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Preface
This master thesis was written in the spring 2023 as the final product of a 5-year degree in Civil

and Environmental Engineering at NTNU in Trondheim. The thesis is conducted for the

geotechnical department with lvan Depina (NTNU) as the main supervisor.

The goal of the thesis was to calibrate hydrological van Genuchten parameters of a soil using
the Ensemble Kalman Filter method and sensor data from loT-sensors installed for the
KlimaDigital-project. Automating the calibration of hydrological parameters in soil holds
significant potential and could possibly be applicated in problems such as automated early-

warning systems for rainfall-induced landslides.
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Abstract

Rainfall-induced landslides make out a considerable amount of geohazards in Norway. This is
from combination of steep slopes, heavy rainfall during fall, temperature changes, and snow
melting in spring and fall. Landslides are dangerous because they can damage critical
infrastructure and in the worst case be a threat to human life. Climate change is likely to result
in more and intense rainfall events, which is further increasing the landslide risks.
Consequently, there is a need to develop strategies to manage landslide risks. One of such
strategies are landslide early warning systems that provide a timely that can be used to evacuate

people, movable properties, or close roads to reduce consequences in case of a landslide.

In 2018, SINTEF launched the project KlimaDigital with the main objective of creating an
early warning system for rainfall induced landslides and debris flow, using monitoring data
from sensors installed in landslide prone areas. Sensors were installed on two different slopes
in Meraker, Trgndelag to monitor groundwater conditions. The area was selected due to the

high risk for rainfall-induced landslides resulting from the combinations of heavy rainfall and
rapid snow-melting events, and topography characterized by steep slopes (lvan Depina E. O.,
2021)

When working with rainfall induced landslide problems, it is crucial to understand groundwater
conditions in slopes in response to rainfall infiltration and snow melting. Slopes in the studied
area are typically unsaturated and groundwater conditions were monitored with volumetric
water content sensors. In this thesis, the volumetric water content sensor data from the Meraker
slopes was used to calibrate the hydrological van Genuchten model parameters and the
permeability of the soil, using a Plaxis flow-analysis and the Ensemble Kalman Filter method
(EnKF). The estimated van Genuchten parameters are defining the Soil Water Characteristics
curve (SWCC), that describes relations between suction, permeability, and degree of saturation
in the given soil. Calibrated hydrological models provide a basis for more accurate modelling
of groundwater conditions (e.g., in response to extreme weather events) and implementation of

a reliable landslide early warning system.

Python was used to implement the EnKF algorithm and automate Plaxis analysis of the
hydrological model, making it possible to update and run the calculations numerous of times
with different hydrological input parameters for each iteration. The Ensemble Kalman filter
method works by comparing the Plaxis output values to the real sensor data and updating the

parameters based on this difference and the parameter covariance. By iterating through this



process, the unknown parameters were updated until the van Genuchten parameters were
estimated with better accuracy and the difference between model predictions and sensor values

became relatively small.

The study concludes that the EnKF algorithm shows promise in estimating these parameters;
however, the accuracy of the initial conditions and prior parameter knowledge are critical for
obtaining more reliable estimations. The research also highlights the potential application of
this method in early warning systems for rainfall-induced landslides. However, further

refinement and increased certainty in the results are necessary to ensure reliability.

Future work could include incorporation of suction sensors alongside the VWC-sensors to
enhance the calibration results. It would also be interesting to implement the results in a safety

analysis to investigate how the hydrological conditions influence slope stability.



Norsk Sammendrag

Nedbgrsinduserte jordskred er en betydelig fare i Norge pa grunn av bratte skraninger, mye
nedber, temperaturendringer og sngsmelting. Klimaendringer gker risikoen ytterligere.

Prosjektet KlimaDigital, startet av SINTEF i 2018, har hatt som mal & utvikle et

varslingssystem for nedbgrsinduserte jordskred ved hjelp av sensorer.

| denne oppgaven er sensorverdier fra KlimaDigital-prosjektet brukt til & kalibrere de
hydrologiske van Genuchten parameterne til jorda. Dette er gjort ved & bruke Ensemble
Kalman Filter-algoritmen (EnKF). Simuleringene er gjort ved a lage en automatisert Plaxis-
modell i Python og EnKF fungerer ved a oppdatere de ukjente inputparameterne basert pa
forskjellen mellom sensordata og Plaxis-output. Formalet er at Plaxis-outputen skal
sammenfalle med sensorverdiene, noe som tyder pa en virkelighetsner modell. | tillegg er

hensikten at de ukjente parameterne skal konvergere mot estimater med hgyere sikkerhet.

Oppgaven konkluderer med at EnKF-algoritmen viser gode tendenser i estimatet av disse
parameterne. I midlertidig er ngyaktigheten av de initielle betingelsene og forhandskunnskapen
om parameterne avgjerende for 4 oppna mer palitelige estimater. Oppgaven peker ogsa pa den
mulige bruken av denne metoden i varslingssystemer for jordskred. Ytterligere for bedring og

gkt sikkerhet i resultatene er derimot ngdvendig for a sikre palitelighet.

Fremtidig arbeid vil kunne vare & implementere sensorverdier for sug, samt kalibrere

parameterne med verdier fra faktiske skredhendelser.
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1 Introduction
With the changing climate resulting in wetter and warmer weather conditions, geohazards are

becoming more significant than ever. In accordance with the UN climate report (United
Nations (UN), 2021), wetter and warmer climate will lead to more extreme weather meaning
higher intensity rainfall both in Norway and in the word. Heavy rainfall is one of the most
common triggers for landslides in Norway and rainfall-induced landslides pose a significant
threat to both human lives and critical infrastructure. This threat is making it imperative to
develop efficient strategies for managing landslide risks. One of these strategies are landslide
early warning systems that reduce consequences by providing timely warning, which allow for

the people and movable property to be evacuated before the onset of a landslide.

Working with rainfall-induced landslides requires consideration of the unsaturated soil
conditions, partially saturated pores, which results in suction and affects both the permeability
and effective stresses of the soil. The relationship between the hydrological soil parameters can
be described by a Soil Water Characteristics Curve (SWCC), relating suction to volumetric
water content (or saturation) and permeability of the soil. Having a good understanding of the
SWCC is essential in being able to model the development of the wetting front and pore
pressures accurately and reliably to provide timely warnings in a landslide early warning

system.

The hydrological parameters of the soil can be difficult to estimate. Numerous of pedotransfer
functions (PTF’s) have been developed throughout the last four decades with the purpose of
relating the hydrological parameters of the soil to parameters that are easier to determine

through laboratory tests, such as the grain size distribution and porosity (Abdelbaki, 2020).

Another option for determining the hydrological parameters in the soil is to implement a sensor
system to monitor real life data and calibrate the hydrological parameters with respect to sensor
values. In this thesis a calibration like this is done using sensors monitoring volumetric water

content (VWC), combined with a hydrological model in Plaxis and the EnKF-algorithm.

The EnKF method has shown great results in a variety of fields where monitoring data and
joint parameter estimation play an essential role, such as meteorology and oceanology
(Muhammad Mohsan, 2021). In this master’s thesis, this algorithm was used to calibrate the
unknown van Genuchten parameters, but the method is very general and can be applied to other

similar problems in geotechnical engineering where model calibration with data is needed, for

1



example by using monitoring data of deformations to estimate stiffness parameters.
(Muhammad Mohsan, 2021) demonstrated the efficacy of the EnKF method to successfully
employing the calibrated stiffness and strength parameters to estimate the Factor of Safety

(FOS), yielding favorable results.

1.1 Background
The background for this master thesis is the KlimaDigital project that was launched by

SINTEF, in collaboration with NTNU, back in 2021. The objective of the KlimaDigital project
is to reduce the risk of infrastructure damage and fatalities caused by geohazards such as
landslides and debris flows by creating early warning systems based on data monitoring. Due
to climate change causing more heavy rainfall events and extreme weather, the frequency of
dangerous landslide events both has, and is expected to further increase. Understanding the
state of the soil during heavy rainfall and developing reliable early warning systems is therefore

more important than ever (Torun Rise, 2023).

Currently, there is a national early warning system for rainfall-induced landslides operated by
NVE. However, this system operates on a regional to national level with the system not being
suited to providing warnings on local to regional level, which makes the system less applicable

when it comes to issuing warnings on a local and more refined scale.

There is a growing need for reliable and cost-efficient local to regional landslide warning
system. To scale down the warning system one needs to be able to obtain more refined local
knowledge of the parameters controlling the occurrence of landslides. One of the approaches
in obtaining such knowledge is using reliable and coset-efficient monitoring. This approach
requires an automated data management system to effectively incorporate sensor data into a
model. This master’s thesis seeks to address this knowledge need by utilizing sensor values
from the KlimaDigital project’s monitoring system to calibrate a hydrological model of a slope.
A calibrated hydrological model is essential in providing timely and reliable predictions of

rainfall-induced landslides.

This thesis’s significance lies in its contribution to the development of early warning systems
for rainfall-induced landslides, which is an area of research that is still in its early stages. In
addition, the thesis shows how the Ensemble Kalman Filter method (and other Kalman Filter
methods) can be used to automate calibration of geotechnical models with data. The algorithm

is of exceptional value in situations with substantial amounts of real-time data.



1.2 Problem Formulation
The overarching goal of this master thesis was to automate the calibration of hydrological van

Genuchten parameters of the soil based on sensor values. The unknown parameters are used to
fit the SWCC for the soil, which is an essential part of hydrological analysis of rainfall-induced

landslides.

The parameter calibration was to be automated with the Ensemble Kalman Filter algorithm,
using an automated hydrological model in Plaxis. The model was to be created using Python
scripting in combination with Plaxis to automate the calculations and to easier process the

output and input data through the EnKF.

1.3 Objectives
The main objective of the thesis is to automate calibration of a hydrological model of a slope

based on sensor data with the EnKF algorithm. To achieve the main objective, the following

specific objectives are implemented:

e Analyze and process sensors data in a wetting period for a slope in Meraker.

e Implement and automate a hydraulic model of the slope in Plaxis with Python scripting.

e Study and Implement the Ensemble Kalman Filter algorithm in the programming
language Python Couple Plaxis model with the Ensemble Kalman Filter algorithm in
Python. Assess the performance of the Ensemble Kalman Filter algorithm and the

calibrated hydrological model.

1.4 Limitations

e One significant drawback of this thesis is the inconsistency of the SWCC derived from
the van Genuchten parameters between wetting and drying conditions. The selected
period chosen for calibrating the SWCC with sensor values was primarily focused on
accurately simulating wetting conditions. The wetting period was selected due to the
intention of the hydrological model to be used in predicting the groundwater condition
in response to rainfall or snow-melting events as a part of the landslide early warning
system. However, true wetting conditions are difficult to obtain over many days in real
life.



e The implemented Plaxis model not simulating evapotranspiration, snow melting,
effects of vegetation, or temperature effects, which all influence the water conditions
in the soil, especially in the upper soil layers. Additionally, there are substantial
uncertainties in the ground (e.g., variation of soil conditions with depth) and surface
conditions (e.g., varying surface cover, geometry) at the site that were not modeled
explicitly. However, the sensors indirectly measure these effects, which means that
even though the Plaxis model might yield similar results as the sensors after calibrating
the parameters, the premises (i.e., parameter estimation) could be wrong.

e The EnKF algorithm updates the unknown parameters based on the difference between
Plaxis output and volumetric water content data. Since the soil water characteristic
curve, as modeled by the van Genuchten model, is not uniquely defined by the values
of volumetric water content, this means that the calibration process can result in
multiple parameter combinations producing near identical outcomes.

e Atrial pit was excavated at the site during sensor installation. A thin organic layer was
identified at the site, but it was not included in the hydrological model to simplify the
implementation. This could give wrong premises to the Plaxis model as soil layering
and change in soil parameters with depth are not considered.

e Runtime of the simulations were between 5-10 hours, and this often led to the code
failing as it lost contact with Plaxis. This made it difficult to test wide ranges of prior
knowledge of the unknown parameters, which possibly could have enhanced the

results.

1.5 Structure of the thesis
This master thesis is divided into 6 different chapters with the structure as shown below.

In Chapter 2, the fundamental aspects of unsaturated soil theory are presented in detail. The
chapter covers various themes such as the classification of soil layers, capillary theory, flow of
water in unsaturated soils, the SWCC, soil suction and the van Genuchten model. The EnKF

algorithm is also explained.

Chapter 3 presents the data monitoring system on all levels. The chapter outlines a geotechnical

overview of the study area where the sensors are installed. In addition, the framework of the



loT-system is presented and discussed with regards to calibration and expected sensor values.

The sensor data used for the calibration is also presented.

Chapter 4 presents a description of the Plaxis model creation process, including the selection
of boundary conditions, mesh, and input parameters. In addition, the implementation of the

EnKF-method is included.

In chapter 5 the results from the parameter calibration described in chapter 4 are shown. The
chapter discusses the results consecutively. An overall discussion of the results and the model

is also provided in this chapter.

Chapter 6 provides a final summary of the thesis and the main conclusions.

Chapter 7 presents suggestions for future work.



2 Theory of unsaturated soil
Parts of this section is sited from (Pedersen, 2022).

The theory chapter of this thesis focuses on the characterization of unsaturated soil behavior and its
implications for geotechnical engineering. It challenges the traditional assumption of complete
saturation or dryness in soil and highlights the significance of the unsaturated zone in flow problems.
The chapter discusses concepts such as capillary forces, matric suction, and effective stresses in
unsaturated soil. It also explains the flow of water through soil and the coefficient of permeability. The
Soil Water Characteristics curve is introduced as a tool to understand the relationship between water
content and soil suction. Various equations for the SWCC are discussed, with a focus on the van
Genuchten equation.

2.1 Classification of unsaturated soil
In traditional geotechnical practices, soil water content is commonly considered to be either

completely saturated or entirely dry, depending on the water table level. This assumption tends
to be conservative for stability and safety issues because elevated pore pressure lowers the
effective stresses in the soil. However, when investigating water flow through slopes and
examining real soil conditions, this assumption appears to be inadequate. The unsaturated area
of the soil is of high interest when working with flow of water as the soil water characteristics

change drastically in unsaturated conditions.

(Makonto, 2013) noted that the soil layers can be classified into various categories based on

the level of saturation throughout the soil.
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Figure 1: Zone classification of soil for flat ground (Makonto, 2013)

Soil can be categorized into different areas or zones based on the degree of saturation, as
illustrated in Figure 1. The portion of the soil that is not fully saturated is called the vadose
zone and in this zone the pores between the soil grains are partially filled with water and
partially filled with air. The combination of air and water within these spaces affects soil
characteristics such as permeability and effective stresses. The interface between air and water
in the vadose zone creates suction forces within the soil, which increases the effective stresses.

Chapter 2.2 will provide more detailed information on these relations.

The saturated zone beneath the ground water table is called the phreatic zone and here the pores
in the soil are fully saturated. Beneath the ground water table, the pore pressures are usually

assumed to be hydrostatic and non-negative (no suction). (D. G. Fredlund, 2012)

2.2 Capillary forces and capillary height
In unsaturated soil the pores between the soil grains are partially filled with water and partially

filled with air. The boundary between the water surface and the air within the pores of the soil
is referred to as the contractile skin. Soil suction appears in these interfaces because of
molecules needing to stay in force equilibrium. The water pressure deviates from the air
pressure and as a result, tension forces in the contractile skin occur. This is called capillary

forces.
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Figure 2: Upscaled element of soil-air-water interfaces and illustration of how tension forces occur in the air-soil interface
(D. G. Fredlund, 2012)

The capillary force is often described by the capillary height: the maximum height h, water

can climb in a glass tube. Given by Equation 1:

Equation 1
2T,
Pw g Rs

c =

Where:
T,= Tension forces

pw = The density of water
2
g = The gravitational acceleration = 9.81mT

R, = The radius of the tube

When transferring the theory to capillary forces in soil, Ry, is the pore radius of the soil pores

and Ty is the tension forces in the soil-air-interface (D. G. Fredlund, 2012).

The tension forces in the air-water interface can be related to the matric suction of the soil as
the difference between the pore air pressure and the pore water pressure. Combined with

Equation 1, the matric suction can be written as:

Equation 2

(D. G. Fredlund, 2012)



Resulting from the matric suction in the air-water-surface, the effective stresses in the soil
increase. The definition of the effective stress in soil was given by (Terazaghi, 1925) and is

defined by the total soil pressure, o subtracted the positive pore pressure, u:

Equation 3

O =0—Uu

However, when working with unsaturated soil, it becomes crucial to determine the stress state
within the soil considering both the positive and the negative pore pressures. Bishop’s equation,
proposed in 1959, is the most widely used formula for this purpose. The equation contains both
the total stress/pore pressure-differences and the pore water/pore air-pressure-differences

(known as the matric suction).

Equation 4

o' =(0—w)+x(us —uy)

X is a soil parameter varying based on the degree of saturation in the soil.

Bishop’s formula fulfills its purpose of describing the effective stresses with respect to both
positive and negative pore pressures. However, the formula contains a soil characteristic

parameter, y , and is therefore not valid as a stress state equation.

When stress dependent failure criterions (such as Mohr Coulomb) are used, the increase in
matric suction will lead to a higher degree of mobilization of the undrained shear strength, as

the effective stresses increase accordingly.

2.3 Flow of water in soils
In traditional geotechnical practice, the movement of water through soil is explained using

Darcy’s law and the permeability coefficient, denoted as k,[m/s]. The coefficient is
determined by laboratory tests on saturated soil and is therefore only applicable to soil that is
fully saturated. The permeability coefficient of saturated soil is solely dependent on the void
ratio. As discussed in earlier sections, assuming that the ground is either completely dry or
completely wet is inaccurate and insufficient, particularly when dealing with seepage problems
(D. G. Fredlund, 2012).



2.4 Darcy’s law
Water flowing through a saturated soil can be described by Darcy’s law (1856):

Equation 5

_ —kw(hy)
-—%5

Uy

Where:

v,, = The velocity of water flowing through a porous medium

k,,= Coefficient of permeability

%‘” = Hydraulic head gradient

Equation 5 describes the proportional connection between the velocity of water flow in porous

media with the hydraulic head gradient, connected by the permeability coefficient.

Experiments done by (Childs, 1950) show that the coefficient of permeability is constant for a
given degree of saturation hence the proportionality is valid also for unsaturated soils.
Hydraulic head gradient = 1

* Hydraulic head gradient = 0.75
Hydraulic head gradient = 0.50
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Figure 3: Coefficient of permeability vs. degree of saturation (D. G. Fredlund, 2012)

This means that when working with flow and seepage problems in unsaturated soils, the same
principles apply as for saturated soil. The only exception is the coefficient of permeability

which for unsaturated soil is a function of more than one variable. This also means that water
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will flow from higher hydraulic potential to lower potential gradient, also for unsaturated soil
(D. G. Fredlund, 2012).

2.5 The Coefficient of Permeability
The permeability, k, in unsaturated soil theory can be presented as a function of the

combination of three different parameters (D. G. Fredlund, 2012):

Equation 6
k,, = ky(S,e)
Equation 7
k,, = k,(e,w)
Equation 8
k, =k,(w,S)
Where:
S = Degree of saturation
e = Void ratio
w = gravimetric water content

Although permeability in unsaturated soils can be viewed as a function of three parameters, the
degree of saturation tends to generate the biggest changes. Therefore, the coefficient of
permeability is often viewed as a function of the matric suction only, especially when working

with soils with low incompressibility (i.e., Clay) (D. G. Fredlund, 2012).
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Figure 4: Relation between matric suction and coefficient of permeability for wetting and drying conditions (D. G. Fredlund,
2012)
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Water flows though the water filled pores in soils as it gives the least resistance. When the
pores are partially filled with air the resistance increases and the velocity of the flow, given by

Darcy’s law (Equation 5), decreases nonlinearly.

As shown in Figure 4, the coefficient of permeability changes rather quickly as matric suction
increases. As desaturation develops and the pores fill up with air, the volume of which water
can flow decreases. In addition, the voids shrink because of matric suction and the pathway
available for water flow is further reduced. Therefore, the change of permeability in relation to
suction is different for wetting and drying. This difference is important to consider when

solving unsaturated problems (D. G. Fredlund, 2012).

2.6 Soil Water Characteristic Curve (SWCC)
The correlation between volumetric water content and soil suction can be illustrated using

SWCC plots. The SWCC can be determined in a laboratory setting by measuring the difference
between air pressure and water pressure using a high-air entry disk, which yields the matric
suction. The SWCC can then be plotted along with gravimetric water content to form the curve
that characterizes the relationship between the two variables (E.C. Leong, 1997) (W. Scott
Sillers, 2001).
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Figure 5: Example of a Soil Water Characteristics Curve with explanations (D. G. Fredlund, 2012)

Figure 5 illustrates an example of a Soil Water Characteristic curve (SWCC) with descriptions
of different zones. On the left side of the graph, the soil suction is low, and the gravimetric
water content is high, forming the Boundary effect zone. In this zone, the soil pores are

predominantly filled with either water or soil (no air) (D. G. Fredlund, 2012).
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As the water content decreases, the soil suction increases, and the SWCC transitions to a phase
where the pores contain a combination of air and water. The air entry value marks the soil
suction where air flows back into the soil pores. In this phase, small changes in volumetric
water content leads to significant changes in matric suction because of the pores being less
permeable to the water particles (W. Scott Sillers, 2001).

Eventually, the soil reaches residual conditions characterized by high levels of soil suction and
low levels of gravimetric water content. In this phase, the pores are mainly filled with air, and
water content in minimal, making it nearly impossible for water to flow. The residual water
becomes challenging to remove due to its resistance to flow though air-filled pores (D. G.
Fredlund, 2012).

2.7 Wetting and drying curves
The SWCC follows a different path for wetting and drying conditions in the soil (D. G.

Fredlund, 2012). The difference in wetting and drying curves differs noticeably between soils
and comes from factors such as pore layout, contact-angles between water and particles and
shrinking/swelling of the soil (T. Mavara, 2018).
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Figure 6: Examples of wetting and drying SWCC (D. G. Fredlund, 2012)

Figure 6 shows examples of the bounding curves for a soil, which are the curves defining the

SWCC for the wetting and drying in the initial phases (completely dry and completely saturated
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soil). The curves for degrees of saturation between 0% and 100% lay somewhere in between
the two bounding curves and form “loops” during wetting and drying cycles. The SWCC can
therefore not be uniquely described for a soil, but by defining the bounding curves, a range of
soil suction vs water content can be obtained (D. G. Fredlund, 2012) (T. Mavara, 2018).

In this thesis, only the wetting curve will be evaluated as heavy rainfall is the main trigger for
water-induced landslides.

2.8 Equations for SWCC
One of the more established variations of the SWCC is the function for the permeability,

derived by (R. J. Millington, 1960) and (Mualem, 1976). For this purpose, an equation for the
curve has been shown to be beneficial and numerous attempts are made to estimate such an
equation. The variety in the derived equations springs from differences in the initial
assumptions regarding the pore size distribution of the soil (Robinson, 2019). In the following
section, some of these equations and their required inputs are presented, including the van

Genuchten equation which is the equation used for flow calculations in this thesis.

2.8.1 Form fitting parameters
To fit the equations, several curve fitting parameters are needed. The form fitting parameters

are generally categorized into three different categories (D. G. Fredlund, 2012).

e an a-type parameter related to the air entry value of the soil (i.e., the matric suction of
where air begins to enter the pores)
e an n-type parameter related to the rate of desaturation (the “steepness” of the curve)

e an m-type parameter to make the curve more flexible.

Figure 7, Figure 8 and Figure 9 show how the respective parameters affect the (Genuchten,
1980)- and Fredlund and Xing-equations when two of the three parameters are held constant
(E.C. Leong, 1997).
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Figure 9: How the m-type parameter affects the SWCC for a = 100 and m = 1

The range of the curve fitting parameters vary greatly. Notably for the van Genuchten equation,
the curve is highly sensitive to changes in the n-parameter and less sensitive to changes in the

a and m-parameters, compared to the expected range.
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Studies have shown that equations based on three form fitting parameters, rather than two,

show a greater compatibility to laboratory test results (D. G. Fredlund, 2012).

2.8.2 Brooks and Corey equation (1964)
(R. H. Brooks, 1964) made an equation for the soil suction as a function of the water content

by dividing the equation into zones depending on whether the soil suction is higher or lower
than the air entry value. For soil suctions lower than the air entry value, the water content is set
to be the saturated water content of the soil (D. G. Fredlund, 2012). The equations can be

written:
Equation 9
w(p) = wg Y < Ygev
Equation 10
ll) -n
w()) = wg (E) Y = Paer
Where:

W,e,= the air entry value
w = water content

1 = soil suction

The equation is simple to use and is therefore popular to use. However, as noted by (W. Scott
Sillers, 2001), the discontinuous nature of the Brooks and Corey model when matric suction
exceeds the air-entry value can lead to instabilities during modeling. Additionally, (D. G.
Fredlund, 2012) have suggested that while this model is valid for coarser-grained soils that
experience rapid changes in moisture content at low suctions, it may be less applicable to finer-

grained soils that display a more gradual slope change in the transitional zone.
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2.8.3 The van Genuchten Equation
For this project, the (Genuchten, 1980) formula was chosen as the favorable model for the

SWCC, mainly because of the possibility of implementation in the finite element program
Plaxis. van Genuchten made a continuous closed form equation for the volumetric water vs soil
suction content based on three form fitting parameters a, m, and n. From (D. G. Fredlund,

2012)the van Genuchten equation can be written:

Equation 11
YO = T e
Or re-arranged for soil suction:
Equation 12
1
1|{w o n
— (=

Where:

w = water content

Y = suction

a,n & m = curve fitting parameter

Figure 7, Figure 8 and Figure 9 show how the curve fitting parameters of the van Genuchten
model influence the curve. The a-parameter is the same as the inflection point of the curve,
marking where the boundary effect zone transitions into the transition zone. The parameter
does not affect the shape of the function, in contrast to the n-parameter which is closely related

to the pore size distribution index and gives the curve slope (W. Scott Sillers, 2001).

The van Genuchten has been combined with (Burdine, 1953) and (Mualem, 1976) to derive a

simplified equation for the hydraulic conductivity, by eliminating the m-parameter with the
relationsm =1 — % (Mualem, 1976)and m = 1 —% (Burdine, 1953). Although this simplifies

the equation, (W. Scott Sillers, 2001) specifies that the elimination of the m-parameter reduces
the flexibility of the curve and that the original three-parameter van Genuchten equation is
favorable.

17



2.9 Ensemble Kalman Filter
In this thesis, the recursive EnKF method was used to calibrate the van Genuchten parameters.

The EnKF-method is a formulation of the Kalman Filter method first described by (Evensen,
1994) with the objective of working with nonlinear oceanography problems. The EnKF-model
can easily handle non-linear high-dimension problems, thus making it a well-used and
acknowledged data assimilation method for physics-based problems where monitored data can

be used to approximate parameters of high uncertainty (Muhammad Mohsan, 2021).

The EnKF-method can easily handle large scale, non-linear problems and is well suited for
joint parameter-estimation. The method has showed satisfactory results in various fields such

as hydrology, meteorology, and geotechnical engineering (Muhammad Mohsan, 2021).

2.9.1 The EnKF algorithm
By assuming a Probability Density Function (PDF) for the unknown parameters, the EnKF-

algorithm yields, as for Monte Carlo simulations, numerous random combinations of input
variables to the model. By comparing model output values to known data, the unknown
parameters will be updated until the difference is sufficiently small. Using the same notations
as (Muhammad Mohsan, 2021) the EnKF can be written:

To define the model output, we define the operator g(z):

Equation 13
y=9(2)
Equation 14

z=(x0)T

where y € R¥m is the model output in the measurement space and the z -matrix is a

combination of the model state and the model parameters (Muhammad Mohsan, 2021).

The measurements are defined by the measurement matrix, d € RVm which also contains the

measurement error e.

Equation 15

d=y+te

The main objective of the EnKF algorithm is to maximize the probability f(z|d) , which

means we will get a close-to-reality estimation of the unknown parameters. Given normal
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distributed parameters, it can be shown that this is done by minimizing the cost function
given by (Muhammad Mohsan, 2021):

Equation 16
J(2) = (z—2") CA(z—2) + (9(2) - D)TC7L(9(2) — d)

Where C,, represents the error covariance of z and the z/-matrix symbolizes the previous
estimate of the model parameters. C g4 is the error covariance of the known data

(measurements).

Minimizing the cost function is done by setting the derivative to zero and the solution is a set

of equations called the Kalman Filter (Muhammad Mohsan, 2021):
Equation 17
z°=72 + K(d - g(2))

Equation 18

C‘zlz = (I - KG)sz
Where:

The notation “a” represents the new estimate while the notation “f” indicates the prior estimate.

The K-matrix is called the “Kalman gain” and is defined:
Equation 19
K =C,,6(GC,,G" — C,)7!
For each ensemble member in the sample, we can write the equations:
Equation 20
zi = zif + K¢(d; — g(zl.f))
Equation 21
K°® = C5,G(GCS,6" — €)™t
Where:

C¢, is the combined covariance matrix for the model state parameters and d; = d + €; is the

measurement matrix with added “noise” (Muhammad Mohsan, 2021).

C¢, is calculated by first finding the ensemble mean for the Ne sample realizations and then

the difference between each sample member and the mean value:

19



Equation 22
z/ = 7]1y,
Equation 23

I _ gt _ of
Zf - Zf Z

Where I, is a matrix containing only a factor i . The combined state error covariance is then
defined:

Equation 24
! 4 T
% Ne-—1

C,, includes the covariances of both the state and parameter errors, along with the cross-

covariance that exists between the state variables and parameters.

The measurements are stored in the d;-vector with the added measurement error or “noise”

added to each ensemble member. The total measurement matrix is then defined:
Equation 25
D, = (dy,, d,: ds, i lpyet)
Based on these matrices, the main parameter updating function can be written:
¢ = Z] + C5,67(6C,6" + Can) (D, — 6Z])
The function shows how the prior parameters, Z{ are updated with the Kalman Gain. The last
factor of the equation (i.e., the difference between sensor data and Plaxis outputs) weights the

parameter update, meaning that if the difference is zero, the parameters are not updated as the

model is identical to real life (Muhammad Mohsan, 2021).
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3 Data monitoring system
This chapter provides context for this thesis by presenting the data monitoring system installed

as a part of the KlimaDigital study. In addition, the study site’s geological and geotechnical
properties are presented to give a better understanding of the problem and enhance readers’
comprehension of the expected results. Furthermore, the chapter outlines the process flow of
the data monitoring system and the loT-sensors, offering insight into the data collection process

by including a sensor data overview.

As part of the KlimaDigital project, sensors were strategically installed in various areas within
the study site. This thesis focuses on utilizing data from sensors located in location 1-
Kvernbekkneset. Consequently, this location is examined in greater detail, particularly

concerning its geology and geotechnical properties.

3.1 Study site
The study site for the KlimaDigital project is a 200km? area located along the Stjgrdal river in

Trendelag. This area has a long history of being at high risk for rainfall induced landslides due

to its steep slopes and heavy annual precipitation between 964mm and 1205mm (Leiva, 2019).

The study area was chosen for sensor installation for the KlimaDigital project based on a series

of factors, which some are:

e A heatmap of landslide events

e Areas above the marine limit, as glacial till and moraine were favorable soil types.
e Driving distance < 2h from Trondheim

e Thickness of deposits around 2-3m (shallow slopes)

o Steepness of slopes > 25°

e Easily accessible, not too dense vegetation.

(Ivan Depina E. O., 2021)

Based on these criteria, two areas in Meraker were chosen as suitable for sensor installation,
Kvernbekkneset and Kjelberget, situated alongside E14.
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Figure 12 show a Digital Elevation Model (DEM) made by (Leiva, 2019). The figure shows
that the elevation of the region increases rapidly along the Stjerdal river/E14 road from 0-200m
in the blue to green areas of the DEM, indication steep slopes. The slope map shows that the

steepest slopes are concentrated along the river, with steepness varying from 25-50 degrees.

Figure 12: Elevation model for the study site. (Leiva, 2019)
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3.2 Geotechnical properties
Figure 13 show the assumed soil deposits of the study area, made by the Norwegian Geological

Institute (NGU). As seen from the figure, the area is dominated by weathered rock material
(purple) and shallow till/moraine deposits (green), with marine deposits occurring only in small
“pockets” in the lower areas. Along the Stjordal river the ground conditions are primarily

fluvial deposits (yellow).
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Figure 13: Deposits in the Merdker-area (NGU)

In the eastern sector of the area, the till/moraine occurs mainly as shallow deposits.
Consequently, exposed bedrock is common in this area. Moraine material, which is deposited
and transported by glaciers, is typically an unsorted and hard packed mixture of different soil
materials that can contain everything from clay to sand and small rocks. Because of its hard-
packed and unsorted nature, infiltration rates in these deposits are typically low, because the

soil leaves little room for water flow (lvan Depina E. O., 2021).

On the other hand, fluvial deposits found along the Stjerdal rover consists of well-rounded
gravel and sand and are often more loosely packed and well sorted because they are transported
and deposited by flowing water. As a result, these deposits typically have a higher permeability.
These deposits vary in depth from 0,5m to 10m deep (lvan Depina E. O., 2021).
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3.2.1 Geology at sensor location — Kvernbekkneset
The soil in location 2 — Kvernbekkneset mainly consists of shallow moraine deposits (green)

with an organic layer on top. The terrain is steep with a visible channel along the Rabb-river
(Ivan Depina E. O., 2021).

Quaternary deposits
Tl caposits, thick cover
Tl ceposits, thin cover
Randmarene
Gago-luvial deposits
Marine and fjord deposits, thick cover
Marine deposits
Marine and fjord deposits, thin cover
Fluvial deposits
Altered bedrock
B Ccilwvial deposits
B Peat cover (orgaric material)
Humus / peat cover (thin cover)
B Antropogenic deposits (fyling material)
Exposed bedrodk

V<N

Figure 14: Deposits map location Kvernbekkneset (NGU)

Some laboratory testing was done in this area for the KlimaDigital project. These tests
encompassed methods to determine water content and organic content, sieve analysis and
hydrometer analysis for soil classification, pycnometer test for determining soil density as well
as a large-scale direct shear box test (Ivan Depina E. O., 2021). Figure 15 shows the results
from the grain-size distribution tests and the large-scale shear box test:
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Figure 15: Grain size distribution and results from shear box test at sensor location (lvan Depina E. O., 2021)

The soil has been classified as silt sand in line with the European Soil Classification System,
containing 16% fines, 57.7% sand and 26.1% gravel. The results from the large-scale shear box
test correspond to a friction angle 38.2° and cohesion 5.5kPa (ISO, 2017) (lvan Depina E. O.,
2021).
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3.3 Landslide susceptibility
The study area is situated within the landslide-prone region known as “Trendelagskysten”

(Ivan Depina E. O., 2021), where the occurrence of landslides and debris flows is prevalent. In
addition to the ground conditions discussed in the previous chapter, the combination of the
area’s topography, characterized by natural steep slopes, and its wet climate with high

precipitation rated and snowmelt, contributes significantly to this susceptibility.

According to Kjell Hauge from NGI, the chances for rainfall-induced landslides substantially
increases when the daily rainfall reaches 6% of the annual precipitation (Rommetveit, 2008).
In the case of the study area, this equates to a daily range of 57mm/day to 72mm/day. Figure
16 derived from data provided by NVE, illustrates all recorded landslide events in the area
since 1964 in relation to the corresponding daily rainfall. This data, referenced from (Leiva,

2019), demonstrates a discernible connection between daily rainfall levels and the incidence of

landslides.

# Date Rainfall (mm/day) Slide type

1 2016-12-05 41.10 Landslide

2 2015-02-09 50.10 Unspecified landslide
3 2012-03-28 63.10 Landslide

4 2012-03-28 29.80 Unspecified landslide
5 2012-03-28 29.80 Landslide

6 2012-03-23 63.10 Mudflow

7 2012-03-23 63.10 Unspecified landslide
8 2012-03-23 63.10 Unspecified landslide
9 2012-03-12 13.00 Unspecified landslide
10 2012-03-12 13.00 Landslide

11 2011-08-16 71.70 Unspecified landslide
12 2011-08-16 71.70 Unspecified landslide
13 2007-03-16 6.10 Unspecified landslide
14 2006-09-26 0.60 Debris flow

15 2003-06-05 0.00 Unspecified landslide
16 2000-08-09 43.40 Unspecified landslide
17 2000-08-08 43.40 Unspecified landslide
18 1992-01-16 39.90 Unspecified landslide
19 1992-01-14 39.90 Unspecified landslide
20 1983-08-28 22.40 Unspecified landslide
21 1983-01-21 30.00 Unspecified landslide
22 1964-02-07 44.00 Unspecified landslide

Figure 16: Registered landslide events by NVE in Merdker, Trgndelag (Leiva, 2019)

A total of 93 mass movements, including rock falls, landslides, snow avalanches, stone slides,
debris flows, and clay slides, have been documented in the entire area since 1750. Among these
events, approximately 30 were classified as landslides triggered by intense rainfall and snow
melting (NVE, 2023) (lvan Depina E. O., 2021).

Figure 17 show a map of some of the registered events along the Stjgrdal river.
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Figure 17: Registered landslide events in the study area

In Figure 17 the yellow dots mark landslides triggered by floods or heavy rainfall. The orange

and brown dots mark clay slides and unspecified landslides, respectively.

3.4 Data Monitoring System

As discussed in the previous section, heavy rainfall and snow melting is the main trigger for
water-induced landslides. An important part of an early warning system therefore must be
analyzing how the inflow influences the hydrological conditions of the soil. Hence: to calibrate

hydrological parameters, hydrological sensor data is needed.

For the calibration of van Genuchten parameters in this thesis, sensor data of volumetric water
content (VWC) from Kvernbekkneset was used. In this section, the loT-sensor system is

presented, first with and overview and further with more detailed explanation. In addition, the

sensor data used for parameter calibration are reviewed and explained.

3.5 Framework

The framework of the system consists of five layers as shown in Figure 18: the device layer,

network layer, platform layer, application layer and the user layer.
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Figure 18: lllustration of the loT-system (lvan Depina E. O., 2021)

( Network

[ Platform

( Application ]

User 2 J

26



The device layer forms the foundation of the system and consists of sensors strategically placed
across two distinct slopes within the study site. These sensors utilize Narrowband-loT-
technology to accurately measure temperature, pore pressures, volumetric water content, and
suction. Additionally, a weather station is deployed in the study area to monitor precipitation.
The sensor data is stored in network clouds within the Network layer (i.e., the internet), with
the values being updated every fifteen minutes and made accessible though the Platform layer
(Emir Ahmet Oguz, 2021).

This master’s thesis primarily focuses on the data processing aspect of the system, which
corresponds to the Application layer. Within this layer, the sensor data is processed and used
to address geotechnical challenges, mainly in relation stability and landslide susceptibility. The

User Layer includes all private and non-private stakeholders using the system.

3.6 10T devices and calibration
For this thesis, data from 10T sensor 5, monitoring VWC was used. The sensors are placed at

location Kvernbekkneset with coordinates as shown in Table 1 (D2.1). In this area, three
suction sensors and three volumetric water content sensors at depth 0.3m, 0.5m and 0.9m were
installed in each point (D2.1 and D2.2). The sensors also monitor ground temperature. A
weather station monitoring precipitation was installed in location 1 (Kjelberget) (Emir Ahmet
Oguz, 2021).

¢ loT-based monitoring points|
o Trial pit
= = Channel
Landslide types
Debris flow

Quaternary deposits
 Shallow moraine deposit

Figure 19: Exact location of loT-sensors at Kvernbekkneset. (Emir Ahmet Oguz, 2021)

Table 1: Coordinates of loT-sensors

X Y
loT-device 5 | 63.466612° N 11.461331°E
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The monitoring sensors for VWC provide raw data in microvolt (mV) format, which needs to
be converted into VWC. Figure 20 shows the equation for the conversion from the
manufacturer in addition to a conversion equation found by laboratory testing done for the
KlimaDigital project done by (Emir Ahmed Oguz, 2021).

For this project, the calibration equation provided by the sensor manufacturer was used for
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Figure 20: Calibration equations for converting mV to VWC (Emir Ahmet Oguz, 2021)

Soil suction sensors were not utilized for parameter calibration in this thesis. The decision was
based on the observation of low suction values recorded by the sensors during the selected time
period. The sensor data was specifically collected to simulate wet conditions, characterized by
significant precipitation. Due to the intense rainfall during this period, the suction values
recorded by the sensors fell below the calibration range, rendering the suction data unreliable

and inaccurate.

3.7 Sensor data
Figure 21 shows sensor data of volumetric water content and precipitation from device 5 during

a time period from August 2020 to October 2021.
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Figure 21: Sensor data for device 5. Graph from (lvan Depina E. O., 2021)

As we see from the figure, the impact of precipitation is characterized by rapid increase in
VWC for all depths. It is interesting to note how the VWC decreases with depth for the
spring/summer and fall. This is mainly due to vertical infiltration in the area (lvan Depina E.
0., 2021) and the only deviation from this is during the winter months (January to March)
where the upper soil layers are frozen. Is this section we can see that the VWC of depth 0.3m
dips below the VWC at depth 0.5m and 0.9m.

For this thesis, data from the last 58 days of this data set was used to calibrate the hydrological

parameters of the soil. The data are presented in more detail in Figure 22.

— 0.9m 0.5m — 0.3m —— precipitation

140

o 354 L1720
[~ —
£ &
= 100 =
Y030 4 E
bl =1
2 Y
=2 0.25 L &0 [
g s
Lt
3 o &

= 0.20 1
/\_/\f\_\ N
0.15 P A

2021-08-24 20210908  2021.08.23  2021-10-08

Figure 22: VWC and precipitation plots for loT-device 5. A selection of this data was used to calibrate the can Genuchten
parameters in this thesis.

Figure 22 show a detailed plot of the VWC for depths 0.3m, 0.5m and 0.9m alongside the
precipitation. As mentioned above, the data shows a decreasing degree of saturation with depth.

All sensors show a rapid response in VWC with regards to the precipitation. The effect is most
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prominent in depth 0.3m but sensors at 0.5m and 0.9m show similar tendencies though to a

lesser degree.

For the calibration of the van Genuchten parameters, the first 10 days of the data in Figure 22

were chosen. The selection was done based on two main factors:

e This period is characterized by heavy rainfall and is therefore the best option to
replicate wetting tendencies in the soil.

e The responses in the VWC (i.e., the “spikes” in the graphs) helps the EnKF-
algorithm estimate the unknown parameters as it feeds the model information about

how the soil responds to changes in precipitation.
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4 Methodology

In the following section, the main idea and method for the project model is presented. The
chapter is divided into blocks for each part of the model. First, an overview of the system is
presented describing the interactions between the model components: the IoT sensors, the
Plaxis model, and the EnKF algorithm. In the rest of the chapter, the process is described in
more detail, including all the steps taken to achieve the results. The Plaxis model is presented
first with the description of the input parameters and boundary conditions/initial conditions,
which is followed by the presentation of the EnKF model and its implementation. Lastly, the
choices for number of iterations and prior knowledge distributions for the simulations are

presented.

4.1 Model Overview
Figure 23 illustrates an overview of the model calibration with the EnKF algorithm. The

algorithm is initiated by specifying a “prior state” for the parameters to be calibrated. The prior
state represents any prior knowledge that we may have about the unknown parameters (e.g.,
literature, prior experience from similar projects). The prior state is specified by assigning a
probabilistic distribution to the unknown parameters that represents the likely range of
unknown parameter values. The parameters of the distribution are typically selected to allow
for a wide range of values (e.g., large variance) due to lack of knowledge of the parameter
values. Once the prior distributions are defined, Ne = 20 random samples for each of the
unknown parameters are generated from the specified probability distribution for each
parameter. In this thesis, the parameters are considered independent. However, in a general

case, dependencies between the parameters may be simulated.

Subsequently, Ne Plaxis calculations are performed to generate outputs of effective degree of
saturation at three different depths that correspond to the sensor depths in the slope. The Plaxis
output is converted by the formula:

Equation 26
0= Seff(esat - Hres) + Ores
to match the sensor data where:

6 = volumetric water content

Sers = effective degree of saturation

Osq:, Bres = Saturated volumetric content and residual volumetric water content, respectively.
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These outputs are then compared to the known VWC values obtained from sensor data using
the Ensemble Kalman Filter (EnKF) algorithm. Normally distributed measurement error is

added to the sensor data randomly with zero-mean and standard deviation of 0.02.

Based on the covariance and the disparity between the sensor data and Plaxis output, the
samples of the unknown parameters are updated. The updated samples are then used as input
for a new set of Ne = 20 Plaxis calculations, and the entire process is iterated Nm times, where

Nm represents the number of sensor realizations.

Sensor data

€

— PLAXIS

S
1 (o
Updated /

parameter
estimations

Ne samples

EnKF

Figure 23: Model lllustration. First, Ne parameter samples are generated, based on the prior distributions of the unknown
model parameter. Plaxis performs Ne calculations (one for each sample), and the output is converted to Volumetric Water
Content to be comparable to the sensor data. The Plaxis output is then compared to the sensor data in the EnKF algorithm,
and the values of samples are updated with the algorithm favoring the values that result in smaller difference between
model predictions and sensor measurements. Then Plaxis performs Ne new calculations with the updated parameters. The
whole process is repeated Nm times, making the total of calculations (Nm x Ne).

4.2 Plaxis model
The Plxscripting Python-package was used to write the Plaxis program in Python. By doing

this, the Plaxis model could be calculated automatically numerous of times.

The code begins with opening and creating a Plaxis model-file and creating a slope by using
polygons and lines. The slope length of 20m was initially determined considering the
characteristics of the study area. However, it should be noted that while the study area does
have long slopes, the actual water contribution area is dependent on the topography, and it may
differ from the model geometry The water flow from higher up the slope might be channelized
in ravines, and it may not significantly affect the groundwater conditions in the slope.
Therefore, it might not be realistic to incorporate an excessively long slope in the model.
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Figure 24: Slope model in Plaxis

Two areas at the top and bottom of the slope are modelled to prevent substantial outflow of
water on the left and right boundaries and ensure slope-parallel flow from the top of the slope

and to the bottom of the slope.

Both the depth to bedrock and slope angle was scripted as variables, making it easy to adjust
these parameters later if needed. Based on test runs of the model and the elevation map

constructed by (Leiva, 2019) (Figure 12), the slope angle was set to be 35 degrees for all the
simulations. The depth to bedrock was set to be 1.5m based on trial pits that were dug during

the installations of sensors.

4.2.1 Material definition
For simplicity, one material was defined for the whole depth of the slope. Adding soil layers

would double the unknown parameters in the algorithm, which would increase the runtime and

complexity significantly.

The code continues by defining a “make material”-function, assigning hydrological properties
to the soil, taking in the unknown van Genuchten parameters and saturated permeability as
inputs. For van Genuchten implementation into Plaixs, the parameters were converted as

described on Bentley Communities by (Khan, 2022):
e ga is defined by dividing the parameter a by the unit weight of water ga [=] = =

1
m 10
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e gn=n
e gc=m=1- gin (automatically implemented in Plaxis)

e gl=1250
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Figure 25: Material Input example

Plaxis utilizes the van Genuchten parameters and the saturated permeability to display the
SWCC. While the saturated permeability k, is not directly inputted into the van Genuchten
equation, Plaxis leverages this parameter to estimate a relative permeability k,.;, thus
establishing the unsaturated permeability as a function of the saturated permeability and

suction.

The gl parameter did not impact the shape of the SWCC significantly in this study and was
therefore set to default value 1.250 for the sake of simplicity in the implementation of the

algorithm.

4.2.2 Mesh and selected nodes
Based on trial calculations, a fine mesh was required to obtain a good solution to the infiltration

process in the model. If the mesh is too coarse, Plaxis struggles with calculating smooth

transitions between zones of different saturations in the slope.

The model mesh is set to 0.01, generating 2074 elements and 17313 nodes.
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To simulate the 10T sensor placement, three nodes were chosen at depths of 0.3m, 0.5m and

0.9m from the top of the soil in the middle of the slope.

Connectivity plot

Pont-ofinterest coordnates  Selectby id

Figure 26: Mesh and node points from Plaxis

4.2.3 Infiltration and boundary conditions
The lower boundary of the model is assumed to be bedrock and it is specified as a closed

boundary for the whole slope. The left and right sides of the slope are defined as “seepage”
boundaries, while the upper boundary is specified as “infiltration”. To estimate the initial
groundwater condition, a steady-state analysis was conducted with the infiltration on the upper

boundary defined by the average annual rainfall of around 1200 mm/year.

The initial steady-state analysis is followed by a transient analysis. In the transient analysis the
infiltration on the upper boundary of the model is specified to replicate the actual rainfall during
the considered time-period. This was implemented with a Plaxis discharge function, which was
defined using real precipitation data from the monitoring system. The discharge function is
defined as a table with daily rainfall rates from day O to 58. Because of wetting and drying
hysteresis in the SWCC, a period with heavy rainfall over several days was preferable. When
looking at the precipitation graph in Figure 27, the first 12 days of the period of 58 days has
several days with rainfall > 20mm/day and this period was chosen based on this.
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Figure 27: Precipitation from sensor data day 0-58

The initial phase is constructed to define the initial groundwater conditions in the slope. In this
phase, the precipitation is sat to be 0.005 m/day with a steady-state groundwater flow analysis.
In phase 1, a transient groundwater flow analysis is done with the time interval as an input
value from the Python script. During the first iteration Nm = 0, the time interval ist = Nm +
1 and subsequently t = 10 in the last iteration. In combination with the discharge function,
which is detailing the precipitation during the 10 days, this ensures realistic infiltration
conditions for the model automatically when running the code.

4.3 Ensemble Kalman Filter implementation
The EnKF-algorithm begins with estimating Ne = 20 realizations or samples for each of the

unknown parameters, n, @ and k,; based on a lognormal distribution with a given expected
value u and standard deviation . A measurement error o,,= 0.02 is also defined in the initial

stage.

The expected value and standard deviation are defined as the system’s “prior knowledge” and
was varied for each simulation to investigate how the results were affected. A lognormal
distribution was used for the parameters to avoid negative numbers in the samples, which could
lead to Plaxis-errors and numerical fails in the simulation. The parameters were transformed

using e* before Plaxis input.

Plaxis then runs one calculation for each value in the sample, in total Ne = 20 calculations in

one iteration.
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The Plaxis model outputs a matrix of effective saturation (which is converted to volumetric
water content promptly by using Equation 26) in the three node points (0.3m, 0.5m and 0.9m).
These results are the model output y of the system, y = g(z) where the g(z)-function
represents the Plaxis calculations. The z-matrix is the system state of Plaxis defined by model
state @ (i.e., output of interest) and unknown parameters x (i.e., van Genuchten parameters). In
the code, the parameter samples x were noted z; for prior parameter estimates and z, for

updated estimations.

In the code, a Y-matrix was defined to contain all unknown parameters and Plaxis outputs:

Where the three first elements are the parameter vectors, and the three last elements are the
Plaxis output vectors at each depth. The elements of the Y-matrix are then copied over to the

z/-matrix, which only contains prior parameter estimations.

T
Further, the EnKF algorithm works by calculating the sample covariance €, = 2224 of the

T Ne-1

Ne parameter samples, where z, is the difference between the sample and the sample mean.

The measurement matrix D contains the sensor data, and the measurement error o,,= 0.02 is
added to each element in the matrix to account for any noise in the sensor data. The parameter
updating process starts by first calculating the difference between measurements and Plaxis
output:

dif ference = D — Gz
And then updates the parameters based on the difference:
z% =z/ + K+ dif ference
Where K is the Kalman gain, defined by:
K¢ = C5,G(GC5,G" — Cyg)™"

As presented in chapter 2.9.1.
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If there is no difference between the measurements and model predictions, the samples will not
be updated as it means that we have good model performance. If there is a difference between
the model predictions and sensor measurements, the samples of the unknown parameters are
updated based on the calculated Kalman gain. The size of the Kalman gain and its relation to
predictions or observations depends on the relative size of the parameter covariance matrix and
the measurement error covariance matrix. If the measurement error covariance is small relative
to the parameter covariance, that means that our measurements are very accurate, and we tend
to trust them more than predictions. In case the parameter covariance is small, relative to the
measurement error covariance, that means that we have very little variability in model
predictions and that the model is likely to be accurate and that we can trust it more than the
measurements. Finally, towards the end of the calibration the size of the parameter covariance
matrix is likely to become very small as we are converging to certain values of the unknown
parameters, while the error covariance matrix will remain constant. This means that uncertainty
in the estimated parameter values cannot be fully eliminated as there will always remain some

uncertainty originating from the measurement error.

4.4 Model input
The number of simulations and iterations was determined as follows:

Ne = number of sample guesses

Nm = Iterations or number of measurements. In this case one measurement for each day for 10

days was used.

After conducting multiple tests runs of the simulations, it was observed that using Ne = 20
parameter guesses yielded satisfactory results without compromising the runtime and computer
capacity. While some simulations were attempted with Ne = 30, it did not sufficiently improve
parameter convergence and significantly increased the likelihood of Plaxis not converging and

crashing.

Nm = 10 days was chosen based on the precipitation graph in Figure 27, which displayed the
highest variability within this timeframe. Extending the simulations beyond this period was
deemed unnecessary, although one simulation with Nm = 12 is presented in the results for

comparison reasons. Moreover, the test simulations demonstrated rapid convergence of the
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unknown parameters, and prolonging the simulation period would only add more time to the

process, without yielding better outcomes.

This resulted in a total of Ne x Nm = 20 x 10 = 200 calculations for each simulation. The

runtime for each simulation varied between 5 - 10 hours.

The initial probability density functions (pdf’s) of the unknown parameters were given as input
for each simulation, all other parameters and conditions were kept the same. The unknown
parameters were modelled as lognormally distributed to avoid negative values of the
parameters. The pdfs were chosen based on expected values from the literature and the results

from the test simulations.
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5 Results and discussion
In this chapter, the outcomes and analysis of the research are presented. The results were

obtained by varying prior knowledge of the parameters to evaluate changes in convergence,
posterior estimates in the calibration process, and the stability of the algorithm. The volumetric
water contents from the Plaxis analysis over Nm iterations (days) are shown in comparison to
the to the sensor data for the representative depths. The compliance between sensor data and
Plaxis results are the main indicator of good parameter estimations as the goal is to establish a

model as close to real-life as possible.

The results from each simulation are discussed consecutively as they are presented. Lastly, a
more collective discussion is presented to further compare the results and give an understanding

of how the model performed as a whole.

5.1 Results overview
The overview of the prior estimate vs the posterior estimate for the unknown parameters is

presented in Table 2. The table show the expected values and standard deviation of the initial
guesses (black numbers) compared to the expected values and standard deviation obtained from

the data assimilation process (blue numbers) after Nm = 10 iterations.

Table 2: Overview of results. The table show the prior distribution estimate of the unknown van Genuchten parameters a, n
and kg, in comparison to the posterior estimates obtained by the data assimilation process.

Simulation p, p, 6, 04 Wy Pn On On Mk, Hiy Ok Okew

Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior

i 6.0 673 1.0 0885 2.0 1887 05 0.108 4.0 564 2.0 1.358
i 6.0 258 10 036 35 2325 05 0137 40 268 20 0.365
ii 6.0 5465 10 0358 35 2378 05 0156 55 2525 20 0.368
Y 20 1561 1.0 0.121 35 3.034 05 0.185 40 3.724 2.0 0.771
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5.2 Results simulation i)
Figure 28 (Plot i.A) - i.C)) exhibit Plaxis ensemble results compared to the corresponding

sensor data for simulation i). The sensor data is represented by the blue line, while the x-marks

depict the ensemble Plaxis calculation results.

i.A) i.B) i-C)

x  Plaxis results % Plaxis results % Plaxis results
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Figure 28: Results from simulation i). Plaxis data of VWC (x) plotted against sensor data (blue lines) for all depths.

Plots i.A) and i.B) corresponding to depths 0.3m and 0.5m, respectively, demonstrate a notable
overall alignment between the sensor data and Plaxis results, with the Plaxis outcomes
converging to nearly identical values as the sensor data in both cases. However, it appears that
Plaxis exhibits a slower response to increases in VWC, as is seen by the observed gaps between

sensor-plots and Plaxis-plots in i.A) and i.B) between day 4 - 5.

A reason for this could be that EnKF over-estimates the kg,; parameter which leads to the
water draining too fast for day 2-4. As is seen in Figure 29 (graph i.E) and i.H)), which show
the evolution of the estimation of k., during the 10-day simulation period, the permeability
estimations increase during these days before decreasing noticeably afterwards, resulting in the
Plaxis output not keeping up with the rapid increase in VWC at day 3-4, which leads to

deviations between Plaxis and the sensor data.

Plot i.C), representing a depth of 0.9m, shows less conformity with the sensor data, as is seen
by the Plaxis outputs consistently deviate from the sensor data with around 0.05%. There are

several possible reasons for this deviation:

As the sensor at depth 0.9m consistently shows lower VWC than sensors at 0.5m and 0.3m for
the whole period, there is reason to believe a low-permeable soil layer is starting somewhere
between depth 0.5m and 0.9m. (lvan Depina E. O., 2021) also suggest that the low values of
VWC at depth 0.9m is partially due to vertical infiltration in the slope. A combination of these
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theories is supported by the geotechnical investigations, concluding with the area being

dominated by steep slopes and hard packed moraine with poor infiltration (chapter 3.2.1).

However, a permeability-paradox occurs when analyzing unsaturated soil in Plaxis. As the
water drains from a soil, the permeability decreases as soil suction increases. If the permeability
is highly sensitive to changes in soil suction (i.e., high values of n), this could lead to a rapid

decrease in permeability caused by the high saturated permeability.
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Figure 29: Results from parameter estimation (i). Prior estimate: o= 6.0, 04 = 1.0, pig_,, =4.0, oy, = 2.0, Uiy, = 2.0, 0, = 0.5

Figure 1 (Graph i.D) —i.F)) shows the parameter estimations during the 10-day simulation and
graphs i.G) —i.1) show the probability distribution of the parameters from every other iteration

during the simulation where day 1 indicate the “prior knowledge” of each parameter.
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The a-parameter shows a slight convergence tendency from prior state, seen by the standard
deviation changing from oy prior = 1.0 0 Gy posterior = 0.885, indicating a more accurate
estimation. The n-parameter converges significantly and is therefore the most accurate estimate

in this simulation with 6, prjor = 0.5 10 0—posterior = 0.108.

The results for the saturated permeability kg, don’t demonstrate any satisfactory convergence
as the standard deviation only changes from oy ,rior =2.010 0% posterior=1.358. However,
graph i.A) —i.C) show a significant convergence of Plaxis outputs. There are a few reasons this

could be:

The model is relatively insensitive to the change in permeability, as the results doesn’t seem to

change much although the permeability is widely spread between values 3 — 9m/day.

However, when we investigate the SWCC obtained from Plaxis using the expected values for
the posterior estimates of the van Genuchten parameters, we can see that the permeability in

fact changes substantially due to soil suction.

-1,3 4

0,0

0.0001 0.001 0.01 0.1 1

Figure 30: SWCC from Plaxis using the estimated van Genuchten parameters. Ga = a/10 = 0.673, gn = 1.887, gl = 1.125, k¢,
=5.64 m/day

k

Here k,.; = p is defined as a percentage of the saturated permeability and v is the soil suction.

sat

Looking at graphs i.A) — i.C) we see that the VWC from Plaxis outputs lays in the range of

0.3%, which, by using Equation 26, translates to a degree of saturation S ~ 0.7%.

Reading off the S — i —plot in Figure 30 we see that this corresponds to ¥ = -1.5 [m] - kL =
sat

0.055 - 0.055 * kgqs = 0.31 m/day, which is a significant percentage loss from k.
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Compared to the SWCC from the other simulations, the SWCC from simulation i) shows a
slower response in k., to changes in soil suction, due to the n-parameter being in the lower

range.

Another reason for the high variability in kg, could also be the relatively high variability
shown in the estimation of the two other parameters a and n. Although both parameters seem
to converge to high certainty estimates the SWCC is, as discussed in chapter 2.8.3, highly
sensitive to changes in the n-parameter. Therefore, the reason could be that the highest
estimates of k,,; (=9m/day) were paired with high values of n in the simulation, resulting in

k..; changing quickly for small changes of soil suction and vice versa.

To conclude, the parameter estimations obtained from simulation i) are not particularly reliable.
Although the sensor data and Plaxis outputs have good compliance for depth 0.5 and somehow
good compliance in depth 0.3m, the posterior distributions of the parameters are not sufficient

to describe the hydrological conditions of the soil in a unique and satisfying way.

5.3 Results simulation ii)
Graph ii.A — ii.C) show Plaxis outputs (x-marks) plotted against sensor data (blue line) for

simulation ii).

For depth 0.5m (ii.B)), the Plaxis outputs are almost identical to the sensor data which is a good

indicator of reliable parameter estimations at this depth.

For depth 0.3m, the Plaxis data show an overall good compliance to the sensor data, yet there
is a significant deviation in Plaxis’ response to increase in VWC, especially during day 3-5.
This deviation is likely a result of a higher permeability layer in the top layer of the soil, which
makes EnKF slightly underestimate the saturated permeability kg, to obtain better results at
depth 0.5m and 0.9m, which show signs of lower permeability as the responses to increased
VWC are slower.
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Figure 31: Results from simulation ii). Plaxis data of VWC (x) plotted against sensor data (blue lines) for all depths.

As for the problem in simulation i), the VWC from Plaxis is overestimated for depth 0.9. The

same explanations as for simulation i) are valid for this case.
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Parameter distribution during simulation
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Figure 32: Results from parameter estimation (ii). Prior estimate: iy = 6.0, 04 = 1.0, uy_,, =4.0, o, =2.0, up = 3.5, oy =

Figure 32 shows the results from the parameter estimations for simulation ii) (graph ii.D) —

i.1)).

The a-parameter (graph ii.D) and ii.G)) show a considerable amount of improvement in
standard deviation, With o, 0= 0.945 and o, ,osterior= 0.36, Which is a decrease by 1/3.
Also k,; show a great improvement in standard deviation during the simulation with
Ok opprior = 2.214 and oy nosterior = 0.365. Lastly, the n - parameter converges to expected

value u, = 2.325 with a decrease in standard deviation from o, ,,-ior = 0.645 t0 0y, posterior =

0.137.

Probability Density Functions for unknown parameters

0.5
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Compared to the overall results from simulation i), simulation ii) show a higher degree of
certainty in the posterior parameter estimations. This is mainly due to the factor of convergence
in the estimations. Decreasing standard deviations over time means that the expected area for

the parameter estimation is shrinking, resulting in increased certainty.

It is especially important to note the difference in estimated kg, for simulation i) and ii) as it
varies considerably between the two simulations (ks,. ; = 5.64 m/day vs kgq¢ ;; = 2.682 m/day).
The effect of this is seen in the VWC-plots (ii.A —ii.C and i.A —i.C) as the Plaxis output shows

a slower response to increase in water content for case ii) vs i).

The difference in the a and n — parameter for the two simulations is also interesting to mark as
a; =6.732 and «a;; = 2.583 while n; = 1.887 and n;; = 2.325. As discussed in chapter 2.8.1, the
effect of the a — parameter in the van Genuchten equation is a shift in the air-entry value of the

function, describing for what matric suction value air can start to fill the pores.

This means that for the same degree of saturation (S), the SWCC for simulation ii) in Figure

33 yields higher values of matric suction than in simulation i) (Figure 30).
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37,2 {---meeobe e Tt BT - 37,2 4-

R e e o LD
EUTY. U FRUUUT O NSO, S S "

9,3 S N o= == R R -1 9,3 -

0,0 t t
0.01 0.1 1 0.0

ket [

t 1
0.0001 0.001

Figure 33: SWCC from Plaxis using the estimated van Genuchten parameters. Ga = a/10 = 0.258, gn = 2.325, gl = 1.125,
Ksqr = 1.68 m/day.

The difference in the a-parameter also show notable differences in the relationship between
keqr aNd kon—saturatea- D0OING the same rough calculation as for simulation i), the VWC
obtained from Plaxis lays in the range of 0.3%, which translates to degree of saturation at ~
0.7% (Equation 26). For the SWCC in Figure 33, the soil suction corresponding to S = 0.7%
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is approximately ¥ = 4 which again translates to k,.; = kL ~ 0.1. With kg4, ;; = 1.68 m/day

sat

as estimated from the simulation. This means that the average non-saturated permeability for
the soil k = 0.1 X ks, = 0.168 m/day. Compared to simulation i), where the average non-
saturated permeability was calculated to be k = 0.31m/day, the difference in non-saturated
permeability for the two cases is significantly smaller than for the saturated permeability. This
IS important to note as it highlights how the differences in numerical results between

simulations may appear bigger than the actual effect.

Simulation ii) show overall somewhat satisfying results, with good correspondence between
sensor data and Plaxis as well as convergence for all the unknown parameters. When compared
to simulation i) the results however show how the SWCC is not uniquely described and that a

variety of parameter combinations can yield similar model results.

5.4 Results simulation iii) and iv)
The inclusion of these additional results serves the purpose of demonstrating the impact of

prior knowledge and iteration time on the outcomes. By comparing all the results, we can
examine whether the parameters converge to consistent values across different starting points

and for different iteration numbers.

The results from simulation iii) and iv) in Figure 34 and Figure 35 show similar tendencies as
i) and ii), respectively, with regards to Plaxis output and sensor data compliance. These
relations are described in the prior section and are therefore not analyzed in detail in this

section.
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Figure 34: Plaxis results vs sensor data for simulation iii)
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Figure 35: Plaxis results vs sensor data for simulation iv)
Parameter estimations for simulation iii) and iv) are shown in Figure 36. Like results i) and ii),
we see variable amounts of convergence in the estimated parameters. In simulation iii), both
the saturated permeability k,,; and n-parameter converge to significantly more reliable
estimates which is seen by the standard deviation for kg, changing from oy__. »rior = 2.0 t0
Ok qpposterior = 0.368, and from o, 1oy = 0.5 10 0y posterior = 0.156 for n. The a-parameter
doesn’t have such a strong tendency seen from the plot, however the data shows that the
standard deviation for a changes from oy prior = 1.0 10 Oy posterior = 0.358 which is a

noteworthy change.
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Parameter distribution during simulation (iii) Parameter distribution during simulation (iv)
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Parameter estimations for simulation iv) show a great improvement in standard deviation for
a, With 04 prior = 1.0 and 04 posterior = 0.121, and for n with a;, ;ri0r = 0.5 and 0y, posterior =
0.185. In contrast to iii), the saturated permeability shows less convergence than iii) with

kesariprior = 2.0 and Oksqsposterior = 0.771.

When analyzing the results in Table 2, it is evident that there are similarities in the results from
simulation ii) and iii) as both the k,,,-parameter and n-parameter converge to almost identical
values. While these parameters demonstrate a high degree of similarity, it is important to note
that the a-parameter exhibit a noticeable deviation. The a-parameter states the air-entry value

for the soil, marking for what soil suction the permeability (and water content) starts to decrease
in the SWCC.
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This is further substantiated by analyzing the Plaxis output vs sensor data-plots for both cases
(Figure 31 and Figure 34). In simulation ii), the permeability seems to be lower than for
simulation iii) as the Plaxis outputs show a faster response to VWC in iii), even though
kq: converges to almost identical values. This is likely caused by the lower value for the a-
parameter for simulation ii), meaning that the unsaturated permeability starts to decrease for

lower soil suctions and vice versa for simulation iii).

Despite very similar values for kg,; and n in ii) and iii), the results are not sufficiently

consistent to confidently assert that the parameter estimates are correct.

Another example of this issue is the similarities observed between simulation ii) and iv). These
results demonstrate very similar Plaxis outputs, even though the van Genuchten parameters
exhibit significantly different values. These findings underscore the importance and difficulty
in analyzing hydrological parameters, especially for SWCC’s. As mentioned in the limitations
section, different parameter combinations may yield similar results, which makes it challenging

to make high certainty conclusions.

5.4.1 Effect of iterations
As seen from Figure 36 and the results for simulation iv), which was done using Nm = 12 days,

the degree of convergence does not seem to be affected by the increase in number of iterations.
Based on the observed trend in the results, it appears that when the parameters exhibit

significant convergence, this tends to happen rapidly within the first few iterations (days).

However, it is important to note that this pattern may vary depending on the data set used for
parameter calibration. If the initial data set consists of limited instances of significant
fluctuations or extreme values, introducing more iterations could potentially yield positive
effects by providing additional information about the measurement state.

5.4.2 Effect of prior knowledge

The effect of prior knowledge on parameter estimation is a significant factor to consider. Based
on the results in this thesis, it appears that the a- and n-parameter respond more to changes in
the initial prior knowledge than kg, although this tendency is not very clear and could very

likely originate from the small changes done in the initial conditions for k;.

However, by narrowing down the area of initial uncertainty, it becomes possible to enhance
the reliability of the parameter estimations as it will lead the algorithm closer to the correct

results.
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5.5 Overall discussion
The results of the parameter calibration are positive, showing that the Plaxis outputs align well

with the measured data. The updated parameters are also getting closer to a more accurate
estimation within the expected range. However, it is important to emphasize the fact that it is
challenging to draw definite conclusions from these simulations because of the nature of
unsaturated soil theory itself. This difficulty doesn’t necessarily mean there’s anything wrong
with the model or algorithm used. The problem lies in the fact that unsaturated soil problems
are highly non-linear and lacks unique solutions for limited information. This limitation is
clearly demonstrated in this thesis, where similar Plaxis outputs are obtained despite variations
in the estimated van Genuchten parameters, and similar van Genuchten parameters result in

significant varieties in for example soil suction.

To obtain more reliable conclusions, we need additional information about the problem. This
could involve using measurements of soil suction along with VWC-data. Another approach

could be calibrating the parameters based on hydrological data from actual landslide-events.

In the context of early warning systems, it is crucial to have more certainty about the
hydrological conditions of the soil as the unsaturated conditions can lead to shallow shear
circles as the waterfront changes. These critical shear circles may not be considered if the
unsaturated conditions are not analyzed. In addition, changes in the a-parameter affect the soil
suction which again influences the effective stresses and slope stability. More accurate
information about the hydrological state of the soil is essential to create a reliable early-warning

system.

Despite these challenges, using the EnKF-method for parameter calibration could be effective.
An alternative method would be manually updating the parameters and evaluating the results
manually, which would be time consuming and difficult. The automated nature of the EnKF
approach is advantageous in this regard and the method has great potential when it comes to
automatic calibration for hydrological parameters in soil.
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6 Summary and main conclusions
This master’s thesis focused on the parameter calibration of the van Genuchten parameters

(a,n, k) using the Ensemble Kalman Filter algorithm and sensor data for volumetric water
content. The work involved setting up an automated water flow model using Plaxis-scripting
and incorporating the EnKF algorithm into the Python code. The main objectives of this thesis

were:

e Analyze and process sensors data in a wetting period for a slope in Meraker.

e Implement and automate a hydraulic model of the slope in Plaxis with Python scripting.

e Study and Implement the Ensemble Kalman Filter algorithm in the programming
language Python Couple Plaxis model with the Ensemble Kalman Filter algorithm in
Python. Assess the performance of the Ensemble Kalman Filter algorithm and the

calibrated hydrological model.

The simulations began with specifying a prior state for the unknown parameters based on prior
knowledge and assigning probabilistic distributions to represent the likely range of parameter
values. Random samples were generated from these distributions, and Plaxis calculations were
performed to obtain outputs of effective degree of saturation at different depths corresponding

to sensor placements.

A comparison was then made between the Plaxis output and sensor data using the EnKF
algorithm, with normally distributed measurement errors added to the sensor data. The samples
of the unknown parameters were updated based on the covariance and disparity between the
sensor data and Plaxis output. The updated samples were used as input for new Plaxis

calculations, and this process was iterated multiple times.

The simulations were conducted with specific iteration times and prior knowledge of the
unknown parameters, and the results indicated a reasonable correspondence between sensor
data and Plaxis output. The correspondence was best at depth 0.5m with Plaxis outputs being
almost identical to sensor values for some simulations. Bigger variations between sensor data
and Plaxis output was observed at depth 0.3m and especially at depth 0.9m, assumably due to
factors like vertical infiltration and lower permeable layers which were not considered in the

Plaxis model.
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The estimation of van Genuchten parameters showed convergence in most simulations,
indicating higher certainty estimates of the parameters. However, the inherent nonlinearity of
unsaturated soil problems renders them ill-posed. Multiple parameter combinations can
produce almost identical results, as evidenced by similar Plaxis responses obtained with
different estimations of the van Genuchten parameters. This lack of uniqueness makes it

impossible to determine the correct results without additional information.

The findings suggest that the EnKF algorithm can determine hydrological parameters, but
improved accuracy in initial conditions and prior parameter knowledge is necessary for more
certain estimation. The potential application of this method in early warning systems for
rainfall-induced landslides is present, but further refinement and certainty in the result is
needed for sufficiently reliable results. Incorporating calibration with suction sensors as well
as VWC-sensors or calibrate the parameters with data from landslide-events could be

advantageous to achieve higher certainty.
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7 Future work
Recommendations for future work with parameter calibration using EnKF and Plaxis scripting

include:

e Expand the simulations and consider potential soil layers.

e Calibrate the parameters using suction-sensors as well as VWC-sensors. This would
improve the reliability of the results drastically.

e Test the calibration on a variety of different data sets or over a significantly longer
time period to compare the results.

e Implement the results in stability analysis to examine how the hydrological
condition of the soil influences the stability. This would be crucial before
implementing the calibration results in early-warning systems.

e EnKF can be used to estimate stiffness parameters of the soil by using monitoring

data of deformations, as done by (Muhammad Mohsan, 2021).
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#Key elements of the code

#Importing packages

from plxscripting.easy import*
import numpy as np

import requests

import matplotlib.pyplot as plt
from datetime import datetime
import math

#Begin making the Plaxis-model

def plaxis_model (permeabilitet, S_res, S_sat, ga, gn, time):

degrees = 35.0 #Steepness of slope

model_length = 20.0 #Length of slope

depth_to_bedrock = 1.5 #Depth to bedrock

s_i.new() #Creating a server for Plaxis-scripting
g_i.gotostructures () #Go to structures in Plaxis

#Defining a function for making the material

def lag materiale(permeabilitet, S_res, S_sat, ga, gn):

#theta r Residual water content
#theta_s Saturated water content

#alpha Inverse of the air entry value
#n Pore size distribution index

#Making the material
sand = g_i.soilmat ('Identification', 'Sand', 'SoilModel', 'Mohr-Coulomb', 'ERef',
20000, 'cRef', 5, 'phi', 30, 'cInc', 1,

'GroundwaterClassificationType', 'User-defined',
'SWCCFittingMethod', 'Van Genuchten', 'SaturationSaturated', S_sat,
'ClayFraction', 0, 'SiltFraction', 10, 'SaturationResidual', S_res
'PermHorizontalPrimary', perm,
'PermVertical', perm, 'GenuchtenGn', gn, 'GenuchtenGa', ga/10)

return sand

sand = lag_materiale(permeabilitet, S_res, S_sat, ga, gn)

#Defining start points and end points for the polygons.

#Making the slope-polygons and setting the material to the slope.
skraning.setmaterial (sand)

start_element. setmaterial (sand)

slutt_element.setmaterial (sand)

#Making the mesh
g_i.gotomesh()
g_i.mesh(0.01)
g_i.selectmeshpoints ()

#Defining the stress points at depth 0.3m, 0.5m and 0.9m

g_o.addcurvepoint ("node", (model length/2, stress_point_03))
g_o.addcurvepoint ("node", (model_length/2, stress_point_05))
g_o.addcurvepoint ("node", (model length/2, stress_point_09))
g o.update ()

#Defining flow conditions
g_i.gotoflow()

#Defining the boundary conditions and infiltrarion in phase 0
#Defining infiltration in phase 1 and setting a dishacrge function

#Setting the discharge function
g_i.set(g_i.DischargeFunction 1.Signal, "Table")
g_i.set(g_i.DischargeFunction_l.Table, table)

g_i.gotostages() #Staged construction



# Set up the InitialPhase to flow only
# Increase the tolerated error
# Set up phase 1 to transient groundwater flow

#Defining time interval for calculation
g_i.set(g_i.Phase_l.TimelInterval, time)

#Calculations

def calculations():
list_of sat_results = []
g_i.calculate(True)

#Checking if analysis was successfull
if (strInPh.split () [1] == 'OK' and strPh 1.split()[1] == 'OK'):

print('Flow analysis successful.')

#Collecting the Saturation results in a list
for k in range(3):

values_sat = g_o.getcurveresults(g_o.CurvePoints.Nodes[k], phasel_o, g_o.ResultTypes.Soil.EffSaturationAsRatio)
list_of_ sat_results.append(float(values_sat))
return list of sat results

# Returning the results
return calculations ()

#Sensor data is defined in lists:

# VWC03 Volumetric water content depth 0
# VWC05 Volumetric water content depth 0.
# VWC09 Volumetric water content depth 0

o 0 W

# Defining the number of iterations Nm
Nm = len(VWC_0_3) #Number of sensor values
# Measurement error

sigma_ m = 0.01

# Defining number of realizations/ensemble members
Ne = 20
# Defining prior knowledge of unknown parameters and

#mu = expected value
#std = Standard deviation

#Making the samples log-normal

std_1ln = np.sqrt(np.log(l + std**2/mu**2))
mu_ln = np.log(mu - 0.5*std 1ln**2)

#Making the Y-matrix

Y = np.zeros((6, Ne, Nm))
#Making connection to Plaxis
p = 's<V/+?84wSZG8TT4'

s_i, g_i = new_server('localhost', 10000, password = p)
s_0o, g_o = new_server('localhost', 10001, password = p)

# ITERATIONS BEGIN
for i in range(Nm):

#Making initial parameter samples based on prior knowledge (iteration 0)

if (i==0):
Y[0,:,i] = np.random.normal (loc = mu_ln perm, scale = sig_ln perm, size = Ne)
Y[1,:,i] = np.random.normal (loc = mu_ln_ga, scale = sig_ln_ga, size = Ne)

Y[2,:,i] = np.random.normal (loc = mu_ln gn, scale = sig_ln gn, size = Ne)



# Save values in files
filel = open()

# Updating the Y-matrix with updated parameters

else:
Y[0,:,i] = 2Z_al0,:]
Y[1,:,i] = Z_a[l,:]
Y[2,:,i] = Z_al2,:]

# Writing the values to textfiles and saving them

#Running the Plaxis model Ne times, one for each parameter sample.
for j in range (Ne):

#Calling the Plaxis-model function
list_of results = plaxis_model (permeabilitet = perm input , S_res = S_res, S_sat =
ga = np.exp(Y[1,3,1i]), gn = np.exp(Y[2,],1i]), time

# Adding the Plaxis-results to the Y-matrix
if list_of results:

Y[3,3j,i] = list_of results[0]*(theta_s-theta_r) + theta r
Y[4,3,1i] list_of results[1l]*(theta_s-theta r) + theta_ r
Y[5,3,1i] = list_of results[2]* (theta_s-theta_r) + theta_r

# Close output

g_o.close()

# Start new output

s_o, g_o = new_server('localhost', 10001, password = p)

#Ensemble Kalman Filter Algorithm

# Defining the G matrix
G = np.zeros((3,6))
G[0,4] =1

G[1,5] =1

# Copy values

B £ = ¥(8,8p4]

# Calculating Mean values of sample parameters
Z_f mean = np.matmul (Z_f, np.ones((Ne,Ne)) /Ne)

# Difference between parameter samples and mean
Z d=12f - 72 f mean
# Covariance matrix

Czz = 1/(Ne - 1)*np.matmul(Z_d, Z_d.T)

# Adding noise to the measurements
D = np.matmul (np.reshape (np.array([VWC_0_3[i], VWC_0_5[i], VWC_0_9[i]11), (3,1)),
np.ones (shape = (1,Ne))) + np.random.normal (size = (3, Ne))*sigma_m

# Difference between measurements and Plaxis predictions
obs_dif = D - np.matmul (G, Z_f)

#Defining the Cdd-matrix
Cdd = np.eye(3) *sigma_m**2

#Matrix multiplications
cov_inv = np.linalg.inv(np.matmul (G, np.matmul (Czz,G.T)) + Cdd

# Calculating the change that will be added to the parameter samples

chng = np.matmul (Czz, np.matmul (G.T,np.matmul (cov_inv, obs_dif)))

#Updating the prior parameters by adding the change

Z_a =2%2_f + chng

S_sat,

i+ 1)
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