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Preface 

This master thesis was written in the spring 2023 as the final product of a 5-year degree in Civil 

and Environmental Engineering at NTNU in Trondheim. The thesis is conducted for the 

geotechnical department with Ivan Depina (NTNU) as the main supervisor.  

The goal of the thesis was to calibrate hydrological van Genuchten parameters of a soil using 

the Ensemble Kalman Filter method and sensor data from IoT-sensors installed for the 

KlimaDigital-project. Automating the calibration of hydrological parameters in soil holds 

significant potential and could possibly be applicated in problems such as automated early-

warning systems for rainfall-induced landslides.  
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Abstract 
Rainfall-induced landslides make out a considerable amount of geohazards in Norway. This is 

from combination of steep slopes, heavy rainfall during fall, temperature changes, and snow 

melting in spring and fall. Landslides are dangerous because they can damage critical 

infrastructure and in the worst case be a threat to human life.  Climate change is likely to result 

in more and intense rainfall events, which is further increasing the landslide risks. 

Consequently, there is a need to develop strategies to manage landslide risks. One of such 

strategies are landslide early warning systems that provide a timely that can be used to evacuate 

people, movable properties, or close roads to reduce consequences in case of a landslide.  

In 2018, SINTEF launched the project KlimaDigital with the main objective of creating an 

early warning system for rainfall induced landslides and debris flow, using monitoring data 

from sensors installed in landslide prone areas. Sensors were installed on two different slopes 

in Meråker, Trøndelag to monitor groundwater conditions. The area was selected due to the 

high risk for rainfall-induced landslides resulting from the combinations of heavy rainfall and 

rapid snow-melting events, and topography characterized by steep slopes (Ivan Depina E. O., 

2021) 

When working with rainfall induced landslide problems, it is crucial to understand groundwater 

conditions in slopes in response to rainfall infiltration and snow melting. Slopes in the studied 

area are typically unsaturated and groundwater conditions were monitored with volumetric 

water content sensors. In this thesis, the volumetric water content sensor data from the Meråker 

slopes was used to calibrate the hydrological van Genuchten model parameters and the 

permeability of the soil, using a Plaxis flow-analysis and the Ensemble Kalman Filter method 

(EnKF). The estimated van Genuchten parameters are defining the Soil Water Characteristics 

curve (SWCC), that describes relations between suction, permeability, and degree of saturation 

in the given soil. Calibrated hydrological models provide a basis for more accurate modelling 

of groundwater conditions (e.g., in response to extreme weather events) and implementation of 

a reliable landslide early warning system. 

Python was used to implement the EnKF algorithm and automate Plaxis analysis of the 

hydrological model, making it possible to update and run the calculations numerous of times 

with different hydrological input parameters for each iteration. The Ensemble Kalman filter 

method works by comparing the Plaxis output values to the real sensor data and updating the 

parameters based on this difference and the parameter covariance. By iterating through this 
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process, the unknown parameters were updated until the van Genuchten parameters were 

estimated with better accuracy and the difference between model predictions and sensor values 

became relatively small.  

The study concludes that the EnKF algorithm shows promise in estimating these parameters; 

however, the accuracy of the initial conditions and prior parameter knowledge are critical for 

obtaining more reliable estimations. The research also highlights the potential application of 

this method in early warning systems for rainfall-induced landslides. However, further 

refinement and increased certainty in the results are necessary to ensure reliability.  

Future work could include incorporation of suction sensors alongside the VWC-sensors to 

enhance the calibration results. It would also be interesting to implement the results in a safety 

analysis to investigate how the hydrological conditions influence slope stability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

Norsk Sammendrag 
Nedbørsinduserte jordskred er en betydelig fare i Norge på grunn av bratte skråninger, mye 

nedbør, temperaturendringer og snøsmelting. Klimaendringer øker risikoen ytterligere. 

Prosjektet KlimaDigital, startet av SINTEF i 2018, har hatt som mål å utvikle et 

varslingssystem for nedbørsinduserte jordskred ved hjelp av sensorer.  

I denne oppgaven er sensorverdier fra KlimaDigital-prosjektet brukt til å kalibrere de 

hydrologiske van Genuchten parameterne til jorda. Dette er gjort ved å bruke Ensemble 

Kalman Filter-algoritmen (EnKF). Simuleringene er gjort ved å lage en automatisert Plaxis-

modell i Python og EnKF fungerer ved å oppdatere de ukjente inputparameterne basert på 

forskjellen mellom sensordata og Plaxis-output. Formålet er at Plaxis-outputen skal 

sammenfalle med sensorverdiene, noe som tyder på en virkelighetsnær modell. I tillegg er 

hensikten at de ukjente parameterne skal konvergere mot estimater med høyere sikkerhet.  

Oppgaven konkluderer med at EnKF-algoritmen viser gode tendenser i estimatet av disse 

parameterne. I midlertidig er nøyaktigheten av de initielle betingelsene og forhåndskunnskapen 

om parameterne avgjørende for å oppnå mer pålitelige estimater. Oppgaven peker også på den 

mulige bruken av denne metoden i varslingssystemer for jordskred. Ytterligere for bedring og 

økt sikkerhet i resultatene er derimot nødvendig for å sikre pålitelighet.  

Fremtidig arbeid vil kunne være å implementere sensorverdier for sug, samt kalibrere 

parameterne med verdier fra faktiske skredhendelser.  
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1 Introduction  
With the changing climate resulting in wetter and warmer weather conditions, geohazards are 

becoming more significant than ever. In accordance with the UN climate report (United 

Nations (UN), 2021), wetter and warmer climate will lead to more extreme weather meaning 

higher intensity rainfall both in Norway and in the word. Heavy rainfall is one of the most 

common triggers for landslides in Norway and rainfall-induced landslides pose a significant 

threat to both human lives and critical infrastructure. This threat is making it imperative to 

develop efficient strategies for managing landslide risks. One of these strategies are landslide 

early warning systems that reduce consequences by providing timely warning, which allow for 

the people and movable property to be evacuated before the onset of a landslide.  

Working with rainfall-induced landslides requires consideration of the unsaturated soil 

conditions, partially saturated pores, which results in suction and affects both the permeability 

and effective stresses of the soil. The relationship between the hydrological soil parameters can 

be described by a Soil Water Characteristics Curve (SWCC), relating suction to volumetric 

water content (or saturation) and permeability of the soil. Having a good understanding of the 

SWCC is essential in being able to model the development of the wetting front and pore 

pressures accurately and reliably to provide timely warnings in a landslide early warning 

system.  

The hydrological parameters of the soil can be difficult to estimate. Numerous of pedotransfer 

functions (PTF’s) have been developed throughout the last four decades with the purpose of 

relating the hydrological parameters of the soil to parameters that are easier to determine 

through laboratory tests, such as the grain size distribution and porosity (Abdelbaki, 2020). 

Another option for determining the hydrological parameters in the soil is to implement a sensor 

system to monitor real life data and calibrate the hydrological parameters with respect to sensor 

values. In this thesis a calibration like this is done using sensors monitoring volumetric water 

content (VWC), combined with a hydrological model in Plaxis and the EnKF-algorithm.  

The EnKF method has shown great results in a variety of fields where monitoring data and 

joint parameter estimation play an essential role, such as meteorology and oceanology 

(Muhammad Mohsan, 2021). In this master’s thesis, this algorithm was used to calibrate the 

unknown van Genuchten parameters, but the method is very general and can be applied to other 

similar problems in geotechnical engineering where model calibration with data is needed, for 
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example by using monitoring data of deformations to estimate stiffness parameters. 

(Muhammad Mohsan, 2021) demonstrated the efficacy of the EnKF method to successfully 

employing the calibrated stiffness and strength parameters to estimate the Factor of Safety 

(FOS), yielding favorable results.  

1.1 Background 

The background for this master thesis is the KlimaDigital project that was launched by 

SINTEF, in collaboration with NTNU, back in 2021. The objective of the KlimaDigital project 

is to reduce the risk of infrastructure damage and fatalities caused by geohazards such as 

landslides and debris flows by creating early warning systems based on data monitoring. Due 

to climate change causing more heavy rainfall events and extreme weather, the frequency of 

dangerous landslide events both has, and is expected to further increase. Understanding the 

state of the soil during heavy rainfall and developing reliable early warning systems is therefore 

more important than ever (Torun Rise, 2023). 

Currently, there is a national early warning system for rainfall-induced landslides operated by 

NVE. However, this system operates on a regional to national level with the system not being 

suited to providing warnings on local to regional level, which makes the system less applicable 

when it comes to issuing warnings on a local and more refined scale.  

There is a growing need for reliable and cost-efficient local to regional landslide warning 

system. To scale down the warning system one needs to be able to obtain more refined local 

knowledge of the parameters controlling the occurrence of landslides. One of the approaches 

in obtaining such knowledge is using reliable and coset-efficient monitoring. This approach 

requires an automated data management system to effectively incorporate sensor data into a 

model. This master’s thesis seeks to address this knowledge need by utilizing sensor values 

from the KlimaDigital project’s monitoring system to calibrate a hydrological model of a slope.  

A calibrated hydrological model is essential in providing timely and reliable predictions of 

rainfall-induced landslides. 

This thesis’s significance lies in its contribution to the development of early warning systems 

for rainfall-induced landslides, which is an area of research that is still in its early stages. In 

addition, the thesis shows how the Ensemble Kalman Filter method (and other Kalman Filter 

methods) can be used to automate calibration of geotechnical models with data. The algorithm 

is of exceptional value in situations with substantial amounts of real-time data. 
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1.2 Problem Formulation 

The overarching goal of this master thesis was to automate the calibration of hydrological van 

Genuchten parameters of the soil based on sensor values. The unknown parameters are used to 

fit the SWCC for the soil, which is an essential part of hydrological analysis of rainfall-induced 

landslides.  

The parameter calibration was to be automated with the Ensemble Kalman Filter algorithm, 

using an automated hydrological model in Plaxis. The model was to be created using Python 

scripting in combination with Plaxis to automate the calculations and to easier process the 

output and input data through the EnKF.  

 

  

1.3 Objectives 

The main objective of the thesis is to automate calibration of a hydrological model of a slope 

based on sensor data with the EnKF algorithm. To achieve the main objective, the following 

specific objectives are implemented: 

• Analyze and process sensors data in a wetting period for a slope in Meråker.  

• Implement and automate a hydraulic model of the slope in Plaxis with Python scripting.  

• Study and Implement the Ensemble Kalman Filter algorithm in the programming 

language Python Couple Plaxis model with the Ensemble Kalman Filter algorithm in 

Python. Assess the performance of the Ensemble Kalman Filter algorithm and the 

calibrated hydrological model. 

  

1.4 Limitations 

  

• One significant drawback of this thesis is the inconsistency of the SWCC derived from 

the van Genuchten parameters between wetting and drying conditions. The selected 

period chosen for calibrating the SWCC with sensor values was primarily focused on 

accurately simulating wetting conditions. The wetting period was selected due to the 

intention of the hydrological model to be used in predicting the groundwater condition 

in response to rainfall or snow-melting events as a part of the landslide early warning 

system. However, true wetting conditions are difficult to obtain over many days in real 

life.  
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• The implemented Plaxis model not simulating evapotranspiration, snow melting, 

effects of vegetation, or temperature effects, which all influence the water conditions 

in the soil, especially in the upper soil layers. Additionally, there are substantial 

uncertainties in the ground (e.g., variation of soil conditions with depth) and surface 

conditions (e.g., varying surface cover, geometry) at the site that were not modeled 

explicitly. However, the sensors indirectly measure these effects, which means that 

even though the Plaxis model might yield similar results as the sensors after calibrating 

the parameters, the premises (i.e., parameter estimation) could be wrong.    

• The EnKF algorithm updates the unknown parameters based on the difference between 

Plaxis output and volumetric water content data. Since the soil water characteristic 

curve, as modeled by the van Genuchten model, is not uniquely defined by the values 

of volumetric water content, this means that the calibration process can result in 

multiple parameter combinations producing near identical outcomes.   

• A trial pit was excavated at the site during sensor installation. A thin organic layer was 

identified at the site, but it was not included in the hydrological model to simplify the 

implementation. This could give wrong premises to the Plaxis model as soil layering 

and change in soil parameters with depth are not considered.  

• Runtime of the simulations were between 5-10 hours, and this often led to the code 

failing as it lost contact with Plaxis. This made it difficult to test wide ranges of prior 

knowledge of the unknown parameters, which possibly could have enhanced the 

results.  

 

 

1.5 Structure of the thesis 

This master thesis is divided into 6 different chapters with the structure as shown below.  

In Chapter 2, the fundamental aspects of unsaturated soil theory are presented in detail. The 

chapter covers various themes such as the classification of soil layers, capillary theory, flow of 

water in unsaturated soils, the SWCC, soil suction and the van Genuchten model. The EnKF 

algorithm is also explained.  

Chapter 3 presents the data monitoring system on all levels. The chapter outlines a geotechnical 

overview of the study area where the sensors are installed. In addition, the framework of the 
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IoT-system is presented and discussed with regards to calibration and expected sensor values. 

The sensor data used for the calibration is also presented. 

Chapter 4 presents a description of the Plaxis model creation process, including the selection 

of boundary conditions, mesh, and input parameters. In addition, the implementation of the 

EnKF-method is included.  

In chapter 5 the results from the parameter calibration described in chapter 4 are shown. The 

chapter discusses the results consecutively. An overall discussion of the results and the model 

is also provided in this chapter.   

Chapter 6 provides a final summary of the thesis and the main conclusions.  

Chapter 7 presents suggestions for future work.  
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2 Theory of unsaturated soil 
Parts of this section is sited from (Pedersen, 2022).  

The theory chapter of this thesis focuses on the characterization of unsaturated soil behavior and its 

implications for geotechnical engineering. It challenges the traditional assumption of complete 

saturation or dryness in soil and highlights the significance of the unsaturated zone in flow problems. 

The chapter discusses concepts such as capillary forces, matric suction, and effective stresses in 

unsaturated soil. It also explains the flow of water through soil and the coefficient of permeability. The 

Soil Water Characteristics curve is introduced as a tool to understand the relationship between water 

content and soil suction. Various equations for the SWCC are discussed, with a focus on the van 

Genuchten equation.   

 

2.1 Classification of unsaturated soil 

In traditional geotechnical practices, soil water content is commonly considered to be either 

completely saturated or entirely dry, depending on the water table level. This assumption tends 

to be conservative for stability and safety issues because elevated pore pressure lowers the 

effective stresses in the soil. However, when investigating water flow through slopes and 

examining real soil conditions, this assumption appears to be inadequate. The unsaturated area 

of the soil is of high interest when working with flow of water as the soil water characteristics 

change drastically in unsaturated conditions.  

(Makonto, 2013) noted that the soil layers can be classified into various categories based on 

the level of saturation throughout the soil.  
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Figure 1: Zone classification of soil for flat ground (Makonto, 2013) 

Soil can be categorized into different areas or zones based on the degree of saturation, as 

illustrated in Figure 1. The portion of the soil that is not fully saturated is called the vadose 

zone and in this zone the pores between the soil grains are partially filled with water and 

partially filled with air. The combination of air and water within these spaces affects soil 

characteristics such as permeability and effective stresses. The interface between air and water 

in the vadose zone creates suction forces within the soil, which increases the effective stresses. 

Chapter 2.2 will provide more detailed information on these relations.  

The saturated zone beneath the ground water table is called the phreatic zone and here the pores 

in the soil are fully saturated. Beneath the ground water table, the pore pressures are usually 

assumed to be hydrostatic and non-negative (no suction). (D. G. Fredlund, 2012) 

 
 

2.2 Capillary forces and capillary height 

In unsaturated soil the pores between the soil grains are partially filled with water and partially 

filled with air. The boundary between the water surface and the air within the pores of the soil 

is referred to as the contractile skin. Soil suction appears in these interfaces because of 

molecules needing to stay in force equilibrium. The water pressure deviates from the air 

pressure and as a result, tension forces in the contractile skin occur. This is called capillary 

forces. 
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Figure 2: Upscaled element of soil-air-water interfaces and illustration of how tension forces occur in the air-soil interface 
(D. G. Fredlund, 2012) 

  

The capillary force is often described by the capillary height: the maximum height ℎ𝑐 water 

can climb in a glass tube. Given by Equation 1:  

Equation 1 

ℎ𝑐 =
2𝑇𝑠

𝜌𝑤 𝑔 𝑅𝑠
  

  

Where: 

𝑇𝑠= Tension forces 

𝜌𝑤 = The density of water 

𝑔 = The gravitational acceleration = 9.81
𝑚2

𝑠
 

𝑅𝑠 = The radius of the tube  

  

When transferring the theory to capillary forces in soil, 𝑅𝑠,  is the pore radius of the soil pores 

and  𝑇𝑠 is the tension forces in the soil-air-interface (D. G. Fredlund, 2012).   

The tension forces in the air-water interface can be related to the matric suction of the soil as 

the difference between the pore air pressure and the pore water pressure. Combined with 

Equation 1, the matric suction can be written as:   

Equation 2 

𝑢𝑎 − 𝑢𝑤 =
2𝑇𝑠

𝑅𝑠
   

(D. G. Fredlund, 2012) 
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Resulting from the matric suction in the air-water-surface, the effective stresses in the soil 

increase. The definition of the effective stress in soil was given by (Terazaghi, 1925) and is 

defined by the total soil pressure, 𝜎 subtracted the positive pore pressure, 𝑢: 

Equation 3 

𝜎′ = 𝜎 − 𝑢      

  

However, when working with unsaturated soil, it becomes crucial to determine the stress state 

within the soil considering both the positive and the negative pore pressures. Bishop’s equation, 

proposed in 1959, is the most widely used formula for this purpose. The equation contains both 

the total stress/pore pressure-differences and the pore water/pore air-pressure-differences 

(known as the matric suction). 

  

Equation 4 

𝜎′ = (𝜎 − 𝑢) + χ(ua − 𝑢𝑤) 

  

 Χ is a soil parameter varying based on the degree of saturation in the soil.  

Bishop’s formula fulfills its purpose of describing the effective stresses with respect to both 

positive and negative pore pressures. However, the formula contains a soil characteristic 

parameter, 𝜒 , and is therefore not valid as a stress state equation.  

When stress dependent failure criterions (such as Mohr Coulomb) are used, the increase in 

matric suction will lead to a higher degree of mobilization of the undrained shear strength, as 

the effective stresses increase accordingly.  

2.3 Flow of water in soils 

In traditional geotechnical practice, the movement of water through soil is explained using 

Darcy’s law and the permeability coefficient, denoted as 𝑘𝑤[m/s]. The coefficient is 

determined by laboratory tests on saturated soil and is therefore only applicable to soil that is 

fully saturated. The permeability coefficient of saturated soil is solely dependent on the void 

ratio.  As discussed in earlier sections, assuming that the ground is either completely dry or 

completely wet is inaccurate and insufficient, particularly when dealing with seepage problems 

(D. G. Fredlund, 2012).  
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2.4 Darcy’s law 

Water flowing through a saturated soil can be described by Darcy’s law (1856):  
 

Equation 5 

𝑣𝑤 =
−𝑘𝑤(𝛿ℎ𝑤)

𝛿𝑦
 

 

 

Where:  

𝑣𝑤 = The velocity of water flowing through a porous medium  

𝑘𝑤= Coefficient of permeability 

𝛿ℎ𝑤

𝛿𝑦
 = Hydraulic head gradient 

  

Equation 5 describes the proportional connection between the velocity of water flow in porous 

media with the hydraulic head gradient, connected by the permeability coefficient.  

Experiments done by (Childs, 1950) show that the coefficient of permeability is constant for a 

given degree of saturation hence the proportionality is valid also for unsaturated soils.  

 

Figure 3: Coefficient of permeability vs. degree of saturation (D. G. Fredlund, 2012) 

 

This means that when working with flow and seepage problems in unsaturated soils, the same 

principles apply as for saturated soil. The only exception is the coefficient of permeability 

which for unsaturated soil is a function of more than one variable. This also means that water 
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will flow from higher hydraulic potential to lower potential gradient, also for unsaturated soil 

(D. G. Fredlund, 2012).  

  

2.5 The Coefficient of Permeability  

The permeability, 𝑘, in unsaturated soil theory can be presented as a function of the 

combination of three different parameters (D. G. Fredlund, 2012): 

 

Equation 6 

𝑘𝑤 = 𝑘𝑤(𝑆, 𝑒) 

Equation 7 

𝑘𝑤 = 𝑘𝑤(𝑒, 𝑤) 

Equation 8 

𝑘𝑤 = 𝑘𝑤(𝑤, 𝑆) 

Where:  

𝑆 = Degree of saturation 

𝑒 = Void ratio  

𝑤 = gravimetric water content 

Although permeability in unsaturated soils can be viewed as a function of three parameters, the 

degree of saturation tends to generate the biggest changes. Therefore, the coefficient of 

permeability is often viewed as a function of the matric suction only, especially when working 

with soils with low incompressibility (i.e., Clay)  (D. G. Fredlund, 2012).  

 

Figure 4: Relation between matric suction and coefficient of permeability for wetting and drying conditions (D. G. Fredlund, 
2012) 
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Water flows though the water filled pores in soils as it gives the least resistance. When the 

pores are partially filled with air the resistance increases and the velocity of the flow, given by 

Darcy’s law (Equation 5), decreases nonlinearly.  

As shown in Figure 4, the coefficient of permeability changes rather quickly as matric suction 

increases. As desaturation develops and the pores fill up with air, the volume of which water 

can flow decreases. In addition, the voids shrink because of matric suction and the pathway 

available for water flow is further reduced. Therefore, the change of permeability in relation to 

suction is different for wetting and drying. This difference is important to consider when 

solving unsaturated problems (D. G. Fredlund, 2012). 

2.6 Soil Water Characteristic Curve (SWCC) 

The correlation between volumetric water content and soil suction can be illustrated using 

SWCC plots. The SWCC can be determined in a laboratory setting by measuring the difference 

between air pressure and water pressure using a high-air entry disk, which yields the matric 

suction. The SWCC can then be plotted along with gravimetric water content to form the curve 

that characterizes the relationship between the two variables  (E.C. Leong, 1997) (W. Scott 

Sillers, 2001). 

 

Figure 5: Example of a Soil Water Characteristics Curve with explanations (D. G. Fredlund, 2012) 

Figure 5 illustrates an example of a Soil Water Characteristic curve (SWCC) with descriptions 

of different zones. On the left side of the graph, the soil suction is low, and the gravimetric 

water content is high, forming the Boundary effect zone. In this zone, the soil pores are 

predominantly filled with either water or soil (no air) (D. G. Fredlund, 2012). 
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As the water content decreases, the soil suction increases, and the SWCC transitions to a phase 

where the pores contain a combination of air and water. The air entry value marks the soil 

suction where air flows back into the soil pores. In this phase, small changes in volumetric 

water content leads to significant changes in matric suction because of the pores being less 

permeable to the water particles (W. Scott Sillers, 2001). 

Eventually, the soil reaches residual conditions characterized by high levels of soil suction and 

low levels of gravimetric water content. In this phase, the pores are mainly filled with air, and 

water content in minimal, making it nearly impossible for water to flow. The residual water 

becomes challenging to remove due to its resistance to flow though air-filled pores (D. G. 

Fredlund, 2012). 

 

2.7 Wetting and drying curves 

The SWCC follows a different path for wetting and drying conditions in the soil (D. G. 

Fredlund, 2012). The difference in wetting and drying curves differs noticeably between soils 

and comes from factors such as pore layout, contact-angles between water and particles and 

shrinking/swelling of the soil (T. Mavara, 2018).  

 

 

Figure 6: Examples of wetting and drying SWCC (D. G. Fredlund, 2012) 

 

Figure 6 shows examples of the bounding curves for a soil, which are the curves defining the 

SWCC for the wetting and drying in the initial phases (completely dry and completely saturated 
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soil). The curves for degrees of saturation between 0% and 100% lay somewhere in between 

the two bounding curves and form “loops” during wetting and drying cycles. The SWCC can 

therefore not be uniquely described for a soil, but by defining the bounding curves, a range of 

soil suction vs water content can be obtained (D. G. Fredlund, 2012) (T. Mavara, 2018). 

In this thesis, only the wetting curve will be evaluated as heavy rainfall is the main trigger for 

water-induced landslides.  

 

2.8 Equations for SWCC 

One of the more established variations of the SWCC is the function for the permeability, 

derived by (R. J. Millington, 1960) and (Mualem, 1976). For this purpose, an equation for the 

curve has been shown to be beneficial and numerous attempts are made to estimate such an 

equation. The variety in the derived equations springs from differences in the initial 

assumptions regarding the pore size distribution of the soil (Robinson, 2019). In the following 

section, some of these equations and their required inputs are presented, including the van 

Genuchten equation which is the equation used for flow calculations in this thesis.   

  

2.8.1 Form fitting parameters  

To fit the equations, several curve fitting parameters are needed. The form fitting parameters 

are generally categorized into three different categories (D. G. Fredlund, 2012). 

• an a-type parameter related to the air entry value of the soil (i.e., the matric suction of 

where air begins to enter the pores) 

• an n-type parameter related to the rate of desaturation (the “steepness” of the curve)  

• an m-type parameter to make the curve more flexible.  

Figure 7, Figure 8 and Figure 9 show how the respective parameters affect the (Genuchten, 

1980)- and Fredlund and Xing-equations when two of the three parameters are held constant 

(E.C. Leong, 1997). 
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Figure 7: How the a-type parameter affects the SWCC for n = 2 and m = 1 

 

Figure 8:  How the n-type parameter affects the SWCC for a = 100 and m = 1 

 

Figure 9: How the m-type parameter affects the SWCC for a = 100 and m = 1 

  

The range of the curve fitting parameters vary greatly. Notably for the van Genuchten equation, 

the curve is highly sensitive to changes in the n-parameter and less sensitive to changes in the 

𝛼 and m-parameters, compared to the expected range.  



16 
 

Studies have shown that equations based on three form fitting parameters, rather than two, 

show a greater compatibility to laboratory test results (D. G. Fredlund, 2012).  

2.8.2 Brooks and Corey equation (1964) 

(R. H. Brooks, 1964) made an equation for the soil suction as a function of the water content 

by dividing the equation into zones depending on whether the soil suction is higher or lower 

than the air entry value. For soil suctions lower than the air entry value, the water content is set 

to be the saturated water content of the soil (D. G. Fredlund, 2012). The equations can be 

written: 

Equation 9 

𝑤(𝜓) = 𝑤𝑠                     𝜓 < 𝜓𝑎𝑒𝑣 

Equation 10 

             𝑤(𝜓) = 𝑤𝑠 (
𝜓

𝑎
)
−𝑛

             𝜓 ≥ 𝜓𝑎𝑒𝑣                     

 

Where:  

𝜓𝑎𝑒𝑣= the air entry value  

𝑤 = water content 

 𝜓 = soil suction  

 

The equation is simple to use and is therefore popular to use. However, as noted by (W. Scott 

Sillers, 2001), the discontinuous nature of the Brooks and Corey model when matric suction 

exceeds the air-entry value can lead to instabilities during modeling.  Additionally, (D. G. 

Fredlund, 2012) have suggested that while this model is valid for coarser-grained soils that 

experience rapid changes in moisture content at low suctions, it may be less applicable to finer-

grained soils that display a more gradual slope change in the transitional zone.  
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2.8.3 The van Genuchten Equation  

For this project, the (Genuchten, 1980) formula was chosen as the favorable model for the 

SWCC, mainly because of the possibility of implementation in the finite element program 

Plaxis. van Genuchten made a continuous closed form equation for the volumetric water vs soil 

suction content based on three form fitting parameters a, m, and n. From (D. G. Fredlund, 

2012)the van Genuchten equation can be written:   

Equation 11 

𝑤(𝜓) =
𝑤𝑠

[1 + (𝑎𝜓)𝑛]𝑚
 

Or re-arranged for soil suction:  

Equation 12 

𝜓 =
1

𝑎
[(

𝑤𝑠

𝑤
)

1
𝑚

− 1]

1
𝑛

 

  

Where:  

𝑤 = water content 

𝜓 = suction 

𝑎, 𝑛 & 𝑚  = curve fitting parameter  

Figure 7, Figure 8 and Figure 9 show how the curve fitting parameters of the van Genuchten 

model influence the curve. The a-parameter is the same as the inflection point of the curve, 

marking where the boundary effect zone transitions into the transition zone. The parameter 

does not affect the shape of the function, in contrast to the n-parameter which is closely related 

to the pore size distribution index and gives the curve slope (W. Scott Sillers, 2001).  

The van Genuchten has been combined with (Burdine, 1953) and (Mualem, 1976) to derive a 

simplified equation for the hydraulic conductivity, by eliminating the m-parameter with the 

relations 𝑚 = 1 −
1

𝑛
 (Mualem, 1976) and 𝑚 = 1 −

2

𝑛
  (Burdine, 1953). Although this simplifies 

the equation, (W. Scott Sillers, 2001) specifies that the elimination of the m-parameter reduces 

the flexibility of the curve and that the original three-parameter van Genuchten equation is 

favorable.  
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2.9 Ensemble Kalman Filter 

In this thesis, the recursive EnKF method was used to calibrate the van Genuchten parameters. 

The EnKF-method is a formulation of the Kalman Filter method first described by (Evensen, 

1994) with the objective of working with nonlinear oceanography problems. The EnKF-model 

can easily handle non-linear high-dimension problems, thus making it a well-used and 

acknowledged data assimilation method for physics-based problems where monitored data can 

be used to approximate parameters of high uncertainty (Muhammad Mohsan, 2021).  

The EnKF-method can easily handle large scale, non-linear problems and is well suited for 

joint parameter-estimation. The method has showed satisfactory results in various fields such 

as hydrology, meteorology, and geotechnical engineering (Muhammad Mohsan, 2021).  

  

2.9.1 The EnKF algorithm 

By assuming a Probability Density Function (PDF) for the unknown parameters, the EnKF-

algorithm yields, as for Monte Carlo simulations, numerous random combinations of input 

variables to the model. By comparing model output values to known data, the unknown 

parameters will be updated until the difference is sufficiently small. Using the same notations 

as (Muhammad Mohsan, 2021) the EnKF can be written:  

To define the model output, we define the operator g(z): 

Equation 13 

𝒚 = 𝑔(𝒛) 

Equation 14 

𝒛 = (𝒙 𝜽)𝑻 

where 𝒚 ∈  ℝ𝑁𝑚   is the model output in the measurement space and the 𝒛 -matrix is a 

combination of the model state and the model parameters (Muhammad Mohsan, 2021). 

The measurements are defined by the measurement matrix, 𝒅 ∈  ℝ𝑁𝑚, which also contains the 

measurement error 𝒆.  

Equation 15 

𝒅 = 𝒚 + 𝒆 

The main objective of the EnKF algorithm is to maximize the probability 𝑓(𝒛|𝒅) , which 

means we will get a close-to-reality estimation of the unknown parameters. Given normal 
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distributed parameters, it can be shown that this is done by minimizing the cost function 

given by (Muhammad Mohsan, 2021): 

Equation 16 

𝐽(𝒛) = (𝒛 − 𝒛𝒇)
𝑇
𝑪𝒛𝒛

−𝟏(𝒛 − 𝒛𝒇) + (𝑔(𝒛) − 𝒅)𝑇𝑪𝒅𝒅
−𝟏(𝑔(𝒛) − 𝒅) 

Where 𝑪𝒛𝒛 represents the error covariance of 𝒛 and the 𝒛𝒇-matrix symbolizes the previous 

estimate of the model parameters. 𝑪𝒅𝒅 is the error covariance of the known data 

(measurements).  

 Minimizing the cost function is done by setting the derivative to zero and the solution is a set 

of equations called the Kalman Filter (Muhammad Mohsan, 2021): 

Equation 17 

𝒛𝒂 = 𝒛𝒇 + 𝑲(𝒅 − 𝑔(𝒛)) 

Equation 18 

𝑪𝒛𝒛
𝒂 = (𝑰 − 𝑲𝑮)𝑪𝒛𝒛 

Where: 

The notation “a” represents the new estimate while the notation “f” indicates the prior estimate. 

The K-matrix is called the “Kalman gain” and is defined:  

Equation 19 

𝑲 = 𝑪𝒛𝒛𝑮(𝑮𝑪𝒛𝒛𝑮
𝑻 − 𝑪𝒛𝒛)

−𝟏 

For each ensemble member in the sample, we can write the equations:  

Equation 20 

𝑧𝑖
𝑎 = 𝑧𝑖

𝑓
+ 𝑲𝑒(𝒅𝑖 − 𝑔(𝑧𝑖

𝑓
)) 

Equation 21 

𝑲𝑒 = 𝑪𝑧𝑧
𝒆 𝑮(𝑮𝑪𝑧𝑧

𝒆 𝑮𝑇 − 𝑪𝑑𝑑)−𝟏 

Where:  

𝑪𝑧𝑧
𝑒  is the combined covariance matrix for the model state parameters and 𝒅𝑖 = 𝒅 + 𝝐𝑖 is the 

measurement matrix with added “noise” (Muhammad Mohsan, 2021). 

𝑪𝑧𝑧
𝑒  is calculated by first finding the ensemble mean for the 𝑁𝑒 sample realizations and then 

the difference between each sample member and the mean value: 
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Equation 22 

𝒁𝑡
𝑓̅̅̅̅

= 𝒁𝑡
𝑓
𝑰𝑁𝑒 

Equation 23 

𝒁𝑓
′ = 𝒁𝑓

𝑡 − 𝒁𝑡
𝑓̅̅̅̅
 

Where 𝑰𝑁𝑒 is a matrix containing only a factor 
1

𝑁𝑒
 . The combined state error covariance is then 

defined:  

Equation 24 

𝑪𝑧𝑧
𝑒 =

𝒁𝑓
′ (𝒁𝑓

′ )
𝑇

𝑁𝑒 − 1
 

𝐶𝑧𝑧 includes the covariances of both the state and parameter errors, along with the cross-

covariance that exists between the state variables and parameters.  

 The measurements are stored in the 𝒅𝑖-vector with the added measurement error or “noise” 

added to each ensemble member. The total measurement matrix is then defined:  

Equation 25 

𝑫𝑡 = (𝒅1,𝑡, 𝒅2,𝑡, 𝒅3,𝑡, …… . 𝒅𝑁𝑒,𝑡) 

Based on these matrices, the main parameter updating function can be written:  

𝒁𝑡
𝑎 = 𝒁𝑡

𝑓
+ 𝑪𝑧𝑧

𝑒 𝑮𝑇(𝑮𝑪𝑧𝑧
𝑒 𝑮𝑇 + 𝑪𝑑𝑑)−𝟏(𝑫𝑡 − 𝑮𝒁𝑡

𝑓
) 

The function shows how the prior parameters, 𝒁𝑡
𝑓
are updated with the Kalman Gain. The last 

factor of the equation (i.e., the difference between sensor data and Plaxis outputs) weights the 

parameter update, meaning that if the difference is zero, the parameters are not updated as the 

model is identical to real life (Muhammad Mohsan, 2021). 
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3 Data monitoring system  
This chapter provides context for this thesis by presenting the data monitoring system installed 

as a part of the KlimaDigital study. In addition, the study site’s geological and geotechnical 

properties are presented to give a better understanding of the problem and enhance readers’ 

comprehension of the expected results. Furthermore, the chapter outlines the process flow of 

the data monitoring system and the IoT-sensors, offering insight into the data collection process 

by including a sensor data overview.  

As part of the KlimaDigital project, sensors were strategically installed in various areas within 

the study site. This thesis focuses on utilizing data from sensors located in location 1- 

Kvernbekkneset. Consequently, this location is examined in greater detail, particularly 

concerning its geology and geotechnical properties.  

 

3.1 Study site 

The study site for the KlimaDigital project is a 200km2 area located along the Stjørdal river in 

Trøndelag. This area has a long history of being at high risk for rainfall induced landslides due 

to its steep slopes and heavy annual precipitation between 964mm and 1205mm (Leiva, 2019). 

The study area was chosen for sensor installation for the KlimaDigital project based on a series 

of factors, which some are:  

• A heatmap of landslide events  

• Areas above the marine limit, as glacial till and moraine were favorable soil types.  

• Driving distance < 2h from Trondheim  

• Thickness of deposits around 2-3m (shallow slopes) 

• Steepness of slopes > 25o 

• Easily accessible, not too dense vegetation.  

(Ivan Depina E. O., 2021) 

Based on these criteria, two areas in Meråker were chosen as suitable for sensor installation, 

Kvernbekkneset and Kjelberget, situated alongside E14.  
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Figure 10: Location 1 - Kvernbekkneset 

 

Figure 11: Location 2 – Kjelberget 

 

Figure 12 show a Digital Elevation Model (DEM) made by (Leiva, 2019). The figure shows 

that the elevation of the region increases rapidly along the Stjørdal river/E14 road from 0-200m 

in the blue to green areas of the DEM, indication steep slopes. The slope map shows that the 

steepest slopes are concentrated along the river, with steepness varying from 25-50 degrees.  

 

Figure 12: Elevation model for the study site. (Leiva, 2019) 
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3.2 Geotechnical properties 

Figure 13  show the assumed soil deposits of the study area, made by the Norwegian Geological 

Institute (NGU). As seen from the figure, the area is dominated by weathered rock material 

(purple) and shallow till/moraine deposits (green), with marine deposits occurring only in small 

“pockets” in the lower areas. Along the Stjørdal river the ground conditions are primarily 

fluvial deposits (yellow).   

 

Figure 13:  Deposits in the Meråker-area (NGU) 

In the eastern sector of the area, the till/moraine occurs mainly as shallow deposits. 

Consequently, exposed bedrock is common in this area. Moraine material, which is deposited 

and transported by glaciers, is typically an unsorted and hard packed mixture of different soil 

materials that can contain everything from clay to sand and small rocks. Because of its hard-

packed and unsorted nature, infiltration rates in these deposits are typically low, because the 

soil leaves little room for water flow (Ivan Depina E. O., 2021).  

On the other hand, fluvial deposits found along the Stjørdal rover consists of well-rounded 

gravel and sand and are often more loosely packed and well sorted because they are transported 

and deposited by flowing water. As a result, these deposits typically have a higher permeability. 

These deposits vary in depth from 0,5m to 10m deep (Ivan Depina E. O., 2021). 
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3.2.1 Geology at sensor location – Kvernbekkneset 

The soil in location 2 – Kvernbekkneset mainly consists of shallow moraine deposits (green) 

with an organic layer on top. The terrain is steep with a visible channel along the Rabb-river 

(Ivan Depina E. O., 2021).  

 

Figure 14: Deposits map location Kvernbekkneset (NGU) 

 

Some laboratory testing was done in this area for the KlimaDigital project. These tests 

encompassed methods to determine water content and organic content, sieve analysis and 

hydrometer analysis for soil classification, pycnometer test for determining soil density as well 

as a large-scale direct shear box test (Ivan Depina E. O., 2021). Figure 15 shows the results 

from the grain-size distribution tests and the large-scale shear box test:  

 

Figure 15: Grain size distribution and results from shear box test at sensor location (Ivan Depina E. O., 2021) 

The soil has been classified as silt sand in line with the European Soil Classification System, 

containing 16% fines, 57.7% sand and 26.1% gravel. The results from the large-scale shear box 

test correspond to a friction angle 38.2o and cohesion 5.5kPa (ISO, 2017)  (Ivan Depina E. O., 

2021).  
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3.3  Landslide susceptibility  

The study area is situated within the landslide-prone region known as “Trøndelagskysten” 

(Ivan Depina E. O., 2021), where the occurrence of landslides and debris flows is prevalent. In 

addition to the ground conditions discussed in the previous chapter, the combination of the 

area’s topography, characterized by natural steep slopes, and its wet climate with high 

precipitation rated and snowmelt, contributes significantly to this susceptibility.  

According to Kjell Hauge from NGI, the chances for rainfall-induced landslides substantially 

increases when the daily rainfall reaches 6% of the annual precipitation (Rommetveit, 2008). 

In the case of the study area, this equates to a daily range of 57mm/day to 72mm/day. Figure 

16 derived from data provided by NVE, illustrates all recorded landslide events in the area 

since 1964 in relation to the corresponding daily rainfall. This data, referenced from (Leiva, 

2019), demonstrates a discernible connection between daily rainfall levels and the incidence of 

landslides.  

 

Figure 16: Registered landslide events by NVE in Meråker, Trøndelag (Leiva, 2019) 

A total of 93 mass movements, including rock falls, landslides, snow avalanches, stone slides, 

debris flows, and clay slides, have been documented in the entire area since 1750. Among these 

events, approximately 30 were classified as landslides triggered by intense rainfall and snow 

melting  (NVE, 2023) (Ivan Depina E. O., 2021).  

Figure 17 show a map of some of the registered events along the Stjørdal river. 
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Figure 17: Registered landslide events in the study area 

In Figure 17 the yellow dots mark landslides triggered by floods or heavy rainfall. The orange 

and brown dots mark clay slides and unspecified landslides, respectively.   

3.4 Data Monitoring System  

As discussed in the previous section, heavy rainfall and snow melting is the main trigger for 

water-induced landslides. An important part of an early warning system therefore must be 

analyzing how the inflow influences the hydrological conditions of the soil. Hence: to calibrate 

hydrological parameters, hydrological sensor data is needed.   

For the calibration of van Genuchten parameters in this thesis, sensor data of volumetric water 

content (VWC) from Kvernbekkneset was used. In this section, the IoT-sensor system is 

presented, first with and overview and further with more detailed explanation. In addition, the 

sensor data used for parameter calibration are reviewed and explained.   

3.5 Framework 

The framework of the system consists of five layers as shown in Figure 18: the device layer, 

network layer, platform layer, application layer and the user layer.  

 

 

Figure 18: Illustration of the IoT-system (Ivan Depina E. O., 2021) 
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The device layer forms the foundation of the system and consists of sensors strategically placed 

across two distinct slopes within the study site. These sensors utilize Narrowband-IoT-

technology to accurately measure temperature, pore pressures, volumetric water content, and 

suction. Additionally, a weather station is deployed in the study area to monitor precipitation. 

The sensor data is stored in network clouds within the Network layer (i.e., the internet), with 

the values being updated every fifteen minutes and made accessible though the Platform layer 

(Emir Ahmet Oguz, 2021).  

This master’s thesis primarily focuses on the data processing aspect of the system, which 

corresponds to the Application layer. Within this layer, the sensor data is processed and used 

to address geotechnical challenges, mainly in relation stability and landslide susceptibility. The 

User Layer includes all private and non-private stakeholders using the system.  

3.6 IoT devices and calibration 

For this thesis, data from IoT sensor 5, monitoring VWC was used. The sensors are placed at 

location Kvernbekkneset with coordinates as shown in Table 1 (D2.1). In this area, three 

suction sensors and three volumetric water content sensors at depth 0.3m, 0.5m and 0.9m were 

installed in each point (D2.1 and D2.2). The sensors also monitor ground temperature. A 

weather station monitoring precipitation was installed in location 1 (Kjelberget) (Emir Ahmet 

Oguz, 2021).  

 

 

Figure 19: Exact location of IoT-sensors at Kvernbekkneset. (Emir Ahmet Oguz, 2021) 

 

 

Table 1: Coordinates of IoT-sensors 

 X Y 

IoT-device 5 63.466612° N   11.461331° E 
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The monitoring sensors for VWC provide raw data in microvolt (mV) format, which needs to 

be converted into VWC. Figure 20 shows the equation for the conversion from the 

manufacturer in addition to a conversion equation found by laboratory testing done for the 

KlimaDigital project done by (Emir Ahmed Oguz, 2021). 

For this project, the calibration equation provided by the sensor manufacturer was used for 

simplicity.  

 

Figure 20: Calibration equations for converting mV to VWC (Emir Ahmet Oguz, 2021) 

Soil suction sensors were not utilized for parameter calibration in this thesis. The decision was 

based on the observation of low suction values recorded by the sensors during the selected time 

period. The sensor data was specifically collected to simulate wet conditions, characterized by 

significant precipitation. Due to the intense rainfall during this period, the suction values 

recorded by the sensors fell below the calibration range, rendering the suction data unreliable 

and inaccurate.  

3.7 Sensor data 

Figure 21 shows sensor data of volumetric water content and precipitation from device 5 during 

a time period from August 2020 to October 2021.    
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Figure 21: Sensor data for device 5. Graph from  (Ivan Depina E. O., 2021)  

As we see from the figure, the impact of precipitation is characterized by rapid increase in 

VWC for all depths. It is interesting to note how the VWC decreases with depth for the 

spring/summer and fall. This is mainly due to vertical infiltration in the area (Ivan Depina E. 

O., 2021) and the only deviation from this is during the winter months (January to March) 

where the upper soil layers are frozen. Is this section we can see that the VWC of depth 0.3m 

dips below the VWC at depth 0.5m and 0.9m.  

For this thesis, data from the last 58 days of this data set was used to calibrate the hydrological 

parameters of the soil. The data are presented in more detail in Figure 22.       

 

Figure 22: VWC and precipitation plots for IoT-device 5. A selection of this data was used to calibrate the can Genuchten 
parameters in this thesis. 

Figure 22 show a detailed plot of the VWC for depths 0.3m, 0.5m and 0.9m alongside the 

precipitation. As mentioned above, the data shows a decreasing degree of saturation with depth. 

All sensors show a rapid response in VWC with regards to the precipitation. The effect is most 
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prominent in depth 0.3m but sensors at 0.5m and 0.9m show similar tendencies though to a 

lesser degree.  

For the calibration of the van Genuchten parameters, the first 10 days of the data in Figure 22 

were chosen. The selection was done based on two main factors: 

• This period is characterized by heavy rainfall and is therefore the best option to 

replicate wetting tendencies in the soil.  

• The responses in the VWC (i.e., the “spikes” in the graphs) helps the EnKF-

algorithm estimate the unknown parameters as it feeds the model information about 

how the soil responds to changes in precipitation.  
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4 Methodology 
In the following section, the main idea and method for the project model is presented. The 

chapter is divided into blocks for each part of the model. First, an overview of the system is 

presented describing the interactions between the model components: the IoT sensors, the 

Plaxis model, and the EnKF algorithm. In the rest of the chapter, the process is described in 

more detail, including all the steps taken to achieve the results.  The Plaxis model is presented 

first with the description of the input parameters and boundary conditions/initial conditions, 

which is followed by the presentation of the EnKF model and its implementation. Lastly, the 

choices for number of iterations and prior knowledge distributions for the simulations are 

presented.  

4.1 Model Overview 

Figure 23 illustrates an overview of the model calibration with the EnKF algorithm. The 

algorithm is initiated by specifying a “prior state” for the parameters to be calibrated. The prior 

state represents any prior knowledge that we may have about the unknown parameters (e.g., 

literature, prior experience from similar projects). The prior state is specified by assigning a 

probabilistic distribution to the unknown parameters that represents the likely range of 

unknown parameter values. The parameters of the distribution are typically selected to allow 

for a wide range of values (e.g., large variance) due to lack of knowledge of the parameter 

values. Once the prior distributions are defined, 𝑁𝑒 = 20 random samples for each of the 

unknown parameters are generated from the specified probability distribution for each 

parameter. In this thesis, the parameters are considered independent. However, in a general 

case, dependencies between the parameters may be simulated.  

Subsequently, 𝑁𝑒 Plaxis calculations are performed to generate outputs of effective degree of 

saturation at three different depths that correspond to the sensor depths in the slope. The Plaxis 

output is converted by the formula: 

Equation 26 

𝜃 = 𝑆𝑒𝑓𝑓(𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠) + 𝜃𝑟𝑒𝑠 

to match the sensor data where: 

𝜃 = volumetric water content 

𝑆𝑒𝑓𝑓 = effective degree of saturation 

𝜃𝑠𝑎𝑡 , 𝜃𝑟𝑒𝑠 = saturated volumetric content and residual volumetric water content, respectively.   
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These outputs are then compared to the known VWC values obtained from sensor data using 

the Ensemble Kalman Filter (EnKF) algorithm. Normally distributed measurement error is 

added to the sensor data randomly with zero-mean and standard deviation of 0.02. 

Based on the covariance and the disparity between the sensor data and Plaxis output, the 

samples of the unknown parameters are updated. The updated samples are then used as input 

for a new set of 𝑁𝑒 = 20 Plaxis calculations, and the entire process is iterated 𝑁𝑚 times, where 

𝑁𝑚 represents the number of sensor realizations. 

 

Figure 23: Model Illustration. First, Ne parameter samples are generated, based on the prior distributions of the unknown 
model parameter. Plaxis performs Ne calculations (one for each sample), and the output is converted to Volumetric Water 
Content to be comparable to the sensor data. The Plaxis output is then compared to the sensor data in the EnKF algorithm, 

and the values of samples are updated with the algorithm favoring the values that result in smaller difference between 
model predictions and sensor measurements. Then Plaxis performs Ne new calculations with the updated parameters. The 

whole process is repeated Nm times, making the total of calculations (Nm x Ne).  

 

4.2 Plaxis model 

The Plxscripting Python-package was used to write the Plaxis program in Python. By doing 

this, the Plaxis model could be calculated automatically numerous of times.  

The code begins with opening and creating a Plaxis model-file and creating a slope by using 

polygons and lines. The slope length of 20m was initially determined considering the 

characteristics of the study area. However, it should be noted that while the study area does 

have long slopes, the actual water contribution area is dependent on the topography, and it may 

differ from the model geometry The water flow from higher up the slope might be channelized 

in ravines, and it may not significantly affect the groundwater conditions in the slope. 

Therefore, it might not be realistic to incorporate an excessively long slope in the model.  
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Figure 24: Slope model in Plaxis 

Two areas at the top and bottom of the slope are modelled to prevent substantial outflow of 

water on the left and right boundaries and ensure slope-parallel flow from the top of the slope 

and to the bottom of the slope.  

Both the depth to bedrock and slope angle was scripted as variables, making it easy to adjust 

these parameters later if needed. Based on test runs of the model and the elevation map 

constructed by (Leiva, 2019) (Figure 12), the slope angle was set to be 35 degrees for all the 

simulations. The depth to bedrock was set to be 1.5m based on trial pits that were dug during 

the installations of sensors.  

 

4.2.1 Material definition 

For simplicity, one material was defined for the whole depth of the slope. Adding soil layers 

would double the unknown parameters in the algorithm, which would increase the runtime and 

complexity significantly.  

The code continues by defining a “make material”-function, assigning hydrological properties 

to the soil, taking in the unknown van Genuchten parameters and saturated permeability as 

inputs. For van Genuchten implementation into Plaixs, the parameters were converted as 

described on Bentley Communities by (Khan, 2022):  

• 𝑔𝑎 is defined by dividing the parameter a by the unit weight of water 𝑔𝑎 [
1

𝑚
] =

𝑎

10
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• 𝑔𝑛 = 𝑛 

• 𝑔𝑐 = 𝑚 = 1 −
1

𝑔𝑛
 (𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑙𝑎𝑥𝑖𝑠) 

• 𝑔𝑙 = 1.250 

 

 

Figure 25: Material Input example 

Plaxis utilizes the van Genuchten parameters and the saturated permeability to display the 

SWCC. While the saturated permeability 𝑘𝑥 is not directly inputted into the van Genuchten 

equation, Plaxis leverages this parameter to estimate a relative permeability 𝑘𝑟𝑒𝑙, thus 

establishing the unsaturated permeability as a function of the saturated permeability and 

suction. 

The 𝑔𝑙 parameter did not impact the shape of the SWCC significantly in this study and was 

therefore set to default value 1.250 for the sake of simplicity in the implementation of the 

algorithm. 

 

4.2.2 Mesh and selected nodes 

Based on trial calculations, a fine mesh was required to obtain a good solution to the infiltration 

process in the model. If the mesh is too coarse, Plaxis struggles with calculating smooth 

transitions between zones of different saturations in the slope.  

The model mesh is set to 0.01, generating 2074 elements and 17313 nodes.  
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To simulate the IoT sensor placement, three nodes were chosen at depths of 0.3m, 0.5m and 

0.9m from the top of the soil in the middle of the slope.  

 

Figure 26: Mesh and node points from Plaxis 

 

4.2.3 Infiltration and boundary conditions 

The lower boundary of the model is assumed to be bedrock and it is specified as a closed 

boundary for the whole slope. The left and right sides of the slope are defined as “seepage” 

boundaries, while the upper boundary is specified as “infiltration”. To estimate the initial 

groundwater condition, a steady-state analysis was conducted with the infiltration on the upper 

boundary defined by the average annual rainfall of around 1200 mm/year. 

The initial steady-state analysis is followed by a transient analysis. In the transient analysis the 

infiltration on the upper boundary of the model is specified to replicate the actual rainfall during 

the considered time-period. This was implemented with a Plaxis discharge function, which was 

defined using real precipitation data from the monitoring system. The discharge function is 

defined as a table with daily rainfall rates from day 0 to 58. Because of wetting and drying 

hysteresis in the SWCC, a period with heavy rainfall over several days was preferable. When 

looking at the precipitation graph in Figure 27, the first 12 days of the period of 58 days has 

several days with rainfall > 20mm/day and this period was chosen based on this.  
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Figure 27: Precipitation from sensor data day 0-58 

  

The initial phase is constructed to define the initial groundwater conditions in the slope. In this 

phase, the precipitation is sat to be 0.005 m/day with a steady-state groundwater flow analysis. 

In phase 1, a transient groundwater flow analysis is done with the time interval as an input 

value from the Python script. During the first iteration 𝑁𝑚 = 0, the time interval is 𝑡 = 𝑁𝑚 +

1 and subsequently 𝑡 = 10 in the last iteration. In combination with the discharge function, 

which is detailing the precipitation during the 10 days, this ensures realistic infiltration 

conditions for the model automatically when running the code.  

 

4.3  Ensemble Kalman Filter implementation 

The EnKF-algorithm begins with estimating 𝑁𝑒 = 20 realizations or samples for each of the 

unknown parameters, 𝑛, 𝛼  and 𝑘𝑠𝑎𝑡 based on a lognormal distribution with a given expected 

value 𝜇 and standard deviation 𝜎. A measurement error 𝜎𝑚= 0.02 is also defined in the initial 

stage.  

The expected value and standard deviation are defined as the system’s “prior knowledge” and 

was varied for each simulation to investigate how the results were affected. A lognormal 

distribution was used for the parameters to avoid negative numbers in the samples, which could 

lead to Plaxis-errors and numerical fails in the simulation. The parameters were transformed 

using 𝑒𝑥 before Plaxis input.   

Plaxis then runs one calculation for each value in the sample, in total 𝑁𝑒 = 20 calculations in 

one iteration.  
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The Plaxis model outputs a matrix of effective saturation (which is converted to volumetric 

water content promptly by using Equation 26) in the three node points (0.3m, 0.5m and 0.9m). 

These results are the model output 𝒚 of the system, 𝒚 = 𝑔(𝒛) where the 𝑔(𝒛)-function 

represents the Plaxis calculations. The 𝒛-matrix is the system state of Plaxis defined by model 

state 𝜽 (i.e., output of interest) and unknown parameters 𝒙 (i.e., van Genuchten parameters). In 

the code, the parameter samples 𝒙 were noted 𝒛𝒇 for prior parameter estimates and 𝒛𝒂 for 

updated estimations.  

In the code, a 𝒀-matrix was defined to contain all unknown parameters and Plaxis outputs: 

𝒀 =

[
 
 
 
 
 

𝜶𝒊

𝒌𝒔𝒂𝒕

𝒏
𝜽𝟏

𝛉𝟐

𝜽𝟑 ]
 
 
 
 
 

 

Where the three first elements are the parameter vectors, and the three last elements are the 

Plaxis output vectors at each depth. The elements of the 𝒀-matrix are then copied over to the 

𝒛𝑓-matrix, which only contains prior parameter estimations.  

Further, the EnKF algorithm works by calculating the sample covariance 𝑪𝒛𝒛 =
𝒛𝒅(𝒛𝒅)𝑻

𝑁𝑒−1
 of the 

𝑁𝑒 parameter samples, where 𝒛𝒅 is the difference between the sample and the sample mean.   

The measurement matrix 𝑫 contains the sensor data, and the measurement error 𝜎𝑚= 0.02 is 

added to each element in the matrix to account for any noise in the sensor data. The parameter 

updating process starts by first calculating the difference between measurements and Plaxis 

output:  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑫 − 𝑮𝒛 

And then updates the parameters based on the difference:  

𝒛𝑎 = 𝒛𝑓 + 𝑲 ∗ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Where K is the Kalman gain, defined by: 

𝑲𝑒 = 𝑪𝑧𝑧
𝒆 𝑮(𝑮𝑪𝑧𝑧

𝒆 𝑮𝑇 − 𝑪𝑑𝑑)−𝟏 

As presented in chapter 2.9.1.  
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If there is no difference between the measurements and model predictions, the samples will not 

be updated as it means that we have good model performance. If there is a difference between 

the model predictions and sensor measurements, the samples of the unknown parameters are 

updated based on the calculated Kalman gain. The size of the Kalman gain and its relation to 

predictions or observations depends on the relative size of the parameter covariance matrix and 

the measurement error covariance matrix. If the measurement error covariance is small relative 

to the parameter covariance, that means that our measurements are very accurate, and we tend 

to trust them more than predictions. In case the parameter covariance is small, relative to the 

measurement error covariance, that means that we have very little variability in model 

predictions and that the model is likely to be accurate and that we can trust it more than the 

measurements.   Finally, towards the end of the calibration the size of the parameter covariance 

matrix is likely to become very small as we are converging to certain values of the unknown 

parameters, while the error covariance matrix will remain constant. This means that uncertainty 

in the estimated parameter values cannot be fully eliminated as there will always remain some 

uncertainty originating from the measurement error.  

 

4.4 Model input  

The number of simulations and iterations was determined as follows: 

𝑁𝑒 = number of sample guesses 

𝑁𝑚 = Iterations or number of measurements. In this case one measurement for each day for 10 

days was used.  

After conducting multiple tests runs of the simulations, it was observed that using 𝑁𝑒 = 20 

parameter guesses yielded satisfactory results without compromising the runtime and computer 

capacity. While some simulations were attempted with 𝑁𝑒 = 30, it did not sufficiently improve 

parameter convergence and significantly increased the likelihood of Plaxis not converging and 

crashing.  

𝑁𝑚 = 10 days was chosen based on the precipitation graph in Figure 27, which displayed the 

highest variability within this timeframe. Extending the simulations beyond this period was 

deemed unnecessary, although one simulation with 𝑁𝑚 = 12 is presented in the results for 

comparison reasons. Moreover, the test simulations demonstrated rapid convergence of the 
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unknown parameters, and prolonging the simulation period would only add more time to the 

process, without yielding better outcomes.  

This resulted in a total of 𝑁𝑒 𝑥 𝑁𝑚 = 20 x 10 = 200 calculations for each simulation. The 

runtime for each simulation varied between 5 - 10 hours.  

The initial probability density functions (pdf’s) of the unknown parameters were given as input 

for each simulation, all other parameters and conditions were kept the same. The unknown 

parameters were modelled as lognormally distributed to avoid negative values of the 

parameters. The pdfs were chosen based on expected values from the literature and the results 

from the test simulations.  
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5  Results and discussion 
In this chapter, the outcomes and analysis of the research are presented. The results were 

obtained by varying prior knowledge of the parameters to evaluate changes in convergence, 

posterior estimates in the calibration process, and the stability of the algorithm. The volumetric 

water contents from the Plaxis analysis over 𝑁𝑚 iterations (days) are shown in comparison to 

the to the sensor data for the representative depths. The compliance between sensor data and 

Plaxis results are the main indicator of good parameter estimations as the goal is to establish a 

model as close to real-life as possible.  

The results from each simulation are discussed consecutively as they are presented. Lastly, a 

more collective discussion is presented to further compare the results and give an understanding 

of how the model performed as a whole.   

 

5.1 Results overview 

The overview of the prior estimate vs the posterior estimate for the unknown parameters is 

presented in Table 2. The table show the expected values and standard deviation of the initial 

guesses (black numbers) compared to the expected values and standard deviation obtained from 

the data assimilation process (blue numbers) after 𝑁𝑚 = 10 iterations.  

 

Table 2: Overview of results. The table show the prior distribution estimate of the unknown van Genuchten parameters a, n 
and 𝑘𝑠𝑎𝑡  in comparison to the posterior estimates obtained by the data assimilation process. 

Simulation 

 
𝝁𝒂 
Prior 

𝝁𝒂 
Posterior 

𝝈𝒂 
Prior 

 

𝝈𝒂 
Posterior 

 

𝝁𝒏 
Prior 

𝝁𝒏 
Posterior 

𝝈𝒏 
Prior 

 

𝝈𝒏 
Posterior 

 

𝝁𝒌𝒔𝒂𝒕
 

Prior 
𝝁𝒌𝒔𝒂𝒕

 
Posterior 

𝝈𝒌𝒔𝒂𝒕
 

Prior 

 

𝝈𝒌𝒔𝒂𝒕
 

Posterior 

 
i 6.0 6.73 1.0 0.885 2.0 1.887 0.5 0.108 4.0 5.64 2.0 1.358 

ii 6.0 2.58 1.0 0.36 3.5 2.325 0.5 0.137 4.0 2.68 2.0 0.365 

iii 6.0 5.465 1.0 0.358 3.5 2.378 0.5 0.156 5.5 2.525 2.0 0.368 

iv 2.0 1.561 1.0 0.121 3.5 3.034 0.5 0.185 4.0 3.724 2.0 0.771 
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5.2 Results simulation i) 

Figure 28 (Plot i.A) - i.C)) exhibit Plaxis ensemble results compared to the corresponding 

sensor data for simulation i). The sensor data is represented by the blue line, while the x-marks 

depict the ensemble Plaxis calculation results.  

 

Plots i.A) and i.B) corresponding to depths 0.3m and 0.5m, respectively, demonstrate a notable 

overall alignment between the sensor data and Plaxis results, with the Plaxis outcomes 

converging to nearly identical values as the sensor data in both cases. However, it appears that 

Plaxis exhibits a slower response to increases in VWC, as is seen by the observed gaps between 

sensor-plots and Plaxis-plots in i.A) and i.B) between day 4 - 5.  

A reason for this could be that EnKF over-estimates the 𝑘𝑠𝑎𝑡 parameter which leads to the 

water draining too fast for day 2-4. As is seen in Figure 29 (graph i.E) and i.H)), which show 

the evolution of the estimation of 𝑘𝑠𝑎𝑡 during the 10-day simulation period, the permeability 

estimations increase during these days before decreasing noticeably afterwards, resulting in the 

Plaxis output not keeping up with the rapid increase in VWC at day 3-4, which leads to 

deviations between Plaxis and the sensor data.  

Plot i.C), representing a depth of 0.9m, shows less conformity with the sensor data, as is seen 

by the Plaxis outputs consistently deviate from the sensor data with around 0.05%. There are 

several possible reasons for this deviation:  

As the sensor at depth 0.9m consistently shows lower VWC than sensors at 0.5m and 0.3m for 

the whole period, there is reason to believe a low-permeable soil layer is starting somewhere 

between depth 0.5m and 0.9m. (Ivan Depina E. O., 2021) also suggest that the low values of 

VWC at depth 0.9m is partially due to vertical infiltration in the slope. A combination of these 

Figure 28: Results from simulation i). Plaxis data of VWC (x) plotted against sensor data (blue lines) for all depths. 
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theories is supported by the geotechnical investigations, concluding with the area being 

dominated by steep slopes and hard packed moraine with poor infiltration (chapter 3.2.1).  

However, a permeability-paradox occurs when analyzing unsaturated soil in Plaxis. As the 

water drains from a soil, the permeability decreases as soil suction increases. If the permeability 

is highly sensitive to changes in soil suction (i.e., high values of 𝑛), this could lead to a rapid 

decrease in permeability caused by the high saturated permeability.  

 

Figure 29: Results from parameter estimation (i). Prior estimate:  𝜇𝛼= 6.0, 𝜎𝛼 = 1.0, 𝜇𝑘𝑠𝑎𝑡
 = 4.0, 𝜎𝑘𝑠𝑎𝑡

 = 2.0, 𝜇𝑛 = 2.0, 𝜎𝑛 = 0.5 

 

Figure 1 (Graph i.D) – i.F)) shows the parameter estimations during the 10-day simulation and 

graphs i.G) – i.I) show the probability distribution of the parameters from every other iteration 

during the simulation where day 1 indicate the “prior knowledge” of each parameter.   
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The 𝛼-parameter shows a slight convergence tendency from prior state, seen by the standard 

deviation changing from 𝜎𝛼,𝑝𝑟𝑖𝑜𝑟   = 1.0 to  𝜎𝛼,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.885, indicating a more accurate 

estimation. The 𝑛-parameter converges significantly and is therefore the most accurate estimate 

in this simulation with 𝜎𝑛,𝑝𝑟𝑖𝑜𝑟 = 0.5 to 𝜎𝑡=𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.108.  

The results for the saturated permeability 𝑘𝑠𝑎𝑡 don’t demonstrate any satisfactory convergence 

as the standard deviation only changes from 𝜎𝑘𝑠𝑎𝑡,𝑝𝑟𝑖𝑜𝑟 = 2.0 to 𝜎𝑘𝑠𝑎𝑡,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟= 1.358. However, 

graph i.A) – i.C) show a significant convergence of Plaxis outputs. There are a few reasons this 

could be: 

The model is relatively insensitive to the change in permeability, as the results doesn’t seem to 

change much although the permeability is widely spread between values 3 – 9m/day.  

However, when we investigate the SWCC obtained from Plaxis using the expected values for 

the posterior estimates of the van Genuchten parameters, we can see that the permeability in 

fact changes substantially due to soil suction.  

 

Figure 30: SWCC from Plaxis using the estimated van Genuchten parameters. Ga = a/10 = 0.673, gn = 1.887, gl = 1.125, 𝑘𝑠𝑎𝑡  
= 5.64 m/day 

Here 𝑘𝑟𝑒𝑙 = 
𝑘

𝑘𝑠𝑎𝑡
 is defined as a percentage of the saturated permeability and 𝜓 is the soil suction.  

Looking at graphs i.A) – i.C) we see that the VWC from Plaxis outputs lays in the range of 

0.3%, which, by using Equation 26, translates to a degree of saturation S ≈ 0.7%.  

Reading off the 𝑆 − 𝜓 −plot in Figure 30 we see that this corresponds to 𝜓 ≈ -1.5 [m] → 
𝑘

𝑘𝑠𝑎𝑡
 = 

0.055 → 0.055 ∗ 𝑘𝑠𝑎𝑡 =   0.31 m/day, which is a significant percentage loss from 𝑘𝑠𝑎𝑡.  
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Compared to the SWCC from the other simulations, the SWCC from simulation i) shows a 

slower response in 𝑘𝑠𝑎𝑡 to changes in soil suction, due to the 𝑛-parameter being in the lower 

range.  

Another reason for the high variability in 𝑘𝑠𝑎𝑡 could also be the relatively high variability 

shown in the estimation of the two other parameters 𝛼 and 𝑛. Although both parameters seem 

to converge to high certainty estimates the SWCC is, as discussed in chapter 2.8.3, highly 

sensitive to changes in the 𝑛-parameter. Therefore, the reason could be that the highest 

estimates of 𝑘𝑠𝑎𝑡 (≈9m/day) were paired with high values of 𝑛 in the simulation, resulting in 

𝑘𝑟𝑒𝑙 changing quickly for small changes of soil suction and vice versa.  

To conclude, the parameter estimations obtained from simulation i) are not particularly reliable. 

Although the sensor data and Plaxis outputs have good compliance for depth 0.5 and somehow 

good compliance in depth 0.3m, the posterior distributions of the parameters are not sufficient 

to describe the hydrological conditions of the soil in a unique and satisfying way.  

 

5.3 Results simulation ii) 

Graph ii.A – ii.C) show Plaxis outputs (x-marks) plotted against sensor data (blue line) for 

simulation ii).  

For depth 0.5m (ii.B)), the Plaxis outputs are almost identical to the sensor data which is a good 

indicator of reliable parameter estimations at this depth.  

 For depth 0.3m, the Plaxis data show an overall good compliance to the sensor data, yet there 

is a significant deviation in Plaxis’ response to increase in VWC, especially during day 3-5. 

This deviation is likely a result of a higher permeability layer in the top layer of the soil, which 

makes EnKF slightly underestimate the saturated permeability 𝑘𝑠𝑎𝑡 to obtain better results at 

depth 0.5m and 0.9m, which show signs of lower permeability as the responses to increased 

VWC are slower.  
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As for the problem in simulation i), the VWC from Plaxis is overestimated for depth 0.9. The 

same explanations as for simulation i) are valid for this case. 

 

Figure 31: Results from simulation ii). Plaxis data of VWC (x) plotted against sensor data (blue lines) for all depths. 
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Figure 32: Results from parameter estimation (ii). Prior estimate:  𝜇𝛼 = 6.0, 𝜎𝛼 = 1.0, 𝜇𝑘𝑠𝑎𝑡
 = 4.0, 𝜎𝑘𝑠𝑎𝑡

 = 2.0, 𝜇𝑛 = 3.5, 𝜎𝑛 = 

0.5 

 

Figure 32 shows the results from the parameter estimations for simulation ii) (graph ii.D) – 

ii.I)).  

The 𝛼-parameter (graph ii.D) and ii.G)) show a considerable amount of improvement in 

standard deviation, with 𝜎𝛼,𝑝𝑟𝑖𝑜𝑟= 0.945 and 𝜎𝛼,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟= 0.36, which is a decrease by 1/3. 

Also 𝑘𝑠𝑎𝑡 show a great improvement in standard deviation during the simulation with 

𝜎𝑘𝑠𝑎𝑡,𝑝𝑟𝑖𝑜𝑟 = 2.214 and 𝜎𝑘𝑠𝑎𝑡,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.365. Lastly, the 𝑛 - parameter converges to expected 

value 𝜇𝑛 = 2.325 with a decrease in standard deviation from 𝜎𝑛,𝑝𝑟𝑖𝑜𝑟 = 0.645 to 𝜎𝑛,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 

0.137.  



47 
 

Compared to the overall results from simulation i), simulation ii) show a higher degree of 

certainty in the posterior parameter estimations. This is mainly due to the factor of convergence 

in the estimations. Decreasing standard deviations over time means that the expected area for 

the parameter estimation is shrinking, resulting in increased certainty.  

It is especially important to note the difference in estimated 𝑘𝑠𝑎𝑡 for simulation i) and ii) as it 

varies considerably between the two simulations (𝑘𝑠𝑎𝑡,𝑖 = 5.64 m/day vs  𝑘𝑠𝑎𝑡,𝑖𝑖 = 2.682 m/day). 

The effect of this is seen in the VWC-plots (ii.A – ii.C and i.A – i.C) as the Plaxis output shows 

a slower response to increase in water content for case ii) vs i).  

The difference in the 𝛼 and 𝑛 – parameter for the two simulations is also interesting to mark as    

𝛼𝑖 = 6.732 and 𝛼𝑖𝑖 = 2.583 while 𝑛𝑖 = 1.887 and 𝑛𝑖𝑖 = 2.325. As discussed in chapter 2.8.1, the 

effect of the 𝛼 – parameter in the van Genuchten equation is a shift in the air-entry value of the 

function, describing for what matric suction value air can start to fill the pores.  

This means that for the same degree of saturation (S), the SWCC for simulation ii) in Figure 

33 yields higher values of matric suction than in simulation i) (Figure 30).  

 

 

Figure 33:  SWCC from Plaxis using the estimated van Genuchten parameters. Ga = a/10 = 0.258, gn = 2.325, gl = 1.125, 
𝑘𝑠𝑎𝑡  = 1.68 m/day.  

 

The difference in the 𝛼-parameter also show notable differences in the relationship between 

𝑘𝑠𝑎𝑡 and 𝑘𝑛𝑜𝑛−𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑. Doing the same rough calculation as for simulation i), the VWC 

obtained from Plaxis lays in the range of 0.3%, which translates to degree of saturation at ≈

 0.7% (Equation 26). For the SWCC in Figure 33, the soil suction corresponding to 𝑆 = 0.7% 
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is approximately 𝜓 = 4 which again translates to 𝑘𝑟𝑒𝑙 =
𝑘

𝑘𝑠𝑎𝑡
≈ 0.1. With 𝑘𝑠𝑎𝑡,𝑖𝑖 = 1.68 m/day 

as estimated from the simulation. This means that the average non-saturated permeability for 

the soil 𝑘 = 0.1 x 𝑘𝑠𝑎𝑡 = 0.168 m/day. Compared to simulation i), where the average non-

saturated permeability was calculated to be 𝑘 = 0.31m/day, the difference in non-saturated 

permeability for the two cases is significantly smaller than for the saturated permeability. This 

is important to note as it highlights how the differences in numerical results between 

simulations may appear bigger than the actual effect.  

Simulation ii) show overall somewhat satisfying results, with good correspondence between 

sensor data and Plaxis as well as convergence for all the unknown parameters. When compared 

to simulation i) the results however show how the SWCC is not uniquely described and that a 

variety of parameter combinations can yield similar model results.  

 

5.4 Results simulation iii) and iv) 

The inclusion of these additional results serves the purpose of demonstrating the impact of 

prior knowledge and iteration time on the outcomes.  By comparing all the results, we can 

examine whether the parameters converge to consistent values across different starting points 

and for different iteration numbers.  

The results from simulation iii) and iv) in Figure 34 and Figure 35 show similar tendencies as 

i) and ii), respectively, with regards to Plaxis output and sensor data compliance. These 

relations are described in the prior section and are therefore not analyzed in detail in this 

section.  

 

 

Figure 34: Plaxis results vs sensor data for simulation iii) 
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Figure 35: Plaxis results vs sensor data for simulation iv) 

Parameter estimations for simulation iii) and iv) are shown in Figure 36. Like results i) and ii), 

we see variable amounts of convergence in the estimated parameters. In simulation iii), both 

the saturated permeability 𝑘𝑠𝑎𝑡 and 𝑛-parameter converge to significantly more reliable 

estimates which is seen by the standard deviation for 𝑘𝑠𝑎𝑡 changing from 𝜎𝑘𝑠𝑎𝑡,𝑝𝑟𝑖𝑜𝑟 = 2.0  to 

𝜎𝑘𝑠𝑎𝑡,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.368, and from 𝜎𝑛,𝑝𝑟𝑖𝑜𝑟 = 0.5  to 𝜎𝑛,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.156 for 𝑛. The 𝛼-parameter 

doesn’t have such a strong tendency seen from the plot, however the data shows that the 

standard deviation for 𝛼 changes from 𝜎𝛼,𝑝𝑟𝑖𝑜𝑟 = 1.0 to 𝜎𝛼,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.358 which is a 

noteworthy change.  
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Figure 36:) Results from parameter estimation (iii) and iv)). Prior estimates (iii):  𝜇𝛼 = 6.0, 𝜎𝛼 = 1.0, 𝜇𝑘𝑠𝑎𝑡
 = 5.5, 𝜎𝑘𝑠𝑎𝑡

 = 2.0, 

𝜇𝑛 = 3.5, 𝜎𝑛 = 0.5. Prior estimates (iv):  𝜇𝛼 = 2.0, 𝜎𝛼 = 1.0, 𝜇𝑘𝑠𝑎𝑡
 = 4.0, 𝜎𝑘𝑠𝑎𝑡

 = 2.0, 𝜇𝑛 = 4.0, 𝜎𝑛 = 0.5 

 

Parameter estimations for simulation iv) show a great improvement in standard deviation for 

𝛼, with 𝜎𝛼,𝑝𝑟𝑖𝑜𝑟 = 1.0 and 𝜎𝛼,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.121, and for 𝑛 with 𝜎𝑛,𝑝𝑟𝑖𝑜𝑟 = 0.5 and 𝜎𝑛,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 

0.185. In contrast to iii), the saturated permeability shows less convergence than iii) with 

𝜎𝑘𝑠𝑎𝑡,𝑝𝑟𝑖𝑜𝑟 = 2.0 and 𝜎𝑘𝑠𝑎𝑡,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 0.771.   

When analyzing the results in Table 2, it is evident that there are similarities in the results from 

simulation ii) and iii) as both the 𝑘𝑠𝑎𝑡-parameter and 𝑛-parameter converge to almost identical 

values. While these parameters demonstrate a high degree of similarity, it is important to note 

that the 𝛼-parameter exhibit a noticeable deviation. The 𝛼-parameter states the air-entry value 

for the soil, marking for what soil suction the permeability (and water content) starts to decrease 

in the SWCC.  



51 
 

This is further substantiated by analyzing the Plaxis output vs sensor data-plots for both cases 

(Figure 31 and Figure 34). In simulation ii), the permeability seems to be lower than for 

simulation iii) as the Plaxis outputs show a faster response to VWC in iii), even though 

𝑘𝑠𝑎𝑡  converges to almost identical values.  This is likely caused by the lower value for the 𝛼-

parameter for simulation ii), meaning that the unsaturated permeability starts to decrease for 

lower soil suctions and vice versa for simulation iii).   

Despite very similar values for 𝑘𝑠𝑎𝑡 and 𝑛 in ii) and iii), the results are not sufficiently 

consistent to confidently assert that the parameter estimates are correct.  

Another example of this issue is the similarities observed between simulation ii) and iv). These 

results demonstrate very similar Plaxis outputs, even though the van Genuchten parameters 

exhibit significantly different values. These findings underscore the importance and difficulty 

in analyzing hydrological parameters, especially for SWCC’s. As mentioned in the limitations 

section, different parameter combinations may yield similar results, which makes it challenging 

to make high certainty conclusions.  

5.4.1 Effect of iterations 

As seen from Figure 36 and the results for simulation iv), which was done using 𝑁𝑚 = 12 days, 

the degree of convergence does not seem to be affected by the increase in number of iterations. 

Based on the observed trend in the results, it appears that when the parameters exhibit 

significant convergence, this tends to happen rapidly within the first few iterations (days).  

However, it is important to note that this pattern may vary depending on the data set used for 

parameter calibration. If the initial data set consists of limited instances of significant 

fluctuations or extreme values, introducing more iterations could potentially yield positive 

effects by providing additional information about the measurement state.  

5.4.2 Effect of prior knowledge 

The effect of prior knowledge on parameter estimation is a significant factor to consider. Based 

on the results in this thesis, it appears that the 𝛼- and 𝑛-parameter respond more to changes in 

the initial prior knowledge than 𝑘𝑠𝑎𝑡, although this tendency is not very clear and could very 

likely originate from the small changes done in the initial conditions for 𝑘𝑠𝑎𝑡.  

However, by narrowing down the area of initial uncertainty, it becomes possible to enhance 

the reliability of the parameter estimations as it will lead the algorithm closer to the correct 

results.  
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5.5 Overall discussion 

The results of the parameter calibration are positive, showing that the Plaxis outputs align well 

with the measured data. The updated parameters are also getting closer to a more accurate 

estimation within the expected range. However, it is important to emphasize the fact that it is 

challenging to draw definite conclusions from these simulations because of the nature of 

unsaturated soil theory itself. This difficulty doesn’t necessarily mean there’s anything wrong 

with the model or algorithm used. The problem lies in the fact that unsaturated soil problems 

are highly non-linear and lacks unique solutions for limited information. This limitation is 

clearly demonstrated in this thesis, where similar Plaxis outputs are obtained despite variations 

in the estimated van Genuchten parameters, and similar van Genuchten parameters result in 

significant varieties in for example soil suction. 

To obtain more reliable conclusions, we need additional information about the problem. This 

could involve using measurements of soil suction along with VWC-data. Another approach 

could be calibrating the parameters based on hydrological data from actual landslide-events.    

In the context of early warning systems, it is crucial to have more certainty about the 

hydrological conditions of the soil as the unsaturated conditions can lead to shallow shear 

circles as the waterfront changes. These critical shear circles may not be considered if the 

unsaturated conditions are not analyzed. In addition, changes in the 𝛼-parameter affect the soil 

suction which again influences the effective stresses and slope stability. More accurate 

information about the hydrological state of the soil is essential to create a reliable early-warning 

system.  

Despite these challenges, using the EnKF-method for parameter calibration could be effective. 

An alternative method would be manually updating the parameters and evaluating the results 

manually, which would be time consuming and difficult. The automated nature of the EnKF 

approach is advantageous in this regard and the method has great potential when it comes to 

automatic calibration for hydrological parameters in soil.  

 

 

 

 

 



53 
 

6 Summary and main conclusions 
This master’s thesis focused on the parameter calibration of the van Genuchten parameters 

(𝛼, 𝑛 , 𝑘𝑠𝑎𝑡) using the Ensemble Kalman Filter algorithm and sensor data for volumetric water 

content. The work involved setting up an automated water flow model using Plaxis-scripting 

and incorporating the EnKF algorithm into the Python code. The main objectives of this thesis 

were: 

• Analyze and process sensors data in a wetting period for a slope in Meråker.  

• Implement and automate a hydraulic model of the slope in Plaxis with Python scripting.  

• Study and Implement the Ensemble Kalman Filter algorithm in the programming 

language Python Couple Plaxis model with the Ensemble Kalman Filter algorithm in 

Python. Assess the performance of the Ensemble Kalman Filter algorithm and the 

calibrated hydrological model. 

The simulations began with specifying a prior state for the unknown parameters based on prior 

knowledge and assigning probabilistic distributions to represent the likely range of parameter 

values. Random samples were generated from these distributions, and Plaxis calculations were 

performed to obtain outputs of effective degree of saturation at different depths corresponding 

to sensor placements.  

A comparison was then made between the Plaxis output and sensor data using the EnKF 

algorithm, with normally distributed measurement errors added to the sensor data. The samples 

of the unknown parameters were updated based on the covariance and disparity between the 

sensor data and Plaxis output. The updated samples were used as input for new Plaxis 

calculations, and this process was iterated multiple times.  

The simulations were conducted with specific iteration times and prior knowledge of the 

unknown parameters, and the results indicated a reasonable correspondence between sensor 

data and Plaxis output. The correspondence was best at depth 0.5m with Plaxis outputs being 

almost identical to sensor values for some simulations. Bigger variations between sensor data 

and Plaxis output was observed at depth 0.3m and especially at depth 0.9m, assumably due to 

factors like vertical infiltration and lower permeable layers which were not considered in the 

Plaxis model.  
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The estimation of van Genuchten parameters showed convergence in most simulations, 

indicating higher certainty estimates of the parameters. However, the inherent nonlinearity of 

unsaturated soil problems renders them ill-posed. Multiple parameter combinations can 

produce almost identical results, as evidenced by similar Plaxis responses obtained with 

different estimations of the van Genuchten parameters. This lack of uniqueness makes it 

impossible to determine the correct results without additional information.  

The findings suggest that the EnKF algorithm can determine hydrological parameters, but 

improved accuracy in initial conditions and prior parameter knowledge is necessary for more 

certain estimation. The potential application of this method in early warning systems for 

rainfall-induced landslides is present, but further refinement and certainty in the result is 

needed for sufficiently reliable results. Incorporating calibration with suction sensors as well 

as VWC-sensors or calibrate the parameters with data from landslide-events could be 

advantageous to achieve higher certainty.  
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7 Future work 
Recommendations for future work with parameter calibration using EnKF and Plaxis scripting 

include:  

• Expand the simulations and consider potential soil layers.  

• Calibrate the parameters using suction-sensors as well as VWC-sensors. This would 

improve the reliability of the results drastically.  

• Test the calibration on a variety of different data sets or over a significantly longer 

time period to compare the results. 

• Implement the results in stability analysis to examine how the hydrological 

condition of the soil influences the stability. This would be crucial before 

implementing the calibration results in early-warning systems.  

• EnKF can be used to estimate stiffness parameters of the soil by using monitoring 

data of deformations, as done by (Muhammad Mohsan, 2021).  
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9 Appendix A 
Python Code 



#Key elements of the code

#Importing packages
from plxscripting.easy import*
import numpy as np
import requests
import matplotlib.pyplot as plt
from datetime import datetime
import math

#Begin making the Plaxis-model

def plaxis_model(permeabilitet, S_res, S_sat, ga, gn, time):
    
    degrees = 35.0                       #Steepness of slope
    model_length = 20.0                  #Length of slope
    depth_to_bedrock = 1.5               #Depth to bedrock    

    s_i.new()                            #Creating a server for Plaxis-scripting   
    g_i.gotostructures()                 #Go to structures in Plaxis 
    
    
    
    #Defining a function for making the material 
    
    def lag_materiale(permeabilitet, S_res, S_sat, ga, gn):    
        
        
        #theta_r     Residual water content
        #theta_s     Saturated water content
        #alpha       Inverse of the air entry value
        #n           Pore size distribution index
        
        #Making the material
        sand = g_i.soilmat('Identification', 'Sand', 'SoilModel', 'Mohr-Coulomb', 'ERef', 
                           20000, 'cRef', 5, 'phi', 30, 'cInc', 1,
                    'GroundwaterClassificationType', 'User-defined', 
                    'SWCCFittingMethod', 'Van Genuchten', 'SaturationSaturated', S_sat, 
                    'ClayFraction', 0, 'SiltFraction', 10, 'SaturationResidual', S_res, 
                    'PermHorizontalPrimary', perm, 
                    'PermVertical', perm, 'GenuchtenGn', gn, 'GenuchtenGa', ga/10)       
    
        return sand   
       
    
    sand = lag_materiale(permeabilitet,  S_res, S_sat, ga, gn)
    
    #Defining start points and end points for the polygons. 
    .
    .
    
    #Making the slope-polygons and setting the material to the slope.   
    skraning.setmaterial(sand) 
    start_element.setmaterial(sand)
    slutt_element.setmaterial(sand)
    
    
    
    #Making the mesh
    g_i.gotomesh()
    g_i.mesh(0.01)
    g_i.selectmeshpoints()        
       
    
    #Defining the stress points at depth 0.3m, 0.5m and 0.9m
    
    
    g_o.addcurvepoint("node", (model_length/2, stress_point_03))
    g_o.addcurvepoint("node", (model_length/2, stress_point_05))
    g_o.addcurvepoint("node", (model_length/2, stress_point_09))
    g_o.update()
    
 
    #Defining flow conditions
    g_i.gotoflow()
    .
    .
    .
    #Defining the boundary conditions and infiltrarion in phase 0
   .
   .
   .
    #Defining infiltration in phase 1 and setting a dishacrge function
    .
    .   
    .  
    #Setting the discharge function 
    g_i.set(g_i.DischargeFunction_1.Signal, "Table")
    g_i.set(g_i.DischargeFunction_1.Table, table)
  
    
    g_i.gotostages() #Staged construction 
    .



    .
    # Set up the InitialPhase to flow only
    .
    .
    # Increase the tolerated error
    .
    .
    # Set up phase 1 to transient groundwater flow
    .
    .
    #Defining time interval for calculation
    g_i.set(g_i.Phase_1.TimeInterval, time)
    
    
    #Calculations
    def calculations():
        
        list_of_sat_results = []
        
        g_i.calculate(True) 
    
        #Checking if analysis was successfull 
        if(strInPh.split()[1] == 'OK' and strPh_1.split()[1] == 'OK'):
        
            print('Flow analysis successful.')
         
        
            #Collecting the Saturation results in a list
            for k in range(3):
                
                
                values_sat = g_o.getcurveresults(g_o.CurvePoints.Nodes[k], phase1_o, g_o.ResultTypes.Soil.EffSaturationAsRatio)                   
                list_of_sat_results.append(float(values_sat))
        
         
        return list_of_sat_results
    
# Returning the results    
    return calculations()   
            

#Sensor data is defined in lists:
    
    # VWC03 Volumetric water content depth 0.3
    # VWC05 Volumetric water content depth 0.5
    # VWC09 Volumetric water content depth 0.9
             
    
# Defining the number of iterations Nm

Nm = len(VWC_0_3) #Number of sensor values

# Measurement error
sigma_m = 0.01

# Defining number of realizations/ensemble members
Ne = 20

# Defining prior knowledge of unknown parameters and 

#mu = expected value 
#std = Standard deviation

#Making the samples log-normal
std_ln = np.sqrt(np.log(1 + std**2/mu**2))
mu_ln = np.log(mu - 0.5*std_ln**2)

#Making the Y-matrix
Y = np.zeros((6, Ne, Nm))

#Making connection to Plaxis
p = 's<V/+?84wSZG8TT4'
s_i, g_i = new_server('localhost', 10000, password = p)
s_o, g_o = new_server('localhost', 10001, password = p)

# ITERATIONS BEGIN

for i in range(Nm):
    
    #Making initial parameter samples based on prior knowledge (iteration 0)
    
    if(i==0):
        
        Y[0,:,i] = np.random.normal(loc = mu_ln_perm, scale = sig_ln_perm, size = Ne)
        
        Y[1,:,i] = np.random.normal(loc = mu_ln_ga, scale = sig_ln_ga, size = Ne)
        
        Y[2,:,i] = np.random.normal(loc = mu_ln_gn, scale = sig_ln_gn, size = Ne)
        



        # Save values in files
        file1 = open()

    
    # Updating the Y-matrix with updated parameters
    else:
    
        Y[0,:,i] = Z_a[0,:]
        
        Y[1,:,i] = Z_a[1,:]
        
        Y[2,:,i] = Z_a[2,:]
        
        .
        .
        .
        # Writing the values to textfiles and saving them         
        .
        .
    
    #Running the Plaxis model Ne times, one for each parameter sample. 
    for j in range(Ne): 
 
        #Calling the Plaxis-model function 
        list_of_results = plaxis_model(permeabilitet = perm_input , S_res = S_res, S_sat = S_sat, 
                                       ga = np.exp(Y[1,j,i]), gn = np.exp(Y[2,j,i]), time = i + 1)
        
        
        # Adding the Plaxis-results to the Y-matrix   
        if list_of_results:
            
            Y[3,j,i] = list_of_results[0]*(theta_s-theta_r) + theta_r 
            Y[4,j,i] = list_of_results[1]*(theta_s-theta_r) + theta_r 
            Y[5,j,i] = list_of_results[2]*(theta_s-theta_r) + theta_r 
            
            # Close output
            g_o.close()
            # Start new output
            s_o, g_o = new_server('localhost', 10001, password = p)
            
        
#Ensemble Kalman Filter Algorithm 
 
   
    # Defining the G matrix
    G = np.zeros((3,6))
    G[0,4] = 1
    G[1,5] = 1
    
    # Copy values
    Z_f = Y[:,:,i] 
    
    
    # Calculating Mean values of sample parameters
    Z_f_mean = np.matmul(Z_f, np.ones((Ne,Ne))/Ne) 
    
    
    # Difference between parameter samples and mean
    Z_d = Z_f - Z_f_mean 
    
    # Covariance matrix
    Czz = 1/(Ne - 1)*np.matmul(Z_d, Z_d.T) 
    
    
    # Adding noise to the measurements
    D =  np.matmul(np.reshape(np.array([VWC_0_3[i], VWC_0_5[i], VWC_0_9[i]]), (3,1)),
                   np.ones(shape = (1,Ne))) + np.random.normal(size = (3, Ne))*sigma_m
    
    # Difference between measurements and Plaxis predictions
    obs_dif = D - np.matmul(G, Z_f) 
   
    #Defining the Cdd-matrix
    Cdd = np.eye(3)*sigma_m**2
    
    #Matrix multiplications
    cov_inv = np.linalg.inv(np.matmul(G,np.matmul(Czz,G.T)) + Cdd)
    
    # Calculating the change that will be added to the parameter samples 
    
    chng = np.matmul(Czz, np.matmul(G.T,np.matmul(cov_inv, obs_dif)))
    
    
#Updating the prior parameters by adding the change
    
    Z_a = Z_f + chng
    
   

    
    
    




