
A - GITHUB REPOSITORY

The SystemVerilog code for CV32E40X core with 2-bit branch predictor unit and
Python scripts used to run the simulation, synthesis, and extract and analyze data
can be seen in the following GitHub Repository:

Github repository link

• https://github.com/Giorgi-Solo/MasterThesis/tree/master

The repository’s content has also been submitted to NTNU Insperra as a .zip file.
When the users clone this directory, they MUST clone it RECURSIVELY.

The rest of Appendix A explains the repository structure and gives the curious
readers guidelines about setting up the simulation/synthesis environment, run-
ning the branch predictor model developed for the specialization project, simulat-
ing/synthesizing core, and extracting and analyzing simulation/synthesis data.

In order to simulate, synthesize, automatic place and routing, and manual place
and routing the user needs to have access to the following tools and technology
library:

• Simulation - QuestaSim

• Synthesis - Cadence Genus

• Automatic Place-and-route++ - Cadence Innovus

• Manual Place-and-route - Cadence Virtuoso

• STM 28nm technology library

.1 Structure of Repository

MasterThesis repository consists of a README file, and two folders - Master and
Workplace.

48



.1.1 Master

The folder contains another GitHub repository named CV32E40X (link to the
repository - https://github.com/Giorgi-Solo/cv32e40x). The CV32E40X reposi-
tory is forked from openHW group’s repository (the baseline core - without branch
predictor). I implemented the 2-bit branch predictor unit with 8 cachelines in the
core from the forked repository. Figure .1.1 displays the fraction of the RTL mod-
ule tree which implements a 2-bit branch predictor and misprediction recovery
unit.

Figure .1.1: Code Tree of CV32E40X Core with 2-bit Branch Predictor

49



.1.2 Workplace

The folder contains the following Python scripts:

• logParser.py - Implements branch predictor model;

• sim.py - Simulates 128 core versions. The difference between each of the
versions is the cache size. The script also extracts information about the
maximum number of valid entries in the cache during the simulation, the
number of encountered branch instructions, the number of predictions, and
the number of correct and incorrect predictions (btb_statistics). Finally,
the script runs the test program on each of the 128 versions of the core and
extracts the UVM log file;

• sim_analyzer.py - Extracts information about the number of cycles required
for each of the cores to finish the test program, clock cycle per instruction
(CPI), number of valid entries in the cache, number of branch instructions,
number of correct/incorrect predictions, and number of branch predictions.
The script also calculates the CPI improvement, what fraction of the cache
used by the predictor is, and what fraction of the predictions were correc-
t/incorrect.

• sim_data_analyzer.py - The script analyzes simulation data extracted by
sim_analyzer.py script and generates graphs used in chapter 4 (figures 4.1.2
- 4.1.5).

• synth.py - Synthesizes 128 core versions. The difference between each of the
versions is the cache size. The script also extracts synthesis reports about
area usage and power consumption.

• syn_analyzer.py - The script parses the synthesis reports and extracts in-
formation about cell area, net area, total area, total power, and power used
by the registers. The script also calculates what fraction of total power is
used by the registers

• syn_data_analyzer - The script analyzes synthesis data extracted by syn_analyzer.py
and generates graphs used in chapter 4 (figures 4.2.1 - 4.2.2).

• show_log.py - The script displays information about errors and warnings
encountered while running the previous six Python scripts

Workplace contains two folders:

• simulations - The folder stores all the simulation data extracted by sim.py
and sim_analyzer.py. The folder stored all the synthesis report and synthesis
data extracted by synth.py and syn_analyzer.py. The folder also contains a
makefile used to simulate or synthesize the core.

• tcl - Contains .tcl codes that need to be added to .tcl scripts in the synthesis
environment (explained later).

Finally, the workplace contains a makefile that is able to clone simulation and
synthesis environments, run all the mentioned Python scripts, and erase generated
logs.

50



.2 Running Model
In order to run the model, first, the user needs to clone the MasterThesis reposi-
tory from the GitHub Repository Link, presented at the beginning of the appendix.

Next, the user needs to run a makefile target named "model" from the workplace
directory. The target contains the following two commands:

• @echo "Running Model of the core th Predictor" - prints the message into
the console.

• @python3 logParser.py - runs logParser.py script.

For more information about the output generated by logParser.py, refer to the
specialization project report[1].

.3 Setting up Simulation, Simulating the Core, An-
alyzing Simulation Data

.3.1 Setting up Simulation

In order to simulate the core, the users need to clone the simulation/verification
environment developed by openHW group. The simulation environment can be
cloned from the following Github Repository - https://github.com/openhwgroup/core-
v-verif. This repository contains a folder Core-V-Verif which represents the veri-
fication environment. More information about setting up the environment can be
found in the article "CORE-V-VERIF Quick Start Guide" provided by openHW
Group[20].

Core-V-Verif can be cloned by running a makefile target named clone_sim_env
from the workplace directory. The target contains the following two commands:

• @echo "Simulation/Verification environment is being cloned from openhw-
group github public repository" - prints the message into the console.

• @cd ../ && git clone https://github.com/openhwgroup/core-v-verif.git - clones
Core-V-Verif and ensures that Workplace, Master, and Core-V-Verif are at
the same level in the directory tree.

.3.2 Simulating the Core and Analyze Simulation Data

In order to simulate the core, the users need to run a makefile target named sim
from the workplace directory. The target contains the following five commands:

• @echo "Makefile from workplace is running simulations" - prints message to
the console.

• @python3 sim.py - runs sim.py script, which extracts btb statistics and UVM
log files.

51



• @echo "Running simulations analysis" - prints message to the core.

• @python3 sim_analyzer.py - runs sim_analyzer.py script, which analyzes
simulation data.

• @cd ../master/cv32e40x/rtl/ && git stash && git stash drop - Running
sim.py modifies cache size by changing the control variable - size, in cv32e40x_if_stage
module. This command restores the cache size to 8 cachelines.

.3.3 Plot the Analyzed Simulation Data

In order to plot the analyzed simulation data (figures 4.1.2 - 4.1.5), the users need
to run a makefile target named sim_data_analyzer from the workplace directory.
The target contains the following two commands:

• @echo "Running simulation data analyzer" - prints message to the console.

• @python3 sim_data_analyzer.py - runs sim_data_analyzer.py script.

.4 Setting up Synthesis, Synthesizing Core, Ana-
lyzing Synthesis Data

Before we discuss synthesizing the design, the users must comment lines from
cv32e40x_BTB_BHT module that store btb statistics in btb_statistics.txt file.
Figure .4.1 displays SystemVreilog ALWAYS_FF (Line 104-127) AND INITIAL
(Lines 129-153) blocks. These blocks need to be removed from the module before
the user tries to synthesize the design.

Figure .4.1: cv32e40x_BTB_BHT module: Lines 104-153 store btb statistics
into btb_statistics.txt file.

.4.1 Setting up Synthesis

In order to synthesize the core, the users need to clone the synthesis environment
developed by EECS-NTNU. The synthesis environment can be cloned from the
following Github Repository - https://github.com/EECS-NTNU/asic-flow. Note
that this is a private repository, and the users will need permission to access it.
This repository contains a folder asic-flow which contains tcl scripts for setting up
the synthesis environment. More information about setting up the environment

52



can be found in WiKi section of the asic-flow GitHub repository[21].

asic-flow can be cloned by running a makefile target named clone_synth_env from
the workplace directory. The target contains the following two commands:

• @echo "Synthesis environment is being cloned from NTNU asic-flow github
private Repository" - prints message to the console.

• @cd ../ && git clone https://github.com/EECS-NTNU/asic-flow.git - clones
the repository and ensures that Workplace, Master, Core-V-Verif, and asic-
flow are at the same level in the directory tree.

Before using the repository, we need to modify two files: asic-flow/stm28/counter/config_syn.tcl
and asic-flow/stm28/counter/tcl /synth.tcl.

.4.1.1 Modificatoins to asic-flow/stm28/counter/tcl /synth.tcl

The user should delete line number 6 in asic-flow/stm28/counter/tcl/synth.tcl file
and replace it with the content of MasterThesis/workplace/tcl /config_syn.tcl

.4.1.2 Modifications to asic-flow/stm28/counter/tcl /synth.tcl.

The user should replace lines 70-80 from asic-flow/stm28/counter/tcl /synth.tcl
with lines from figure .4.2.

Figure .4.2: TCL script reading core modules. These lines can be found in
MasterThesis/workplace/tcl /synth.tcl file

53



Furthermore, the user needs to replace lines 95-97 from asic-flow/stm28/counter/tcl/synth.tcl
with lines 21-84 from MasterThesis/workplace/tcl/synth.tcl

Finally, the user needs to add "quit" command at the end of asic-flow/stm28/counter/tcl/synth.tcl

.4.2 Synthesizing Core and Analyzing Synthesis Data

In order to synthesize the core, the users need to run a makefile target named syn
from the workplace directory. The target contains the following five commands:

• @echo "Makefile from workplace is running synthesis" - prints message to
the console.

• @python3 synth.py - runst synth.py script.

• @echo "Running synthesis analysis" - prints message to the console.

• @python3 syn_analyzer.py - runs syn_analyzer.py script.

• @cd ../master/cv32e40x/rtl/ && git stash && git stash drop - Running
syn.py modifies cache size by changing the control variable - size, in cv32e40x_if_stage
module. This command restores the cache size to 8 cachelines. Furthermore,
cv32e40x_BTB_BHT module is also restored, and ALWAYS_FF and INI-
TIAL blocs from figure .4.1 are uncommented.

.4.3 Plot the Analyzed Synthesis Data

In order to plot the analyzed synthesis data (figures 4.2.1 - 4.2.2), the users need
to run a makefile target named syn_data_analyzer from the workplace directory.
The target contains the following two commands:

• @echo "Running synthesis data analyzer" - prints the message to the console.

• @python3 syn_data_analyzer.py - runs syn_data_analyzer.py script

54


