
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Tom-Are Eidal

Advancements in Control System,
Hardware, and Testing for an
Autonomous Sailing Boat

Master’s thesis in Engineering and ICT
Supervisor: Andreas Echtermeyer
June 2023

Tom-Are Eidal

Advancements in Control System,
Hardware, and Testing for an
Autonomous Sailing Boat

Master’s thesis in Engineering and ICT
Supervisor: Andreas Echtermeyer
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

Autonomous surface vehicles have proven themselves to be great data col-
lectors. In the need of understanding a changing environment, these vessels
are a great option. A combination of high mobility and openness to customiz-
ation, together with low power consumption and risk makes these the perfect
candidates. The end result of this project aims to be one of these vessels, and
to be an environmentally friendly, independent collector of important data
from large areas and remote locations.

Previous teams have come a far way in developing a boat ready for sailing
the rough seas. A catamaran hull was designed for low power consumption
and high mobility. A sail has been developed to catch the wind to generate
propulsion. A keel and a rudder was added to control the boat and increase
its accuracy and mobility. Last year, a control system was made to combine
all these into an operable boat, able to sail on its own.

This thesis picks up right after the development of the control system.
Several issues have been found in the existing system. Further tests have
been conducted to explore these, and to uncover any other problems. New
solutions have been found and implemented into the system. This report goes
through these solutions and their reasoning, anchored in the necessary theory.
The solutions have also been verified by testing the affected subsystems.

With the changes to solve existing issues, further progress could be made.
The range of directions of sailing depending on the wind has been extended to
all angles with the addition of tacking capabilities. On its mission as a data
collector, the boat will need reliable sensors to catch useful data. A system for
implementing new sensors is found, and showed in this report. This includes
the steps needed to upload and log the data for later use or distribution.
Lastly, testing availability has been greatly increased. Further development
will require complex avoidance and guiding systems, which require a lot of
testing. A land-based version of the boat built on a trolley with wheels, as
well as movement simulation has been added for this purpose.

i

Sammendrag

Autonome overflatekjøretøy har vist seg å være gode datasamlere. Disse
fartøyene er i dag et godt valg p̊a grunn av behovet for mye data for å forst̊a
det endrende miljøet. En kombinasjon av god mobilitet og tilpasningsmu-
ligheter, sammen med lavt energiforbruk og lav risiko, gjør disse fartøyene til
perfekte kandidater. Sluttresultatet av dette prosjektet sikter p̊a å være en
miljøvennlig, uavhengig samler av viktig data fra store omr̊ader og utilgjen-
gelig steder.

Tidligere grupper har kommet langt i utviklingen av en b̊at som er klar til å
seile p̊a havet. Et katamaran-skrog har blitt designet for lavt energiforbruk og
god manøvrerbarhet. Et seil har blitt utviklet for å fange vinden for fremdrift.
En kjøl og et ror har blitt satt p̊a b̊aten for å styre den og øke dens presisjon
og manøvrerbarhet. I fjor ble et kontrollsystem laget for å kombinere alle
disse elementene til en fungerende b̊at som kan seile av seg selv.

Denne avhandlingen tar over rett etter utviklingen av kontrollsystemet.
Flere problemer er blitt oppdaget i det eksisterende systemet. Tester har
blitt gjennomført for å utforske disse nærmere, og for å avdekke eventuelle an-
dre problemer. Nye løsninger har blitt funnet og implementert inn i systemet.
Denne avhandlingen g̊ar gjennom løsningene som er funnet og forklarer grunnla-
get for de. Løsningene ble ogs̊a testet og verifisert ved egne tester designet for
de p̊avirkede sub-systemene.

Etter at løsningene p̊a eksisterende problemer ble implementert, åpnet
muligheten for videre utvikling seg. Vinklene b̊aten kan seile til som følge
av vindretningen har blitt utvidet til å gjelde alle retninger ved å f̊a ”̊a g̊a
over slag” (engelsk: tacking) til å virke. P̊a oppdraget sitt som datasamler
trenger b̊aten sensorer for å innhente nyttig data. Et system for å legge til
flere sensorer er funnet og vist i denne avhandlingen. Dette inkluderer ogs̊a
opplasting og logging av dataen for senere bruk eller utsendelse. Til slutt har
tilgjengeligheten for testing vært et viktig punkt å forbedre. Videre utvikling
av b̊aten vil kreve avanserte systemer for å styre unna objekter og ha bedre
navigasjon. Dette vil kreve mye testing for å verifisere. En versjon av b̊aten
som kan kjøre p̊a land er laget nettopp for dette. I tillegg har kode blitt lagt
til for å simulere bevegelse.

ii

Acknowledgment

I would like to thank supervisor Dr. Andreas Echtermeyer for introducing
me to the project, and the support provided through the project. A big thanks
to last year’s team, Adrian Skogstad Pleym and Magnus Westbye Ølstad for
their help in understanding the project and making progress. I would also like
to send out a special thanks to Hanna Aksetøy Aalmen for endless support
and good ideas during the project.

iii

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Team and previous work . 1

1.2 Problem description . 1

1.3 Scope of this thesis . 2

1.4 Objectives . 2

1.5 Thesis structure . 2

2 Theory 3

2.1 Sailing . 3

2.1.1 Anatomy of a sailboat . 3

2.1.2 Points of sail . 4

2.1.3 Using the wind for fastest sailing 6

2.1.4 True wind versus apparent wind 6

2.1.5 Sources of sailing errors . 7

2.2 Control electronics . 8

2.2.1 Raspberry Pi and Arduino . 8

2.3 Sailing control . 9

2.3.1 Path planning and course control 9

2.3.2 Control surfaces . 10

2.4 Prototyping . 11

3 Existing solutions 14

3.1 Electronics on board . 14

3.1.1 Raspberry Pi . 14

3.1.2 Arduinos . 15

3.1.3 Power supply . 15

iv

3.1.4 Actuators . 16

3.1.5 Positioning . 17

3.2 On-shore server . 17

3.3 Dashboard app . 18

4 Preliminary tests 20

4.1 Sail angle with simulated wind . 20

4.1.1 Test setup . 20

4.1.2 Results . 21

4.2 Test tacking . 23

4.2.1 Test setup . 23

4.2.2 Results . 24

4.3 True versus apparent wind . 25

4.3.1 Test setup . 25

4.3.2 Results . 27

5 Method 29

5.1 Work on existing issues . 29

5.1.1 True wind versus apparent wind 29

5.1.2 State of electronics . 31

5.1.3 Tacking . 32

5.1.4 Batteries . 34

5.2 Building a test trolley . 35

5.2.1 Installing the sail . 35

5.2.2 The new electronics board . 37

5.2.3 Simulating wind . 38

5.2.4 Fastening of small equipment 39

5.3 Simulating movement . 40

5.4 Adding a sensor . 41

6 Results 43

v

6.1 Concluding tests . 43

6.1.1 Tacking . 44

6.1.2 True wind . 45

7 Further work 46

8 Conclusion 47

Bibliography 48

Appendix 50

A run.py . 50

B navigation.py . 61

C gps.py . 67

D tempSensor.py . 70

vi

List of Figures

1 Anatomy of a sailboat . 4

2 Point of sail . 5

3 True versus apparent wind . 7

4 Leeway . 8

5 Raspberry Pi and Arduino . 9

6 Path over distance with leeway . 10

7 Independent control of sail and rudder 11

8 Modular testing . 12

9 Prototyping for learning . 12

10 Electronics on board . 14

11 Power supply and control electronics 15

12 Sail actuator and position sensor . 16

13 Data from the server . 17

14 Dashboard app . 18

15 Instrument metrics . 19

16 The half mast from disassembled sail 20

17 Fan holder for wind sensor . 21

18 Wind and sail angles in sail test . 22

19 Sail angle and wind direction as arrows 22

20 Test trolley with the sail base . 23

21 Wind and sail angles during tacking 24

22 Wind calculation test setup . 26

23 True wind test fan setup . 27

24 Measured wind and calculated true wind 28

25 Midway point on the map on a voyage to a target point 29

26 Velocity from GPS read on mobile . 30

27 Example of brittle solders breaking 31

28 Good solder covered with electronic isolation 32

vii

29 True wind and false true wind . 33

30 Midway point marked with no-go zone and wind direction 34

31 Measuring of batteries for logging . 35

32 The sail base mounted on beams . 36

33 The new mast plug replacing the cold welded one 36

34 3D-printed battery brackets . 37

35 The new electronics board with a box for wires 38

36 The 3D-printed holder for a fan for the wind sensor 39

37 The trolley surface with cables, controllers and sensors 39

38 Temperature sensor implementation 41

39 Temperature sensor data in the web app 42

40 Wind and sail angles from the new test 44

41 Correct true wind with apparent wind and velocity 45

List of Tables

1 The different points of sail . 5

viii

1 Introduction

Autonomous surface vehicles have over the recent years proven themselves capable
of being great data collectors. Largely enhanced by modern technology, power con-
sumption and size can be smaller than ever, and the capabilities larger. The use of
this makes it possible to completely replace human crew aboard vessels. This can
extend mission time and independence, creating a sensor station able to collect data
for years. Without the risk of human health, harsh environments can be traversed.
Together with no check ups needed, missions can be long lasting and cover great
areas of interest.

We are currently witnessing a growing pattern where more extreme weather and
rapidly changing environments are expected to occur. To understand the changes,
and be as prepared as possible, a considerable amount of data is needed. Catching it
early means data collection from remote, cold places, heavily exposed to the weather.
Simultaneously, green energy has never been more important. An autonomous sur-
face vehicle can satisfy both worlds. Small size and low power consumption makes
it a smarter choice than huge vessels with human crew. Its robustness and mobility
enables it to cover large areas, and to be where it is needed. With technological
development, customization for current needs will increase, together with its range,
operability and efficiency.

The goal of the project of which this thesis is part of, is developing such an autonom-
ous surface vehicle. In its final state, it needs to be capable of surviving travels
between mid-Norway and Iceland. This is an area that can have bad storms, and
carries a lot of naval traffic. Thus, requirements to operability and object avoidance
is necessary. Testing is of great importance when developing such solutions, and will
be focused on during the project. Previous work, as well as the objects covered and
the scope of this thesis will be further described in the next sections.

1.1 Team and previous work

The project of developing an autonomous surface vehicle was started in 2019 by Dr.
Andreas T. Echtermeyer. Master theses on hardware have since then been written
by Maria Dyrseth, Sverre Gauden, and Almar V. Brendal. Then, a control system
was developed by Adrian Skogstad Pleym and Magnus Westbye Ølstad.

The fall of 2022, Dr. Andreas T. Echtermeyer took initiative to a pre-study thesis
on further development of the control system, as well as one to develop a new hull
for testing. This master thesis builds on the pre-study of the control system, and
the work done in the theses of previous years.

1.2 Problem description

This thesis continues the development of a control system made in 2022. Several
issues were discovered during testing and these will be worked on. This thesis focuses

1

mostly on software, but some hardware will be improved as well. As the system and
the coming needs are increasing in complexity, facilitating for easier testing will be
done. Lastly, a system for data collection with sensors will be started. These focuses
are means to reach an autonomous surface vehicle with the operability, robustness
and sensory capabilities to complete a set mission.

1.3 Scope of this thesis

This thesis documents the further development of the software and hardware de-
veloped over the previous years. It describes the preliminary testing and prototyping
steps done to uncover the cause of current issues. A theory base will showcase the
best approach for prototyping and the fundamental knowledge base of sailing and
the components used. The implementation and reasoning for changes made will be
covered. This thesis also aims to guide in practices and use of the boat for further
development and project hand over.

1.4 Objectives

The objective of this thesis is to start readying the boat for its mission. This means
solving previous issues and starting a system for collection of data of interest. The
boat should be able to sail to its target with all wind directions, even coming directly
from the target. It should be more resilient to external factors, and the electronic
hardware updated as such. The boat should be able to sense and report data from
sensors of external interest. Further development should be facilitated for by making
testing easier, faster and more available.

1.5 Thesis structure

Chapter 1 introduces the thesis and its scope and objectives,

Chapter 2 provides the necessary knowledge base,

Chapter 3 describes the existing solutions from previous teams,

Chapter 4 shows preliminary testing to explore current issues,

Chapter 5 presents the issue fixes and further development,

Chapter 6 presents the results achieved and verifying tests,

Chapter 7 suggests actions for the development going forward,

Chapter 8 concludes the master thesis and its objective achievements.

2

2 Theory

In order to further develop the autonomous boat, the theory behind has to be un-
derstood. Previous development has build a complex system including a dashboard
app as a human-machine interface for communicating with the boat. A lot of com-
plicated electronics is used for sensing the environment and steering the boat. The
needed theory for understanding the boat and its development will be presented in
this section. Since this heavily relies on the findings of the pre-study report, the
majority of the theoretical framework is based on its findings.

2.1 Sailing

Before, sailing was the main way of traveling the seas. In recent times, more reliable
and faster methods of travel have emerged, leaving sailing mainly for recreational
activities. However, over the last years, a new use of sailing has been found. Long
sustaining vessels take advantage through low power needs and a lack of necessity
regarding constant speed and check-ups. This is why the vessel of this project is
using a sail. A control system to output angles based on position is all that is needed,
and the sail will harvest the powers of nature. To understand how to properly use
this opportunity, this section will dive into the mechanics of sailing.

2.1.1 Anatomy of a sailboat

Firstly, a few terms and names of parts of a sailboat should be established. The
small vessel of this project will still contain most of the sailing mechanics of others
roaming the seas, even with its smaller size and simplicity. To start with, we have
the deck, the top floor of the boat. The mast is usually erected straight up from this
floor. The sail is held by the mast, but usually not alone (Anatomy of a sailboat
2022). A cross beam is usually placed horizontally on the mast, stretching the sail
when it is a flexible one. However, this boat uses a stiff, fixed sail and as such, does
not need a cross beam.

To ensure buoyancy, the hull creates a waterproof and often hydrodynamic body
in the water (Anatomy of a sailboat 2022). It also helps with control of the boat,
together with the keel beneath it. The keel acts like a weighted fin, stabilizing the
boat with a counterweight and counteracting some of the forces from side wind by
acting on the water. A similar, but not weighted, device sits behind it, at the back
end of the boat. This is here to steer the boat, and is the rudder.

3

Figure 1: The anatomy of a sailboat.

Source: https://www.sailrite.com/anatomy-of-a-sailboat

On a boat, the four sides also have their own names. The bow marks the front
end of the boat, while the stern marks the back end (Sailing terms everyone should
know 2022). The left side is called port, and the right side starboard. With the part
naming established, we are now ready to dive deeper into how the different parts
are used to harness the wind for propulsion.

2.1.2 Points of sail

As mentioned, the main propulsion of the vessel in this project will be by sail,
harnessing the power of the wind. Wind speed and direction are factors we can not
control. Regardless, we need ways of ensuring best use of the wind at hand. How
to use the wind best is naturally dependent on the wind direction and strength,
but also the direction and speed of the boat (Point of sail 2022). Following is the
different points of sail, denoting how to adjust the sail to the current conditions.

The point of sail denotes the wanted direction of travel with regards to the direction
of the wind. It is split into eight intervals, each covering 45 degrees of a whole circle.
0 degrees is assigned sailing straight into the wind (Rousmaniere 1999). From the 0-
degrees-line, the scale is symmetrically increasing both directions, until 180 degrees.
This denotes sailing directly with the wind.

4

https://www.sailrite.com/anatomy-of-a-sailboat

Figure 2: The different points of sail.

Source: https://en.wikipedia.org/wiki/Point of sail

Sailing against the wind, at 0 degrees, does not yield any propulsion in the wanted
direction. Surrounding the 0-degrees-line, we have a no-go zone, usually extending
to about 30-50 degrees both ways. The exact number is depending on the properties
of the boat (Kimball 2009). Right outside the no-go zone, at about 45 degrees, the
point of sail is called close-hauled. The best way of utilizing the wind here is angling
the sail in the wind much like a wing. This generates ”lift” in the wanted direction
by creating a low pressure zone in front of the sail (Kimball 2009).

Sailing perpendicular to the wind direction, we have beam reach (Rousmaniere 1999).
On either side of beam reach, we also find close reach and broad reach. Close reach
is more towards sailing against the wind, while broad reach is closer to sailing with
the wind. For all these called reaching, sailing is again mostly generating propulsion
from using the sail as a wing. However, as the point of sail transitions from broad
reach and further towards sailing with the wind, the sail is more dependent on drag
(Jobson 2008). As the point of sail is closing in on 180 degrees, the sail stops working
as a wing and starts working more like a parachute. At the end of the transition,
where the sailing direction is directly with the wind, we have running downwind. At
this point of sail, the sail is only generating forward force from the wind by drag.

Table 1: The different points of sail.

No-go zone Trying to sail against the wind within 30-50 degrees
Close-hauled Sailing right outside the no-go zone
Beam reach Sailing directly perpendicular to the wind direction
Broad reach Sailing between beam reach and with the wind
Downwind Sailing with the wind

5

https://en.wikipedia.org/wiki/Point_of_sail

2.1.3 Using the wind for fastest sailing

Without thinking too much about it, running downwind might to many seem like
the fastest option of sailing. This is where the direction of the wind and the force,
intuitively lines up with the direction of travel. However, for most sailboats, this
is not the fastest way of travel (Andy 2016; Bethwaite 2007). At this point of sail,
the sailing speed is limited to the speed of the wind. Factoring in drag from the
water, and we can not even reach this speed. The highest speed is rather reached
when sailing beam reach, perpendicular to the wind. Using the sail as a wing, the
achieved forces can propel the boat to a higher speed than that of the wind. Even
when the wanted direction is directly with the wind, it can be beneficial to include
some degree of reaching. This maneuver is called beating, and consists of sailing at
an angle a bit off the wanted direction to reach higher speeds. Of course, for the
maneuver to be faster than running downwind, the resulting added speed has to
beat the added distance of not sailing the direct route.

Benefiting from reaching is also used in the opposite direction, when the target lies
within the no-go zone (Cunliffe 2016). In this case, the direct route is not possible,
as the sail has no way of generating force in the wanted direction. Instead, we can
use tacking. This a maneuver where the boat is sailing close hauled, right outside
one of the sides of the no-go zone. After sailing some distance, building up enough
speed, the boat can tack through the no-go zone and continue sailing clause hauled
on the other side of the no-go zone. Sufficient speed is necessary to pass through
the wind, only by rudder control (Cliffe 1994; Sailing terms everyone should know
2022). In case a lack of speed to pass through, the vessel will run to a halt. The
only option is to change direction, possibly somewhat with the wind and away from
the target. As speed is regained, tacking towards the target may be tried again.

2.1.4 True wind versus apparent wind

When deciding point of sail, one must differ between apparent and true wind. As
sailing gives the boat speed in a certain direction, an opposing wind vector will add
to the existing wind. The true wind is the one observed by a stationary object, and
can be hinted at by the wave direction on the surface of the water (Jobson 1990).
One can also calculate the true wind from the apparent wind by knowing the speed
and direction of travel. Adding the opposite of the travel vector to the apparent
wind will remove the added wind from sailing, resulting in the true wind. Thus,
when deciding on sail angle and point of sail, the opposing vector to that of the
travel has to be subtracted from the measured wind to figure out the true wind.

6

Figure 3: True versus apparent wind.

Source: https://www.researchgate.net/figure/Apparent-and-true-wind fig6 257143505

2.1.5 Sources of sailing errors

When sailing, a boat is reliant on compass courses and some form of map to navigate.
This sounds good, but they are subject to errors. Deviations in course, speed or
unwanted movements can make travels totally miss its target. Most errors can be
compensated for by digital aids, like GPS. By checking the current position with
the wanted position, correcting actions can be done. Yet, it is still good to know of
the errors that can occur.

When using a compass for navigation, two effects can throw the boat off course. The
first being when the compass is pointing in the wrong direction, called variation
(Misvisning og deviasjon 2022). The compass is functioning on magnetics, and
should point to the north pole. However, the magnetic pole of the earth does not
align with the actual north pole (Holtet 2022). This throws the compass off in
varying degrees depending on where on earth’s surface the vessel is traveling.

The second effect that can alter the course is deviation. This also makes the compass
stake out the wrong course, but this time due to disturbances in its surrounding
magnetic field (Kjerstad 2022). Electronics or cargo aboard, or the materials of the
boat itself can create magnetic fields. This affects the compass by dragging it in
other directions than that of the magnetic field of the earth. It can be compensated
for by making sure the conditions are consistent and account for this interference.
This depends on the local magnetic fields not to be too strong. A better way, and one
that should be followed when possible, is to place the compass away from interfering
parts and cargo.

7

https://www.researchgate.net/figure/Apparent-and-true-wind_fig6_257143505

Figure 4: Faulty course due to leeway.

Source: https:
//www.sail-world.com/Australia/Measuring-your-leeway-for-better-sailing/-71221?source=google

Lastly, the effect of forces acting perpendicular to the direction of travel is called
leeway. Wind on the sail and waves pushing from the side will push the boat in
an unwanted direction (Osnes 2022). When measuring the speed in the direction of
travel only, leeway is not detected. The shape of the hull and the keel will resist the
unwanted movement, but will not completely neglect it. Over longer travels, leeway
can build up to huge errors. Steering slightly against the forces, or compensating
using GPS can be done to neglect the effect.

2.2 Control electronics

For the boat to be autonomous, it is crucial to have sensors to take in variables from
the environment, and actuators to act on them. Necessary sensors are installed
on the boat from previous work, and their use cases are described in section 3.
The sensors are read, and the data is used by small computers, or microcontrollers,
aboard the boat. This section will look at how these microcontrollers are used to
operate the boat.

2.2.1 Raspberry Pi and Arduino

For main control of the boat, the brain, a Raspberry Pi 4 is used. It is a small
single-board computer (About us 2022), originally meant for educational purposes.
Because of its simple use in areas like weather monitoring and robotics, it has grown
in popularity. These areas are also great for our purpose in this project. The
Raspberry Pi was chosen because of its capabilities, price and easy-to-use modularity
(Upton 2022). It hosts many interfaces by default, including USB and HDMI ports,
as well as ways of connecting it to networks. A huge advantage is also the fact that
it is a computer, making it possible to run custom software of our own choosing on
it.

8

https://www.sail-world.com/Australia/Measuring-your-leeway-for-better-sailing/-71221?source=google
https://www.sail-world.com/Australia/Measuring-your-leeway-for-better-sailing/-71221?source=google

Although a lot of options are available, the Raspberry Pi is by default running the
Raspbian operating system (Raspberry Pi OS 2022). It has a lot of similarities with
Linux, and is controllable with most of the same text commands. Raspbian also
supports Python, used extensively in this project. Together with the capability of
running custom code, and the default interfaces, equipment like GPS and 4G modem
is easily connected for tasks on the boat.

Figure 5: A Raspberry Pi and an Arduino Uno.

Source: https://pimylifeup.com/raspberry-pi-vs-arduino/

Using the interfaces on the Raspberry Pi, two Arduinos are also connected. These
split up the system in more manageable chunks, and help communicate with motor
controls and sensors. Arduinos are single board microcontrollers built with both
input and output pins (What is Arduino 2022). While not as open as the Raspberry
Pi, they can still run small premade programs. This makes them able to receive
input data, act on them, and send output data to control. This is done through
built-in input/output (i/o) pins (What is Arduino 2022). These are individually
read or controlled pins, used for monitoring and controlling actuators and sensors
on the boat.

2.3 Sailing control

Traditionally, sailboats have been reliant on people for observing the conditions and
adjusting control surfaces accordingly. Essential to this project is to avoid this, and
replace people with a limited amount of sensors and power. Luckily, there have
been developed algorithms for effectively sailing autonomously. This section will
look further into the chosen solutions to control the boat in this project.

2.3.1 Path planning and course control

To calculate the travel to the next target, the boat needs to know two things. The
first is where it is now, given as a set of coordinates. The second is the position of
the target (Saoud et al. 2015). In the long run, the boat should also know of any
obstacles on its path, including heavy weather. With the current system, deviation
and variation are accounted for, but leeway will have to be compensated for under

9

https://pimylifeup.com/raspberry-pi-vs-arduino/

travels. One solution is to use a feedback loop, where the input is current velocity
and orientation of the boat. These can be obtained from the GPS and the IMU
aboard the boat (Zhenyu Yu 2008). Then the wanted and actual direction of travel
can be cross referenced, and the rudder adjusted accordingly (Roland Stelzer 2007).

During travels, wind and forces from the water will most likely change. Especially
for great distances. This means the leeway effect will change accordingly. Not to
speak of the propulsion of the boat, which is dependent on the wind and other
parallel forces. This means the course of the boat will have to be adjusted from the
direct route during travels (Saoud et al. 2015). For now, the control of the boat is
only taking in the current state of the surrounding environment. This only includes
adjusting the sail to different points of sail, as well as rudder control.

Figure 6: The planned path between start and target, and the followed path with
leeway.

Source: (Roland Stelzer 2007)

2.3.2 Control surfaces

To steer the boat on the correct course, and manage best use of the sail, a split
control scheme is used. This means the control of the rudder and the control of
the sail is made independent from each other (Patrick F. Rynne 2010). When a
path is planned, a point of sail is chosen based on best fit with the current wind.
This decides the position of the sail to get the proper angle of attack. With the
separation of the controls, this is all the sail has to worry about. At the same time,
the rudder is independently controlled to steer the boat on the correct course.

10

Figure 7: Path following with rudder and angle of attack control with sail.

Source: Own image based on https://en.wikipedia.org/wiki/Point of sail

Thus, the existing solution on the boat is to use the sail for maximizing propulsion
from the wind, while the rudder is used to control the heading. In addition, the
rudder will adjust for leeway under travels, with the help of GPS data. As these
controls are crucial for the boats progress on voyages, the sensors need to be report-
ing the correct measurements. They need to report correct data, and with minimum
delay. Without this, wrong angles and states can be set, and in the worst case, the
boat might come to a complete halt. This is especially true when sailing against
the wind. Having enough speed to pass through the no-go zone, and maneuvering
correctly during the pass, requires precision and speed from the sensors (Saoud et al.
2015).

2.4 Prototyping

Prototyping is a method used for developing through testing. During this project,
testing will be crucial to ensure quality and ending up with well working solutions.
On its mission, the boat will be almost inaccessible, and fixes are near impossible
on a running basis. Incorporating prototyping in the process will uncover problems
early, and give a trustable system on deployment.

Prototypes are made to express a design for incremental or radical improvements
(Elverum and Welo 2015). Although today’s technology has given many simulation
programs, nothing will be as accurate as physical models. Building a full size model
of the boat of this project yields a perfect test setup. This gives a physical platform
for assessing actual solutions in a real environment and with accurate properties.
It is also the only way of making sure the full boat will work properly before its
mission. On the other hand, testing of complex systems can be demanding and take
long time (Elverum and Welo 2015). Because of this, a proper understanding of
prototyping is important to be effective. This lets us decide what to test and how
to extract what we can from the tests.

11

https://en.wikipedia.org/wiki/Point_of_sail

Figure 8: Modular testing can be achieved by locking the influence of other parts,
and focusing on only one part.

Source:
https://www.webomates.com/blog/manual-testing/modularity-in-test-case-writing-is-critical/

Prototypes provide the means for examining design problems and evaluating solu-
tions (Houde and Hill 1997). It is important to choose the scope of a prototype
carefully. When developing new products, many believe that a modular testing
design is the best. This locks the variation in interference from other parts and lets
you focus on how one part is working. Under known conditions, the variation can
be removed by staying consistent with all parts not currently up for testing (Houde
and Hill 1997). This leads to proper understanding of how individual parts work,
and the results of changes to it.

A happy bi-effect of prototyping can be that new ideas and concepts are often
discovered accidentally (Elverum and Welo 2015). When the system is tested, new
ways of manipulating it or other aspects not earlier thought of might come to life
by itself. Some project specific examples of this could be transportation problems,
rudder angle control and sailing properties. The discoveries made in this way are
just as important, and big part of why testing with prototypes is so important.
There is no other way that can give such a complete run down of how the system
actually performs (Elverum and Welo 2015).

Figure 9: Exploring and discovering through prototyping.

Source: https://www.uid.com/en/news/prototyping

12

https://www.webomates.com/blog/manual-testing/modularity-in-test-case-writing-is-critical/
https://www.uid.com/en/news/prototyping

For this project, the boat being build is the prototype. Constant testing should be
a natural part of its development. However, testing these complex systems can be
hard, especially when trying to analyze what influence the different parts have on
results. A big help is to single out parts as much as possible. Modules of the boat
can be faded out, kept still, to lock its influence to a known constant. An example
is to use rudder control to keep the boat on a straight course. Combining this with
known wind conditions from the wind sensor, the sail can be tested. Setting different
angles of attack and points of sail, the forces can be measured. The data will yield
answers as to how effective the sail is, and if the coded angles are the best ones.

Many of the prototyping aspects described thus far was originally meant for soft-
ware, and has been altered for hardware developing. This means most of the same
principles work well for software development as well. This is important for the pro-
ject, as all the control algorithms are made with software. Directional prototyping
is a great tool to figure out whether discovered problems have roots in hardware
or software solutions (Elverum and Welo 2015). This is a way of constructing tests
to put wanted systems to the test and figure out the roots of the problems. Good
planning with thoughts of expected results in different cases are crucial, and might
be hard. At the end, this will likely be a way of discovering problems and finding
solutions to them before the boat sets out.

13

3 Existing solutions

This is not the first year a thesis has revolved around developing the boat for this
project. A lot of solutions are already found, and prototypes built. The focus of
this thesis will mainly be the further development, but it is important to understand
what is being built upon. This section is in large parts built on the project thesis,
used to prepare for this work. It will briefly explain the relevant, existing solutions.

3.1 Electronics on board

An advanced system of on board electronics has been built. It manages the control,
logging and actuation of the boat. In addition, it communicates with a land-based
server for remote control and monitoring. Self-sustaining systems for monitoring
health and power of the system are also implemented. This section will briefly
explain the main parts of the hardware system at work here.

Figure 10: Schematics of electronics on board.

3.1.1 Raspberry Pi

For the main brain of the boat, a Raspberry Pi is used. It communicates with the
other boards and runs the main code. The Raspberry Pi is the first board to start
when powering up the boat, and will initialize and power the other microcomputers.
Through communication with the land-based server via a 4G modem, it receives the
last target coordinates. It reads sensor data off the other microcomputers, including
wind and current orientation. With this information, the further travel is calculated
on the Raspberry Pi. The heading is decided, and signals to position the sail and
the rudder are communicated out. During travels, sensor data about heading and
position is regularly checked with the IMU and the GPS.

14

3.1.2 Arduinos

Two Arduinos are set up to handle direct control and communication with sensors
and actuators. These are controlled by the Raspberry Pi, and sends the data for
further calculations to it (Pleym and Ølstad 2022). Using several microcontrollers in
the structure also benefits from splitting up the code. It results in easier maintenance
and debugging as it reduces the size and complexity of one single program. Reading
of sensors and control of actuators can then be divided into separate classes and
methods in the code, all tied together with the Raspberry Pi.

Of the two Arduinos, one is of the type Nano and the other of the type Uno. The
Nano handles reading the IMU and controlling the rudder actuator. The Uno reads
the sail encoder and controls the sail actuator. For communication between the sail
actuator and the Arduino Uno, a CAN to Arduino interface is necessary. This is
because CAN is the default protocol for the encoder (Pleym and Ølstad 2022). The
Arduino Nano is in addition part of the self-monitoring system. Via a voltmeter, it
is connected to the batteries, monitoring the power left.

Figure 11: Power supply on the left and control electronics on the right. From the
top: Arduino Nano, H-bridge, Arduino Uno, Raspberry Pi.

3.1.3 Power supply

To power the boat on its travels, four lead-acid batteries are used. Each have a
nominal voltage of 12 volts. They are parallel connected in two pairs and each pair
connected in series to achieve a voltage of 24 volts. As some parts of the electrical
system requires 5 volts, a regulator is connected between the battery output and
the necessary parts. The batteries are the only source of power during travels, and
these running out will be the end of any mission. The boat will in this case lose
all control and communications with land. This gives high risk of losing the boat.
This is why the power of the batteries are constantly watched by the Arduino Nano.
Measures to resupply the batteries during voyages are in the workings.

15

3.1.4 Actuators

Actuators are the motors used to control the angle of sail and the rudder on the boat.
They are controllable motors where specific angles or positions can be set. For the
sail, the actuator rotates directly to a worm gear, connecting the mast and the sail.
Rotational motion is shifted 90 degrees with the worm gear, while it also shifts up the
torque heavily. With the rudder, a linear movement from the actuator is translated
into rotational movement about the rudder rod. This is done by a mechanism which
also holds the rudder and actuator together. As these are the only influence the
boat can have on its travel and orientation, accurate measurements of their angles
are necessary.

The rudder actuator angle is changed via an H-bridge controlled by signals from the
Arduino Nano. The H-bridge is connected to the batteries and will supply power
to the actuator based on signals from the Nano. This includes the possibility of
the H-bridge reversing the voltage, changing the movements of the rudder to the
other way. The actuator is built to return data about its extended position. By
measurements, the relation between how extended the actuator is and the resulting
angle of the rudder is programmed (Pleym and Ølstad 2022). Together, this gives
full control of the rudder’s angle in the water.

Figure 12: Inside the sail: the actuator and the position sensor.

The angle of the sail is set with a rotational actuator, controlled by the Arduino
Uno. The actuator is placed within the sail, protecting it and giving it access to the
sail and the mast. The worm gear used lowers the required strength of the actuator
due to the gear ratio. This also makes it easier on the actuator to hold its position
in strong winds. The actuator is made to return its position, but unfortunately only
as a relative position to where it started (Pleym and Ølstad 2022). As the position
needs to be known, even after resets, a rotary encoder was developed. By reading
movements of a disk with an IR-sensor, it returns the position of the sail to the
Arduino Uno.

16

3.1.5 Positioning

Aboard the boat, a GPS-antenna and an IMU is used for checking the boat’s position
and orientation. These are read by the Raspberry Pi. The GPS gives the position,
used for navigating and compensating for leeway. This ensures travels hit their
target. The position from the GPS can also be used together with environment
data, to mark the belonging location. At the same time, the IMU is used to check
the roll, pitch and yaw of the boat. This is used for current heading and sent to the
Raspberry Pi for navigation calculations. This is also a control of how much the
boat is tilting due to forces from the wind and water. Tilting over can be prevented
with this by steering the boat to a more stable orientation.

3.2 On-shore server

An on-shore server has previously been developed to handle communication and
logging. It is also hosting the dashboard app. This is useful for remote control of
the boat. The logging can be used for test analysis, one of the cases used later in
this thesis. In addition, the logging will save last known position, orientation and
conditions This can be crucial in the event of something happening to the boat,
leaving it inoperable.

The communications and logging will give frequent updates to a reachable server.
This is a good way of getting data of interest, tagged with a location and time.
This way, environmental and weather data can be collected with low cost. Future
development is likely to add more sensors on requests. The data from these can just
as easily be reported via the land based server.

Figure 13: Some of the data retrievable from the server.

Source: https://ntnu-autoboat.web.app

17

https://ntnu-autoboat.web.app

The server was set up to shut down when not in use to save cost and energy. This
happens without breaking the system and can be rebooted when needed (Pleym and
Ølstad 2022). Logging also comes in here, as the last states are being saved, and
ready for use on reboot. However, it should be noted that a reboot of the system
can take a minute. On remote control from the dashboard app, one thus has to
expect a small delay before communications are up and running.

3.3 Dashboard app

The dashboard app, mentioned earlier in the report, is the human-machine interface.
It communicates with the boat and lets one remotely control the boat and read
data from it. When connected to the boat, the dashboard app displays live updated
information about the boat. This includes position, heading and speed, but also
critical information like errors and warnings. Via the dashboard app, different states
can be set for the boat. In addition, target locations can be added, deleted or edited
here. It is an easy to use human-machine interface, that gives control and monitoring
of the boat.

Figure 14: The dashboard app used for control of the boat.

Source: https://ntnu-autoboat.web.app

The dashboard app communicates via the on-shore server, and talks with the Rasp-
berry Pi. The Raspberry Pi is the main brain of the boat, and thus have access to
all the data from sensors and states of actuators. The dashboard app is divided with
tabs, accessible with the buttons in the top of the figure above. Different actions
and monitoring are available for the tabs. The tabs include boat orientation and
movement, data from sensors, states of server communication and commands. This
gives full control of the boat, even when it is far away. In the picture below, one tab
is shown, displaying the state, orientations and movements of the boat.

18

https://ntnu-autoboat.web.app

Figure 15: A view of the instruments on board, showing orientation and health
metrics.

Source: https://ntnu-autoboat.web.app

19

https://ntnu-autoboat.web.app

4 Preliminary tests

After previous development of the sailboat, several solutions were discovered not to
work properly during sail tests. Tests have been constructed to uncover these, and
to catch other problems like them. Following the principles of prototyping described
in 2.4, the tests will be designed based on the results from the sea trial conducted
in (Pleym and Ølstad 2022). The objective of the tests is to find the reason for the
faults, and fix them, described in 5.1 This section will describe the different test
setups, and show and discuss the results.

4.1 Sail angle with simulated wind

Previous testing discovered faulty or unresolved angles of the sail during trials. Built
in maneuvers had some issues preventing them from working properly. In short, this
test is thus to simulate a wide range of wind directions and observe the resulting sail
angles. The objective is to verify correct sail angles during all three programmed
sailing modes: normal, tacking and beating, as described in 2.1.3.

4.1.1 Test setup

With the limiting space inside, the sail had to be disassembled to fit in a position
allowing it to turn all the way. Unfortunately, the aluminum in the joint of the mast
right above the motor assembly was stuck. Probably due to small bends resulting
from the sea trial. The joining part was cut and a new one made to replace it. The
new part is made slightly smaller to avoid similar situations in the future.

Figure 16: The half mast from disassembled sail.

With the shortened mast, wiring for the wind sensor was easier to access. This
is important as manipulation of the wind sensor is the base of the test. For this
purpose, a stand and holder for a fan was made. It fits around the fastening sleeve
of the wind sensor, used on the mast. Around it is a ring, able to slide around the
sleeve. The ring holds a stand for a fan. This assembly allows a fan to constantly

20

blow on the wind sensor, while the angle it blows from can be changed by the sliding
feature. This setup will be used for several tests with simulated wind.

Figure 17: Fan holder for wind sensor.

Using the electronics board with the batteries, all was ready for the test. The
Raspberry Pi was already set up in the system to receive data from the wind sensor
and transmit it via the 4G modem. On the other end, the server would store the
data in log files for later analysis. The test was done by setting a target for the boat
to sail to. Then the wind direction was adjusted to cover all directions with small
increments. The sail position was observed and the logs stored for analysis.

4.1.2 Results

During the test, the sail was observed to react quickly to changes in wind direction.
The wind sensor incrementally updates the wind direction, and for large, sudden
changes in direction, it will take some time for it to report the new direction. The
updates are, however, fast enough for the sail never to have to wait to proceed to
the new position. It is, as described in (Pleym and Ølstad 2022), limited to 6.43
degrees per second with no load.

During the test, a lot of data points were stored in the log. To help analyze them,
two python scripts were made to visualize some important aspects of the results.
The first, shown in figure 18, is a plot of the two values, wind direction in blue
and sail angle in orange over, time. The graph shows the earlier observed quick
reaction and reposition of the sail to changes in wind. The sail angle is constantly
a small offset from the wind direction. This is to keep the angle of attack to about
10 degrees, as found in (Pleym and Ølstad 2022).

21

Figure 18: The wind direction and sail direction, shown as angles over time. The
drop spikes are a result of the angle jumping around from 359 degrees to 0.

Several ranges in the graph deviate from this rule of an angle of attack of 10 degrees.
Rather, the difference in angle between the wind and the sail is here about 90 degrees.
One example is around the 1,000 seconds mark. These areas show the direction of
wanted travel and the wind direction coming together. As mentioned in 2.1.2, this
means the point of sail is entering downwind. Because of this, the sailing enters
drag mode, and the sail is set to 90 degrees off of the wind direction to maximize
drag.

(a) 10 degrees angle of attack. (b) 90 degrees angle of attack.

Figure 19: Arrows showing the wind direction and sail angle for each logged point.

To further help verify the angles, the figure above shows arrows for each data point
displaying the wind and sail direction. This helps visualize how they will be posi-
tioned relative to each other. These figures show the same results as the graph, but
was a good tool to understand the different cases.

This test has proven that the sail is able to position itself to wanted angle of attack
during normal sailing operations. It is also happening relatively fast. Beating and
tacking was not achieved during the test. Probably, this is because the GPS can not
get a lock of position inside the building. This results in the boat not being able
to calculate the midway points, thus not putting one inside the no-go zone or in a

22

direction downwind. As tacking and beating includes switching directions after a
certain distance of travel, a moving test outside will be constructed to test these.

4.2 Test tacking

The previous test was useful for checking the movement of the sail during general
sailing operations. Although it did not yield the hoped for results with regards to
tacking and beating, it was not wasted. The test gave insight about the system and
sensors used, and also showed the way to design a test where the maneuvers would
happen. As discussed in section 2.4, this is a common way to happily, accidentally
discover new things. This time, the test will be done with a larger subsystem than
the previous test. It will also happen outside to give the GPS a chance for a lock.

4.2.1 Test setup

For this test, almost the entire boat’s system was built into a trolley. It has handles,
used to control it. Because of this, and as the sail is large, heavy and hard to move
around, only the base of it was included. This contains the control system and
actuator, and can also fit the wind sensor on top. The other part missing is the
rudder, which is not needed as the test is not in water. Rather, it will be controlled
by the handles of the trolley, and will manually be moved in the direction decided by
the navigation system aboard. As this will be a valuable way to test later design and
control system changes, the trolley will be further described and shown in section
5.2.

Figure 20: Test trolley with the sail base.

23

The fan attachment was again used with the wind sensor to simulate certain wind
conditions. Tacking and beating require wind from specific angles. This means the
test should be done on a day with relatively little wind, to keep the uncontrollable
variations to a minimum. A parking spot was originally the planned place to do the
test, but the asphalt and pebbles made a noisy and shaky system. For later testing,
a football field might be a good option. This gives enough space to follow the path
chosen by the navigation system. Due to unstable weather and snow covered fields,
the test was redesigned to be done in the lab with adjusted fans. A fans at the
correct distance were used as a stable wind source, and a mounted fan represented
the head wind. The trolley was steered according to the directions shown by the
navigation system in the dashboard app. During the test, the sail angle, along with
other positional and sensor data was logged for later analysis. The way around the
GPS lock and getting positional data was solved by simulating movements, further
described in section 5.3.

4.2.2 Results

During the test, the web application was used to monitor the states of the system. As
the boat enters tacking mode, red markers are placed on the map in the application.
These show midway points, calculated at an angle out from the target to sail outside
the no-go zone, as described in section 2.1.2. The graph also show a varying wind
angle as the boat is turning back and forth between the sides of the no-go zone.
The horizontal flat parts show close-hauled sailing outside the zone, while the steep
parts shows the resulting wind as the boat is turning though the eye of the wind.

Figure 21: The wind and sail direction shown in angles from the boat.

During the test it was discovered a small uncertainty in the algorithm of the boat.
Even when the wind from the fan was set up directly against the boat in the direction
of the target, there was a noticeable skewed distribution to one of the sides. This is
most likely due to the same wrongful calculation of true wind as further described
in the next test, 4.3. The tacking test was still able to tack, but the boat had to be
turned more to one side than to the other to be contempt with the wind angles to
sail in. This was shown in the web application by recalculation and moving of the

24

midway points. This mostly happened on one side, most likely due to the biased
no-go zone. It happens because the boat replaces the midway points if it discovers
one is inside the no-go zone. This can be seen in the code in the appendix.

The test done by sea trial at the end of last year’s team suggested another problem
for tacking. This is keeping the angle of attack at the set value, also during turning
through the eye of the wind. This problem is confirmed in this test, as shown by
the graph. A difference in sail angle and wind angle of 10 degrees is mostly kept
where possible. Keep in mind that small differences in the graphs in the steep areas
can show a big difference in angle. The constant angle of attack tries to use the sail
even as it enter the no-go zone. This results in a lot more, unnecessary drag during
a crucial time of the maneuver. During the sea trial, the boat was reported to even
move backwards due to the misfitting use of the sail.

This test done confirms some of the problems discovered earlier, and also deepens
the understanding as to why it is happening. With this knowledge, section 5.1.1
and 5.1.3 takes these further and suggests new solutions.

4.3 True versus apparent wind

Previous year’s testing discovered faults in the placements of midway points when
tacking. A well calculated placement of these are necessary for generating propulsion
in the wanted direction. The cause of misplacing these were found to be in the
calculations for true wind. Calculated as described in section 2.1.4, the resulting
true wind found by the algorithm was discovered to be wrong, and the cause of
misplacing midway points. A test was designed to elicit the causes to fix them, as
described in section 2.4.

4.3.1 Test setup

For calculating the true wind from the apparent, measured wind, the velocity of the
boat needs to be known. As discovered during the test of the sail, 4.1, the GPS
could not get a lock inside buildings. The velocity measurements are based on data
from the GPS, thus the test was necessarily performed outside. In addition, some
roughly stable velocity in an appropriate range was needed. As the option comes
easy, the natural pick was to rig the necessary equipment in a portable manner and
use a bike. The test was done on a day with relatively little wind and on mostly
straight lines to keep external conditions roughly stable.

25

Figure 22: The setup used to bring the needed equipment on a bike, for testing wind
calculations.

A subsystem of the electronics for the boat was needed for this test. A backpack
was big enough, and easy to bring on a bike. The pack contained the Raspberry Pi,
GPS, 4G modem and a connection to the wind sensor with a fan. The Raspberry Pi
is necessary for reading and controlling the sensors and communication to store data
on the server. The GPS was used to keep track of positioning and calculate velocity
from it. The 4G modem connects the Raspberry Pi with the server and lets it log
the values during the test. The fan was used to simulate a true wind during the
test. Lastly, the wind sensor measured the apparent wind, resulting from natural
wind, the fan, and the wind occurring due to the movement.

A few adjustments had to be made for the test to work. First, the wind sensor is
driven by 12-24 volts. The cable usually in the boat was loosened from its connec-
tions to connect the Raspberry Pi to the wind sensor, and the power lines to one of
the four 12 volt batteries. To skip the cable inside the mast, a new one was made
with small clamps for each connector pin on the outgoing cable and on the wind
sensor. This also extended the cable, allowing the wind sensor to be held out of the
pack while on the bike. Secondly, a 5 volt 3 amps power pack was brought to power
the Raspberry Pi. Third, a similar pack was used to power the fan on the wind
sensor. This used the same setup as shown in figure 17 to simulate wind.

26

Figure 23: The fans setup to simulate true wind and head wind as the velocity of
the boat was changed.

The setup has been made and verified to be working, and can thus be used for
further testing if needed. However, finding a suitable day with little wind and roads
not covered in snow proved difficult. The time was of the essence as the results
from the preliminary tests were to be used for further development. As such, it was
decided to redesign the test to be able to do it in the lab. The same setup was used,
but the bike was replaced with fans and simulating GPS movements as described in
5.3. The speeds of the winds were measured to place the fans at correct distances
to align with the simulated velocity of movement. This new setup proved valuable
to get the test done, and gave results later used to understand and fix the issues.

4.3.2 Results

From the graph, the first thing to notice is the difference in true wind and measured,
apparent wind. A big point is that with no velocity on the boat, the true wind and
the apparent wind are reported to be the same. This is a correct calculation. As the
boat stands still, the wind sensor aboard becomes a stationary point of measuring.
This means the measured wind is by definition the true wind, as described in 2.1.4.
The sharp upwards curve of the graph at these points, where the velocity is 0, is due
to the transition. In the test, the boat velocity was suddenly set to zero, and the fan
shut off at the same time. However, the momentum keeps the fan spinning, giving
the boat a head wind gradually descending as the fan slows down. This gradual slow
down in combination with the sudden 0 speed, temporarily makes the calculations
wrong. This will, however, not happen during actual sailing.

27

Figure 24: Measured wind and a varying boat velocity on 0 or 1.2 m/s shown with
a resulting, calculated true wind.

The wind angle-line shows the apparent wind, measured by the wind sensor. While
the boat is sailing, shown by the velocity-line, the measured wind lies around 45
degrees. This is the resulting angle from the two wind applied. They are parted by
90 degrees, placed at around 0 and 90 degrees. As they also have similar speeds, the
resulting wind angle will be somewhere around the middle, at 45 degrees, which is
what we see. As soon as the boat velocity is set to 0, and the fan shut off, we can
see the measured wind reacting to it. As soon as the fan has stopped, it becomes
clear that the apparent wind is converging in on 90 degrees. This is also a good
result, as then only the fan oriented on the right, at 90 degrees is blowing.

This last result does also show a fault in the calculations. As mentioned, the true
wind fan is placed at 90 degrees. This is also shown in graph by two things. As
mentioned, these are the angle the apparent speed is converging on with no boat
velocity, and also shown by the resulting wind being at 45 degrees. However, this
90 degree angle is not what is shown in the graph for the true wind. Rather, it
fluctuates at around 125 degrees, 35 too much. This means the calculations and
algorithms are on track, and acting correctly to different states, but the true wind
angle calculation is returning the wrong values. The cause and fix of the problem
will be continued in section 5.1.1.

28

5 Method

A lot of progress has been made by previous development. Yet, not everything is
working as intended. To get the boat ready for its mission, the focus will be to
straighten out all mistakes. Previous testing has pointed out some problems, but
not all causes are known. Last chapter focused on more testing to find the cause
of known problems, as well as search for any other ones in crucial operations. This
chapter will build on the acquired knowledge from these sources, and focus on using
it to get the boat ready. In addition, it describes the steps done for improving testing
capabilities and availability for further development.

5.1 Work on existing issues

From previous development and testing, some issues have been discovered. These
have been further explored in the previous section, section 4, to find the cause and
implications of the issues. After this exploration, a better understanding has been
built up as to what is needed of the subsystems to work properly. This section
will go over the solutions found and changes made to these previously discovered
problems.

5.1.1 True wind versus apparent wind

As described, the Raspberry Pi acts as the brain of the boat. Thus, this is where
the calculations for navigating is happening. As a part of calculating the route to
the next target from the current location, the true wind is needed. Though the sail
is angled based on the felt wind, the true wind dictates the heading. For example, a
target to be reached with the wind coming from the same direction will result in a
heading within the no-go zone. Using the true wind, a midway point with a heading
just outside the no-go zone will then be calculated.

Figure 25: Midway point in read on the way to a target marked in white. The wind
is from an east-southeast direction, making the target be within the no-go zone.

The true wind cannot be directly measured from the boat, as it is moving. As
described in section 2.1.4, it can be derived using the measured wind and data from
the GPS about the velocity of the boat. As the angle of the wind is defined by

29

the direction of the boat, the resulting felt wind due to the velocity of the boat
will always be close to the same angle. Making turns can shift this angle a bit
as the direction of travel is not directly with the direction of the boat. This will
however not be much, and most readings will happen with the boat traveling with
its direction.

During earlier testing, and the testing described in 4.3, the calculation of true wind
in the above manner has been discovered to be wrong. This results in bad decision
making and placements of midway points. Worst case, this can give the boat a
heading in which it cannot sail due to entering the no-go zone. It is, however, not
the formula in it self that is wrong. The equation used is from (Calculating apparent
velocity and angle 2023), and is

α = arccos

(
A cos β − V√

A2 + V 2 − 2AV cos β

)
. (1)

Where A is apparent wind velocity, V is boat wind, β is the angle of the apparent
wind, and α is the true wind angle. The boat wind, V , is thereby the wind coming
from the movement over ground of the boat. It can also be denoted that the entire
denominator within in the inverse cosine is the true wind speed.

Figure 26: Velocity from GPS read off from the web application on a mobile phone.

As mentioned, the equation is not faulty, but the results still were. Through testing

30

in section 2.1.4, it was discovered that the reason for the wrong calculations was an
unexpected unit of the speed output from the GPS. It deviates from the standard
unit of m/s, and rather reports the speed in knots. The conversion from knots to
m/s happens by multiplying the amount of knots with a factor of approximately
0.514. To fix the problem, this multiplication is added in the code in the true wind
angle-method input. The navigation program, developed from earlier and changed
for improvements is in the appendix, B.

5.1.2 State of electronics

From previous development, the electronics were found to be sub-optimally as-
sembled. During simple, stationary testing, sounds from arcing could be heard.
This means isolation between electrically leading parts of the system with voltage
applied is too low, or something is broken. In this case it was both that the metal
of wires and solder points were not covered and that they in addition were loose.
Free to move, these parts touched and made small sparks. Several other points
were found to have bad isolation and wiggle room to touch other conductive parts.
Lastly, solder points were found to be brittle. This was part of the problem with
conducting parts touching, but also makes bad physical attachments prone to break
easily.

Figure 27: Example of brittle solders breaking.

The reason for brittle solder points is often too low temperature of the bonded
materials. Melting the solder, but not letting the other metals heat up enough is
often the cause. Covers were cut away to reach solder points along wires and on
connectors. The found problem areas were resoldered, this time with enough time
and heat to get a proper attachment. As the boat has many solder points in many
connector solder cups, it is worth noting that not all are resoldered. Most have held
up thus far, but it is good to look out for the rest as loose attachments can short

31

anything.

Figure 28: Example of good solder with enough heat and covered with an isolating,
heat resistant material.

In any case, making sure a non-conductive material separates parts with applied
voltage is a good precaution. This makes it harder to short out the power lines
which can possibly destroy electronic equipment. In addition, it rules out any data
transmitting wires from touching others. This is a common problem requiring a lot
of debugging to understand why the data is wrong or systems are not working. All
points found lacking isolation has been covered with heat shrink tubing or masking
tape for electronics. This will add a preventative layer from future development and
testing accidentally burning something or corrupting data readings. In addition, the
wires and cables have been collected in common routes to increase strength, lower
complexity of overview and improve effectiveness of visual inspections.

5.1.3 Tacking

After last year’s development, tacking was discovered to behave suboptimally. Dur-
ing the sea test in (Pleym and Ølstad 2022), the boat lost all its speed when trying
to turn through the wind. It was also discovered a fault in the calculation of true
wind. This is crucial to the performance of tacking. In addition to work on this
calculation, the program has been altered to try to minimize the drag on the sail
while turning through the wind.

The fault in the calculation of true wind has been previously fixed as described in
section 5.1.1. This should increase the tacking performance by making sure the
angles are correct. A wrong calculation of true wind will result in one of two things.
When the calculation is wrong, it sets a wrong angle on the true wind, extending it
in one direction. In the first outcome, when the boat tries to sail close-hauled on the
same side as the wrong true wind, the angle of sailing is exaggerated. It is longer
away from the wanted direction than necessary, making a longer trip. The boat
will, however, have good wind conditions, as it is more closing in on beam reach, as
mentioned in section 2.1.3.

32

Figure 29: True wind (green) and false true wind (red). When it thinks it is sailing
close-hauled, the boat can be trying to sail within the actual no-go zone. This is by
the edge of the green zone within the red zone.

When the boat then tries to turn through the eye of the wind, it will find more
problems in the second outcome. This is when the boat decides to turn to the
opposite side of the false no-go zone, where it is inside the actual no-go zone. It will
then not have enough of an angle from the true wind to enter close-hauled sailing.
Rather, it will stay inside the no-go zone, potentially losing all speed. If lucky, it
can sail close to the edge of the no-go zone, but with a heavily lowered speed. This
will most likely not be enough to pass through to the other side when again turning
through the eye of the wind. With a correct calculation of true wind, these problems
can be avoided. Thus this will contribute tremendously in helping the boat being
able to do the tacking maneuver.

When tacking, enough speed is crucial to able to sail through the eye of the wind.
To further help the boat making this maneuver, the required speed can be lowered.
This can be achieved by making sure the sail turns as the boat turns through the
wind. Using this to place the sail in a neutral position, directly up against the wind
can help by drastically reducing drag. This will lessen the amount of which the boat
is slowed during the time it has no way of generating positive propulsion. As the
boat is sailing close-hauled with an angle of attack of 10 degrees, little adjustments
are needed to set the sail in a neutral position with the round edge towards the
wind.

To achieve this, the sailing program has been updated with some new logic. The
navigation-file is where the sail and heading calculations are done, and thus this
file contains all the necessary changes. The file is shown in the appendix, B. The
previous logic sets up midway points on an angle off from the target to get outside of
the no-go zone. The sail should be in a neutral position only when we are between
these midway points. For this, a variable is added to the code to keep track of
whether we are coming from one of these midway points.

33

Figure 30: Midway point marked with no-go zone and wind direction.

As long as the variable telling if we are coming from a midway point is true, the angle
of attack is set to 0. This sets the sail in a neutral position, following the wind while
sailing through it. Three cases alter the variable. First, if correct heading is reached,
we have sailed through the wind and came out successfully on the other side. The
boat should keep sailing on this side, close-hauled. Secondly, the next point is not a
midway point, but a way point. This means the next target is not within the no-go
zone, and tacking is not necessary. Thirdly, when a target is reached, and this target
was a midway point, the variable is again set to true. This will last until one of the
above cases is reached, resetting the variable to false, and the angle of attack to 10.

5.1.4 Batteries

In the beginning of this year of the project, it was discovered a lack of power from the
batteries. On simple in-door tests with newly charged batteries, they could simply
not supply enough power. As they are supposed to support the boat in harsher
conditions and over longer time, and are crucial for the normal operations, this was
a problem. During these tests, components in the system would shut down due to
lack of power supply. The system would thus not work properly.

For each of the test instances where the power supply was a problem, a standardized
procedure was followed. The full system, or subsystems of it, was to be used.
The batteries were charged beforehand, using a 29.4 volts power supply, and a
current limit of 4.32 amps. This is 30% of the capacity of the batteries, used as
described in their manual (Blyakkumulator 2023). The values were both doubled
from the recommended values for one battery because of the setup used with the
four batteries, as described in section 3.1.3. The batteries were then charged until
the amps out of the power supply showed about 3% of the capacity. This is 0.216
amps for one battery, and 0.432 for the setup used on the boat.

34

Figure 31: Measuring of batteries for logging. As shown, the voltage is way lower
than the nominal 12 volts.

After the problem was discovered, tests were done on single batteries. From a
full charge, the voltage was regularly measured. Over short amounts of time, the
voltage dropped significantly, indicating an unhealthy battery. From the manual
(Blyakkumulator 2023), it turns out the lead acid batteries, used for the boat, can
handle low charge over time poorly. Most likely, the battery cells have become
damaged because of this between project hand-overs.

For further development and testing of the boat, a set of four new, similar batteries
have been acquired. To keep them working optimally, they should regularly be fully
charged going forward. They are happy as long as long periods of time with low
charge can be avoided. When the boat is ready, it is recommended to switch the
batteries out. Replacing them with types that can handle low charge for extended
amounts of time is optimal. Suggested are lithium based batteries, which thrive on
a lower than fully charged level.

5.2 Building a test trolley

As described in section 2.4, testing is an important part of development. As sea
trials are now cumbersome and requires planning, transport and several people, an
easier way of testing is needed. Rather than full blown sea trials, a test trolley was
built. It is a trolley carrying all the control equipment of the boat, as well as most of
the hardware, sensors and control surfaces. This makes testing of entire systems in
real life available by just going outside to an open field. Using a phone or computer,
the intended headings can be observed and followed by pushing the trolley around.
This is an incredible possibility to thoroughly test new and old solutions in real life.

5.2.1 Installing the sail

An earlier iteration this year on the trolley proved the original size too small to
fit the length of the sail. This meant a limited angle of possible movements of the

35

sail, and would also require software changes to hinder the sail from going there. A
thought was to remove the sail altogether, and only follow directions given by the
control system and push the trolley accordingly. However, this would take out an
important test parameter, namely the possibility to observe correct positioning of
the sail under different maneuvers.

Figure 32: The sail base mounted on the trolley with beams.

To be able to fit the sail properly on the trolley, allowing easiest operation and full
range testing, a few adjustments were made. Firstly, the size of the trolley was
extended. This was necessary to allow full range of the sail. The solution was to
bolt two wooden beams to the trolley, making a platform for the sail extended out
in the front. A wooden board was used underneath to secure the bolts from slipping
through the net of the trolley. A previously made base was used for fastening the
sail, and already has holes for bolting it.

Figure 33: The new plug made for mast assembly. Made a bit smaller to replace
the cold welded plug.

Secondly, the mast was removed. Using the full sail is unnecessary as all directions
are shown with the base. Also, all the control electronics is mounted on the base,
and the wind sensor can still be used atop the base. For the splitting of the mast

36

to be possible, the old plug between the base and the rest of the mast had to be
cut. The fit was too tight, and as both parts were made of aluminum, a partial cold
welding had happened. The plug was cut and removed using a bayonet saw to reach
within the mast rods. A new plug was ordered with a slightly looser fit. It might
also be coated to avoid cold welding again. Two bolts will secure the three parts
together.

5.2.2 The new electronics board

In the pre-study (Project Thesis, 2022) it was discovered that the old solution for
containing the electronics had to be switched out. The box used was simply too large
to be able to fit on the smaller prototype with the new hull. For this reason the
electronics were moved over to a wooden board. This is a quick and durable solution
for rapid testing. The board is also made small enough to fit on the trolley made for
testing. However, as described in the pre-study thesis, the lack of dimensions and
complete design of the new hull left the positioning of the electronics open. This
has now changed and enough information is available for positioning and fastening
the electronics.

A requirement for rapid testing in this scenario is that the electronics can be easily
loosened from the board. This ensures availability to switch parts, check connections
and debug isolated devices. Yet, the devices should be securely fixed and not able
to move around or fall loose. To meet these requirements, bands and strings where
chosen, in addition to some 3D-printed brackets designed for the batteries. Strong
bands are used with the brackets on the batteries as their weight is substantial. The
brackets will stop any movement along the plane of the board, while the bands will
hold the batteries tight to this plane. For the microcomputers, the simple solution
of strings where chosen. It is strong and flexible enough to make a secure fix to
the board. This while keeping the possibility of untying or cutting the strings if
necessary.

Figure 34: 3D-printed battery brackets, set up in their positions around the batter-
ies.

The position of the electronics on the board where chosen based on wiring and nat-
ural grouping. The batteries as one group and the small, boarded controllers as

37

another need to be connected within themselves. Thus, the batteries are placed
together, and the other electronics is placed together. This has also helped cleaning
up the wiring, trying to collect it in more of a wiring harness. This makes the con-
nections clearer and will help debugging and visual inspections. Another advantage
of placing the batteries together is that they can all be stored as low as possible in
the boat. Placing the board with the batteries down will thus lower the center of
gravity of the boat. Lastly, this makes the smaller electronics go on top. These are
the ones connected to most devices out on the deck, and the connections will with
this be shorter and easier available.

Figure 35: The new electronics board.

To collect all the wiring in one place, a box was designed and 3D-printed. It consists
of a floor and a box lid that slide together around the wiring. It has slits to allow
wires and cables in and out. This box will act as a protector to the wiring when
moving the board around and when testing. A big advantage is also to collect all
the outgoing cables and wires together for strength. Forces will pull the wires during
testing or sailing, and single wires can easily snap or damage their isolation in these
cases. Collecting all together through a single hole in the wire box will give some
strain relief. In addition, they are clamped together with firm rubber bands to
spread the forces. As the box is fastened to the electronics board, single wires and
cables to the control devices will not be ripped out.

5.2.3 Simulating wind

To properly test different parts of the boat under different conditions, a controllable,
simulated wind is necessary. This gives the means to test the sail angling, reaction
and different added maneuvers. The tests should be constructed with care and
proper focus, as described in section 2.4. To simulate different wind conditions for
the tests, a fan with a holder was constructed. This is the same setup used for the
tests in sections 4.2 and 4.3.

The setup needed to be light enough to be put a top the sail, where the wind sensor
is. It also needed the ability to be manipulated into different directions. This is to
achieve different states, point of sails and maneuvers. One of the main maneuvers

38

to be tested is tacking. To meet these requirements, a ring mount with a jig for a
fan was designed. It is simple and light in the construction. The ring mount was
printed in two separate parts to be able to thread the other one on before gluing it
shut. This secures the fan holder while still enabling the fan to swing around the
wind sensor. The flexibility in the fan holder lets two rubber knobs be tightened
between the jig and the fan to secure the fans position.

Figure 36: 3D-printed holder for a fan.

5.2.4 Fastening of small equipment

All the loose equipment meant to be mounted around the boat had to be secured
safely, but available on the trolley. As it is a test rig, fastening equipment perman-
ently is a bad idea. The sail and electronics board have already been placed, with
the latter using the same straps that hold the batteries to secure itself to the trolley.
With its heavy weight from the four batteries, its placement is also a counterweight
to the protruding mast and sail jig. As mentioned, the wind sensor still fits atop
the partial mast, still very much able to read the wind.

Figure 37: The trolley surface with cables, controllers and sensors.

For the smaller parts, sensors are mostly placed around stable places. Rolls of wires
and cables are placed low on the trolley, and secured with strip ties. These also make
stable placements for sensors, as well as giving them a dampening ground to lay on.

39

The rudder actuator is also mounted on the trolley. This gives a good indication
if the heading is not close enough to the one set by the navigation system. The
actuator is mounted in the back with the actuated arm clearly visible to read out
changes. It is locked in place with one of the straps from the batteries, long enough
to secure both.

5.3 Simulating movement

As discovered in section 4.1, the boat would not enter maneuvers like tacking without
a GPS lock. This is because these maneuvers are dependent on a distance traveled,
and are blocked without GPS lock. In addition, missing GPS lock means there are
no positional data to be used for calculations. This makes the navigation uncertain.
Because of this, navigation calculations have been limited to only steer properly
when all necessary sensor data is available. As a result, testing is made harder. As
described in section 2.4, the possibility to test subsystems of the boat is important
for qualitative progress. Thus, it should be possible to do tests while not having all
sensors available.

Testing is made harder when not available to do in the lab. Testing outside intro-
duces a lot of unnecessary factors. Testing with these will be important at a later
stage, but testing with controllable environment is important for debugging and
testing new features. Doing it inside eliminates a lot of variation. At the same time,
weather will not be a factor. In the testing stage, the equipment aboard the boat is
usually not water proof, as it is time consuming and wasteful. The wind is also an
important factor for testing, and control over it is essential for testing new sailing
programs. Aspects of the environment and of the boat is also much more available
for manipulation during testing. Last, testing inside also gives time and room to
constantly check values and states on a connected computer nearby.

These reasons are why a program to simulate movements of the boat was made.
It enables testing on sail control and navigation controls while in a controlled, still
environment. With the switch of one variable, a GPS lock is no longer necessary
for the navigation calculations to run properly. The variable is a Boolean, set to
true when wanting to simulate travel. It is passed on to the GPS-program, which
retrieves location data and updates the coordinate state of the boat. When the
variable is true, the retrieval is replaced by a method. This method is a simple
logic, traveling at a speed set in the first lines of the method. It will iterate the
boat towards its next target, a way point or midway point. The distance of travel
is updated by the formula

dist = speed ∗ dt ∗ (1or − 1)/coordlength, (2)

where speed is the one set in the method, dt is the delta time since last update, and
1or − 1 is used for direction. Dividing by the coordinate length is necessary to be
able to add the resulting value to the coordinates. Each latitude has a set distance
between each other of about 111km. The distance between longitudes are varying
as you move north or south, but one degree is about 49.8km at the testing site.

40

All the necessary values in the method are retrieved from the navigation class. It
saves the time of last update and the previous coordinates to be updated from. The
navigation class also holds the next target of the travel, including midway points
when they are necessary. The code changed can be found in the appendix, C.

5.4 Adding a sensor

The mission of the boat will most likely be data collection of different environmental
aspects. As such, it will need a collection of sensors to capture this data. As the
control system and sailing algorithms are closing in on a state fit for the mission,
sensors will also have to be implemented. They need to get power and control from
the existing system, while having a portal for saving the data. This will also be a
place to get the data to send it to interested parties. The control system has its
way to go before being ready, but implementation of sensors can already be done to
prepare for the mission. This also makes sense from a planning view, as the sensors
also need testing and integration time with the control system.

Figure 38: Implementation of temperature sensors with test setup.

For a test, and beginning of sensor data, one temperature sensor has been imple-
mented. This will most likely be usable in the future, and the process will showcase
how more sensors can be added. An extended hub might be needed in the future
to connect all wanted sensors. For this test, the implementation and data collection
were in focus, and so the sensor is simply connected directly to the Raspberry Pi,
using its I2C (Inter-Integrated Circuit) interface. This is a standard protocol used
by a lot of sensors and are in addition quite similar to the alternatives. Four wires
are connected to the pins on the Raspberry Pi, consisting of power, ground and
two communication pins of the I2C protocol. After enabling this protocol on the
Raspberry Pi, the sensor is available for the software.

41

Figure 39: Together with the other sensors, the temperature sensor data is also
available in the web app, and is also logged.

To add new sensors to the system, a few changes will have to be made in the
code. First, a file for the sensor is added. This makes the sensor class, and holds
initialization functions as described by the documentation for the specific sensor.
This class is used by the run program to initialize the sensor, make a connection
with it and set up a way of retrieving data. Next, it has to be added to the run
program, to assign it a thread to keep running in the background. This is done by
adding a sensor process and assigning a thread to it. Next, the data from the getter
function in the sensor file has to be added to the states. This makes it available for
uploading to the web app. Last, the thread and process has to be added to the exit
event to close the connection properly on system shutdown. All the details of the
temperature sensor and the changes in the code are in the appendix, D.

42

6 Results

Following this year’s development, the boat is a few steps closer to being ready for
its mission. The system has been mapped out, and the code commented in more
detail. Hopefully, this will ease the take over for further development. Most of the
practical sailing problems have been sorted out from the sea trial conducted last
year. Yet, due to the building of a new hull taking longer than expected, the new
solutions have not been tested in a full scale. The following subsection will show
some tests performed to verify the solutions found for problematic subsystems.

By building a test trolley with supporting simulation capabilities, testing have be-
come a lot easier. Before the boat is ready, a lot of software has to be developed, and
testing will be crucial. The test trolley makes a simple, movable system for testing
response to several inputs. For now it has been sail control based on wind inputs
and heading. In the coming years, obstacle avoidance and some sort of awareness to
other vehicles has to be developed. Testing during development of this will benefit
greatly from the mobility and possibilities of a hand-controlled boat on wheels. In
addition, software developed for simulating coordinates and movement is invaluable
for testing. With these, a lot of tests can be done quickly and accurately, still placed
inside the lab.

For tacking, correcting the calculation of true wind is expected to help a great deal.
Following the sea trial from last year and the results for it in their report, (Pleym
and Ølstad 2022), this fix should help on the problem with speed. Correcting the
sail angles and making sure the boat is outside the no go-zone will help it catch
the wind better. It will also increase the time of which the wind is available for
propulsion. In addition, as suggested in their report, the sail is now being assigned
a neutral position to minimize drag. This will help it during the crucial time of
turning through the eye of the wind.

The next steps on the development on the boat will most likely be dependent on
more sensors. Either mission specific for picking up valuable data, or more sensors to
perceive the surroundings, e.g. for object detection and avoidance. A sensor has been
added for testing, and was chosen to be useful on the mission. Its implementation
shows how new sensors can be added to the existing system. The implementations
is also described in section 5.4, and can be seen in greater detail in the files in the
appendix. In addition, previously implemented sensors used for sailing shows how
values can be used for navigation tasks on the boat.

6.1 Concluding tests

As a proper sea trial was not possible, the changes made had to be verified in other
ways. Tests have been set up to look at how the changed subsystems work and
perform. The tests are mostly done in the same manner described in section 4,
originally designed to uncover any current flaws of that version. This section will
describe the tests and go over the meaning of the results.

43

6.1.1 Tacking

Following the test in section 4.2, showing the problems, section 5.1.3 came up with
new solutions. It was hoped to get a new sea trial to test all changes. Unfortunately,
building of a new hull was not finished before this year’s project end. Instead, a
small test, similar to the one in 4.2 was conducted to verify the changes made to the
algorithms. All changed code will be in the appendix for anyone interested. Version
control is on GitHub for further development.

Figure 40: Wind and sail angles from the new test.

The skewed distribution shown in section 4.2 can no longer be seen during tacking.
Correcting the true wind calculation removed this unbalance around the 180-degrees
line. From the graph, one can see that both sides are extended similarly out from
the 180 degree zero-line. After adjusting the angles 180 degrees for easier reading,
this line is what marks the wind coming directly against the boat. With a constant
true wind direction, the lines extend about 20 degrees out from the zero line. This
is due to the boat turning during the tacking maneuver. The turning keeps the
boat close to the wanted course, while staying outside of the no-go zone. This even
maneuvering shows results hinting at a working tacking maneuver. This is promising
towards a sea trial that should happen early in next year’s development.

Another problem discovered in last year’s development, (Pleym and Ølstad 2022) is
also shown in section 4.2. It is further described and explored in section 5.1.3, and
is regarding the sail angle during tacking. As the boat is turning through the eye
of wind, it needs to minimize drag to maximize chance of successful maneuvering.
After the changes done, the results in figure 40 shows a promising new trend. As the
boat tacks, which can be seen by the changing wind, the sail angle follows it. This
means that the boat collects speed during close-hauled sailing, then neutralizes the
sail as soon as it starts turning. The resulting angle of attack of 0 degrees means
the sail is performing the least it can as the wind tries to push against the wanted
direction.

44

6.1.2 True wind

After the calculation of true wind was discovered to be wrong and its implications, a
fix was done in section 5.1.1. Following this, a new test was conducted to verify the
solution. The test was done in a similar manner to the one described in section 4.3.
This solution is also a great part of solving the tacking issues seen from before. As
mentioned in the previous test, this solution will also have to be tested in a sea trial.
Only then can the full system be tested in the real application for verification. This
test will, however, verify the solution as a sub-system, independently of all others.
The changes made to the algorithm can be found in the code in the appendix.

Figure 41: The measured, apparent wind shown with the velocity of the boat and
the resulting, calculated true wind.

The graph above shows the true wind calculated by the algorithm in green. The
blue line shows whether the boat has a velocity or not, and the orange line is the
apparent wind, measured by the wind sensor. One can see the measured wind
changing direction as the boat has a velocity, creating a head wind, which is correct
with reality. For the test, the head wind is coming from directly in front of the boat,
and the true wind is set to the right, at 90 degrees. When both winds play a role, it
is the task of the algorithm to determine the true wind based on the speed of which
the boat is moving. The green line clearly show a calculated true wind of around 90
degrees while the boat is moving. This is the correct calculation, as the true wind
fan is placed at 90 degrees.

The big spikes in the green and orange lines are two different phenomena happening
in the test. To start with the orange lines, the steep increases are a result of the
boat velocity. This creates head-wind, interfering with the true wind. This increases
the angle until the measured angle is the result of the two input speeds and angles.
For the green line, the spikes are happening because of the nature of the fan. It is
stopped as the boat speed is set to 0, but its angular momentum keeps it going for a
while. This creates a gradually descending head wind while the velocity is suddenly
0. Where the green and orange line aligns, the boat is stopped and the head wind
disappears. This makes the measured wind the true wind, aligning the two lines.

45

7 Further work

Several of the changes made described in this thesis have been verified. Yet, a full
blown sea trial has not been conducted due to the testing hull not being ready on
time. To properly test the system, especially with the new hull, is therefore strongly
suggested. This will map out any remaining issues, and might uncover new ones.
Importantly, it can also be used to tune the values of the system with the new
hull. This includes no-go zone limits, optimal angle of attack on the sail and angles
for switching between sailing modes. The hull and its robustness will also be an
important item of the test.

The navigation system will at some point need an upgrade. Awareness of land and
reefs marked on the map will have to be included in the navigation system. Sea
maps are usually well updated and shows most stationary hazards in the water.
In addition, sensory systems for detecting objects will have to be added. This
is important to be able to avoid mobile or new objects, such as other boats or
installations not yet marked on a map. The route planning will have to take any
obstacles into consideration to avoid them. This might also be a good idea for
weather forecasts. Taking wind direction and speed, waves and heavy rain into path
planning can save on maintenance needs, power consumption and speed of travel.

A system for uploading and logging sensor data is already in place, but changes might
be needed. A platform where interested parties can log in and get their ordered data
might be a possibility. For now, the commercial sensor data is uploaded with the
operational data from the boat. In the future, the load might have to be split up. If
the amount of data sent is greatly increasing, a prioritization system can be needed.
For example if the boat has bad reception, some boat states can be prioritized for
monitoring and orientation. An independent system with a transmitter and a web
based platform might be a good solution if the load is heavy.

Lastly, two systems for safety in operability can be a good investment of time. The
first is a low power state. This can be while waiting for new missions or target areas,
or when traveling to new ones. Sensors not needed for navigation and their logging
can be turned off to save on power. The same can be done with other systems not
crucial for long travels. In addition, a good system of power regeneration should
be added. Already a solar panel can fit in the sail, which can be a good solution.
Another one could be a generator in the water running on the power harvested
with the sail. The second is to add some sort of safety system aboard. For some
components, this can be redundant copies, taking over if something happens to the
original. Another solution might be an emergency mode, where speed and travel is
minimized. At the same time, only crucial data can be transmitted, like coordinates.
At least, some sort of fail-safe system should be implemented to minimize damage
and loss. These are some suggestions to get started on further development towards
a boat ready for its mission in the years to come.

46

8 Conclusion

The development of the autonomous surface vehicle has been continued. During this
year, several issues discovered or suspected from previous testing has been worked
on. It has been a fitting mix of elaboration by testing, and continued work to sort
the problems out. Simultaneously, testing has been made a lot easier. Software
has been written to support several likely scenarios in testing, and hardware has
been built to enable thorough testing on land. Overall, the state of software has
improved, as well as some hardware. Although a sea trial was not possible, due to
external reasons, several tests have been done on affected subsystems to verify the
fixes.

After testing, problems with sailing and sensor impressions have been solved. The
wrong calculation of true wind has been corrected, which also improved the prospect
of tacking maneuvers. The tacking has also benefited from updated algorithms,
neutralizing the sail when turning through the eye of the wind. Overall operability
has also been increased from previous development. This is due to two factors. The
first is a change of batteries. These do now have more capacity, and work properly.
The factors that decayed the old ones have been listed in this report to avoid the
same mistakes again. The second is an improvement of electronic connections. Wires
and cables have been put in a way to maximize strength against pulling forces. This,
together with resoldering bad solder points should make a more rugged system, more
resistant to damage.

With the improvements on tacking, the boat should be more capable of sailing to its
target. This is regardless of the wind. Existing sailing algorithms have in the earlier
sea trial proved themselves capable, while tacking was the one lacking. With the
improvements, tacking is a promising maneuver the boat can use when the wind is
coming from the direction of the target. The electronics system’s increased resistance
to damage enables more firm sailing and longer up times without hardware failing.
This will apply to the mission, and is already in play for testing.

The availability of testing has also improved immensely with this year’s development.
A rig built on a trolley enables testing on land, making it available at the lab and
with no equipment for transportation. Specific input can be easier managed to test
specific solutions, cases or aspects. To go with it, simulation software has been
built to overcome challenges met with getting a GPS lock while testing. This has
made stationary testing possible, with immense improvements to controlling the
environmental factors during testing. This has greatly enhanced testing in a good
spirit of prototyping.

Lastly, the boat has a mission it should be able to complete. The sailing capabilities
and ruggedness means nothing if the boat does not serve a purpose. For the mission,
data about the environment is the main objective. Thus, a way of connecting sensors
to the system has been shown. This is implemented to report to the Raspberry
Pi. From there, communication with the land based server enables uploading the
data, and logging it for later use or distribution. The steps needed are showcased,
suggesting a method of implementation. The way of uploading and logging is a
project standard, capable of extension to several new sensors.

47

Bibliography

About us (2022). Raspberry Pi Foundation. url: https://www.raspberrypi.org/about/
(visited on 3rd Dec. 2022).

Anatomy of a sailboat (2022). Sailrite. url: https://www.sailrite.com/anatomy-of-a-
sailboat (visited on 28th Oct. 2022).

Andy Batchelor, Lisa B. Frailey (2016). Cruising Catamaran Made Easy: The Offi-
cial Manual For The ASA Cruising Catamaran Course. American Sailing Asso-
ciation.

Bethwaite, Frank (2007). High Performance Sailing. Adlard Coles Nautical.

Blyakkumulator (2023). Biltema. url: https://www.biltema.no/bil---mc/bilbatterier/
blyakkumulatorer/blybatteri-12-v-72-ah-151-x-65-x-95-mm-2000047907 (visited
on 13th Apr. 2023).

Calculating apparent velocity and angle (2023). wikipedia.org. url: https : / / en .
wikipedia.org/wiki/Apparent wind (visited on 12th Apr. 2023).

Cliffe, Tom (1994). The Complete Yachtmaster. London: Adlard Coles Nautical.

Cunliffe, Tom (2016). The complete day skipper: Skippering with confidence Right
From the Start. Bloomsbury Publishing.

Elverum, Christer W. and Torgeir Welo (2015). ‘On the use of directional and in-
cremental prototyping in the development of high novelty products: Two case
studies in the automotive industry’. In: Journal of Engineering and Technology
Management 38, pp. 71–88. issn: 0923-4748. doi: https://doi.org/10.1016/j.
jengtecman.2015.09.003. url: https://www.sciencedirect.com/science/article/pii/
S0923474815000405.

Holtet, Jan A. (2022). Misvisning. Store norske leksikon. url: https : / / snl . no /
misvisning (visited on 2nd Dec. 2022).

Houde, Stephanie and Charles Hill (1997). ‘Chapter 16 - What do Prototypes Pro-
totype?’ In: Handbook of Human-Computer Interaction (Second Edition). Ed. by
Marting G. Helander, Thomas K. Landauer and Prasad V. Prabhu. Second Edi-
tion. Amsterdam: North-Holland, pp. 367–381. isbn: 978-0-444-81862-1. doi:
https : / / doi . org / 10 . 1016 /B978 - 044481862 - 1 . 50082 - 0. url: https : / /www .
sciencedirect.com/science/article/pii/B9780444818621500820.

Jobson, Gary (1990). Championship Tactics: How Anyone Can Sail Faster, Smarter,
and Win Races. New York: St. Martin’s Press.

— (2008). Sailing fundamentals. Simon and Schuster.

Kimball, John (2009). Physics of sailing. CRC Press.

Kjerstad, Norvald (2022). Deviasjon (kompassavik). Store norske leksikon. url:
https://snl.no/deviasjon - kompassavvik (visited on 2nd Dec. 2022).

Misvisning og deviasjon (2022). Sjøakademiet AS. url: https://www.xn--btfrerprven-
x8a3wf.no/emner/retting-av-kurser/ (visited on 24th Nov. 2022).

48

https://www.raspberrypi.org/about/
https://www.sailrite.com/anatomy-of-a-sailboat
https://www.sailrite.com/anatomy-of-a-sailboat
https://www.biltema.no/bil---mc/bilbatterier/blyakkumulatorer/blybatteri-12-v-72-ah-151-x-65-x-95-mm-2000047907
https://www.biltema.no/bil---mc/bilbatterier/blyakkumulatorer/blybatteri-12-v-72-ah-151-x-65-x-95-mm-2000047907
https://en.wikipedia.org/wiki/Apparent_wind
https://en.wikipedia.org/wiki/Apparent_wind
https://doi.org/https://doi.org/10.1016/j.jengtecman.2015.09.003
https://doi.org/https://doi.org/10.1016/j.jengtecman.2015.09.003
https://www.sciencedirect.com/science/article/pii/S0923474815000405
https://www.sciencedirect.com/science/article/pii/S0923474815000405
https://snl.no/misvisning
https://snl.no/misvisning
https://doi.org/https://doi.org/10.1016/B978-044481862-1.50082-0
https://www.sciencedirect.com/science/article/pii/B9780444818621500820
https://www.sciencedirect.com/science/article/pii/B9780444818621500820
https://snl.no/deviasjon_-_kompassavvik
https://www.xn--btfrerprven-x8a3wf.no/emner/retting-av-kurser/
https://www.xn--btfrerprven-x8a3wf.no/emner/retting-av-kurser/

Osnes, Andreas (2022). Avdrift (sjøvesen). Store norske leksikon. url: https://snl.
no/avdrift - sj%C3%B8vesen (visited on 2nd Dec. 2022).

Patrick F. Rynne, Karl D. von Ellenrieder (2010). ‘Development and Preliminary
Experimental Validation of a Wind- and Solar-Powered Autonomous Surface
Vehicle’. In: pp. 971–983. doi: 10.1109/JOE.2010.2078311.

Pleym, Adrian Skogstad and Magnus Westbye Ølstad (2022). ‘On development and
validation of an autonomous sailboat’. In: url: https://hdl.handle.net/11250/
3023721.

Point of sail (2022). Wikimedia Foundation. url: https://en.wikipedia.org/wiki/
Point of sail (visited on 25th Oct. 2022).

Raspberry Pi OS (2022). Raspberry Pi Foundation. url: https://www.raspberrypi.
com/software/ (visited on 4th Dec. 2022).

Roland Stelzer, Tobias Pröll (2007). ‘Autonomous sailboat navigation for short
course racing’. In: doi: 10.1016/j.robot.2007.10.004.

Rousmaniere, John (1999). The Annapolis book of seamanship. Simon and Schuster.
url: https : / / books . google . no / books ? id= xRqzoX04v5AC& lpg=PR9&ots=
RTUPaf4YkK&dq=the%20annapolis%20book%20of%20seamanship&lr&hl=no&
pg=PR9#v=onepage&q=the%20annapolis%20book%20of%20seamanship&f=
false.

Sailing terms everyone should know (2022). asa.com. url: https://asa.com/news/
2021/07/07/sailing-terms-you-can-use/ (visited on 6th Dec. 2022).

Saoud, Hadi et al. (2015). ‘Routing and course control of an autonomous sailboat’.
In: doi: 10.1109/ECMR.2015.7324218.

Upton, Liz (2022). The Raspberry Pi in scientific research. Raspberry Pi Foundation.
url: https://www.raspberrypi.com/news/the-raspberry-pi- in-scientific-research/
(visited on 3rd Dec. 2022).

What is Arduino (2022). Arduino. url: https : / / www . arduino . cc / en / Guide /
Introduction (visited on 6th Dec. 2022).

Zhenyu Yu Xinping Bao, Kenzo Nonami (2008). ‘Course Keeping Control of an
Autonomous Boat using Low Cost Sensors’. In: pp. 389–400. doi: 10.1299/jsdd.
2.389.

49

https://snl.no/avdrift_-_sj%C3%B8vesen
https://snl.no/avdrift_-_sj%C3%B8vesen
https://doi.org/10.1109/JOE.2010.2078311
https://hdl.handle.net/11250/3023721
https://hdl.handle.net/11250/3023721
https://en.wikipedia.org/wiki/Point_of_sail
https://en.wikipedia.org/wiki/Point_of_sail
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
https://doi.org/10.1016/j.robot.2007.10.004
https://books.google.no/books?id=xRqzoX04v5AC&lpg=PR9&ots=RTUPaf4YkK&dq=the%20annapolis%20book%20of%20seamanship&lr&hl=no&pg=PR9#v=onepage&q=the%20annapolis%20book%20of%20seamanship&f=false
https://books.google.no/books?id=xRqzoX04v5AC&lpg=PR9&ots=RTUPaf4YkK&dq=the%20annapolis%20book%20of%20seamanship&lr&hl=no&pg=PR9#v=onepage&q=the%20annapolis%20book%20of%20seamanship&f=false
https://books.google.no/books?id=xRqzoX04v5AC&lpg=PR9&ots=RTUPaf4YkK&dq=the%20annapolis%20book%20of%20seamanship&lr&hl=no&pg=PR9#v=onepage&q=the%20annapolis%20book%20of%20seamanship&f=false
https://books.google.no/books?id=xRqzoX04v5AC&lpg=PR9&ots=RTUPaf4YkK&dq=the%20annapolis%20book%20of%20seamanship&lr&hl=no&pg=PR9#v=onepage&q=the%20annapolis%20book%20of%20seamanship&f=false
https://asa.com/news/2021/07/07/sailing-terms-you-can-use/
https://asa.com/news/2021/07/07/sailing-terms-you-can-use/
https://doi.org/10.1109/ECMR.2015.7324218
https://www.raspberrypi.com/news/the-raspberry-pi-in-scientific-research/
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://doi.org/10.1299/jsdd.2.389
https://doi.org/10.1299/jsdd.2.389

Appendix

A run.py

import os

from navigation import Navigation

import websockets

import asyncio

import json

import time

import sys

import signal

import threading

import urllib.request

from ip import getExternalIp, getInternalIp

from ngrok import Ngrok

from gps import GPS

from uno import Uno

from nano import Nano

from windsensor import Wind

from tempSensor import TempSensor

from auth import getTokenURI

from utils import get, recvLikeArduino, set

from errorHandler import ErrorHandler

exit_event = threading.Event()

STATE = {}

PARAMETERS = {}

def initSensors():

global PARAMETERS

global STATE

global gps

global uno

global nano

global wind

global tempSensor

global ngrok

global errorHandler

global exit_event

global navigation

global simulate_GPS

errorHandler = ErrorHandler(debug=True)

gps = GPS(errorHandler)

50

uno = Uno(errorHandler)

nano = Nano(errorHandler)

wind = Wind(errorHandler)

tempSensor = TempSensor(errorHandler)

ngrok = Ngrok(errorHandler)

navigation = Navigation(errorHandler)

simulate_GPS = True #True will simulate GPS movement for

testing. Default False↪→

def gps_process():

global gps

global errorHandler

while True:

if exit_event.is_set():

break

if not gps.connected:

if exit_event.wait(10):

break

gps = GPS(errorHandler)

continue

else: gps.getCoordinates(simulate_GPS, navigation)

print("gps_process terminating")

def uno_process():

global uno

global errorHandler

global parameterChanged

msg = ""

dataStarted = False

dataBuf = ""

messageComplete = False

while True:

if exit_event.is_set():

break

if not uno.connected:

if exit_event.wait(10):

break

uno = Uno(errorHandler)

continue

msg, dataStarted, dataBuf, messageComplete =

recvLikeArduino(uno.arduino, dataStarted, dataBuf,

messageComplete)

↪→

↪→

if not (msg == 'XXX'):

uno.messageRecv(msg)

51

print("uno_process terminating")

def nano_process():

global nano

global errorHandler

global parameterChanged

msg = ""

dataStarted = False

dataBuf = ""

messageComplete = False

while True:

if exit_event.is_set():

break

if not nano.connected:

if exit_event.wait(15):

break

nano = Nano(errorHandler)

continue

msg, dataStarted, dataBuf, messageComplete =

recvLikeArduino(nano.arduino, dataStarted, dataBuf,

messageComplete)

↪→

↪→

if not (msg == 'XXX'):

nano.messageRecv(msg)

print("nano_process terminating")

def wind_process():

global wind

global errorHandler

while True:

if exit_event.is_set():

break

if not wind.connected:

if exit_event.wait(10):

break

wind = Wind(errorHandler)

continue

else: wind.getWind()

print("wind_process terminating")

def tempSensor_process():

global tempSensor

global errorHandler

while True:

if exit_event.is_set():

break

if not tempSensor.connected:

52

if exit_event.wait(10):

break

tempSensor = TempSensor(errorHandler)

continue

else: tempSensor.getTemperature()

print("tempSensor_process terminating")

def ngrok_process():

ngrok_count = 0

updated = False

while True:

if ngrok_count > 12: break

url = ngrok.getNgrok()

if not url or url == get(STATE, "networking.ngrok"):

ngrok_count += 1

else:

set(STATE, "networking.ngrok", url)

updated = True

if exit_event.wait(10): break

if not updated:

errorHandler.setErrorCode("0010")

print("ngrok_process terminating")

def navigation_process():

global nano

global uno

while True:

if exit_event.wait(0.2):

break

if wind.connected and (gps.connected or simulate_GPS) and

nano.connected and uno.connected and get(PARAMETERS,

"auto"):

↪→

↪→

Turns on the Nano's auto targeting after heading

if (not navigation.autoOn):

navigation.autoOn = True

nano.execute("Nano!Navigator:Start")

nextCoordinate = get(PARAMETERS, "path.head")

if nextCoordinate:

try:

if (get(PARAMETERS, "path.new")):

set(navigation.DATA, "waypoint", {})

navigation.findNextTarget(get(PARAMETERS,

"path"))↪→

set(PARAMETERS, "path.new", False)

53

set(navigation.DATA, "updateParameters",

True)↪→

now = time.time()

if (now - navigation.lastUpdate <

(get(PARAMETERS,

'piparameters.navigationFrequency') or

navigation.frequency)): continue

↪→

↪→

↪→

navigation.lastUpdate = now

Dummy data: coordinates={"lat": 63.41634,

"long": 10.41030833333, "velocity": 0,

"cog": 0}

↪→

↪→

GPS data: coordinates=gps.COORDINATES

navigation.calculateTargets(coordinates=gps.COORDINATES,

wind=wind.WIND, heading=get(nano.DATA,

"heading"), path=get(PARAMETERS, "path"))

↪→

↪→

↪→

if (get(navigation.DATA, "nanoCommand") != ""):

nano.execute(get(navigation.DATA,

"nanoCommand"))↪→

set(navigation.DATA, "nanoCommand", "")

if (get(navigation.DATA, "unoCommand") != ""):

uno.execute(get(navigation.DATA,

"unoCommand"))↪→

set(navigation.DATA, "unoCommand", "")

except Exception as e:

print(e)

if (get(navigation.DATA, "updateParameters")):

#Parameters changed

print("Parameters changed")

Turns off the Nano's auto targeting after heading

elif not get(PARAMETERS, "auto"):

if (navigation.autoOn):

navigation.autoOn = False

set(navigation.DATA, "waypoint", {})

nano.execute("Nano!Navigator:Stop")

elif (navigation.depower):

now = time.time()

if (now - navigation.lastUpdate < (get(PARAMETERS,

'piparameters.navigationFrequency') or

navigation.frequency)): continue

↪→

↪→

54

navigation.lastUpdate = now

if abs(get(nano.DATA, "rudderAngle")) - 8 > 0:

nano.execute("Nano!Motor:SetPosition;0")

set(navigation.DATA,

"targetSailAngle",round(get(wind.WIND,

"wind_direction")))

↪→

↪→

uno.execute(f'Uno!Navigator:SetPosition;{get(navigation.DATA,

"targetSailAngle")}')

↪→

↪→

print("navigation_process terminating")

def handleNewCommand():

command = get(PARAMETERS, "command")

if command != None and command != "":

if ("Nano!" in command and nano.connected):

nano.execute(command)

elif ("Uno!" in command and uno.connected):

uno.execute(command)

elif ("Pi!" in command):

executeCommand(command)

else:

errorHandler.setErrorCode("0120")

set(PARAMETERS, "command", "")

return True

else: return False

def executeCommand(command):

command = command.split('!')[1]

if command == "Main:Shutdown": os.system("sudo nohup shutdown -P

now")↪→

elif command == "Main:Reboot": os.system("sudo reboot")

elif command == "Errors:Clear": errorHandler.clearErrors()

elif command == "Nano:Reconnect": nano.connected = False

elif command == "Uno:Reconnect": uno.connected = False

elif command == "Main:Depower": navigation.depower = not

navigation.depower↪→

elif command == "Main:DeleteMidWaypoint": set(navigation.DATA,

"midWaypoint", {})↪→

else:

errorHandler.setErrorCode("0121")

async def foreground(token, uri, first_iter):

global STATE

global PARAMETERS

55

global wind

global tempSensor

global uno

global gps

global ngrok

global navigation

if not token or not uri:

return

try:

async with websockets.connect(uri) as websocket:

await websocket.send(token)

while True:

if exit_event.is_set():

errorHandler.setErrorCode("0025")

set(STATE, "errors", errorHandler.errors)

await websocket.send(json.dumps({"action":

"update", "type": "state", "data": {"errors":

get(STATE, "errors")}}))

↪→

↪→

break

try:

data = await asyncio.wait_for(websocket.recv(),

timeout=5)↪→

except asyncio.TimeoutError:

continue

if data == None: continue

data = json.loads(data)

if get(data, "type") == "parameters":

PARAMETERS = get(data, "data")

wind.parameters = PARAMETERS

navigation.parameters = PARAMETERS

set(STATE, "sensors.angles.sail",

get(uno.DATA, "sailAngle"))

Must be changed to encoder values

set(STATE, "sensors.angles.rudder",

get(nano.DATA, "rudderAngle"))

set(STATE, "targets.rudder", get(nano.DATA,

"targetRudderAngle"))↪→

set(STATE, "sensors.voltmeter", get(nano.DATA,

"voltmeter"))↪→

Getting current coordinates

56

set(STATE, "sensors.gps.lat", get(gps.COORDINATES,

"lat"))↪→

set(STATE, "sensors.gps.long", get(gps.COORDINATES,

"long"))↪→

set(STATE, "sensors.gps.velocity",

get(gps.COORDINATES, "velocity"))

set(STATE, "sensors.gps.cog", get(gps.COORDINATES,

"cog"))↪→

Getting current wind status

set(STATE, "sensors.wind.direction",

get(wind.WIND, "wind_direction"))

set(STATE, "sensors.wind.speed", get(wind.WIND,

"wind_speed"))↪→

#Getting current temp status

set(STATE, "sensors.tempSensor.temperature",

get(tempSensor.TEMPERATURE, "temperature"))

Getting imu data

set(STATE, "sensors.imu.heading",

get(nano.DATA, "heading"))

set(STATE, "sensors.imu.pitch", get(nano.DATA,

"pitch"))↪→

set(STATE, "sensors.imu.roll", get(nano.DATA,

"roll"))↪→

Getting target values

set(STATE, "targets.sail",

get(navigation.DATA, "targetSailAngle"))

set(STATE, "targets.rudder",

get(nano.DATA, "targetRudderAngle"))

set(STATE, "targets.heading",

get(navigation.DATA, "targetHeading"))

set(STATE, "targets.depower", navigation.depower)

Getting target waypoint

set(STATE, "targets.waypoint",

get(navigation.DATA, "waypoint"))

set(STATE, "targets.midWaypoint",

get(navigation.DATA, "midWaypoint"))

Set error codes

set(STATE, "errors", errorHandler.errors)

#print(STATE)

Connecting to websocket and sending data

Updating when a command is executed

57

if handleNewCommand():

await websocket.send(json.dumps({"action" :

"update", "type": "parameters", "data":

PARAMETERS}))

↪→

↪→

Updating when a waypoint is visited

if get(navigation.DATA, "updateParameters"):

await websocket.send(json.dumps({"action" :

"update", "type": "parameters", "data":

PARAMETERS}))

↪→

↪→

set(navigation.DATA, "updateParameters", False)

if get(PARAMETERS, "start") or first_iter:

first_iter = False

await websocket.send(json.dumps({"action":

"update", "type": "state", "data": STATE}))↪→

await asyncio.sleep(get(PARAMETERS, "delay") or 0.5)

except Exception as e:

errorHandler.setErrorCode("0021", e)

def signal_handler(signum, frame):

exit_event.set()

def wait_for_internet_connection():

counter = 0

while True:

try:

response = urllib.request.urlopen(

'https://api.ipify.org', timeout=1)

return

except:

counter += 1

if (counter > 120):

errorHandler.setErrorCode("Error: Could not establish

an internet connection.", "0022")↪→

sys.exit()

time.sleep(1)

pass

if __name__ == "__main__":

signal.signal(signal.SIGTERM, signal_handler)

58

signal.signal(signal.SIGINT, signal_handler)

signal.signal(signal.SIGHUP, signal_handler)

initSensors()

wait_for_internet_connection()

Adding current IP to state

external_ip = getExternalIp()

set(STATE, "networking.piIp", external_ip)

Getting internal_ip

internal_ip = getInternalIp()

set(STATE, "networking.piLocalIp", internal_ip)

token, uri = getTokenURI()

g = threading.Thread(name='gps_process', target=gps_process)

w = threading.Thread(name='wind_process', target=wind_process)

t = threading.Thread(name='tempSensor_process',

target=tempSensor_process)↪→

n = threading.Thread(name='ngrok_process', target=ngrok_process)

a = threading.Thread(name='navigation_process',

target=navigation_process)↪→

Arduinos

su = threading.Thread(name='uno_process', target=uno_process)

sn = threading.Thread(name="nano_process", target=nano_process)

g.start()

w.start()

t.start()

n.start()

a.start()

su.start()

sn.start()

first_iter = True

while True:

asyncio.run(foreground(token, uri, first_iter))

errorHandler.setErrorCode("0020", "Lost connection to

websocket server")↪→

token, uri = getTokenURI()

if exit_event.wait(5):

print("Waiting for threads to terminate")

g.join()

59

w.join()

t.join()

n.join()

a.join()

su.join()

sn.join()

break

print("Main process terminating")

60

B navigation.py

import math

from utils import get, set

from haversine import haversine, inverse_haversine

class Navigation:

def __init__(self, errorHandler) -> None:

self.errorHandler = errorHandler

Update frequency

self.frequency = 3 # 3 sekunder

self.lastUpdate = 0

self.goalRadius = 10 # meters

self.beatingLength = 50 # meter. Should be changed to a

function of the total distance to target↪→

self.autoOn = False

self.depower = False

self.beatingLimit = 30 # Wind direction ±beatinglimit
defines no go zone↪→

self.beatingLimitBuffer = 10

self.angleOfAttack = 10 # degrees from the wind

self.dragModeLimit = 135 # +- from the wind

self.dragMode = None

self.parameters = {}

self.from_midwayPoint = False #param to see if last visited

was midway point↪→

Data dictionary

self.DATA = {"waypoint": {}, "midWaypoint": {},

"targetHeading": 0, "targetSailAngle": 0, "nanoCommand":

"", "unoCommand": "", "updateParamenters": False,

"prevPoint": {"lat": 63.41634, "long": 10.41030833333,

"velocity": 0, "cog": 0}, "prevTime": 0}

↪→

↪→

↪→

↪→

parameters, path

def findNextTarget(self, path):

head = get(path, "head")

tail = get(path, "tail")

61

waypoints = get(path, "waypoints")

next = get(waypoints, head)

while next != None:

if (not get(next, "visited")):

set(self.DATA, "waypoint", next)

break

next = get(waypoints, get(next, "next"))

if (next == None):

set(path, "pathComplete", True)

set(self.DATA, "waypoint", get(waypoints, tail))

set(self.DATA, "updateParameters", True)

coordinates == gps.COORDINATES,

wind == wind.WIND,

heading == float,

def calculateTargets(self, coordinates, wind, heading, path):

waypoint = get(self.DATA, "waypoint")

If path is not complete,

and waypoint is not set or waypoint is visited

=> find next waypoint

if ((not get(path, "pathComplete") and get(path,

"pathComplete") != None) and ((not waypoint) or

get(waypoint, "visited"))):

↪→

↪→

self.findNextTarget(path)

Update variable with new waypoint

waypoint = get(self.DATA, "waypoint")

if (not waypoint): return

#if the boat is from midway point and not reached heading:

AoA should be 0 to pass through wind↪→

alpha = 0 if self.from_midwayPoint else get(self.parameters,

'piparameters.angleOfAttack') or self.angleOfAttack↪→

sailAngle = self.calculateSail(wind, alpha,

get(self.parameters, 'piparameters.dragModeLimit') or

self.dragModeLimit)

↪→

↪→

bearing = get(self.DATA, "targetHeading")

distance = float('inf')

#if midwaypoint exists

62

if get(self.DATA, "midWaypoint"):

#if it is inside no go zone, not valid -> delete it

if self.insideNoGoZone(get(self.DATA, "midWaypoint"),

wind, coordinates):↪→

set(self.DATA, "midWaypoint", {})

#if valid, then update bearing and distance based on it

else:

bearing = self.calculateBearing(coordinates,

get(self.DATA, "midWaypoint"))↪→

distance = self.calculateDistance(coordinates,

get(self.DATA, "midWaypoint"))↪→

#if no midwaypoint and waypoint inside no go zone

if not get(self.DATA, "midWaypoint") and

self.insideNoGoZone(waypoint, wind, coordinates):↪→

#create midwaypoint and update

self.calcMidWaypoint(waypoint, wind, coordinates)

bearing = self.calculateBearing(coordinates,

get(self.DATA, "midWaypoint"))↪→

distance = self.calculateDistance(coordinates,

get(self.DATA, "midWaypoint"))↪→

#if no midwaypoint and waypoint outside no go zone, update

based on it↪→

elif not get(self.DATA, "midWaypoint"):

bearing = self.calculateBearing(coordinates, waypoint)

distance = self.calculateDistance(coordinates, waypoint)

self.from_midwayPoint = False #turning though eye is not

needed↪→

#bearing not yet reached, then send to update

if bearing != get(self.DATA, "targetHeading"):

set(self.DATA, "targetHeading", bearing)

set(self.DATA, "nanoCommand",

f'Nano!Navigator:SetTarget;{round(bearing)}')↪→

else:

self.from_midwayPoint = False #target heading reached,

turned though the eye↪→

#sail angle not reached, send to update

if (sailAngle != get(self.DATA, "targetSailAngle")):

set(self.DATA, "targetSailAngle", sailAngle)

set(self.DATA, "unoCommand",

f'Uno!Navigator:SetPosition;{round(sailAngle)}')↪→

need better calculation

#if distance to target lower than threshold

if (distance < (get(self.parameters,

'piparameters.goalRadius') or self.goalRadius)):↪→

63

#if reached target is midwaypoint, delete it and travel

to waypoint↪→

if get(self.DATA, "midWaypoint"):

set(self.DATA, "midWaypoint", {})

self.from_midwayPoint = True #last visited was

midway point↪→

#if reached target is waypoint, mark as visited

else:

set(waypoint, "visited", True)

set(self.DATA, "updateParameters", True)

return

def sign(self, x):

if x == 0: return 1

return x / abs(x)

def insideNoGoZone(self, waypoint, wind, gps): # Checks if a

coordinate (waypoint) is inside the no go zone. Returns

true false.

↪→

↪→

twa = self.trueWindAngle(A=(get(wind, "wind_speed")),

V=(get(gps, "velocity")), beta=(get(wind,

"wind_direction")))

↪→

↪→

tb = self.calculateBearing(gps, waypoint)# angle to target

(target bearing)↪→

sum = tb - twa + 540

delta = (sum % 360) - 180

if abs(delta) < self.beatingLimit:

return True

return False

def calcMidWaypoint(self, waypoint, wind, gps):

twa = self.trueWindAngle(A=(get(wind, "wind_speed")),

V=(get(gps, "velocity")), beta=(get(wind,

"wind_direction")))

↪→

↪→

tb = self.calculateBearing(gps, waypoint) # angle to target

(target bearing)↪→

sum = tb - twa + 540

delta = (sum % 360) - 180

pos = (get(gps, "lat"), get(gps, "long"))

direction = self.degToRad((twa + self.sign(delta) *

((get(self.parameters, 'piparameters.beatingLimit') or

self.beatingLimit) + (get(self.parameters,

'piparameters.beatingLimitBuffer') or

self.beatingLimitBuffer))) % 360)

↪→

↪→

↪→

↪→

64

target = inverse_haversine(pos, (get(self.parameters,

'piparameters.beatingLength') or self.beatingLength),

direction, unit='m')

↪→

↪→

set(self.DATA, "midWaypoint", {"position": {"lat": target[0],

"long": target[1]}})↪→

def calculateBearing(self, coordinates, waypoint):

curLat = get(coordinates, "lat")

curLong = get(coordinates, "long")

tarLat = get(waypoint, "position.lat")

tarLong = get(waypoint, "position.long")

y = math.sin(tarLong-curLong) * math.cos(tarLat)

x = (math.cos(curLat)*math.sin(tarLat)) - (math.sin(curLat) *

math.cos(tarLat)*math.cos(tarLong-curLong))↪→

theta = math.atan2(y, x)

bearing = (self.radToDeg(theta) + 360) % 360

return bearing or get(self.DATA, "targetHeading")

def calculateDistance(self, coordinates, waypoint):

cur = (get(coordinates, "lat"), get(coordinates, "long"))

tar = (get(waypoint, "position.lat"), get(waypoint,

"position.long"))↪→

distance = haversine(cur, tar, unit='m') #in m

return distance

def degToRad(self, deg):

return deg * (math.pi/180)

def radToDeg(self, rad):

return rad * (180/math.pi)

def calculateSail(self, wind, alpha, limit = 135): # Beta = wind

angle. Alpha = angle of attack. limit = Limit for changing

between lift and drag mode

↪→

↪→

beta = get(wind, "wind_direction")

if isinstance(beta, str):

return get(self.DATA, "targetSailAngle")

if beta <= 180: # Wind hits starboard side of sail

if beta <= limit: # We are not in drag zone (tail wind)

if self.dragMode and beta <= limit - 10: # We are in

drag mode are 10 degrees outside of drag zone↪→

self.dragMode = None # turn drag mode off

else:

65

if not self.dragMode: # We are not in drag mode, but

in drag zone↪→

self.dragMode = - 90 # Turn drag mode on

sailAngle = beta - alpha + ((self.dragMode + alpha) if

self.dragMode else 0)↪→

else: # Wind hits port side of sail

if beta > (360 - limit):

if self.dragMode and beta > (360 - limit) + 10:

self.dragMode = None

else:

if not self.dragMode:

self.dragMode = + 90

sailAngle = beta + alpha + ((self.dragMode - alpha) if

self.dragMode else 0)↪→

return sailAngle

def trueWindVelocity(self, A, V, beta):

W = math.sqrt(A**2 + V**2 - 2*A*V*math.cos(beta))

return W

def trueWindAngle(self, A, V, beta): #A: wind speed, V: boat

velocity, beta: wind direction↪→

if A == None or V == None: return beta

if A == 0 and V == 0: return beta

V = 0.514*V

alpha = math.acos((A*math.cos(self.degToRad(beta)) - V) /

self.trueWindVelocity(A, V,

self.degToRad(beta)))↪→

if beta <= 180:

return self.radToDeg(alpha)

return 360 - self.radToDeg(alpha)

66

C gps.py

import serial

import os

import time

from findSensors import getPortOfVendor

from utils import get, set

import math as m

class GPS:

def __init__(self, errorHandler):

self.connected = True

self.errorHandler = errorHandler

try:

vendor = os.getenv('GPS_VENDOR')

port = getPortOfVendor(vendor)

if port == None:

self.connected = False

self.errorHandler.setErrorCode("0001", e)

else:

self.gps = serial.Serial(

port=port,

timeout=3,

baudrate=4800,

xonxoff=False,

rtscts=False,

dsrdtr=False

)

except Exception as e:

self.errorHandler.setErrorCode("0001", e)

self.connected = False

self.COORDINATES = {"lat": 0, "long": 0, "velocity": 0,

"cog": 0}↪→

def getCoordinates(self, simu_GPS, navi):

if simu_GPS:

self.COORDINATES = simu_coord(navi)

return

counter = 0

limit = 10

if not self.connected: return

while True:

counter += 1

if (counter == limit):

67

return

try:

line = self.gps.readline()

except Exception as e:

self.errorHandler.setErrorCode("0030", e)

try:

line = line.decode('utf-8')

values = line.split(",")

if (values[0] == "$GPRMC"):

lat = values[3]

long = values[5]

ns = values[4]

ew = values[6]

velocity = values[7]

cog = values[8]

if (lat == ""):

continue

if (long == ""):

continue

if (velocity == ""):

continue

if (cog == ""):

continue

latdec = float(lat[0:2]) + float(lat[2:])/60

longdec = float(long[0:3]) + float(long[3:])/60

velocity = float(velocity)

cog = float(cog)

if ns and ns == 's':

latdec *= -1

if ew and ew == 'w':

longdec *= -1

self.COORDINATES = {"lat": latdec, "long":

longdec, "velocity": velocity, "cog": cog}↪→

return

except Exception as e:

self.errorHandler.setErrorCode("0031", e)

continue

68

#if simuGps true, this method return simulated GPS coordinates

def simu_coord(navi):

speed = 0.3 #m/s

#previous coords

prevPoint = get(navi.DATA, "prevPoint")

if prevPoint:

prevLat = get(prevPoint, "lat")

prevLong = get(prevPoint, "long")

#target coords, get midwaypoint if exists, else waypoint

waypoint = get(navi.DATA, "midWaypoint") if get(navi.DATA,

"midWaypoint") else get(navi.DATA, "waypoint")↪→

if waypoint:

tarLat = get(waypoint, "position.lat")

tarLong = get(waypoint, "position.long")

else: #if no target, return previous point and no velocity

return {"lat": prevLat, "long": prevLong, "velocity": 0,

"cog": 0}↪→

if get(waypoint, "visited"): #return same as above if waypoint

visited and no new set↪→

return {"lat": prevLat, "long": prevLong, "velocity": 0,

"cog": 0}↪→

#increment x and y towards target

if float(get(navi.DATA, "prevTime")) == 0:

set(navi.DATA, "prevTime", time.time()) #set time first time

return

time_passed = time.time() - float(get(navi.DATA, "prevTime"))

#time since last update↪→

#go left/down if passed, right/up if not

curLat = prevLat + speed*m.cos(m.pi/6)*time_passed*int((1 if

prevLat < tarLat else -1))/111000 #divide from meters to

coordinates

↪→

↪→

curLong = prevLong + speed*m.cos(m.pi/3)*time_passed*int((1 if

prevLong < tarLong else -1))/49780↪→

#set time for next dt and return data

set(navi.DATA, "prevPoint", {"lat": curLat, "long": curLong,

"velocity": 0, "cog": 0})↪→

set(navi.DATA, "prevTime", time.time()) #save for reference dt

return {"lat": curLat, "long": curLong, "velocity": speed, "cog":

0}↪→

69

D tempSensor.py

import tsys01

from time import sleep

class TempSensor:

def __init__(self, errorHandler):

self.connected = True

self.errorHandler = errorHandler

try:

self.sensor = tsys01.TSYS01() #default at I2C bus 1

if not self.sensor.init():

self.connected = False

self.errorHandler.setErrorCode("0008")

except Exception as e:

self.errorHandler.setErrorCode("0008", e)

self.connected = False

self.TEMPERATURE = 0

def getTemperature(self):

if not self.connected: return

while True:

try:

self.sensor.read() #update value from sensor

#print(self.sensor.temperature())

temp =

float("{:.2f}".format(self.sensor.temperature()))↪→

self.TEMPERATURE = {"temperature": temp}

sleep(0.2)

return

except Exception as e:

self.errorHandler.setErrorCode("0038", e)

continue

70

	List of Figures
	List of Tables
	Introduction
	Team and previous work
	Problem description
	Scope of this thesis
	Objectives
	Thesis structure

	Theory
	Sailing
	Anatomy of a sailboat
	Points of sail
	Using the wind for fastest sailing
	True wind versus apparent wind
	Sources of sailing errors

	Control electronics
	Raspberry Pi and Arduino

	Sailing control
	Path planning and course control
	Control surfaces

	Prototyping

	Existing solutions
	Electronics on board
	Raspberry Pi
	Arduinos
	Power supply
	Actuators
	Positioning

	On-shore server
	Dashboard app

	Preliminary tests
	Sail angle with simulated wind
	Test setup
	Results

	Test tacking
	Test setup
	Results

	True versus apparent wind
	Test setup
	Results

	Method
	Work on existing issues
	True wind versus apparent wind
	State of electronics
	Tacking
	Batteries

	Building a test trolley
	Installing the sail
	The new electronics board
	Simulating wind
	Fastening of small equipment

	Simulating movement
	Adding a sensor

	Results
	Concluding tests
	Tacking
	True wind

	Further work
	Conclusion
	Bibliography
	Appendix
	run.py
	navigation.py
	gps.py
	tempSensor.py

