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Introduction

Autoencoder Network - Paired Image Translation

Most of the models we have today are super-
vised, therefore success or good generaliza- | |

Encoder Decoder

tion capability of the model, relies heavily on | | Output

large amounts of labeled training data. Due
to the cost, time, and complexity of providing
annotations, as the natural world is unanno-
tated, there is a need for a learning technique
that can improve the realism of synthetic
data from simulated environments. In this the-
sis, we investigate two major image-to-image
translation techniques using autoencoders and
contrastive learning for improving the real-
ism of synthetic underwater images and
compare our results with several baselines.

We explored both paired and unpaired im-
age translation. First, we build a rather naive
image translation model using an autoencoder
and compare our results with those obtained us-
ing the SOTA pix2pix [1]. Second, we adapted
the CUT |2| framework and adjust the input to
account for an extra dimension of depth in-
formation. We call our method CoDe (Con- ;
furastlve—l—DeptI.l) for simplicity:. T he Figure " synthetic Uniform Lighting J
in the next section shows an overview of our
CoDe algorithm. We perform a comprehensive
comparison with the state-of-the-art in unpaired
image-to-image translation as shown in the Re-
sults section.
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