
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Md Abulkalam Azad

Multi-label Video Classification for
Underwater Ship Inspection

Master’s thesis in Marine and Maritime Intelligent Robotics (MSMIR)
Supervisor: Prog. Martin Ludvigsen
Co-supervisor: Ahmed Mohammed, Maryna Waszak
June 2023

Md Abulkalam Azad

Multi-label Video Classification for
Underwater Ship Inspection

Master’s thesis in Marine and Maritime Intelligent Robotics (MSMIR)
Supervisor: Prog. Martin Ludvigsen
Co-supervisor: Ahmed Mohammed, Maryna Waszak
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Multi-label Video Classification
for Underwater Ship Inspection

Erasmus Mundus Master’s in Marine and Maritime
Intelligent Robotics (MSMIR)

at

The Department of Marine Technology, NTNU

In collaboration with

SINTEF Digital

The Master’s Thesis by:
Md Abulkalam Azad

Under the supervision of:
Ahmed Mohammed (SINTEF)

Maryna Waszak (SINTEF)
Prof. Martin Ludvigsen (NTNU)

11th June 2023

Abstract

Today ship hull inspection including the examination of the external coating, de-
tection of defects, and other types of external degradation such as corrosion and
marine growth is conducted underwater by means of Remotely Operated Vehicles
(ROVs). The inspection process consists of a manual video analysis which is time-
consuming and labour-intensive. To address this, we propose an automatic video
analysis system using deep learning and computer vision to improve upon exist-
ing methods that only consider spatial information on individual frames in un-
derwater ship hull video inspection. By exploring the benefits of adding temporal
information and analyzing frame-based classifiers, we propose a multi-label video
classification model that exploits the self-attention mechanism of transformers to
capture spatiotemporal attention in consecutive video frames. Apart from utiliz-
ing off-the-shelf vision transformers for extracting spatial information, we have
incorporated the transformer from the original language model to extract tem-
poral information from the video. We have specifically highlighted the underlying
distinct characteristics between these transformers and made empirical modifica-
tions to optimize their performance and achieve the best results. Furthermore, our
investigation delved into the self-attention mechanism, which serves as a critical
component of the transformer architecture. We introduced a different but light
approach known as single query attention computation, which has proven instru-
mental in enhancing the robustness of the model. By utilizing attention scores
as weights, we were able to improve the overall performance and strengthen the
reliability of our approach. In a nutshell, we have showcased three distinct ap-
proaches to multi-label video classification, and the outcomes have demonstrated
great potential, positioning this work as a benchmark for future research and de-
velopment in underwater video inspection applications.

v

Preface

I would like to begin by recalling the memory of my mother who passed away
in a terrible road accident. I would not have been here today without her utmost
diligence.

This master’s thesis builds upon the specialization project I undertook in the
previous semester, and I am grateful for the opportunity to continue this research
within the Computer Vision group at SINTEF Digital in Oslo. I would like to ex-
press my gratitude to SINTEF Digital for providing me with the platform to work
on this project as part of my master’s thesis. I am specifically grateful for the initial
opportunity I had as a summer student at SINTEF Digital, which laid the found-
ation for my involvement in this thesis. During this time, I had the privilege of
working under the careful supervision of Dr. Ahmed Mohammed. His expertise
and intellectual guidance have been instrumental in my learning of state-of-the-
art techniques in the field of 3D computer vision and video understanding. I am
thankful to Dr. Mohammed for his mentorship, and I believe this collaboration is
just the beginning. I look forward to future projects under his supervision, as I am
confident that they will further contribute to my growth and development in the
field.

Secondly, I would like to show my utmost gratitude to Dr. Maryna Waszak for
engaging me to the LIACi (Lifecycle Inspection, Analysis, and Condition Informa-
tion system) project and invaluable contribution to this thesis work. From the very
beginning, she provided me with the necessary guidance and introduced me to the
initial project requirements, setting the foundation for my research. Her continu-
ous support and close guidance have been instrumental in overcoming challenges
and doubts, allowing me to progress smoothly and effectively towards achieving
the main objectives of this thesis. I am particularly grateful for Dr. Waszak’s un-
wavering support, which has not only facilitated the successful completion of this
thesis but has also played a significant role in the publication of our research at
renowned conferences such as OCEANS and NORA. Her dedication and assistance
have been invaluable throughout this journey, and I am truly appreciative of her

vii

viii M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

involvement in this project.

I would like to express my gratitude to the co-authors of this thesis for their
invaluable support, feedback, and guidance throughout the project. In partic-
ular, I would like to extend my appreciation to Prof. Martin Ludvigsen for his
academic supervision and guidance from the Department of Marine Technology,
NTNU. His expertise and involvement have been instrumental in shaping the aca-
demic aspects of this research. I would also like to acknowledge and thank Helene
Schulerud, the research manager of the Computer Vision group at SINTEF, for her
unwavering trust in my abilities and providing me with various opportunities,
starting from my initial summer job at SINTEF. Her support and belief in my po-
tential have been crucial in my academic and professional development.

Moreover, I would like to express my gratitude to the European Commission
for awarding me the Erasmus Mundus scholarship, which has enabled me to pur-
sue a master’s degree in Marine and Maritime Intelligent Robotics (MSMIR). This
thesis project has been an integral part of my studies within the MSMIR program,
and I am thankful for the opportunity to delve into this research area through the
support of the scholarship.

Finally, I would like to highlight some important aspects of my thesis work. I
had the privilege of presenting a portion of my research at the esteemed OCEANS
2023 conference held in Limerick, Ireland. I am delighted to inform you that a
10-page article with the title: Multi-label Video Classification for Underwater
Ship Inspection based on this work will be published by IEEE. Furthermore, an
extended version of our approach with the title: MViST: A Multi-label Vision
Spatiotemporal Transformer, which includes significant improvements, was ac-
cepted and presented at the NORA 2023 annual conference by my supervisor, Dr.
Ahmed Mohummed, on June 6th. This recognition has also resulted in an invita-
tion to submit the extended version of our work to the prestigious Nordic Machine
Intelligence (NMI) level-1 journal. In preparation for this submission, I am cur-
rently working on an additional 10-page article, even after completing the thesis.
Both the papers and presentation slides are included as attachments to provide
you with comprehensive references. I hope you will find the thesis engaging and
informative with the wealth of information provided.

..................................
Azad, Md Abulkalam
Student No: 581732
MSMIR, Marine Technology
NTNU
11th June 2023

Contents

Abstract . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xvii
Code Listings . xix
1 Introduction . 1

1.1 Underwater ship hull inspection . 1
1.2 Frame-wise video analysis . 2
1.3 Main objective . 3

2 Related Works . 5
2.1 Convolutional Neural Network (CNN) 5
2.2 Vision Transformer (ViT) . 5
2.3 Temporal Action Localization (TAL) . 6
2.4 Spatiotemporal features in Video Classification 7
2.5 Image-to-Video Transfer Learning . 9

3 Materials & Methods . 11
3.1 Datasets . 11

3.1.1 Image dataset . 11
3.1.2 Video dataset . 12

3.2 Self-Attention Mechanism . 14
3.2.1 Scaled Dot-Product Attention 15
3.2.2 Multi-Head Attention . 16

3.3 Transformers . 17
3.3.1 Spatial Transformer . 17
3.3.2 Temporal Transformer . 19

3.4 Multi-label Image Classifier . 20
3.4.1 ResNet Model . 20
3.4.2 ViT Model . 21

3.5 Multi-label Video Classifier . 23
3.5.1 Naive Video Transformer . 23

ix

x M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

3.5.2 Late-Fusion Spatiotemporal Transformer 25
3.5.3 Attention weighted Spatiotemporal Transformer 26

3.6 Analyzing Materials . 27
3.6.1 Prediction Confidence and Temporal Characteristics 27
3.6.2 Underwater Image Quality Metrics 28
3.6.3 Multi-label Evaluation Metrics 30

3.7 Hardware Resources . 30
4 Results . 31

4.1 Multi-label ResNet Classifier . 31
4.2 Multi-label Image Classifers . 33
4.3 Multi-label Video Classifiers . 36

4.3.1 Naive Video Transformer . 36
4.3.2 Late-Fusion Spatiotemporal Transformer 36
4.3.3 Attention weighted Spatiotemporal Transformer 37
4.3.4 Performance Comparison . 37
4.3.5 Temporal Performance . 38

5 Ablation study . 43
5.1 Frame-based Video Classification . 43

5.1.1 Hyperparameters and Transformations 43
5.1.2 Prediction Confidence Evolution 45
5.1.3 Multi-label ViT Image Models 49

5.2 Video-based Classification . 51
5.2.1 Spatiotemporal-based Video Classification 51
5.2.2 Multi-label Video Classifiers . 51
5.2.3 Number of layers in Temporal Transformer 56
5.2.4 Single Query Attention Inspection 58

6 Conclusion & Future Work . 59
Bibliography . 61
Paper I . 65
Paper II . 101
Poster I . 121
Poster II . 123
A Additional Information . 125

A.1 Multi-label classification using ResNet 125
A.2 Temporal results comparisons . 127

A.2.1 ResNet VS COCO_ViT and IMAGENET_ViT 127
A.2.2 Video Models . 135

B Code Listings . 147
B.1 Attention . 147
B.2 Multi-Head Attention . 147
B.3 Vision Transformer (Spatial Transformer) 148
B.4 Positional Encoding . 152
B.5 Temporal Transformer . 152
B.6 Reproduction of the ResNet model . 154

Contents xi

B.7 Implementation of Multi-label Image Classifiers 156

Figures

1.1 The workflow of current underwater ship hull inspection using ROVs. 1

3.1 Visualization of 10 class labels of two different categories in LIACI
dataset. 12

3.2 Number of class instances per class labels in LIACI image dataset. . 13
3.3 Distribution of class instances in LIACI image dataset. 13
3.4 Distribution of class instances in generated video dataset. 14
3.5 (left) General Scaled Dot-Product Attention where the attention

matrix after the softmax is multiplied with the value matrix. (right)
Scaled Dot-Product Attention for a single query where the MatMul
is replaced by element-wise multiplication (*) as the attention is a
vector of the single query. 16

3.6 Multi-headed Self-Attention Computation process. Q matrix will be
replaced by a vector q for the single query attention. 17

3.7 The standard ViT architecture as our Spatial Transformer. The high-
lighted latent vectors will be utilized in our video model architecture. 18

3.8 Temporal Transformer architecture with no classification token em-
bedding. A fixed sine-cosine function is used for positional encoding. 19

3.9 Visual interpretation for multi-label classification of snippet no. 1
in table 3.2 using the ResNet classifier. 21

3.10 A simple approach to video model using the same architecture as
the image classifier. Spatiotemporal feature extraction is applied by
either uniform frame sampling or tubelet embedding. 24

3.11 Spatiotemporal transformer architecture of the video model. The
spatiotemporal feature is extracted separately by spatial and tem-
poral transformers respectively. 25

3.12 Temporal attention weighted spatiotemporal transformer architec-
ture. The spatial features are extracted by the spatial transformer
and then attention scores are generated by the temporal trans-
former. Finally, the predictions of each frame from the spatial trans-
former are multiplied by their respective attention scores. 27

xiii

xiv M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

3.13 Input data flow through the attention-weighted spatiotemporal trans-
former. Where b, t, c, w, and h refer to batch size, number of frames,
number of channels, width, and height respectively. 28

3.14 Model’s multi-label prediction confidence on each frame during a
video inspection. It facilitates the frame-wise spatial analysis of the
model’s confidence. 29

3.15 An example of the temporal observation of a model’s prediction
confidence during a video inspection. 29

3.16 An example of an inspection of frame quality based on UCIQE and
UIQM metrics in a video snippet. 29

4.1 Temporal observation with UCIQE and UIQM frame quality metrics
on the video snippet no.3 from table 3.2. 32

4.2 Frame 70 and 78 (left to right) of the video snippet no.3 from table
3.2. 32

4.3 Evaluation metrics comparison between our ViT-based image mod-
els and the ResNet on the validation dataset. 33

4.4 Temporal observation of IMAGENET_ViT and COCO_ViT on the
video snippet no.3 in table 3.2 compared with the ResNet model. . 34

4.5 Gradual improvement of the COCO_ViT models. 35
4.6 Gradual improvement of the IMAGENET_ViT models. 35
4.7 Performance comparisons of the best video models from all the vari-

ants of different approaches. 38
4.8 Temporal observation of the best two naive video models on the

video snippet no.1 from table 3.2. 39
4.9 Temporal observation of the best two late-fusion video models on

the video snippet no.5 from table 3.2. 39
4.10 Temporal observation of the best two attention-weighted video mod-

els on the video snippet no.8 from table 3.2. 40
4.11 Temporal observation of the final COCO_ViT and the attention-

weighted value video models on the video snippets of table 3.2. . . 41
4.12 Temporal observation of the final COCO_ViT and the attention-

weighted ST video models on the video snippets of table 3.2. 42

5.1 The loss behaviour during the training of the IMAGENET_ViT and
COCO_ViT. 44

5.2 The loss behaviour during partial fine-tuning of the IMAGENET_ViT
and COCO_ViT. 45

5.3 Comparison between the initial and final models in finding minimal
loss for the IMAGENET_ViT and COCO_ViT. 46

5.4 Temporal observation of the final IMAGENET_ViT and COCO_ViT
on the same video snippet as in Fig. 4.1. 46

5.5 Prediction confidence evolution during a training of a model. 48
5.6 Distribution of the attention scores to the query as well as neigh-

bouring frames in different situations. 58

Figures xv

A.1 Visual report of multi-label classification on snippet no. 2 in table
3.2 using ResNet. 125

A.2 Visual report of multi-label classification on snippet no. 3 in table
3.2 using ResNet. 125

A.3 Visual report of multi-label classification on snippet no. 4 in table
3.2 using ResNet. 126

A.4 Visual report of multi-label classification on snippet no. 5 in table
3.2 using ResNet. 126

A.5 Visual report of multi-label classification on snippet no. 6 in table
3.2 using ResNet. 126

A.6 Visual report of multi-label classification on snippet no. 7 in table
3.2 using ResNet. 126

A.7 Visual report of multi-label classification on snippet no. 8 in table
3.2 using ResNet. 127

A.8 Temporal observation on the video snippet no. 1 from table 3.2. . . 128
A.9 Temporal observation on the video snippet no. 2 from table 3.2. . . 129
A.10 Temporal observation on the video snippet no. 4 from table 3.2. . . 130
A.11 Temporal observation on the video snippet no. 5 from table 3.2. . . 131
A.12 Temporal observation on the video snippet no. 6 from table 3.2. . . 132
A.13 Temporal observation on the video snippet no. 7 from table 3.2. . . 133
A.14 Temporal observation on the video snippet no. 8 from table 3.2. . . 134
A.15 Temporal observation of the best two naive video models on the

snippet no.2 from table 3.2. 135
A.16 Temporal observation of the best two naive video models on the

snippet no.3 from table 3.2. 136
A.17 Temporal observation of the best two naive video models on the

snippet no.4 from table 3.2. 136
A.18 Temporal observation of the best two naive video models on the

snippet no.5 from table 3.2. 137
A.19 Temporal observation of the best two naive video models on the

snippet no.6 from table 3.2. 137
A.20 Temporal observation of the best two naive video models on the

snippet no.7 from table 3.2. 138
A.21 Temporal observation of the best two naive video models on the

snippet no.8 from table 3.2. 138
A.22 Temporal observation of the best two late-fusion video models on

the snippet no.1 from table 3.2. 139
A.23 Temporal observation of the best two late-fusion video models on

the snippet no.2 from table 3.2. 139
A.24 Temporal observation of the best two late-fusion video models on

the snippet no.3 from table 3.2. 140
A.25 Temporal observation of the best two late-fusion video models on

the snippet no.4 from table 3.2. 140

xvi M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

A.26 Temporal observation of the best two late-fusion video models on
the snippet no.6 from table 3.2. 141

A.27 Temporal observation of the best two late-fusion video models on
the snippet no.7 from table 3.2. 141

A.28 Temporal observation of the best two late-fusion video models on
the snippet no.8 from table 3.2. 142

A.29 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.1 from table 3.2. 142

A.30 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.2 from table 3.2. 143

A.31 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.3 from table 3.2. 143

A.32 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.4 from table 3.2. 144

A.33 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.5 from table 3.2. 144

A.34 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.6 from table 3.2. 145

A.35 Temporal observation of the best two attention-weighted video mod-
els on the snippet no.7 from table 3.2. 145

Tables

3.1 Number of images and their resolutions from different ship inspec-
tion videos . 12

3.2 Ground truth physical contents of the randomly selected 8 key video
clips. 15

3.3 Available pretrained ViT architectures in PyTorch. 22
3.4 Hyperparameters and data transformations to train ViT on COCO

dataset. 22
3.5 Training hyperparameters and data transformations for IMAGENET_ViT

and COCO_ViT. 23

4.1 The gain of COCO_ViT and IMAGENET_ViT over ResNet model on
the validation dataset. 33

4.2 Evaluation metrics of the naive video models on the LIACI video
validation dataset. 36

4.3 Evaluation metrics of the late-fusion video models on the LIACI
video validation dataset. 37

4.4 Evaluation metrics of the attention-weighted video models on the
LIACI video validation dataset. 37

5.1 Initial training hyperparameters and data transformations. 44
5.2 Initial evaluation metric values of the image-based models on the

validation dataset. 44
5.3 Analysis of different models & results. FF = fully finetune & PF =

partial finetune. 50
5.4 Analysis of the naive approach. FF = fully finetune & PF = partial

finetune. 52
5.5 Analysis of the late-fusion approach. FF = fully finetune & PF =

partial finetune. 54
5.6 Analysis of the attention-weighted approach. FF = fully finetune &

PF = partial finetune. 55

xvii

xviii M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

5.7 Experiments on the number of encoder layers in Temporal Trans-
former. 57

Code Listings

B.1 The function to compute attention using Q, K, and V 147
B.2 Multi-head attention computation. 148
B.3 Standard Vision Transformer Implementation. 148
B.4 Positional Encoding implementation. 152
B.5 Temporal Transformer implementation. 152
B.6 Load the ResNet model and perform multi-label classification. . . . 154
B.7 Additional resource to reproduce the ResNet. 155
B.8 Implementation of ViT image models. 156

xix

Chapter 1
Introduction

1.1 Underwater ship hull inspection

Inspection of marine vessels is a regular phenomenon in the maritime industry
which plays a significant role in monitoring the life cycle and analyzing the con-
dition of the hull. It examines the external coating and detects potential defects.
For instance, corrosion, marine growth, or other external degradation can dam-
age the hull and reduce its lifespan. Ship hull inspections are nowadays shifting
to underwater operation from dry-dock to reduce the high cost and downtime of
the ship. This underwater inspection is conducted by a Remotely Operated Vehicle
(ROV) to further cut down the cost and prevent the risk of a human diver. The
overall workflow as illustrated in Fig. 1.1 consists of three phases;

1. Collection of videos of the ship hull by operating an ROV
2. Extensive analysis of the videos by skilled personnel
3. Preparation of the inspection report based on the analysis for certification

The manual video analysis in phase 2 is time-consuming, tedious, and prone
to error from human cognitive fatigue. Therefore, with the advancement of deep
learning in computer vision and autonomy in underwater vehicles, an automatic
video analysis system can significantly improve underwater inspection and exped-
ite the entire process.

Figure 1.1: The workflow of current underwater ship hull inspection using ROVs.

1

2 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

1.2 Frame-wise video analysis

A trivial approach to underwater video analysis is to inspect each frame of the en-
tire video individually and identify potential threats such as defects, corrosion, or
marine growth. This approach can assign higher values to frames that are more
likely to contain plausible dangers, allowing inspectors to focus only on those
frames for analysis. It simply needs an efficient and robust multi-label image clas-
sifier, and there are many such off-the-shelf models available online that can be
used for this purpose. We can use a pre-trained image classification model and ap-
ply an effective deep transfer learning technique as suggested in [1] to fine-tune
the model for our domain. One preceding work [2] under the LIACi1 project util-
ized transfer learning to train a multi-label image classifier using Microsoft Cus-
tom Vision [3] framework to classify individual frames in the video. The trained
model can predict nine different class labels on the surface of the ship hull which
are stated in chapter 3 of materials & methods.

However, this approach has a significant limitation as it only considers spatial
information from static image frames and lacks the temporal insight that is essen-
tial for Video Understanding [4]. Besides, the underwater environment presents
various difficulties for vision-based tasks. The quality of the underwater images
and videos is affected by the attenuation of light and the presence of particles in
the water. It becomes difficult to distinguish the objects and the background as
their colours do not remain the same over time. The visibility in underwater en-
vironments is also limited, leading to low-resolution and blurry images. Moreover,
the ROV motion creates distortions and blurs in the images and videos. All these
factors collectively make it extremely cumbersome in an underwater environment
to detect and classify potential dangers. This leads to the problem of prediction
inconsistency and temporal instability in frame-based classification models during
underwater video analysis.

Prediction inconsistency occurs when there is a significant difference in the
model’s prediction confidences on consecutive frames, even though there are neg-
ligible spatial changes between the frames. Temporal instability in frame-based
models refers to the model’s inability to consider dynamic information during
predictions. For instance, in underwater environments, an ROV creates motion
and results in incomplete target objects in most of the frames. Consequently, the
model may exhibit low confidence in predicting target objects or potential dangers
during video analysis.

In the following section, we present our objectives to mitigate the issues and
improve the performance of the model for underwater video analysis.

1Lifecycle Inspection, Analysis, and Condition information system (ht-
tps://www.sintef.no/en/projects/2021/liaci/)

Chapter 1: Introduction 3

1.3 Main objective

In order to alleviate the issues, it is necessary to train a model by learning spati-
otemporal information from videos which can improve the automatic video ana-
lysis of underwater ship hull inspections. Our approach starts with enhancing
the performance of the frame-based multi-label classifier by incorporating better
spatial information. Next, we integrate temporal features into the trained frame-
based model to develop our video model. Unlike temporal action recognition and
localization [5] that consider dynamic foreground and background objects, our
videos only have static scenes including ROV motion with a dynamic camera.
Hence, the benefit of utilizing the temporal aspects can facilitate stabilization dur-
ing the video analysis by paying attention to adjacent frames in the temporal di-
mension. Our core focus is to enhance the consistency and stability of the model’s
predictions during underwater video analysis. Therefore, in this paper, we invest-
igate the consistency and stability of image-based classifiers which can help us in
understanding the advantages and limitations of using an image-based multi-label
classifier for this purpose. Furthermore, we propose a video classification model
which can extract both spatial and temporal features from the video. In summary,
the contributions of this work are;

a. Analysis of image-based classifiers (benefits and limitations) and improve-
ment.

b. Exploration of the benefits of adding temporal information.
c. Identification of a deep learning multi-label video classifier for labeling video

frames based on spatiotemporal attention.

The rest of the thesis is divided into five chapters. Related works are described
in chapter 2, whereas chapter 3 unveils the methods & materials that we have
utilized within this work. Chapters 4 and 5 include the results of our works and
ablation study. Finally, we conclude in chapter 6 by leaving some discussion and
direction for further research and development in the same area.

Chapter 2
Related Works

In this chapter, we present a comprehensive review of relevant works that have
contributed to our methods and materials, either implicitly or explicitly.

2.1 Convolutional Neural Network (CNN)

Computer vision has been used in automating various industries worldwide. While
artificial intelligence enables machines to think, computer vision provides them
with the ability to see. It has been used in many diverse fields such as agricul-
ture, autonomous vehicle, facial recognition, medical imaging, manufacturing,
and many more. Convolutional Neural Network (CNN) is widely recognized as a
breakthrough innovation in this area which was introduced in 1998 [6] for hand-
written digit recognition tasks from images. CNN can extract spatial information
from images including low-level features such as edges, corners, and blobs which
help with the recognition and classification tasks. The hierarchical architecture
within CNN allows lower layers to learn simple features and higher layers com-
bine these low-level simple features to learn more complex features. As a result, it
is able to capture both local and global spatial information from an image which
assists in any vision task. Consequently, several groundbreaking innovations [7–
9] have been achieved to improve this technology further. Therefore, we can util-
ize a CNN-based architecture to extract spatial information from video frames to
accomplish the automatic underwater video analysis system.

2.2 Vision Transformer (ViT)

Following the immense success of the Self-attention based Transformer [10] in
the field of Natural Language Processing (NLP), it has also evolved in a wide
range of applications within Computer Vision. Researchers thrived to adapt the
self-attention mechanism in the Computer Vision area and introduced the Vision

5

6 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Transformer [11] in 2020 as the counterpart of the original Transformer. ViT ad-
dresses image recognition tasks by dividing an input image into patches and apply-
ing self-attention to these patches to obtain spatial contextual relations between
them. The self-attention mechanism allows ViT to extract global and high-level
features from the input image and focus on different parts of the image simultan-
eously. Thus, it has been adapted together with traditional CNN architectures for
various image recognition tasks [12–14]. The revolution of the ViT has also shif-
ted through different variations to other vision tasks including object detection
[15, 16], and image segmentation [17].

We are particularly interested to train a multi-label ViT image classifier on our
underwater image dataset because of its underlying self-attention mechanism.
This facilitates better spatial feature extraction on frames during video analysis.
ViT applies a standard NLP-suited transformer on an image which is first split into
fixed-size patches in order to make the fewest possible adjustments. The list of
patches is similar to tokens or words of NLP applications which are fed to the trans-
former network as inputs. This approach is called patch embedding. In order to
get positional information, standard 1D position encoding is added along with the
input sequence of patches. The rest of the architecture consists of transformer en-
coder layers where a learnable embedding is prepended to the embedded patches
sequence. Nonetheless, ViT has a notable drawback that it requires pre-training
on large-scale datasets and subsequently fine-tuning on smaller datasets to at-
tain comparable or superior performance to CNNs for various vision applications.
While pre-training, a Multi-layer perceptron (MLP) based classification head is
integrated with one hidden layer. The MLP layer is later replaced by one single
linear layer during fine-tuning. Recently, a study [18] has shown that ViT can
outperform CNN models of similar size when trained on ImageNet from scratch
without strong data augmentations which overcome the large-scale pretraining
limitation. Therefore, it is apparent that ViT holds promises for the underwater
video analysis domain as well.

Since self-attention and ViT are two instrumental parts of our approach, we
have provided an in-depth explanation of the mathematical theory and architec-
ture within the Materials & Methods in chapter 3. This will facilitate readers and
future students to develop a better understanding of these complex theories and
architectures.

2.3 Temporal Action Localization (TAL)

To study video understanding, we need to start with extracting temporal inform-
ation from the frames of a video. Temporal Action Localization (TAL) [5] refers to
determining the time intervals in a video that contains a target action. The target
action is usually a dynamic activity (e.g., marine plant waving, fish swimming)
but can be a stationary fact as well such as anode in the ship hull. Besides, there

Chapter 2: Related Works 7

can be two types of motion in the videos; object or camera motion. As ROV is
moving, camera motion is present in our case. TAL mainly performs two tasks;
recognition and localization. Recognition denotes the detection of the class labels
whereas localization determines the start and end time of the detected actions.
The latter does not apply to our work at the moment as we only focus on multi-
label class recognition.

Generally, there are two types of TAL methods: single-stage and two-stage;
single-stage: generates several temporal action segments (start to end) proposals
in an untrimmed long video and classifies these actions simultaneously, two-stage:
first proposes segments and classifies actions and then regresses the boundaries. In
addition, there are a couple more variations depending on the data annotations;

• Fully-Supervised Temporal Action Localization (F-TAL): It refers to the
training when the dataset contains both the video-level category classes and
the temporal annotations (start and end time) of the action segments.
• Weakly-Supervised Temporal Action Localization (W-TAL): Unlike F-TAL,

W-TAL tackles the challenge of localizing action boundaries in untrimmed
videos where only video-level category labels are available [19]. In this case,
obtaining precise temporal annotations is difficult due to the presence of
numerous irrelevant frames that are not related to the target actions. This
lack of detailed temporal information makes the task of temporal action
localization even more harder in the weakly-supervised setting.

W-TAL indeed coincides with our case as we have only untrimmed underwater
videos without annotations. However, the implementation of video classification
requires video annotation. This needs extensive time to prepare the data for train-
ing a deep learning video classifier. Hence, we follow a similar W-TAL approach
to train our multi-label video classifier.

In contrast to TAL, which focuses on classifying dynamic actions in video snip-
pets and localizing their boundaries, our approach deals with classifying static
objects within individual frames by extracting spatiotemporal features from ad-
jacent frames. Our method provides prediction confidence for each frame index
in the temporal dimension of the video to facilitate automatic video analysis. We
aim to demonstrate the distinct nature of our work from TAL by discussing TAL
and highlighting these differences here.

2.4 Spatiotemporal features in Video Classification

In video understanding, the improved Dense Trajectories (iDT) proposed in [20]
was the state-of-the-art hand-crafted feature for classification tasks. The iDT descriptor
demonstrates the ability to extract temporal features differently from that spatial
information. Consequently, 3D ConvNets was proposed in [21] to learn spatiotem-
poral features from videos. It also overcomes the limitation of 2D ConvNets which

8 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

loses temporal information of the input signal right after every convolution op-
eration. The best architecture proposed in their experiment, called C3D net, is
homogeneous and comprises 8 convolution, 5 max-pooling, and 2 fully connec-
ted layers, followed by a softmax output layer. The 3D convolution kernels in this
network are 3x3x3 with a stride of 1 in both spatial and temporal dimensions.
They also claimed that a trained C3D network can serve as a potential spatiotem-
poral feature extractor for other video analysis tasks which could be advantageous
in our scenario.

TimeSformer [22] is among the first video models to incorporate self-attention
mechanisms in video understanding inspired by the success of self-attention mech-
anisms in ViT. It utilizes self-attention over both spatial and temporal dimensions
of an input video sequence rather than using 3D CNN to extract temporal fea-
tures along the frames. The model takes an input snippet consisting of 8 RGB
frames of size 224x224, decomposes each frame into 16x16 patches, and applies
self-attention along the temporal patches for these 8 consecutive frames. During
inference, it uses 3 spatial crops from the temporal clip and predicts by averaging
the scores. In contrast to our approach of using consecutive frames to predict static
class labels in the current frame, TimeSformer samples the 8 frames of an input
video at a rate of 1/32, and these frames are not necessarily consecutive. Their
experiments have demonstrated that the best performance is achieved when tem-
poral and spatial attention are applied separately. Adopting this approach could
be crucial in training our model video classifier.

ViViT [23] is another example of a transformer-based video classification model
that benefits from the self-attention mechanism. They propose four variations of
their model by factorizing the spatial and temporal dimensions in different ways,
ranging from simple to complex architectures. They also explain how to utilize
pre-trained ViT image models to train a video classifier on small datasets along
with effective regularization techniques which could be particularly advantageous
for our purposes. They emphasize the operational flexibility of a variable number
of input frames which is similar to the original transformer’s ability to handle any
sequence of input tokens. While there are similarities with TimeSformer [22], the
rich ablation study presented in ViViT provides a strong foundation for us to begin
with our own video model.

In essence, the spatiotemporal feature extraction strategies in video models
based on 3D CNN or transformers provide a promising research direction for de-
veloping a suitable multi-label video classifier for underwater ship inspection. Al-
though the underlying architecture of our model will fall into a similar sort of these
models, we will emphasize improving our model to serve a different purpose. Our
model will predict static classes instead of dynamic actions by absorbing the dis-
rupted motions in the video and will stabilize the prediction confidence along the
temporal dimension.

Chapter 2: Related Works 9

2.5 Image-to-Video Transfer Learning

The authors of the paper [24] have created a spatiotemporal bottleneck adapter
model, which can be integrated into a base architecture. As a result, it is only ne-
cessary to train the parameters of the adapter model during fine-tuning. Specific-
ally, the base architecture refers to a Video Understanding model which can adapt
a large pre-trained image model into its bottleneck. A pre-trained image model
lacks the necessary capacity to infer temporal structured information, which is
a crucial aspect of video understanding. Despite this limitation, state-of-the-art
video models are usually constructed to learn the temporal dimension utilizing
existing image models. Consequently, the proposed ST-Adapter can extract and
utilize the existing knowledge of a large image model, resulting in improved video
understanding while minimizing the number of parameters to be updated during
training. This method is known as a parameter-efficient image-to-video transfer
learning approach.

According to the authors, existing efficient tuning methods fall broadly into
three categories and those are stated below in their exact language;

• Task-specific adapter: An adapter consists of lightweight modules inserted
between layers of a pre-trained model. To be parameter-efficient, only those
newly added adapter modules need to be updated during task fine-tuning,
whilst all the parameters of the large pre-trained model, which takes the
majority proportion of the whole solution, are frozen.
• Prompt tuning: Instead of manipulating the network architecture, these

methods prepend a set of learnable tokens at the input point of the model or
intermediate layers. Similarly, only these added tokens need to be optimized
for each downstream task.
• Learning weight approximation: In particular, only the low-rank matrices

for approximating the weights need to be updated during training.

However, this paper moves a step further to consider the more challenging adapt-
ation problem from a pre-trained image model without temporal knowledge to
video understanding tasks. The authors chose two representative video ViT mod-
els, TimeSformer and XViT [25] in their performance benchmark. The adapter
module is specifically composed of a down-projection linear layer followed by a
spatiotemporal operator using a standard depth-wise 3D convolution layer, a non-
linear activation function, and an up-projection linear layer.

Comprehending the insight of image-to-video transfer learning can assist us
in integrating the parameter-efficient training strategy into our video model. Even
though our approach is targeted to be a post-processing video analysis technique,
effective training can serve as a guide in adapting the model in real-time for future
work.

Chapter 3
Materials & Methods

This chapter provides a meticulous explanation of all the methods and materials
employed to achieve our objective. Since our contributions are divided into three
phases, we have included methodologies that sequentially address all the phases,
allowing us to gradually construct our final video model.

3.1 Datasets

Starting with a description of the datasets we are using to develop our methods
provides a ground understanding of the platform we are building upon. Since
our objective is to improve the frame-based video classification and then propose
a multi-label video model, the following two subsections provide descriptions of
the respective image and video datasets.

3.1.1 Image dataset

The image dataset for underwater ship Lifecycle Inspection, Analysis, and Condi-
tion Information (LIACI) is publicly available, published in [26], and hence called
the LIACI dataset. The dataset comprises 1893 RGB images extracted from 17 in-
spection videos of various ships. There are 10 class labels as depicted in Fig. 3.1
divided into two different categories;

• Ship components: Anode, Bilge keel, Overboard valve, Propeller, Sea chest
grating, and Ship hull.
• Common marine coating issues: Marine growth, Paint peel, Corrosion, and

Defect.

The latter category classes are more challenging to classify and differentiate
from each other as they mostly evolve together. The images were annotated pixel-
wise for semantic segmentation which is also suitable for multi-label classification.
Table 3.1 presents the number of images extracted from the number of different

11

12 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 3.1: Visualization of 10 class labels of two different categories in LIACI
dataset.

ships alongside their resolution. On the other hand, Fig. 3.2 represents the number
of instances per class label.

Table 3.1: Number of images and their resolutions from different ship inspection
videos

Image resolution Image count Number of different ships
640 x 480 284 5

1920 x 1080 725 4
1280 x 720 837 7

1920 x 1080 47 1

However, we exclude the Ship hull class during the training of our deep learn-
ing model as it is present in all images. We only used 1561 images from the LIACI
dataset to train and test our model as recommended by the authors [26]. The re-
maining 332 images were considered too spatially similar to other images in the
dataset (Cosine similarity cut-off of 0.90). The class instance distribution of the
remaining images in our dataset in Fig. 3.3 indicates that while the dataset is not
perfectly balanced, it is not severely imbalanced either.

3.1.2 Video dataset

We hardly find any relevant off-the-shelf video dataset that meets the requirement
to train our video model for our domain. Therefore, we need to create and annot-
ate our own dataset to train and evaluate our proposed model. Since generating
and annotating a video dataset requires a significant amount of hard work and
time, we follow a weakly supervised approach as mentioned in the related works.

We have acquired the corresponding videos of LIACI training images which
are untrimmed and unstructured video data. We were able to extract 755 corres-
ponding video snippets out of 1893 images contained in the dataset. Each snippet
consisted of seven consecutive frames, with the middle frame representing the

Chapter 3: Materials & Methods 13

Figure 3.2: Number of class instances per class labels in LIACI image dataset.

Figure 3.3: Distribution of class instances in LIACI image dataset.

14 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

original image from the LIACI dataset. The class labels of the middle frame are
also considered the labels for the entire snippet during training. This approach
may be considered a weakly supervised data annotation. The snippets were split
into 584 for training, 87 for validation, and 84 that were not used by following
the same splitting convention of the image dataset. The class instance distribu-
tion of this generated video dataset is reported in Fig. 3.4. It is worth noting that
the generated video dataset contains fewer snippets than half of the number of
images in the LIACI dataset. As a result, it may not be sufficient to train a robust
video video model compared to the image model.

Figure 3.4: Distribution of class instances in generated video dataset.

Furthermore, to comprehensively analyze and evaluate the inspection per-
formance of trained models, we have selected 8 key clips of 1920x1080 resol-
ution from an untrimmed underwater inspection video. These clips were chosen
randomly and each clip is approximately 14 seconds long. Table 3.2 provides de-
scriptions of the physical content of the clips that are easily recognizable to human
eyes. However, distinguishing between marine_growth, corrosion, and paint_peel
with human visual perception can be quite challenging most of the time. The res-
ults of the analysis and evaluation are documented in chapter 4 and 5.

3.2 Self-Attention Mechanism

Self-attention [10] is an attention mechanism that finds contextual relationships
between different positions of an input sequence to create a coherent understand-
ing of the entire sequence. An input sequence, for instance, can be a sentence
consisting of a sequence of words. Specifically, self-attention computes scores to
determine the level of attention each word should have towards the other words
in the sentence. These words are technically referred to as input embeddings or

Chapter 3: Materials & Methods 15

Table 3.2: Ground truth physical contents of the randomly selected 8 key video
clips.

Serial Major physical real contents
1 anode, paint_peel
2 bilge_keel, paint_peel, over_board_valve, anode
3 propeller, paint_peel, corrosion, marine_growth
4 paint_peel, marine_growth, propeller
5 marine_growth, propeller, corrosion
6 paint_peel
7 propeller, marine_growth
8 sea_chest_grating, paint_peel, corrosion

vectors within the input sequence. To complete the self-attention mechanism, the
Scaled Dot-Product Attention function is utilized to calculate the attention out-
puts.

3.2.1 Scaled Dot-Product Attention

The Scaled Dot-Product Attention function takes a query and a set of key-value
pairs and maps them to an attention output. Both the inputs and the output are in
vector forms. Basically, the output is the weighted sum of the value vectors, where
the weights correspond to the attention scores, which are calculated as the scaled
dot product of the query and keys. In practice, the computation is performed sim-
ultaneously on a set of queries that are stacked together in a matrix Q ∈ RN×D.
N is the number of input vectors and D represents the dimension of each vec-
tor. This allows for efficient parallel computing, which can significantly speed up
the calculation process. Assuming that the keys and values are also stacked in
matrices K ∈ RN×D and V ∈ RN×D respectively, the resulting attention output
matrix ∈ RN×D can be represented as follows:

Attention(Q,K,V) = softmax(
QKT

p
D
)V (3.1)

The softmax function is applied to obtain the weight distribution across the values,
ensuring the sum of the weights is up to 1. However, in our methodology, we
will also require to compute attention for a single query, which is similar to the
equation mentioned above and is represented as:

Attention(q,K,V) = softmax(
qKT

p
D
)V (3.2)

where q ∈ R1×D refers to a single query vector. To ensure that the attention output
remains in the shape of RN×D, we need to replace the last matrix multiplication
operation with element-wise multiplication. Fig. 3.5 illustrates a visual represent-
ation comparing the normal Dot-Product Attention with the computation for a

16 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

single query. Please also refer to the appendix B.1 for the corresponding code to
get the intuition of the attention computation.

Figure 3.5: (left) General Scaled Dot-Product Attention where the attention mat-
rix after the softmax is multiplied with the value matrix. (right) Scaled Dot-
Product Attention for a single query where the MatMul is replaced by element-
wise multiplication (*) as the attention is a vector of the single query.

3.2.2 Multi-Head Attention

Another pivotal aspect of the self-attention mechanism is the utilization of Multi-
headed Self-Attention (MSA). In MSA, the queries, keys, and values are linearly
projected h times using separate learnable parameters. This process results in h
different sets of queries, keys, and values to facilitate parallel computations of the
attention function. The dimension d of the projected queries, keys, and values can
vary depending on individual preference but is typically set to D/h to maintain a
consistent computational cost as that of a single-head (h = 1) attention with full
model dimension D. This choice ensures that the total computational complexity
remains stable across different numbers of attention heads. Consequently, D in
the attention equations above is replaced by d during multi-headed self-attention
computation. The yielded h sets of attention values from the multiple heads are
concatenated and further projected to obtain the final set of values. This additional
projection step helps to consolidate and refine the information extracted from
the attention heads, resulting in the final output values. Fig. 3.6 illustrates the
computations of the MSA as represented by the following equations:

MultiHead(Q,K,V) = Concat(head1,head2,,headh)W
O (3.3)

headi = Attention(QWQ
i ,KWK

i ,VWV
i)

where the projected weight matrices WQ
i , W K

i , W V
i ∈ R

D×d and W O ∈ Rhd×D. Also
note that, for a single query attention computation, Q and WQ

i will be replaced

Chapter 3: Materials & Methods 17

by q ∈ R1×D and W q
i respectively. The code for computing multi-head attention is

attached in appendix B.2.

Figure 3.6: Multi-headed Self-Attention Computation process. Q matrix will be
replaced by a vector q for the single query attention.

N.B. The diagrams of Fig. 3.5 and 3.6 are borrowed from the original paper [10]
and modified to align with our approach and explanation.

3.3 Transformers

Transformers play pivotal roles as key components in our approaches. We have
specifically demonstrated the overview of the Vision Transformer in the related
works chapter. This section delves into the fundamental architecture of the trans-
former and highlights our approach to adapting it within our work. To achieve
our objectives, we need to implement both image and video classification mod-
els. Consequently, the contents of the following two subsections will be integrated
into our models.

3.3.1 Spatial Transformer

The Vision Transformer (ViT) serves as our spatial transformer as it possesses the
ability to extract spatial information from images. We leverage the ViT as our
multi-label image model as well as the spatial encoder part in our video model.
Following the brief description in the related works, Fig. 3.7, building upon the

18 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

original diagram presented in [11], provides an overview of the ViT architecture,
specifically focusing on the modifications made in our approach while retaining its
simplicity. This diagram aims to highlight the key adaptations and modifications
we have incorporated to enhance the understanding of our methodology.

Figure 3.7: The standard ViT architecture as our Spatial Transformer. The high-
lighted latent vectors will be utilized in our video model architecture.

In the initial step, the input image undergoes non-overlapping convolutional
operations to be split into multiple patches. Consequently, the patch embedding
which represents the flattened patches is trainable using various convolutional
kernels. The dimension of the patch embedding is determined by the number
of kernels employed. This process effectively accomplishes the “Linear Projec-
tion of Flattened Patches” as depicted in the diagram. Practically, the input im-
age size for our Spatial Transformer is set to (H ×W) = (224 × 224). We use
the kernel size k = (16 × 16) and the stride size is also set to the same size as
the kernel to ensure non-overlapping patches. We employ a total of 768 ker-
nels, which corresponds to the model dimension D as mentioned in the self-
attention section. The number of flattened patches we get after the convolution
is N = (224 × 224) ⊛ (16 × 16) = (14 × 14) = 196. Afterward, an additional
learnable classification token of the same shape is prepended making it a total
of 197 patches. Now, to provide positional information into the model, a learn-
able 1D positional vector of the same length as the patch embedding is added
to each patch. This operation does not alter the shape of the embeddings but
rather modifies their values, effectively encoding the positional information into
the patches. By adding the positional vector, the model becomes aware of the
spatial arrangement of the patches within the image. Finally, these patch embed-
dings are fed into the transformer encoder which encompasses the self-attention
mechanism discussed in the previous section. Apart from the multi-head atten-

Chapter 3: Materials & Methods 19

tion, the architecture also employs layer normalization, residual connection, and
multi-layer perceptron (MPL). This combination enables the model to analyze re-
lationships between the patches and capture contextual information for feature
extraction. In our spatial transformer, we use a total of L = 12 encoder layers and
h= 12 in MSA to obtain the latent vectors for each of the input patch embeddings.
Among the 197 latent vectors generated, only the additional classification token
(CLS) is connected to an MLP head for the final classification prediction. This CLS
token serves as an aggregate representation of the entire image and is specific-
ally used for making the classification decision. The standard implementation of
Vision Transformer (Spatial Transformer) is available in PyTorch and attached in
appendix B.3 for the sake of completeness.

However, we have specifically highlighted the latent vectors in Fig. 3.7 be-
cause we intend to remove the MLP head and utilize these vectors in our video
models. Apart from using the CLS token for final classification, we can leverage
the information contained in the latent vectors for further analysis and processing
within our video models.

3.3.2 Temporal Transformer

In implementing our temporal transformer, we follow the design principles out-
lined in the original transformer [10], despite the fact that the underlying archi-
tecture remains similar to the spatial transformer. This will ensure leveraging the
proven effectiveness of the transformer architecture for temporal processing in
our video models.

Figure 3.8: Temporal Transformer architecture with no classification token em-
bedding. A fixed sine-cosine function is used for positional encoding.

We describe the key differences of the temporal transformer through Fig. 3.8.
In contrast to the spatial transformer, the temporal transformer takes ready-made
embedding vectors as inputs instead of image patches. There are two ways to ob-

20 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

tain these vectors from the spatial transformer. Firstly, we can directly extract the
CLS latent vector, which serves as a latent representation for the entire image. Al-
ternatively, we can compute the global average of all the latent vectors, resulting
in a single vector that captures an aggregated representation of the image. This
implies that a single image input to the spatial transformer generates one input
embedding for the temporal transformer. However, in order to execute the tem-
poral transformer, we need a total of seven such input embeddings. This indicates
that we process a sequence of seven consecutive frames to capture the temporal
aspects and analyze the relationships between them through temporal attention.

A significant distinction in our approach is the absence of the extra classi-
fication token. Instead, we depend solely on the sequence of input embeddings
to capture temporal attention and make predictions in our video models. Addi-
tionally, we utilize a fixed sine and cosine function for positional encoding,
following the original transformer design. The implementation of the positional
encoding is attached in appendix B.4. This fixed encoding scheme ensures consist-
ent and reliable positional information throughout the sequence, without the need
for learnable parameters as in spatial transformer. We also make adjustments to
the number of heads (h= 8) in the MSA component of the Temporal transformer.
Additionally, through empirical analysis, we determined that a number of encoder
layers (L = 4) yielded the best results, as documented in the ablation chapter.
Consequently, we maintain L = 4 for all of our video models, based on these
findings. Finally, the global average pooling is used to aggregate the temporal
attention into a single latent vector passed through the MLP head for the final
prediction. We have implemented the temporal transformer differently from the
spatial transformer. In appendix B.5, you will find the code for the temporal trans-
former, which incorporates the attention mechanism, multi-headed self-attention
(MSA), and positional encoding that were discussed earlier. This code provides
a detailed implementation of the temporal transformer architecture used in our
methodology.

3.4 Multi-label Image Classifier

To initiate our work, we reproduce the multi-label image model that was previ-
ously trained as part of the LIACI project, as mentioned in the introduction chapter.
This serves as our starting point, providing us with a baseline model to build upon
and gradually improve the performance. By reproducing the existing model, we
establish a solid foundation for our subsequent improvements and experiments.

3.4.1 ResNet Model

To perform frame-wise video analysis, a ResNet [27] model based on CNN archi-
tecture was trained using Microsoft custom vision [3] on the LIACI image dataset
as a multi-label image classifier. We were given access to the private repository of

Chapter 3: Materials & Methods 21

the project to reproduce and analyze the model’s performance. We have imported
the project along with the trained model, added a new script which is included
in appendix B.6, and modified some of the scripts. This new script allows us to
reproduce the corresponding multi-label classification on our selected key video
snippets, as presented in table 3.2. It also generates one CSV file containing the
prediction probabilities for all the class labels at each individual frame and draws
a diagram for visual interpretation. Fig. 3.9 represents the visual interpretation of
the first snippet in the table. It shows that the paint_peel class severely appears in
the last half of the clip. Besides, anode and propeller class labels are more or less
visible throughout the entire clip. The rest of the 7 visual performance interpret-
ations are added in appendix A.1.

Figure 3.9: Visual interpretation for multi-label classification of snippet no. 1 in
table 3.2 using the ResNet classifier.

3.4.2 ViT Model

To enhance the multi-label classification for LIACI video analysis at the frame
level, we propose to integrate a pretrained ViT model. The advantages of the self-
attention mechanism within ViT offer a promising approach to improve the ac-
curacy and performance of multi-label classification in video analysis within the
context of the LIACI project. Importantly, we aim to leverage the ViT architecture
as the basis for our attention-based video model, which will allow us to efficiently
transfer the knowledge learned from the image model to the video model.

In the original ViT paper [11], a few variants of the architecture were proposed
that differ in model size and input patch size. For instance, the ViT-L/16 refers
to the “Large” variant and is composed of 24 training layers with a 16x16 input
patch size. The PyTorch [28] vision package includes several ViT models as shown
in table 3.3 that can be easily implemented. Besides, PyTorch enables access to the
models’ underlying architecture and allows us to modify them through retraining
or fine-tuning conveniently. Based on the model’s capacity, our requirements, and
computing resources we have selected the ViT-B/16 architecture. The size of the
model is 330.3MB with 86M trainable parameters and it has 95.318%@5 accur-
acy on ImageNet 1K dataset [29]. Besides, it resembles the architecture we have
stated as our spatial encoder in the previous section.

22 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Table 3.3: Available pretrained ViT architectures in PyTorch.

Model
img
size

patch
size

Layers Dim
MLP
size

Heads Params
acc@5
(Image-
Net1k)

1 ViT_B/16 224 16 12 768 3072 12 86M 95.318
2 ViT_B/32 224 32 12 768 3072 12 88M 92.466
3 ViT_L/16 224 16 24 1024 4096 16 304M 94.368
4 ViT_L/32 224 32 24 1024 4096 16 306M 93.07
5 ViT_H/14 224 14 32 1280 5120 16 633M 98.694

We have decided to train two versions of the selected ViT architecture on the
LIACI dataset using PyTorch. One version will be pretrained on the ImageNet 1k
dataset, while the other will be pretrained on the COCO 2014 dataset [30]. The
goal is to compare the performances of these two models and assess the influence
of different pretraining datasets on the ViT’s performance with the LIACI data.
Although the weights of the ImageNet pre-trained ViT are available in PyTorch,
we need to train the COCO version by ourselves in advance. Consequently, we
downloaded the COCO dataset using FiftyOne [31] and conducted a complete
fine-tuning of a pre-trained ViT model that was originally trained on ImageNet.
The COCO dataset consists of 82,783 training images and 40,504 validation im-
ages. We trained the model on this extensive dataset for a total of 94 epochs. De-
tailed information regarding the hyperparameters and data transformations used
for training the ViT on the COCO dataset can be found in table 3.4.

Table 3.4: Hyperparameters and data transformations to train ViT on COCO data-
set.

Hyperparameters Transformation
BCEWithLogitsLoss Image Resize(224x224)
Optimizer: SGD
Learning rate: 0.001 Normalization: Mean[0.485, 0.456, 0.406]
Momentum: 0.9 Normalization: Std [0.229, 0.224, 0.225]
Batch size: 16
Epochs: 94 RandomHorizontalFlip(only on training set)
Scheduler:StepLR
(step=20,gamma=0.1)

Finally, we have trained our two desired ViT models pre-trained from Im-
ageNet and COCO datasets and abbreviated them as IMAGENET_ViT and COCO_ViT
respectively. Extensive analysis of various training hyperparameters has been con-
ducted during our training procedures. The findings and outcomes of this ana-

Chapter 3: Materials & Methods 23

lysis are documented and discussed in detail in the ablation study chapter. The
final training hyperparameters and data transformations for both models are kept
identical and can be found in table 3.5. The data transformations employed for the
COCO dataset differ significantly due to the distinct characteristics of this data-
set compared to LIACI. LIACI consists of underwater images captured with ROVs,
which introduces motion blur. We applied separate image normalization by com-
puting the corresponding mean and standard deviation on LIACI and COCO data-
sets. It is noted that only the Image Resize and Normalization are applied during
validation or evaluation. Data augmentation such as AugMix [32] and Guassian-
Blur are applied randomly with a probability of 0.5. Nonetheless, we investigated
various hyperparameters and data augmentations that are exhibited in the abla-
tion study chapter 5. The outcome and the model performance are reported in the
results chapter.

Table 3.5: Training hyperparameters and data transformations for IM-
AGENET_ViT and COCO_ViT.

Hyperparameters Transformation
BCEWithLogitsLoss Image Resize(224x224)
Optimizer: SGD RandomHorizontalFlip(p=0.5)
Learning rate: 0.001 Normalization: Mean[0.3485, 0.3699, 0.3520]
Momentum: 0.9 Normalization: Std [0.2495, 0.2446, 0.2062]
Batch size: 16
Epochs: 100 GaussianBlur(p=0.5)
Scheduler:ReduceLROnPlateau
(mode=“min”, factor=0.1)

AugMix() (p=0.5)[32]

3.5 Multi-label Video Classifier

In the development of our multi-label video models, our primary focus is to lever-
age the pretrained image models that have been trained on the LIACI dataset.
This approach aligns with the image-to-video transfer learning concept that we
discussed in the related works chapter. By utilizing the pretrained image models,
we aim to transfer their learned knowledge to the video domain. This will enable
us to achieve faster training of the video models and dedicate more time to ex-
periments. We intend to implement multiple video models for our ablation study,
following three main approaches outlined in the following three subsections.

3.5.1 Naive Video Transformer

Initially, we adopted a straightforward method by utilizing two different spati-
otemporal token embedding techniques proposed in [23].

24 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Uniform frame sampling: It uniformly embeds each 2D frame of the video snip-
pet using the same method as ViT and then concatenates together. For instance,
if a frame is tokenized into 196 patch embeddings, we will have a total of 1372
embeddings for a single snippet from our video dataset, considering 7 frames in
the snippet. In this method, the temporal information is not fused within the em-
beddings themselves. Instead, it will be incorporated and processed by the trans-
former architecture at a later stage.
Tubelet embedding: This approach expands the embedding of ViT to 3D, align-
ing with the concept of 3D Convolution. It extracts non-overlapping spatiotem-
poral tubes from the video snippet along the temporal, height, and width dimen-
sions. Consequently, these spatiotemporal tubes are linearly projected to generate
the final embeddings. This intuitive approach effectively integrates the spatiotem-
poral information into the embedding representation before being processed by
the transformer model.

Now, the naive approach is to extract tokens from the video snippets using
either uniform frame sampling or tubelet embedding methods, and then feed these
tokens directly into a trained image ViT model. The process is illustrated in Fig.
3.10, and the diagrams used are prepared by combining resources from [23] and
[11]. In practice, to implement the model with uniform frame sampling, we ex-
tracted 28 patches with dimensions of 32x56 from each frame of a seven-frame
input snippet, generating a total of 196 patch embeddings. These embeddings are
readily compatible with a base ViT architecture. On the other hand, to achieve
the tubelet embedding as depicted in Fig.3.10, we utilized a pretrained 3D Res-
Net18 model to extract C3D features from the input snippet as explained in the
related works chapter. The results and analysis are reported in the corresponding
chapters.

Figure 3.10: A simple approach to video model using the same architecture as the
image classifier. Spatiotemporal feature extraction is applied by either uniform
frame sampling or tubelet embedding.

Chapter 3: Materials & Methods 25

3.5.2 Late-Fusion Spatiotemporal Transformer

Our second approach for the video classification model involves a two-stage pro-
cess. In the first stage, a spatial transformer is exploited to extract spatial features
from the seven consecutive frames of the input video snippet. These spatial fea-
tures are then passed to a temporal transformer in the second stage, which pre-
dicts the classes of the snippet. The spatial and temporal transformers, as well
as their internal architectures, have been visually demonstrated in Figs 3.7 and
3.8 respectively. Furthermore, Fig 3.11 provides an overview of our second video
model approach, which combines these two transformers to create an integrated
architecture.

Figure 3.11: Spatiotemporal transformer architecture of the video model. The
spatiotemporal feature is extracted separately by spatial and temporal trans-
formers respectively.

We adopted the strategy from Model 2 proposed in [23]which is also similar to
the TimeSformer method presented in [22]. Moreover, the architecture provides
the flexibility to seamlessly integrate a pretrained image model trained on the
LIACI dataset as the spatial transformer component. While we are already aware
of the distinct characteristics of the spatial and temporal transformers, there are
a couple of modifications that need to be made in order to effectively integrate
them into a unified video model. First, we eliminate the MLP head from the spa-
tial transformer and aggregate the spatial features of the image into a single latent
vector by following any of the two ways mentioned in the respective section. The
second modification involves removing the input embedding from the temporal
transformer when attaching it to the spatial transformer. The adjustment is made
because the latent vectors generated by the spatial transformer are inherently
compatible and align with the shape of the embeddings used by the temporal

26 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

transformer. Hence, there is no need for additional input embedding when con-
necting the spatial and temporal transformers. Since the spatial features are fused
with the temporal features at the later stage, it is called a late-fusion spatiotem-
poral transformer.

This method is designed to address the issue of overfitting on smaller data-
sets such as ours and provides a more sophisticated model for video classification.
A previously trained ViT image classifier is adopted as the spatial transformer
encoder, while a new standard transformer is employed as the temporal trans-
former. During training, we usually freeze the weights of the spatial transformer
and solely update the temporal transformer. This approach resulted in a notable
acceleration of the training process and facilitated the adaptation of the models to
finetuning tasks. We have trained six variants of this architecture that are reported
and documented in the results and ablation study chapters.

3.5.3 Attention weighted Spatiotemporal Transformer

Our final approach is also based on the spatiotemporal transformer framework.
Nonetheless, our goal is to modify the computation of the multi-head attention in
the temporal transformer component. The MSA within the temporal transformer
is based on Eq. 3.1 which calculates the global attention by taking the weighted
sum of the value vectors across all frames. However, in our LIACI video data, the
snippets are labeled based on the classes of the middle frame. Our objective is
to predict this middle frame by incorporating temporal attention from the sur-
rounding frames. The MSA attends to all seven frames collectively, including non-
relevant information for the middle frame. Hence, this can result in reduced pre-
diction confidence or potentially misclassifying objects within the middle frame.
For instance, the middle frame may feature the ship’s propeller, which could be
obscured in the last frame due to an abrupt movement of the ROV.

Therefore, within this approach, we propose calculating single query atten-
tion using Eq. 3.2. In this equation, the embedding of the middle frame serves as
the query to attend to all the neighboring frames, including itself. Based on the
attention theory, our hypothesis suggests that the attention score for the middle
frame is expected to be higher compared to the other frames. The adjacent frames
that are more relevant will yield higher attention scores, while less related frames
may have lower scores or even zero attention if they do not contribute at all. As
the scores are the result of a softmax function, their sum will always equal 1.

Two categories of the approach can be obtained. The first category utilizes the
same spatiotemporal transformer architecture but incorporates the single query
MSA. The second one employs these attention scores as weights and calculates
the weighted average prediction from all seven frames of the spatial transformer,
which serves as the final prediction. The latter strategy is adopted from [33] and
depicted in Fig. 3.12. In addition, it deviates from the late-fusion architecture in

Chapter 3: Materials & Methods 27

Figure 3.12: Temporal attention weighted spatiotemporal transformer architec-
ture. The spatial features are extracted by the spatial transformer and then atten-
tion scores are generated by the temporal transformer. Finally, the predictions of
each frame from the spatial transformer are multiplied by their respective atten-
tion scores.

terms of the positioning of the MLP head. Specifically, we detach the MLP head
from the temporal transformer and reattach it to the spatial transformer. This
arrangement enables frame-level predictions, as depicted in the figure. Fig. 3.13
illustrates the input data flow for a batch of two snippets, which provides a clearer
understanding of the internal computations within the model. The data flow also
indicates that altering the position of the MLP head leads to the learning of atten-
tion scores based on our hypothesis, as it directly contributes to the final predic-
tion. Consequently, the optimization process will directly impact the updating of
scores during the full finetuning of the model. The outputs and analysis of both
variants are documented in the results and ablation study chapters.

3.6 Analyzing Materials

One of our key contributions involves an extensive analysis of multi-label image
and video models. To facilitate this analysis, we have implemented a few tools
and materials. The following subsections outline the materials we have utilized in
order to accomplish our objectives.

3.6.1 Prediction Confidence and Temporal Characteristics

To analyze a trained model’s confidence behaviour, we leverage OpenCV [34] to
process a video snippet and observe the model’s prediction confidence on each

28 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 3.13: Input data flow through the attention-weighted spatiotemporal
transformer. Where b, t, c, w, and h refer to batch size, number of frames, number
of channels, width, and height respectively.

frame, as illustrated in Fig. 3.14. This approach also enabled us to evaluate a
model’s ability to predict multiple class labels simultaneously on a per-frame basis.

To integrate temporal reasoning into our model, it is necessary to examine and
analyze the model’s temporal consistency throughout the development process.
To achieve this, we utilize OpenCV to observe the temporal aspect of the model’s
confidence for different labels during an inspection. An example has been depicted
in Fig. 3.15. This is useful to qualitatively assess the temporal stability of a trained
model and is reported in the result section. The tool can load a video and conduct
the spatial and temporal inspection alongside playing the video.

3.6.2 Underwater Image Quality Metrics

In underwater image or video tasks, measuring image quality is a grave concern
as it directly impacts any vision-based operation. Poor-quality images can signi-
ficantly degrade the performance. To measure frame quality, we employed two
separate image quality metrics - UCIQE [35] and UIQM [36] - to establish a correl-
ation between the model’s prediction confidence and frame quality. Both metrics
are no-reference and meticulously designed for underwater images. One example
of inspecting the frame quality using these two metrics is illustrated in Fig. 3.16.
This has been useful during our analysis to measure the quality of each frame in
a video.

Chapter 3: Materials & Methods 29

Figure 3.14: Model’s multi-label prediction confidence on each frame during a
video inspection. It facilitates the frame-wise spatial analysis of the model’s con-
fidence.

Figure 3.15: An example of the temporal observation of a model’s prediction
confidence during a video inspection.

Figure 3.16: An example of an inspection of frame quality based on UCIQE and
UIQM metrics in a video snippet.

30 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

3.6.3 Multi-label Evaluation Metrics

The computation of multi-label classification evaluation metrics is different from
multi-class classification. The Scikit-learn Python package [37] provides essential
tools to easily compute different metrics. We report accuracy, precision, recall,
and f1-score on the validation set of LIACI data for our image and video models
in chapter 4. These metrics are calculated along the instances and averaged over
them. The mathematical equations are as follows in Eq. (3.4), (3.5), (3.6), and
(3.7) where n is the number of images, y is the ground truth, and ŷ is the predicted
label. Besides, we computed class-wise evaluation metrics during some analysis
in chapter 5.

Accurac y =
1
n

n
∑

i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

(3.4)

Precision=
1
n

n
∑

i=1

|yi ∩ ŷi|
| ŷi|

(3.5)

Recal l =
1
n

n
∑

i=1

|yi ∩ ŷi|
|yi|

(3.6)

F1− score =
1
n

n
∑

i=1

2|yi ∩ ŷi|
|yi|+ | ŷi|

(3.7)

3.7 Hardware Resources

We used NVIDIA RTX 2080 Ti (11GB) and RTX A6000 (48GB) GPUs to train both
of our image and video models. For inference and testing, we used a local system
that constitutes of NVIDIA GTX 980 (4GB) with Intel(R) Xeon(R) CPU E5-1650v3
@3.50GHz and 32GB RAM.

Chapter 4
Results

As our contribution focuses on the development of multi-label image and video
classifiers for underwater ship inspection video analysis, the results chapter will be
divided into two sections. This division will showcase the performances of these
classifiers on the LIACI image and video datasets individually. Before delving into
the results of our models, it is important to highlight the reproduced limitation
of the ResNet classifier that was trained on the LIACI image dataset in a previous
study [2]. By doing so, we can gain insights into the improvements made by our
image models and reflect upon their significance.

4.1 Multi-label ResNet Classifier

The temporal observation of video snippet no.3 from table 3.2 is illustrated in Fig.
4.1 using the ResNet model. Although the model successfully detects a couple
of classes, the confidence values for consecutive frames fluctuate significantly.
We noticed similar behaviour for other snippets even though the spatial changes
between frames are negligible. The bottom row of Fig. 4.1 displays the output of
the two image quality metrics on the same video snippet, while comparing them
against a model’s temporal prediction confidence.

Due to the different value ranges of UCIQE and UIQM metrics, we have plotted
them on two different scales within the same plot. It is clear that UCIQE does not
show any correlation with the observed fluctuation. However, the UIQM values in-
dicate a consistent prediction trend, with higher UIQM values observed between
frames 250 to 450. In contrast, the highlighted confidence values at frames 70 and
78 exhibit a substantial difference, with values of 0.12 and 0.81, respectively. Sur-
prisingly, this discrepancy occurs despite the negligible spatial difference between
these frames, as depicted in Fig. 4.2. Therefore, in the subsequent sections, we
present the results and performances of our models to illustrate the extent to
which they can gradually address and overcome the aforementioned issue.

31

32 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

78

70

Figure 4.1: Temporal observation with UCIQE and UIQM frame quality metrics
on the video snippet no.3 from table 3.2.

Figure 4.2: Frame 70 and 78 (left to right) of the video snippet no.3 from table
3.2.

Chapter 4: Results 33

4.2 Multi-label Image Classifers

After initiating the training process for our image models, we undertook a thor-
ough analysis involving four different variations from each of COCO_ViT and IM-
AGENET_ViT to identify the most optimal model. Consequently, we discovered
the best performances by employing the hyperparameters and transformations
outlined in our methodology, as shown in table 3.5. The documentation of the
analysis conducted to obtain these optimal hyperparameters can be found in the
ablation study chapter. We have included a comparative quantitative evaluation
in Fig. 4.3, which highlights the performance of both our models in comparison
to the ResNet model. Although both of our models demonstrate nearly compar-
able performances across all the evaluation metrics, COCO_ViT exhibited slightly
better results than IMAGENET_ViT in all metrics except precision. However, it is
important to note that both models significantly outperformed the ResNet model,
as illustrated in table 4.1.

Figure 4.3: Evaluation metrics comparison between our ViT-based image models
and the ResNet on the validation dataset.

Table 4.1: The gain of COCO_ViT and IMAGENET_ViT over ResNet model on the
validation dataset.

Models Accuracy Precision Recall F1-score
COCO_ViT 39.6% 5.3% 46.0% 29.0%

IMAGENET_ViT 31.2% 1.1% 44.0% 24.0%

On the other hand, our models enhanced the stability of the prediction con-
fidence in temporal observation by facilitating the learning of abrupt ROV motion

34 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

during inspections. Fig. 4.4 demonstrates that both COCO_ViT and IMAGENET_ViT
models improved the stability of temporal confidence, particularly in detecting the
paint_peel class on the video snippet no.3 from table 3.2, in contrast to the ResNet
model. Furthermore, the models exhibited a more exploratory nature in detecting
other class labels during the inspection which indicates improvement in multi-
label competency. Similar improvements in temporal consistency were observed
for the remaining testing snippets which are attached in appendix A.2.1.

Figure 4.4: Temporal observation of IMAGENET_ViT and COCO_ViT on the video
snippet no.3 in table 3.2 compared with the ResNet model.

While the detailed analysis is documented in the ablation study chapter, it
is important to highlight the gradual improvements we have achieved in per-
formance. Figs 4.5 and 4.6 visually depict the incremental enhancements of the
COCO_ViT and IMAGENET_ViT models, respectively, from the initial ResNet model
to our final variants. These figures serve to showcase the notable progress made
in terms of performance throughout our iterative development process.

Chapter 4: Results 35

Figure 4.5: Gradual improvement of the COCO_ViT models.

Figure 4.6: Gradual improvement of the IMAGENET_ViT models.

36 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

4.3 Multi-label Video Classifiers

Since we posed three different approaches for multi-label video classifiers, our
intention is to showcase each outcome separately in the next three subsections.
We will ultimately show a comparison of their performances at the end of this
section.

4.3.1 Naive Video Transformer

We have trained three different variations as part of our ablation study for each of
the embedding techniques employed in the naive approach. It comes as no surprise
that our initial variant model, which utilized uniform frame sampling, exhibited
significantly poor performance. Conversely, the model variants that utilized the
tubelet embedding method demonstrated promising results. Table 4.2 presents the
evaluation metric values for each technique on the LIACI validation video dataset.
We have reported the best metric values achieved across the variants as well as the
best variant for both embedding techniques. The comprehensive details pertaining
to the variants, along with additional information, are extensively discussed in the
ablation study chapter.

Table 4.2: Evaluation metrics of the naive video models on the LIACI video val-
idation dataset.

Embedding Best Loss Accuracy Precision Recall F1-score

Uniform
values 0.43 0.44 0.64 0.56 0.56

model 1 0.45 0.45 0.64 0.56 0.56

Tubelet
values 0.33 0.58 0.76 0.69 0.68

model 2 0.38 0.58 0.73 0.69 0.67

4.3.2 Late-Fusion Spatiotemporal Transformer

In the methodology chapter, we have mentioned about six variants of this ap-
proach, which are primarily categorized based on two different strategies for ag-
gregating the latent vector from the spatial transformer for each frame. We can
either choose the classification token embedding as our latent vector or compute
the mean pooling from all the patch embeddings. Similar to the previous subsec-
tion, we have presented the evaluation metrics for the best values across variants
and the best single model from these two strategies in table 4.3. The results indic-
ate that the overall performance of this approach surpasses the naive approach by
a moderate margin. The rest of the details are discussed and documented in the
ablation study chapter.

Chapter 4: Results 37

Table 4.3: Evaluation metrics of the late-fusion video models on the LIACI video
validation dataset.

Spatial Lat-
ent Vector

Best Loss Accuracy Precision Recall F1-score

CLS
values 0.29 0.67 0.80 0.78 0.76

model 3 0.31 0.67 0.80 0.78 0.76

Mean
values 0.31 0.64 0.78 0.78 0.73

model 4 0.33 0.64 0.76 0.78 0.73

4.3.3 Attention weighted Spatiotemporal Transformer

In our final approach, we have also divided it into two categories, as explained
in the methodology, and trained three variants for each category. Likewise, we
have presented the best values across variants and the best model in table 4.4.
The results align to some extent with our hypothesis, as the approach succeeds
in enhancing the model’s quantitative performance compared to the previous two
approaches, as reflected by the evaluation metric values. The additional informa-
tion about the training and models is documented in the ablation study chapter.

Table 4.4: Evaluation metrics of the attention-weighted video models on the
LIACI video validation dataset.

Attention
Weighting

Best Loss Accuracy Precision Recall F1-score

Values (V)
values 0.29 0.67 0.80 0.79 0.76

model 5 0.30 0.67 0.80 0.79 0.76
Spatial values 0.29 0.67 0.80 0.79 0.76
Prediction model 6 0.30 0.67 0.80 0.79 0.76

If you notice that the evaluation metric values for the best values and model
are identical, it indicates that the best model achieved the highest metric values
across all evaluation metrics. In other words, the best model outperformed the
other variants consistently in all the evaluation metrics.

4.3.4 Performance Comparison

To determine the best model from these three approaches, we compare the per-
formances of all the video models across variants. Fig. 4.7 illustrates the perform-
ance comparison of the best models from all the approaches together. Model 1-6
represents the models that have been reported in tables 4.2, 4.3, and 4.4. These
visualizations aid in selecting the appropriate model for video analysis tasks.

38 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 4.7: Performance comparisons of the best video models from all the vari-
ants of different approaches.

4.3.5 Temporal Performance

For temporal performance analysis, we will begin by showcasing the temporal ob-
servations of each of the best models from each approach on random video snip-
pets. Subsequently, we will present a comparative temporal observation between
the best image and video models side by side to visualize the prediction stabil-
ization of the models during inspections. Figs. 4.8, 4.9, and 4.10 illustrate the
temporal observation of the best video models from each approach, presented in
the order of their appearances in this section. These observations were respect-
ively conducted on video snippets number 1, 5, and 8, as listed in Table 3.2. The
remaining temporal observations for the rest of the video snippets can be found
in appendix A.2.2.

Now, we will see the temporal performance comparisons between our best
image and video models. Fig. 4.11 represents the temporal performance compar-
ison between the final COCO_ViT model and the best attention-weighted value
video model on all eight test video snippets. On the contrary, Fig. 4.12 shows
the temporal performance comparison between the final COCO_ViT model and
the best attention-weighted spatial prediction video model on all eight test video
snippets. The figures demonstrate that the temporal observation using video mod-
els resulted in more stable prediction confidences in the temporal dimension of
all the video snippets. A detailed discussion of their performances is included in
the ablation study.

Chapter 4: Results 39

Figure 4.8: Temporal observation of the best two naive video models on the video
snippet no.1 from table 3.2.

Figure 4.9: Temporal observation of the best two late-fusion video models on the
video snippet no.5 from table 3.2.

40 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 4.10: Temporal observation of the best two attention-weighted video mod-
els on the video snippet no.8 from table 3.2.

Chapter 4: Results 41

Figure 4.11: Temporal observation of the final COCO_ViT and the attention-
weighted value video models on the video snippets of table 3.2.

42 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 4.12: Temporal observation of the final COCO_ViT and the attention-
weighted ST video models on the video snippets of table 3.2.

Chapter 5
Ablation study

In this ablation study, we performed various analyses on both image and video-
based approaches for different components. Through these analyses, we demon-
strated gradual improvements in performance. The following sections are dedic-
ated to reporting and explaining some key points we would like to highlight.

5.1 Frame-based Video Classification

To enhance this approach, the initial focus should be on improving our image
models. The subsequent subsections will examine various components of the im-
age models and demonstrate a step-by-step enhancement process.

5.1.1 Hyperparameters and Transformations

We trained our image models initially using the hyperparameters and transform-
ations listed in table 5.1. The IMAGENET_ViT and COCO_ViT models were fully
finetuned for over 300 epochs to gain insights into their behaviour. Fig. 5.1 visu-
ally represents the loss decline across the training epochs for both models on the
training and validation datasets. Based on the figure, it is evident that both mod-
els, IMAGENET_ViT and COCO_ViT exhibit signs of overfitting. This is expected
since the LIACI dataset is relatively small in scale. Furthermore, the evaluation
metric values in table 5.2 for both models indicate that COCO_ViT shows similar
or even better performance compared to IMAGENET_ViT.

To mitigate the overfitting issue, we adopted a regularization technique by
performing another round of fine-tuning on the models. However, this time we
employed partial fine-tuning. Specifically, we kept all the weights of the trans-
former frozen and solely updated the MLP head. The outcome is visualized in
Fig. 5.2, which shows that IMAGENET_ViT outperforms COCO_ViT as a feature
extractor. Also, it is worth noting that the difference between the train and valid-
ation losses for both models is not significantly high, indicating that the models

43

44 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Table 5.1: Initial training hyperparameters and data transformations.

Hyperparameters Transformation
BCEWithLogitsLoss Image Resize(224x224)
Optimizer: SGD RandomHorizontalFlip(p=0.5)
Learning rate: 0.001 Normalization: Mean[0.3485, 0.3699, 0.3520]
Momentum: 0.9 Normalization: Std [0.2495, 0.2446, 0.2062]
Batch size: 16
Epochs: 100
Scheduler:StepLR
(step=20,gamma=0.1)

Figure 5.1: The loss behaviour during the training of the IMAGENET_ViT and
COCO_ViT.

Table 5.2: Initial evaluation metric values of the image-based models on the val-
idation dataset.

Model Accuracy Precision Recall F1-score
IMAGENET_ViT 0.66 0.80 0.72 0.73

COCO_ViT 0.67 0.80 0.76 0.75

Chapter 5: Ablation study 45

are well-regularized. However, provided the superior performance observed on
the validation dataset, our decision is to proceed with further development and
refinement of the fully fine-tuned models.

Figure 5.2: The loss behaviour during partial fine-tuning of the IMAGENET_ViT
and COCO_ViT.

We also replaced the optimizer SGD with Adam and noticed a decline in per-
formance. Hence, we reverted back to using SGD to continue our analysis. On the
other hand, the ReduceLROnPlateau learning rate scheduler aids in finding better
local minima on the validation loss. Fig. 5.3 shows that the final model was able
to find the minimal loss on validation compared to the initial one in both cases.
The optimal validation loss for IMAGENET_ViT is within 20 to 30 epochs. Increas-
ing the loss of the final model during training compared to the initial model and
subsequently reducing the loss more on the validation set leads to better regular-
ization of COCO_ViT. Besides, the utilization of Gaussian blur and AugMix [32]
enhanced the stability of the model’s confidence in temporal analysis by facilitat-
ing the learning of abrupt ROV motion during inspections. Consequently, Fig. 5.4
demonstrates that both models improved the stability of temporal confidence, par-
ticularly in detecting the Paint peel class, in contrast to Fig. 4.1 at the beginning of
the result chapter. Furthermore, the models exhibited a more exploratory nature
in detecting other class labels during the inspection which indicates improvement
in multi-label competency. Similar improvements in temporal consistency were
observed for the remaining testing snippets which are shown in Figs. 4.11 and
4.12 alongside the outputs from video models in the results chapter.

5.1.2 Prediction Confidence Evolution

We investigated how the confidence of a model’s predictions on different class
labels evolves throughout the training epochs. We anticipated that the confid-
ence for the true class labels would progressively increase while diminishing the
remaining class labels. Fig. 5.5 illustrates an example of this confidence accel-
eration phenomenon across the training epochs. In the first row of the figure, a
gradual increase in prediction confidence can be observed for the classes propeller

46 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure 5.3: Comparison between the initial and final models in finding minimal
loss for the IMAGENET_ViT and COCO_ViT.

Figure 5.4: Temporal observation of the final IMAGENET_ViT and COCO_ViT on
the same video snippet as in Fig. 4.1.

Chapter 5: Ablation study 47

and paint_peel. Similarly, the second row demonstrates a similar trend of con-
fidence growth for the classes marine_growth, paint_peel, and sea_chest_grating.
This observation is important as it provides a basis for introducing reinforcement
techniques, such as active learning, during the model training process. These tech-
niques can be utilized to address the poor performance of certain class labels iden-
tified through the analysis of the confidence evolution. In our experiments, we at-
tempted to utilize guided cropping as a data augmentation technique to improve
the performance of weakly performed class labels. However, we observed that this
approach had a negative impact on the overall performance. The reason behind
this is that when we cropped a single class from a training frame, the other classes
present in the frame were neglected, resulting in a loss of important information.
As a result, we have identified the need to further refine and develop the strategy
of guided cropping as a potential area for future work and improvement.

48 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Fi
gu

re
5.

5:
Pr

ed
ic

ti
on

co
nfi

de
nc

e
ev

ol
ut

io
n

du
ri

ng
a

tr
ai

ni
ng

of
a

m
od

el
.

Chapter 5: Ablation study 49

5.1.3 Multi-label ViT Image Models

To extract the best performance from image-based models for underwater ship
hull inspection, several models were trained with gradual improvements by ad-
dressing the limitations of the LIACI dataset. The COCO 2014 dataset is a large-
scale dataset that contains images with multiple object classes labelled in each
image. In contrast, the IMAGENET dataset is primarily used for conventional im-
age classification tasks where each image belongs to a single class. Hence, en-
abling our model to have multi-label classification capability, we initially train a
ViT model on the COCO 2014 dataset using the hyperparameters and transforma-
tions mentioned in Table 3.5. The COCO dataset consists of 82783 train and 40504
validation images and the model was trained for 94 epochs with a batch size of
16. We observed the model stops learning approximately after 30 epochs as both
the training and validation losses become extremely low despite the accuracy still
being confined under 0.7. Subsequently, we perform full finetuning of our two ini-
tial ViT models on the LIACI dataset. Table 5.3 includes the analysis of these initial
models in rows 2 and 3, whereas row 1 corresponds to the COCO model. It is ap-
parent from the F1-score or other metric values of these two initial models that the
ViT pre-trained on COCO performs better than the one pre-trained on IMAGENET.

We investigated which model performs best in extracting features from the
LIACI data. To devise this, we trained variants of the COCO and IMAGENET mod-
els using partial finetuning, where all the pre-trained weights except the classific-
ation part are frozen. The results are included in rows 4 and 5 of table 5.3 which
imply that the IMAGENET version outperforms the COCO model in feature ex-
traction. However, the overall performance of the partial finetuning approach is
still below the full finetuning approach. Therefore, we decided to keep the par-
tial finetuning approach apart from our experiments. Additionally, we experiment
with changing the optimizer from SGD to Adam with a weight decay of 0.3 to train
both models but this led to a significant degradation in performance. We conduc-
ted experiments to explore the effects of different step sizes on the performance
of the COCO and IMAGENET models. Along with the StepLR learning rate sched-
uler with a gamma value of 0.1 and test two more different step sizes: 5 and 50.
To summarize, using a step size of 5 led to further regularization of the COCO
model, but it also induced a decline in the overall performance for both models,
as shown in rows 6 and 7 of table 5.3. On the other hand, the step size of 50 had
a tendency to overfit the training for both models as assigned in rows 8 and 9. Fi-
nally, we deduced the best models with the configuration mentioned in the result
section by considering both the quantitative evaluation measures and qualitative
temporal performance which are also added in rows 10 and 11. COCO_ViT is the
best frame-based model which dominates all the validation evaluation metrics
except the precision which is dominated by its counterpart IMAGENET_ViT.

50 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Ta
bl

e
5.

3:
A

na
ly

si
s

of
di

ff
er

en
t

m
od

el
s

&
re

su
lt

s.
FF
=

fu
lly

fin
et

un
e

&
PF
=

pa
rt

ia
lfi

ne
tu

ne
.

M
od

el
Pr

et
ra

in
w

ei
gh

t
#

Ep
oc

hs
Lo

ss
A

cc
u

ra
cy

Pr
ec

is
io

n
R

ec
al

l
F1

-s
co

re
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

1
C

O
C

O
Vi

T
IM

A
G

EN
ET

1K
(F

F)
94

0.
04

2
0.

05
1

0.
70

8
0.

60
1

0.
89

5
0.

83
8

0.
74

5
0.

69
2

0.
79

0
0.

73
1

2
LI

A
C

I
Vi

T
(i

ni
ti

al
)

IM
A

G
EN

ET
1K

(F
F)

30
1

0.
05

4
0.

23
5

0.
95

1
0.

65
9

0.
96

8
0.

79
8

0.
95

2
0.

72
3

0.
95

8
0.

72
9

3
LI

A
C

I
Vi

T
(i

ni
ti

al
)

C
O

C
O

20
14

(F
F)

32
6

0.
01

6
0.

27
7

0.
97

0
0.

67
3

0.
97

1
0.

79
7

0.
96

9
0.

76
0

0.
97

0
0.

74
9

4
LI

A
C

I
Vi

T
(e

xt
ra

ct
or

)
IM

A
G

EN
ET

1K
(P

F)
27

7
0.

26
7

0.
28

1
0.

59
3

0.
56

5
0.

76
4

0.
74

1
0.

64
8

0.
62

1
0.

67
2

0.
64

2

5
LI

A
C

I
Vi

T
(e

xt
ra

ct
or

)
C

O
C

O
20

14
(P

F)
27

6
0.

32
0

0.
32

3
0.

48
4

0.
47

9
0.

64
8

0.
63

7
0.

53
6

0.
53

4
0.

55
9

0.
55

2

6
LI

A
C

I
Vi

T
(s

te
p=

5)
IM

A
G

EN
ET

1K
(F

F)
99

0.
26

3
0.

28
8

0.
59

7
0.

55
6

0.
77

8
0.

74
0

0.
65

1
0.

60
6

0.
67

8
0.

63
2

7
LI

A
C

I
Vi

T
(s

te
p=

5)
C

O
C

O
20

14
(F

F)
99

0.
17

0
0.

26
0

0.
77

9
0.

61
4

0.
90

2
0.

79
2

0.
81

0
0.

66
7

0.
83

4
0.

69
5

8
LI

A
C

I
Vi

T
(s

te
p=

50
)

IM
A

G
EN

ET
1K

(F
F)

99
0.

01
8

0.
27

7
0.

97
1

0.
67

2
0.

97
2

0.
80

8
0.

97
1

0.
73

9
0.

97
1

0.
74

4

9
LI

A
C

I
Vi

T
(s

te
p=

50
)

C
O

C
O

20
14

(F
F)

99
0.

01
0

0.
31

5
0.

97
2

0.
63

1
0.

97
2

0.
76

8
0.

97
2

0.
72

3
0.

97
2

0.
71

5

10
LI

A
C

I
Vi

T
(fi

na
l)

IM
A

G
EN

ET
1K

(F
F)

99
0.

03
4

0.
23

5
0.

96
1

0.
67

4
0.

96
9

0.
80

5
0.

96
2

0.
75

3
0.

96
4

0.
74

7

11
LI

A
C

I
Vi

T
(fi

na
l)

C
O

C
O

20
14

(F
F)

99
0.

07
1

0.
24

0
0.

91
5

0.
69

2
0.

93
6

0.
78

6
0.

94
7

0.
80

3
0.

93
5

0.
76

8

Chapter 5: Ablation study 51

5.2 Video-based Classification

5.2.1 Spatiotemporal-based Video Classification

With the uniform frame sampling tokenization, we attempted to train our video
models utilizing both image models and experimented with different learning rate
schedulers. However, none of these approaches resulted in convergence during
training. It is important to note that we were limited to using a dependent patch
size to generate a total of 196 image patch embeddings from 7 frames, which
were then fed into a ViT model. In addition to the video models discussed earlier,
we also explored an approach that involved combining 3D CNN and ViT which we
referred to as the tubelet embedding approach. Specifically, we extracted C3D fea-
tures utilizing a pretrained 3D ResNet architecture and subsequently passed these
features through our trained ViT-based image models. Although this approach
resulted in convergence during training, the performance was not competitive
enough to be included in the paper.

The spatial-temporal video model we reported in the paper has a total of
161.399M trainable parameters, with 75.600M of them belonging to the temporal
transformer. Since we are utilizing a pre-trained ViT classifier as the spatial trans-
former, we freeze its weights during training and only update the weights of the
temporal transformer, resulting in a substantial reduction in training time. One
significant challenge that can contribute to poor performance is the limitation
of transformers, which require pretraining on a large-scale dataset to optimize
their performance. This is particularly relevant for the temporal transformer in
our models, as its weights are initialized randomly, which can limit its ability to
learn from the available data and lead to poor performance.

5.2.2 Multi-label Video Classifiers

For analysis purposes, we trained six variants from each of the three video model
approaches mentioned in the methodology chapter. In the case of the naive ap-
proach, the first three variants utilized the uniform frame sampling embedding
technique. Specifically, the first variant used partial fine-tuning, the second vari-
ant went through full fine-tuning, and the third variant was fully fine-tuned start-
ing from the first variant. The partial finetuning here refers to only optimizing
the new embedding layer in the network. Similarly, the other three variants are
trained using tubelet embedding technique. The only distinction in the case of par-
tial fine-tuning is that we focused on optimizing the C3D network, which serves
as our tubelet embedding method. This approach involved fine-tuning the C3D
network while keeping the remaining parts of the model unchanged. Table 5.4
listed all the variants including the other information.

52 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Ta
bl

e
5.

4:
A

na
ly

si
s

of
th

e
na

iv
e

ap
pr

oa
ch

.F
F
=

fu
lly

fin
et

un
e

&
PF
=

pa
rt

ia
lfi

ne
tu

ne
.

Tr
ai

n
Em

be
dd

in
g

M
od

el
Tr

ai
n

ab
le

B
es

t
Lo

ss
A

cc
u

ra
cy

Pr
ec

is
io

n
R

ec
al

l
F1

-s
co

re
Ty

pe
si

ze
pa

ra
m

et
er

s
ep

oc
h

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l

1
PF

U
ni

fo
rm

35
9M

B
4.

13
0M

(8
9.

93
5M

)
20

0.
33

0.
43

0.
46

0.
44

0.
67

0.
64

0.
50

0.
55

0.
54

0.
55

2
FF

U
ni

fo
rm

68
4M

B
89

.9
35

M
(8

9.
93

5M
)

28
0.

13
0.

45
0.

84
0.

44
0.

91
0.

64
0.

86
0.

56
0.

87
0.

56

3
FF

U
ni

fo
rm

68
4M

B
89

.9
35

M
(8

9.
93

5M
)

32
0.

11
0.

48
0.

87
0.

44
0.

93
0.

64
0.

89
0.

55
0.

90
0.

55

4
PF

Tu
be

le
t

11
85

M
B

11
0.

38
7M

(2
00

.3
22

M
)

76
0.

07
0.

33
0.

94
0.

55
0.

97
0.

75
0.

95
0.

62
0.

95
0.

64

5
FF

Tu
be

le
t

15
13

M
B

20
0.

32
2M

(2
00

.3
22

M
)

57
0.

11
0.

34
0.

86
0.

57
0.

92
0.

76
0.

89
0.

65
0.

89
0.

67

6
FF

Tu
be

le
t

15
13

M
B

20
0.

32
2M

(2
00

.3
22

M
)

5
0.

13
0.

38
0.

80
0.

58
0.

88
0.

76
0.

85
0.

69
0.

85
0.

68

Chapter 5: Ablation study 53

Table 5.5 presents all six variants from the late-fusion approach, which were
trained in a similar manner. The variants are categorized based on the aggrega-
tion method used for the latent vector obtained from the spatial transformer for
each video frame. The “cls” category denotes taking the output vector of the clas-
sification token, while the “avg” category indicates calculating the mean of all the
patches. The partial finetuning here refers to optimizing only the temporal trans-
former while keeping the spatial transformer frozen.

Within the final approach, which is the attention-weighted spatiotemporal
transformer, we also trained six variants. The primary distinction among these
variants lies in how we incorporate attention-weighted prediction. Table 5.6 presents
the details of these variants where the term “value” indicates that the attention
weights are applied to the value (V) matrix of the self-attention mechanism, while
“ST” signifies taking the attention-weighted prediction from the spatial trans-
former. The rest are similar as the late-fusion approach.

54 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Ta
bl

e
5.

5:
A

na
ly

si
s

of
th

e
la

te
-f

us
io

n
ap

pr
oa

ch
.F

F
=

fu
lly

fin
et

un
e

&
PF
=

pa
rt

ia
lfi

ne
tu

ne
.

Tr
ai

n
La

te
n

t
M

od
el

Tr
ai

n
ab

le
B

es
t

Lo
ss

A
cc

u
ra

cy
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

Ty
pe

Ve
ct

or
(S

T
)

si
ze

pa
ra

m
et

er
s

ep
oc

h
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

1
PF

cl
s

51
0M

B
22

.0
71

M
(1

07
.8

70
M

)
33

0.
16

0.
29

0.
78

0.
64

0.
87

0.
79

0.
82

0.
73

0.
83

0.
73

2
FF

cl
s

83
8M

B
10

7.
87

0M
(1

07
.8

70
M

)
25

0.
02

0.
35

0.
98

0.
64

0.
98

0.
78

0.
98

0.
74

0.
98

0.
73

3
FF

cl
s

83
8M

B
10

7.
87

0M
(1

07
.8

70
M

)
7

0.
04

0.
31

0.
97

0.
67

0.
98

0.
80

0.
97

0.
78

0.
97

0.
76

4
PF

av
g

51
0M

B
22

.0
71

M
(1

07
.8

70
M

)
31

0.
19

0.
31

0.
72

0.
62

0.
83

0.
78

0.
78

0.
76

0.
78

0.
72

5
FF

av
g

83
8M

B
10

7.
87

0M
(1

07
.8

70
M

)
22

0.
03

0.
31

0.
98

0.
63

0.
98

0.
76

0.
98

0.
76

0.
98

0.
72

6
FF

av
g

83
8M

B
10

7.
87

0M
(1

07
.8

70
M

)
11

0.
03

0.
33

0.
97

0.
64

0.
98

0.
76

0.
98

0.
78

0.
98

0.
73

Chapter 5: Ablation study 55

Ta
bl

e
5.

6:
A

na
ly

si
s

of
th

e
at

te
nt

io
n-

w
ei

gh
te

d
ap

pr
oa

ch
.F

F
=

fu
lly

fin
et

un
e

&
PF
=

pa
rt

ia
lfi

ne
tu

ne
.

Tr
ai

n
A

tt
en

ti
on

M
od

el
Tr

ai
n

ab
le

B
es

t
Lo

ss
A

cc
u

ra
cy

Pr
ec

is
io

n
R

ec
al

l
F1

-s
co

re
Ty

pe
W

ei
gh

ti
n

g
si

ze
pa

ra
m

et
er

s
ep

oc
h

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l

1
PF

va
lu

e
51

0M
B

22
.0

71
M

(1
07

.8
70

M
)

29
0.

18
0.

30
0.

74
0.

60
0.

86
0.

77
0.

79
0.

70
0.

80
0.

70

2
FF

va
lu

e
83

8M
B

10
7.

87
0M

(1
07

.8
70

M
)

8
0.

10
0.

29
0.

90
0.

63
0.

94
0.

78
0.

91
0.

73
0.

92
0.

72

3
FF

va
lu

e
83

8M
B

10
7.

87
0M

(1
07

.8
70

M
)

10
0.

03
0.

30
0.

97
0.

67
0.

98
0.

80
0.

97
0.

79
0.

97
0.

76

4
PF

ST
49

4M
B

22
.0

71
M

(1
07

.8
70

M
)

91
0.

20
0.

31
0.

72
0.

59
0.

83
0.

77
0.

77
0.

67
0.

78
0.

69

5
FF

ST
82

1M
B

10
7.

87
0M

(1
07

.8
70

M
)

9
0.

10
0.

29
0.

89
0.

63
0.

94
0.

79
0.

90
0.

73
0.

91
0.

73

6
FF

ST
82

1M
B

10
7.

87
0M

(1
07

.8
70

M
)

7
0.

05
0.

30
0.

95
0.

67
0.

97
0.

80
0.

96
0.

79
0.

96
0.

76

56 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

5.2.3 Number of layers in Temporal Transformer

During our experimentation, we investigated the impact of varying the number
of layers in the temporal transformer. The results of our analysis are presented in
table 5.7, indicating that the video models with four layers in the temporal trans-
former achieved the highest performance in the validation dataset. Consequently,
we decided to maintain four encoder layers in the temporal transformer architec-
ture for all of our video models.

Chapter 5: Ablation study 57

Ta
bl

e
5.

7:
Ex

pe
ri

m
en

ts
on

th
e

nu
m

be
r

of
en

co
de

r
la

ye
rs

in
Te

m
po

ra
lT

ra
ns

fo
rm

er
.

N
u

m
be

r
M

od
el

Tr
ai

n
ab

le
B

es
t

Lo
ss

A
cc

u
ra

cy
Pr

ec
is

io
n

R
ec

al
l

F1
-s

co
re

of
la

ye
rs

si
ze

pa
ra

m
et

er
s

ep
oc

h
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

Tr
ai

n
Va

l
Tr

ai
n

Va
l

1
2

42
6M

B
11

.0
43

M
(9

6.
84

2M
)

20
0.

22
0.

30
0.

70
0.

61
0.

83
0.

79
0.

75
0.

71
0.

77
0.

71

2
4

83
8M

B
22

.0
71

M
(1

07
.8

70
M

33
0.

16
0.

29
0.

78
0.

64
0.

87
0.

79
0.

82
0.

73
0.

83
0.

73

3
6

83
8M

B
33

.0
99

M
(1

18
.8

98
M

)
33

0.
15

0.
30

0.
80

0.
60

0.
88

0.
78

0.
85

0.
73

0.
85

0.
71

4
8

49
4M

B
44

.1
27

M
(1

29
.9

26
M

)
18

0.
19

0.
30

0.
73

0.
62

0.
84

0.
79

0.
78

0.
74

0.
79

0.
72

5
10

82
1M

B
55

.1
55

M
(1

40
.9

54
M

)
30

0.
13

0.
31

0.
83

0.
62

0.
89

0.
79

0.
87

0.
73

0.
87

0.
72

6
12

82
1M

B
66

.1
83

M
(1

51
.9

82
M

)
30

0.
13

0.
31

0.
81

0.
63

0.
89

0.
77

0.
85

0.
76

0.
86

0.
73

58 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

5.2.4 Single Query Attention Inspection

Once the training of our final video models utilizing single query attention was
completed, we conducted an analysis of the attention-scoring behaviour. Figure
5.6 illustrates the results of this analysis, where the highlighted middle frames
represent the single queries for each snippet. In the first row of the figure, where
the frames of the input video snippet are the same frame, we can observe that the
attention scores for all frames are evenly distributed, aligning with our expecta-
tions. Moving to the second row, which consists of random frames unrelated to
the query frame, we observe that there is no attention given to the neighbouring
frames, indicating that the model is correctly ignoring irrelevant frames. Finally,
the last row presents a real snippet extracted from our validation dataset. Here,
we can observe that the query frame receives the highest attention score, gradu-
ally decreasing based on the distance from the adjacent frames.

Figure 5.6: Distribution of the attention scores to the query as well as neighbour-
ing frames in different situations.

This observation is highly promising as it suggests that our model’s attention
mechanism is functioning effectively, which is likely to contribute to improved
performance. It provides us with valuable insights and encourages us to pursue
further development and refinement of our model.

Chapter 6
Conclusion & Future Work

We have trained several multi-label ViT image classifiers and gradually improved
them on the LIACI dataset to conduct framewise video inspections. Our image-
based models successfully surpassed the performance of the ResNet model that
was previously used in the LIACI project. In fact, the same improved image mod-
els are also utilized during training multi-label video classifiers through differ-
ent state-of-the-art approaches and modifying them based on our requirements.
However, while frame-based ViT classifiers are limited by their inability to cap-
ture temporal information, video classifiers overcome this limitation by extracting
both spatial and temporal features from the video. Spatial features are dominant
in some videos, making image classifiers suitable for evaluation. Our single query
attention-based video models showed adequate capability in distributing attention
scores to neighbouring frames in the temporal dimension. Considering temporal
attention from the adjacent frames during classification improves the robustness
of the task, making it more effective for difficult video inspections like ours, and
also stabilizes the model’s prediction in the temporal dimension.

Although we conducted an exhaustive analysis, we believe still there are rooms
in improving the performance of both image and video-based classifiers for an
underwater environment. For example, exploring other pretraining strategies or
designing custom architectures may yield better results. Additionally, gathering
more diverse and high-quality data can also improve the performance of these
models. Incorporating other techniques such as data augmentation, transfer learn-
ing, or ensembling can also be explored to improve the overall performance. Be-
sides, introducing a quantitative metric to evaluate the temporal performance of
the video-based classifiers would indeed be a useful research direction. By quan-
tifying the temporal performance, we can have a measurement of how well the
model is able to capture temporal information in the videos. This could poten-
tially lead to further improvements in the model architecture or training process
and ultimately result in better performance for video-based classification tasks in
underwater environments.

59

60 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Designing a new spatial transformer architecture that is compatible with the
uniform frame sampling tokenization of seven frames could potentially overcome
the convergence issue observed previously. Pretraining this new architecture on
large-scale datasets before fine-tuning it for the LIACI dataset could also improve
its performance. One significant challenge we faced is the limited size and weakly
supervised nature of our video dataset. To address this, it is better to explore op-
tions such as acquiring a larger fully supervised dataset, using techniques like data
augmentation and regularization to enhance generalization, or incorporating pre-
trained weights for the temporal transformer. By doing so, we could improve the
robustness and effectiveness of our video inspection models.

In conclusion, we hope this work provides a benchmark for the development of
image and video-based classifiers in underwater environments for ship hull inspec-
tion. The analysis will help researchers and developers to improve the accuracy
and effectiveness of these classifiers and our findings will facilitate the application
of these methods in real-world scenarios. Furthermore, we will also continue to
focus on improving the video model and developing quantitative metrics to evalu-
ate the temporal performance of video-based classifiers to improve their reliability
and robustness.

Bibliography

[1] J. Plested and T. Gedeon, ‘Deep transfer learning for image classification:
A survey,’ arXiv preprint arXiv:2205.09904, 2022.

[2] J. Hirsch, B. Elvesæter, A. Cardaillac, B. Bauer and M. Waszak, ‘Fusion of
multi-modal underwater ship inspection data with knowledge graphs,’ in
OCEANS 2022, Hampton Roads, IEEE, 2022, pp. 1–9.

[3] M. Salvaris, D. Dean, W. H. Tok, M. Salvaris, D. Dean and W. H. Tok, ‘Cognit-
ive services and custom vision,’ Deep Learning with Azure: Building and De-
ploying Artificial Intelligence Solutions on the Microsoft AI Platform, pp. 99–
128, 2018.

[4] D.-A. Huang, V. Ramanathan, D. Mahajan, L. Torresani, M. Paluri, L. Fei-
Fei and J. C. Niebles, ‘What makes a video a video: Analyzing temporal
information in video understanding models and datasets,’ in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7366–7375.

[5] H. Xia and Y. Zhan, ‘A survey on temporal action localization,’ IEEE Access,
vol. 8, pp. 70 477–70 487, 2020.

[6] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning ap-
plied to document recognition,’ Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[7] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for large-
scale image recognition,’ arXiv preprint arXiv:1409.1556, 2014.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with
deep convolutional neural networks,’ Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, ‘Going deeper with convolutions,’ in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

61

62 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser and I. Polosukhin, ‘Attention is all you need,’ Advances in neural
information processing systems, vol. 30, 2017.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., ‘An image
is worth 16x16 words: Transformers for image recognition at scale,’ 2021.

[12] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou and M.
Douze, ‘Levit: A vision transformer in convnet’s clothing for faster infer-
ence,’ in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 12 259–12 269.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, ‘Swin trans-
former: Hierarchical vision transformer using shifted windows,’ in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 10 012–10 022.

[14] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo and L.
Shao, ‘Pyramid vision transformer: A versatile backbone for dense pre-
diction without convolutions,’ in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 568–578.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov and S. Zagoruyko,
‘End-to-end object detection with transformers,’ in European conference on
computer vision, Springer, 2020, pp. 213–229.

[16] Z. Dai, B. Cai, Y. Lin and J. Chen, ‘Up-detr: Unsupervised pre-training for
object detection with transformers,’ in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2021, pp. 1601–1610.

[17] Z. Li, W. Wang, E. Xie, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo and T.
Lu, ‘Panoptic segformer: Delving deeper into panoptic segmentation with
transformers,’ in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 1280–1289.

[18] X. Chen, C.-J. Hsieh and B. Gong, ‘When vision transformers outperform
resnets without pre-training or strong data augmentations,’ 2022.

[19] L. Huang, L. Wang and H. Li, ‘Weakly supervised temporal action localiz-
ation via representative snippet knowledge propagation,’ in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 3272–3281.

[20] H. Wang and C. Schmid, ‘Action recognition with improved trajectories,’ in
Proceedings of the IEEE international conference on computer vision, 2013,
pp. 3551–3558.

[21] D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri, ‘Learning spati-
otemporal features with 3d convolutional networks,’ in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 4489–4497.

Bibliography 63

[22] G. Bertasius, H. Wang and L. Torresani, ‘Is space-time attention all you need
for video understanding?’ In ICML, vol. 2, 2021, p. 4.

[23] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić and C. Schmid, ‘Vivit:
A video vision transformer,’ in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 6836–6846.

[24] J. Pan, Z. Lin, X. Zhu, J. Shao and H. Li, ‘St-adapter: Parameter-efficient
image-to-video transfer learning,’ Advances in Neural Information Processing
Systems, vol. 35, pp. 26 462–26 477, 2022.

[25] A. Bulat, J. M. Perez Rua, S. Sudhakaran, B. Martinez and G. Tzimiropoulos,
‘Space-time mixing attention for video transformer,’ Advances in Neural In-
formation Processing Systems, vol. 34, pp. 19 594–19 607, 2021.

[26] M. Waszak, A. Cardaillac, B. Elvesæter, F. Rødølen and M. Ludvigsen, ‘Se-
mantic segmentation in underwater ship inspections: Benchmark and data
set,’ IEEE Journal of Oceanic Engineering, 2022.

[27] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recog-
nition,’ in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., ‘Pytorch: An imperative style, high-
performance deep learning library,’ Advances in neural information pro-
cessing systems, vol. 32, 2019.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A large-
scale hierarchical image database,’ in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár
and C. L. Zitnick, ‘Microsoft coco: Common objects in context,’ in Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V 13, Springer, 2014, pp. 740–755.

[31] B. E. Moore and J. J. Corso, ‘Fiftyone,’ GitHub. Note: https://github.com/voxel51/fiftyone,
2020.

[32] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer and B. Lakshminaray-
anan, ‘Augmix: A simple data processing method to improve robustness and
uncertainty,’ arXiv preprint arXiv:1912.02781, 2019.

[33] A. Mohammed, I. Farup, M. Pedersen, S. Yildirim and Ø. Hovde, ‘Ps-devcem:
Pathology-sensitive deep learning model for video capsule endoscopy based
on weakly labeled data,’ Computer Vision and Image Understanding, vol. 201,
p. 103 062, 2020.

[34] G. Bradski, ‘The OpenCV Library,’ Dr. Dobb’s Journal of Software Tools, 2000.

[35] M. Yang and A. Sowmya, ‘An underwater color image quality evaluation
metric,’ IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6062–
6071, 2015.

64 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

[36] K. Panetta, C. Gao and S. Agaian, ‘Human-visual-system-inspired underwa-
ter image quality measures,’ IEEE Journal of Oceanic Engineering, vol. 41,
no. 3, pp. 541–551, 2015.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, ‘Scikit-learn: Ma-
chine learning in Python,’ Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

Paper I

This is the paper that has been accepted to be presented on 8th June at OCEANS
2023 conference in Limerick, Ireland and will be published by IEEE. The presenta-
tion slides are also attached to the paper. This paper includes the preliminary res-
ults we produced from our video models. However, we have improved the models
in a later stage that is included in the thesis and out of the scope of this paper.

65

Multi-label Video Classification for Underwater
Ship Inspection

Md Abulkalam Azad∗†‡, Ahmed Mohammed∗, Maryna Waszak∗, Brian Elvesæter∗, and Martin Ludvigsen‡
∗SINTEF AS, Forskningsveien 1, 0373 Oslo, Norway

†Faculty of Sciences and Technology, University of Toulon (UTLN), Toulon, France
‡Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract—Today ship hull inspection including the examination
of the external coating, detection of defects, and other types of
external degradation such as corrosion and marine growth is
conducted underwater by means of Remotely Operated Vehicles
(ROVs). The inspection process consists of a manual video
analysis which is a time-consuming and labor-intensive process.
To address this, we propose an automatic video analysis system
using deep learning and computer vision to improve upon existing
methods that only consider spatial information on individual
frames in underwater ship hull video inspection. By exploring the
benefits of adding temporal information and analyzing frame-
based classifiers, we propose a multi-label video classification
model that exploits the self-attention mechanism of transformers
to capture spatiotemporal attention in consecutive video frames.
Our proposed method has demonstrated promising results and
can serve as a benchmark for future research and development
in underwater video inspection applications.

Index Terms—Video Classification, Vision Transformer, Un-
derwater Inspection, Deep Learning, Computer Vision

I. INTRODUCTION

A. Underwater ship hull inspection

Inspection of marine vessels in the maritime industry plays
a significant role in monitoring the life cycle and analyzing
the condition of the hull. It examines the external coating and
detects potential defects. Corrosion, marine growth, or other
external degradation can damage the hull and reduce its lifes-
pan. Ship hull inspections are nowadays shifting to underwater
operation from dry-dock to reduce the cost and downtime of
the ship. These are conducted by a Remotely Operated Vehicle
(ROV) to further cut down the cost and prevent the risk of a
human diver. The general procedure as illustrated in Fig. 1
consists of a) collection of videos of the ship hull using an
ROV, b) intensive analysis of the videos, and c) preparation
of the inspection report. The manual video analysis within the
process is time-consuming, tedious, and prone to human error.
Therefore, with the advancement of deep learning in computer
vision and autonomy in underwater vehicles, automatic video
analysis can greatly improve underwater inspection.

B. Frame-wise classification

A trivial approach to video analysis is to classify each frame
of the entire video separately and identify potential threats
such as defects or corrosion. This approach only needs an
efficient and robust multi-label image classifier and many such
off-the-shelf models are available online. We can use a pre-
trained image classification model and apply an effective deep

Fig. 1. The workflow of current underwater ship inspection using ROVs.

transfer learning technique as suggested in [1] to fine-tune the
model for our domain. A preceding work under the LIACi1

project [2] also utilized transfer learning to train a multi-
label image classifier using the Microsoft Custom Vision [3]
framework on the LIACi dataset to classify individual frames
in the video. The trained model can predict nine different class
labels as illustrated in the methods & materials section on
the surface of the ship hull. However, this approach has a
significant limitation as it only considers spatial information
from static image frames and lacks the temporal insight that is
essential for Video Understanding [4]. As a result, the model
becomes temporally unstable.

C. Main objective

In order to alleviate the issue, it is necessary to train a model
by learning spatiotemporal information from videos which can
improve the automatic video analysis of underwater ship hull
inspections. Unlike temporal action recognition and localiza-
tion [5] that consider dynamic foreground and background
objects, our videos only have static scenes including ROV
motion with a dynamic camera. Hence, the benefit of utilizing
the temporal aspects can facilitate stabilization during the
video analysis. Our core focus is to enhance the consistency
and stability of the model’s predictions during underwater
video analysis. Therefore, in this paper, we investigate the
consistency and stability of image-based classifiers which can
help us in understanding the advantages and limitations of
using an image-based multi-label classifier for this purpose.
Furthermore, we propose a video classification model that
takes into account both temporal and spatial information. In
summary, the contributions of this work are;

a. Analysis of image-based classifiers (benefits and limita-
tions).

1Lifecycle Inspection, Analysis, and Condition information system
(https://www.sintef.no/en/projects/2021/liaci/)

ar
X

iv
:2

30
5.

17
33

8v
1

 [
cs

.C
V

]
 2

7
M

ay
 2

02
3

b. Exploration of the benefits of adding temporal informa-
tion.

c. Identification of a deep learning multi-label video clas-
sifier for labeling video frames based on spatiotemporal
attention.

The rest of the paper is divided into five sections. Related
works are described in section II, whereas section III unveils
the methods & materials we utilize within this work. Sections
IV and V include the results of our works and ablation study.
Finally, we conclude in section VI by leaving some discussion
and direction for further research and development in the same
area.

II. RELATED WORKS

A. Computer vision technology

Computer vision has been used in automating various indus-
tries worldwide. While artificial intelligence enables machines
to think, computer vision provides them with the ability
to see. It has been used in many diverse fields such as
agriculture, autonomous vehicle, facial recognition, medical
imaging, manufacturing, and many more. Convolutional Neu-
ral Network (CNN) is widely recognized as a breakthrough
innovation in this area which was introduced in 1998 [6]
for hand-written digit recognition tasks from images. CNN
extracts spatial information from images which helps with
the recognition and classification tasks. Since then, several
groundbreaking innovations [7]–[9] have been achieved to
improve this technology further. Therefore, utilizing a CNN-
based architecture to extract spatial features from video frames
is a valuable addition to automatic underwater video analysis.

B. Vision Transformer (ViT)

Following the immense success of the Self-attention based
Transformer [10] in the field of Natural Language Processing
(NLP), it has also evolved in a wide range of applications
within Computer Vision. Researchers thrived to adapt the self-
attention mechanism in the Computer Vision area and intro-
duced the Vision Transformer [11] in 2020 as the counterpart
of the original Transformer. ViT addresses image recognition
tasks by dividing an input image into patches and applying
self-attention to these patches to obtain spatial contextual
relations between them. Thus, it has been adapted together
with traditional CNN architectures for image recognition tasks
[12]–[14]. The revolution of the ViT has also shifted through
different variations to other vision tasks including object
detection [15], [16], and image segmentation [17].

We are particularly interested to train a multi-label ViT
image classifier on LIACI dataset because of its outstanding
self-attention mechanism. This facilitates better spatial feature
extraction on frames during video analysis. ViT applies a
standard NLP-suited transformer on an image which is first
split into fixed-size patches in order to make the fewest
possible adjustments. The list of patches is similar to tokens
or words of NLP applications which are fed to the transformer

network as inputs. This approach is called patch embedding.
In order to get positional information, standard 1D position
encoding is added along with the input sequence of patches.
The rest of the architecture is designed by the transformer
encoder layers where a learnable embedding is prepended
to the embedded patches sequence. One major limitation of
ViT is that it needs to be pre-trained on large-scale datasets
and then fine-tuned on smaller datasets to surpass CNN for
downstream tasks. While pre-training, a Multi-layer perceptron
(MLP) based classification head is integrated with one hidden
layer. The MLP layer is later replaced by one single linear
layer during fine-tuning. Recently, a study [18] has shown that
ViT can outperform CNN models of similar size when trained
on ImageNet from scratch without strong data augmentations
which overcome the large-scale pretraining limitation. There-
fore, it is apparent that ViT holds promises for the underwater
video analysis domain as well.

C. Temporal Action Localization (TAL)

To study video understanding, we need to start with extract-
ing temporal information from the frames of a video. Temporal
Action Localization (TAL) [5] refers to determining the time
intervals in a video that contains a target action. The target
action is usually a dynamic activity (e.g., marine plant waving,
fish swimming) but can be a stationary fact as in our case
which lasts for an indefinite duration such as corrosion in a
ship hull. TAL mainly performs two tasks; recognition and
localization. Recognition denotes the detection of the class
labels whereas localization determines the start and end time
of the detected actions. The latter does not apply to our work at
the moment as we only focus on multi-label class recognition.

Generally, there are two types of TAL methods: single-stage
and two-stage; single-stage: generates several temporal action
segments (start to end) proposals in an untrimmed long video
and classifies these actions simultaneously, two-stage: first
proposes segments and classifies actions and then regresses
the boundaries. In addition, there are a couple more variations
depending on the data annotations;

• Fully-Supervised Temporal Action Localization (F-
TAL): It refers to the training when the dataset contains
both the video-level category classes and the temporal
annotations (start and end time) of the action segments.

• Weakly-Supervised Temporal Action Localization (W-
TAL): In the realistic scenario, most of the videos are
untrimmed with no temporal information and contain
many frames that are not relevant to target actions. So
it is very difficult to acquire temporal annotations.

W-TAL indeed coincides with our case as we have only
untrimmed underwater videos without annotations. However,
the implementation of video classification requires video an-
notation. This needs extensive time to prepare the data for
training a deep learning video classifier. Hence, we follow
a similar W-TAL approach to train our multi-label video
classifier.

D. Spatiotemporal features in video classification

In video understanding, the improved Dense Trajectories
(iDT) proposed in [19] was the state-of-the-art hand-crafted
feature for classification tasks. The iDT descriptor demon-
strates the ability to extract temporal features differently from
that spatial information. Consequently, 3D ConvNets was
proposed in [20] to learn spatiotemporal features from videos.
It also overcomes the limitation of 2D ConvNets which loses
temporal information of the input signal right after every
convolution operation. The best architecture proposed in their
experiment, called C3D net, is homogeneous and comprises
8 convolution, 5 max-pooling, and 2 fully connected layers,
followed by a softmax output layer. The 3D convolution
kernels in this network are 3x3x3 with a stride of 1 in both
spatial and temporal dimensions. They also claimed that a
trained C3D network can serve as a potential spatiotemporal
feature extractor for other video analysis tasks which could be
advantageous in our scenario.

TimeSformer [21] is among the first video models to
incorporate self-attention mechanisms in video understand-
ing inspired by the success of self-attention mechanisms in
ViT. It utilizes self-attention over both spatial and temporal
dimensions of an input video sequence rather than using 3D
CNN to extract temporal features along the frames. The model
takes an input snippet consisting of 8 RGB frames of size
224x224, decomposes each frame into 16x16 patches, and
applies self-attention along the temporal patches for these 8
consecutive frames. During inference, it uses 3 spatial crops
from the temporal clip and predicts by averaging the scores. In
contrast to our approach of using consecutive frames to predict
static class labels in the current frame, TimeSformer samples
the 8 frames of an input video at a rate of 1/32, and these
frames are not necessarily consecutive. Their experiments have
demonstrated that the best performance is achieved when
temporal and spatial attention are applied separately. Adopting
this approach will be crucial in training our model video
classifier.

ViViT [22] is another example of a transformer-based
video classification model that benefits from the self-attention
mechanism. They propose four variations of their model by
factorizing the spatial and temporal dimensions in different
ways, ranging from simple to complex architectures. They also
explain how to utilize pre-trained ViT image models to train a
video classifier on small datasets along with effective regular-
ization techniques which could be particularly advantageous
for our purposes. They emphasize the operational flexibility
of a variable number of input frames which is similar to the
original transformer’s ability to handle any sequence of input
tokens. While there are similarities with TimeSformer [21],
the rich ablation study presented in ViViT provides a strong
foundation for us to begin with our own video model.

In essence, the video models based on 3D CNN or trans-
formers provide a promising research direction for developing
a suitable multi-label video classifier for underwater ship
inspection. Although the underlying architecture of our model

will be similar to these models, it will serve a different
purpose. Our model will predict static classes instead of
dynamic actions by absorbing the disrupted motions in the
video and will stabilize the prediction confidence along the
temporal dimension.

III. MATERIALS & METHODS

A. Datasets

The LIACI dataset for underwater ship Lifecycle Inspection,
Analysis, and Condition Information is publicly available and
has been published in [23]. The dataset comprises 1893 RGB
images extracted from 17 inspection videos of various ships.
There are 10 class labels as depicted in Fig. 2 divided into
two different categories;

• Ship components: Anode, Bilge keel, Overboard valve,
Propeller, Sea chest grating, and Ship hull.

• Common marine coating issues: Marine growth, Paint
peel, Corrosion, and Defect.

Fig. 2. Visualization of 10 class labels of two different categories.

However, we exclude the Ship hull class during the training
of our deep learning model as it is present in all images.
We only used 1561 images from the LIACI dataset to train
and test our model as recommended by the authors [23]. The
remaining 332 images were considered too spatially similar
to other images in the dataset (Cosine similarity cut-off of
0.90). The class instance distribution in Fig. 3 indicates that
while the dataset is not perfectly balanced, it is not severely
imbalanced either.

Furthermore, to comprehensively analyze and evaluate the
performance of trained models, we selected 8 key clips of
1920x1080 resolution from an underwater inspection video.
These clips were chosen randomly from untrimmed inspection

Fig. 3. Distribution of class instances.

videos and each clip is approximately 14 seconds long. Table
I provides descriptions of the physical content of the clips
that are easily recognizable to human eyes. However, distin-
guishing between marine growth, corrosion, and paint peel
with human visual perception can be quite challenging most
of the time. The results of the analysis and evaluation are
documented in sections IV and V.

TABLE I
CONTENTS OF THE 8 KEY VIDEO CLIPS.

Serial Major physical real contents
1 anode, paint peel
2 bilge keel, paint peel, over board valve, anode
3 propeller, paint peel, corrosion, marine growth
4 paint peel, marine growth, propeller
5 marine growth, propeller, corrosion
6 paint peel
7 propeller, marine growth
8 sea chest grating, paint peel, corrosion

B. Multi-label ViT Image Classifiers

In [11], a few variants of ViT models are proposed that
differ in model size and input patch size. For instance, the
ViT-L/16 refers to the “Large” variant and is composed of 24
training layers with a 16x16 input patch size. The PyTorch
[24] vision package includes several ViT models that can
be easily implemented. Besides, PyTorch enables access to
the models’ underlying architecture and allows us to modify
them through retraining or fine-tuning conveniently. Based
on the model’s capacity, our requirements, and computing
resources we selected the ViT-B/16 architecture. The size of
the model is 330.3MB with 86M trainable parameters and it
has 95.318%@5 accuracy on ImageNet 1K dataset [25].

We decided to train two versions of the ViTs on LIACI
data with pre-trained on ImageNet 1k and COCO 2014
[26] datasets respectively and compare their performances.
Although the ImageNet pre-trained ViT is readily available
in PyTorch, we need to train the COCO version by ourselves
in advance. We downloaded the COCO dataset using FiftyOne
[27] and fully finetuned an ImageNet pre-trained ViT model on
COCO. Finally, we trained our two desired ViT models pre-
trained from ImageNet and COCO datasets and abbreviated
them as IMAGENET ViT and COCO ViT respectively. The
training hyperparameters are the same for both as shown in
Table II along with the data transformations. It is noted that we
applied separate image normalization by computing respective
mean (M) and standard deviation (S) on LIACI and COCO
datasets. Also, only the Image Resize and Normalization
are applied during validation or evaluation. Nonetheless, we
investigated various hyperparameters and data augmentations
that are exhibited in section V.

C. Prediction Confidence and Temporal Characteristics

To analyze a trained model’s confidence behavior, we lever-
age OpenCV [28] to process a video snippet and observe the
model’s prediction confidence on each frame, as illustrated in
Fig. 4. This approach also enabled us to evaluate a model’s

TABLE II
TRAINING HYPERPARAMETERS AND DATA TRANSFORMATIONS FOR

IMAGENET VIT AND COCO VIT

Type IMAGENET ViT COCO ViT
Loss function BCEWithLogitsLoss BCEWithLogitsLoss
Optimizer SGD SGD
Learning rate 0.001 0.001
Momentum 0.9 0.9
Batch size 16 16

Scheduler StepLR StepLR
(step=20, gamma=0.1) (step=20, gamma=0.1)

Data Transformations
Image Resize 224x224 224x224
Normalization M[0.348, 0.369, 0.352] M[0.348, 0.369, 0.352]
(LIACI Data) S[0.249, 0.244, 0.206] S[0.249, 0.244, 0.206]
Normalization N/A M[0.485, 0.456, 0.406]
(COCO Data) N/A S[0.229, 0.224, 0.225]
Random p=0.5 p=0.5Horizontal Flip

Fig. 4. Model’s prediction confidence on a frame during a video inspection.

ability to predict multiple class labels simultaneously on a per-
frame basis.

To integrate temporal reasoning into our model, it is neces-
sary to examine and analyze the model’s temporal consistency
throughout the development process. To achieve this, we
utilize OpenCV to observe the temporal aspect of the model’s
confidence for different labels during an inspection. This is
useful to qualitatively assess the temporal stability of a trained
model and is depicted in the result section.

D. Underwater Image Quality Metrics

In underwater image or video tasks, measuring image qual-
ity is a grave concern as it directly impacts any vision-based
operation. Poor-quality images can significantly degrade the
performance. To measure frame quality, we employed two
separate image quality metrics - UCIQE [29] and UIQM [30] -
to establish a correlation between the model’s prediction con-
fidence and frame quality. Both metrics are no-reference and
meticulously designed for underwater images. The qualitative
output of these two metrics is reported in the result section.

E. Video data Generation and Annotation

We have acquired the corresponding videos of LIACI train-
ing images which are untrimmed and unstructured video data.
We were able to extract 755 corresponding video snippets
out of 1893 images contained in the dataset. Each snippet
consisted of seven consecutive frames, with the middle frame
representing the original image from the LIACI dataset and

its class labels considered as the labels for the entire snippet
during training. This approach may be considered a weakly
supervised data annotation. The snippets were split into 584
for training, 87 for validation, and 84 that were not used by
following the same splitting convention of the image dataset.
It is worth noting that the generated video dataset contains
fewer snippets than half of the number of images in the LIACI
dataset. As a result, it may not be sufficient to train a robust
video model compared to the image model.

F. Multi-label Video Classifiers

We have implemented and trained 6 different variants of
ViT-based multi-label video classifiers. Initially, we adopted a
straightforward method by utilizing the spatiotemporal token
embedding techniques proposed in [22]. We trained our first
2 variants by extracting tokens from the video snippets using
either uniform frame sampling or tubelet embedding methods,
and then input these tokens directly into a base ViT encoder.
The process is illustrated in Fig. 5, and the diagrams used are
borrowed from [22] and [11]. To implement uniform frame
sampling, we extracted 28 patches with dimensions of 32x56
from each frame of a seven-frame input snippet, generating a
total of 196 patch embeddings. These embeddings are readily
compatible with a base ViT architecture. On the other hand, to
achieve the tubelet embedding as depicted in Fig.5, we utilized
a pretrained 3D ResNet18 model to extract C3D features from
the input snippet.

The rest of the 4 video classifiers are implemented by apply-
ing different underlying strategies based on Model 2 proposed
in [22] which is similar to the TimeSformer method presented
in [21]. This approach uses a ViT base architecture called
a spatial transformer encoder to extract spatial features from
each frame. These consecutive spatial features are then passed
through a temporal transformer to combine with temporal
features, followed by an MLP head to predict class labels.
This method is designed to address the issue of overfitting on
smaller datasets such as ours and provides a more sophisticated
model for video classification. A previously trained ViT image
classifier is adopted as the spatial transformer encoder, while
a new standard transformer is employed as the temporal one.
During training, we froze the weights of the spatial transformer
and solely updated the temporal transformer. This approach
resulted in a notable acceleration of the training process and
facilitated the adaptation of the models to finetuning tasks.

Fig. 5. A simple approach to video model using the same architecture as the
image classifier.

G. Multi-label Evaluation Metrics

The computation of multi-label classification evaluation
metrics is different from multi-class classification. The Scikit-
learn Python package [31] provides essential tools to easily
compute different metrics. We report accuracy, precision,
recall, and f1-score on the validation set of LIACI data for
our image and video models in section IV. These metrics are
calculated along the instances and averaged over them. The
mathematical equations are as follows in Eq. (1), (2), (3), and
(4) where n is the number of images, y is the ground truth,
and ŷ is the predicted label. Besides, we computed class-wise
evaluation metrics during some analysis in section V.

Accuracy =
1

n

n∑

i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

(1)

Precision =
1

n

n∑

i=1

|yi ∩ ŷi|
|ŷi|

(2)

Recall =
1

n

n∑

i=1

|yi ∩ ŷi|
|yi|

(3)

F1− score =
1

n

n∑

i=1

2|yi ∩ ŷi|
|yi|+ |ŷi|

(4)

H. Hardware Resources

We used NVIDIA RTX 2080 Ti (11GB) and RTX A6000
(48GB) GPUs to train both of our image and video models. For
inference and testing, we used a local system that constitutes
of NVIDIA GTX 980 (4GB) with Intel(R) Xeon(R) CPU E5-
1650v3 @3.50GHz and 32GB RAM.

IV. RESULTS

The temporal observation of video clip no.3 from Table I
is illustrated in Fig. 6 using a model trained on the LIACI
dataset through Microsoft Custom Vision in [2]. Although
the model successfully detects a couple of classes, the con-
fidence values for consecutive frames fluctuate significantly.
We noticed similar behavior for other snippets even though
the spatial changes between frames are negligible. The bottom
row of Fig. 6 displays the output of the two image quality
metrics mentioned in section III on a single video clip,
while comparing them against a model’s temporal prediction
confidence. Since UCIQE and UIQM have different value
ranges, we plot these metrics on two different scales within
the same plot. Consequently, it is evident that UCIQE does not
exhibit any correlation with the observed fluctuation, whereas
UIQM indicates that the prediction tends to be consistent with
higher UIQM values between frames 250 to 450. On the other
hand, the highlighted confidence values for frames 70 and 78,
differ significantly at 0.12 and 0.81, respectively, despite a
negligible spatial difference between them, as shown in Fig. 7.
Therefore, the rest of this section demonstrates to what extent
our image and video models gradually overcome the issue.

78

70

Fig. 6. Temporal observation with UCIQE and UIQM metrics on a video
snippet.

Fig. 7. Frame 70 and 78 (left to right) of a video snippet.

A. IMAGENET ViT and COCO ViT Image Classifers

Once we began the training process using the hyperpa-
rameters and transformations outlined in section III, we con-
ducted an extensive analysis to determine the optimal models.
Consequently, we found the best performances by utilizing
the hyperparameters and transformations presented in Table
III. A comparative quantitative evaluation for both of our
models is shown in Fig. 8. While both models exhibit almost

TABLE III
OPTIMAL HYPERPARAMETERS AND TRANSFORMATIONS FOR

IMAGENET VIT AND COCO VIT

Hyperparameters
Loss function BCEWithLogitsLoss
Optimizer SGD
Learning rate 0.001
Momentum 0.9
Batch size 16

Scheduler ReduceLROnPlateau
mode=’min’, factor=0.1

Data Transformations
Image Resize 224x224

Normalization M[0.348, 0.369, 0.352]
S[0.249, 0.244, 0.206]

GaussianBlur kernel size=(5, 9), sigma=(0.1, 5), p=0.5
AugMix() [32] p=0.5
Random p=0.5Horizontal Flip

similar performances in each evaluation metric, COCO ViT
outperformed IMAGENET ViT by a small margin in all
metrics except precision.

Fig. 8. Evaluation metrics comparison between our IMAGENET ViT and
COCO ViT models on the validation dataset.

The ReduceLROnPlateau learning rate scheduler aids in
finding better local minima on the validation loss. Fig. 9 shows
that the final model was able to find the minimal loss on
validation compared to the initial one in both cases. Increasing
the loss of the final model during training compared to the
initial model and subsequently reducing the loss more on the
validation set leads to better regularization of COCO ViT. On
the other hand, the utilization of Gaussian blur and AugMix
[32] enhanced the stability of the model’s confidence in
temporal analysis by facilitating the learning of abrupt ROV
motion during inspections. Hence, Fig. 10 demonstrates that
both models improved the stability of temporal confidence,
particularly in detecting the Paint peel class, in contrast to
Fig. 6. Furthermore, the models exhibited a more exploratory
nature in detecting other class labels during the inspection
which indicates improvement in multi-label competency. Sim-
ilar improvements in temporal consistency were observed for
the remaining testing snippets which are shown in Figure 11
alongside the outputs from video models.

Fig. 9. Comparison between the initial and final models in finding lo-
cal minima for the loss during training. The optimal validation loss for
IMAGENET ViT is within 20 to 30 epochs. COCO ViT exhibits more
regularization than the initial model.

Fig. 10. Temporal observation of the final IMAGENET ViT and COCO ViT
on the same video snippet as in Fig. 6.

B. Multi-label Video Classifiers

Our initial attempt at implementing the video model utiliz-
ing uniform frame sampling did not result in convergence.
Even after training for 1000 epochs, it exhibited a train
and validation loss plateauing around 0.44. Also, the second
variant using C3D features as tubelet embeddings did not yield
a comparative performance. Nonetheless, our final approach
produced promising results in terms of video classification
performance. We trained 4 variants of video models within
this approach by altering the weights of the spatial trans-
former encoder and the underlying feature pooling strategy
for both the spatial and temporal transformers. Table IV
outlines the performance evaluations of these video models
on the validation video dataset. A detail of all the different
training experiments is provided in the ablation study. Table
IV indicates that model number 3 performs slightly better
than the others. Accordingly, we have included the temporal
observations of this model in Fig. 11, alongside the best image
model. It is evident that the video model generates smoother
temporal prediction confidence scores than the image model
by stabilizing the predictions along the temporal dimension.
While it has introduced some variance within the same class
label, we discussed further improvement in the future work
section which may overcome this limitation.

TABLE IV
EVALUATION METRICS OF VIDEO MODELS ON THE VALIDATION DATASET.

ST = SPATIAL TRANSFORMER, TT = TEMPORAL TRANSFORMER, AND
POOL = FEATURE EXTRACTION.

Weights (ST) Pool
(ST)

Pool
(TT) Loss Acc Prec Rec F1-

score
1 COCO ViT cls cls 0.30 0.59 0.78 0.72 0.69
2 IMAGENET ViT cls cls 0.30 0.60 0.74 0.70 0.69
3 COCO ViT cls avg 0.30 0.62 0.78 0.73 0.72
4 COCO ViT avg avg 0.29 0.59 0.78 0.72 0.69

V. ABLATION STUDY

A. Frame-based Video Classification

To extract the best performance from image-based models
for underwater ship hull inspection, several models were
trained with gradual improvements by addressing the limita-
tions of the LIACI dataset. The COCO 2014 dataset is a large-
scale dataset that contains images with multiple object classes
labeled in each image. In contrast, the IMAGENET dataset
is primarily used for conventional image classification tasks
where each image belongs to a single class. Hence, enabling
our model to have multi-label classification capability, we
initially train a ViT model on the COCO 2014 dataset using
the hyperparameters and transformations mentioned in Table
II. The COCO dataset consists of 82783 train and 40504
validation images and the model was trained for 94 epochs
with a batch size of 16. We observed the model stops learn-
ing approximately after 30 epochs as both the training and
validation losses become extremely low despite the accuracy
still being confined under 0.7. Subsequently, we perform full
finetuning of our two initial ViT models on the LIACI dataset.
Table V includes the analysis of these initial models in rows
2 and 3, whereas row 1 corresponds to the COCO model. It
is apparent from the F1-score or other metrics values of these
two initial models that the ViT pre-trained on COCO performs
better than the one pre-trained on IMAGENET.

We investigated which model performs best in extracting
features from the LIACI data. To devise this, we trained
variants of the COCO and IMAGENET models using partial
finetuning, where all the pre-trained weights except the clas-
sification part are frozen. The results are included in rows 4
and 5 of Table V which imply that the IMAGENET version
outperforms the COCO model in feature extraction. However,
the overall performance of the partial finetuning approach
is still below the full finetuning approach. Therefore, we
decided to keep the partial finetuning approach apart from our
experiments. Additionally, we experiment with changing the
optimizer from SGD to Adam with a weight decay of 0.3 to
train both models but this led to a significant degradation in
performance. We conducted experiments to explore the effects
of different step sizes on the performance of the COCO and
IMAGENET models. Along with the StepLR learning rate
scheduler with a gamma value of 0.1 and test two more
different step sizes: 5 and 50. To summarize, using a step
size of 5 led to further regularization of the COCO model, but
it also induced a decline in the overall performance for both
models, as shown in rows 6 and 7 of Table V. On the other
hand, the step size of 50 had a tendency to overfit the training
for both models as assigned in rows 8 and 9. Finally, we de-
duced the best models with the configuration mentioned in the
result section by considering both the quantitative evaluation
measures and qualitative temporal performance which are also
added in rows 10 and 11. COCO ViT is the best frame-based
model which dominates all the validation evaluation metrics
except the precision which is dominated by its counterpart
IMAGENET ViT.

Fig. 11. Temporal consistency comparison between the IMAGENET ViT and COCO ViT models on the snippets from Table I.

TABLE V
ANALYSIS OF DIFFERENT MODELS & RESULTS. FF = FULLY FINETUNE & PF = PARTIAL FINETUNE.

Model Pretrain weight #Epochs Loss Accuracy Precision Recall F1-score
Train Val Train Val Train Val Train Val Train Val

1 COCO ViT IMAGENET 1K (FF) 94 0.042 0.051 0.708 0.601 0.895 0.838 0.745 0.692 0.790 0.731
2 LIACI ViT(initial) IMAGENET 1K (FF) 301 0.054 0.235 0.951 0.659 0.968 0.798 0.952 0.723 0.958 0.729
3 LIACI ViT(initial) COCO 2014 (FF) 326 0.016 0.277 0.970 0.673 0.971 0.797 0.969 0.760 0.970 0.749
4 LIACI ViT(extractor) IMAGENET 1K (PF) 277 0.267 0.281 0.593 0.565 0.764 0.741 0.648 0.621 0.672 0.642
5 LIACI ViT(extractor) COCO 2014 (PF) 276 0.320 0.323 0.484 0.479 0.648 0.637 0.536 0.534 0.559 0.552
6 LIACI ViT(step=5) IMAGENET 1K (FF) 99 0.263 0.288 0.597 0.556 0.778 0.740 0.651 0.606 0.678 0.632
7 LIACI ViT(step=5) COCO 2014 (FF) 99 0.170 0.260 0.779 0.614 0.902 0.792 0.810 0.667 0.834 0.695
8 LIACI ViT(step=50) IMAGENET 1K (FF) 99 0.018 0.277 0.971 0.672 0.972 0.808 0.971 0.739 0.971 0.744
9 LIACI ViT(step=50) COCO 2014 (FF) 99 0.010 0.315 0.972 0.631 0.972 0.768 0.972 0.723 0.972 0.715

10 LIACI ViT(final) IMAGENET 1K (FF) 99 0.034 0.235 0.961 0.674 0.969 0.805 0.962 0.753 0.964 0.747
11 LIACI ViT(final) COCO 2014 (FF) 99 0.071 0.240 0.915 0.692 0.936 0.786 0.947 0.803 0.935 0.768

B. Spatiotemporal-based Video Classification

With the uniform frame sampling tokenization, we at-
tempted to train our video models utilizing both image mod-
els and experimented with different learning rate schedulers.
However, none of these approaches resulted in convergence
during training. It is important to note that we were limited
to using a dependent patch size to generate a total of 196
image patch embeddings from 7 frames, which were then fed
into a ViT model. In addition to the video models discussed
earlier, we also explored an approach that involved combin-
ing 3D CNN and ViT which we referred to as the tubelet
embedding approach. Specifically, we extracted C3D features
utilizing a pretrained 3D ResNet architecture and subsequently
passed these features through our trained ViT-based image
models. Although this approach resulted in convergence during
training, the performance was not competitive enough to be
included in the paper.

The spatial-temporal video model we reported in the paper
has a total of 161.399M trainable parameters, with 75.600M
of them belonging to the temporal transformer. Since we are
utilizing a pre-trained ViT classifier as the spatial transformer,
we freeze its weights during training and only update the
weights of the temporal transformer, resulting in a substantial
reduction in training time. One significant challenge that can
contribute to poor performance is the limitation of trans-
formers, which require pretraining on a large-scale dataset to
optimize their performance. This is particularly relevant for
the temporal transformer in our models, as its weights are
initialized randomly, which can limit its ability to learn from
the available data and lead to poor performance.

VI. CONCLUSION & FUTURE WORK

We have trained several multi-label ViT image classifiers
and gradually improved them on the LIACI dataset to conduct
framewise video inspections. In fact, the same trained model
is also utilized during training multi-label video classifiers
through different state-of-the-art approaches. However, while
frame-based ViT classifiers are limited by their inability to
capture temporal information, video classifiers can overcome
this limitation by extracting both spatial and temporal features
from the video. Spatial features are dominant in some videos,

making image classifiers suitable for evaluation. Considering
temporal features during video classification improves the
robustness of the task, making it more effective for difficult
video inspections like ours, and also stabilizes the model’s
prediction in the temporal dimension.

Although we conducted an exhaustive analysis, we believe
there is still room for improving the performance of both
image and video-based classifiers in an underwater envi-
ronment. For example, exploring other pretraining strategies
or designing custom architectures may yield better results.
Additionally, gathering more diverse and high-quality data
can also improve the performance of these models. Incorpo-
rating other techniques such as data augmentation, transfer
learning, or ensembling can also be explored to improve
the overall performance. Besides, introducing a quantitative
metric to evaluate the temporal performance of the video-
based classifiers would indeed be a useful research direction.
By quantifying the temporal performance, we can have a more
objective measure of how well the model is able to capture
temporal information in the videos. This could potentially lead
to further improvements in the model architecture or training
process and ultimately result in better performance for video-
based classification tasks in underwater environments.

Designing a new Vision Transformer architecture that is
compatible with the uniform frame sampling tokenization of
7 frames could potentially overcome the convergence issue
observed previously. Pretraining this new architecture on large-
scale datasets before fine-tuning it for the LIACI dataset could
also improve its performance. One significant challenge we
faced is the limited size and weakly supervised nature of
our video dataset. To address this, it is better to explore
options such as acquiring a larger fully supervised dataset,
using techniques like data augmentation and regularization to
enhance generalization, or incorporating pretrained weights for
the temporal transformer. By doing so, we could improve the
robustness and effectiveness of our video inspection models.

In conclusion, we hope this work provides a benchmark
for the development of image and video-based classifiers in
underwater environments. The analysis will help researchers
and developers to improve the accuracy and effectiveness of
these classifiers and our findings will facilitate the application

of these methods in real-world scenarios. Furthermore, we
will also continue to focus on improving the video model and
developing quantitative metrics to evaluate the temporal per-
formance of video-based classifiers to improve their reliability
and robustness.

ACKNOWLEDGMENT

The authors express their gratitude to the collaborators
within the LIACi project, funded by the Research Council
of Norway under project No 317854. The first author would
like to thank the Erasmus Mundus MIR program funded by
the European Union for providing his master’s scholarship
to study at the University of Toulon and the Norwegian
University of Science and Technology. He also acknowledges
Helene Schulerud, research manager of the Computer Vision
group at SINTEF, for hosting him to conduct the master’s
thesis within the group.

REFERENCES

[1] J. Plested and T. Gedeon, “Deep transfer learning for image classifica-
tion: a survey,” arXiv preprint arXiv:2205.09904, 2022.

[2] J. Hirsch, B. Elvesæter, A. Cardaillac, B. Bauer, and M. Waszak, “Fusion
of multi-modal underwater ship inspection data with knowledge graphs,”
in OCEANS 2022, Hampton Roads. IEEE, 2022, pp. 1–9.

[3] M. Salvaris, D. Dean, W. H. Tok, M. Salvaris, D. Dean, and W. H.
Tok, “Cognitive services and custom vision,” Deep Learning with Azure:
Building and Deploying Artificial Intelligence Solutions on the Microsoft
AI Platform, pp. 99–128, 2018.

[4] D.-A. Huang, V. Ramanathan, D. Mahajan, L. Torresani, M. Paluri,
L. Fei-Fei, and J. C. Niebles, “What makes a video a video: Analyzing
temporal information in video understanding models and datasets,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7366–7375.

[5] H. Xia and Y. Zhan, “A survey on temporal action localization,” IEEE
Access, vol. 8, pp. 70 477–70 487, 2020.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[12] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and
M. Douze, “Levit: a vision transformer in convnet’s clothing for faster
inference,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 12 259–12 269.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[14] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo,
and L. Shao, “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 568–578.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[16] Z. Dai, B. Cai, Y. Lin, and J. Chen, “Up-detr: Unsupervised pre-training
for object detection with transformers,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 1601–
1610.

[17] Z. Li, W. Wang, E. Xie, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo,
and T. Lu, “Panoptic segformer: Delving deeper into panoptic segmen-
tation with transformers,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 1280–1289.

[18] X. Chen, C.-J. Hsieh, and B. Gong, “When vision transformers outper-
form resnets without pre-training or strong data augmentations,” arXiv
preprint arXiv:2106.01548, 2021.

[19] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Proceedings of the IEEE international conference on computer
vision, 2013, pp. 3551–3558.

[20] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
4489–4497.

[21] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all
you need for video understanding?” in ICML, vol. 2, no. 3, 2021, p. 4.

[22] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid,
“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 6836–6846.

[23] M. Waszak, A. Cardaillac, B. Elvesæter, F. Rødølen, and M. Ludvigsen,
“Semantic segmentation in underwater ship inspections: Benchmark and
data set,” IEEE Journal of Oceanic Engineering, 2022.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[27] B. E. Moore and J. J. Corso, “Fiftyone,” GitHub. Note:
https://github.com/voxel51/fiftyone, 2020.

[28] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[29] M. Yang and A. Sowmya, “An underwater color image quality evaluation
metric,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp.
6062–6071, 2015.

[30] K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired
underwater image quality measures,” IEEE Journal of Oceanic Engi-
neering, vol. 41, no. 3, pp. 541–551, 2015.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019.

Multi-label Video Classification for Underwater Ship Inspection

OCEANS 2023 Limerick, 5-8 June

M. A. Azad, A. Mohammed, M. Waszak, B. Elvesæter, M. Ludvigsen

Azad, Md Abulkalam
Erasmus Mundus Master’s student

Marine and Maritime Intelligent Robotics
Department of Marine Technology, NTNU

1. Background

2. Introduction

3. Objective

4. Methods & Materials

5. Results

6. Future Work

7. Conclusion

8. Acknowledgment

9. References

Content

2

Background

3

Introduction

4

Objective

1. Analysis of Image-based classifiers (benefits and limitations)
2. Exploration of temporal information in videos;
� Model stabilization and consistency (primary)
� Confidence robustness in underwater environment

3. Identification of a deep learning Multi-label Video Classifier

5

Methods & Materials

6

LIACI Image Dataset

Total images = 1893, Train = 1370, Validation = 191, Not used = 332

Methods & Materials 7 LIACI dataset was published in [1]

LIACI Image Dataset

Methods & Materials 8 LIACI dataset was published in [1]

Multi-label Image Classifier

9Methods & Materials

Model Architecture of Vision Transformer (ViT) [2]

Spatial Prediction Observation

10Methods & Materials

Frame-wise multi-label prediction confidence observation.

Temporal Prediction Observation

11Methods & Materials

Temporal prediction confidence observation on a video snippet.

Underwater Image Quality Metrics

12

Frame quality observation using UCIQE [3] and UIQM [4].

Methods & Materials

Video Dataset

13Methods & Materials

Total snippets = 755, Train = 584, Validation = 87, Not used = 84

Each snippet:
� 7 Frames
� Label = middle

frame

Multi-label Video Classifier

14Methods & Materials

Naïve Approach (model 1):
� Spatiotemporal tokenization;

• Uniform frame sampling [5]
• Tubelet embedding [5]

� Image model architecture

Two-stage Approach (model 2):
� Spatial Transformer
� Temporal Transformer
� Latent vector;

• CLS token
• Average

Video Model 1

15Methods & Materials

A naïve approach to video model using the image model.

Video Model 2

16Methods & Materials

Spatiotemporal transformer-based video model.

Result: Image Classifiers

17

Result: Video Classifiers

The results are from the approach 2 and approach 1 did not
result in convergence.

18

Result: Temporal Observation

19

Best Image Model

Best Video Model

Result: Temporal Observation

20

Future Work

1. Video classifier improvement
� Large-scale video dataset
� Pretrained temporal transformer
� Customized temporal transformer architecture
� Temporal attention-weighted prediction
� Single query attention

2. Quantification of temporal performance

21

Conclusion

22

� Multi-label ViT image classifiers are trained and improved
� Different spatiotemporal tokenization is exploited
� Two different approaches towards multi-label video models

are explored
� Spatial and temporal analysis are conducted
� Limitation and further research direction are provided

Acknowledgement

23

Helene Schulerud
Research Manager

Computer Vision, SINTEF Digital

References

24

1. M. Waszak, A. Cardaillac, B. Elvesæter, F. Rødølen, and M. Ludvigsen, “Semantic segmentation in underwater
ship inspections: Benchmark and data set,” IEEE Journal of Oceanic Engineering, 2022.

2. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G.
Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv
preprint arXiv:2010.11929, 2020.

3. M. Yang and A. Sowmya, “An underwater color image quality evaluation metric,” IEEE Transactions on Image
Processing, vol. 24, no. 12, pp. 6062–6071, 2015.

4. K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired underwater image quality measures,” IEEE
Journal of Oceanic Engineering, vol. 41, no. 3, pp. 541–551, 2015.

5. A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Luˇci ́c, and C. Schmid, “Vivit: A video vision transformer,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 6836–6846.

Technology for a better society

Thank You

Paper II

This is the abstract that was accepted for an oral presentation on 6th June at
NORA 2023 annual conference in Tromsø, Norway. The presentation slides are
also attached. We have been also invited to submit an extended version of the work
that will be published in the Nordic Machine Intelligence (NMI) level-1 journal
after peer review. As my thesis is covering broad works and analyses, we planned
to submit a 4/10 pages article for this journal by September 2023.

101

MViST: A Multi-label Vision Spatiotemporal Transformer
for Underwater Ship Inspection

Md Abulkalam Azada,b, Ahmed Mohammeda, Maryna Waszaka, Brian Elvesætera, and Martin Ludvigsenb
aSINTEF AS, Forskningsveien 1, Oslo 0373, Norway

bDepartment of Marine Technology, Norwegian University of Science and Technology, Trondheim 7491, Norway

Keywords: Video Classification, Vision Transformer, Computer Vision, Underwater Inspection.
The inspection of ship hulls today involves human visual analysis of underwater videos to assess the external
coating, identify defects, and detect external degradation such as corrosion and marine growth. This process is
time-consuming, labor-intensive, lacks reproducibility and is prone to error. To alleviate these issues, an
automatic video analysis utilizing deep learning and computer vision could significantly enhance this process. At
present, the video analysis is conducted on a framewise basis using multi-label image classifiers that only
consider spatial information from individual frames as presented in [1]. We propose incorporating spatiotemporal
information to improve the automatic indexing and summarization of underwater ship hull inspection videos.
Therefore, our study aims to investigate the frame-based Vision Transformer (ViT) [2] classifier, explore the
advantages of including temporal information utilizing parameter-efficient image-to-video transfer learning, and
propose a novel video classification model that considers both spatial and temporal aspects of the video.

Figure 1: Evaluation metrics of different ViTs. Figure 2: Temporal analysis of the model's confidence on a 14s video snippet
containing sea_chest_grating, paint_peel, and marine_growth.

The LIACI dataset as introduced in [3] was used to extract the labels for different inspection categories of
underwater ship hulls such as corrosion, defect, or anode. We have trained multiple variations of ViTs as
multi-label image classifiers by analyzing our data and adequately applying relevant hyperparameters and data
augmentations. Hence, our ViT models pretrained on ImageNet and COCO datasets provided good classification
results as shown in Fig. 1. The temporal consistency of the model's confidence during a video inspection is also
adequate as depicted in Fig. 2. The model shows high consistency in detecting sea_chest_grating and paint_peel
but struggles with marine_growth. To further enhance stability and consistency, we plan to develop and train a
novel spatiotemporal ViT model using image-to-video transfer learning from already trained ViT models. This
approach will be highly efficient, as it will not require updating all weights during training, making it easy to
integrate into an application. Therefore, we hope this work will be useful and serve as a benchmark for future
research and development in underwater ship hull inspection.
References
[1] Hirsch, J., Elvesæter, B., Cardaillac, A., Bauer, B., and Waszak, M. (2022) “Fusion of Multi Modal

Underwater Ship Inspection Data with Knowledge Graphs.” OCEANS 2022: Hampton Roads: pp. 1–9.
[2] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., and Uszkoreit, J. (2020) “An image is worth 16x16 words: Transformers
for image recognition at scale.”arXiv preprint arXiv:2010.11929.

[3] Waszak, M., Cardaillac, A., Elvesæter, B., Rødølrn, F., and Ludvigsen, M. (2022) “Semantic Segmentation in
Underwater Ship Inspections: Benchmark and Dataset.” IEEE Journal of Oceanic Engineering (Early
access): pp. 1–12.

MViST: A Multi-label Vision Spatiotemporal Transformer for
Underwater Ship Inspection

NORA Annual Conference 2023
Tromsø, 5-6 June

M. A. Azad, A. Mohammed, M. Waszak, B. Elvesæter, M. Ludvigsen

SINTEF Digital, Oslo

1. Background

2. Introduction

3. Objective

4. Approaches

5. Results

6. Conclusion & Future Work

7. Acknowledgment

Content

Background

3

Introduction

4

Objective

1) Analysis of the image-based (spatial-information) classifier
(benefits and limitations)

2) Exploration of the advantages of adding temporal information
such as;
a. Model stabilization and consistency (primary)
b. Confidence robustness

3) Weakly supervised video classification

LIACI Image Dataset

Total images = 1893, Train = 1370, Validation = 191, Not used = 332

Methods & Materials 6 LIACI dataset was published in [1]

Image based classifier

7Methods & Materials

Temporal prediction confidence observation on a video snippet.

LIACI Video Dataset
Methods & Materials

Approach 1: Naive Video Transformer
Methods & Materials

Approach 2: Late-Fusion Spatiotemporal Transformer

Methods & Materials

Approach 3: Attention Weighted Spatiotemporal Transformer

Methods & Materials

Results: Multi-label Video Classifiers

Result: Temporal Observation

13

Best Image Model

Best Video Model

Result: Temporal Observation

14

Ablation Study: Temporal Attention Scores

The same image in all
frames -> Attention is
evenly distributed

Random neighboring
frames with Q frame ->
Attended only on the
query frame

The validation snippet with
the same Q frame -> Q
frame got the highest
attention

Conclusion & Future Work

• Work on data
• Pretraining strategies
• Temporal information improves the robustness and

stabilizes the prediction confidence.

Technology for a better society

Thank You

Poster I

This is the poster (A2 size) that I designed for the Department of Marine Techno-
logy, NTNU.

121

Multi-label Video Classification for Underwater Ship
Inspection Azad, Md Abulkalam

Erasmus Mundus MSMIR
Email: mdaaz@stud.ntnu.noSupervisor(s): Ahmed Mohammed (SINTEF), Maryna Waszak (SINTEF), and Prof. Martin Ludvigsen

1. Introduction

Problem: The manual video analysis in phase (2) of
current underwater ship hull inspection in Fig. 1 is
time-consuming, tedious, and prone to human error.

Objective: Deep learning and computer vision based
automatic video analysis system can significantly
improve the inspection and expedite the entire process.
The following objectives are set to accomplish the goal.
1. Analysis of image based classifiers (pros & cons)
2. Exploration of temporal information in videos;

a. Model stabilization and consistency
b. Robustness in underwater environment

3. Identification of a Multi-label Video Classifier

2. Image & Video Datasets

LIACI Image Dataset: Total images = 1893, train = 1370,
validation = 191, and not used = 332.

Generated Video Dataset: Total snippets = 755, train =
584, validation = 87, and not used = 84.

Fig. 3. Class instances distribution of the LIACI image dataset.

Fig. 4. Class instances distribution of the video dataset.

3. Methodology

Self-Attention: Hshdghsgdhsdgwhere N is the number of queries, D is the dimension and sagdhss
represents a single query. Shdfgdshdshadghsdg and sjdhjsdhfjsfjfjfj where d = D/h f..

Multi-label Video Classifier: Three approaches; Naive, Late-Fusion, and Attention-weighted models.

Fig. 5. Global vs single query scaled-dot product attention computation along with the multi-head mechanism.

Fig. 6. Three different approaches to multi-label video classification.

4. Results

Multi-label Image Classifier Improvement: Two models; IMAGENET_ViT and COCO_ViT.

Multi-label Video Classifier: Three approaches; Naive, Late-Fusion, and Attention-weighted models.

Fig. 7. (left)Performance comparison between ResNet and our models. (right)Gradual improvement of COCO_ViT.

Fig. 8. (left)Best metric values and models across approaches. (right)Performance comparison among the models.

5. Analysis

Various analysis can be found in the thesis report.
Fig. 9. Temporal observation between image and video models.

6. References

References are available in the thesis report or in preprint
ResearchGate: http://dx.doi.org/10.13140/RG.2.2.27960.32007/1

7. Publications

1. (Accepted) OCEANS 2023 Limerick conference (IEEE)
Preprint: https://arxiv.org/abs/2305.17338

2. Accepted to be presented at NORA 2023 conference
and is invited for the NMI journal.

8. Acknowledgment

Poster II

This is the poster (A1 size) that I designed for our Erasmus Mundus Master MIR
Symposium 2023 which will take place in Spain from 20 to 22 June.

123

Multi-label Video Classification for Underwater Ship Inspection
Azad, Md Abulkalam, Erasmus Mundus MSMIR, mdaaz@stud.ntnu.no

Supervisor(s): Ahmed Mohammed (SINTEF), Maryna Waszak (SINTEF), and Prof. Martin Ludvigsen

1. Introduction

Problem: The manual video analysis in phase (2) of current
underwater ship hull inspection in Fig. 1 is time-consuming,
tedious, and prone to human error.

Objective: Deep learning and computer vision based
automatic video analysis system can significantly improve
the inspection and expedite the entire process.
The following objectives are set to accomplish the goal.
1. Analysis of image based classifiers (pros & cons)
2. Exploration of temporal information in videos;

a. Model stabilization and consistency
b. Robustness in underwater environment

3. Identification of a Multi-label Video Classifier

2. Image & Video Datasets

LIACI Image Dataset: Total images = 1893, train = 1370,
validation = 191, and not used = 332.

Generated Video Dataset: Total snippets = 755, train = 584,
validation = 87, and not used = 84.

Fig. 3. Class instances distribution of the LIACI image dataset.

Fig. 4. Class instances distribution of the video dataset.

3. Methodology

Self-Attention: Hshdghsgdhsd vwhere N is the number of queries, D is the dimension and sagdhss represents a single
query. Shdfgdshdshadghsdg and sjdhjsdhfjsfjfjfj where d = D/h f.

Multi-label Video Classifier: Three approaches; Naive, Late-Fusion, and Attention-weighted models.

Fig. 5. Global vs single query scaled-dot product attention computation along with the multi-head mechanism.

Fig. 6. Three different approaches to multi-label video classification.

4. Results

Multi-label Image Classifier Improvement: Two models; IMAGENET_ViT and COCO_ViT.

Multi-label Video Classifier: Three approaches; Naive, Late-Fusion, and Attention-weighted models.

Fig. 7. (left)Performance comparison between ResNet and our models. (right)Gradual improvement of COCO_ViT.

Fig. 8. (left)Best metric values and models across approaches. (right)Performance comparison among the models.

5. Discussion

Fig. 9. Temporal observation between image and video models.

8. References

References are available in the thesis report or in
the preprint on ResearchGate:
http://dx.doi.org/10.13140/RG.2.2.27960.32007/1

7. Publications

1. Presented at OCEANS 2023 Limerick conference
(IEEE) Preprint: https://arxiv.org/abs/2305.17338

2. Presented at NORA Annual 2023 conference.
3. Invited for the Nordic Machine Intelligence

(NMI) level-1 journal.

6. Conclusion & Future Work

➢ Multi-label ViT image classifiers are trained and improved
➢ Video dataset is generated and annotated (weakly supervised)
➢ State-of-the-art spatiotemporal feature extraction is exploited
➢ Three different approaches to video models are introduced
➢ Single query in self-attention mechanism is introduced and

analyzed to compute attention scores
➢ Further work to prepare large-scale video dataset is required
➢ Other pretraining strategies should be explored
➢ Limitation and further research direction are provided

Fig. 10. Attention score distribution in the adjacent frames.

Appendix A
Additional Information

A.1 Multi-label classification using ResNet

Below the 7 diagrams present the visual multi-label classification reports of 7 key
video snippets shown in table 3.2.

Figure A.1: Visual report of multi-label classification on snippet no. 2 in table 3.2
using ResNet.

Figure A.2: Visual report of multi-label classification on snippet no. 3 in table 3.2
using ResNet.

125

126 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.3: Visual report of multi-label classification on snippet no. 4 in table 3.2
using ResNet.

Figure A.4: Visual report of multi-label classification on snippet no. 5 in table 3.2
using ResNet.

Figure A.5: Visual report of multi-label classification on snippet no. 6 in table 3.2
using ResNet.

Figure A.6: Visual report of multi-label classification on snippet no. 7 in table 3.2
using ResNet.

Chapter A: Additional Information 127

Figure A.7: Visual report of multi-label classification on snippet no. 8 in table 3.2
using ResNet.

A.2 Temporal results comparisons

A.2.1 ResNet VS COCO_ViT and IMAGENET_ViT

Below the seven diagrams represent the temporal observations of COCO_ViT and
IMAGENET_ViT comparing with the output of the ResNet model on the rest of the
video snippets from table 3.2 in Figures A.8 to A.14.

128 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.8: Temporal observation on the video snippet no. 1 from table 3.2.

Chapter A: Additional Information 129

Figure A.9: Temporal observation on the video snippet no. 2 from table 3.2.

130 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.10: Temporal observation on the video snippet no. 4 from table 3.2.

Chapter A: Additional Information 131

Figure A.11: Temporal observation on the video snippet no. 5 from table 3.2.

132 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.12: Temporal observation on the video snippet no. 6 from table 3.2.

Chapter A: Additional Information 133

Figure A.13: Temporal observation on the video snippet no. 7 from table 3.2.

134 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.14: Temporal observation on the video snippet no. 8 from table 3.2.

Chapter A: Additional Information 135

A.2.2 Video Models

Temporal observations for video models on the rest of the video snippets are added
here.

Figure A.15: Temporal observation of the best two naive video models on the
snippet no.2 from table 3.2.

136 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.16: Temporal observation of the best two naive video models on the
snippet no.3 from table 3.2.

Figure A.17: Temporal observation of the best two naive video models on the
snippet no.4 from table 3.2.

Chapter A: Additional Information 137

Figure A.18: Temporal observation of the best two naive video models on the
snippet no.5 from table 3.2.

Figure A.19: Temporal observation of the best two naive video models on the
snippet no.6 from table 3.2.

138 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.20: Temporal observation of the best two naive video models on the
snippet no.7 from table 3.2.

Figure A.21: Temporal observation of the best two naive video models on the
snippet no.8 from table 3.2.

Chapter A: Additional Information 139

Figure A.22: Temporal observation of the best two late-fusion video models on
the snippet no.1 from table 3.2.

Figure A.23: Temporal observation of the best two late-fusion video models on
the snippet no.2 from table 3.2.

140 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.24: Temporal observation of the best two late-fusion video models on
the snippet no.3 from table 3.2.

Figure A.25: Temporal observation of the best two late-fusion video models on
the snippet no.4 from table 3.2.

Chapter A: Additional Information 141

Figure A.26: Temporal observation of the best two late-fusion video models on
the snippet no.6 from table 3.2.

Figure A.27: Temporal observation of the best two late-fusion video models on
the snippet no.7 from table 3.2.

142 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.28: Temporal observation of the best two late-fusion video models on
the snippet no.8 from table 3.2.

Figure A.29: Temporal observation of the best two attention-weighted video
models on the snippet no.1 from table 3.2.

Chapter A: Additional Information 143

Figure A.30: Temporal observation of the best two attention-weighted video
models on the snippet no.2 from table 3.2.

Figure A.31: Temporal observation of the best two attention-weighted video
models on the snippet no.3 from table 3.2.

144 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Figure A.32: Temporal observation of the best two attention-weighted video
models on the snippet no.4 from table 3.2.

Figure A.33: Temporal observation of the best two attention-weighted video
models on the snippet no.5 from table 3.2.

Chapter A: Additional Information 145

Figure A.34: Temporal observation of the best two attention-weighted video
models on the snippet no.6 from table 3.2.

Figure A.35: Temporal observation of the best two attention-weighted video
models on the snippet no.7 from table 3.2.

Appendix B
Code Listings

All the reference codes will be attached here in this chapter.

B.1 Attention

The function below computes the attention given to the query, key, and value
matrices. It also handles the single query attention computation.

Code listing B.1: The function to compute attention using Q, K, and V

def attention(query, key, value, mask=None, dropout=None):
"Compute␣’Scaled␣Dot␣Product␣Attention’"
d_k: head dimension, usually set to D/h
d_k = query.size(-1)
attention score before softmax
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
currently, we are not using mask in our project
if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)
probability of attention score (after softmax)
p_attn = scores.softmax(dim=-1)
if dropout is not None:

p_attn = dropout(p_attn)
if query.size(-2) == 1 and not key.size(-2) == 1:
if a single query attention, element-wise multiplication
attn_v = p_attn.transpose(-1,-2) * value

else:
else matrix multiplication
attn_v = torch.matmul(p_attn, value)

return attn_v, p_attn

B.2 Multi-Head Attention

The below codes execute the multi-head attention using the attention function.
If the query is given as a single query, it will compute single query multi-headed
attention.

147

148 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Code listing B.2: Multi-head attention computation.

class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take␣in␣model␣size␣and␣number␣of␣heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)

def forward(self, query, key, value, mask=None):
currently, we are not using mask
if mask is not None:
Same mask applied to all h heads.
mask = mask.unsqueeze(1)

number of batches
nbatches = query.size(0)

1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [

lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for lin, x in zip(self.linears, (query, key, value))

]

2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(

query, key, value, mask=mask, dropout=self.dropout
)

3) "Concat" using a view and apply a final linear.
x = (

x.transpose(1, 2)
.contiguous()
.view(nbatches, -1, self.h * self.d_k)

)
del query
del key
del value
return self.linears[-1](x)

composes a stack of N=6 identical layers togather.
def clones(module, N):

"Produce␣N␣identical␣layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

B.3 Vision Transformer (Spatial Transformer)

The below codes represent the implementation of the standard Vision Transformer
available in torchvision. We use this code also for our spatial transformer.

Code listing B.3: Standard Vision Transformer Implementation.

class VisionTransformer(nn.Module):
"""Vision Transformer as per https://arxiv.org/abs/2010.11929."""

Chapter B: Code Listings 149

def __init__(
self,
image_size: int,
patch_size: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float = 0.0,
attention_dropout: float = 0.0,
num_classes: int = 1000,
representation_size: Optional[int] = None,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),

):
super().__init__()
_log_api_usage_once(self)
torch._assert(image_size % patch_size == 0,

"Input␣shape␣indivisible␣by␣patch␣size!")
self.image_size = image_size
self.patch_size = patch_size
self.hidden_dim = hidden_dim
self.mlp_dim = mlp_dim
self.attention_dropout = attention_dropout
self.dropout = dropout
self.num_classes = num_classes
self.representation_size = representation_size
self.norm_layer = norm_layer
self.conv_proj = nn.Conv2d(

in_channels=3, out_channels=hidden_dim,
kernel_size=patch_size, stride=patch_size

)

seq_length = (image_size // patch_size) ** 2

Add a class token
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
seq_length += 1

self.encoder = Encoder(
seq_length,
num_layers,
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,

)
self.seq_length = seq_length

heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
if representation_size is None:

heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
else:

heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
heads_layers["act"] = nn.Tanh()
heads_layers["head"] = nn.Linear(representation_size, num_classes)

self.heads = nn.Sequential(heads_layers)

150 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

define the pool
self.pool = ’cls’ #’mean’

""" Process the given input to the model """
def _process_input(self, x: torch.Tensor) -> torch.Tensor:

n, c, h, w = x.shape
p = self.patch_size
torch._assert(h == self.image_size,

f"Wrong␣image␣height!␣Expected␣{self.image_size}␣but␣got␣{h}!")
torch._assert(w == self.image_size,

f"Wrong␣image␣width!␣Expected␣{self.image_size}␣but␣got␣{w}!")
n_h = h // p
n_w = w // p

(n, c, h, w) -> (n, hidden_dim, n_h, n_w)
x = self.conv_proj(x)
(n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
x = x.reshape(n, self.hidden_dim, n_h * n_w)

(n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
The self attention layer expects inputs in the format (N, S, E)
where S is the source sequence length, N is the batch size,
E is the embedding dimension
x = x.permute(0, 2, 1)
return x

def forward(self, x: torch.Tensor):
Reshape and permute the input tensor
x = self._process_input(x)
n = x.shape[0]

Expand the class token to the full batch
batch_class_token = self.class_token.expand(n, -1, -1)
x = torch.cat([batch_class_token, x], dim=1)

x = self.encoder(x)

Either the CLS token or the global average can be passed to the MLP
x = x.mean(dim = 1) if self.pool == ’mean’ else x[:, 0]
x = self.heads(x)
return x

class Encoder(nn.Module):
"""Transformer Model Encoder for sequence to sequence translation."""
def __init__(

self,
seq_length: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),

):
super().__init__()
Note that batch_size is on the first dim because
we have batch_first=True in nn.MultiAttention() by default
self.pos_embedding = nn.Parameter(torch.empty(

1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT

Chapter B: Code Listings 151

self.dropout = nn.Dropout(dropout)
layers: OrderedDict[str, nn.Module] = OrderedDict()
for i in range(num_layers):

layers[f"encoder_layer_{i}"] = EncoderBlock(
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,

)
self.layers = nn.Sequential(layers)
self.ln = norm_layer(hidden_dim)

def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3,

f"Expected␣(batch_size,␣seq_length,␣hidden_dim)␣got␣{input.shape}")
input = input + self.pos_embedding
return self.ln(self.layers(self.dropout(input)))

class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(

self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),

):
super().__init__()
self.num_heads = num_heads

Attention block
self.ln_1 = norm_layer(hidden_dim)
self.self_attention = nn.MultiheadAttention(hidden_dim,

num_heads, dropout=attention_dropout, batch_first=True)
self.dropout = nn.Dropout(dropout)

MLP block
self.ln_2 = norm_layer(hidden_dim)
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)

def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3,

f"Expected␣(batch_size,␣seq_length,␣hidden_dim)␣got␣{input.shape}")
x = self.ln_1(input)
x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
x = self.dropout(x)
x = x + input
y = self.ln_2(x)
y = self.mlp(y)
return x + y

152 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

B.4 Positional Encoding

The below codes represent the implementation of the positional encoding we have
used for our temporal transformer.

Code listing B.4: Positional Encoding implementation.

class PositionalEncoding(nn.Module):
"Implement␣the␣PE␣function."

def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)

Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(

torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)

def forward(self, x):
x = x + self.pe[:, : x.size(1)].requires_grad_(False)
return self.dropout(x)

B.5 Temporal Transformer

The below codes represent the implementation of the temporal transformer util-
izing attention, multi-head attention, and positional encoding presented earlier.

Code listing B.5: Temporal Transformer implementation.

class Transformer(nn.Module):
"""
A standard transformer architecture.
"""

def __init__(self, encoder, src_embed):
super(Transformer, self).__init__()
self.encoder = encoder
self.src_embed = src_embed

def forward(self, src, src_mask):
"Take␣in␣and␣process␣masked␣src␣and␣target␣sequences."
return self.encode(src, src_mask)

def encode(self, src, src_mask):
return self.encoder(src, src_mask)

class Encoder(nn.Module):
"Core␣encoder␣is␣a␣stack␣of␣N␣layers"

Chapter B: Code Listings 153

def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, mask):
"Pass␣the␣input␣(and␣mask)␣through␣each␣layer␣in␣turn."
for layer in self.layers:

x = layer(x, mask)
return self.norm(x)

class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""

def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer):
"Apply␣residual␣connection␣to␣any␣sublayer␣with␣the␣same␣size."
return x + self.dropout(sublayer(self.norm(x)))

class EncoderLayer(nn.Module):
"Encoder␣is␣made␣up␣of␣self-attn␣and␣feed␣forward␣(defined␣below)"

def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size

def forward(self, x, mask):
"Follow␣Figure␣1␣(left)␣for␣connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)

class PositionwiseFeedForward(nn.Module):
"Implements␣FFN␣equation."

def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))

class Embeddings(nn.Module):
def __init__(self, d_model, vocab):

super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model

def forward(self, x):

154 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

return self.lut(x) * math.sqrt(self.d_model)

B.6 Reproduction of the ResNet model

The below codes import the trained ResNet model and execute a multi-label classi-
fication on a provided video snippet. It also generates a report as a diagram using
extract-summery script added in B.7.

Code listing B.6: Load the ResNet model and perform multi-label classification.

"""
Created on Thu Oct 06 2022
@author: Azad
"""
import glob
import os
import argparse
import extract_summary

def parse_args():
parser = argparse.ArgumentParser(description= "Run␣the␣multi-label␣video

␣␣␣␣␣␣␣␣␣␣␣␣classification␣with␣additional␣configuration␣&␣output␣options.")
parser.add_argument("--input_type", default="", choices=["video",

"plot_label"], help= "Specify␣the␣input␣type␣as␣video␣or
␣␣␣␣␣␣␣␣␣␣␣␣plot_label␣for␣drawing␣from␣existing␣results.")

parser.add_argument("--input_path", default="", help=
"Path␣to␣the␣folder␣contains␣all␣the␣videos.")

parser.add_argument("--output_path", default="", help=
"Specify␣the␣path␣to␣the␣output␣folder.")

args = parser.parse_args()
return args

if __name__ == "__main__":
args = parse_args()

if args.output_path == "":
args.output_path = os.path.join(args.input_path, "output")

if args.input_type == "video":
if args.input_path == "":

raise ValueError("Must␣specify␣the␣’--input_path’␣to␣the␣video␣folder.")
for file_path in glob.glob(args.input_path+"/*.mp4"):

snippet_name = os.path.splitext(os.path.basename(file_path))[0]
snippet_csv_path = os.path.join(args.output_path, f"{snippet_name}.csv")
extract_summary.classify_video(file_path, snippet_csv_path)
extract_summary.plot_labels(file_path, snippet_csv_path)

elif args.input_type == "plot_label":
if args.input_path == "":

raise ValueError("Must␣specify␣the␣’--input_path’␣to␣the␣video␣folder.")
for file_path in glob.glob(args.input_path+"/*.mp4"):

snippet_name = os.path.splitext(os.path.basename(file_path))[0]
snippet_csv_path = os.path.join(args.output_path, f"{snippet_name}.csv")
extract_summary.plot_labels(file_path, snippet_csv_path)

else:
raise ValueError("Must␣specify␣the␣’--input_type’␣as␣image␣or␣video")

Chapter B: Code Listings 155

Code listing B.7: Additional resource to reproduce the ResNet.

def classify(image):
onnxruntime inference
sess = rt.InferenceSession(MODEL_FILENAME, providers=[’CPUExecutionProvider’])
Get the input name and shape of the model
input_name = sess.get_inputs()[0].name
h,w = sess.get_inputs()[0].shape[2:]
blob = cv2.dnn.blobFromImage(image=image, size=(w,h), swapRB=False, crop=False)
start = time.time()
#Running the session by passing in the input data of the model
out = sess.run(None, {input_name: blob})
end = time.time()
inference_time = end - start
scores = list(out[1][0].values())
return scores

def classify_video(video_url,csv_file):
cap = cv2.VideoCapture(video_url)
TOTAL_NUM_OF_FRAMES = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

classification = {}
for i in range(0,TOTAL_NUM_OF_FRAMES, 1):

cap.set(cv2.CAP_PROP_POS_FRAMES, i)
frame = cap.read()[1]
outputs = classify(frame)
value_dict = {}
for key, value in zip(labels, outputs):

value_dict[key] = value
classification[i]= value_dict

df = pd.DataFrame.from_dict(classification, orient=’index’)
df.to_csv(csv_file)
cap.release()

def plot_labels(video_url, csv_file):
cap = cv2.VideoCapture(video_url)
FPS = cap.get(cv2.CAP_PROP_FPS)
label_classified = pd.read_csv(csv_file)
np_labels = label_classified.to_numpy()
fig, ax = plt.subplots(1,1,figsize=(20,5.5))
img = ax.imshow(np_labels[:,1:].transpose(),aspect=12,interpolation = ’none’)
ax.set_yticks([0,1,2,3,4,5,6,7,8])
x_ticks = np.arange(0, len(np_labels[:,1]), len(np_labels[:,1])/10)
ax.set_xticks(x_ticks)
xtick_labels=(x_ticks/FPS)
ax.set_xticklabels([str(round(float(label), 2)) for label in xtick_labels],

fontsize=22)
ax.set_yticklabels([’anode’,’bilge_keel’,’corrosion’,’defect’,’marine_growth’,

’over_board_valve’,’paint_peel’,’propeller’,
’sea_chest_grating’], fontsize=30)

plt.tight_layout()
ax.set_xlabel(’Time␣[s]’, fontsize=30)
ax.set_title(’Multi-label␣Video␣Classification’, fontsize=30)
fig.savefig(os.path.splitext(csv_file)[0] + ’.png’)
plt.close(fig)

156 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

B.7 Implementation of Multi-label Image Classifiers

The below codes combined implementations of all the ViT image-based models
we have produced in our works.

Code listing B.8: Implementation of ViT image models.

"""
Created on Wednesday Feb 02 2023
@author: Azad Md Abulkalam

The script creates and trains a multi-label vision transformer for multi-label
image classification.
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import pandas as pd
import torchvision
from torchvision import models, transforms
import matplotlib.pyplot as plt
import time
import os
import argparse
from torch.utils.tensorboard import SummaryWriter

from datasets import CustomDataset
from multilabel_metric import MultMetric
import inference
import utils

classes = [’anode’, ’bilge_keel’, ’corrosion’, ’defect’, ’marine_growth’,
’over_board_valve’, ’paint_peel’, ’propeller’, ’sea_chest_grating’]

def getClass(name="LIACI"):
if name=="LIACI":

return 9
elif name=="COCO":

return 80
elif name=="IMAGENET":

return 1000
else: # default LIACI

return 9

Data augmentation and normalization for training
Just normalization for validation
def get_transform(train, model):

data_transforms = {
’LIACI’: {

’train’: utils.Compose([
#transforms.RandomResizedCrop(224), # resizing
utils.GuidedCrop(label=0, p=0.5), #order of the transformation
#is important here #label in here refers to the category that
#should be cropped
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply(torch.nn.ModuleList([

Chapter B: Code Listings 157

transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5))]),
p=0.5),

transforms.RandomApply(torch.nn.ModuleList([transforms.AugMix()]),
p=0.5),

transforms.ToTensor(),
transforms.Normalize([0.3485, 0.3699, 0.3520],

[0.2495, 0.2446, 0.2062])
]),

’val’: transforms.Compose([
transforms.Resize((224, 224)),
#transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.3485, 0.3699, 0.3520],

[0.2495, 0.2446, 0.2062])
]),

},
’COCO’: {

’train’: transforms.Compose([
#transforms.RandomResizedCrop(224), # resizing
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),

’val’: transforms.Compose([
transforms.Resize((224, 224)),
#transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),

},
}

if train:
return data_transforms[model][’train’]

else:
return data_transforms[model][’val’]

def parse_args():
parser = argparse.ArgumentParser(description =

"Creates␣and␣trains␣a␣multi-label␣vision␣transformer.")
parser.add_argument("--root_dir", default="", help=

"Specify␣the␣path␣to␣the␣root␣directory␣of␣the␣dataset␣folder.")
parser.add_argument("--model", default="COCO", choices=["COCO", "LIACI"],

help="Specify␣the␣model␣name␣for␣compatible␣architecture.")
parser.add_argument("--weight", default="", choices=["IMAGENET","COCO",
"LIACI"], help="Specify␣the␣pretrained␣weight␣to␣start␣the␣training␣from.")
parser.add_argument("--checkpoint", default="", help=

"Path␣tp␣the␣saved␣model␣if␣pretrained␣weight␣is␣used.")
parser.add_argument("--batch_size", type=int, default=16, help=

"Define␣the␣batch␣size,␣otherwise␣16.")
parser.add_argument("--n_worker", type=int, default=4, help=

"Define␣the␣number␣of␣worker␣for␣multiprocessing,␣otherwise␣4.")
parser.add_argument("--n_epoch", type=int, default=10, help=

"Define␣the␣number␣of␣epochs␣for␣training,␣otherwise␣10.")
parser.add_argument("--runs_n", type=int, default=100, help=

"Define␣the␣experiment␣number,␣otherwise␣100.")
parser.add_argument("--partial_train", action="store_true", help=

158 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

"If␣partial␣finetuning␣is␣desireabled.")
args = parser.parse_args()
return args

def train_model(args, model, dataloaders, dataset_sizes, criterion, optimizer,
scheduler, device, num_epochs=25):

since = time.time()
print(f’The␣device␣is␣being␣used␣for␣training:␣{device}’)
model = model.to(device)

#tensorboard logs
run_folder = os.path.join("runs", f"runs{args.runs_n}")
model_folder = os.path.join("model_zoo", f"runs{args.runs_n}")

threshold for computing running accuracy
metric = MultMetric(threshold=0.5)

if args.model == "LIACI":
best_model_path = os.path.join(f"{model_folder}",
f"{’partial_finetuned’␣if␣args.partial_train␣else␣’fully_finetuned’}",
f"{args.weight}_pretrain", "best_model")
checkpoint_path = os.path.join(f"{model_folder}",
f"{’partial_finetuned’␣if␣args.partial_train␣else␣’fully_finetuned’}",
f"{args.weight}_pretrain", "checkpoint")
log_path = os.path.join(f"{run_folder}",
f"{’partial_finetuned’␣if␣args.partial_train␣else␣’fully_finetuned’}",
f"{args.weight}_pretrain")

elif args.model == "COCO":
best_model_path = os.path.join(f"{model_folder}",

"pretrain_models",
f"{args.model}",
"best_model")

checkpoint_path = os.path.join(f"{model_folder}",
"pretrain_models",
f"{args.model}",
"checkpoint")

log_path = os.path.join(f"{run_folder}",
"pretrained_models",
f"{args.weight}_pretrain")

if not os.path.exists(best_model_path):
os.makedirs(best_model_path)

if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)

if not os.path.exists(log_path):
os.makedirs(log_path)

#best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
running_eval = {}

inspection images
ins_imgs, ins_labels = next(iter(dataloaders[’val’]))

writer = SummaryWriter(log_dir=log_path)
ins_imgs = ins_imgs.to(device)
#writer.add_graph(model, ins_imgs)

for epoch in range(num_epochs):

Chapter B: Code Listings 159

print(f’Epoch␣{epoch}/{num_epochs␣-␣1}’)
print(’-’ * 10)

Each epoch has a training and validation phase
for phase in [’train’, ’val’]:

if phase == ’train’:
model.train() # Set model to training mode

else:
model.eval() # Set model to evaluate mode

running_eval[’loss’] = 0.0
running_eval[’accuracy’] = 0.0
running_eval[’precision’] = 0.0
running_eval[’f1-score’] = 0.0
#running_eval[’mAP’] = 0.0
running_eval[’recall’] = 0.0
for cat in classes:

running_eval[cat] = {
’precision’: 0.0,
’recall’: 0.0,
’f1-score’: 0.0

}

Iterate over data.
#iter = 0
for inputs, labels in dataloaders[phase]:

#iter += 1
inputs = inputs.to(device)
labels = labels.to(device)

zero the parameter gradients
optimizer.zero_grad()

forward
track history if only in train
with torch.set_grad_enabled(phase == ’train’):

outputs = model(inputs)
#_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)

backward + optimize only if in training phase
if phase == ’train’:

loss.backward()
optimizer.step()

statistics
running_eval[’loss’] += loss.item() * inputs.size(0)
runningMet = metric.metrics(outputs, labels)
running_eval[’accuracy’] += runningMet[’accuracy’] * inputs.size(0)
running_eval[’precision’] += runningMet[’report’][’samples␣avg’]

[’precision’] * inputs.size(0)
running_eval[’f1-score’] += runningMet[’report’][’samples␣avg’]

[’f1-score’] * inputs.size(0)
running_eval[’recall’] += runningMet[’report’][’samples␣avg’]

[’recall’] * inputs.size(0)

for cat in classes:
running_eval[cat][’precision’] += runningMet[’report’][cat]

[’precision’] * inputs.size(0)
running_eval[cat][’recall’] += runningMet[’report’][cat]

160 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

[’recall’] * inputs.size(0)
running_eval[cat][’f1-score’] += runningMet[’report’][cat]

[’f1-score’] * inputs.size(0)

epoch_report = {}
epoch_report[’loss’] = running_eval[’loss’] /

dataset_sizes[phase]
epoch_report[’accuracy’] = running_eval[’accuracy’] /

dataset_sizes[phase]
epoch_report[’precision’] = running_eval[’precision’] /

dataset_sizes[phase]
epoch_report[’f1-score’] = running_eval[’f1-score’] /

dataset_sizes[phase]
epoch_report[’recall’] = running_eval[’recall’] /

dataset_sizes[phase]
for cat in classes:

epoch_report[cat] = {
’precision’: running_eval[cat][’precision’] /

dataset_sizes[phase],
’recall’: running_eval[cat][’recall’] /

dataset_sizes[phase],
’f1-score’: running_eval[cat][’f1-score’] /

dataset_sizes[phase]
}

if phase == ’train’:
scheduler.step()
step should be called after validate() for ReduceLROnPlateau
if phase == ’val’:

scheduler.step(epoch_report[’loss’])

#logs metrics to tensorboard
writer.add_scalar(f"Loss/{phase}", epoch_report[’loss’],

epoch)
writer.add_scalar(f"Accuracy/{phase}", epoch_report[’accuracy’],

epoch)
writer.add_scalar(f"Precision/{phase}", epoch_report[’precision’],

epoch)
writer.add_scalar(f"Recall/{phase}", epoch_report[’recall’],

epoch)
writer.add_scalar(f"F1/{phase}", epoch_report[’f1-score’], epoch)

writer.add_scalars(f"Classes/Precision/{phase}", {cat: epoch_report[cat]
[’precision’] for cat in classes}, epoch)

writer.add_scalars(f"Classes/Recall/{phase}", {cat: epoch_report[cat]
[’recall’] for cat in classes}, epoch)

writer.add_scalars(f"Classes/F1/{phase}", {cat: epoch_report[cat]
[’f1-score’] for cat in classes}, epoch)

#logs one batch of images from the epoch
#logs model confidence on each class labels during every epoch
if phase== ’val’:

_, probs = inference.images_to_probs(model, ins_imgs)
for i in range(probs.shape[0]):

writer.add_scalars(f"Images/{i}", {cat:
probs[i][j] for j, cat in enumerate(classes)}, epoch)

#logs visual images along with confidence and ground truth

Chapter B: Code Listings 161

#at every certain number of epochs
if epoch%10==0 and phase == ’val’:

create grid of images
img_grid = inference.plot_classes_preds(args.model, model, ins_imgs,
ins_labels, os.path.join(args.root_dir, "train", "labels",

"categories.csv"))
writer.add_image(f"{epoch}/images", img_grid)

saving the training checkpoint
if phase == ’train’:

torch.save({
’epoch’: epoch,
’model_state_dict’: model.state_dict(),
’optimizer_state_dict’: optimizer.state_dict(),
’loss’: loss,
}, os.path.join(checkpoint_path,

f"mvit_last_cp_{args.model}.pt"))

if phase == ’val’ and epoch_report[’accuracy’] > best_acc:
best_acc = epoch_report[’accuracy’]
#best_model_wts = copy.deepcopy(model.state_dict())
saving the best model
torch.save({

’epoch’: epoch,
’model_state_dict’: model.state_dict(),
’optimizer_state_dict’: optimizer.state_dict(),
’loss’: loss,
}, os.path.join(best_model_path, f"mvit_{args.model}.pt"))

print()
writer.flush()
writer.close()
time_elapsed = time.time() - since
print(f’Training␣complete␣in␣{time_elapsed␣//␣60:.0f}m␣{time_elapsed␣%␣60:.0f}s

␣␣␣for␣{args.model}’)
print(f’Best␣val␣Acc:␣{best_acc:4f}’)
print(f’Best␣model␣is␣saveed␣in␣{best_model_path}’)
print(f’Last␣checkpoint␣is␣saveed␣in␣{checkpoint_path}’)

’’’
To load either LIACI or COCO dataset
root_dir: path to the root directory of the dataset
name: ’LIACI’ or ’COCO’

Returns a dict containing dataloader and dataset size
’’’
def loadDataset(args):#root_dir, batch_size, n_workers, name="LIACI"):

dataset = {}

dataset[’name’] = args.model
#Dataset & Dataloader from COCO folder -----------------------------#
train_dataset = CustomDataset(args.root_dir, train=True, transforms=

get_transform(train=True, model=args.model))
val_dataset = CustomDataset(args.root_dir, val=True, transforms=

get_transform(train=False, model=args.model))

162 M.A. Azad@IMT: Multi-label Video Classification for Underwater Ship Inspection

Dataloader for train dataset
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=

args.batch_size, shuffle=True, num_workers=args.n_worker)
Dataloader for train dataset
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=

args.batch_size, shuffle=True, num_workers=args.n_worker)

data_loaders = {
’train’: train_dataloader,
’val’: val_dataloader

}
dataset_sizes = {

’train’: len(train_dataset),
’val’: len(val_dataset)

}
dataset[’dataloader’] = data_loaders
dataset[’size’] = dataset_sizes

debugging with subsets of the dataset
train_indices = torch.randperm(dataset_sizes["train"]).tolist()
val_indices = torch.randperm(dataset_sizes["val"]).tolist()

dataset_train = torch.utils.data.Subset(train_dataset, train_indices[:100])
dataset_val = torch.utils.data.Subset(val_dataset, val_indices[:20])
sub_train_dataloader = torch.utils.data.DataLoader(dataset_train, batch_size=

args.batch_size, shuffle=True, num_workers=args.n_worker)
sub_val_dataloader = torch.utils.data.DataLoader(dataset_val, batch_size=

args.batch_size, shuffle=True, num_workers=args.n_worker)
data_loaders = {

’train’: sub_train_dataloader,
’val’: sub_val_dataloader

}
dataset_sizes = {

’train’: len(dataset_train),
’val’: len(dataset_val)

}
dataset[’dataloader’] = data_loaders
dataset[’size’] = dataset_sizes
return dataset

’’’
To select a model either for LIACI or COCO dataset
name: ’LIACI’ or ’COCO’

Returns a pretrained ViT (16) model with setting the head according
to LIACI (9 classes) or COCO (80 classes)
’’’
def selectModel(args):

declaring the base model
if args.weight == "IMAGENET":

model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT)
else:

model = models.vit_b_16()
default number of classes
num_ftrs = model.heads.head.in_features
model.heads.head = nn.Linear(num_ftrs, getClass(args.weight))
loading weight from the given checkpoint
if (os.path.exists(args.checkpoint)):

checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint[’model_state_dict’])

Chapter B: Code Listings 163

else:
raise Exception("Checkpoint␣doesn’t␣exist!!!")

if args.model != args.weight:
num_ftrs = model.heads.head.in_features
model.heads.head = nn.Linear(num_ftrs, getClass(args.model))

if partial training is one
if args.partial_train:

for name, param in model.named_parameters():
if ’head’ in name:

param.requires_grad = True
else:

param.requires_grad = False
return model

if __name__ == ’__main__’:
args = parse_args()

load the prefered dataset: either ’COCO’ or ’LIACI’
dataset = loadDataset(args)
print(f"Name␣of␣the␣dataset:␣{dataset[’name’]}")
print(f’Train␣images:␣{dataset["size"]["train"]}’)
print(f’Validation␣images:␣{dataset["size"]["val"]}’)
#---------------------- Some Debugging -----------------------------#

#ViT finetune and Training -----------------------------#
mvit = selectModel(args)
The loss funtion should be binary cross entropy for
#multi-label classification problem
criterion = nn.BCEWithLogitsLoss()
if not args.partial_train:

Observe that all parameters are being optimized
optimizer_ft = optim.SGD(mvit.parameters(), lr=0.001, momentum=0.9)
#optimizer_ft = optim.Adam(mvit.parameters(), lr=0.001,
#weight_decay=0.3)

else:
Observe that only parameters of final layer are being optimized
optimizer_ft = optim.SGD(mvit.heads.parameters(), lr=0.001, momentum=0.9)
#optimizer_ft = optim.Adam(mvit.heads.parameters(), lr=0.001,
#weight_decay=0.3)

Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=50, gamma=0.1)
exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer_ft, mode=’min’,

factor=0.1)
set the device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
mvit_ft = train_model(args=args, model=mvit, dataloaders=dataset[’dataloader’],

dataset_sizes=dataset[’size’], criterion=criterion, optimizer=optimizer_ft,
scheduler=exp_lr_scheduler, device=device, num_epochs=args.n_epoch)

	Abstract
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Underwater ship hull inspection
	Frame-wise video analysis
	Main objective
	Related Works
	Convolutional Neural Network (CNN)
	Vision Transformer (ViT)
	Temporal Action Localization (TAL)
	Spatiotemporal features in Video Classification
	Image-to-Video Transfer Learning
	Materials & Methods
	Datasets
	Image dataset
	Video dataset

	Self-Attention Mechanism
	Scaled Dot-Product Attention
	Multi-Head Attention

	Transformers
	Spatial Transformer
	Temporal Transformer

	Multi-label Image Classifier
	ResNet Model
	ViT Model

	Multi-label Video Classifier
	Naive Video Transformer
	Late-Fusion Spatiotemporal Transformer
	Attention weighted Spatiotemporal Transformer

	Analyzing Materials
	Prediction Confidence and Temporal Characteristics
	Underwater Image Quality Metrics
	Multi-label Evaluation Metrics

	Hardware Resources

	Results
	Multi-label ResNet Classifier
	Multi-label Image Classifers
	Multi-label Video Classifiers
	Naive Video Transformer
	Late-Fusion Spatiotemporal Transformer
	Attention weighted Spatiotemporal Transformer
	Performance Comparison
	Temporal Performance

	Ablation study
	Frame-based Video Classification
	Hyperparameters and Transformations
	Prediction Confidence Evolution
	Multi-label ViT Image Models

	Video-based Classification
	Spatiotemporal-based Video Classification
	Multi-label Video Classifiers
	Number of layers in Temporal Transformer
	Single Query Attention Inspection

	Conclusion & Future Work
	Bibliography
	Paper I
	Paper II

	Poster I
	Poster II
	Additional Information
	Multi-label classification using ResNet
	Temporal results comparisons
	ResNet VS COCO_ViT and IMAGENET_ViT
	Video Models

	Code Listings
	Attention
	Multi-Head Attention
	Vision Transformer (Spatial Transformer)
	Positional Encoding
	Temporal Transformer
	Reproduction of the ResNet model
	Implementation of Multi-label Image Classifiers

