
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Simen Bergsvik

Enhancing Model Predictive Control
for Non-Continuous Actuators in the
Oil and Gas Industry: A Mixed Integer
MPC Approach

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
June 2023

Simen Bergsvik

Enhancing Model Predictive Control for
Non-Continuous Actuators in the Oil
and Gas Industry: A Mixed Integer MPC
Approach

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Department of Engineering Cybernetics

Master Thesis

Enhancing Model Predictive Control for
Non-Continuous Actuators in the Oil and

Gas Industry: A Mixed Integer MPC
Approach

Author:
Simen Bergsvik

Supervisor NTNU:
Lars Struen Imsland

Supervisor Equinor:
John-Morten Godhavn

June, 2023

Abstract

Effective control systems play a critical role in achieving high productivity and increased earnings in
the oil and gas industry. Model Predictive Control (MPC) has emerged as a widely used technique
for control in this industry. Equinor has developed SEPTIC, an in-house software tool for model
predictive control, which has demonstrated favorable business cases since its inception in 1997.
However, traditional continuous MPC approaches, including SEPTIC, are limited to continuous
decision variables in the optimization problem. As a result, these approaches encounter challenges
when dealing with non-continuous actuators like step chokes, commonly found in the oil and gas
sector.

Equinor currently tackles the discreteness of these actuators through external logic, heuristics, and
special rules. Even though SEPTIC provides excellent performance, not accounting for the discrete
actuators in the optimization problem leads to suboptimal performance. This thesis proposes
Mixed Integer Model Predictive Control (MIMPC) to address the limitations of SEPTIC and
similar systems in managing non-continuous actuators. Unlike continuous MPCs, which treat
non-continuous actuators as continuous, MIMPC directly incorporates the discrete nature of the
actuators into the optimization problem.

The primary objective of this thesis has been to address the discreteness of a production choke
in a gas-lifted oil well by directly incorporating it into the optimization problem within the MPC
framework. This has been accomplished by introducing integer decision variables into the MPC
optimization problem and leveraging mixed integer programming techniques to obtain an optimal
solution. By utilizing a solver that supports integer programming, the inclusion of integrality
constraints has been seamlessly integrated.

When using continuous MPC for controlling the discrete choke, the actual choke position is determ-
ined by rounding the desired continuous choke position to the nearest integer using a deadband.
However, this study demonstrates that utilizing rounding techniques in continuous optimization to
obtain an integer solution does not necessarily provide an optimal outcome. Instead, the utiliza-
tion of integer programming has been emphasized as the preferred approach to achieve an optimal
solution in this context.

The continuous MPC approach gives rise to unpredictable responses when rounding the desired
choke position to the nearest integer upon surpassing the deadband. The research findings highlight
that these unanticipated movements result in significant overshoots in the controlled variables,
compelling the MPC to readjust the choke back towards its previous position. This iterative
process of rounding and readjustment leads to repeatedly large and unanticipated movements,
causing oscillations in the system due to continuous control of a discrete actuator. It is crucial to
acknowledge that these oscillations have a detrimental effect on the actuator, significantly reducing
its lifespan.

The integration of integer decision variables into the optimization problem extends the continu-
ous MPC framework to a MIMPC approach. This enables the controller to consider the discrete
nature of the choke explicitly. The findings presented in this thesis provide compelling evidence
that MIMPC successfully addresses the challenges associated with controlling a discrete actuator,
eliminating the oscillations observed when using continuous control methods. Through the util-
ization of MIMPC, the controller gains knowledge of the discrete behavior of the choke, enabling
more accurate predictions. As a result, the system exhibits enhanced stability and improved overall
performance.

While the implementation of MIMPC effectively eliminates the oscillations resulting from continu-
ous control of a discrete actuator, it is worth noting that some occasional oscillations could still be
observed. These oscillations can be attributed to the highly nonlinear nature of the system being
controlled. The MPC formulation employed in this study relies on a linear step response model
for predictions, which introduces challenges associated with plant model mismatch. This linear
approximation fails to capture the nonlinear dynamics of the system accurately. The investigation
conducted in this thesis highlights that significant discrepancies between the linear model and the
true nonlinear behavior can give rise to undesired oscillations in the system.

i

This study employs the Soft MPC method to mitigate the oscillatory behavior caused by plant
model mismatch. By introducing a deadzone around the setpoints, the Soft MPC approach reduces
the penalties for deviations from the desired values when the controlled variables are in close
proximity to their setpoints. The findings of this research demonstrate the effectiveness of the
Soft MPC method in mitigating oscillations resulting from plant model mismatch. By introducing
a more flexible region around the setpoints, the Soft MPC method enhances the stability and
robustness of the control system, leading to improved control performance. The use of Soft MPC
provides a valuable approach for managing the challenges associated with plant model mismatch
and contributes to more precise and reliable control of the system.

Solving integer optimization programs is computationally more complex than solving continuous
optimization problems. To address this issue, input blocking is employed to reduce the dimension-
ality of the MPC problem. By selectively blocking the manipulated variables, the complexity of
the optimization problem is reduced, enabling more efficient and faster computation.

In addition, bias filtering is incorporated to eliminate sudden spikes in feedback bias. These spikes
can have a detrimental impact on control performance, leading to undesired oscillations. Moreover,
mean choke move constraints are integrated into the MPC formulation. These constraints limit
the average movement of the choke and mitigate the risks associated with sand production in the
well.

To evaluate the efficacy of the proposed MIMPC approach in addressing the challenges posed by
non-continuous actuators, comprehensive analysis and comparison with the traditional continuous
MPC technique are conducted. The study presents the performance of the MIMPC, highlighting
the benefits of incorporating integer decision variables and implementing the Soft MPC method.

The key findings of the study underscore that leveraging MIMPC with an understanding of the
discreteness of the actuator yields superior performance compared to treating the discrete choke as
continuous and utilizing rounding techniques to obtain an integer solution. The MIMPC approach
effectively eliminates the observed oscillations and enhances control precision by accounting for
the discrete nature of the actuator in the optimization problem. The findings also highlight the
additional computational complexity of including integer variables in the optimization problem.
This aspect should be carefully considered and weighed against the benefits of improved control
performance. A thorough assessment of computational resources and time constraints is necessary
to ensure practical feasibility. These results provide valuable insights into the potential application
of MIMPC in the oil and gas industry, offering a promising solution for improving control strategies
and maximizing operational efficiency.

ii

Sammendrag

Effektive kontrollsystemer er avgjørende for å oppn̊a høy produktivitet og økte inntekter innen
olje- og gassindustrien. Modellbasert prediktiv kontroll (Model Predictive Control, MPC) har blitt
en mye brukt teknikk for kontroll i denne bransjen. Equinor har utviklet SEPTIC, et internt
programvareverktøy for modellbasert prediktiv kontroll, som har vist gunstige resultater siden
oppstarten i 1997. Imidlertid er tradisjonelle kontinuerlige MPC-tilnærminger, inkludert SEPTIC,
begrenset til kontinuerlige beslutningsvariabler i optimeringsproblemet. Dette fører til utfordringer
knyttet til ikke-kontinuerlige aktuatorer, som f.eks. ventiler som åpnes stegvis. Dette er mye brukt
i olje- og gassektoren.

For øyeblikket h̊andterer Equinor diskretheten til disse aktuatorene gjennom ekstern logikk, heur-
istikker og spesielle regler. Selv om SEPTIC gir utmerket ytelse, fører manglende hensyn til de
diskrete aktuatorene i optimeringsproblemet til suboptimal ytelse. Denne oppgaven foresl̊ar mod-
ellbasert prediktiv kontroll med blandet heltall (Mixed Integer Model Predictive Control, MIMPC)
for å h̊andtere begrensningene til SEPTIC og lignende systemer n̊ar det gjelder styring av ikke-
kontinuerlige aktuatorer. I motsetning til kontinuerlige MPC-er, som behandler ikke-kontinuerlige
aktuatorer som kontinuerlige, inkorporerer MIMPC den stegvise oppførselen til aktuatorene direkte
i optimeringsproblemet.

Hovedmålet med denne oppgaven har vært å h̊andtere den stegvise oppførselen til en produksjon-
schoke i en gassløftet oljebrønn, direkte i optimeringsproblemet i en MPC. Dette er oppn̊add ved
å introdusere heltallsbeslutningsvariabler i MPC-optimeringsproblemet og bruke heltallsprogram-
mering for å finne en optimal løsning. Ved å bruke en løser som støtter heltallsprogrammering,
blir inkluderingen av heltallrestriksjoner enkel.

N̊ar kontinuerlig MPC brukes til å kontrollere den diskrete choken, bestemmes den faktiske choke-
posisjonen ved å avrunde den ønskede kontinuerlige choke-posisjonen til nærmeste heltall ved
hjelp av et dødb̊and. Imidlertid viser denne studien at bruk av avrundingsmetoder i kontinuerlig
optimering for å oppn̊a en heltallsløsning ikke nødvendigvis gir et optimalt resultat. I stedet bør
heltallsprogrammering benyttes for å oppn̊a en optimal løsning.

Ettersom den kontinuerlig MPCen behandler den diskrete aktuatoren som kontinuerlig, oppst̊ar
uforutsigbare responser n̊ar ønsket chokeposisjon overstiger dødb̊andet og avrundes til nærmeste
heltall. Resultatene viser at disse uforutsette bevegelsene resulterer i mye større responser enn
hva som er forventet av MPCen, noe som krever at MPCen m̊a flytte choken tilbake mot forrige
posisjon. Ved neste avrunding skjer det samme, en ny stor og uforutsett respons.

Denne iterative prosessen med avrunding og justering fører til gjentatte store og uforutsette beve-
gelser, noe som for̊arsaker oscillasjoner i systemet p̊a grunn av kontinuerlig styring av en diskret
aktuator. Det er viktig å merke seg at disse oscillasjonene er svært skadelige for aktuatoren og
betydelig reduserer dens levetid.

Integrasjonen av heltallsbeslutningsvariabler i optimeringsproblemet utvider det kontinuerlige MPC-
rammeverket til en MIMPC-tilnærming. Dette gjør det mulig for kontrolleren å eksplisitt ta hensyn
til den diskrete naturen til choken. Resultatene viser at MIMPC med suksess h̊andterer utfordrin-
gene knyttet til styring av en diskret aktuator og eliminerer oscillasjonene som observeres ved
bruk av kontinuerlige styringsmetoder. Ved å benytte MIMPC f̊ar kontrolleren kunnskap om den
diskrete oppførselen til choken, noe som muliggjør mer nøyaktige prediksjoner. Som et resultat
viser systemet forbedret stabilitet og forbedret totalytelse.

Selv om implementeringen av MIMPC effektivt eliminerer oscillasjoner som oppst̊ar ved kontinuer-
lig styring av en diskret aktuator, er det verdt å merke seg at det fortsatt kan observeres noen oscil-
lasjoner. Disse oscillasjonene kommer av den ikke-lineære oppførselen til det kontrollerte systemet.
MPC-formuleringen som brukes i denne oppgaven, er basert p̊a en lineær stegresponsmodell for
prediksjoner, noe som fører til utfordringer knyttet til avvik mellom modellen og selve systemet.
Denne lineære tilnærmingen klarer ikke å fange opp de ikke-lineære dynamikkene til systemet.
Resultatene i oppgaven p̊apeker at betydelige avvik mellom den lineære modellen og den virkelige
ikke-lineære atferden kan gi uønskede oscillasjoner i systemet.

iii

For å redusere den oscillerende oppførselen til systemet som oppst̊ar grunnet avvik mellom prediks-
jonsmodellen og det faktiske systemet, er Soft MPC metoden brukt i implementasjonen. Denne
introduserer en dødsone rundt settpunktene, hvor straffen for avvik innenfor denne dødsonen red-
useres. Ved å introdusere en mer fleksibel sone rundt settpunktene, forbedrer Soft MPC-metoden
stabiliteten og robustheten til kontrollsystemet, noe som fører til forbedret kontrollprestasjon.
Bruken av Soft MPC gir en verdifull tilnærming for å h̊andtere utfordringene forbundet med avvik
mellom prediksjonsmodellen og det faktiske systemet, og bidrar til mer presis og p̊alitelig styring
av systemet.

Løsning av heltallsoptimeringsproblemer er mye mer komplekst enn løsning av kontinuerlige op-
timeringsproblemer. For å h̊andtere dette problemet blir p̊adrags-blokking brukt for å redusere
dimensjonaliteten til MPC-problemet. Ved å selektivt velge størrelsen p̊a blokkene p̊a de manip-
ulerte variablene reduseres kompleksiteten i optimeringsproblemet, noe som muliggjør mer effektiv
og raskere beregning.

I tillegg blir biasfiltrering implementert for å eliminere plutselige utslag i biasen. Disse utslagene
kan ha en skadelig effekt p̊a kontrollprestasjonen og føre til uønskede oscillasjoner. Videre er det
integrert begrensninger for gjennomsnittlig choke-bevegelse i MPC-formuleringen. Disse begrens-
ningene begrenser den gjennomsnittlig bevegelse av choken og demper risikoen forbundet med
sandproduksjon i brønnen.

For å evaluere effektiviteten av den foresl̊atte MIMPC-tilnærmingen for å h̊andtere utfordringene
med ikke-kontinuerlige aktuatorer, blir grundige analyser og sammenligninger med den tradisjonelle
kontinuerlige MPC-teknikken gjennomført. Studien presenterer ytelsen til MIMPC og fremhever
fordelene med å inkorporere heltallsbeslutningsvariabler og implementere Soft MPC-metoden.

De viktigste funnene i studien understreker at bruk av MIMPC, med kunnskap om diskretheten til
aktuatoren, gir bedre ytelse sammenlignet med å behandle den diskrete choken som kontinuerlig og
bruke avrundingsmetoder for å oppn̊a en heltallsløsning. MIMPC-tilnærmingen eliminerer effekt-
ivt oscillasjonene som observeres og forbedrer kontrollpresisjonen ved å ta hensyn til den stegvise
oppførselen til aktuatoren i optimeringsproblemet. Funnene fremhever ogs̊a den økte beregning-
skompleksiteten ved inkludering av heltallsvariabler i optimeringsproblemet. Denne faktoren bør
vurderes nøye og veies opp mot fordelene med forbedret kontrollprestasjon. En grundig vurdering
av beregningsressurser og tidsbegrensninger er nødvendig for å sikre praktisk gjennomførbarhet.
Disse resultatene gir verdifulle innsikter i den potensielle bruken av MIMPC i olje- og gassindus-
trien, og tilbyr en lovende løsning for å forbedre kontrollstrategier og maksimere effektivitet.

iv

Preface

This thesis is written as the product of the finalization of my M.Sc degree in Cybernetics and
Robotics at the Department of Engineering Cybernetics, Norwegian University of Science and
Technology (NTNU). It is with great pleasure and a sense of accomplishment that I present this
work.

The past five months dedicated to this thesis have been immensely fulfilling. Diving deeper into
the realm of Mixed Integer Model Predictive Control and delving into the intricacies of incorpor-
ating the inherent discreteness of a step choke of an oil well into an MPC problem has been an
enlightening journey. This study builds upon the foundations established in my previous project
thesis, [1], expanding upon the earlier work.

I want to express my sincere gratitude to my supervisor, Prof. Lars Struen Imsland, for his
invaluable guidance and support throughout the course of this thesis. Without his help, this work
would not have been possible. I would also like to thank my supervisor at Equinor, John-Morten
Godhavn, for his direction and assistance.

Simen Bergsvik

v

Table of Contents

Abstract i

Sammendrag iv

Preface v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation & Background . 1

1.2 Objectives . 2

1.3 Outline . 3

2 Theory 5

2.1 Optimization . 5

2.1.1 Mathematical Optimization . 5

2.1.2 Mathematical Formulation . 6

2.1.3 Optimality Conditions . 6

2.1.4 Convexity . 8

2.1.5 Linear Programming . 8

2.1.6 Quadratic Programming . 10

2.2 Mixed Integer Optimization . 10

2.2.1 Discrete Optimization . 10

2.2.2 Mixed Integer Linear Programming . 11

2.2.3 Mixed Integer Quadratic Programming . 13

2.2.4 Mixed Integer Nonlinear Programming . 13

2.2.5 Optimality and Relaxation . 13

2.2.6 Branch & Bound . 14

2.2.7 Cutting Planes . 15

2.2.8 Branch & Cut . 17

2.2.9 MIP Solvers . 19

2.3 Model Predictive Control . 20

2.3.1 Constrained Model Predictive Control . 20

2.3.2 Optimal Control . 20

vi

2.3.3 Linear MPC . 20

2.3.4 Step Response Model . 22

2.4 Mixed Integer Model Predictive Control . 24

2.4.1 Stability . 24

2.4.2 Robustness . 25

2.4.3 Computation . 25

3 System Description 27

3.1 Gas-lifted Oil Well System Description . 27

3.1.1 Oil And Gas Production . 27

3.1.2 Gas-lifted Oil Well . 28

3.2 System Implementation . 28

3.2.1 Functional Mockup Interface . 29

3.2.2 System Simulation . 29

4 Prediction Model 31

4.1 Step Response Modelling . 31

4.1.1 Step Response Model Generation . 32

5 MPC Implementation 35

5.1 SISO MPC Problem Formulation . 35

5.2 MIMO MPC Problem Formulation . 36

5.3 MPC Algorithm . 40

5.4 QP Solver . 41

6 Mixed Integer MPC Implementation 43

6.1 Integer Decision Variables . 43

6.2 Input Blocking . 44

6.3 Bias Filtering . 44

6.4 Soft MPC . 45

6.5 Oscilliation constraints . 49

6.6 Mean Choke Move . 50

6.7 Real Time Optimization . 50

6.7.1 Ideal MVs . 51

7 Results 53

7.1 Continuous MPC . 54

vii

7.1.1 Continuous Choke . 54

7.1.2 Step Choke . 56

7.2 MIMPC . 60

7.2.1 MIMPC Performance . 60

7.2.2 MIMPC Predictions . 62

7.2.3 Open-Loop vs. Closed-Loop . 64

7.2.4 MIMPC Fine Regulation . 65

7.2.5 Disturbance . 67

7.2.6 MIMPC Performance Without Soft MPC 68

8 Discussion 73

9 Conclusion And Further Work 77

9.1 Further Work . 77

Bibliography 79

viii

List of Figures

1 Simplified gas-lifted production well. 2

2 Polytope defined by the linear constraints of an LP problem, basic feasible points
indicated by (∗) [2]. 9

3 LP solution of a relaxed IP problem far away from the optimal solution to the IP
problem . 12

4 Convex hull of (2.14), marked in gray . 16

5 Example showing a valid inequality added to an IP problem 17

6 Flowchart Branch & Cut [3] . 18

7 The Oseberg Field Centre. One of the platforms operated by Equinor, with a total
of 21 oil and gas wells tied into the Field Center [4]. Courtesy Harald Pettersen –
Equinor [5]. 27

8 A gas-lifted oil well [6]. 28

9 Overview of the control system with the FMU functioning as the plant, and a step
response model used for predictions. 31

10 Oil rate steady-state step coefficients from steps in choke position. 33

11 Gas rate steady-state step coefficients from steps in choke position. 33

12 Comparison of nominal MIMPC (blue) and Soft MIMPC (red) 46

13 Penalty function for Soft MPC and nominal MPC [7] 47

14 Oil and gas rate measurements when using the continuous MPC with continuous
choke for control. 55

15 Choke position and gas-lift rate when using the continuous MPC with continuous
choke for control. 55

16 Bias when using the continuous MPC with continuous choke for control. 56

17 Oil and gas rate measurements when using the continuous MPC with step choke for
control. 57

18 Choke position and gas-lift rate when using the continuous MPC with step choke
for control. 57

19 Bias when using the continuous MPC with step choke for control. 58

20 Oscilliations in oil and gas rates when the continuous MPC is used to control the
system with step choke. 59

21 The continuous MPC treats the step choke as continuous, leading to oscillations in
the choke position and gas-lift rate. 59

22 Oil and gas rate measurements when using the MIMPC for control. 61

23 Choke position and gas-lift rate when using the MIMPC for control. 61

24 Bias when using the MIMPC for control. 62

25 The planned input moves and predicted response of the MIMPC when a step in the
reference trajectory is employed. 63

26 Evolution of the system and the actually implemented input moves by the MIMPC
after a step in the reference trajectory was employed. 64

ix

27 Oil and gas rate measurements: Open loop vs. closed loop. 64

28 Choke position and gas-lift rate: Open loop vs. closed loop. 65

29 Fine regulation of the oil rate, turning off penalization of the gas rate deviation. . 66

30 Gas-lift rate used to fine regulate the oil rate when the penalization of the gas rate
deviation is turned off. 67

31 Oil and gas rate measurements when a pressure drop of 3 Bar is imposed on the
reservoir. 67

32 Gas-lift rate used to compensate for the 3 Bar pressure drop in the reservoir. . . . 68

33 Disturbance imposed in the system. 3 Bar pressure drop in the reservoir. 68

34 Oil and gas rate measurements when using the MIMPC without the Soft MPC
method for control. 69

35 Choke position and gas-lift rate when using the MIMPC without the Soft MPC
method for control. 69

36 Planned input moves and predicted response of the MIMPC when the Soft MPC
method is not used. 70

37 Mismatch between the predicted response and the actual response causes the con-
troller to move the choke back to the previous position, causing oscillations in the
controlled variables. 70

38 Actual response again deviates from the predicted response due to plant model
mismatch. 71

39 Computational time per iteration . 75

List of Tables

1 Tuning parameters. 53

x

xi

1 Introduction

Model Predictive Control (MPC) is a popular control strategy that can employ multivariable pro-
cess models to forecast future system and control behavior. When the process model is nonlinear,
the MPC scheme is known as nonlinear MPC (NMPC). Although NMPC is gaining more atten-
tion from both researchers and industrial practitioners, the most commonly used implementation
of MPC relies on linear continuous models. Therefore, references to MPC usually imply linear
continuous MPC, and the same applies to the use of MPC in this thesis.

The MPC framework allows for several control objectives, including constraints, to be explicitly
specified and handled systematically. MPC aims to predict and optimize system behavior while
considering constraints by repeatedly solving an optimization problem. This iterative optimization
process allows for operations closer to constraints, often leading to potential long-term profitability
gains, particularly in process industry applications [8]. MPC has been highly successful in various
industries, including process control, robotics, and aerospace, due to its ability to handle complex
control problems with multiple constraints.

1.1 Motivation & Background

Since 1996, Equinor has developed an in-house software tool for Model Predictive Control, known
as SEPTIC - Statoil Estimation and Prediction Tool for Identification and Control [9]. The first
installation of SEPTIC was done in 1997, and there were approximately 100 SEPTIC MPC applic-
ations in Equinor as of 2019. SEPTIC is used both upstream and downstream for a wide range of
processes, ranging from production well control to gasoline blending. Business cases are generally
very good – for example, in 2019 the Mongstad Refinery reported an incentive of 500 MNOK/year,
and offshore activities show similar numbers.

Figure 1 illustrates a simplified gas-lifted production well that is commonly found on Equinor’s
offshore production sites. Oil and gas production is controlled through the position of the produc-
tion choke and the gas-lift choke, with SEPTIC being used to achieve precise and robust control.
However, while SEPTIC is an effective MPC software, it has some limitations. One of these lim-
itations is its inability to handle discrete input variables such as non-continuous actuators within
the optimization problem. Typically, actuators such as the production choke depicted in Figure
1 are non-continuous. To work around this limitation, SEPTIC optimizes these variables as if
the actuator were continuous, and deals with the discrete limitations outside of the optimization
problem through various methods such as hysteresis, deadband, and special rules. This approach
allows SEPTIC to achieve great overall performance. However, even though the performance of
SEPTIC is great, not accounting for the discrete actuators in the optimization problem leads to
suboptimal performance. This limitation is the main motivation for this thesis.

To address the limitations of SEPTIC in handling non-continuous actuators, a possibly more
effective solution can be implemented through the use of Mixed Integer Model Predictive Control
(MIMPC). Unlike traditional continuous MPC, MIMPC can account for the discreteness of the
actuators directly in the optimization problem, leading to optimal performance. By including
discrete variables in the optimization problem, the MIMPC gains knowledge of the discrete nature
of the actuator. With this knowledge in the control system, the system performance can be
improved, potentially leading to gains in productivity and profitability. Overall, MIMPC offers a
more advanced and potentially superior solution to handle the challenges posed by non-continuous
actuators.

1

Figure 1: Simplified gas-lifted production well.

1.2 Objectives

The primary objective of this study is to explore how integer variables can be incorporated into
an MPC optimization problem, and explore the potential advantages. The research question to be
addressed is:

How can a discrete actuator be effectively integrated into an MPC problem to enable the con-
troller to account for the inherent discreteness of the actuator? Furthermore, can this integration
potentially result in enhanced performance compared to traditional continuous control?

The control performance will be evaluated in terms of accuracy, stability and robustness.

To accomplish this goal, the following tasks will be undertaken:

• Develop a mathematical model of the system to be controlled using step-response model
representation.

• Formulate a continuous MPC problem and implement it using a Quadratic Programming
(QP) solver in Python.

• Extend the continuous MPC problem to include integer decision variables and implement it
using a Mixed Integer Programming (MIP) solver.

• Conduct simulation studies to compare the control performance of the two controller formu-
lations.

• Analyze the simulation results and draw conclusions regarding the potential advantages of
integrating integer variables into MPC optimization problems.

2

Previous work has been conducted and will be briefly outlined in this thesis. The first two tasks,
developing a step-response model and implementing a continuous MPC problem to serve as a
benchmark for analyzing the MIMPC, were completed by the author in the project thesis [1].

The results of this thesis will provide insight into the effectiveness of including integer variables in
the MPC formulation and may help guide the design of control strategies for systems where integer
control inputs are necessary.

1.3 Outline

The remainder of this report is structured as follows:
Chapter 2 provides a comprehensive overview of the fundamental theory relevant to the thesis.
Chapter 3 offers a description of the system under control, while Chapter 4 delves into the specifics
of the prediction model employed. The implementation of the continuous MPC, developed in the
project thesis [1], is presented in Chapter 5, followed by the implementation of the Mixed Integer
MPC in Chapter 6. In Chapter 7 the results are presented, followed by a discussion of the results
in Chapter 8. Finally, Chapter 9 concludes the work conducted in this thesis.

3

4

2 Theory

In this chapter, the theory of mathematical optimization, mixed integer optimization, model pre-
dictive control, and mixed integer model predictive control will be delved into. Firstly, mathemat-
ical optimization is presented, which is crucial in various fields, and fundamental to understanding
the subsequent sections.

Secondly, mixed integer optimization will be explored. This is a class of optimization problems
involving both continuous and discrete decision variables. The challenges associated with solving
these problems and the different approaches used to address them will be highlighted.

Next, model predictive control, a control strategy that uses optimization-based techniques to con-
trol a dynamic system, will be presented.

Finally, mixed integer model predictive control, a combination of mixed-integer optimization and
model predictive control that has shown promise in various applications, such as chemical process
control, power system control, and autonomous vehicles, will be examined.

Overall, this chapter aims to provide a comprehensive understanding of the theory of mathematical
optimization and model predictive control, with a focus on mixed-integer optimization and mixed-
integer model predictive control.

2.1 Optimization

This section presents a comprehensive overview of mathematical optimization, drawing primarily
from the research conducted in the project thesis [1]. The objective is to establish a fundamental
understanding of this crucial field, which serves as the basis for mixed integer optimization and
model predictive control.

2.1.1 Mathematical Optimization

As one of the oldest branches of mathematics, optimization theory served as a catalyst for the
development of geometry and differential calculus. Today it finds applications in a myriad of
scientific and engineering disciplines [10].

Optimization is central to any problem involving decision-making in a broad spectrum of disciplines.
Whether it is how to invest money to retrieve most profit of investments while minimizing the risk,
or the optimal configuration to maximize oil production [11].

To make use of this tool, an objective, a quantifiable measure of the various decisions, often called
objective function or performance index, must be defined. The objective function depends on
certain characteristics of the system, called variables, and gives a measure of the various decisions,
represented by a single number [2]. The goal of optimization is to choose the optimal value of the
variables to either maximize or minimize the objective function. The variables are often constrained
in some way, for instance, a choke can not open more than what is physically possible.

The process of identifying the objective, variables, and constraints is known as modeling. There are
multiple ways to model a system, and the construction of an appropriate model might be the most
important step in the optimization process. Once the model has been formulated, an optimization
algorithm can be used to find its solution. There are a large collection of different optimization
algorithms that can be used, and the choice of an appropriate optimization algorithm is usually
done by the user. This choice may be critical, resulting in whether a solution might be found, and
if so, if the problem is solved fast or slowly [2].

5

2.1.2 Mathematical Formulation

Mathematically speaking, there are multiple ways to formulate an optimization problem. Common
for these formulations is that they all include the three main components, an objective function,
decision variables, and constraints. In simple words, optimization is the minimization or maxim-
ization of the objective function subject to constraints on its variables [2]. Using this, a general
optimization problem can be formulated as follows:

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

(2.1)

f is known as the objective function, and takes an n-dimensional vector and projects it onto the
real axis. In this formulation, the decision variables are defined on a Euclidean space, as x ∈ Rn,
however the variables can also be integers or binary, and thus take place in other spaces. The
constraints are divided into equality and inequality constraints, where E and I are disjunct index
sets. The decision variables are constrained by ci, and are thus limited to a subset of Rn. This
subset is known as the feasible set and is defined as follows:

Ω =
{
x ∈ Rn

∣∣∣ (ci(x) = 0, i ∈ E
)
∧
(
ci(x) ≥ 0, i ∈ I

)}
. (2.2)

The solution to (2.1), is the point x that minimizes the objective function f , where x may only be
selected from the feasible set Ω. Such a solution is denoted x∗, and is a solution if

f(x∗) ≤ f(x), for all x ∈ Ω. (2.3)

It is worth noting that any minimization problem can be translated into a maximization problem
by observing that ’max f(x)’ and ’min−f(x)’ provide equal solutions apart from the opposite sign
of objective function value.

If the condition (2.3) holds, x∗ is a global minimizer. However, there may be several such minimizing
points. In the case of a single global minimizer, the point x∗ is a strict global minimizer. Such a
minimizer is hard to find, as the optimization algorithms do not visit all points. Thus a picture of
the overall shape of the objective function is not provided. As a result, most of the algorithms are
only able to find local minimizers.

A local minimizer is the point x∗ if there is a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all
x ∈ N ∩Ω. However, as for a global minimizer, there may also be several local minimizers. If there
only exists a single local minimizer, this is known as an isolated local minimizer. It can formally
be said that a point x∗ is an isolated local minimizer if there is a neighborhood N of x∗ such that
f(x∗) < f(x) for all x ∈ N ∩Ω with x ̸= x∗. If x∗ is an isolated local minimizer, x∗ is also a strict
local minimizer. A strict local minimizer is defined by replacing ≤ with < in the definition of a
local minimizer [2].

2.1.3 Optimality Conditions

A key question to optimization problems is how to identify a minimization point. One way to find
out if a point x∗ is a local minimum, would be to examine all points in the neighborhood, and
verify that none of them will result in a smaller objective function. However, when f is smooth,
there exists more efficient and practical ways to identify a local minimum.

For unconstrained optimization problems, where E ∪ I = ∅, provided f is smooth and twice
differentiable, it may be possible to examine the gradient ∇f(x∗) and the hessian ∇2f(x∗), to tell
that x∗ is a local minimizer. Nocedal and Wright derive a necessary and sufficient condition for
optimality for unconstrained optimization in [2]. It is proven that for a point x∗ to be a local

6

optimum, x∗ needs to be a stationary point. x∗ is called a stationary point if ∇f(x∗) = 0, which is
the necessary condition for optimality. If ∇f(x∗) = 0 and the hessian ∇2f(x∗) > 0, the sufficient
condition is fulfilled, which guarantees that x∗ is a strict local minimizer. Note that the sufficient
conditions are not necessary, thus x∗ can be a local minimizer even though the hessian ∇2f(x∗) is
not positive definite. The proof for the necessary and sufficient conditions is not further explained
here, but can be seen in [2].

To characterize solutions of constrained optimization problems, the Karush – Kuhn – Tucker
(KKT) conditions are to be introduced. These conditions are fundamental for many of the al-
gorithms used to solve optimization problems. The KKT conditions include the Lagrangian (2.4),
which is formulated as:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x), (2.4)

where λi are the Lagrange multipliers. It is also necessary to define active constraints and Active
set to formulate the KKT conditions.

”The active set A(x) at any feasible x consists of the equality constraint indices from E together
with the indices of the inequality constraints i for which ci(x) = 0; that is” [2]

A(x) = E ∪ {i ∈ I | ci(x) = 0}. (2.5)

This implies that all equality constraints are active at a feasible point. However, inequality con-
straints could be active or inactive.

With this background, the KKT conditions (2.6) can be formulated. These are also known as the
first order necessary condition for constrained optimization problems. These conditions, derived
by Nocedal and Wright in [2], are given below:

Theorem 1: First order necessary conditions:
”Assume that x∗ is a local solution of (2.1) and that the function f and ci are differentiable and
their derivatives are continuous. Further, assume that all the active constraint gradients are linearly
independent at x∗. Then there exists Lagrange multiplier λ∗ for i ∈ E ∪ I such that the following
conditions (called the KKT conditions) hold at (x∗, λ∗);” [2]

∇xL(x∗, λ∗) = 0

ci(x
∗) = 0, ∀i ∈ E ,

ci(x
∗) ≥ 0, ∀i ∈ I,
λ∗
i ≥ 0, ∀i ∈ I,

λ∗
i ci(x

∗) = 0, ∀i ∈ E ∪ I

(2.6)

The KKT conditions are necessary for a point to be a local solution to a constrained optimization
problem. However, satisfying these conditions does not guarantee that the point is a minimum. To
ensure that a point is indeed a minimum, the second-order sufficient condition has to be introduced.

Theorem 2: Second order sufficient conditions:
”Suppose that for some feasible point x∗ ∈ Rn there exists Lagrange multipliers λ∗ such that
the KKT conditions (2.6) are satisfied, and that f and all ci are twice differentiable and their
derivatives are continuous. Assume also that

∇xxL(x∗, λ∗) ≻ 0 (2.7)

Then x∗ is a strict local solution of problem (2.1).” [12]

The second order sufficient condition can be relaxed, as ∇xxL(x∗, λ∗) needs only to be positive in
certain directions, where the directions are specified by the critical cone. Thus, the theorem above

7

can be relaxed by w⊤∇xxL(x∗, λ∗)w > 0 where w ∈ C(x∗, λ∗). For further details on the critical
cone, see [2].

2.1.4 Convexity

Theorem 1 provides the necessary conditions, and Theorem 2 provides sufficient conditions for
a local solution. However, if the optimization problem (2.1) is a convex problem, the theorems
provide conditions for a global solution. It is proven by Nocedal and Wright in [2], that a local
minimizer of a convex problem also is a global minimizer for the convex problem. Thus the concept
of convexity is fundamental in optimization. It is therefore essential to be able to identify convex
problems.

An optimization problem is convex if the objective function f is a convex function, and the feasible
set Ω is a convex set. If the objective function is strictly convex however, the optimization problem
is strictly convex, and there only exists one solution, where the local solution is a global solution.
For an optimization problem to be convex, it has to satisfy the following conditions [2]:

• The objective function is a convex function.

• The equality constraint functions ci(·), i ∈ E , are linear

• The inequality constraint functions ci(·), i ∈ I, are concave

For the definition of a convex function and a convex set, see [2].

2.1.5 Linear Programming

With the background from Section 2.1.2, a general optimization problem could be defined. The
problem (2.1) is known as the nonlinear program (NLP), as the objective function and the con-
straints can be nonlinear. However, in the case where the objective function f and the constraints
ci are all linear, the problem lies within an optimization class called Linear Programming (LP).
An LP problem written in the standard form can be seen in (2.8).

minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

(2.8)

The vectors c and x are vectors in Rn, b is a vector in Rm, and A is a m × n matrix. The
constraints and the objective function are all linear, hence the name Linear Programming. As
all linear functions are convex, it is given that an LP problem is a convex optimization problem
according to the conditions presented in Section 2.1.4. Thus any local solution is also a global
solution for an LP problem. If the feasible set is empty, an LP problem does not provide any
solution, which makes the problem infeasible. Additionally, suppose the objective function is
unbounded below on the feasible region, which is the set of points satisfying all constraints. In
that case, the minimization problem is unbounded, and no solution can be found. For an LP
problem, the KKT conditions (2.6) is both necessary and sufficient.

The most common optimization algorithm for an LP problem is known as the simplex method. To
be able to give a description of this method, the terms basic feasible point and basis, presented by
Nocedal and Wright in [2], need to be introduced. The simplex method generates iterates, where
each iterate is a basic feasible point. A vector x is a basic feasible point if it is feasible and if there
exists a subset B of the index set {1, 2, ..., n} such that:

• B contains exactly m indices;

8

• i /∈ B ⇒ xi = 0 (that is, the bound xi ≥ 0 can be inactive only if i ∈ B);

• The m×m matrix B defined by

B = [Ai]i∈B (2.9)

is nonsingular, where Ai is the ith column of A [2].

A set B satisfying these properties is called a basis for the LP problem (2.8). The corresponding
B matrix is called the basis matrix [2]. By examining only basic feasible points, the strategy of
the simplex method will lead to a solution of (2.8) only if

• the problem has basic feasible points; and

• at least one such point is a basic optimal point, that is, a solution of (2.8) that is also a basic
feasible point.

Both conditions are true under reasonable assumptions, which are given by the theorem known as
Fundamental theorem of Linear Programming. The proof of this theorem can be seen in [2].

Fundamental theorem for Linear Programming

• If (2.8) has a nonempty feasible region, then there is at least one basic feasible point;

• If (2.8) has solutions, then at least one such solution is a basic optimal point.

• If (2.8) is feasible and bounded, then it has an optimal solution.

The basic feasible points are vertices of the feasible polytope defined by the linear constraints of
an LP problem. The proof for this can be seen in [2], Theorem 13.3. As each iterate of the simplex
method is a basic feasible point, all iterates will be vertices of the feasible polytope. In Figure 2,
a three-dimensional polytope can be seen, where the basic feasible points are indicated by ∗.

Figure 2: Polytope defined by the linear constraints of an LP problem, basic feasible points indic-
ated by (∗) [2].

Most of the steps in the simplex method consist of moving from one vertex to an adjacent vertex
for which the basis B differs with only one component. For most of these steps, the objective
function is decreased, but not for all.

9

Simplex Method
The simplex method is based on the concept of a simplex, which is a geometric figure that consists
of n+1 points in n-dimensional space. In the context of the simplex method, these points represent
the feasible solutions to the linear programming problem (2.8).

The algorithm starts by finding a feasible solution to the problem, a basic feasible point. From
there, the algorithm moves to a new basic feasible point by pivoting, which involves switching the
values of one or more variables in the current solution.

At each iteration, the simplex method selects the variable to pivot on based on the current objective
function and the current feasible solution. The pivot variable is chosen such that the value of the
objective function will improve after the pivot. The algorithm continues to pivot until it reaches
an optimal solution, which is a feasible solution that cannot be improved upon by pivoting. This
is known as the basic optimal point.

One of the key challenges in implementing the simplex method is choosing the pivot variable at each
iteration. There are several different pivot rules that can be used, each with their own advantages
and disadvantages. The most commonly used pivot rule is the Bland’s rule, which selects the pivot
variable in a way that avoids cycling and ensures that the algorithm terminates in a finite number
of steps [13]. Once the optimal solution is reached, the simplex method provides the values of the
variables that achieve the optimal objective function value.

The simplex method is a powerful and widely-used tool for solving linear programming problems.
It is an essential tool in the toolkit of anyone working in fields that involve optimization and
decision-making. Additionally, the Simplex method is a building block for the Mixed Integer
algorithm Branch & Bound, to be introduced in Section 2.2.6.

2.1.6 Quadratic Programming

Another class within optimization is Quadratic Programming (QP). Quadratic Programming differs
from Linear Programming in that the objective function is quadratic and not linear. QPs are often
used in control, economics and machine learning. The general QP can be stated as (2.10):

minimize
x∈Rn

f(x) =
1

2
x⊤Gx+ x⊤c

subject to a⊤i x = bi, i ∈ E ,
a⊤i x ≥ bi, i ∈ I.

(2.10)

where G is a symmetric n×n matrix, E and I are finite sets of indices, and c, x and {ai}, i ∈ E ∪I,
are vectors in Rn [2].

2.2 Mixed Integer Optimization

This section presents a comprehensive overview of Mixed Integer Optimization, a subfield of math-
ematical optimization that involves discrete decision variables. The theory presented in this section
is mainly drawn from the research conducted in the project thesis [1], supplemented by some theor-
etical insights in Section 2.2.8 and Section 2.2.9, to enhance comprehension of this topic. Through
this comprehensive overview, the reader will gain a deeper understanding of the complexities and
challenges inherent in Mixed Integer Optimization.

2.2.1 Discrete Optimization

The optimization techniques formulated thus far belong to the general class of Continuous op-
timization. However, in many practical applications, the variables make sense only if they take
on discrete values. An example of this can be in decision-making (yes or no), where the decision

10

variables have to be binary. In other applications, e.g., production planning, the fact that the
number of products to be produced must be an integer number needs to be considered. These
kinds of optimization problems take place within the general class of Discrete optimization, more
precisely, the class of Integer Programming.

Suppose a general linear program has been defined, but the decision variables are to be restricted
only to take integer values. Such an optimization problem is known as (Linear) Integer Program-
ming (IP) and can be formulated as:

minimize
x

c⊤x

subject to Ax ≥ b

x ∈ Zn
+

(2.11)

Notice that the variables must take place in the n-dimensional space of all non-negative integers,
Zn
+ = {x ∈ Zn : x ≥ 0}. If all variables are restricted to binary values the problem is called a

Binary Integer Program, which can be formulated as:

minimize
x

c⊤x

subject to Ax ≥ b

x ∈ {0, 1}n
(2.12)

For many applications, it is common to have both continuous and discrete decision variables.
Linear optimizations problems where the decision variables are a combination of continuous and
discrete variables are known as (Linear) Mixed Integer Programming (MILP):

minimize
x

c⊤x+ d⊤y

subject to Ax+By ≥ b

(x, y) ∈ Rn
+ × Zn

+

(2.13)

A big advantage of mixed integer programming is the large flexibility to model and solve many
real problems. Some examples of this are scheduling, e.g. pump scheduling optimization problem
for an onshore oilfield [14], production planning, motion control, as well as the well-known Knap-
sack problem [15]. However, the inclusion of integer decision variables in integer programming
constitutes a significant drawback as it transforms the original continuous problem from convex
to non-convex. Consequently, traditional methods utilized for solving convex problems become
ineffective and unsuitable, making the optimization process more complex.

Mixed Integer Programming poses a significant challenge as it belongs to the NP-hard class [16].
In a mixed integer program, for each value every integer variable can take, a separate optimization
problem can be constructed, where the variable is fixed. For a simple binary optimization problem
with only five binary decision variables, a total of 25 = 32 subproblems can be constructed. This
illustrates the complexity of a mixed integer program, and how fast it grows. It should be noted
that depending on the problem, many of these subproblems can be easily ruled out. Nevertheless,
it is not guaranteed that there exists a simple way to reduce the search space of a problem. Further
details on the different approaches to finding solutions for mixed integer problems are presented
later in this section.

2.2.2 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP), is a type of optimization problem that involves a linear
objective function and linear constraints, in the same way as the LP problem (2.8). However, for
MILP, some of the variables are restricted to integer values. The general form of a MILP problem
is represented by (2.13).

11

MILP problems arise in a wide range of applications, such as production planning, resource alloc-
ation, scheduling, etc. [3]. However, the presence of the integer variables makes MILP problems
computationally more challenging than their LP counterparts [17].

Much effort has been devoted to determining the computational complexity of a variety of MILP
problems, and the NP-hardness. Despite extensive research, no polynomial-time algorithm has been
found for solving MILP to optimality. It is currently not known whether MILP is NP-complete or
not [18]. For the interested reader, an examination of a general integer programming problem and
several of its variations can be seen in [18], which highlights the computational difficulties inherent
in integer programming.

To solve MILP problems, various algorithms and techniques have been developed, including Branch
& Bound and Cutting plane methods, presented later in this chapter. These methods aim to find
feasible solutions efficiently and to narrow down the search space to find the optimal solution. The
choice of the solution method often depends on the specific characteristics of the problem and the
size of the problem instance.

By comparing the IP problem (2.11) with the LP problem (2.8), it is apparent that they are very
familiar. It is no surprise that linear programming theory is fundamental in understanding and
solving linear integer programs. A first thought could be to relax the integer program and solve
it as an LP, and then use rounding to find the optimal solution to the integer program. This
technique is often insufficient, which can be seen from the following example presented by Wolsey
in [3].

Consider the linear integer optimization problem given by:

max
x

1.00x1 + 0.64x2

s.t. 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x ∈ Z2
+

(2.14)

The problem (2.14) is an integer problem in which the decision variables are restricted to be
integers. Disregarding the integer restriction, considering it as an LP problem, and using the
rounding technique to obtain an integer solution will lead to a suboptimal solution far away from the
actual optimum. This is shown in Figure 3, where the optimal solution with and without the integer
restrictions is illustrated. The LP solution is (376/193, 950/193), and using the insufficient method
of rounding the solution to the nearest integer would then produce the solution (2, 4). However,
the optimal solution to the IP problem (2.14) is (5, 0). This example shows the importance of
accounting for the integer restriction in the optimization problem when solving IP problems to
obtain the optimum.

Figure 3: LP solution of a relaxed IP problem far away from the optimal solution to the IP problem

12

2.2.3 Mixed Integer Quadratic Programming

Mixed Integer Quadratic Programming (MIQP) extends the MILP problem by adding a quadratic
objective function. MIQP is an optimization problem that involves finding the optimal value of a
quadratic function over a polyhedral set, where some of the components are integers and others
are continuous. The problem is similar to the QP formulation described in 2.1.6, but includes
integrality constraints. When all variables are required to be integers, the problem is referred to as
Integer Quadratic Programming (IQP). MIQP can be formally defined as an optimization problem
in the following form:

min
x

1

2
x⊤Gx+ c⊤x

s.t. Ax ≤ b,

x ∈ Zp × Rn−p,

(2.15)

where G ∈ Qn×n and is symmetric, c ∈ Qn, A ∈ Qm×n and b ∈ Qm [19].

2.2.4 Mixed Integer Nonlinear Programming

Another class of mixed integer optimization problems is Mixed Integer Nonlinear Programming
(MINLP). A general formulation of an MINLP is a problem on the form:

min f(x, y)

subject to ci(x, y) = 0, i ∈ E ,
ci(x, y) ≥ 0, i ∈ I
x ∈ Rn, y ∈ Zq

(2.16)

MINLP problems are typically more difficult to solve than linear and integer programming problems
because the nonlinear objective and constraint functions make it difficult to find the optimal
solution. The class of MINLP will not be further investigated in this thesis.

2.2.5 Optimality and Relaxation

In Section 2.1.3, the first order necessary conditions (2.6) for a local solution was formulated. For
an LP, these KKT conditions are both necessary and sufficient and are used to find a solution.
However, a fundamental difference for integer programming is that there are no such conditions
similar to the KKT conditions to prove first-order optimality. It is a common question how to
prove that a given solution x∗ to an IP problem of the form (2.17) is optimal if there are no such
optimality conditions such as the KKT conditions.

Z = max{c(x) : x ∈ X ⊆ Zn} (2.17)

As the KKT conditions cannot be applied directly to an IP problem, some optimality conditions
need to be defined for an algorithm to be able to stop at the optimal point x∗. A simple and naive
but important condition is finding a lower bound Z ≤ Z and an upper bound Z ≥ Z such that
Z = Z = Z which defines a stopping criteria for the algorithm [3].

Finding lower bounds for a maximization problem (or upper bounds for a minimization problem)
is called Primal Bounds. Every feasible solution x∗ ∈ X provides a lower bound Z = c(x∗) ≤ Z.

Obtaining upper bounds for a maximization problem (or lower bounds for a minimization problem)
is a different challenge. These bounds are known as dual bounds. One common approach to finding
dual bounds is relaxation. This involves replacing the original integer programming problem with

13

a simpler optimization problem whose optimal value is at least as large (for maximization) or small
(for minimization) as the original problem. The relaxed problem can be solved more easily and
obtain bounds on the optimal value of the original problem. Algorithms can use dual bounds to
eliminate subproblems that cannot lead to an improved solution. One such algorithm that takes
advantage of the dual bounds to speed up the solution process is the Branch & Bound algorithm.

2.2.6 Branch & Bound

A large number of discrete and combinatorial optimization problems share the same properties,
that they are easy to state and have a finite but usually very large number of feasible solutions.
Some of these problems, e.g., Shortest Path problem, have polynomial algorithms, however for the
majority of these optimization problems, no such polynomial method for their solution is known.
Such problems are called NP-hard problems [16].

Solving NP-hard problems is often an enormous job and very efficient algorithms are required
to solve such problems to optimality, if possible. Branch & Bound (B&B) is an algorithm design
paradigm for such optimization problems. The B&B algorithm is a kind of divide-and-conquer
strategy for discrete and combinatorial programming. Essentially, the algorithm divides the prob-
lem into an equivalent set of subproblems, solves the subproblems, and obtains a solution for the
original problem from the solutions of the subproblems. The divisions are performed iteratively
such that the subproblems are easier to solve. An explicit enumeration is usually impossible due
to the exponentially increasing number of potential solutions. However, the use of bounds on
the function to be optimized, combined with the value of the current best solution, enables the
algorithm to search parts of the solution space only implicitly [16].

More formally, problem (2.18) can be considered:

P : z = max{c⊤x : x ∈ S} (2.18)

The problem P (2.18) can be divided into a set of subproblems {SPk}, forming a tree structure.
The set S can be decomposed in K subsets by letting S = S1 ∪ . . . ∪ Sk, representing a node in
the tree, where each node represents a possible solution. By letting zk = max{c⊤x : x ∈ Sk} for
k = 1, ...,K, then z can be formulated as:

z = max{zk : k = 1, ... ,K} (2.19)

For small problems, an explicit enumeration is possible, however the number of feasible solutions
increases exponentially with this strategy. Therefore complete enumeration is not viable for prac-
tical problems. By effectively bounding the subproblems zk with upper and lower bounds, parts
of the solutions space can be searched implicitly.

Considering the problem P (2.18), where (2.19) are optimal values for k = 1, ...,K. The upper and
lower bounds of zk can be defined as:

zk be an upper bound for zk (2.20a)

zk be a lower bound for zk (2.20b)

Thus, the upper and lower bounds of z can be defined as:

z = max{zk : k = 1, ... ,K} defines an upper bound for z (2.21a)

z = max{zk : k = 1, ... ,K} defines a lower bound for z (2.21b)

During the solution process, the status of the solution, with respect to the search of the solution
space, is described by a pool of yet unexplored subsets, represented as nodes, and the best solution

14

so far. At first, only one subset exists, which is the complete solution space, and the best solution
so far is ∞. For each iteration, the B&B algorithm processes one of the yet unexplored nodes.
Each iteration of the B&B algorithm consists of three main components; select what node to be
processed, bound the subproblem, and branch out from this node [16].

One of the key advantages of B&B is that it is able to find the optimal solution even when the
number of possible solutions is very large. This is because the algorithm is able to efficiently prune
the tree, eliminating large numbers of nodes and focusing only on the most promising ones. There
are three rules for cutting tree branches:

• By optimality: zk = max{c⊤x : x ∈ Sk} has been solved

• By bounding: z̄k < z.

• By infeasibility: Sk = ∅

Overall, Branch & Bound is a powerful algorithm design technique that can be used to efficiently
find the optimal solution to a wide range of optimization problems. By systematically exploring
all possible solutions and pruning the tree to focus on the most promising ones, Branch & Bound
is able to efficiently and reliably find the best solution to even the most complex optimization
problems. Another method that involves dividing the problem into smaller subproblems to make
the solution process more efficient is called Cutting Planes.

2.2.7 Cutting Planes

In geometry, an equation with two variables is called a plane, and an equation with n variables is
called a hyperplane. The term cutting plane is often used for an equality or inequality constraint
that can cut off a fractional part of an LP feasible region of an IP problem, without excluding any
integer feasible solution. Cutting planes is a different approach than Branch & Bound, but with
the same target, to solve an integer program.

Repeated here, an integer problem in a general form can be written as:

IP: max{c⊤x : x ∈ X},
where X = {x : Ax ≤ b, x ∈ Zn

+}
(2.22)

The inequality Ax ≤ b defines the feasible set to the relaxed IP problem where x ∈ Rn
+. However,

the convex hull of the integer solutions is a polyhedron defined as:

conv(X) = {x : Ãx ≤ b̃, x ≥ 0} (2.23)

Considering the same optimization problem as earlier (2.14), the convex hull of the IP problem
can be seen in Figure 4.

15

Figure 4: Convex hull of (2.14), marked in gray

The results above state that an IP problem can be reformulated as an LP problem defined by the
convex hull (2.24). It should be noted that the optimal solution to an LP problem defined by the
convex hull of the IP problem has the same optimal solution as the IP problem.

LP: max{c⊤x : Ãx ≤ b̃, x ≥ 0}, (2.24)

Thus, if the convex hull of an IP problem is known, the solution can be obtained by solving
the problem as an LP problem, and traditional methods for solving LP problems can be used,
e.g. the Simplex method. In some applications, finding the convex hull is possible. However, in
many applications, finding the convex hull can be very hard, and for NP-hard problems, there
is generally no hope of finding a complete description of the convex hull. Thus, the convex hull
needs to be approximated to solve the IP problem as an LP problem, which is the main idea of
the cutting plane approach. Such an approximation can be constructed by repeatedly adding valid
inequalities, preferably that touches the convex hull.

Valid Inequalities
A linear inequality is valid for an IP problem if it is satisfied by the set of all feasible solutions of
the IP. Given a polyhedron P and an optimal relaxed LP solution x∗ ∈ P , a valid inequality is an
inequality that cuts off the optimal solution x∗ of the relaxed LP problem, but does not cut off
any feasible solution of the IP problem [20]. More formally:

Theorem 3
”A linear inequality π⊤x ≤ π0 is valid for a nonempty polyhedron P = {x : Ax ≤ b, x ≥ 0} if
and only if there exists u ≥ 0 such that u⊤A ≥ π and u⊤b ≤ π0.” [20]

The proof of Theorem 3 can be seen in [20].

An example of a valid inequality can be seen in Figure 5. The inequality cuts of the fractional
optimum to the relaxed LP problem, but do not cut away any of the feasible solutions to the IP
problem.

16

Figure 5: Example showing a valid inequality added to an IP problem

By repeatedly adding valid inequalities, the cutting plane approach will approximate the convex
hull, and eventually, the IP problem can be solved as an LP problem. This approach of solving
an IP problem, when used stand-alone, has the potential to solve IP programs of limited size, but
may not work well in large-scale applications. Until the 1990s, the Branch & Bound had been the
prevailing solution method, as this is far more effective than the cutting plane method. However,
in the early 1990s, a new and more efficient approach was discovered, Branch & Cut [20].

2.2.8 Branch & Cut

The Branch & Cut method for solving IP problems combines the strengths of Branch & Bound and
Cutting planes into a more effective approach. Conceptually, this can be viewed as a generalization
of the Branch & Bound method, which involves doing more work to obtain a tight bound at each
node before branching [3].

The Branch & Bound method applies simple bound cuts at each node, and takes advantage of the
fast re-optimization of the LP at each node. On the other hand, Branch & Cut also divide each
node, but do as much work as necessary to get a tight bound at the node, before branching. The
work done at each node includes generating strong valid cuts, using the Cutting planes method,
and improving the formulations and problem preprocessing before branching [21].

However, there is a trade-off involved. By adding many cuts at each node, the re-optimization may
be much slower than before. In addition, keeping all the information in the tree becomes more
challenging. In Branch & Bound, the problem at each node is obtained just by adding bounds.
In Branch & Cut, a cut pool is used to store all the cuts. To keep track of which constraints are
required to reconstruct the formulation at a given node, pointers to the appropriate constraints in
the cut pool are kept, in addition to the bounds and a good basis in the node list [3].

A simplified flowchart of the Branch & Cut method is illustrated in Figure 6. This method is used
in most of the mixed integer solvers today [20].

17

Figure 6: Flowchart Branch & Cut [3]

18

2.2.9 MIP Solvers

Mixed Integer Programming solvers are powerful tools for solving complex problems involving
discrete and continuous variables. Unlike solvers focused solely on continuous optimization, MIP
solvers take into account the combinatorial nature introduced by integer variables.

MIP solvers employ sophisticated algorithms and techniques, such as the algorithms presented in
this section, to efficiently explore the search space and identify optimal solutions. Several MIP
solvers are readily available, each offering distinct features and performance characteristics. Some
popular solvers include Gurobi [22], CPLEX [23], and XPRESS [24]. These solvers have a long-
standing reputation for their efficiency and reliability in solving large-scale, real-world optimization
problems [25].

Gurobi, in particular, is widely recognized for its remarkable speed and state-of-the-art optim-
ization algorithms. It is a high-performance solver that has been optimized to leverage modern
computer architectures effectively. Gurobi provides a user-friendly interface, supports multiple
programming languages, and offers various features that facilitate problem formulation and ana-
lysis. Additionally, Gurobi has extensive documentation, tutorials, and user communities, making
it easily accessible to both new and experienced users [22].

For academic research and smaller-scale applications, open-source MIP solvers like CBC [26],
GLPK [27], and IPOPT [28] present viable alternatives. These solvers continue to evolve and
improve with ongoing contributions from the optimization community.

19

2.3 Model Predictive Control

This section provides the reader with an introduction to Model Predictive Control (MPC). A
thorough understanding of MPC is essential to be able to expand a traditional continuous MPC
to incorporate integrality constraints and extend it to a Mixed Integer MPC, which is one of the
objectives of this study. By providing a foundational understanding of MPC, this section will
enable the reader to grasp the fundamental principles and concepts that underpin this advanced
control strategy.

MPC is a form of advanced control widely applied in petrochemical and related industries [29], and
has become the most popular advanced control technology in the chemical processing industries
[30]. In essence, MPC is a dynamic control strategy that involves solving a finite horizon open-loop
optimal control problem at each sampling instant, using the current state of the system as the initial
state. The optimization yields an optimal control sequence, where the first control input in this
sequence is applied to the plant [29]. This differs significantly from conventional control strategies
that rely on pre-computed control laws. By taking an on-line, real-time approach to control, MPC
enables the system to adapt quickly to changes in operating conditions and disturbances, resulting
in more efficient and effective control [29].

2.3.1 Constrained Model Predictive Control

There are many variants of MPC, both in academia and industry, but they all share the common
feature of using an explicitly formulated process model to predict and optimize future process
behavior [30]. While the initial focus of MPC was on controlling multivariable plants, it has
become increasingly clear that the ability to handle control problems where off-line computation
of a control law is difficult or impossible is one of its main strengths. In particular, MPC’s ability
to effectively handle constraints has made it a valuable tool in many practical applications [29].

In almost every application, constraints are imposed on the system. For instance, actuators are
naturally limited by the force (or equivalent) they can apply, while safety limits states such as
temperature, pressure, and velocity. Efficiency often requires steady-state operations near the
boundary of such constraints. Despite the prevalence of hard constraints, there are few control
methods capable of handling them efficiently. As a result, ad hoc methods have been frequently
used in the industry in the absence of such control methods. MPC is one of the few methods
capable of effectively handling constraints. By explicitly formulating a process model and using
an optimization-based approach, MPC can account for constraints both on manipulated variables
(often inputs) and controlled variables (often states/outputs). This ability makes MPC a suitable
control strategy in numerous practical applications [29].

2.3.2 Optimal Control

The concept of MPC merges feedback control with dynamic optimization, to provide optimized
responses, while accounting for state and input constraints of the system. By combining feedback
control with dynamic optimization, MPC provides optimal performance, which can be a huge
advantage when e.g. multiple control objectives are desired.

2.3.3 Linear MPC

One common feature of all MPC strategies is that they rely on three key elements: an objective
function, constraints, and a prediction model. These key elements form the basis of the optimiz-
ation problem in MPC, enabling the strategies to predict system behavior, optimize performance,
and ensure safe and feasible control actions.

To achieve efficient solutions to the optimization problem in MPC, one must consider the limited
computation time available between each sampling interval. Conventionally, the optimization
problem is transformed into either LP or QP formulations. Although LP formulation offers a

20

superior solution strategy for very large optimization problems, QP formulation typically generates
smoother control actions and a more understandable impact of tuning parameter modifications
[30]. Despite the computational efficiency of LP optimization, the majority of both industrial and
academic MPCs employ QP optimization [31]. SEPTIC, the in-house MPC software at Equinor,
also adopts QP formulation. Consequently, this section will focus on the description of QP MPC
formulation, often called Linear MPC.

The linear MPC problem is a constrained convex optimization problem that seeks to minimize a
cost function. This cost function is usually chosen as the l2 type cost, representing the sum of the
squared errors between the reference trajectory and the predicted trajectory, and the input moves
[32].

J =

Hp∑
j=Hw

∥y(k + j|k)− ry(k + j)∥2Q +

Hu−1∑
j=0

∥∆u(k + j)∥2P (2.25)

The selection of weighting matrices Q ⪰ 0 and P ⪰ 0, as well as prediction horizon Hp and control
horizon Hu, play a crucial role in ensuring the performance and stability of the MPC system [33].
k is the current sampling instant and the range of j corresponds to the prediction horizon. The
controlled variables are known as CVs, and the manipulated variables are known as MVs, where the
number of the variables are denoted ny and nu, respectively. The Q matrix penalizes deviations
of the predicted CVs, y(k+ j|k) ∈ Rny from the reference trajectory vector ry(k+ j), whereas the
P matrix penalizes the changes in the MVs, ∆u(t) ∈ Rnu . To avoid immediate penalization of
deviations of y from ry, the prediction horizon Hp may start from Hw > 0.

One of the benefits of transparent constraint handling in MPC is the ability to specify constraints
for the system in a clear and straightforward manner. It is common to distinguish between hard
constraints and soft constraints.

Hard constraints refer to the constraints that must be strictly adhered to, without exception.
Physical limitations of actuators are an example of such constraints. Typically, input moves and
inputs are hard constrained within a defined upper and lower bound [32]. These constraints can
be formulated as follows:

∆u ≤ ∆u(k + j) ≤ ∆u, u ≤ u(k + j) ≤ u, j ∈ {0, ... , Hu − 1} (2.26)

On the other hand, soft constraints refer to constraints that are desirable to be satisfied but not
strictly necessary. In such cases, it may be permitted to violate the constraint to avoid infeasibility,
but doing so incurs a cost. This involves modifying the constraints by introducing additional vari-
ables in a way that they are always feasible for sufficiently large values of these variables. A penalty
function is then introduced into the objective function to penalize the magnitude of constraint vi-
olations. These additional variables, often known as slack variables, ensure the feasibility of the
optimization problem and become free variables in the optimization problem [30]. A common way
of incorporating soft constraints through the use of slack variables is:

y − ej ≤ y(k + j|k) ≤ y + ej , ej ≥ 0, j ∈ {Hw, ... Hp} (2.27)

The slack variables ej are then penalized in the objective function J , (2.25), by the inclusion of a
penalty function. Several penalty functions can be used, but the penalty function is desired to be
exact. This means that no constraint violations occur if the original problem is feasible.

It is common to use either a quadratic penalty,
∑Hp

j=Hw
∥ej∥2R or a linear penalty ρ

∑Hp

j=Hw
∥ej∥1.

When ρ is chosen large enough, the constraint violation does not occur unless there is no feasible
solution to the original ’hard’ problem [32].

To enable the calculation of future outputs based on an optimal sequence of control inputs, a
prediction model is required to capture the dynamics of the system. In the case of linear MPC,
the plant is assumed to have a linear behavior governed by the following equation:

21

y(k + j|k) = F (p̂,∆u(k + j)) (2.28)

The variable p̂ is dependent on the specific model representation employed. In a state-space rep-
resentation, p̂ corresponds to the state estimates, whereas in step-response models, it may include
the output measurement and prior inputs [32]. Equinor employs the step-response representation.
Consequently, the following subsection will concentrate on step-response models for the prediction
model.

2.3.4 Step Response Model

Within this subsection, a brief yet comprehensive understanding of the fundamental components
of step response models is presented. Drawing primarily upon research conducted in the project
thesis [1], this overview provides the reader with a foundational understanding of step response
modeling. These models play a crucial role in the Mixed Integer MPC implementation of this
project, making this overview an essential component of this study.

Step response models are widely used in the industry. This is mainly because they are easy to
build, understand and maintain. Even though, in some applications, a state-space representation
would have improved the predictions, it may be challenging to model the dynamics of the system
[9]. The step response models offer the advantage that they can represent stable processes with
unusual dynamic behavior that cannot be described by simple transfer function models. Their
main disadvantage is the large number of model parameters required to represent the dynamics of
the system [34].

The step response model of a stable single-input single-output process (SISO) can be written as
(2.29).

y(k) =

N−1∑
i=1

s(i)∆u(k − i) + s(N)u(k −N) (2.29)

This model describes the dynamic and static interactions between the input u and the output y.
The model parameters, also known as step response coefficients s(i), are obtained from a step in the
input, with the process initially at steady-state. Knowledge about the past control moves ∆u(k−i)
is required to estimate the output, where ∆u(k) is defined as ∆u(k) = u(k)− u(k− 1). The given
step response model, (2.29), is only valid if the SISO system is asymptotically stable, which implies
that the step response coefficients s(i) reach constant values after N sampling periods. This implies
that s(N + 1) ≈ s(N) [35].

Model predictive control is based on predictions of future outputs over a prediction horizon. Based
on the model (2.29), a prediction of the future output trajectory can be formulated by:

ŷ(k + j|k) =
j∑

i=1

s(i)∆u(k + j − i) +

N−1∑
i=j+1

s(i)∆ũ(k + j − i) + s(N)ũ(k + j −N) + v(k|k) (2.30)

where ŷ(k + j|k) represents the prediction of ŷ(k + j) using available information at time k [36].
The terms on the right-hand side of (2.30) can be distinguished into known and unknown terms.
The first term on the right-hand side consists of unknown terms, including the future and present
input moves ∆u(·). The other terms consists of known terms, computed using the past input ũ(·),
past input moves ∆ũ(·), and a disturbance model v(k|k), that introduce feedback [32].

A challenge with step-response models is modeling error. Without feedback, the cumulative effect
of model error and unmeasured disturbances will lead to inaccurate predictions. A disturbance
model v(k + j|k), also known as a bias model, is therefore used to correct the predictions:

22

ŷ(k + j|k) = ỹ(k + j|k) + v(k + j|k) (2.31a)

v(k + j|k) = v(k|k) = ym(k)− ỹ(k|k − 1) (2.31b)

where ym is the measured process output at time k. By including the bias model (2.31b), integral
action is provided in the MPC [32]. The bias term is used in correcting the predictions ỹ(k+ j|k),
where the notation ·̃ is used to indicate uncorrected predictions, and the notation ·̂ is used for
corrected predictions. The bias model (2.31b) assumes that the bias is constant throughout the
whole prediction horizon. If this is not the case, the prediction will be incorrect, which may lead
to poor control performance [32].

23

2.4 Mixed Integer Model Predictive Control

In Section 2.3, the traditional continuous MPC strategy was presented, which relies on the continu-
ous optimization theory outlined in Section 2.1 to achieve optimal control. While this approach
has been widely used as an effective control strategy, it is not without limitations. Many indus-
trial processes involve discrete decisions, which the standard MPC methods are not well suited to
handle [37]. In this case, “standard” MPC implies MPC without discrete-valued input decisions.
Throughout this thesis, the standard MPC will be known as the ”continuous MPC”, implying that
the optimization variables are continuous.

Despite the prevalence of discrete-valued actuators in industrial processes, the early literature on
MPC focused entirely on continuous actuators, while leaving the discrete decisions to other auto-
mation methods such as heuristics. This was largely due to the computational complexity incurred
when integrality constraints were introduced into the optimization problem. However, recent ad-
vancements in mixed integer optimization and increased computational power have enabled the
direct inclusion of discrete decisions in many MPC optimization problems. This approach, known
as Mixed Integer Model Predictive Control (MIMPC), has shown significant improvements in the
operation of systems that require the use of discrete decisions [37].

To account for the additional class of discrete-valued decisions, the traditional MPC theory has been
expanded to incorporate both continuous- and discrete-valued actuators. Despite this addition,
the fundamental structure of MPC remains unchanged: at each sampling interval, an optimization
problem is solved to determine an optimal trajectory of states and inputs, but only the first input
is utilized in practice [38].

Incorporating discrete-valued actuators presents several stability and robustness challenges for
closed-loop control. Specifically, discrete actuators have traditionally been assumed to exhibit local
convexity and controllability. However, research has shown that results applicable to continuous
systems can also apply to systems featuring discrete actuators (see e.g. [38, 37, 39]).

2.4.1 Stability

A stability analysis of MIMPC is not in the scope of this thesis. Still, it is worth mentioning some
of the research conducted in this area, as there have been several notable findings regarding the
stability of MIMPC.

Traditionally, stability analysis in MPC theory focused primarily on systems with continuous ac-
tuators. However, recent advancements in the field have led to more abstract theory of MPC
stability, without explicit differentiation between continuous and discrete actuators. In a notable
contribution, Risbeck formulates a general MPC problem in [38] and proves stability, which is also
compatible for discrete-valued actuators. The stability proofs developed by Risbeck show that
most of the stability already developed for traditional continuous MPCs can easily be extended to
hold for MIMPC.

In 2017, James B. Rawlings and Michael J. Risbeck published a paper with the goal of seeing how
far they could develop the following motivating stability idea:

Folk Theorem: ”Any result that holds for standard MPC holds also for MPC with discrete
actuators.” [40]

Their research yielded remarkable findings, demonstrating that multiple classes of recent stability
results established for continuous MPC with continuous actuators can be applied without modific-
ation to the case of discrete actuators. The results include closed-loop stability of an equilibrium
point under both optimal and suboptimal MPC, as well as closed-loop stability of periodic solutions
when using a tracking objective.

Other significant contributions regarding the stability of MPC with discrete actuators have also
emerged in the literature. Bemporad and Morari, in their work [39], demonstrated convergence
to the origin for systems involving both continuous and discrete decisions by employing a set of

24

logical rules based on positive-definiteness restrictions for the stage cost. In another notable study
by Di Cairano, Heemels, Lazar, and Bemporad, [41], a hybrid Lyapunov function incorporating
both continuous and discrete variables was directly integrated into the optimal control problem,
enforcing cost decrease as a hard constraint.

Among others, these works have significantly advanced the understanding of the stability of MPC
with discrete actuators. By showcasing the compatibility and transferability of stability results
from continuous MPC to the discrete actuator case, they provide valuable insights into the design
and analysis of MPC controllers with discrete decision variables.

It should be noted that the extension from continuous MPC to mixed-integer MPC is not effortless.
Instead, the key observation in [40] is that the challenges associated with incorporating integer
constraints into MPC problems are manageable with the existing set of theoretical tools available.

2.4.2 Robustness

In addition to nominal stability, a control method must ensure some margin of robustness to
disturbances for successful implementation [37]. The stability theory for MPC typically assumes
nominal operation; that is, the system model is exact and the system evolves exactly as the predic-
tion model. However, real-world systems often deviate from this ideal scenario due to unmodeled
disturbances and inaccuracies in the prediction model. Therefore, it is desirable to ensure that
nominal system properties do not catastrophically deteriorate when small disturbances are present
[38].

In the literature, various techniques have been proposed to address disturbances during the design
phase, see [42]. These robust-by-design approaches are particularly valuable when disturbances
are prevalent. However, in [38], Risbeck demonstrates inherent robustness of MIMPC, i.e., robust
to small disturbances without any modification to the nominal controller. The main consequence
of the findings is essentially that a tracking MPC controller that is nominally stable cannot be
destabilized by arbitrarily small disturbances. This property is important because even the most
accurate model cannot perfectly capture the exact behavior of the true system.

While applications that require explicit guarantees may necessitate robust-by-design techniques,
practical implementations often demonstrate that the system remains relatively close to the set-
point despite quite large disturbances. Therefore, the inherent robustness of tracking MIMPC is
often sufficient in practice [38].

2.4.3 Computation

Computational complexity is a crucial aspect to consider when implementing MIMPC due to the
additional complexities introduced by integer decision variables. Compared to continuous MPC,
the inclusion of discrete decisions significantly impacts the computational requirements.

In MIMPC, solving the optimization problem involves solving mixed integer programs, such as
described in Section 2.2. MIP is known to be computationally challenging, as it falls into the class
of NP-hard problems. Finding the global optimum for large-scale MIP problems can be very hard.
However, through available optimization packages, i.e. those described in Section 2.2.9, MILP and
MIQP problems can often efficiently be solved at a significant scale [37]. In the context of MPC
applications, where linear systems with quadratic objective functions are common, computational
efficiency can be improved by exploiting the structure of the MPC problem and utilizing warm
starts for the optimizer [43, 44].

A notable finding in [38] is that via liberal application of suboptimal MPC, the need to find
globally optimal solutions to any MPC problem is eliminated. Thus, computational requirements
are readily satisfiable using standard hardware.

The computational complexity of mixed-integer optimization problems is heavily impacted by the
size of the problem instance. Instances with a high number of decision variables and constraints

25

may exceed the time constraints imposed by real-time applications. Consequently, it is essential to
carefully evaluate the problem size to ensure that the computational requirements can be feasibly
met within the desired time constraints.

It is worth noting that the computational complexities associated with MIMPC should be carefully
considered during the design phase. Balancing the trade-off between computational requirements
and control performance is crucial to ensure that the MIMPC solution is feasible and can be
implemented within the available computational resources.

26

3 System Description

3.1 Gas-lifted Oil Well System Description

This section offers an overview of the system being controlled. Given the use of experimental
models to simulate the system, a comprehensive description is beyond the scope of this thesis.
However, a brief physical description of the system is still required to provide context and clarity.

3.1.1 Oil And Gas Production

Equinor produces around 2 million barrels of oil equivalent every day, and is responsible for about
70 percent of overall Norwegian oil and gas production [4]. Their operations extend beyond the
Norwegian coast, encompassing various production platforms that extract oil and gas from multiple
wells within a single field. One of the platforms operated by Equinor, The Oseberg Field Center,
can be seen in Figure 7.

Figure 7: The Oseberg Field Centre. One of the platforms operated by Equinor, with a total of
21 oil and gas wells tied into the Field Center [4]. Courtesy Harald Pettersen – Equinor [5].

To bring the oil and gas to the platforms, the wells are usually connected to a subsea pipeline that
runs along the sea floor. The pipeline connects to a riser, which is a vertical pipe that extends from
the sea floor up to the platform. The riser transports oil and gas from the well to the platform
for processing and separation, while chokes are employed to regulate the flow [45]. As an oil
reservoir matures, the declining internal pressure may hinder the natural lifting of fluids to the
surface, necessitating the use of artificial lifting techniques. Various economic and technological
factors influence the choice of technique, with gas-lift being a widely employed method due to its
resemblance to natural flow and its reputation as a versatile artificial lift technique [46].

Gas-lift is a production technique that boosts well productivity by injecting high-pressure gas at
the bottom of the well, reducing the hydrostatic pressure of the fluid column and increasing the
production rate. The gas is introduced through a gas-lift valve, and as it ascends, it mixes with the
fluids, decreasing the overall density of the fluid column. This density reduction creates a pressure
gradient from the well’s bottom to the surface, resulting in a more efficient flow as the well’s natural
pressure propels the fluids upward [45]. Figure 8 provides an illustration of a gas-lifted oil well.

27

Figure 8: A gas-lifted oil well [6].

3.1.2 Gas-lifted Oil Well

This project aims to regulate the operation of a gas-lifted oil well. To conduct simulations and
assess the control system’s performance, a model provided by Equinor is employed. The model
is constructed using JModelica, a comprehensive software platform that utilizes the Modelica
language for developing, simulating, optimizing, and analyzing complex dynamic systems [47].

The gas-lifted oil well is modeled as a MIMO system with multiple inputs and multiple outputs.
However, for this project, the system is simplified to a MIMO system with only two inputs, produc-
tion choke and gas-lift rate, and two outputs, oil rate and gas rate. The choke position is expressed

as a percentage between 0% and 100%, while the gas-lift rate is limited between 0 − 10000m3

hr .
Low-level PI controllers are implemented in the model to acquire the desired choke position and
gas-lift rate.

The production choke in this system is a step choke with a step size of 2%. Step-chokes are
commonly used in production systems, where the choke position is adjusted in discrete steps
rather than continuously. As a result, the choke does not open smoothly but rather in distinct
increments of 2%.

The controlled variables in the system are the oil and gas rates, which are measured using an
ideal sensor Modelica block to obtain accurate volume flow rates. To ensure smooth and stable
measurements, the measured values are further processed through first-order filters.

3.2 System Implementation

Models are usually described by a combination of differential, algebraic, and discrete equations,
with events associated with time, state, and step transitions. However, different modeling and
simulation tools often have their own unique approaches to representing and storing model data,
which can make it difficult to import and integrate models across multiple platforms [48]. This can
pose a challenge when attempting to simulate a model in a different tool or when attempting to

28

verify results obtained from different simulation tools. To address these challenges, a standardized
interface known as the Functional Mockup Interface (FMI) has been developed through a European
consortium, and is now managed as a Modelica Association Project (see [49]). To facilitate the
use of different modeling and simulation tools, the oil well model is compiled according to the FMI
standards.

3.2.1 Functional Mockup Interface

The Functional Mockup Interface (FMI) is a standardized approach that enables tool-independent
exchange of dynamic models. This allows modeling environments to generate C-code of a dynamic
system that can be utilized by other modeling and simulation environments, either in source or
binary form. In particular, all Modelica models can be handled, and all Modelica variable attributes
and description texts can be exchanged between different environments [49].

A model is distributed in a single zip-file with the ”.fmu” (Functional Mockup Unit) extension.
The zip-file contains several files, including an XML-file that contains the definition of all variables
in the model and other model information. Additionally, a binary-file is included which provides all
necessary model equations in the form of a small set of easy-to-use C-functions. These C-functions
are typically provided in binary form, but can also be provided in source form for more advanced
users. Other data such as maps and tables needed by the model can also be included in the zip-
file. Overall, FMI provides a flexible and efficient way to distribute and integrate dynamic models
across different modeling and simulation environments [48].

3.2.2 System Simulation

Once the model is compiled to comply with the FMI standard, it becomes possible to simulate
it using Python. A Python interface for interacting with FMUs is available through the PyFMI
package (see [50]), which enables loading FMUs, setting model parameters, and evaluating model
equations. This package can be obtained as a stand-alone package or as a part of the JModelica.org
distribution.

To import the dynamic model, the PyFMI object must be imported to Python. This object handles
unzipping the model, loading the XML description, and connecting the binaries for use in Python.
The instance returned depends on the FMI definition, which can either be Co-simulation or Model
Exchange. If the FMUs are exported as Co-simulation, no additional packages are necessary since
the solver is included inside the FMU. However, if the FMUs are exported as Model Exchange, the
Assimulo package is required to solve the model [50].

Given that the FMU provided by Equinor is exported as Co-simulation, measurements can be
directly extracted from the simulation without the need for additional packages.

To simulate the dynamic model, a step-wise implementation of inputs is required. This can be
accomplished by calling the model.do_step(t, delta_t) function, where t represents the current
time, and delta_t represents the time step. t is then incremented by delta_t for each time-step.

To set the input before executing a step, the following code can be used:

model . s e t r e a l (va lRe f input , i nput va lue)

The first argument is a unique identifier for each parameter in the model and can be found in the
XML file stored in the .fmu file. The second argument represents the input value for the next time
step. After the time step, the outputs can be extracted using the following code:

model . g e t r e a l (va lRe f output)

The model also includes a boolean variable, SepticControl, which determines whether a pre-
defined input sequence or user-specified inputs are used in the simulation. By default, SepticControl
is set to ’False’, indicating that the predefined input sequence will be used. To use user-specified
inputs, the variable must be set to ’True’ using the following Python code:

29

model . s e t boo l e an ([Va lueRe fe rence Sept i cContro l] , [True])

It is important to note that this code must be executed before every simulation, after initializing
the model.

30

4 Prediction Model

To enable a model predictive controller to accurately predict future states and optimize inputs,
a prediction model that accurately represents the system under control is crucial. While Equinor
has developed a theoretical model for a gas-lifted oil well, it is unsuitable as a prediction model
for the MPC. Theoretical models that rely on the physics of complex processes with a significant
number of process variables and unknown parameters are impractical as a prediction model due
to their complexity. Moreover, an extension of the system would require new theoretical models
to be developed, which is a very time-consuming and difficult task [34]. Instead, models based
on experimental data, such as step response models, are widely used in the industry, including at
Equinor.

In this project, the theoretical model represented by the FMU will serve as the plant in the control
system, while a step response model will serve as the prediction model. Figure 9 shows an overview
of the control system. Although it would be preferable to utilize a real oil well as the plant, the
theoretical model developed by Equinor is a suitable alternative to be able to perform simulations
of the control system. The use of the theoretical model as the plant will also serve as a foundation
upon which the step response model can be constructed.

Figure 9: Overview of the control system with the FMU functioning as the plant, and a step
response model used for predictions.

4.1 Step Response Modelling

In this work, a linear step response model has been employed as the prediction model. As men-
tioned, this modeling technique is widely used in the industry due to the challenges of obtaining
an accurate state-space representation of complex systems [34]. This type of modeling is also done
in Equinor and employed in SEPTIC.

The step response model employed in this study was originally developed in the project thesis
[1]. A prediction model plays a crucial role in the successful implementation of an MPC. Given its
significance, it is essential to provide a more detailed explanation and presentation of the prediction
model in this work.

As described in Section 2.3.4, the step response model relates changes in the process output to
a weighted sum of past input changes, referred to as input moves. The step response coefficients
determine the weighting factors in this sum. For convenience, the step response model (2.29) is
repeated here:

y(k) =

N−1∑
i=1

s(i)∆u(k − i) + s(N)u(k −N), (4.1)

31

where the variable ∆u denotes the change in input u, s(i) is the corresponding step coefficient and
N is the number of samples.

In this work, the process under control involves two inputs and two outputs, rendering a single-
input-single-output (SISO) model, such as (4.1), inadequate for the plant representation. To
overcome this limitation, the step response modeling utilizes the superposition principle for mul-
tivariable processes to represent MIMO systems. This technique involves applying a step to each
manipulated variable individually and recording the corresponding responses of the controlled vari-
ables. These responses generate multiple SISO step responses of the process, which can be grouped
together to obtain a MIMO model, as demonstrated in (4.2). It should be noted that the number
of samples N may differ for each SISO model, although it is assumed to be equal in this particular
case.

y(k) =

N−1∑
i=1

S(i)∆u(k − i) + S(N)u(k −N) (4.2)

The step response matrix S(i) contains the step coefficients of the SISO models and groups them
together to represent the MIMO system. The step response matrix is defined in (4.3). S(i) is
an nCV × nMV matrix, where nCV is the number of controlled variables and nMV is the number
of manipulated variables. The element sj,k(i) of the matrix corresponds to the step response
coefficient of the j-th controlled variable due to a step in the k-th manipulated variable at time i.

S(i) =

s1,1(i) s1,2(i) · · · s1,nMV

(i)
s2,1(i) s2,2(i) · · · s2,nMV

(i)
...

...
. . .

...
snCV ,1(i) snCV ,2(i) · · · snCV ,nMV

(i)

 (4.3)

This model representation assumes that the step response coefficients are obtained from a process
initially at steady-state. This is accomplished by simulating the plant for a period of time, with
constant inputs, until a steady-state is reached. It should be noted that the model is only valid if
the process is asymptotically stable, which is assumed in this study.

4.1.1 Step Response Model Generation

The step response model is constructed by independently applying a step to each manipulated
variable and recording the corresponding response of the controlled variables. The resulting step
coefficients are saved in NumPy arrays and loaded into the MPC algorithm’s initialization file. It is
worth noting that the step response model is based on an FMU, which is essentially a mathematical
representation of the oil well rather than a real-world process. Since the FMU remains static, the
step response model is also static and does not change over time.

Due to the presence of nonlinearities in the process, careful consideration is required when de-
termining the working point for the step response model to ensure its accuracy. Nominal values
of the manipulated variables can serve as a suitable reference point for the construction of the
model. However, due to the considerable variation in the manipulated variables, it was found to be
challenging to determine a nominal value. Figure 10 and Figure 11 illustrate the steady-state step
coefficients obtained by applying a step to the choke while keeping the gas-lift rate constant. These
figures clearly demonstrate the presence of nonlinearities in the system. Accuracy is important
when generating a step response model to be used as a prediction model in the MPC. However,
as revealed by the figures, the steady-state responses exhibit significant variability. Notably, the
responses exhibit substantial differences depending on the extent of choke opening: responses are
significantly larger when the choke is only slightly open while approaching nearly zero as the choke
nears full opening. Selecting a representative working point for generating the step response model
that encompasses the entire range of the system proves impossible, as proven by the figures.

32

Nevertheless, considering a 50% choke opening as a midpoint, wherein the response lies approxim-
ately in the middle range, offers a pragmatic approach to capturing the overall system dynamics as
accurately as possible. Hence, this specific working point was chosen for the choke position, striving
to encompass the system’s behavior to a reasonable extent. The figures also display steady-state

responses for three different gas-lift rates. A gas-lift rate of 7500m3

hr was selected as the working
point for the gas-lift rate. Consequently, the step response model was generated by applying a

step to the choke position from 50% to 52% while keeping the gas-lift rate constant at 7500m3

hr ,

and applying a step to the gas-lift rate from 7500m3

hr to 7600m3

hr while holding the choke position
constant at 50%. The recorded responses were then normalized by the magnitude of the step to
obtain a unit-step response.

Figure 10: Oil rate steady-state step coefficients from steps in choke position.

Figure 11: Gas rate steady-state step coefficients from steps in choke position.

33

34

5 MPC Implementation

This section provides a summary of the traditional continuous MPC implementation that serves as
the foundation for the Mixed Integer MPC. The MPC was developed as part of the project thesis
[1], with the MPC formulations mainly based on the work of Philosophia Doctor Dzordzoenyenye
Kwame Minde Kufoalor [32].

5.1 SISO MPC Problem Formulation

A general MPC formulation was presented in Section 2.3.3. In this section, a more comprehensive
MPC formulation is given. For a plant with a single output y and single input u, the MPC problem
can be formulated as:

min

Hp∑
j=Hw

∥y(k + j|k)− ry(k + j)∥2Q̄ +

Hu−1∑
j=0

∥∆u(k + j)∥2P̄ + ρ̄ϵ̄+ ρϵ (5.1a)

subject to

y − ϵ ≤ y(k + j|k) ≤ ȳ + ϵ̄, ϵ̄ ≥ 0, ϵ ≥ 0, j ∈ {Hw, . . . ,Hp}, (5.1b)

y(k + j|k) = ŷ(k + j|k), j ∈ {Hw, . . . ,Hp}, (5.1c)

∆u ≤ ∆u(k + j) ≤ ∆u, j ∈ {0, . . . ,Hu − 1}, (5.1d)

u ≤ u(k + j) ≤ ū, j ∈ {0, . . . ,Hu − 1}, (5.1e)

u(k + j) = u(k + j − 1) + ∆u(k + j), j ∈ {0, . . . ,Hu − 1}, (5.1f)

where k denotes the current time sample, and k + j denotes the future time along the prediction
horizon Hp and control horizon Hu. For systems with a large time lag, the prediction horizon
might start from Hw, where Hw > 1. This is done to avoid penalizing deviations of the output
y(k+ j) from the reference trajectory ry for the initial steps, as there is a time lag before the effect
of the implemented control action is seen. The input rate limits ∆u and ∆u constrain the rate of
input moves. The maximum and minimum allowed inputs are defined by ū and u. These bounds
are normally defined by the system. Closed loop stability of the MPC problem can be achieved by
the choice of Q̄ and P̄ , and the length of the horizons Hp and Hu [32].

The prediction model ŷ(k + j|k) can be formulated based on the step response model (2.30) as

ŷ(k+ j|k) =
j∑

i=1

s(i)∆u(k+ j− i)+

N−1∑
i=j+1

s(i)∆ũ(k+ j− i)+ s(N)ũ(k+ j−N)+ v(k+ j|k), (5.2)

v(k + j|k) = v(k|k) = ym(k)− ŷ(k|k − 1). (5.3)

The past inputs ũ(·) and input moves ∆ũ(·), and the predicted input moves ∆u(·), are required for
the prediction model. Through the constant disturbance model (5.3), output feedback is applied
and integral action is introduced. The output measurements at time instant k are denoted ym(k).

For systems exposed to large disturbances, infeasibility can occur. Therefore, the slack variables
ϵ̄, ϵ and their weights ρ̄, ρ > 0 are added to the optimization problem to avoid infeasibility. The
upper and lower bounds on the output, ȳ and y, are then relaxed if the optimization problem
becomes infeasible.

35

5.2 MIMO MPC Problem Formulation

The MPC problem (5.1) can easily be extended to MIMO systems. Additionally, the MPC problem
can be converted into a general QP problem compliant with most of the available QP solvers.

The decision variables in (5.1) can be stacked on top of each other in a vector by the following
definitions:

∆Uj(k) =

∆uj(k)

∆uj(k + 1)
...

∆uj(k +Hu − 1)

 , Uj(k) =

uj(k)

uj(k + 1)
...

uj(k +Hu − 1)

 , Yi(k) =

yi(k +Hw|k)

yi(k +Hw + 1|k)
...

yi(k +Hp|k)

 ,

Ti(k) =

ry(k +Hw)

ry(k +Hw + 1)
...

ry(k +Hp)

 , Qi =

Q̄ 0 · · · 0
0 Q̄ · · · 0
...

...
. . .

...
0 0 · · · Q̄

 , Pj =

P̄ 0 · · · 0
0 P̄ · · · 0
...

...
. . .

...
0 0 · · · P̄

 ,

where the subscripts i = 1, ..., nCV , and j = 1, ..., nMV , where nCV and nMV denotes the number
of CVs and MVs in the MIMO system respectively. The dimensions of Qi and Pj are given by the
prediction horizon Hp, the start of the prediction horizon Hw, and the control horizon Hu, where
the dimensions are (Hp −Hw + 1)× (Hp −Hw + 1) and Hu ×Hu respectively. These definitions
together with the following, can be used to derive the general QP formulation for a MIMO system.

T (k) =
[
T ⊤
1 (k), T ⊤

2 (k), . . . , T ⊤
nCV

(k),
]⊤

,

Y (k) =
[
Y ⊤
1 (k), Y ⊤

2 (k), . . . , Y ⊤
nCV

(k),
]⊤

,

U(k) =
[
U⊤
1 (k), U⊤

2 (k), . . . , U⊤
nMV

(k),
]⊤

,

∆U(k) =
[
∆U⊤

1 (k), ∆U⊤
2 (k), . . . , ∆U⊤

nMV
(k),

]⊤
,

P = blkdiag
(
P1, P2, ..., PnMV

)
,

Q = blkdiag
(
Q1, Q2, ..., QnCV

)
.

A reference trajectory T (k) can be used to make a gradual transition to the desired setpoint.
However, in this implementation, an internal setpoint trajectory is not used, as the plant should
be driven to the setpoint as fast as possible. Using the definitions above, the MPC problem for
MIMO systems can be formulated as:

min Y (k)⊤QY (k) + ∆U(k)⊤P∆U(k)− 2T ⊤QY (k) + ρ⊤h ϵh + ρ⊤l ϵl, (5.4a)

subject to

GY (k) ≤ g +Mhϵh +Mlϵl, ϵh ≥ 0, ϵl ≥ 0, (5.4b)

Y (k) = Θ∆U(k) + Ψ∆Ũ(k) + ΥŨ(k −N) + V (k), (5.4c)

E∆U(k) ≤ e, (5.4d)

FU(k) ≤ f, (5.4e)

KU(k) = ΓŨ(k − 1) + ∆U(k). (5.4f)

36

The MPC problem has been rewritten in matrix form to take on a more general form applicable
to most QP solvers. Constant terms not including decision variables are neglected in the cost
function, as these do not affect the optimal solution. The output constraints on Y (k) and input
constraints U(k) and ∆U(k) are now matrices and take a more general form. Additionally, the
predictions are now computed explicitly by using (5.4c).

The slack variables are stacked in ϵh and ϵl, where the size corresponds to the number of CVs with
high limits (nȳ) and low limits (ny). The corresponding weighting values are stacked similarly in
ρh and ρl.

ϵh =
[
ϵ̄1, ϵ̄2, . . . , ϵ̄nȳ

]⊤
, ϵl =

[
ϵ1, ϵ2, . . . , ϵny

]⊤
.

The block-diagonal matrices E, F , G, and the vectors e, f , g are defined as seen below:

E = blkdiag
(
E1, E2, . . . , EnMV

)
, e =

[
e⊤1 , e⊤2 , . . . , e⊤nMV

]⊤
,

F = blkdiag
(
F1, F2, . . . , FnMV

)
, f =

[
f⊤
1 , f⊤

2 , . . . , f⊤
nMV

]⊤
,

G = blkdiag
(
G1, G2, . . . , GnCV

)
, g =

[
g⊤1 , g⊤2 , . . . , g⊤nCV

]⊤
,

These matrices are directly derived from the constraints of the problem formulation (5.1):

IHu
⊗
[
1
−1

]
︸ ︷︷ ︸

Ej

∆Uj(k) ≤ 1⊗
[
∆u
−∆u

]
︸ ︷︷ ︸

ej

, IHu
⊗
[
1
−1

]
︸ ︷︷ ︸

Fj

Uj(k) ≤ 1⊗
[
u
−u

]
︸ ︷︷ ︸

fj

, (5.5a)

IHp−Hw+1 ⊗
[
1
−1

]
︸ ︷︷ ︸

Gi

Yi(k) ≤ 1⊗
[
ȳ
−y

]
︸ ︷︷ ︸

gi

+1⊗
[
1
0

]
︸ ︷︷ ︸

ml

ϵl + 1⊗
[
0
1

]
︸ ︷︷ ︸

ml

ϵl. (5.5b)

The matrices involving the upper and lower bounds are computed using the Kronecker product ⊗.
The length of the vector 1 is Hu in (5.5a) and Hp −Hw + 1 in (5.5b). The matrices Mh and Ml

in (5.4b), are defined as follows, where m̄l and ml are provided from (5.5b):

Mh = blkdiag
(
m1, m2, . . . , mnȳ

)
, Ml = blkdiag

(
m1, m2, . . . , mny

)
.

The relationship between ∆U(k + j) and U(k + j) in (5.4f) are defined by the matrices K and Γ.
These matrices result from the transformation from the relationship in (5.1f), and are as follows:

K = blkdiag
(
K1, K2, . . . , KnMV

)
, Γ = blkdiag

(
Γ1, Γ2, . . . , ΓnMV

)
,

where

Kj =

1 0 · · · 0 0

−1 1
. . . 0 0

0 −1
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · −1 1

, Γj =

1
0
0
...
0

 , using Ũ(k − 1) =

ũ1(k − 1)
ũ2(k − 1)

...
ũnMV

(k − 1)

 .

37

The dimension of matrix K is (Hu ·nMV)×(Hu ·nMV), and the dimension of Γ is (Hu ·nMV)×nMV .
The vectors and matrices used in the prediction model (5.4c) are derived from the prediction model
(5.2). The vectors are defined as:

∆Ũ(k) =
[
∆Ũ⊤

1 (k), ∆Ũ⊤
2 (k), . . . , ∆Ũ⊤

nMV
(k)

]⊤
,

∆Ũj(k) =

∆ũ(k − 1)
∆ũ(k − 2)

...
∆ũ(k +Hw −Nj + 1)

 , Ũ(k −N) =

ũ1(k +Hw −Nj)
ũ2(k +Hw −Nj)

...
ũnMV

(k +Hw −Nj)

 ,

V (k) =
[
1⊤v1(k), 1⊤v2(k), . . . , 1⊤vnCV

(k),
]⊤

.

The length of the vector 1 is Hp − Hw + 1. In the implementation, Nj is assumed to be of the
same length for all SISO models, such that Nj = N .

The matrices in the prediction model (5.4c) are defined as follows:

Ψ =

Ψ1,1 Ψ1,2 · · · Ψ1,nMV

Ψ2,1 Ψ2,2 · · · Ψ2,nMV

...
...

. . .
...

ΨnCV ,1 ΨnCV ,2 · · · ΨnCV ,nMV

nCV (Hp−Hw+1)×

∑nMV
j=1 (Nj−Hw−1)

Ψi,j =

s(Hw + 1) s(Hw + 2) · · · s(Nj − 2) s(Nj − 1)
s(Hw + 2) s(Hw + 3) · · · s(Nj − 1) s(Nj)

...
...

...
...

...
s(Hp + 1) s(Hp + 2) · · · s(Nj) s(Nj)

(Hp−Hw+1)×(Nj−Hw−1)

Θ =

Θ1,1 Θ1,2 · · · Θ1,nMV

Θ2,1 Θ2,2 · · · Θ2,nMV

...
...

. . .
...

ΘnCV ,1 ΘnCV ,2 · · · ΘnCV ,nMV

nCV (Hp−Hw+1)×nMV ·Hu

Θi,j =

s(Hw) s(Hw − 1) · · · 0
s(Hw + 1) s(Hw) · · · 0

...
...

. . .
...

s(Hu) s(Hu − 1) · · · s(1)
s(Hu + 1) s(Hu) · · · s(2)

...
...

. . .
...

s(Hp) s(Hp − 1) · · · s(Hp −Hu + 1)

(Hp−Hw+1)×Hu

38

Υ =

Υ1,1 Υ1,2 · · · Υ1,nMV

Υ2,1 Υ2,2 · · · Υ2,nMV

...
...

. . .
...

ΥnCV ,1 ΥnCV ,2 · · · ΥnCV ,nMV

nCV (Hp−Hw+1)×nMV

Υi,j =

s(Nj)
s(Nj)

...
s(Nj)

(Hp−Hw+1)×1

As optimization problem (5.4) is a QP problem, many of the available QP solvers can be used to
solve the optimization problem. Most of these solvers require the problem to be on the general QP
form. Therefore, the optimization problem (5.4) has to be translated into a general QP problem,
as seen in Section 2.1.6. By grouping the decision variables of (5.4), the general QP formulation
can be given as:

min
1

2

∆U(k)
U(k)
Y (k)
ϵh
ϵl

⊤

2P 0 0 0 0
0 0 0 0 0
0 0 2Q 0 0
0 0 0 0 0
0 0 0 0 0

∆U(k)
U(k)
Y (k)
ϵh
ϵl

+
[
0 0 −2T ⊤Q ρ⊤h ρ⊤l

]

∆U(k)
U(k)
Y (k)
ϵh
ϵl

 ,

(5.6a)

subject to
E 0 0 0 0
0 F 0 0 0
0 0 G −Mh −Ml

0 0 0 −I 0
0 0 0 0 −I

∆U(k)
U(k)
Y (k)
ϵh
ϵl

 ≤

e
f
g
0
0

 , (5.6b)

[
−I K 0 0 0
−Θ 0 I 0 0

]
∆U(k)
U(k)
Y (k)
ϵh
ϵl

 =

[
ΓŨ(k − 1)

Ψ∆Ũ(k) + ΥŨ(k −N) + V (k)

]
. (5.6c)

The QP problem (5.6) can be compactly represented as:

min
z

1

2
zTHsz + gTs z (5.7a)

subject to

Āiz ≤ b̄i, Aez = be, (5.7b)

where z ∈ Rn is the decision vector z =
[
∆U(k), U(k), Y (k), ϵh, ϵl

]⊤
, and be ∈ Rme ,

b̄i ∈ Rmi , and Hs ∈ Rn×n is a positive semi-definite Hessian. Where n, me and mi is defined as:

n = 2 · nMV ·Hu + nCV (Hp −Hw + 1) + nȳ + ny,

me = nMV ·Hu + nCV (Hp −Hw + 1),

mi = 4 · nMV ·Hu + (nȳ + ny)(Hp −Hw + 1) + nȳ + ny

39

The Hessian Hs, the vector gs, and the vector be can be recalculated at each sampling time to
update the problem with new information provided by the plant.

Condensed QP formulation
The QP problem implemented in this thesis is a variant of (5.7) where the decision variables Y
and U from the QP formulation (5.7) are eliminated from the formulation. This leads to a more

condensed QP formulation, where the decision variable z̄ =
[
∆U(k), ϵh, ϵl

]⊤
:

min
{

1
2 z̄

⊤Hdz̄ + g⊤d z̄ | Adz̄ ≤ bd, z̄lb ≤ z̄ ≤ z̄ub
}

(5.8)

One of the benefits of this condensed formulation is its lower-dimensional decision vector z̄, which
allows for more efficient optimization at the cost of less structured or dense QP matrices Hd and
Ad.

Equation (5.8) can be derived directly from (5.4) by considering the following definitions:

Y (k) := Λd(k) + Θ∆U(k), (5.9)

U(k) := K−1[ΓŨ(k − 1) + ∆U(k)], K ≻ 0, (5.10)

γ := − 2Θ⊤Q, (5.11)

ζ(k) := T (k)− Λd(k), (5.12)

where

Λd = Ψ∆Ũ(k − 1) + ΥŨ(k − 1) + V (k). (5.13)

This results in

Hd = 2 · blkdiag(H̄d, 0, 0),

gd(k) =
[
ζ(k)⊤γ⊤ ρ⊤h ρ⊤l

]⊤
,

Ad =

[
GΘ −Mh −Ml

FK−1 0 0

]
,

bd =

[
−GΛd(k) + g

−FK−1ΓŨ(k − 1) + f

]
,

where H̄d = Θ⊤QΘ+ P.

5.3 MPC Algorithm

The compact formulation of the MPC problem (5.8) allows for efficient optimization due to its
lower-dimensional decision vector. As a result, this formulation was chosen for implementation in
Python.

The process model provided by Equinor exhibits significant nonlinearity in the initial stages due to
unnatural values assigned to certain parameters. To mitigate this issue, a simulation of the model is
conducted for a brief duration, allowing the process to reach a steady state before commencing the
control algorithm. This assumption underlies the implementation of the MPC algorithm, assuming
that the process attains a steady state at the initiation of the algorithm. Furthermore, the initial
input values are set to match those used to generate the step response models, thereby minimizing
model errors during the initial stages. As the step response coefficients remain constant throughout

40

the algorithm, any matrices dependent on these coefficients are constant and predefined before the
optimization loop commences.

At each time step, the optimization problem defined by (5.8) is solved, and the first optimal input
move is applied to the process. The constraints are also updated at each iteration, taking into
account the bias model (5.3), which provides an integral effect in the MPC.

5.4 QP Solver

This thesis does not aim to explore the many different solvers that can be used in the MPC
algorithm. Therefore, Gurobi was chosen as the solver for this work. Gurobi is a state-of-the-art
optimization software package that is widely used by organizations to solve complex optimization
problems.

One of the key advantages of Gurobi is its ability to solve mixed-integer optimization problems
efficiently. This attribute renders it a favorable selection for use in a Mixed Integer MPC algorithm
due to its compatibility with integer decision variables. Leveraging advanced Branch & Cut al-
gorithms, Gurobi consistently identifies optimal solutions for mixed-integer problems, earning its
popularity in applications where such complexities frequently arise.

41

42

6 Mixed Integer MPC Implementation

One of the main goals of this thesis is to explore how to integrate the discreteness of a step choke
into an MPC problem. This integration aims to enable the controller to appropriately handle
the inherent discreteness of the actuator. To achieve this, the thesis proposes the incorporation
of integer decision variables into the MPC problem, thereby expanding the conventional continu-
ous MPC into a Mixed Integer MPC. By developing a model predictive controller that directly
incorporates integer constraints into the optimization problem, rather than relying on external
logic, Equinor can gain valuable insights into the potential of this research field and identify key
considerations.

In order to accomplish this objective, a foundational continuous MPC was initially developed as
a basis in the project thesis [1], presented in Chapter 5. This chapter presents the extension to
Mixed Integer MPC, and additional features added to the MPC formulation. The continuous MPC
formulation presented in Chapter 5 is utilized as the fundamental framework for this extension.

6.1 Integer Decision Variables

The fundamental difference between the continuous MPC and the Mixed Integer MPC lies in
the decision variables being either continuous or a combination of continuous and discrete. As
outlined in Section 3.1, the system under control has two manipulated variables: production choke
and gas-lift rate. While the gas-lift rate is continuous, the production choke operates in discrete
steps of 2%. This section presents how the discreteness of the choke is incorporated into the MPC
problem by introducing integer decision variables and thus extending the continuous MPC to a
Mixed Integer MPC.

For convenience, the continuous MPC problem (5.8) is restated here:

min
{

1
2 z̄

⊤Hdz̄ + g⊤d z̄ | Adz̄ ≤ bd, z̄lb ≤ z̄ ≤ z̄ub
}

(6.1)

where z̄ =
[
∆U(k), ϵh, ϵl

]⊤
, and ∆U(k) =

[
∆U1(k), ∆U2(k)

]
. ∆U1(k) represents future

choke moves and ∆U2(k) represents future gas-lift rate changes.

Incorporating integer decision variables into the MPC problem becomes straightforward by em-
ploying a solver that supports such integer variables. In this study, Gurobi is utilized as the solver
(see [22]), which allows for explicit definition of variables as integers, enabling the enforcement
of integer constraints on the decision variables. By including the argument GRB.INTEGER when
defining the variables, the decision variables are constrained to take on only integer values. In the
MIMPC, the choke moves, ∆U1(k), are integer-restricted, while the gas-lift rate moves, ∆U2(k),
remain continuous.

The choke has a step size of ±2% in the system at hand. Thus, the MIMPC should only be allowed
to make choke moves of ±2% or no move each timestep. However, defining the integer decision
variables only to take on values of ±2% or 0 is not as straightforward. To deal with this, the lower
and upper bounds of the choke move variables are set to ±1%, as shown in (6.2). Subsequently,
the desired choke move is scaled by a factor of 2, when applying the optimal choke move to the
plant.

−1 ≤∆U1(k + j) ≤ 1, j ∈ 0, ...,Hu − 1 (6.2)

∆U1(k + j) ∈ Z

As the choke move is now restricted to integer values between [−1, 1], the choke position U1(k+ j)
also requires scaling by the same factor. Thus, new lower and upper bounds for the choke position
are defined as 0% and 50%, respectively, to compensate for the choke move scaling. Additionally,

43

the step response coefficients associated with the choke moves must be scaled by the same scaling
factor to ensure the appropriate model in the optimization problem. Therefore, the step coefficients
s1,2(·) and s2,2(·), are also scaled by a factor of 2. Consequently, if the optimal choke move is
determined to be 1%, it will result in a 2% move in practice, and the same principle applies to a
move in the opposite direction.

6.2 Input Blocking

Input parameterization techniques are used in many practical online MPC systems to reduce
computational complexity. The most classical technique is called input blocking, which introduces
a class of input trajectories with a lower degree of freedom in order to reduce the dimensionality
of the optimization problem [51]. The manipulated variables are fixed to be constant over a block
of sampling instants, requiring fewer decision variables for the same control horizon. The most
obvious potential advantage of this technique is that the dimensionality of the problem is greatly
reduced, by the elimination of decision variables, while retaining a large control horizon [51].

Even though the dimensionality of the optimization is reduced and fewer decision variables are
used in the problem, the performance is usually not affected. Integer programming is much more
computationally complex than continuous optimization, and reducing the optimization problem
can be crucial to be able to solve it efficiently. Therefore, input blocking has been implemented to
solve the MPC problem more efficiently.

The blocking structure implemented can be seen in (6.3), wherein the length of the vector represents
the total degrees of freedom, and the elements define the size of the individual blocks. To provide
the controller with greater flexibility at the beginning of the control horizon, smaller blocks are
employed initially.

blocks =
[
1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 8, 16, 16, 32, 32, 64

]
(6.3)

Implementing input blocking in the MPC, with the blocking structure (6.3), resulted in a significant
reduction in the degrees of freedom, decreasing from 200 (Hu) to 16. This reduction in the problem
dimensionality leads to a more efficient optimization problem and a faster solver. The objective of
a well-designed blocking structure is to minimize computational time without compromising the
performance of the MPC.

For a simulation of 3000 runs with the continuous MPC used for control, it was observed that the
introduction of input blocking resulted in a remarkable reduction in simulation time. The compu-
tation time decreased from 29 minutes to just 4 minutes, translating to less than 0.1 seconds per
iteration. Apart from the computational time, it was not possible to distinguish the performance of
the MPC with and without input blocking. It is worth noting that the blocking structure employed
in this study could have been further adjusted to include fewer blocks, potentially improving com-
putational efficiency even more. For instance, in SEPTIC, only 6 blocks are utilized. Considering
the satisfactory computational time achieved with the current blocking structure, there was no
immediate focus placed on further reducing it in order to prevent any potential degradation in
performance.

6.3 Bias Filtering

In the system at hand, the plant is a model and not a real process. Thus measurement noise is not
an issue for this system. However, in a real-world process, measurement noise is typically present
and needs to be addressed. To filter out high-frequency measurement noise, a simple lowpass filter
is often sufficient [52].

Sudden spikes in the bias update can occur, which can cause oscillations in the system. Therefore,
to ensure smooth control and avoid possible oscillations, the bias term (2.31b) is filtered using the

44

simple lowpass filter (6.4). The filter employs an array that saves the last Hp biases, and for each
sampling, the array is shifted, and the new current bias term is saved and lowpass filtered.

The lowpass filter is implemented using the following equation:

yk =

(
2−∆twc

2 + ∆twc

)
yk−1 +

(
∆twc

2 + ∆twc

)
(xk + xk−1), (6.4)

where xk is the actual bias at time t = k∆t, yk is the filtered bias at time t = k∆t, and wc is the
cut-off frequency. In the MPC algorithm, wc is set to 1

20 [rad/s].

6.4 Soft MPC

Despite the widespread use of MPC in high-level control systems, there is limited guidance available
on tuning methodologies of MPC controllers in the face of the inevitable plant model mismatch
[7]. The closed-loop performance of linear MPC can be particularly poor in the presence of model
uncertainty, especially when integrality constraints are imposed on the manipulated variables with
a large step size. In such cases, oscillations can occur, fine regulation becomes challenging, and
the impact of plant model mismatch becomes evident.

During the testing phase of the implemented MIMPC, it was noted that the robustness of the
controller exhibited variations across different regions of the manipulated variables. Specifically,
when the choke was nearly closed, the performance of the controller was notably influenced by
plant model mismatch. The discrepancy between the predicted and actual responses became more
pronounced, particularly considering the relatively large step size of the choke. This emphasized
the impact of plant model mismatch on the overall performance of the controller.

While model mismatch can be mitigated to some extent through feedback mechanisms, the chal-
lenge becomes more significant when integrality constraints are imposed, and the actuator step size
is large. In regions where plant model mismatch is prominent, a 2% step can result in a response
that deviates greatly from the predictions and can, i.e., lead to a large and unpredicted overshoot.
Consequently, the controller must compensate by reducing the manipulated variable by 2% back
to the same position. This process can lead to oscillations in the inputs, ultimately manifesting as
oscillations in the controlled variables.

To address the issue of oscillations in the inputs caused by plant model mismatch, the Soft MPC
approach is employed in this study. This method aims to improve controller performance and
mitigate oscillations by relaxing the penalization of the controller when the controlled variables
are close to the reference. This is achieved by introducing soft output constraints that are relative
to the set points. By creating a ”deadzone” around the set point, oscillations in the controlled
variables caused by plant model mismatch can be eliminated. Figure 12 illustrates the measured
oil rate and choke position for both the nominal MIMPC and the MIMPC utilizing the Soft MPC
method. The thin dashed lines represent the deadzone around the set point. It is evident that
the nominal controller exhibits oscillations around the set point, corresponding to the oscillatory
behavior of the choke position. In contrast, the Soft MPC approach avoids oscillations as the
deviation from the set point is penalized to a lesser extent within the established deadzone. It
should be noted that the gas rate and gas-lift rate are excluded from the figure as the figure serve
solely to illustrate the Soft MPC method. The focus is on demonstrating the impact of the Soft
MPC method, highlighting the effectiveness of the penalty deadzone in mitigating oscillations in
the controlled variables caused by plant model mismatch.

45

0 200 400 600 800 1000 1200 1400
Time [s]

20

30

40

50

60

70

80

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate (Nominal MPC)
Measured oil rate (Soft MPC)

0 200 400 600 800 1000 1200 1400
Time [s]

6

8

10

12

14

Ch
ok
e
po
sit
io
n
[%

]

Choke position

Choke position (Nominal MPC)
Choke position (Soft MPC)

Figure 12: Comparison of nominal MIMPC (blue) and Soft MIMPC (red)

To provide an intuitive understanding of the Soft MPC formulation, it is first presented for a SISO
system based on the MPC formulation given in (5.1). The Soft MPC formulations are based on
the work of Guru Prasath and John Bagterp Jørgensen [7].

To incorporate the Soft MPC method, the optimization problem is augmented with the following
soft constraints:

y(k + j) ≤ (ry(k + j) + c) + η(k + j), j ∈ {Hw, . . . ,Hp} (6.5a)

y(k + j) ≥ (ry(k + j)− c)− η(k + j), j ∈ {Hw, . . . ,Hp} (6.5b)

η(k + j) ≥ 0, j ∈ {Hw, . . . ,Hp} (6.5c)

y(k+ j) is the predicted output, ry(k+ j) is the output reference, c is a positive constant defining
the size of the deadzone, and η(k + j) denotes the slack variables introduced to the optimization
problem. Moreover, the objective function (5.1) is modified to incorporate the slack variables
η(k + j) as follows:

min

Hp∑
j=Hw

∥y(k+j|k)−ry(k+j)∥2Q̄+

Hu−1∑
j=0

∥∆u(k+j)∥2P̄+ρ̄ϵ̄+ρϵ+

Hp∑
j=Hw

∥η(k+j)∥2Sη
+s′ηη(k+j) (6.6)

The Soft MPC approach introduces a penalty function similar to the one depicted in Figure 13.
This penalty function illustrates that when the controlled variable is close to the reference, it incurs
a lower penalty compared to the nominal case. However, if it falls outside the deadzone region, it is
penalized similarly to the nominal case. It is important to note that the penalty function shown in
the figure is not exactly the same as the implemented Soft MPC penalty function since it relies on
the tuning parameters. Nevertheless, it offers a visual representation of how the Soft MPC method
works. Inside the deadzone, the penalty function is nonzero, indicating that the controller still
aims to drive the controlled variable towards the reference but with a different weighting between
the input move and the reference tracking.

46

Figure 13: Penalty function for Soft MPC and nominal MPC [7]

The implementation of Soft MPC in the MIMPC system is based on the MPC formulations de-
scribed in Section 5, and is repeated here for convenience:

min
{

1
2 z̄

⊤Hdz̄ + g⊤d z̄ | Adz̄ ≤ bd, z̄lb ≤ z̄ ≤ z̄ub
}

Hd = 2 · blkdiag(H̄d, 0, 0),

gd(k) =
[
ζ(k)⊤γ⊤ ρ⊤h ρ⊤l

]⊤
,

Ad =

[
GΘ −Mh −Ml

FK−1 0 0

]
,

bd =

[
−GΛd(k) + g

−FK−1ΓŨ(k − 1) + f

]
,

To include the Soft MPC feature, the decision variable vector z̄ is extended to include the slack
variables η(k):

z̄ =
[
∆U(k), ϵh, ϵl, η(k)

]⊤
, (6.8)

where

η(k) =

η1(k +Hw)
η1(k +Hw + 1)

...
η1(k +Hp)
η2(k +Hw)

η2(k +Hw + 1)
...

η2(k +Hp)

. (6.9)

47

η(k) is a vector of slack variables that represent the deviation from the deadzone region. The
Hessian-matrix Hd, and the linear penalty vector gd are enlarged to include the soft weighting
parameters Sη(k) and sη(k).

Hd,soft =

[
Hd 0
0 Sη(k)

]
, (6.10)

where

Sη(k) =

[
Sgas 0
0 Soil

]
, Sgas =

Sgas 0 · · · 0
0 Sgas · · · 0
...

...
. . .

...
0 0 · · · Sgas

 , Soil =

Soil 0 · · · 0
0 Soil · · · 0
...

...
. . .

...
0 0 · · · Soil

 ,

gd(k) =
[
ζ(k)⊤γ⊤ ρ⊤h ρ⊤l sη,gas(k)

⊤ sη,gas(k)
⊤] , (6.11)

where

sη,gas(k) =
[
sgas, sgas, ... sgas

]⊤
, sη,oil(k) =

[
soil, soil, ... soil

]⊤
.

Here Sη(k) is a block diagonal matrix with the soft penalty weights Sgas and Soil as its diagonal
elements. sη,gas(k) and sη,oil(k) are vectors that define the linear soft penalty weights.

In the case of the MIMO system, the soft constraints can be written as:

Θ∆U(k) + Λd(k) ≤ T (k) + c+ η(k), (6.12a)

Θ∆U(k) + Λd(k) ≥ T (k)− c− η(k), (6.12b)

where c is a vector defining the size of the gas and oil deadzone, with dimension 2(Hp−Hw+1)×1:

c =
[
cgas, cgas, ... cgas, coil, coil, ... coil

]⊤
. (6.13)

Furthermore, the matrices Ad and bd are extended to include the soft constraints. The extended
matrices Ad,soft and bd,soft become:

Ad,soft =

GΘ −Mh −Ml 0 0

FK−1 0 0 0 0
Θ 0 0 −I −I
−Θ 0 0 −I −I

 , (6.14)

bd,soft =

−GΛd(k) + g

−FK−1ΓŨ(k − 1) + f
−Λd(k) + T (k) + c
Λd(k)− T (k) + c

 . (6.15)

In summary, the soft MPC implementation in the MIMPC system extends the decision variable
vector, Hessian matrix, and linear penalty vector to include the slack variables and soft weighting
parameters. The matrices Ad and bd are also augmented to incorporate the soft constraints related
to the deadzone region.

48

6.5 Oscilliation constraints

Oscillations can negatively affect control performance and may even cause damage to actuators.
The introduction of integer decision variables in the MIMPC helps reduce the occurrence of oscil-
lations in the manipulated variables by allowing the controller to predict the discrete behavior and
adjust accordingly. Additionally, as seen in the previous section, the Soft MPC method helps mit-
igate oscillations. However, to further mitigate this risk of oscillations in the system, constraints
can be implemented to prevent the MIMPC from rapidly oscillating the manipulated variables.

By imposing constraints that prohibit fast oscillations, the controller is not allowed to reverse
the direction of the manipulated variable immediately after making a move. For instance, if
the controller opens the choke in one time step, these constraints would prevent the controller
from moving the choke toward a closed position in the following time step. This ensures that the
actuator is given sufficient time to stabilize and settle into the new position, reducing the likelihood
of oscillations and minimizing the potential for damage. Ultimately, this can extend the lifetime
of the actuator.

It is worth noting that such constraints may introduce a one time step delay, but the impact on the
overall performance is negligible in the context of the larger system. By including the constraints in
(6.16) into the optimization problem, sudden changes in the choke move direction are restricted. As
a result, the controller operates in a more predictable and controlled manner, leading to increased
safety.

∆u1(k) ≥
∆ũ1(k − 1)

2
− 1,

∆u1(k) ≤
∆ũ1(k − 1)

2
+ 1,

∆u1(k + j) ≥ ∆u1(k + j − 1)− 1, j ∈ {1, ... , Hu − 1}
∆u1(k + j) ≤ ∆u1(k + j − 1) + 1, j ∈ {1, ... , Hu − 1}

(6.16)

where ∆ũ1(k− 1) is the previous choke move, ∆u1(·) are the predicted choke moves, and the step
size of the actuator is 2%. It should be noted that this formulation assumes that the predicted
choke moves are scaled according to what was described in Section 6.1, meaning in short that
∆ũ1(k − 1) ∈ {−2, 0, 2} and ∆u1 ∈ {−1, 0, 1}.

In this study, Gurobi is used to solve the optimization problem. To solve integer programs, this
solver utilizes among others the branch and cut algorithm, which relies on a series of linear program-
ming relaxations. In Gurobi, an integer solution is deemed an integer if the variables are within a
tolerance value (IntFeasTol) of an integer. The default value of IntFeasTol is 1−5, meaning that
e.g. 1.000000465 would be considered an integer. In some cases, such as when the constraints (6.16)
are incorporated in the optimization problem, this tolerance could have a catastrophic outcome if
not handled.

If looking at the case where the previous choke move ∆ũ1(k− 1) = −2.000000465 which is deemed
an integer by the solver, by the constraints (6.16), the next choke move would be constrained to:

∆u1(k) ≥ −2.000000465

2
− 1,

∆u1(k) ≤ −2.000000465

2
+ 1,

thus

−2.000000233 ≤ ∆u1(k) ≤ −0.000000233.

49

Given that ∆u1(k) is already constrained to ∆u1(k) ≥ −1 , the range of feasible solutions become
−1 ≤ ∆u1(k) ≤ −0.000000233. In this range, the only integer solution is ∆u1(k) = −1. However,
if the current choke position ũ1(k−1) = 0%, this would result in an infeasible optimization problem
as the choke position is constrained to be greater than or equal to zero, and a negative choke move
would violate this constraint.

In such scenarios, if deemed necessary, the Gurobi developers recommend applying variable round-
ing due to the variables already being within the small default tolerance of Gurobi. Since Gurobi
does not offer a built-in rounding feature, any necessary rounding should be done in post-processing
after completing the optimization [53].

Applying post-processing rounding to the same case mentioned above, the next choke move would
be constrained to:

∆u1(k) ≥ −1

∆u1(k) ≤ 0

Thus, in this scenario, the solution ∆u1(k) = 0 is feasible, and the controller is constrained not to
make any choke moves during this particular time step.

6.6 Mean Choke Move

To mitigate the risks associated with sand production and ensure the long-term sustainability of
the oil well, it is important to control the rate at which the production choke is opened. Opening
the choke too fast can lead to undesirable consequences such as reservoir compaction and flow
path blockage caused by sand collapse [54]. In response to these concerns, Equinor has requested
a specific feature in the MPC algorithm to enforce a mean choke move constraint.

Equinor has set a requirement to limit the average pace of opening the choke in the oil well to
a rate not exceeding 0.55%/∆t, with ∆t = 10s. To ensure compliance with this constraint, the
implemented MPC controller includes specific measures to prevent excessively fast choke opening.
The controller incorporates a constraint on the average choke move over a 250-second interval.
If the average choke move surpasses the specified limit, the controller enforces a hard constraint,
restricting further choke movement in the same direction, and allowing adjustments only to the
gas-lift. This constraint remains in effect until the average choke move falls below the predefined
limit.

It is important to note that the constraint limits the average speed of opening the choke to
0.55%/∆t, while the actual choke move per time step is subject to a separate constraint of the
choke step size, set at 2%. This distinction ensures that the MPC algorithm maintains control
over the choke opening within the defined limits while adhering to the specific choke step size.

By imposing this constraint, the MPC algorithm ensures that the choke opening changes gradually
over time. This controlled rate of change enables better management of sand production and min-
imizes the associated risks. The mean choke move constraint strikes a balance between optimizing
production rates and mitigating sand-related reservoir damage. By controlling the choke opening
within specified limits, the MPC algorithm promotes the long-term sustainability and productivity
of the oil well while safeguarding against the adverse effects of sand production [54].

6.7 Real Time Optimization

The initial articles on MPC introduced the concept of output error ∥y − yref∥2 and input move
suppression ∥∆u−∆uref∥2 in the objective function [55]. Notably, the objective function did not
incorporate any input error term ∥u−uref∥2, which is also the case for the implemented controller

50

in this study, as seen in (2.25). Traditionally, optimal control strategies in linear systems have
included a cost penalty for input variables in the objective function, leading to steady-state offsets.
However, Cutler and Ramaker solved this problem by posing the optimization problem in terms of
changes in control moves, incorporating integral action in the controller, and eliminating steady-
state offsets [55].

In many applications where the number of inputs is equal or less than the number of outputs,
achieving setpoints on both the inputs and the outputs can be advantageous. In such cases, Real
Time Optimization (RTO) can be employed to calculate the target values for both output and input
variables [56]. In most cases, an RTO application functions by optimizing the process operating
conditions and updating set points for local MPCs. Typically a two-layered structure is employed
in process plants such as oil and gas production systems, which facilitates the achievement of
economically optimal operation. The upper layer focuses on optimizing the plant’s steady-state
operation, drawing from a stationary plant model to provide set points for the lower-layer MPC
[57].

In this study, an RTO has been developed; however, not utilized in the final implementation due to
a specific request from Equinor to exclude this from the implementation. Although it is not part
of the final implementation, the RTO is presented here as it is considered beneficial in a broader
context and enables the inclusion of several additional features in the system, such as the avoidance
of defined regions in the input space.

6.7.1 Ideal MVs

By utilizing RTO it can provide setpoints for both the inputs and outputs. It can be seen as
a steady-state optimization, not accounting for the dynamics of the system. There are multiple
advantages to using RTO in a layer above the MPC. Firstly, it ensures that the set points are
feasible for the system. This is especially useful in underactuated systems, where many setpoints
are not attainable. In this project, the system under control has equally many MVs as CVs, and
it is not always possible to reach the set point of both CVs. Then, RTO can make small changes
to the desired set points and provide the best feasible setpoints.

Secondly, adding RTO to the control scheme facilitates for adding special features, i.e., if a region
in the input should be avoided due to a higher risk of damage to the equipment in this region. The
RTO can thus handle this in an effective way by providing setpoints for the inputs, avoiding the
region where possible damage can occur.

In the system under control, it is advantageous not to use gas-lift to control when the gas-lift rate

is between 0 − 2000m3

hr . This is due to the increased risk of damage to the well, as gas-lift rate
in this region can lead to slugging in the well. Even though this region should be avoided, the

controller has to go through this region to gain a gas-lift rate greater than 2000m3

hr . This can be
accomplished by utilizing RTO, constraining the steady-state gas-lift rate to avoid this region, and
using the optimal steady-state gas-lift rate as a reference in the MPC implementation. As gas is
pumped down into the well when using the gas-lift method, this comes with a cost, as the gas has
to be compressed and sent back into the well. Thus, the economic aspect can also be included in
the RTO, such that it comes with a cost to use gas-lift. An example of an RTO problem is stated
in (6.19).

51

minimize
z,Ygas,Yoil,uchoke,ugl

− αgasYgas − αoilYoil + αglugl, (6.19a)

subject to

[
Yoil

Ygas

]
= f(uchoke, ugl) (6.19b)

y
gas

≤ Ygas ≤ ygas (6.19c)

y
oil

≤ Yoil ≤ yoil (6.19d)

zugl ≤ ugl ≤ zugl (6.19e)

The goal of this RTO is to maximize the total profit from gas and oil production, given by αgas and
αoil. Additionally, the cost αgl of using gas-lift as a lifting method should be taken into account.
The RTO uses a steady-state model, f(uchoke, ugl), to calculate the steady-state oil rate and gas
rate, Yoil and Ygas. Additionally, the gas and oil rate is constrained to a minimum and maximum
rate. The gas-lift rate, ugl, is constrained to ugl ≤ ugl ≤ ugl or 0, by including the binary variable
z. When z = 1, the gas-lift is constrained to ugl ≤ ugl ≤ ugl, but when z = 0 the gas-lift is
constrained to ugl = 0. The optimal steady states of the gas rate, oil rate, choke position, and
gas-lift rate can be provided to the MPC and used as setpoints in the controller, ensuring the
setpoints of the MPC are feasible, economical, and that the gas-lift rate is not in the damaging
region.

To use the input setpoints from the RTO, the MPC objective function needs to be changed to
(6.20) to incorporate the setpoints of the inputs and penalize deviation.

Jnew = J + Ju (6.20)

where

Ju =
(
U(k)− URTO(k)

)⊤
Q
(
U(k)− URTO(k)

)
(6.21a)

= U(k)⊤QU(k)− 2URTO(k)QU(k) + URTO(k)
⊤QURTO(k) (6.21b)

=
(
K−1

[
ΓŨ(k − 1) + ∆U(k)

])⊤
Q
(
K−1

[
ΓŨ(k − 1) + ∆U(k)

])
(6.21c)

− 2URTO(k)Q
(
K−1

[
ΓŨ(k − 1) + ∆U(k)

])
+ URTO(k)⊤QURTO(k)

= ∆U(k)⊤
(
K−⊤QK−1

)
∆U(k)−

(
URTO(k)QK−1 − 2K−1ΓŨ(k − 1)QK−1

)
∆U(k) (6.21d)

52

7 Results

This chapter presents the results obtained from simulating the gas-lifted oil production well, de-
scribed in Section 3.1, utilizing the MPCs developed in this study. This study has aimed to explore
how to incorporate the discreteness of a step choke into the MPC optimization problem and evalu-
ate the performance of a Mixed Integer MPC compared to a continuous MPC. These findings show
the advantages of incorporating discrete decision variables in the MPC and highlight the challenges
of discrete actuators in a continuous control system. The term ”continuous MPC” refers to the
MPC detailed in Chapter 5, signifying that the optimization variables are continuous. The term
”MIMPC” is used when utilizing the MIMPC described in Chapter 6. In this case, the decision
variables corresponding to the step choke are integer decision variables, while the decision variables
corresponding to the gas-lift rate remain continuous.

The results are presented in two parts. First, the performance of the continuous MPC is evalu-
ated under two conditions: continuous and step choke. These findings highlight the complexities
associated with continuous control of discrete actuators and demonstrate the limitations of the
continuous MPC in this scenario.

Secondly, the performance of the MIMPC is presented, where integrality constraints are incorpor-
ated directly into the optimization problem. This integration provides the controller with know-
ledge of the discreteness of the choke, enabling it to predict the system’s behavior while considering
the choke’s discrete nature. The simulations are conducted using identical reference trajectories
for both controllers to facilitate a comprehensive comparison between the two methods.

To facilitate for comparison of the different control methods, the same tuning parameters are used
for all simulations unless otherwise noted. The tuning parameters are given in Table 1. Addition-
ally, the Soft MPC technique, input blocking, bias filtering, and mean choke move presented in
Chapter 6 are used in both controller formulations.

Parameter Value Description

P̄choke 1000 Choke move penalty

P̄gas−lift 0.2 Gas-lift rate move penalty

Q̄gas 0.0001 Gas rate deviation penalty

Q̄oil 0.1 Oil rate deviation penalty

Sgas 0.0001 Soft MPC quadratic gas rate penalty

Soil 0.1 Soft MPC quadratic oil rate penalty

sgas 0.0001 Soft MPC linear gas rate penalty

soil 0.1 Soft MPC linear oil rate penalty

cgas 1000m3

hr Deadzone gas rate

coil 5m3

hr Deadzone oil rate

ȳgas 20000m3

hr Soft upper bound gas rate

y
gas

0m3

hr Soft lower bound gas rate

ȳoil 400m3

hr Soft upper bound oil rate

y
oil

0m3

hr Soft lower bound oil rate

ρ̄, ρ 1000 Slack variable weight

Hp 250 Prediction horizon

Hu 200 Control horizon

Table 1: Tuning parameters.

53

Moreover, this chapter demonstrates how the MIMPC utilizes the prediction model to determine
optimal inputs, incorporating re-optimization and feedback mechanisms to achieve precise con-
trol. Additionally, the findings highlight the controller’s ability to handle disturbances and ensure
accurate regulation of a single controlled variable.

7.1 Continuous MPC

This section presents the performance of the continuous MPC, presented in Chapter 5. The initial
test is designed as a benchmark evaluation, with a continuous choke configuration employed to
establish a baseline for further evaluations. This test is made feasible as the plant is a mathematical
model instead of a physical system, making it possible to replace the step choke with a continuous
choke. Additionally, the section presents the performance of the continuous MPC with the original
step choke, highlighting the challenges of continuous control of discrete actuators. The simulations
are run for t = 78000s, equivalent to approximately 22 hours, with ∆t = 10s. The results obtained
from these simulations serve as a basis for evaluating the performance of the MIMPC.

7.1.1 Continuous Choke

In this simulation, the continuous MPC is utilized to control the system where both the choke and
the gas-lift rate are continuous. The controller is expected to produce optimal inputs that steer
the controlled variables toward their respective reference trajectories. In Figure 14, the controlled
variables are plotted against their reference trajectories. The figure shows that the controlled
variables converge to the reference trajectories for most of the simulation period, exhibiting a fast,
smooth, and stable response.

It is evident that, for some of the setpoints, both controlled variables exhibit a stationary deviation.
Given that the system has an equal number of inputs and outputs, where both inputs affect
both outputs, it may not always be feasible to achieve both setpoints simultaneously. Following
discussions with Equinor, it was decided to prioritize the attainment of the oil rate setpoint over
the gas rate setpoint. Consequently, a higher penalty is applied for the deviation of the oil rate
than that of the gas rate in the objective function, as seen in Table 1. However, the gas rate should
still converge to the setpoint whenever possible. In situations where it is not possible to attain
both setpoints, the deviations from the setpoints are determined by the tuning parameters.

Figure 15 displays the choke position and gas-lift rate throughout the simulation. Despite a
stationary deviation in the controlled variables for specific reference values, the controller converges
to an optimal stationary point that minimizes the objective function in the MPC. Toward the end
of the simulation, both inputs are saturated, and thus these setpoints are not feasible. Notably,
the actual choke position tracks the optimal desired choke position from the MPC, as the choke is
continuous in this scenario.

The mean choke move constraints, presented in section 6.6, impose limitations on the average
speed of the choke movement. This effect is clearly depicted in Figure 15, where the choke position
exhibits a staircase-like trajectory following from significant steps in the reference trajectory.

Figure 16 illustrates the bias, v(k), through the simulation. It is evident that the bias exhibits a
significant magnitude. However, an important observation is that the bias stabilizes at a steady-
state following a reference step, which is effectively compensated for through feedback.

54

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ga
s r

at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

350

400

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 14: Oil and gas rate measurements when using the continuous MPC with continuous choke
for control.

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

20

40

60

80

100

Ch
ok

e
po

sit
io

n
[%

]

Choke position

Choke position
Actual choke opening

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2000

4000

6000

8000

10000

Ga
s-

lif
t r

at
e

[m
3 /h

r]

Gas-lift rate

Gas-lift rate

Figure 15: Choke position and gas-lift rate when using the continuous MPC with continuous choke
for control.

55

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

−15000

−10000

−5000

0

5000

10000

15000

Bi
as
 [m

3 /h
r]

Gas rate bias

Gas rate bias

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

Bi
as
 [m

3 /h
r]

Oil rate bias

Oil rate bias

Figure 16: Bias when using the continuous MPC with continuous choke for control.

7.1.2 Step Choke

The previous subsection presented the performance of the continuous MPC when both inputs are
continuous. However, in the real system, the production choke is a discrete actuator with a step
size of 2%, as outlined in Section 3.1. This subsection presents a simulation of the system with the
discrete choke treated as continuous by the controller.

As the continuous MPC considers the manipulated variables as continuous, the discrete decisions
must be handled outside the optimization problem using additional logic. For this scenario, round-
ing with a deadband is used to determine the choke position. The desired choke position from the
MPC is rounded to the nearest 2% when it is ±1.6% from the actual choke position. This rounding
logic is implemented in the plant, with the MPC having no knowledge of it.

The performance of the continuous MPC with the step choke is depicted in Figure 17. The figure
shows that the controller can guide the controlled variables toward their set points, often with
rapid convergence and high accuracy. However, large oscillations are observed in several parts of
the simulation. Figure 18 illustrates the choke position and gas-lift rate throughout the simulation.
Oscillations in the choke for several periods of the simulation are observed, translating to the large
oscillations seen in the controlled variables. This is an expected outcome as the MPC is treating
the discrete choke as continuous. From Figure 19, it can be observed that the bias is also oscillating
in the same time periods.

56

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ga
s r

at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

350

400

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 17: Oil and gas rate measurements when using the continuous MPC with step choke for
control.

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

20

40

60

80

100

Ch
ok

e
po

sit
io

n
[%

]

Choke position

Choke position
Actual choke opening

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2000

4000

6000

8000

10000

Ga
s-

lif
t r

at
e

[m
3 /h

r]

Gas-lift rate

Gas-lift rate

Figure 18: Choke position and gas-lift rate when using the continuous MPC with step choke for
control.

57

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

−20000

−15000

−10000

−5000

0

5000

10000

15000

Bi
as
 [m

3 /h
r]

Gas rate bias

Gas rate bias

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

Bi
as
 [m

3 /h
r]

Oil rate bias

Oil rate bias

Figure 19: Bias when using the continuous MPC with step choke for control.

To better highlight the oscillating behavior, Figures 20 and 21 depicts a close-up during a period
of oscillations. In Figure 20, it is seen that the controlled variables deviate only slightly from
their setpoints. Despite employing the Soft MPC method, deviations within the deadzone are still
penalized to some extent, as evident in Figure 21, where the controller makes small adjustments
in the inputs to rectify these deviations.

However, due to the discrete nature of the choke and the implemented rounding logic with dead-
band, no movement is initiated in the choke until the desired choke position exceeds the deadband.
Consequently, the controller tries to continuously adjust the inputs to mitigate the deviations fur-
ther. The actual movement of the choke is thus delayed until the desired choke position shifts by
more than 1.6% from its current position, at which point the choke position rapidly increases by
2%. This causes a significantly larger response in the controlled variables than what was anticip-
ated by the MPC, resulting in substantial overshooting of the setpoints. To compensate for this
unexpected response, the controller must decrease the inputs.

Likewise, when the desired choke position decreases by more than 1.6% from the actual choke
position, the choke rapidly decreases by 2%, causing another large and unpredicted response,
thereby reinstating the initial problem for the MPC. This pattern continues due to the MPC’s
lack of knowledge regarding the discreteness of the choke and the external logic employed. The
resulting oscillations have a detrimental effect on the overall performance of the control system,
and can dramatically reduce the lifespan of the actuator.

Upon examination, it becomes evident that the oscillations primarily occur when the choke position
is below 50%. This observation can be further supported by referring to Figures 10 and 11, which
depict the steady-state responses of the controlled variables when applying steps to the choke.
Notably, the step response of the controlled variables is significantly more pronounced when the
choke position is less than 50%. Consequently, a 2% step in the choke position within this region
exerts a considerably greater impact on the controlled variables compared to when the choke is
almost fully open.

58

19000 19500 20000 20500 21000 21500
Time [s]

6200

6400

6600

6800

7000

7200

Ga
s r

at
e

[m
3 /h

r]

Gas rate measurements

Measured gas rate
Reference signal

19000 19500 20000 20500 21000 21500
Time [s]

205

210

215

220

225

230

235

240

245

Oi
l r

at
e

[m
3 /h

r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 20: Oscilliations in oil and gas rates when the continuous MPC is used to control the system
with step choke.

19000 19500 20000 20500 21000 21500
Time [s]

27

28

29

30

31

32

33

Ch
ok
e
po
sit
io
n
[%

]

Choke position

Choke position
Actual choke opening

19000 19500 20000 20500 21000 21500
Time [s]

1480

1500

1520

1540

1560

Ga
s-
lif
t r
at
e
[m

3 /h
r]

Gas-lift rate

Gas-lift rate

Figure 21: The continuous MPC treats the step choke as continuous, leading to oscillations in the
choke position and gas-lift rate.

59

7.2 MIMPC

In the previous section, the results were obtained by employing the continuous MPC which treats
the choke as continuous. This section presents the results obtained by utilizing the MIMPC for
control, which recognizes the discreteness of the choke and incorporates it into the control system.

Initially, the MIMPC is utilized to regulate the system with identical reference trajectories, as seen
in the previous scenarios, to allow for a direct comparison of the control approaches. Moreover, this
section showcases how the MIMPC utilizes the prediction model and the integrality constraints to
determine optimal inputs and takes advantage of re-optimization and plant feedback to achieve
precise control. Subsequently, fine-regulation of a single controlled variable is exhibited, which is
often conducted in practical applications. Lastly, the section demonstrates the MIMPC’s ability
to handle disturbances and the effect of the Soft MPC method.

7.2.1 MIMPC Performance

The performance of the MIMPC is illustrated in Figure 22. Remarkably, the MIMPC demonstrates
a striking similarity in performance to the continuous MPC when the choke was continuous, ex-
hibiting rapid convergence towards the setpoints in both scenarios. Stationary deviations are still
observed for the same time periods as seen earlier, as convergence to both setpoints is not always
feasible. It is worth noting that the deviations observed are slightly larger when employing the
MIMPC for control, as achieving accurate control with a discrete actuator poses greater challenges.

In contrast to the utilization of continuous MPC for controlling the step choke, the MIMPC
successfully eliminates oscillations. This achievement can be attributed to the MIMPC’s knowledge
of the discreteness of the choke. As a result, the MIMPC is able to make predictions with respect
to the discreteness and anticipate the substantial response observed in the previous subsection.

Figure 23 illustrates the choke position and the gas lift rate through the simulation. It can be
observed that the desired choke position from the MIMPC is integer, ±2%, which is due to the
incorporation of integrality constraints in the optimization problem. The actual choke position is
thus able to track the desired choke position and the jumpiness observed in Figure 21, when the
continuous MPC was used with the discrete choke, is not observed.

The bias, v(k), throughout the simulation is illustrated in Figure 24. It is evident from the figure
that the bias exhibits a considerable magnitude, due to modeling errors. As the step response
model used for predictions is a linear representation of a nonlinear system, the model fails to
capture the significant responses in the controlled variables that occur for instance when the choke
is opened from a nearly closed position. Nevertheless, the bias is effectively compensated for
through feedback, and the impact on performance is relatively minor.

60

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ga
s r

at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

350

400

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 22: Oil and gas rate measurements when using the MIMPC for control.

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

20

40

60

80

100

Ch
ok

e
po

sit
io

n
[%

]

Choke position

Choke position
Actual choke opening

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2000

4000

6000

8000

10000

Ga
s-

lif
t r

at
e

[m
3 /h

r]

Gas-lift rate

Gas-lift rate

Figure 23: Choke position and gas-lift rate when using the MIMPC for control.

61

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

−15000

−10000

−5000

0

5000

10000

15000

Bi
as
 [m

3 /h
r]

Gas rate bias

Gas rate bias

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

Bi
as
 [m

3 /h
r]

Oil rate bias

Oil rate bias

Figure 24: Bias when using the MIMPC for control.

7.2.2 MIMPC Predictions

The MIMPC employs the step-response model (5.2) to optimize future input moves and predict
the corresponding responses of the controlled variables. Figure 25 shows the MIMPC’s planned
input moves and predicted responses following a step in the reference trajectories. The white area
denotes the system’s historical behavior, while the gray area represents the MIMPC’s projected
future behavior. The two plots at the bottom of the figure showcase the optimal open-loop future
input moves, whereas the middle plots illustrate the future choke position and gas-lift rate. The
upper two plots illustrate the predicted responses of the oil rate and gas rate.

As evidenced by the figure, the controller plans to gradually open the choke to 90%, with a 2% choke
movement every timestep over a period of 25 timesteps. Additionally, the gas-lift rate is planned
to be increased throughout the control horizon. The implemented input-blocking, described in
Section 6.2, is evident in the planned gas-lift moves, with small blocks at the start of the horizon
and larger blocks towards the end. The predicted responses of the controlled variables reveal that
the oil rate is predicted to converge to a value slightly below the set point, while the gas rate
exhibits a larger deviation from the set point due to the prioritization of the oil rate.

62

Figure 25: The planned input moves and predicted response of the MIMPC when a step in the
reference trajectory is employed.

The MIMPC employs a receding horizon strategy. In this strategy, the first optimal input move
is executed, followed by re-optimization based on the latest measurements fed back from the
plant. This feedback mechanism enables the controller to adapt effectively to uncertainties, such
as modeling errors and external disturbances. Consequently, the predicted optimal moves at one
time step, may not necessarily remain optimal in subsequent time steps.

Figure 26 illustrates the actual evolution of the system following the step in the reference traject-
ories. A comparison between the actual evolution, seen in Figure 26, and the initially planned
evolution, seen in Figure 25, reveals a difference between the planned and actual evolution of the
system. It can be observed that both the choke position and the gas-lift rate exceed the initially
planned trajectories. However, when examining the measured oil rate and gas rate, it becomes
evident that both controlled variables were able to reach their setpoints, which is a much better
performance than what was initially anticipated.

This observation highlights the crucial role played by the feedback and re-optimization mechanism
in the MIMPC. By adapting to factors like modeling errors, the controller effectively ensures that
both setpoints are ultimately reached. This demonstrates the efficacy of the control system in
handling uncertainties and achieving the desired outcomes.

63

Figure 26: Evolution of the system and the actually implemented input moves by the MIMPC
after a step in the reference trajectory was employed.

7.2.3 Open-Loop vs. Closed-Loop

In MPC applications, it is typically desired to achieve some similarity between the open-loop
response and the closed-loop response. This similarity can indicate that the controller tuning and
the model accuracy are sufficient. Consequently, feedback control and re-optimization are mainly
focused on addressing minor discrepancies that may arise. Figure 27 and 28 provide a visual
representation of how the system would have behaved if the initially open-loop input moves, seen
in Figure 25, were implemented compared to the closed-loop performance. It is worth noting that
the choke position is in the region where large nonlinearities are not present, as established earlier.

1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [s]

4000

6000

8000

10000

12000

14000

16000

Ga
s r
at
e
[m

3 /h
r]

Gas rate measurements

Reference Gas rate
Closed Loop Gas rate
Open Loop Gas rate

1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [s]

200

220

240

260

280

300

320

340

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Reference Oil rate
Closed Loop Oil rate
Open Loop Oil rate

Figure 27: Oil and gas rate measurements: Open loop vs. closed loop.

64

1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [s]

40

50

60

70

80

90

100

Ch
ok
e
po
sit
io
n
[%

]

Choke position

Closed Loop Choke Position
Open Loop Choke Position

1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [s]

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ga
s-
lif
t r
at
e
[m

3 /h
r]

Gas-lift rate

Closed Loop Gas-lift Rate
Open Loop Gas-lift Rate

Figure 28: Choke position and gas-lift rate: Open loop vs. closed loop.

Figure 27 reveals that initially, the open-loop and closed-loop responses exhibit a similarity. How-
ever, as the simulation progresses, a deviation becomes apparent between the two. While the
open-loop response settles with a noticeable deviation from the setpoints, the closed-loop control
system recognizes that the initially planned input trajectories are insufficient for achieving precise
convergence to the setpoints.

Figure 28 demonstrates that the controller adjusts the inputs beyond the initial plan to address
deviations from the setpoints. The step response model utilized for predictions is a linear ap-
proximation of a nonlinear system. As a result, it is expected that the open-loop scenario fails
to precisely reach the setpoints due to inherent modeling errors. It is worth noting that the step
response model assumes a working point with a choke position of 50% open and a gas-lift rate of

7500m3

hr . Although the choke position initially remains relatively close to the working point, there
is a significant deviation in the gas-lift rate. As the choke moves further away from the working
point, the prediction model progressively diverges from the actual response, as depicted in Figure
11 and Figure 10. Consequently, the actual system response deviates from the MPC’s predictions.

While the prediction model may not be perfect, it nonetheless offers valuable insights into the
dynamics of the system. This empowers the closed-loop control system to effectively and accurately
achieve the desired setpoints through feedback and re-optimization, leveraging the information
obtained from the plant.

7.2.4 MIMPC Fine Regulation

The previous findings highlighted a deviation in both controlled variables for certain setpoint com-
binations. This occurs because the setpoints are not simultaneously attainable for both variables,
as the manipulated variables impact both of them. Typically, predefined tuning parameters are
used for the controller when optimizing the objective function. However, in practical applications,
there may be a need for fine regulation of a single controlled variable.

In Equinor, there has been a historical focus on fine-regulating the oil rate. In this context, the
gas rate setpoint is often set to the measured gas rate at that particular timestep. Alternatively,
the penalty for the deviation of the gas rate can be turned off, resulting in the same outcome. It is
important to note that the Gurobi solver, utilized in the MIMPC algorithm, is capable of handling
zero weights in the objective function. Therefore, to turn off the penalty for gas rate deviation,

65

the corresponding weighting parameters can be set to zero: Q̄gas = Sgas = sgas = 0.

Figure 29 provides insight into the impact of turning off the penalty for gas rate deviation. Initially,
both controlled variables exhibit a stationary deviation. The oil rate falls slightly below the
setpoint, while the gas rate shows a larger deviation above its setpoint. Figure 30 demonstrates
that both the choke position and the gas-lift rate remain constant, despite the deviation in the
controlled variables. Notably, adjusting the choke position would lead to an increase in the oil
rate, resulting in a smaller objective function value. However, it would also cause the gas rate to
rise, thereby increasing the objective function value. The same trade-off applies to adjusting the
gas-lift rate. As a result, the controller stabilizes at a stationary point that effectively minimizes
the overall objective function.

At 3000s, the penalty for gas rate deviation is turned off. Consequently, the gas rate deviation no
longer affects the objective function value. As a result, the controller can solely focus on minimizing
the oil rate deviation without considering the gas rate. This allows for precise regulation of the
oil rate, leading to perfect convergence towards the setpoint. Figure 30 illustrates how the gas-lift
rate is used for the fine regulation of the oil rate.

0 2000 4000 6000 8000 10000 12000
Time [s]

8100

8150

8200

8250

8300

8350

8400

8450

8500

Ga
s r
at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 2000 4000 6000 8000 10000 12000
Time [s]

260

261

262

263

264

265

266

267

268

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 29: Fine regulation of the oil rate, turning off penalization of the gas rate deviation.

66

0 2000 4000 6000 8000 10000 12000
Time [s]

38.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

Ch
ok
e
po

sit
io
n
[%

]

Choke position

Choke position
Actual choke opening

0 2000 4000 6000 8000 10000 12000
Time [s]

1625

1650

1675

1700

1725

1750

1775

Ga
s-
lif
t r
at
e
[m

3 /h
r]

Gas-lift rate

Gas-lift rate

Figure 30: Gas-lift rate used to fine regulate the oil rate when the penalization of the gas rate
deviation is turned off.

7.2.5 Disturbance

The robustness of the MIMPC to external disturbances is a crucial aspect of its practical applic-
ability. In Figure 31, the controller’s ability to handle a drop in the reservoir pressure of 3 Bar is
presented. The MIMPC responds to the disturbance by increasing the gas-lift rate, as evident in
Figure 32, and effectively compensates for the pressure drop, as the oil rate converges back to the
setpoint. This illustrates the MIMPC’s capability to maintain stability in the face of disturbances.
Figure 33 depicts the drop in the pressure in the reservoir.

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

6250

6500

6750

7000

7250

7500

7750

8000

Ga
s r
at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

225

230

235

240

245

250

255

260

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 31: Oil and gas rate measurements when a pressure drop of 3 Bar is imposed on the
reservoir.

67

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

38.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

Ch
ok
e
po
sit
io
n
[%

]

Choke position

Choke position
Actual choke opening

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

400

600

800

1000

1200

Ga
s-
lif
t r
at
e
[m

3 /h
r]

Gas-lift rate

Gas-lift rate

Figure 32: Gas-lift rate used to compensate for the 3 Bar pressure drop in the reservoir.

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

185

186

187

188

189

190

191

192

Pr
es
su
re
 [B

ar
]

Disturbance

Reservoir pressure

Figure 33: Disturbance imposed in the system. 3 Bar pressure drop in the reservoir.

7.2.6 MIMPC Performance Without Soft MPC

The Soft MPC method, introduced in Section 6.4, addresses the issue of input oscillations result-
ing from discrepancies between the plant model and the actual system. Figure 34 showcases the
performance of the MIMPC when the Soft MPC method is not utilized. Overall, the controller per-
forms well, even in the absence of Soft MPC. However, as observed in the figure, small oscillations
are present during certain time periods. Figure 35 illustrates the behavior of the choke position
and the gas-lift rate. It is clear that the oscillations in the controlled variables are caused by the
oscillatory behavior of the choke. This effect is particularly pronounced when the choke is nearly
closed, which aligns with the findings depicted in Figure 11 and Figure 10. As seen earlier, when
the choke is nearly closed, the controlled variables exhibit significantly larger responses compared
to what the prediction model is based on. This discrepancy indicates that the oscillations arise
from a mismatch between the prediction model and the actual behavior of the system.

68

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ga
s r

at
e
[m

3 /h
r]

Gas rate measurements

Measured gas rate
Reference signal

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

50

100

150

200

250

300

350

400

Oi
l r
at
e
[m

3 /h
r]

Oil rate measurements

Measured oil rate
Reference signal

Figure 34: Oil and gas rate measurements when using the MIMPC without the Soft MPC method
for control.

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

20

40

60

80

100

Ch
ok

e
po

sit
io

n
[%

]

Choke position

Choke position
Actual choke opening

0 10000 20000 30000 40000 50000 60000 70000
Time [s]

0

2000

4000

6000

8000

10000

Ga
s-

lif
t r

at
e

[m
3 /h

r]

Gas-lift rate

Gas-lift rate

Figure 35: Choke position and gas-lift rate when using the MIMPC without the Soft MPC method
for control.

To shed light on the causes of these oscillations, the following figures provide insight into the
predictions made by the MIMPC during a period when oscillations occur (approximately at 48000
seconds). The figures display the same simulation as above, with a specific focus on the observed
oscillations. Figure 36 clearly illustrates slight deviations of both the oil rate and gas rate from
their setpoints. As a result, the MIMPC, based on the optimization problem, determines a 2%
adjustment in the choke position to achieve a more optimal outcome. This adjustment is visible
in the figure, and the predicted responses of the controlled variables are represented by the red
line in the upper two plots. It can be observed that the predicted oil rate approaches the setpoint

69

more closely while the steady-state gas rate remains relatively unchanged.

Figure 36: Planned input moves and predicted response of the MIMPC when the Soft MPC method
is not used.

Moving to Figure 37, it is evident that the actual response, particularly in the oil rate, exceeds
the MIMPC’s prediction, resulting in an overshoot beyond the set point. Consequently, based on
feedback from the plant, the MIMPC determines that a −2% adjustment back to the previous
choke position would lead to a more optimal outcome. From the figure, it becomes apparent that
the MIMPC predicts the oil rate will ultimately approach the setpoint closely, slightly below it.

Figure 37: Mismatch between the predicted response and the actual response causes the controller
to move the choke back to the previous position, causing oscillations in the controlled variables.

70

From Figure 38, it becomes evident once again that the actual response significantly deviates from
the prediction done by the controller, and the controlled variables’ actual responses do not align
with the anticipated behavior.

Figure 38: Actual response again deviates from the predicted response due to plant model mis-
match.

This case underscores the detrimental impact of a significant plant model mismatch on controller
performance. As observed in this scenario, when faced with a substantial plant model mismatch,
the controller fails to predict the actual responses of the system accurately.

As previously demonstrated, the Soft MPC method proves highly effective in mitigating oscillations
caused by plant model mismatch. By reducing the penalties associated with small deviations
from the setpoint, the Soft MPC method enables the controller to achieve a small, stable, and
stationary deviation instead of oscillating around the setpoint. This not only leads to smoother
and more consistent control performance but also safeguards the actuator’s lifespan by preventing
excessive wear and tear. Ultimately, the Soft MPC method significantly enhances the overall
system response.

71

72

8 Discussion

This chapter provides a discussion of the results obtained in this study. The research question
posed in this thesis is repeated here:

”How can a discrete actuator be effectively integrated into an MPC problem to enable the con-
troller to account for the inherent discreteness of the actuator? Furthermore, can this integration
potentially result in enhanced performance compared to traditional continuous control?”

In Chapter 6, the implementation of the MIMPC was presented, highlighting how this control
strategy incorporates integer decision variables into the MPC optimization problem. This provided
the controller with knowledge of the discrete nature of the choke. In Chapter 7, the outcomes of
applying the MIMPC for control were presented, along with the results obtained from using the
continuous MPC to control the discrete choke. Additionally, a benchmark result was provided,
where the step choke was replaced by a continuous choke. This benchmark result served to highlight
the challenges of continuous control of a discrete actuator and to establish a baseline for evaluating
the performance of the MIMPC.

The findings from applying continuous MPC to control the step choke were presented in Section
7.1.2. These results highlighted the challenges arising from the lack of knowledge about the discrete
nature of the choke. In the presence of small deviations in the controlled variables, the controller
attempted to make small adjustments to the choke in order to correct these deviations. However,
due to the external rounding logic that was employed, the choke remained stationary until the
desired choke position exceeded the deadband. This resulted in a sudden and unexpected response
in the controlled variables once the deadband was surpassed, prompting the controller to readjust
the choke back to its original position. Consequently, the oscillatory behavior in the system was
observed as a consequence of the controller’s lack of knowledge of the discrete nature of the choke.

Section 7.2.1 presented the results obtained from utilizing the MIMPC for control. A key distinction
between the MIMPC and the continuous MPC is the incorporation of integer decision variables
into the optimization problem, which grants the MIMPC knowledge of the discrete nature of the
choke. This awareness enables the controller to recognize that the choke can only move in discrete
steps. Consequently, the MIMPC can more accurately predict the significant response resulting
from the step choke movement and effectively avoid large overshoots observed when using the
continuous MPC. Instead, the MIMPC can utilize gas-lift rate adjustments to fine-regulate the
controlled variables when possible. Notably, the presence of oscillations in the inputs and outputs
is the primary performance difference between the continuous MPC and the MIMPC.

Comparing the average deviations of the controlled variables, it is interesting to note that the con-
tinuous MPC achieves smaller average deviations compared to the MIMPC. As illustrated in Figure
17, the continuous MPC demonstrates the ability to closely approach the setpoints, even with a
discrete choke. However, the presence of oscillations significantly impacts its performance. Despite
having smaller average deviations from the setpoints compared to the MIMPC, the continuous
MPC’s oscillatory behavior strongly affects its effectiveness.

In contrast, the MIMPC takes a different approach. By incorporating knowledge of the discrete-
ness of the choke, the MIMPC recognizes that the choke can only move in discrete steps. As a
result, the controller recognizes the large response from a step in the choke and thus settles for a
small deviation rather than overshooting significantly due to the step size. Minimizing actuator
oscillations is crucial in real-world applications as it places a substantial strain on the actuators
and reduces their lifespan. Therefore, a small deviation from the setpoint is far preferable to
oscillations around the setpoints.

Figure 14 displays the performance of the continuous MPC when a continuous choke is used. This
serves as a benchmark to showcase the expected performance in the ”best case” scenario. Com-
paring this benchmark with the results obtained from the MIMPC (Figure 22) and the continuous
MPC with a discrete choke (Figure 17) allows for evaluating the effectiveness of the MIMPC as a
control method for systems with discrete actuators.

Interestingly, the performance of the MIMPC closely resembles the benchmark simulation, indic-

73

ating that the MIMPC is well-suited for systems with discrete actuators. The MIMPC exhibits
similar characteristics to the benchmark by effectively utilizing the knowledge of the choke’s dis-
creteness and providing accurate control without excessive oscillations. This suggests that the
MIMPC is a favorable control method when discrete actuators are present in the system.

In this study, the continuous MPC with a discrete choke employed a simple external logic of
rounding the choke position with a deadband. It is worth discussing that alternative external
logic or heuristics could potentially lead to improved performance. Equinor, for example, utilizes
additional techniques to achieve excellent performance, even when treating the discrete actuator as
continuous in the optimization problem. Fine-tuning and adjustments to the weighting parameters
may also enhance performance.

However, the noteworthy aspect of the findings in this study is the remarkable performance of
the MIMPC without relying on external logic or heuristics. The MIMPC incorporates the dis-
creteness of the actuator directly into the optimization problem, enabling it to achieve optimal
control. As highlighted in Section 2.2.2, rounding a continuous optimization solution to obtain an
integer solution is generally not recommended. By including the discreteness of the actuator in
the optimization problem, the MIMPC is able to deliver superior control performance compared
to the continuous MPC.

Additionally, the MIMPC demonstrates a high level of robustness. Despite the presence of signific-
ant modeling errors, as a linear step response model is used to predict the behavior of a nonlinear
system, the MIMPC demonstrates good performance. The compensation for these modeling er-
rors is achieved through feedback control, allowing the MIMPC to handle the system dynamics
and achieve satisfactory control effectively. Furthermore, the MIMPC exhibits robustness in the
face of external disturbances. As illustrated in Figure 31, the MIMPC demonstrates its ability to
effectively handle and mitigate the impact of external disturbances on the system. Overall, these
findings emphasize the robustness of the MIMPC, showcasing its capability to handle significant
modeling errors and external disturbances while delivering satisfactory control performance

From Figure 34, it is evident that the performance of the MIMPC without the Soft MPC method
exhibits some oscillations in the system caused by plant model mismatch. It is important to
differentiate these oscillations, caused by plant model mismatch, from those observed when using
the continuous MPC, caused by continuous control of a discrete actuator. To address the issue of
plant model mismatch while still utilizing step response models as prediction models, one potential
solution is the implementation of Gain-scheduling [58]. By incorporating different step response
models based on the operating points of the manipulated variables, the prediction model can be
enhanced to be more accurate within the region surrounding the operating points. This approach
has the potential to reduce plant model mismatch and improve system performance. By utilizing
a more accurate prediction model, the MIMPC can be able to operate closer to the setpoints,
possibly achieving improved control performance.

Although the MIMPC demonstrates good performance, it is important to acknowledge the addi-
tional computational complexity associated with mixed integer programming. Figure 39 provides
insight into the computational time per iteration for the MIMPC and the continuous MPC. Not-
ably, the computational time for the MIMPC is significantly longer compared to the continuous
MPC. Furthermore, large spikes in computational time are observed in the case of the MIMPC,
highlighting a critical aspect that requires careful consideration when utilizing integer programming
in the optimization problem.

As established in Section 2.2, despite extensive research, no polynomial-time algorithm has been
found for solving mixed integer programs to optimality. Figure 39 provides insight into the com-
putational time per iteration for MIMPC and the continuous MPC. Notably, the computational
time for the MIMPC is significantly longer compared to the continuous MPC. Furthermore, spikes
in computational time are observed in the case of the MIMPC, highlighting a critical aspect that
requires careful consideration when utilizing integer programming in the optimization problem.

The increased computational time of the MIMPC is primarily attributed to the need to solve mixed-
integer optimization problems, which are inherently more computationally demanding compared
to continuous optimization problems. These challenges emphasize the importance of assessing

74

the trade-off between control performance and computational efficiency when implementing the
MIMPC approach. Efforts should be directed towards optimizing the computational aspects of the
MIMPC, such as exploring improvements in the MPC algorithm and considering problem-specific
simplifications.

0 1000 2000 3000 4000 5000 6000 7000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m
e
[s
]

Computational Time
Continuous MPC - Continuous Choke
Continuous MPC - Discrete Choke
MIMPC - Discrete Choke

Figure 39: Computational time per iteration

It should be noted that the efficiency of the control algorithm has not been a focus in this study.
There exist multiple techniques to improve the computational time, such as exploiting problem
structure, reducing the number of blocks in the input blocking technique, or using incidence point
techniques to evaluate constraints selectively. While these techniques have the potential to enhance
efficiency, it is essential to consider the computational complexity associated with integer program-
ming carefully. The current theory and algorithms in integer programming still present challenges
in terms of computational requirements. On the other hand, as computer hardware becomes faster
and mixed-integer optimization techniques become more advanced, it becomes increasingly possible
to solve mathematical programming problems in real-time [38].

75

76

9 Conclusion And Further Work

In conclusion, this master thesis addresses the limitations of traditional continuous MPC ap-
proaches in managing non-continuous actuators, such as step chokes commonly found in the oil
and gas industry. The proposed MIMPC method directly incorporates the discrete nature of the
actuators into the optimization problem, resulting in improved control performance.

The thesis demonstrated that using rounding techniques in continuous optimization to handle dis-
crete actuators does not provide optimal outcomes. Instead, the adoption of integer programming
techniques in the MIMPC framework proves to be more effective. By introducing integer decision
variables and leveraging mixed integer programming solvers, the MIMPC approach accurately ac-
counts for the discrete steps in the choke and improves stability by eliminating the oscillations seen
when using continuous control of discrete actuators.

Furthermore, the study explored the Soft MPC method as a solution to mitigate oscillations
resulting from plant model mismatch. By establishing a deadzone around the setpoints, the Soft
MPC method reduces penalties for small deviations, leading to improved stability and robustness
of the control system.

The research findings underscored the superior performance of the MIMPC approach compared
to traditional continuous MPC methods when handling non-continuous actuators. By accurately
capturing the discrete behavior of the choke, MIMPC achieved improved control precision and
stability. However, the inclusion of integer decision variables introduced additional computational
complexity, which should be carefully evaluated in terms of practical feasibility.

Overall, this thesis provided valuable insights into the potential application of MIMPC in the oil
and gas industry, offering a promising solution for improving control strategies and maximizing
operational efficiency. The research contributes to advancing the field of control systems in the oil
and gas sector, demonstrating the effectiveness of MIMPC and addressing plant model mismatch
challenges.

9.1 Further Work

Although this study has demonstrated the benefits of utilizing MIMPC for managing non-continuous
actuators in the oil and gas industry, there are several areas where the full potential of Mixed Integer
Programming can be further explored. The following areas of further work present opportunities
for utilizing MIP and MIMPC in various aspects of control and optimization in the oil and gas
sector.

Control of Multiple Wells:
One potential avenue for future research is to extend the MIMPC approach to control multiple wells
simultaneously. This would involve optimizing the operation of multiple wells, including turning
them on or off based on real-time conditions. By considering the discrete nature of well opera-
tion, MIMPC could offer more efficient and coordinated control strategies, leading to improved
production and resource management.

Power Usage Minimization:
Energy consumption is a significant concern in the oil and gas industry. MIMPC can be employed
to minimize power usage by optimizing the operation of energy-consuming components, such as
compressors, pumps, etc. By formulating the problem as a mixed integer program and integrating
power consumption constraints, it becomes possible to find the optimal operating strategy that
minimizes energy consumption while meeting production and process requirements.

77

Scheduling Optimization:
MIP and MIMPC can also be applied to scheduling optimization in the oil and gas industry. This
includes optimizing the sequence and timing of various operations, such as maintenance activities,
well interventions, and production schedules. By considering the discrete decisions involved in
scheduling, MIP-based approaches can help minimize downtime, reduce costs, and maximize overall
operational efficiency.

These are just a few examples of the potential applications of MIP and MIMPC in the oil and gas
industry. The flexibility and capabilities offered by MIP techniques open up numerous opportunit-
ies for advanced control and optimization strategies. Further research in these areas can contribute
to enhancing the efficiency, sustainability, and profitability of oil and gas operations, paving the
way for improved decision-making and operational excellence.

78

Bibliography

[1] Simen Bergsvik. Mixed integer mpc. 2022.

[2] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2nd edition, 2006.

[3] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

[4] Fields and platforms. https://www.equinor.com/energy/fields-and-platforms. Accessed: May 9,
2023.

[5] Oseberg. https://factpages.npd.no/pbl/field jpgs/43625 Oseberg.jpg. Accessed: May 9, 2023.

[6] Lars Imsland, Bjarne A Foss, and Gisle Otto Eikrem. State feedback control of a class of
positive systems: Application to gas-lift stabilization. In 2003 European Control Conference
(ECC), pages 2499–2504. IEEE, 2003.

[7] Guru Prasath and John Bagterp Jørgensen. Soft constraints for robust mpc of uncertain
systems. IFAC Proceedings Volumes, 42(11):225–230, 2009.

[8] Mohammad H Moradi. Predictive control with constraints, jm maciejowski; pearson education
limited, prentice hall, london, 2002, pp. ix+ 331, price£ 35.99, isbn 0-201-39823-0, 2003.

[9] Stig Strand and Jan Richard Sagli. Mpc in statoil–advantages with in-house technology. IFAC
Proceedings Volumes, 37(1):97–103, 2004.

[10] Kenneth Lange. Optimization, volume 95. Springer Science & Business Media, 2013.

[11] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization, volume 75. John
Wiley & Sons, 2013.

[12] Bjarne Foss and Tor Aksel N Heirung. Merging optimization and control. Lecture Notes, 2013.

[13] George Bernard Dantzig and Mukund N Thapa. Linear programming: Theory and extensions,
volume 2. Springer, 2003.

[14] Marcelo Lopes de Lima, Eduardo Camponogara, Mario CMM de Campos, and Luis Kin
Miyatake. Automatic control of flow gathering networks: A mixed-integer receding horizon
control applied to an onshore oilfield. Control Engineering Practice, 86, 2019.

[15] Alain Billionnet and Éric Soutif. Using a mixed integer programming tool for solving the 0–1
quadratic knapsack problem. INFORMS Journal on Computing, 16(2), 2004.

[16] Jens Clausen. Branch and bound algorithms-principles and examples. Department of Com-
puter Science, University of Copenhagen, pages 1–30, 1999.

[17] Sirikarn Chansombat, Pupong Pongcharoen, and Christian Hicks. A mixed-integer linear
programming model for integrated production and preventive maintenance scheduling in the
capital goods industry. International Journal of Production Research, 57(1):61–82, 2019.

[18] Ravindran Kannan and Clyde L Monma. On the computational complexity of integer pro-
gramming problems. In Optimization and Operations Research: Proceedings of a Workshop
Held at the University of Bonn, October 2–8, 1977, pages 161–172. Springer, 1978.

[19] Alberto Del Pia, Santanu S Dey, and Marco Molinaro. Mixed-integer quadratic programming
is in np. Mathematical Programming, 162:225–240, 2017.

[20] Der-San Chen, Robert G Batson, and Yu Dang. Applied integer programming: modeling and
solution. John Wiley & Sons, 2011.

[21] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

[22] Gurobi optimization. https://www.gurobi.com/solutions/gurobi-optimizer/. Accessed: 2023-
02-10.

79

https://www.equinor.com/energy/fields-and-platforms
https://factpages.npd.no/pbl/field_jpgs/43625_Oseberg.jpg
https://www.gurobi.com/solutions/gurobi-optimizer/

[23] Cplex. https://www.ibm.com/products/ilog-cplex-optimization-studio?mhsrc=ibmsearch a&
amp;mhq=cplex. Accessed: 2023-04-21.

[24] Xpress. https://www.fico.com/en/products/fico-xpress-optimization. Accessed: 2023-04-21.

[25] Lars Magnus Hvattum, Arne Løkketangen, and Fred Glover. Comparisons of commercial mip
solvers and an adaptive memory (tabu search) procedure for a class of 0–1 integer programming
problems. Algorithmic Operations Research, 7(1):13–20, 2012.

[26] Cbc. https://coin-or.github.io/Cbc/intro.html. Accessed: 2023-04-21.

[27] Glpk. https://www.gnu.org/software/glpk/. Accessed: 2023-04-21.

[28] Ipopt. https://coin-or.github.io/Ipopt/. Accessed: 2023-04-21.

[29] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

[30] Morten Hovd. Lecture notes for the course advanced control of industrial processes. Depart-
ment of Engineering Cybernetics, 2009.

[31] Xingyu Zhou, Heran Shen, Zejiang Wang, and Junmin Wang. Individualizable vehicle lane
keeping assistance system design: A linear-programming-based model predictive control ap-
proach. IFAC-PapersOnLine, 55(37):518–523, 2022.

[32] Dzordzoenyenye K Minde Kufoalor. High-performance industrial embedded model predictive
control: Efficient implementation of step response models and fast solvers. 2016.

[33] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. Springer, 2017.

[34] Dale E Seborg, Thomas F Edgar, Duncan A Mellichamp, and Francis J Doyle III. Process
dynamics and control. John Wiley & Sons, 2016.

[35] DKM Kufoalor, L Imsland, and TA Johansen. Efficient implementation of step response
prediction models for embedded model predictive control. IFAC-PapersOnLine, 48(23):197–
204, 2015.

[36] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and
practice—a survey. Automatica, 25(3):335–348, 1989.

[37] Robert D McAllister and James B Rawlings. Advances in mixed-integer model predictive
control. In 2022 American Control Conference (ACC), pages 364–369. IEEE, 2022.

[38] Michael J Risbeck. Mixed-integer model predictive control with applications to building energy
systems. The University of Wisconsin-Madison, 2018.

[39] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, 1999.

[40] James B Rawlings and Michael J Risbeck. Model predictive control with discrete actuators:
Theory and application. Automatica, 78:258–265, 2017.

[41] Stefano Di Cairano, WP Maurice H Heemels, Mircea Lazar, and Alberto Bemporad. Stabil-
izing dynamic controllers for hybrid systems: a hybrid control lyapunov function approach.
IEEE Transactions on Automatic Control, 59(10):2629–2643, 2014.

[42] David Mayne. Robust and stochastic model predictive control: Are we going in the right
direction? Annual Reviews in Control, 41:184–192, 2016.

[43] Pedro Hespanhol, Rien Quirynen, and Stefano Di Cairano. A structure exploiting branch-and-
bound algorithm for mixed-integer model predictive control. In 2019 18th European Control
Conference (ECC), pages 2763–2768. IEEE, 2019.

[44] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433–2448, 2020.

80

https://www.ibm.com/products/ilog-cplex-optimization-studio?mhsrc=ibmsearch_a&mhq=cplex
https://www.ibm.com/products/ilog-cplex-optimization-studio?mhsrc=ibmsearch_a&mhq=cplex
https://www.fico.com/en/products/fico-xpress-optimization
https://coin-or.github.io/Cbc/intro.html
https://www.gnu.org/software/glpk/
https://coin-or.github.io/Ipopt/

[45] H̊avard Devold. Oil and gas production handbook. An introduction to oil and gas production,
transport, refining and petrochemical industry, page 162, 2013.

[46] J Lea, H Nickens, and M Wells. Gas lift. Gas Well Deliquification (2 ed.), Gulf Professional
Publishing, page 333, 2008.

[47] Johan Åkesson, K-E Årzén, Magnus Gäfvert, Tove Bergdahl, and Hubertus Tummescheit.
Modeling and optimization with optimica and jmodelica. org—languages and tools for solving
large-scale dynamic optimization problems. Computers & Chemical Engineering, 34(11):1737–
1749, 2010.

[48] Modelica association. https://modelica.org/publications/newsletters/2010-1/index html#item8.
Accessed: April 16, 2023.

[49] Functional mock-up interface. https://fmi-standard.org/. Accessed: April 16, 2023.

[50] Pyfmi. https://jmodelica.org/pyfmi/. Accessed: April 16, 2023.

[51] N Lawrence Ricker. Use of quadratic programming for constrained internal model control.
Industrial & Engineering Chemistry Process Design and Development, 24(4):925–936, 1985.

[52] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control technology.
Control engineering practice, 11(7):733–764, 2003.

[53] Gurobi optimization integer tolerance. https://support.gurobi.com/hc/en-us/articles/
360012237872-Why-does-Gurobi-sometimes-return-non-integral-values-for-integer-variables-.
Accessed: 2023-05-10.

[54] Hisham Ben Mahmud, Van Hong Leong, and Yuli Lestariono. Sand production: A smart
control framework for risk mitigation. Petroleum, 6(1):1–13, 2020.

[55] Charles R Cutler and Brian L Ramaker. Dynamic matrix control - a computer control al-
gorithm. In joint automatic control conference, number 17, page 72, 1980.

[56] Chao-Ming Ying and Babu Joseph. Performance and stability analysis of lp-mpc and qp-mpc
cascade control systems. AIChE Journal, 45(7):1521–1534, 1999.

[57] Glauce De Souza, Darci Odloak, and Antônio C Zanin. Real time optimization (rto) with
model predictive control (mpc). Computers & Chemical Engineering, 34(12):1999–2006, 2010.

[58] Wilson J Rugh and Jeff S Shamma. Research on gain scheduling. Automatica, 36(10):1401–
1425, 2000.

81

https://modelica.org/publications/newsletters/2010-1/index_html#item8
https://fmi-standard.org/
https://jmodelica.org/pyfmi/
https://support.gurobi.com/hc/en-us/articles/360012237872-Why-does-Gurobi-sometimes-return-non-integral-values-for-integer-variables-
https://support.gurobi.com/hc/en-us/articles/360012237872-Why-does-Gurobi-sometimes-return-non-integral-values-for-integer-variables-

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Introduction
	Motivation & Background
	Objectives
	Outline

	Theory
	Optimization
	Mathematical Optimization
	Mathematical Formulation
	Optimality Conditions
	Convexity
	Linear Programming
	Quadratic Programming

	Mixed Integer Optimization
	Discrete Optimization
	Mixed Integer Linear Programming
	Mixed Integer Quadratic Programming
	Mixed Integer Nonlinear Programming
	Optimality and Relaxation
	Branch & Bound
	Cutting Planes
	Branch & Cut
	MIP Solvers

	Model Predictive Control
	Constrained Model Predictive Control
	Optimal Control
	Linear MPC
	Step Response Model

	Mixed Integer Model Predictive Control
	Stability
	Robustness
	Computation

	System Description
	Gas-lifted Oil Well System Description
	Oil And Gas Production
	Gas-lifted Oil Well

	System Implementation
	Functional Mockup Interface
	System Simulation

	Prediction Model
	Step Response Modelling
	Step Response Model Generation

	MPC Implementation
	SISO MPC Problem Formulation
	MIMO MPC Problem Formulation
	MPC Algorithm
	QP Solver

	Mixed Integer MPC Implementation
	Integer Decision Variables
	Input Blocking
	Bias Filtering
	Soft MPC
	Oscilliation constraints
	Mean Choke Move
	Real Time Optimization
	Ideal MVs

	Results
	Continuous MPC
	Continuous Choke
	Step Choke

	MIMPC
	MIMPC Performance
	MIMPC Predictions
	Open-Loop vs. Closed-Loop
	MIMPC Fine Regulation
	Disturbance
	MIMPC Performance Without Soft MPC

	Discussion
	Conclusion And Further Work
	Further Work

	Bibliography

