
implies that different systems have defined interfaces, allowing their functionality to be
changed without affecting other systems. In this project, there is a lack of modularity. For
instance, there are many dependencies among different components of the robot. This
makes it difficult to understand and challenging to modify existing elements. Changes
can potentially cause other systems to stop functioning correctly.

The following are the steps that should be taken to achieve modularity in the project:

. Establish a shared codebase on Github that contains low-level drivers used by all

boards, which will standardize the usage of all components.

. Each component within a system should be clearly divided. For example, all com-

munication should be consolidated into a module with a well-defined interface.
This makes it easier to add new components that can utilize the existing interface
without modifying other components.

. All systems should have clearly defined responsibilities. For instance, all external

communication with the server can be delegated to a separate board with a clear
interface that other boards/systems can utilize. This allows for easier integration
of additional sensors or new systems in the future.

. To achieve this, communication within the robot should also be modified. The

suggestion to use the communication protocol Controller Area Network (CAN)
were introduced in E.Trans project thesis [4].

88

Bibliography

(1]

T.Andersen. Sparse IR sensor EKF-SLAM for MQTTSN/Thread connected robot. NTNU
Trondheim, 2022.

SEGGER Microcontroller. J-link ob, . URL https://www.segger.com/
products/debug-probes/j-1link/models/j-1link-ob/.

H.Frestad. The SLAM-Project. NTNU Trondheim, 2022.

ETran. Sensor data aquisition board for nRF52840 maze mapping robots. NTNU
Trondheim, 2022.

[5] John Catsoulis. Designing Embedded Hardware (2nd edition). O’Reilly.

(6]

[10]

[11]

Piyu Dhaker. Introduction to spi interface, 2018. URL https:
//www.analog.com/media/en/analog-dialogue/volume-52/
number-3/introduction-to-spi-interface.pdf.

Altium Designer. Defining blind, buried micro vias in altium de-
signer. URL https://www.altium.com/documentation/
altium-designer/blind-buried-micro-vias.

EJolsgard. Embedded nRF52 robot. NTNU Trondheim, 2020.

Nordic Semiconductor. nrf52840dk, . URL https://www.nordicsemi.
com/Products/Development-hardware/nrf52840-dk

Handson Technology. L29n dual h-bridge motor driver. URL http://www.
handsontec.com/dataspecs/L298N%20Motor%20Driver. pdf.

Machifit. Machifit 25ga370 dc 12v micro gear reduction en-
coder motor. URL https://www.banggood.com/
Machifit-25GA370-DC-12V-Micro-Gear-Reduction-Encoder\
-Motor-with-Mounting-Bracket-and-Wheel-p-1532242.
html?cur_warehouse=CN&ID=6157423.

89

https://www.segger.com/products/debug-probes/j-link/models/j-link-ob/
https://www.segger.com/products/debug-probes/j-link/models/j-link-ob/
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.altium.com/documentation/altium-designer/blind-buried-micro-vias
https://www.altium.com/documentation/altium-designer/blind-buried-micro-vias
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
http://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
http://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
https://www.banggood.com/Machifit-25GA370-DC-12V-Micro-Gear-Reduction-Encoder\-Motor-with-Mounting-Bracket-and-Wheel-p-1532242.html?cur_warehouse=CN&ID=6157423
https://www.banggood.com/Machifit-25GA370-DC-12V-Micro-Gear-Reduction-Encoder\-Motor-with-Mounting-Bracket-and-Wheel-p-1532242.html?cur_warehouse=CN&ID=6157423
https://www.banggood.com/Machifit-25GA370-DC-12V-Micro-Gear-Reduction-Encoder\-Motor-with-Mounting-Bracket-and-Wheel-p-1532242.html?cur_warehouse=CN&ID=6157423
https://www.banggood.com/Machifit-25GA370-DC-12V-Micro-Gear-Reduction-Encoder\-Motor-with-Mounting-Bracket-and-Wheel-p-1532242.html?cur_warehouse=CN&ID=6157423

[12] Sharp Electronics. Sharp gp2ya21ykof datasheet. URL https://global.
sharp/products/device/lineup/data/pdf/datasheet/
gp2y0a2lyk_e.pdf.

[13] DGServo. Servo - generic metal gear (micro size). URL https://www.
sparkfun.com/products/14760.

[14] InvenSense. Icm-20948. URL https://www.elfadistrelec.no/Web/
Downloads/_m/an/SEN-15335_eng_man. pdf.

[15] EJelsgard. Shield for embedded nrf52840-DK robot. NTNU Trondheim, 2020.

[16] SEGGER Microcontroller. J-link, . URL https://www.segger.com/
products/debug-probes/j-1ink/.

[17] SEGGER Microcontroller. Segger embedded studio, . URL https:
//www.segger.com/products/development-tools/
embedded-studio/.

[18] Nordic Semiconductor. nrf5sdk documentation 17.1.0, 2023. URL
https://infocenter.nordicsemi.com/index. jsp?topic=
%2Fstruct_sdk%2Fstruct%2Fsdk_nrf5_latest.html&cp=9_1

[19] Steve McConnell. Code Complete (2nd edition). Microsoft.

[20] Nordic Semiconductor. nrf5sdk documentation, spi master example, 2021. URL
https://infocenter.nordicsemi.com/index. jsp?topic=
%2Fsdk_nrf5_v17.1.0%2Fspi_master_example.html&cp=9_

1 4 6 _37.

[21] Nordic Semiconductor. nrf5sdk documentation, spi slave example, 2021. URL
https://infocenter.nordicsemi.com/index. jsp?topic=
%2Fsdk_nrf5_v17.1.0%2Fspi_slave_example.html&cp=9_1_
4_6_309.

[22] Nordic Semiconductor. Circuit board guideline for aqfn package, . URL https:
//infocenter.nordicsemi.com/pdf/nan_040.pdf.

90

https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://www.sparkfun.com/products/14760
https://www.sparkfun.com/products/14760
https://www.elfadistrelec.no/Web/Downloads/_m/an/SEN-15335_eng_man.pdf
https://www.elfadistrelec.no/Web/Downloads/_m/an/SEN-15335_eng_man.pdf
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/development-tools/embedded-studio/
https://www.segger.com/products/development-tools/embedded-studio/
https://www.segger.com/products/development-tools/embedded-studio/
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_sdk%2Fstruct%2Fsdk_nrf5_latest.html&cp=9_1
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_sdk%2Fstruct%2Fsdk_nrf5_latest.html&cp=9_1
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_master_example.html&cp=9_1_4_6_37
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_master_example.html&cp=9_1_4_6_37
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_master_example.html&cp=9_1_4_6_37
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_slave_example.html&cp=9_1_4_6_39
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_slave_example.html&cp=9_1_4_6_39
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v17.1.0%2Fspi_slave_example.html&cp=9_1_4_6_39
https://infocenter.nordicsemi.com/pdf/nan_040.pdf
https://infocenter.nordicsemi.com/pdf/nan_040.pdf

main sheet

1

1C revision

A Schemat

v : z I v
gggggg
oo
5 | TR TR TRTT T T TR
% % | |
' I bt !
[o w0
: 1 1
1 | ansir s |
| wsa 15a]
H | H
: : 1 1
||||||||| [LI I I S I |
sjutod)say, sioyedipu] a1

10390UU0d ssedAq 100N

1as <

e _HJ
& e

> s

"

EEEELLLLL

?029Q

oo

JUN IS[JONTOI0IIIIA

oo

A0
a1
T sas
A At _HJ
w1 A

10MOJ

91

power sheet

1

1C revision

B Schemat

mmmmm

uinijj)

TEPRICPRfo

mmmmmmmmmmmmmmmmmm

SYEEPza,

mmmmmmmmm

,,,,,,,

92

servo_tower sheet

1

1C revision

C Schemat

93

5 I s v : : ;
V o €] 00 2L ONBS NOW 3w 3] w0 omaeod
oY onoel
nod
x x
- By]
g & ved
wm
a : | evecue
sovou
=
BurweIsoig
[\
v
X i |
g —
° = R
| oz pasnioust gsn
| | = ‘SNEA punain \
1 [} 5 > D>
1B18(3[515(5(512([3E] w_ A)
| _mu =) Lu_m,.r B m_m‘u £ L MW & 5a
H 233333335333333905 b
| 8hRRNRREOZ3sa2a L
]
H o
Lot I [7
|
| b w
| ol
| o
W
i
| T
1 ’
], i T
5 a1 > s
7 oz
=M]
HEs:
2 e etus
= +] Nnows T)
F a5 onom
| o w 3 L
| T <
] =
| n
. -
|
| VBIIVOSHT |m———————
| S | |
I { @ I
BUUIUY | o |
! = |
| 1 & |
! | L
JoM0) OIS (H8TS.Tu Uy 1omMOog
v
e —
- — AT
A G A OBa 1S S
o | a0 | oo == NN C3SOT3B i LN A0
o s v c z v

SLAM sheet

1

ic revision

D Schemat

5 I : z ;
T o 7 OSSO synzn] oo angend
oY gl
e
N
s — |
o | "
oy |
a ava o~ |
sososs ! .
| sq, !
|
|
|
! 1
| | ot ok |
| | |
Surniuieisolq
a|! i
|
savvioorzs
i
4 A0 O 15 s
| aunouo -
2 auows
= nows s
et
o B
. a5 105K
3 w | E
L1E B
-
A_u [|
I
1 | - “
| ! | |
1 -
] o)
VIS 078TSAYU uy Iomod
v
e Py p——,
oo ON o LG e 28
I I I] A G GBI LAY S0 ALEEORI 341 S LN
o | o | Vo Tomrss | NS a0 2o O TS S
9]] € z '

94

main sheet

2

1C revision

E Schemat

W]

omaeod

omo ey

133r0H4

o

(e

uozzg oz,
S

a

|
|
]
|
|
| X
|
|
|
|
|
|

a1 208

1as <

R

v = 10)90ut0d ssedAq IO ~ J0)9autod ssedAq I0jOIA
1avn X
T T o
we T H
i — v o
w N Ts ST
Mh T
LT ol
I T o6
Wl ———osona S ors $TEX
S s ¥ ™

15D 14s
14570005

‘anewayos spiessar
se JuawuSisse utd awes) MO[[0f
10U S20P 10J09ULU0D JOALIP 10J0A ‘. LON

*1931100 J2AIMOY
st yundjooy oy “KIeiqI[WNLE up ISIXO
US30p [BUSLIO 3Y} SE SIAPJIP JNBWAYIS

SIY} UI PAsn 10J0UU0D PUE SIOPEIH

= |
Jun_I9[jonuo)

A9y 1, *SIIPEIY IQENIEIS Y} 03 PAJIIUU0I dak ssedAq ypm

PRLIBUI S13)I9UUOI YY) SBIIIM J1] JUdWO[IAIP [BUIIIXD =
UE 0) P3JIIUUO B IPIS JJI] Y} UO SIIPEIY IqENIEIS A, ﬁH_ A

JIun JI3[j0U0d
1Y) 0) PIYIIULOI A1k IPIS JYSLI Y} UO S.10JIUUD Y,

“JIUN II[JOHUD IY) UIDUOI JOU 0P

|
|
| @t A
“onewoys spagssier SD0S OPSTSAUU OM) JO SISISUOD JIUN II[[OINU0D I, |
UO Paseq e IPIS Y| Ay} UO SIOPEAY FETGE
PUE SI0102UUOD 3} 0] JusWUTISSEUIg
NI 3N G 0 S8 K0 QNS
T T T] 3 SLHDIH ON 10HM NI NI 33 38
4 ONY I WL S0 ALEI08S 3HL 1 HLNSHSH
Gows | v | olassa o | O NSHaH GAB0T0BYIN0 3 WY NBANOOO S
9]] s € 3 [[

95

power sheet

2

1C revision

F Schemat

~winijy |

mmmmmmmmmmmmmmmmmm

,,,,,,,,,,

mmmmmmmmm

96

sensor tower sheet

2

ic revision

G Schemat

97

o5 FTTF,

“winiy

7 133r0H4

5 , : : p
Y s € iz GUOS T9MOT I0SUBS™00S 3y | 3wos| ‘o 8|
(5 oma avi|

BurweIsoig

T T 1908

EEEG
35333333975

89233520
3

H |

! 1

|

]

]

]

]

]

]

]

]

]

] | A0
sy b

| A

b

T
T

(B
Vs o

e pasn jou st gsN
‘SNEA punain

a
—_——x \
@D Dl
— X f
v
>
oD gl
S
o ™ > I Deluwa
L 7
—
W
T TS
[
T v

e ESOHS

3 aNnouo onsézz T)
F 145 05N
1 1no N 1
] T -
| H
| N i
[d L
! g
| veivoss |m———————
| 55 E] Ao !
| H | Py |
BIUSIUY | | h!z__sﬁm 05 Tvikmoa e
1 | o s <
| ! | @
=)]
TOMO)I0SUDS 0p]TSIuu U 19MOg
v
NGO TSN G 0 59300 50 NS
T T T i e SIS ON SO N GSLNANLS0 55903 28
A G ALY LT 10 ALM30NS 31 1 S
o | | owas osres]| N GBS S,
5]] c p I v

SLAM sheet

2

ic revision

H Schemat

o | B z v
Y s Y iz 90GYS WYTS"00S sy za] 3wos| ‘o 8|
o omaew
nod
*
ST 7 07, . ot |
i EElR v d | A0
wm |
a 8 Ao | swoway 1
soarona : S
| sq !
|
|
|
|
| ! o W & I
| | |
— | H
Surniuieisolq
S Pasi 1ou 51 61
o
o “ 1 = A0 ‘SNEA punoin)
oavvIoorszs
i
4 A0 BRET TeoTag
o| foaz cvamzosi [y
</ aNnoYo.
3 aNnodo s 1as
eSS
1o . B
2 1as 19N
1k
Ve - |m——————-
= |
g | 20 |
| A
! 3 1 v snorsowss s 1
1 &] B o ,“zé:;za s
[} | [y
! |

o | o | Vo

osran]

VIS 0¥8TSddU

N3O TEUNVAYI 3NN HO SS38X3 HO QNI
¥ SLHOIN ON 104M NI G3UNGINLSIO ATSS 36

RPN GNY G3LINT ALY 20 ALM300NS 3HLS1HLMSHH
0 NI3K3H 03500510 VL0 3L ONY INIWNO0O S

98

I Tutorial on creating a new software project method

10.

11.

12.

13.

1

. Start Embedded Studio.

. (optional) install CPU support Package for your device family via Tools — Package

Manager. Nordic Semiconductor nRF CPU Support Package were used here.

. Create new project via File — New Project — Create the project in a new solution.

(a) Setaproject name. If no CPU package is used then select "A C/C++ executable
for a Cortex-M processor". Press Next, select your target device and keep
pressing Next until your project is finished.

(b) If you are using a CPU support package select the "A C/C++ executable for.."
from the corresponding package and finish your project as described in the
point above.

. Connect the nRF52840DK to a PC. Ensure that both the Jlink on the development

board and the nRF52840 are powered, not just the nRF52840.

. Give your newly created project a try by building it with F7 and executing it with

F5.

. Create a new folder /lib/FreeRTOS/FreeRTOS-Kernel in both the project explorer

in Embedded Studio and on your hard drive in the project folder.

. Download and unpack the FreeRTOS software to any location.

. In the unpacked folder open folder /FreeRTOS and copy the folder /FreeRTOS/-

Source to the /lib/FreeRTOS/FreeRTOS-Kernel in your ES project folder.

. Add the same files to the Embedded Studio project explorer. The easiest way is to

drag and drop the folder onto the /lib/FreeRTOS/FreeRTOS-Kernel folder.

Right click the new folder and select Setup. Check the box "Recurse into Subdirec-
tories" and press OK.

This should add all FreeRTOS sources to your setup. However not all files are
needed so the wrong files have to be removed again. To do this first convert the
folder to a regular folder by right clicking it and select "Convert to regular folder".

You will need all .c source files from the /Source folder.
All include files from /Source/include and the folders /Source/portable/GCC and
/Source/portable/MemManage.

All other folders and files can be safely removed by simply selecting them and
pressing the DEL key our right click and delete.

99

14.

15.

16.

17.

18.

19.

Next make sure that in /Source/portable/MemManage you only have one .c file
selected e.g. heap_1.c. Remove all other .c files, otherwise the project will later not
build.

In /Source/portable/GCC make sure that only the folder is included that is the ar-
chitecture of your target platform. In our example it is a Cortex-M4 target device
so only folder /Source/portable/ GCC/ARM_CMA4F stays. All other folders can be
safely removed as before.

Next you will need to create a FreeRTOSConfig.h file which will configure your
FreeRTOS setup. For references see the FreeRTOS documentation or use one of
the config headers from the many samples out there as reference. For example
the one from the example project above. We recommend to place this file into your
source folder where your main.c file is. In this case it is folder /source in the project
folder.

Next all include paths need to be set. You can add this in project options under
Project — Options — Preprocessor — User Include Directories. If you are using
the same folder structure as recommended the following three include paths must
be set. If you are using another project structure adjust the paths accordingly.

(a) $(ProjectDir)/source

(b) $(ProjectDir)/lib/FreeRTOS/FreeRTOS-Kernel/Source/include

(c) $(ProjectDir)/lib/FreeRTOS/FreeRTOS-Kernel/Source/portable/

GCC/ARM_CM4F

Now edit your main.c to include FreeRTOS.h and task.h and add your FreeRTOS
application code to the main.c.

(optional) add your third party libraries, HALs, drivers etc. to your project by in-
cluding their paths. In this project the nRF SDK folder is outside of this project
folder. The paths for the nRf SDK therefore start with "../". Your paths should look
something like this:

(a) $(ProjectDir)/source

(b) $(ProjectDir)/lib/FreeRTOS/FreeRTOS-Kernel/Source/include

(c) $(ProjectDir)/lib/FreeRTOS/FreeRTOS-Kernel/Source/portable/
GCC/ARM_CM4F

(d) ../nRF5_SDK_17.1.0_ddde560/modules/nrfx

(e) ./nRF5_SDK_17.1.0_ddde560/components/boards

(f) ../nRF5_SDK_17.1.0_ddde560/components/libraries/util
(g) ./nRF5_SDK_17.1.0_ddde560/modules/nrfx/hal

(h) ../nRF5_SDK_17.1.0_ddde560/modules/nrfx/drivers

(i) ../nRF5_SDK_17.1.0_ddde560/integration/nrfx/legacy
(j) ./nRF5_SDK_17.1.0_ddde560/modules/nrfx/templates

100

(k) ../nRF5_SDK_17.1.0_ddde560/modules/nrfx/templates/nRF52840

20. Once all this is done your application should build now and you should be able to
debug a FreeRTOS application in Embedded Studio.

101

J Tutorial on creating a new software project method
2

This section covers the second method on how to make a new project. This method are
based on nRF SDK’s example project.

Step 1: Download nRF5 SDK from Nordic Semiconductor

« https://www.nordicsemi.com/Products/Development-software/nrf5-sdk/download

« The version used for this project is 17.1.0

Step 2: Make a copy of the downloaded folder and rename to desired project
name

1. In the copied folder go click into:
» examples — peripheral — blinky_freeRTOS — pcal0056 — blank — ses

2. The new project will be the blinky_FreeRTOS_pca10056 (type: SEGGER Embedded
Studio ARM Procjet file).

3. Build and run this project to check that you have a working FreeRTOS project.

4. Have the new project folder close to the original downloaded folder, preferably in
the same folder. This is due to paths and project setup later on.

Step 3: Reorganize the structure of your project in the file explorer

Modifications will be made in the copied folder (new project folder) and not in
the "nRF5_SDK_17.1.0_ddde560" folder. Unused files/folder will be deleted.

1. In the ../examples/peripheral folder, move the "blinky_freertos" folder to the root
folder
2. In the root folder, delete all folders except for the folder names "blinky_freertos"
3. Inside the "blinky_freertos" folder delete the following folders:
« pcal0040 and pcal0100

4. Inthe ../blinky_freertos/pca10056/blank/ses folder, move all files/folders to the root
folder.

5. In the ../blinky_freertos/pcal0056/blank folder, delete the ses folder and move all
remaining folders/folders to the root folder.

102

6. In the ../blinky_freertos folder, delete pca10056 folder, hex folder and move the
remaining filder/folders to the root folder.

7. In the root folder, delete "blinky_freertos"

Step 4 (Optional): Reorganize the structure of you project in SEGGER
You are free to choose wether you want to restructure the folder structure inside your
project (SEGGER)

Right click on your project and add folders.

1. For this project two folders were created: src and config.

2. The application folder was deleted.

3. Add existing files into the project by right clicking on your folder.
4. The src folder contains main.c.

5. The config folder contains sdk_config.h and FreeRTOSConfig.h.

Step 5: Include paths and files

Open the new project in Segger. It is likely that the build process will encounter errors
since all the original files have been removed. Therefore, it is essential to configure the
correct paths for the new project so that it can locate the necessary files.

1. Right click on your project and select options.
2. On the top to the left select "Common" for private configurations.

3. Include and the right paths in Preprocessor — User Included Directories.

The existing paths are referencing the SDK files that have been deleted. The new project
should utilize the SDK files from the original folder that was initially downloaded.

Here is an example of how the paths should appear if the root folder and the original
SDK folder are located in the same directory: ../nRF5_SDK_17.1.0_ddde560/components

After setting the correct paths, the necessary files must be included from the original
nRF5_SDK_17.1.0_ddde560 folder. The specific files that are required depends on the
driver you wish to use in the project. Navigate to the original nRF5_SDK_17.1.0_ddde560
folder and simply drag and drop the necessary files into the SEGGER project. This guide
is specifically based on the blink_freertos example and includes the same files that are
used in that project.

103

Compile and execute the code to verify if it functions similarly to the original blinky_freertos
example project. If any issues arise, double-check the paths and ensure that the correct
files have been included. The sdk_config used in this project are similar to the one used
ins the blinky_freertos example.

104

K Documentation (wiki)

Home

Welcome to the hub for information management regarding the SLAM projects. Below
you will find some useful links to get started. If you wish to make changes to the wiki, visit
the page.

Setting up

In this section you will find all information needed to with the SLAM project. In
order to make the project as clean as possible, make sure you know how to use
and the

System architecture

The following pages contain a generalized overview of the robot control system, from
server to robot, and from hardware to software.

Useful information

Familiarize yourself with the good-to-know aspects of the project, such as 2
etc. The theses of previous students are a good way to learn more about the
system, and an overview of some of them are found in

Please also know what to do when to make it easier for future
students.

105

Edit Wiki

For making changes to the wiki, there are quite a few things to keep in mind. This page is
intended to help you out by providing some information on how this wiki is structured,
and some tips and tricks on how to navigate.

Making a new page

In order to make a new page, navigate to the «+= sign located beneath the title on the top
right section of the screen. A blank page will appear on the left hand side. These pages are
natively called <tiddlers=», and will be referred to as such by the system. The new pages will
be tagged as =untagge y default, remember to remove this tag and provide a suitable
tag, preferably from the existing selection to maintain a consistent overview, but in case
noone suits the use properly, you can make your own. The idea is to keep it simple.

Formatting

When writing your tiddler, the toolbar on top of the text editor contain some helpful tools,
but learning how to perform these things manually can also be time saving so here are
some helpful tips:

+ Headers In order to make headers, simply write an exclamation mark “!" at the start
of the respective line, followed by a space and your header text. The amount of
ks correspond to the header types, i.e. "!" corresponds to Header 1,
“II" to Header 2 etc.
+ Linebreak To make a linebreak, simply hit enter two times. two linebreaks in the text
editor results in a single linebreak in the output.

106

Fontstyles To make text bold, enclose it in double apostrophes (*). For italic style,
enclose it in double slashes (/). For underlined text, enclose it in double
underscores (_). For everlined text, enclose it in double tildes (~).

Images To include images, firstly make sure the image is imported using the binder
icon beneath the wiki title on the top right of the screen. If you can't find it there,
you can find it in the Tools tab located in the same area. Make sure the image file
has a simple name. Then, include it in the text by making double brackets, with
"img" between the first and second bracket, followed by the filename inside the
second bracket. Example [img [filename.png]] without the spacing

Bullet points are made using the star symbol "** followed by space and your text.
Lists are not made automatically, so you will need to make a linebreak and follow up
with a new bullet point manually.

Links to other tiddlers If you want to reference another tiddler, you can link it by
simply encasing the title of the page in double brackets. For example, [[Home]]
will create a link to

Saving the wiki

When you want to save your changes, make sure all the tiddlers, i.e. the "pages” you've
made changes to, are saved by clicking the checkmark in the top right corner of each
tiddler. To make the wiki a little less messy for the next person opening it, make sure to hit
the Home button before the final save. This closes all open tiddlers except from the start
page. Then, you can save the entire wiki by hitting the red circle icon on the top right of
the screen, under the project title. Any unsaved tiddlers will lose their changes when you
press this button. If you are working directly in the html-file, you are working offline and
saving will produce a new html-file in your download folder for you to share with the
project members. If you have uploaded the file to TiddlyHost, which is the online host
service, the changes will be saved to your online project and you will need to download
the updated project to an html file in order to share it.

Note: The system has no guarantees for your unsaved changes to be stored, and so if the
browser you're working in goes idle or anything like that, the page may be refreshed and
you might lose all your progress so make sure you save often.

107

Get Started

Before you start

Make sure you read through this wiki. It contains a lot of useful information and details on where to find more. There are also helpful insights from
previous students that will hopefully decrease the time needed to understand the setup and code.

Familiarize yourself with the organization and its repositories. What repos are necessary for you depends on what version you are going to work

on.

¢ C++ Server and robots
o You will need to clone the repositories cpp-server and robot-code. A detailed guide on how to set up the server and how to flash code to
the robots are found in their respective repos.
« Java server and robots
2 The server is available in Java-Server
> What robot-code you want to base your project on depends on your task.
= The code in robot-code is based on the work from Frestad(2022), and a naming convention was added and the file structure greatly
improved spring 2023. The functionality for using the Java server was not removed, but the updated version was only tested with the
C++ server. It is quite possible that this robot code will work with the Java server, but no guarantees can be made.
» The code in robot-code-java-server is based on the work done by Andersen (2022), but it is without the work done by Frestad(
and the improvements done to robot-code during spring 2023. It is however guaranteed to be compatible with the Java server.

When you start your work, make sure that you work on a separate branch, and not directly into the main branch.

There are six robots available for this project, named NRF1 through NRF6. The robots have some differences in hardware. Make sure you choose the
correct robot in robot _config.h in the robot code.

Charging the robots

The orange covers on the wire are there to protect them. Remove these on the two free wires at the front of the robot.
Connect the black charger plug to the black wire, and the red charger plug to the red

Flip the charger switch on the robot.

Connect to power.

108

Naming Conventions

how-to

When beginning to work on this project, there is a lot of code to understand and read

through. In addition, a lot of people have contributed to the current code with their own
manner of programming. Consistent use of the naming conventions will improve the
readability greatly. Note that these naming conventions, especially the delimitation,

applies mainly to the robot code. The C++ server is written with snake case for everything.
Whatever repo needs work done, please think through how to name things to make it
easier for everyone.

Delimitation of words:

» Snake case (snake_case) is to be used for functions and structs.
o The tasks should be prefixed with "task_". Eg. task_sensor_tower
+ Camel Case (camelCase) is the default way to name variables.

To further differentiate between some key concepts an initial letter can be used on the
variables:

» xName for semaphores and mutexes.

» gName is used for global vanables.

+ pName is used for pointers.

» gMName is for queues (eg. gEncoderTicks)

Some general advice for best practice:

+ Boolean variables should be named so it is easy to understand what its value means.
Usually, this means including words as is, was, has and should, for mple
should_update and is_available. Avoid using not as that causes non-intuitive results
of true and false.

* Header files ought to include

#ifndef EXAMPLE_H and #define EXAMPLE_H at the top of the file
#endif /*EXAMPLE_H*f at the end of the file
s #define constants should be capitalized
o #define BUFFER_LENGTH 6

109

C++ Server

e C++ server is a multithreaded process that can be run in Visual Studio 2019. Frestad
(2022) contains a more detailed description of details of the different threads. Information
about MQTT, MQTT-5N and the communication between the robots and the server can be
found in Andersen (2020). An updated guide for how to set up the server correctly can be
found in the repo cpp-server.

matn.cpp sets the MQTT address to the Raspberry Pi. It also creates a couple of call-back
functions, and is responsible for starting the five threads responsible for respectively the
GUI, MQTT, robot inbox, robot outbox and simulation. The necessary data for each robot is
found in the robot class in robot.cpp. It is robots.cpp that handles the updating of the
different robots as new updates arrive from the inbox. robots.cpp also calculates the new
target destination.

When running the program, a GUI window appears. Some of the important parts of this
window are the possibility to choose between simulation and physical robots, register
robots, start exploration of the area, and choose manual input. Note that switching
between simulation and real driving also requires one line of code to be changed. As an
alternative to manual input, one can also set target position by right clicking on the screen.
The IR readings from the robots are displayed in the GUI as well, with possible obstacles
displayed as black areas.

The simulation is handled by a separate thread. When the simulation is running, it reacts
to inputs from the GUI window in the same manner a robot would. By letting the
simulated robot explore, it will eventually reconstruct the predefined map it is in.

Incoming messages from the robots are registered by call-backs in the MQTT thread in

matt_handler.cpp. If the message is from a simulation, the message is passed on to the
simulation thread. Otherwise, it is passed on to the robot inbox thread, via a channel called

slam_ch, which again forwards it to robots.cpp for further updating. The robot outbox
thread is responsible for sending the correct new position to the correct robot and passing
it on to the MQTT thread.

110

Choosing "Search Grid” after creating a connection to a robot will lead to the server
choosing a target point and sending it to the robot. When the robot has moved, the server
will add a new random path to its path. When “"Enable Manual Drive” is checked, the server
will send whatever value is in the Manual Input GUI slots with even intervals, roughly every
second. Note that it does not have any concept of whether you finished writing your
target points, and will potentially send an unfinished position, before sending the correct

one.

When using the manual inputs, be aware of the coordinate frames used. The targets are
written on the form (xy) with millimetres as the unit. The robot’s internal coordinate frame
has the positive x-axis going straight ahead, and the positive y-axis to the left. In addition,
somewhere along the line this input is multiplied by two. As a result, setting an input

0) will take the robot 600mm directly to the right of its starting point.

111

Java Server

The Java server is a server application that provides real time features to control the
robots. By using BLE communication through nRF51 Dongle it is able to communicate with
multiple robots and extract data from them, and ultimately send position commands to
them. The server also contains a GUI with a map drawn from sensor data, and a simulator
that can be used for testing.

It is based on a older implementation in MATLAB which was first introduced in 2005 by
Syvertsen. The Java server was built in 2016 by Andersen and Rgdseth. More details can be
found in their report.

In order to use the Java server to control the robots, it needs to be flashed with the Java
server robot code. A nRF 51 dongle with the correct hex file is also needed.

A user manual to the Java server can be found in the SSNAR - cart/manuls folder in the
Jjava-server repository. Master thesis’ reports working with and alongside the java server
can be found in the reports/ folder in the repository.

112

Robot HW

The figure above is an illustration of the robots hardware. The left side of the figure shows
the view above the robot and the right side shows the bottom side of the robot.

nRF52840DK Shield

The nRF52840 shield was custom made by Jglsgard and is attached on the top of the
nRF52840 DK. The purpose of the shield is to connect all peripherals to the GPIO headers
of the development kit.

nNRF52840DK

The nRF52840-DK development kit from Nordic Semiconductor serves as the primary
computing module for the robot. The nRF52840 System on a Chip on the development kit
supports Bluetooth low energy, Bluetooth mesh, NFC, Matter, Thread, and Zigbee. It is
compatible with Arduino UNQ Revision 3, making it easy to use third-party shields. The
development kit comes equipped with an on-board SEGGER J-Link debugger that allows
for programming and debugging of both the on-board SoC and external targets through
the debug header. The nRF52840 DK can be powered through a USB connection, but it
also has the capability to be powered by a wide range of external sources within the 1.7 to
5 volt supply range. In addition to USB, it has a CR2032 battery holder and a Li-Po battery
connector, giving it the flexibility to be powered by various sources depending on the
needs of the project.

113

Sensor tower

The sensor tower i1s made up of four 2YA21 Sharp infrared sensors. These sensors are
mounted on a SO5NF servo motor and arranged radially with respect to each other,
allowing the set of IR sensors to rotate. The sensor tower has a maximum rotation angle of
90 degree and each of the IR sensors have a valid measurement range of 0.1 to 0.8 m.

Motor driver

The L298 motor driver is a bi-directional motor driver based on the L298 Dual H-Bridge
Motor Driver Integrated Circuit. According to its data sheet, it is ideal for robotic
applications and can be easily connected to a microcontroller, requiring only a few control
lines per motor. It is capable of controlling two motors at up to 2 A each in both
directions.

DC motors + encoders

The robot uses two 12V DC-motors from Machifit. Which are rated up to 100 rpm. Each
motor has built-in quadrature encoders for measuring wheel angle and speed.

IMU

The ICM-20948 Measurement Unit is made up of : is MEMS-based gyroscope,
accelerometer, and compass. It is located underneath the robot's chassis and is equipped
with a digital motion processor that is used for simple filtering of sensor measurements
and power management. The IMU is not illustrated on the figure above.

Sensor data acquisition board

In addition to the existing hardware on the robot, there is an ongoing project that works
with splitting up the hardware on the robot.

This project is under development and a custom printed circuit board has been created.
Read more about the Sensor data Acquisition board here:

114

Robot SW

Tutorials on how to create new software
project for a new system

The following are tutorials on how to create a new software project with

Method 1 creates a project from scratch by including libraries. The 2nd method uses a nRF
SDK example project as its base. The 2nd method is preferred as it is easier when
troubleshooting.

115

Known Bugs

L bugs X fa0 0 good-to-know

These are some known bugs. The robots might suddenly decide to behave unexpectedly,
in this case flash the same code again and try again.

o C++ server

o The server only sends a new target if the robot has moved. “If the robot is

stuck against a wall and consequently does not move, this bug causes server
to never send new targets.” (robot_outbox_thread() in
robot_outbox_handler.cpp)

e When using manual input, the server will send the input to the robot roughly

once every second. It is not aware of whether you are currently writing, and as
a result it might send a target (0, -1) as you are trying to write (0,-100). The
next time the correct target will be sent.

» Java server

Robots connecting to the server may occasionally disconnect. The reason for
this is unknown.

* Hardware

NRF3: Only one of the battery packs works.

NRF3: The robot cannot start its program by pushing the power button. It
needs a kickstart with USB on the short side of the NRF52840 and can
maintain power by pushing the power button.

o The robot will reset its program if a problem occurs during runtime. An
example would be a SEGFAULT (running out of memory, out of bounds in an
arrary or any similar errors).

116

Useful Tips

L f20 X good-to-know J

Debugging

Segger has a very useful debugging tool. Nordic extension on VS code is another way to
debug the robot through USB.

If an error happens during runtime that causes the robot code to crash, it will not notify
you in any way. |f a motor input is set before it crashed, this input will continue, and the
robot will keep moving as it did before it crashed.

The IR tower is supposed to start rotating shortly after turning the robot on. If this does
not happen, it is likely due to an issue with the gateway (Raspberry Pi). Make sure that the
dongle is properly attached and try to reset it by removing the power source.

Other general tips include:

» Test the different hardware components if you get unexpected behavior repeatedly.
They have a tendency to not work as expected.

+ Tum everything off and on again, including the Raspberry Pi used.

» Try the code on a different robot to determine if it is a hardware or software error.

Software used

There are a lot of useful software used. Some have their own quirks that is useful to be
aware of.

» Segger

o The file system is weird. How the files are organized in the file explorer does
not necessarily match the one inside the emProject file. If you add a file to the
correct directory, it will not automatically appear in SEGGER. You will have to
manually add them there as well.

Motive

o The axes used by Motive is non intuitive, and might lead to confusion when
exporting the data. The floor is the x-z-plane, while the y-axis describes the
height.

117

Corrupted NRF52840

If the NRF52840 becomes corrupted, you would need to bootload the device and pass it a
new firmware file. If the NRF52840 does not show up in device manager as JLINK, this may
very well be the case.

Useful posts about this issue:

118

Previous Work

In this section you can find a summary of some of the previous thesis on the project. Note that this list is not complete.

Master theses

Be
Kolbeinsen 20
Ruud-Olsen
Getting the robot home without server input
Some basic obstacle avoidance
Tran 202:
Hardware development
Hardware testi
Software development
nRF52840
Andersen 2022
MQTT and MQTTSN
EKF SLAM (not implemented on the robots)

Online SLAM

Project theses

Tran 2022
Printed circuit board design
Sensor Data Acquisition Board
o nRF52840
Frestad 2022
Software structure
rd 2020
nRF custom peripheral shield
8
Hardware and software development
Low level embedded

119

Finish the Project

If your work is finished and works as intended, merge it into the main branch of the repo
so it becomes available to future students. If there are several students working the same
repo, this might require some work.

If your work did not result in a finished feature, or the merging was too much work, leave
your project as a branch on the repo. Name the branch something that clearly describes
the feature it includes. Add a readme in the branch that describes it further, and add your
name so future students can refer to your report for further information. Please remove
any unnecessary comments and add explanations where needed. Delete all the other
branches you have worked on.

Please add a brief summary of the work done to

120

Sensor Data Acquisition Board

under development

The sensor data acguisition board, which utilizes two nRF52840 , I5 @ new system
under development. The purpose of the new system is to collect data from a IR-sensor
tower (equipped with 4 IR sensors) and an IMU. It also includes a dedicated nRF52840
specifically designed for SLAM algorithms.

This new system is currently in a prototype phase and the custom PCB is not yet inte-
grated on the robots. Further hardware testing, software development and integration still
remains

The figure below provides a visual representation of the system’s structure. Signals

concerning encoder, motor driver and OLED will pass through the PCB and can be

accessed by con- nectors dedicated to a nRF52840-DK. The rest of the signals will pass

through one of the on the board. The acquired data can either be sent directly to the
on the board or to another device

IR - sensor-
connector
Servo Tower

Handler

Connectors to SLAM

UART-
nRF52840DK N connector

Encoder-
connector

Motordriver-
connector

OLED.
connector

121

Listed below are specifications of the custom PCE:

Board size: 130mm x 67 mm.

Four layer PCB : top, ground, power and bottom.

1 Oz copper thickness

All components on the PCBE are placed on one side.

The PCB must be powered with 12 V DC to function.

Can be put on top of a nRF52840DK and deliver power to the development kit.
PCB can deliver both 5V and 3.3

Two nRF52840 with debug connector

Total of 11 connectors for peripherals such as servo, motor driver, IR-sensors, IMU,
encoders, OLED and UART

Test point forOV, 5V and 3.3V

Debug LEDs fi

Indication LEDs for the robot

Board cutout for accessing debug connectors from the nRF52840-DK

Emanuela Tran
2022

122

How to create new nrf software project method 1

how-to

. Start Embedded Studio.
. (optional) install CPU support Package for your device family via Tools — Package
Manager. Nordic Semiconductor nRF CPU Support Package were used here.
reate new project via File — New Project —+ Create the project in a new solution.

1
2

1. Set a project name. If no CPU package is used then select “"A C/C++
executable for a Cortex-M processor”. Press Next, select your target device
and keep pressing Next until your project is finished.

2. If you are using a CPU support pack select the "A C/C++ executable for...”
from the corresponding package and finish your project as described in the
point above.

4. Connect the nRF52840DK to a PC. Ensure that both the Jlink on the development
board and the nRF52840 are powered, not just the nRF52840.

. Give your newly created project a try by building it with F7 and executing it with F5.

6. Create a new folder /lib/ /l -Kernel in both the project explorer in
Embedded Studio and on your hard drive in the project folder.
. Download and unpack the software to any location.
8. In the unpacked folder open folder / and copy the folder
/ J/Source to the /lib/ / -Kernel in your ES project folder.
9. Add the same files to the Embedded Studio project explorer. The easiest way is to
drag and drop the folder onto the /lib/ / -Kernel folder.

10. Right click the new folder and select Setup. Check the box “"Recurse into
Subdirectories” and press OK.

11. This should add all sources to your setup. However not all files are needed
so the wrong files have to be removed again. To do this first convert the folder to a
regular folder by right clicking it and select "Convert to regular folder”.

12. You will need all .c source files from the /Source folder. All include files from
/Sourcefinclude and the folders /Source/portable/GCC and
/Sourcefportable/. .

13. All other folders and files can be safely removed by simply selecting them and
pressing the DEL key our right click and delete.

14. Next make sure that in /Source/portable/ you only have one .c file
selected e.g. heap 1.c. Remove all other .c files, otherwise the project will later not
build.

. In /Source/portable/GCC make sure that only the folder is included that is the
architecture of your target platform. In our example it is a Cortex-M4 target device
so only folder /Source/portable/GCC/ARM CMA4F stays. All other folders can be
safely removed as before.

123

16. Next you will need to create a .h file which will configure your
setup. For references see the documentation or use one of the
config headers from the many samples out there as reference. For example the one
from the example project above. We recommend to place this file into your source
folder where your main.c file is. In this case it is folder fsource in the project folder.
. Next all include paths need to be set. You can add this in project options under
Project — Options — Preprocessor — User Include Directories. If you are using the
same folder structure as recommended the following three include paths must be
set. If you are using another project structure adjust the paths accordingly.
1. 3()/source
2. %(Wb/ y -Kernel/Sourcefinclude
3.9 Wb/ y -Kernel/Source/portable/GCC/ARM
CM4F

8. Now edit your main.c to include .h and task.h and add your
application code to the main.c.

9. (optional) add your third party libraries, HALs, drivers etc. to your project by
including their paths. In this project the nRF SDK folder is outside of this project
folder. The paths for the nRf SDK therefore start with "../". Your paths should look
something like this:

)/source

Wb/ y -Kernel/Source/include
Wb/ y -Kernel/Source/portable/GCC/ARM

. ./nRF5 SDK 17.1.0 ddde560/modules/nrix

. ./nRF5 SDK 17.1.0 ddde560/components/boards

. ./nRF5 SDK 17, de560/components/libranes/util

. ./NRF5 SDK 17.1.0 ddde560/modules/nrfx/hal

. ./nRF5 SDK 17.1.0 ddde560/modules/nrfx/drivers

../nRF5 & . de560/integration/nrix/legacy

. ./nRF5 SDK 17.1.0 ddde560/modules/nrfx/templates

. ./nRF5 SDK 17.1.0 ddde560/modules/nrfx/templates/nRF52840

S s T -

co

Once all this is done your application should build now and you should be able to debug a
application in Embedded Studio.

124

How to create new nrf software project method 2

how-to

Step

Step

1: Download nRF5 SDK from MNordic Semiconductor

2: Make a copy of the downloaded folder and rename to desired project name

. In the copied folder go click into:
1. examples — peripheral — blinky freeRTOS — pca10056 — blank — ses

2. The new project will be the blinky pcal0056 (type: SEGGER Embedded

Studio ARM Procjet file).

3. Build and run this project to check that you have a working project.
4. Have the new project folder close to the original downloaded folder, preferably in

Step

the same folder. This is due to paths and project setup later on.

3: Reorganize the structure of your project in the file explorer

Modifications will be made in the copied folder (new project folder) and not in the "nRF5

SDK

1.

17.1.0 ddde560" folder. Unused files/folder will be deleted.

In the ../examples/peripheral folder, move the “blinky_freertos” folder to the root
folder

2. In the root folder, delete all folders except for the folder names “blinky_freertos”
3. Inside the "blinky freertos” folder delete the following folders:

5.

1. pca10040 and pcal0100
. In the ../blinky freertos/pca10056/blank/ses folder, move all files/folders to the root
folder.
In the ../blinky freertos/pca10056/blank folder, delete the ses folder and move all
remaining folders/folders to the root folder.

6. In the ../blinky freertos folder, delete pca10056 folder, hex folder and move the

remaining filder/folders to the root folder.
. In the root folder, delete "blinky freertos”

125

Step 4 (Optional): Reorganize the structure of you project in SEGGER You are free to
choose wether you want to restructure the folder structure inside your project (SEGGER)

Right click on your project and add folders. # For this project two folders were created: src
and config.

1. The application folder was deleted.

2. Add existing files into the project by right clicking on your folder.
3. The src folder contains main.c.

4. The config folder contains sdk config.h and

Step 5: Include paths and files Open the new project in Segger. It is likely that the build
process will encounter errors since all the original files have been removed. Therefore, it is
essential to configure the correct paths for the new project so that it can locate the
necessary files.

1. Right click on your project and select options.
2. On the top to the left select "Common” for private configurations.
:‘:\‘

. Include and the right paths in Preprocessor — User Included Directories.

The existing paths are referencing the SDK files that have been deleted. The new project
should utilize the SDK files from the original folder that was initially downloaded.

Here is an example of how the paths should appear if the root folder and the original SDK
folder are located in the same directory:

./NRF5_SDK _17.1.0_ddde560/components

After setting the correct paths, the necessary files must be included from the original nRF5
SDK 17.1.0 ddde560 folder. The specific files that are required depends on the driver you
wish to use in the project. Navigate to the original nRF5 SDK 17.1.0 ddde560 folder and
simply drag and drop the necessary files into the SEGGER project. This guide is specifically
based on the blinky_freertos example and includes the same files that are used in that
project.

Compile and execute the code to verify if it functions similarly to the original
blinky_freertos example project. If any issues arise, double-check the paths and ensure that
the correct files have been included. The sdk_config used in this project are similar to the
one used ins the blinky_freertos example.

126

@ NTNU

Norwegian University of
Science and Technology

	Preface
	Problem Statement
	Summary and Conclusion
	Sammendrag og Konklusjon
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Motivation
	Structure of the report

	Background
	SLAM robot project
	Components and tools used in the project
	nRF52840DK
	L298N Motor driver
	DC Motors with rotary encoders
	IR-sensor tower
	ICM-20948 Inertial Measurement Unit
	Custom peripheral shield
	J-link
	SEGGER Embedded studio
	nRF5 SDK

	Robot application
	Sensor Data Acquisition Board
	Specifications of the custom PCB

	Testing from previous work

	Theory
	Serial Peripheral Interface
	SPI modes

	PCB Fundamentals
	Defining the layer stack
	Blind, buried and micro via definition
	PCB design: schematic
	PCB design: layout
	PCB design rules

	Real-time operating systems
	Code quality: variables
	Naming conventions
	Informal naming conventions
	Creating short names that are readable

	Hardware testing
	Test plan
	Soldering and programming the nRF52840
	Development environment

	Testing SPI communication
	SPI example code provided by nRF5 SDK
	Testing SPI with example codes
	Debugging SPI communication

	Additional errors discovered during hardware testing

	Second revision of the Sensor Data Acquisition Board
	Schematic
	Add correct footprint for the P24 connector
	Changed pin matching on motor driver connector
	Added 2 LEDs for testing
	Added informative notes
	Name changes for net names
	Changes for modules and descriptive names
	Set to 1-based indexing
	Rearrangement of modules

	Layout
	Rerouting
	Correcting the pads for the nRF52840 SOC
	Silk layer changes

	Software analysis and design
	Brief analysis of the robot code
	Analysing the task vMainSensorTowerTask
	Deciding between continuing development or rewriting the software

	Requirements and specifications for the new system
	Requirements
	Specifications

	Proposal of design
	Creating a new software project
	Testing the software project

	Improving and structuring of the robot project
	GitHub and GitHub Organizations
	Structuring and sorting the code project: robot-code
	Modified SDK
	The final structure of the robot code

	Documentation of the project (wiki)
	Name conventions

	Results
	Results: Hardware testing
	Results: The second revision of the PCB
	Results: Software design
	Results: Improving and structuring the robot project

	Discussion
	Hardware testing
	The second revision of the PCB
	Software design
	Improving and structuring the robot project

	Future work
	Future work for the system Sensor Data Acquisition Board
	Future work for the robot project
	Documenting the work on the "wiki"
	Name conventions
	The use of GitHub
	Modularisation

	Bibliography
	Appendices
	Schematic revision 1: main sheet
	Schematic revision 1: power sheet
	Schematic revision 1: servo_tower sheet
	Schematic revision 1: SLAM sheet
	Schematic revision 2: main sheet
	Schematic revision 2: power sheet
	Schematic revision 2: sensor_tower sheet
	Schematic revision 2: SLAM sheet
	Tutorial on creating a new software project method 1
	Tutorial on creating a new software project method 2
	Documentation (wiki)

