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Abstract

This thesis work explores multimodal learning techniques for habitat classification using remotely
sensed and visual data. Autonomous Underwater Vehicles (AUVs) play a vital role in marine sci-
entific surveys, providing e�cient data collection and observations over marine ecosystems. Benthic
habitat mapping, which involves classifying seabed sites into di↵erent habitat categories, is a key
objective in marine ecology. AUVs capture visual imagery of the seabed, while multibeam sonars
collect bathymetry data. By correlating visual imagery with features from the bathymetry data, re-
liable habitat classification models can be developed. This study investigates self-supervised learn-
ing approaches, particularly contrastive learning, to enable robust classification and image-content
prediction. Results show that contrastive learning on bathymetry data achieves test accuracy rates
of approximately 59% and 63% for patch sizes 16x16 and 32x32, respectively. In contrast, visual
imagery achieves over 86% accuracy. Multimodal learning, combining visual images with bathy-
metry patches, yields accuracies of about 71% and 72% for di↵erent patch sizes. Separate networks
with shared loss achieve accuracies of over 71%. This work demonstrates the feasibility and e↵ect-
iveness of multimodal learning techniques in habitat classification, leveraging the strengths of both
visual and bathymetry data. Future work involves exploring additional self-supervised multimodal
learning approaches to improve underwater data analysis.
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1 Introduction

1.1 Motivation

Nowadays Autonomous Underwater Vehicles (AUVs) can be advantageously integrated in marine
scientific survey tasks. They can perform e�cient data collection in areas with di�cult accessibility,
by providing longer operation time and excellent data extraction capacity, thus facilitating the
observations over marine ecosystems. One of the main objectives in marine ecology is benthic
habitat mapping, which is the task of performing classification of sea-bed sites into di↵erent habitat
categories e.g coral reefs, sand, seagrasses etc (Williams et al. 2010). AUVs can be deployed to
perform benthic imaging where they extract numerous amount of visual imagery by the camera
with corresponding geo-reference on planned paths. This visual imagery provides high spatial
and angular resolution data that is easy for humans to interpret and is further used for habitat
classification and benthic research of the area under investigation. However, the problem is that
deploying AUVs to obtain the whole imagery of the sea-bed surface is not feasible due to time and
cost constraints. The marine seafloors of interest can cover thousands of square kilometers, which
may require substantial amount of human and machine resources. AUV’s image sensor footprint
is rather typically limited to ranges of a few meters at most, covering area of between 1 and 10
meters squared. On the other hand, multi-beam sonars are of great use, since they can obtain
seabed bathymetry data of vastly extending sizes in time-e�cient and low-cost manner, yet data
is comparitevely of low resolution. Also, this acoustic imagery has much longer ranges and is not
a↵ected significantly by water turbidity but can be harder to interpret. Some underwater robots
operating near the seafloor often carry multiple sensing modalities to complement the strengths
and overcome the limitations of each modality. For example, visual and acoustic imagery are
present together, when robot has both sonar and visual camera equipment.
Benthic habitats seem to have correlation to the their underlying bathymetry. Therefore, seabed
terrain data can be utilized to identify habitat types of the corresponding regions by the means of
machine learning predictive models. Specifically, this can be achieved by correlating imagery data
which is considered to be ground-truth for habitat class and features extracted from the seabed
bathymetry data. As a result, highly detailed maps of habitat types that spans over regions of huge
sizes could be produced. Thus, there is a need to build reliable and robust models to precisely learn
correlations between the scarce visual imagery and features from acoustic data of seabed terrain.
This thesis work will investigate machine learning approaches in particular self-supervised learning
with multiple modalities to enable robust forms of classification and image-content prediction.
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1.2 Objectives and scope

This thesis aims to:

• review relevant literature in multimodal perception and its overall underwater applications

• define a specific scenario for multimodal perception underwater and explore self-supervised
contrastive learning approach to solve it

• demonstrate and evaluate potential approaches using synthetic data, existing real-world data,
and/or experimental data

This thesis aims to address the scarcity of ground truth data in underwater datasets by initially
focusing on available remote sensing data of the Earth’s land surface. The research scope en-
compasses the development and testing of a proposed model using digital elevation models of
terrestrial terrain and satellite imagery with labeled information. The reason for incorporating
terrestrial data lies in its advantage of having available ground truth everywhere, which contrasts
with the limited availability of ground truth in underwater datasets. The reason and importance of
using terrestrial data is its advantage of having a groundtruth everywhere compared to underwater
dataset. This initial stage serves as a foundational step for further development and evaluation
of the model using underwater data, specifically datasets of bathymetry and underwater visual
images. The central concept revolves around the application of self-supervised learning techniques
to extract latent space representations from both the Digital Elevation Model and bathymetry
patches. These representations will then be utilized for downstream tasks such as the classification
of terrestrial land surfaces and underwater habitats, respectively. By employing this approach, the
thesis aims to contribute to the advancement of knowledge and methodologies in analyzing remote
sensing data for underwater environments.

2



1.3 Outline of report

This thesis work is structured as follows:

Chapter 2 focuses on background and theory, discusses bathymetry, deep learning, unsuper-
vised feature learning, self-supervised learning and contrastive learning.

Chapter 3 is dedicated to literature review, where di↵erent methods utilizing remote sensing
data are explored.

Chapter 4 describes approach, datasets and implementation used in this paper.

Chapter 5 shows obtained results.

Chapter 6 discusses on the results and future improvements.

Chapter 7 concludes the master thesis and o↵ers future work directions.

3



2 Background and Theory

This section gives overview on bathymetry, visual images, benthic habitat classification, unsu-
pervised feature learning and deep learning. Section 2.1 provides an explanation of bathymetry.
Section 2.2 presents deep learning models. Section 2.3 discusses unsupervised feature learning
techniques. Section 2.4 focuses on the exploration and explanation of self-supervised learning
methods.

2.1 Bathymetry

Topographic maps shows the lay of land terrain, where the variations of depth are depicted color and
contour lines. Bathymetry is similar to topographic maps, but represents submarine topography,
which refers to the depth of the oceans with respect to the sea level. It also describes the depth as
well as shapes of the underwater seabed. The data of bathymetry is obtained by using shipborn
sonar such as multi-beam echosounder or sidescan sonar. The transmitter and receiver are mounted
underneath the ship, from where transmitter sends series of acoustic pulses, which are reflected
and then received by the sonar. The time between transmission and detection of pulses is used to
compute the range to the ocean floor. The obtained data is then processed and resulting digital
elevation map is created, which is two-dimensional matrix containing ocean depths values.

2.2 Deep Learning models

Deep learning is a machine learning method based of neural networks with representation learn-
ing. It uses multiple layers to gradually obtain high level representations of di↵erent scale and
complexity from the given input. There are di↵erent architectures such as deep neural networks,
deep belief networks, recurerent neural networks, feedforward neural networks, and convolutional
neural networks. They are widely used in the areas of object recognition, classification, speech
recognition, natural language processing etc. In this section, feedforward neural networks and
convolutional neural networks will be introduced.

2.2.1 Feedforward Neural Networks

A Feedforward Neural network is the simplest architecture of neural networks as it processes
information only in one direction and doesn’t propagate backwards. Its simplest type is a single
layer perceptron. Input vectors which pass through the model are multiplied by the weight vectors.
The results are then summed to get the final weighted input values. If the sum is above certain
threshold the activation function converts it to 1, otherwise to -1. These activation function are
called linear threshold units. Furthermore, instead of just step function, single layer networks
can be used to calculate continuous output. One of the examples is logistic function which turns
network into logistic regerssion model:

f(x) =
1

1 + e�x

Multi-layer type architectures consist of multiple layers of hidden units. Each layer’s activation
function is usually a linear mapping, followed by nonlinear function such as sigmoid. The model,
given an input x, calculates the output value and then is trained to minimize the error between
its own output y and ground truth ytrue. It uses gradient descent optimization technique, a
backpropagation procedure, where the gradient of the error is computed with respect to the every
layer. The common problem is that backpropagation is senstiive to vanishsing gradients, where
the gradient of the error gets comparatively tiny to the lower layer parameters.

4



2.2.2 Convolutional Neural Networks

Convolutional neural networks are the most common types used for analyzing visual imagery,
classification and computer vision tasks. They provide callablescalable approach for image classi-
fication and object recognition problems, but can be computationally demanding. CNNs are shift
and space invariant, as they posses shared weights of convolution filters which are applied upon
input features and provide feature maps. There are three mainntypes of layers in CNN:

• Convolutional layer

• Pooling layer

• Fully-connected layer

The convolutional layer is the first layer of the network, which can be followed by several pooling
and the same convolutional layers. The final layer is the fully-connected layer. With each additional
layers the complexity of CNN grows, where initial layers describe more simpler features e.g edges,
and subsequent ones focus on larger features such as shapes etc. The most amount of computations
happens in convolutional layers. It involves the process of convolution where an input, for example
3D RGB image with withd, heigh and depth dimension, are exposed to filters know as kernels
which acts as feauture detectors. The filer is applied on small parts of an image with dot product
multiplacation and moved across so that it covers the whole image. Each output value froms the
final result which is a feature map.
Pooling layers are utilized to downsample the input by reducing its parameters. They use similar
kernels as convolutional layers, but uses aggregation function instead of weights. Two common
types of pooling are max pooling, where the filter selects the maximum value pixel, and avaerage
poolin, where filter calculates the average valuein the receptive field.
Fully connected layers is used to perform the classification task based on features obtained from
the other layers. The activation function of fully connected layers is usually a softmax activation
function, which outputs probability ranging between 0 and 1.

2.3 Unsupervised Feature Learning models

In this part, unsupervised feature learning and their models, namely autoencoders, are described.

2.3.1 Overview

Supervised Learning models need huge amount of data in the form of input x and their corres-
ponding labels y. On the other hand, the easily obtained and plentiful amount of unlabeled data
can be handled by Unsupervised Learning which is trained without involving ground truth labels
y. In addition to be able to learn better features than that of hand-crafted ones, they also can
be integrated with the deep networks to build more powerful learning models. Here, the most
common and popular type of Unsupervised Learning models, an Autoencoder and its variations
will be briefly introduced.

2.3.2 Autoencoders

Autoencoder is an unsupervised learning technique used for the goal of representation learning.
Neural network architecture of autoencoder produces compressed knowledge representation of the
original input and further uses it to reconstruct the same input. Unlabeled dataset can be regarded
as a supervised learning problem with objective to output x̂, a reconstructed input x. The network
is trained by minimizing the reconstruction error, which is L(x,x̂), which computes the di↵erence
between the given input and generated output. The latent space generation is crucial for training
and network design, since without it the network would just learn to memorize the input values by
transferring values through the network. The latent space constraints the size of input information

5



that can pass through the network, thus forcing to learn compressed version of the original data.
Autoencoders architecture consists of 3 parts:

1. Encoder part, which compresses high-dimensional input data into an encoded lower dimension
that is usually smaller by several orders of magnitude.

2. Bottleneck part, which stores the compressed representation of the input information

3. Decoder part, which uses bottleneck module to decode the knowledge representation and
reconstruct the original data. The result is compared to the original input.

The overall architecture is given in figure 1.

Figure 1: Overall architecture of an autoencoder

2.3.3 Denoising Autoencoders

Autoencoders that have deeper hidden layers have the risk of learning the identity function, which
means that output will be directly equal to the input, making it unreliable. Here comes the idea of
denoising autoencoders, which are extended version of the simple autoencoders. During training,
a stochastic corruption is applied to the input x as a wat of regularising it. The corrupted input is
then passed to the model, and the result is compared to the original uncorrupted input. This way
denoising autoencoder will learn to rebuild the original input from noisy input by learning how to
remove the noise to get the clean input and thus, become robust.
The process of applying noise is stochastic, which means each training input will be corrupted
di↵erently for each training iteration. Once the model is su�ciently trained with corrupted data,
the latent space representation is extracted by inputting clean data to the model.

2.3.4 Variational Autoencoders

Basic autoencoders describe the features of the input as a value.On the other hand, Variational
autoencoders(VAEs) describe the features of the input in latent space in a statistic manner, as a
combination of mean latent vectors and standard deviation. Their encoder output a probability
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distribution instead of single value. KL-divergence is applied in VAEs as a loss function, which
tries to minimize the di↵erence between original input distribution and supposed one. The loss
consist of two terms, one of which is reconstruction error and the other one is Kl-divergence:

Loss = L(x, x̂) +
X

j

KL(qj(z|x)||p(z))

2.4 Self-supervised Learning

The problem of data annotation has drawn a lot of attention in the machine learning world. Un-
supervised learning , semisupervised learning, weakly supervised learning , and meta-learning are
only a few of the alternatives to traditional supervised learning that have been researched. Self-
Supervised learning recently attracted a lot of interest in the field of computer vision and made
substantial advancements toward the elimination of human supervision. Indeed, SSL methods
already outperform supervised pretraining on many tasks by extracting representative features
from unlabeled data (Goyal et al. 2021).
For the technique of self-supervison, a significant amount of unlabeled data is used to train a
model which is usually a convolutional neural network for example, ResNet (He et al. 2016) or
Vision Transformers (Dosovitskiy et al. 2020), by optimizing this objective without needing any
manual annotation. The model f acquires the capability to capture high-level representations of
the input data with a well crafted self-supervised task. After that, the trained model can be used
to supervised downstream tasks for practical purposes.
The most prevalent and popular methods for creating such self-supervision often make use of three
di↵erent kinds of goals: Rebuilding the provided input x, f(x) ! x; predicting a self-generated
label, typically derived contextually and from augmenting the data (for example, estimating the
order of splitted images); and comparing the semantic similarity of the inputs x1 and x2, where
the compressed representations of two augmented views of a given image have to appear the same).
The pre-trained model f could be used for downstream tasks assuming self-supervised training was
e↵ective. Models that are pre-trained using self-supervision, as opposed to supervised pretraining,
have the ability to use more generalized representations and o↵er a technique to get around the
drawbacks of supervised learning. Three benefits in particular exist for self-supervised pre-training:
It does three things: (1) it eliminates the need for human annotation during pre-training; (2) it
enables good performance on downstream tasks with a minimal amount of labeled examples; and
(3) obtaining unlabeled data from the target application can ensure a small domain gap between
pre-training and downstream datasets (Y. Wang et al. 2022). Self-supervised learning encom-
passes a diverse set of methods that can be classified into three distinct categories: predictive,
generative, and contrastive methods . Generative methods within self-supervised learning focus
on the reconstruction or generation of input data. Techniques such as Autoencoders and Gen-
erative Adversarial Networks (GANs) are employed to model the underlying data distribution
and generate realistic samples. Predictive methods, on the other hand, aim to learn to predict
self-generated labels or specific properties of the data. Pretext tasks are designed to provide su-
pervisory signals for the model, allowing it to capture temporal, spatial, or spectral contexts and
make accurate predictions. Contrastive methods tackle self-supervised learning by maximizing the
similarity between semantically identical instances while minimizing the similarity between dif-
ferent instances. Negative sampling, clustering, knowledge distillation, and redundancy reduction
techniques are commonly employed within this category(Y. Wang et al. 2022). By leveraging these
three category methods, self-supervised learning approaches enable the acquisition of meaningful
representations from unlabeled data, paving the way for a wide range of downstream tasks and
applications.

2.4.1 Contrastive Learning

Contrastive representation learning essentially entails comparison-based learning. Contrastive
learning focuses on learning representations by comparing various input samples, which is a major
distinction between discriminative models that map data to labels or generative models that recon-
struct input samples. Contrastive learning compares numerous samples, including positive pairings
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of similar inputs and negative pairs of dissimilar inputs, as opposed to learning from individual
data samples one at a time.
Contrastive learning techniques only call for defining the similarity distribution to sample a positive
input x+ from p+(⇤ |x) and a data distribution for a negative input x� from p�(⇤ |x) in relation to
an input sample x, as opposed to supervised methods that demand a human annotation y for each
input sample x. The main goal of contrastive learning is to make sure that comparable samples are
represented near together in the embedding space while dissimilar samples are represented farther
apart. To do this, positive and negative pairs of samples are contrasted, with the representations
of the positive pairings being drawn closer together and the negative pairs being pushed farther
apart.
Contrastive learning approaches are used in the self-supervised scenario to create a discriminat-
ive model based on several input pairs that share a concept of similarity rather than creating a
pseudo-label from the pretext task. This notion of similarity can be ascertained from the data
itself, as with other self-supervised tasks, overcoming a constraint in supervised learning where
only a limited number of labeled pairings are available. Contrastive approaches are significantly
easier to use because they do not require model architecture alterations between training and
fine-tuning on subsequent tasks, unlike other self-supervised methods (Le-Khac et al. 2020). The
general strucuture of conttrastive learning is shown in figure 2

Figure 2: General structure of contrastive Self-Supervied Learning. E refers to the encoder, the
loss is calculated in the representation space.

Source: Y. Wang et al. 2022
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3 Literature review

A lot of existing deep learning methods apply backbone networks which are trained on huge datasets
and fine-tuned for special problem. For remote sensing, shortage of comparably big annotated
datasets makes it di�cult to use similar approach. In (Heidler et al. 2021), the authors developed
a self-supervised approach for pre-training deep neural networks without the need of annotated
data by utilizing the relation between audio recordings linked to geographical location and remote
sensing imagery. They also presented new dataset called ‘SoundingEarth’ which contains pairwise
sets of audio and aerial imagery belonging to the same location all over the world. It consisted
of 50,545 image-audio pairs, where the overall length of audio constituted over 3500 hours of
sounds. Geo-tagged audio were collected using Radio Aporee ::: Maps project and consequently
1024x1024 pixels image corresponding to the same exact location was obtained from Google Earth
with spatial resolution of 0.2m per pixel. This dataset was used to pre-train ResNet model to
create new embedding space from the data from visual and audio modalities. A CNN network was
chosen for both of these modalities to train and learn the common features between pairwise sets
and perform the projection where embeddings of respective pairs are close, and if dissimilar pairs
are apart. Rather than using conventional representation learning where a few sample embeddings
are compared, they instead employ the idea of contrastive learning technique to put all pairings in
a training batch and integrate it with triplet loss, and consequently get batch triplet loss. Given
pairs of embeddings from both modalities (a,v), their pairwise distances are computed to construct
the matrix D(a, v) and the aim becomes to minimize its diagonal entries, at the same time retaining
others above some bound. During evalutaion process, this model outperformed other competing
methods on a various benchmark datasets. They included aerial image classification, which is scene
categorization into particular classes; audiovisual scene classification, ; aerial image segementation
and cross-modal retrieval, where given an input image, the corresponding audio sample is predicted
by extracting the nearest one from shared embedding space.

When the real-world annotated data is deficient and expensive to obtain, the other way is to train
model on synthetic data like synthetic images. But it may lead to poor results because of notable
di↵erence between real and synthetic image distributions. In (Shrivastava et al. 2017), the authors
focus on reducing this di↵erence by introducing Simulated+Unsupervised learning approach which
refines images from simulator’s output and makes them more realistic by utilizing unlabeled real
data. Their method which is named SimGAN is based on adversarial network similar to Generative
adversarial netwroks (GANs), but instead of random vectors, inputs are synthetic images. The
refiner network is fed with synthetic images from blackbox simulator as input, and trained with
adversarial loss so that the output images are indiscernible from real images using a discriminative
network. In addition to adversarial loss, annotations of synthetic data are retained with the help
of self-regularization loss that impose penalty if there is a big di↵erence between input and output
images. In order to cope with drifting and artifacts, they constrain receptive field of discriminator
to local regions and to improve its stability, the discriminator is updated with a history of refined
images than only the current ones. For the quantitative evaluation, to test the visual quality of
the refined images, visual Turing test was used, where subjects were asked to classify between real
and refined samples. The results showed that they weren’t able to correctly identify real ones from
refined images.

The diversification of remote sensing platforms made it possible to obtain imagery from various
sources like phone cameras, satellites and drones. Especially, unmanned aerial vehicle (UAV)
enabled the application of image geo-localization to become a popular research topic. In (Liang
et al. 2021), authors investigated cross-view geo-localization, where images taken from the satellite
were matched with images taken from UAV to detect the same location. They propose the SNSnet
model computes location distribution of feature vectors, where they use of siamese neural network
fused attention mechanism and NetVlad: local features obtained from pre-trained resnet-50 model
are inputted to spatial attention module and adjusted by VLAD vectors from NetVLAD, sent to
classifier and their cross entropy loss is calculated. The local feature extraction, the first module
of the model, is composed of pre-trained resnet-50 and a spatial attention module for increasing
retrieval accuracy, enhancing important features and decreasing the weight of unrelated ones. The
next module is the feature aggregation, where NetVLAD utilizes Vector of Locally Aggregated
Descriptors (VlAD) encoding method to represent global features with the help of aggregated local
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features for recognition of outdoor location. For the training and testing university-1652 dataset
was used, where every location has a sateillite vertical view, drone oblique view and ground street
view, the latter one supplemented by Google map street view images. For the evaluation part,
the model achieved adequate results, where it was shown that while resnet-50 radicalized global
aspects in the image, the author’s approach accentuated on contextual information around the
geo-target.

A lot of current semantic segmentation approaches based on deep-learning for remote sensing im-
ages need substantial amount of annotated data for training, which is expensive and laborious
task. Self-supervised representation learning solves this issue, but focus on only one level features
which presents negative influence on learning. In (Li et al. 2021), the authors tries to solve this by
introducing a self-supervised multitask representation learning, in which triplet siamese network
is used for high-level and low-level features learning for capturing e↵ective visual representations.
They build three di↵erent pretext tasks such as image inpainting to enable network to learn low-
level representations, augmentation transform prediction (ATP) and contrastive learning to enable
network to learn high-level representations. The inpainting branch restores occluded area from
inputted random image, ATP predicts transformation of the input image and contrastive learning
checks for pairwise similarity. Each one of them has its loss function, which are combined together
and called multitask loss function. For the pretraining part, DIOR, DOTA and Levir, well-known
remote sensing datasets were used, and LevirCS (cloud/snow detection), Potsdam and Vaihin-
gen were used for semantic segmentation evaluation. For the evaluation part, four initialization
methods were used: random initialization, image-net pretraining, self-supervised pretraining, and
combination of the last two .Their proposed method showed better performance and results com-
pared to other existing state-of-the-art self-supervised representation methods like NPID, MoCo
and MoCov2, particularly with the availability of small amount of training data. However, with
the larger amount of data available, the advantages of proposed method reduces.

Autonomous Underwater Vehicles are being extensively used for collecting huge amount of data
for marine science research. One of the use cases is extracting close seafloor images to supplement
bathymetric data collected from ships. However, as two types of data di↵ers in scale, obtaining
visual imagery to cover the whole bathymetric data map takes a lot of time and e↵ort. In (Shields
et al. 2020), authors present probabilistic habitat model that map remotely sensed data to the
corresponding habitat class. They use Bayesian neural networks with probabilistic predictions for
habitat modeling. First, habitat labels are assigned to images by ScSPM feature extraction and
GMC clustering methods. Convolutional autoencoder is used for bathymetric data for obtaining
bathymetric latent space, which then inputted to BNN probabilistic latent model. It estimates the
uncertainty associated uncertainty, which then used to improve the model.

In (Castillo-Navarro et al. 2022), a new large-scale dataset called MiniFrance for semi-supervised
semantic segmentation is presented. It contains 2000 high-res aerial images of various landscapes,
fields, forests, urban and countryside scenes from di↵erent regions in France. Authors also in-
troduce semi-supervised deep architectures and auxiliary losses such as the relaxed l-means loss
for unsupervised semantic segmentation task. The first one is BerundaNet which is based on a
classic autoencoder architecture. They apply W-Net, which is two assembled U-Net auto encoder
networks, for multitask learning, where first block is assigned to semantic segmentation and the
second one designed for unsupervised task.

In (Rao, De Deuge, Nourani–Vatani et al. 2017), authors propose two multimodal learning al-
gorithms for obtaining commonality between visual imagery and acoustic bathymetry datasets.
The first architecture used for classification task involves separate feature learning layer for each
modality in midlayer with Denousing Autoencoder for both and ScSPM technique for feature ex-
traction for visual modality. Then it is followed by a common representation layer for learning
high-level correlations between the two. The second architecture extends on the first, but where
gated model is used for the common layer, which is argued to be better in capturing one-to-many
relationships across two modalities. It can perform unsupervised clustering and predicting visual
features for visually unobserved locations just based on acoustic bathymetry data.

Marine habitat mapping refer to creating a map which covers seabed containing habitats separated
by clear boundaries, where habitat itself means physical and environmental conditions belonigng
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to particular biological community. In (Brown et al. 2011), Brown, Craig J et al. review 3 main
strategies of seafloor obtaining benthic habitat maps such as abitotic surrogate mapping, asemble
first, predict later, and predict first, assemble later methods. The first strategy (abitoic surrogates)
does not involve combining in situ biological and geological data with environmental data, it
utilizes unsupervised classification apprach to find patterns of environmental data. The second
strategy (assemble first, predict late) applies benthic habitat classification scheme to generate
maps of generalized habitat classes, single species and community maps based on their geological
and biological features. The third strategy (predict first, assemble later) is used to produce species
distribution map by modelling the ground truth data of focal species as a function of environmental
predictors.

In (Le 2013), author introduces a deep sparse autoencoder for face detection, which learns high-level
class-specific features from unlabeled image dataset with or without human faces. The network’s
architecture consists nine layers, which is just three replications of local receptive fields, which
connects features to small regions, local pooling, which makes it invariant to local deformations,
and local contrast normalization.

In (Abdulazizov et al. n.d.), autoencoder model for feature extraction from combination of multi-
beam echosound backscatter and bathymetry data is designed based on the works of Shields et al.
2020. The data from both sources was fed to the network as a two-channel image and the learnt
encoding is thought to be fed to the habitat classifier, which was left as a future work by the
authors.

In (Shields et al. 2021), the authors focuse on autonomous planning methods for comprehensive
and representative AUV surveys to visit locations with unique habitats by e↵ective exploration of
feature space representation of the bathymetric data. They use Variational Autoencoder (VAE)
with Evidence Lower Bound loss function to project the bathymetry data of the entire space into the
bathymetry latent space, which are then used for the two planing methods of global optimisation
representative points and continuous exploration planners.

In (Ahsan et al. 2012), the authors present the use of one of the parametric generative probab-
ilistic models, Gaussian Mixture Models (GMMs) for benthic habitat mapping and compares its
perforance with other popular methods such as Classification Trees and Support vector machines.
The model learns the correlation between seabed bathymetry and habitat classes givent he limited
amount of available sampled data. The results showed that GMMs perform better that classical
approaches when the data is scarce, showing that they have low sensitivity to amount of training
data and better certainty towards their predictions.

In (Yamada et al. 2022), authors introduce a novel semi-supervised learning method for geore-
ferenced imagery that improves learning e�ciency and facilitate annotating data for CNN based
classifiers of natural scenes designed for environmental monitoring tasks. The overall model is
composed of three parts: deriving latent space representations of unannotated imagery data by
using location guided autoencoders(LGA) which is unsupervised learning part; assigning human
annotated labels for a subset of representative imagery dataset based on hierarchical k-means clus-
tering and algorithm-generated pseudo-labels for the rest which is prioritised labelling part; input
the results from prioritised labelling into CNNs for training part for classification task. The in-
troduced LGA driven semi-supervised model enables it to be e�ciently applied on a per dataset
basis in the areas where trasnferability of learning between datasets is limited. The method was
evaluted in four various enviromental datasets, which included seafloor and aerial images, and
exhibited accuracy improvements by a factor up to 1.5 with small number of annotations available.
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4 Intended methods

4.1 Datasets

The initial objective of this study involves constructing and deploying the model on a dataset
representing the Earth’s terrestrial surface, comprising a Digital Elevation Model (DEM) and cor-
responding labels derived from satellite visual imagery. This choice is motivated by the availability
of larger-scale data with ground truth annotations. Subsequently, successful model testing will
pave the way for its adaptation to an underwater dataset encompassing bathymetry data and
visual images.
In terms of data availability, the dataset is characterized by a significant proportion of bathymetry
data, followed by visual images, which are several orders of magnitude smaller, and labels, which
constitute the smallest fraction. The limited quantity of visual images and even scarcer availability
of labels underscore the need to employ a self-supervised learning approach, which is explored in
this study. The relative distribution of the available data components is depicted in Figure 3.

Figure 3: Possible distribution of data in the dataset.

4.1.1 Terrestrial dataset

This study employed two distinct datasets serving di↵erent purposes. The first dataset was spe-
cifically chosen for terrestrial applications. In selecting this dataset, certain criteria were considered
essential. Firstly, the dataset needed to encompass an elevation model that exhibited su�cient vari-
ability to establish meaningful correspondences with bathymetry data and enable e↵ective feature
learning. Additionally, it was crucial for the dataset to provide corresponding labeled mappings
for the designated area. Based on these requirements, Sweden emerged as the preferred candidate
due to its topographical characteristics aligning with the specified criteria.

Digital Elevation Model. For the Digital Elevation Model (DEM) ALOS Global Digital Sur-
face Model from Jaxa was used. The Japan Aerospace Exploration Agency (JAXA) created the
JAXA Digital Elevation Model (DEM), a dataset that o↵ers incredibly accurate and in-depth to-
pographical data for the Earth’s surface. The Advanced Land Observing Satellite (ALOS), which
was launched by JAXA in 2006, provided the data used to create this dataset. The L-band Syn-
thetic Aperture Radar (PALSAR) sensor, which was carried by the ALOS satellite, was used to
gather radar data in order to produce the JAXA DEM. One of the finest resolution DEM datasets
for worldwide coverage, the JAXA DEM has a spatial resolution of 30 meters. The dataset has a
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vertical precision of roughly 5 meters and covers the whole planet, with the exception of specific
places like the poles and small islands. It is an important resource for a variety of uses, such as
natural resource management, environmental modeling, and geographic information systems. Data
collection, calibration, and processing were all steps in the lengthy process that went into creat-
ing the JAXA DEM. Radar signals from the PALSAR sensor on the ALOS satellite were able to
collect data on the Earth’s surface because they passed through clouds and vegetation. The radar
backscatter images produced by processing the PALSAR sensor’s data were then used to produce
interferograms. Interferograms are representations of the Earth’s surface that depict variations in
elevation over time by fusing two or more radar images acquired at separate times. The interfero-
grams were produced, and then they underwent additional processing to produce a digital elevation
model. In order to account for elements like air conditions, the curvature of the Earth, and data
inaccuracies, the method included making a variety of corrections and changes to the data. The
correctness of the generated digital elevation model was subsequently verified using ground control
points and additional sources of elevation data. It is a useful tool for academics, scientists, and
other professionals who need precise and thorough information about the topography of the Earth.
It is especially helpful for applications like terrain analysis, flood modeling, and natural resource
management due to its high spatial resolution and vertical precision (ALOS Global Digital Surface
Model ”ALOS World 3D - 30m (AW3D30)” 2023). The digital elevation model for the territory
of Sweden consists of separate tiles of size 1800 by 3600 pixels with a resolution of 1 arcsecond
(approximately 30 meters), which are latitude dependent. The examples of such tile can be seen
in figure 4.

Figure 4: Examples of DEM tiles of Sweden. The horizontal x-axis coordinates are expressed in
degrees longitude (Easting), while the vertical y-axis coordinates are presented in degrees latitude
(Northing). The colorbar featured in the figures corresponds to the elevation height measured in
meters relative to sea level.

Labeled map of Sweden. For obtaining labelled maps of the Swedish terriotory, Swedish Na-
tional Land Cover Database was used. The Swedish University of Agricultural Sciences (SLU),
the Swedish National Space Agency (SNSA), and other partners worked together to create the
publicly accessible information known as the Swedish National Land Cover Database (NMD). For
the purposes of land management, planning, and environmental studies, it o↵ers a thorough and
in-depth analysis of the various forms of land cover and how they have changed in Sweden. The
entire Swedish area, including all land and water, is included in the NMD. It is made up of various
di↵erent layers of data, such as land use, vegetation kinds, water bodies, and metropolitan areas.
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These layers are based on high-resolution satellite imagery and additional data from sources in-
cluding field surveys and aerial photography. The most recent update to the database, which is
done every five years, covers the years 2017 to 2019. The NMD’s high level of precision and detail
is one of its distinguishing characteristics. The database’s land cover classification system consists
of 30 classes, which are further broken down into sub-classes for a total of 127 classifications. Also,
there is a base map with 25 thematic categories which is divided into three hierarchical levels.
This map is displayed as a raster with a minimum mapping unit of 0.01 hectare and a resolution
of 10 meters. In addition to the main map, there are a number of additional layers that provide
details on size and dimensions of objects, productivity, usage of land and forests in mountainous
areas.The classification table can be seen in figures 5, 6 and 7.

Figure 5: Table with thematic categories 1 of a base map of NMD

Source: (National Land Cover Database 2023)
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Figure 6: Table with thematic categories 2 of a base map of NMD

Source: (National Land Cover Database 2023)

Figure 7: Table with thematic categories 3 of a base map of NMD

Source: (National Land Cover Database 2023)
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This degree of specificity enables a more accurate and nuanced representation of the landscape
and its historical changes. In order to evaluate the accuracy of the data, the NMD also provides
details on the quality and confidence level of each categorization. The Swedish National Space
Data Infrastructure (SNDI) portal, which o↵ers access to a variety of geographic datasets, makes
the NMD publicly downloadable. The database is made available in a variety of formats, including
vector and raster data that is GIS-ready and web map services. The information can be applied to
many di↵erent things, including detecting changes in land cover, studying climate change, and as-
sessing biodiversity and landscape ecology. Academics, decision-makers, and practitioners engaged
in land management, planning, and environmental studies can benefit greatly from the Swedish
National Land Cover Database (NMD). It is a crucial tool for comprehending the terrain and how
it has changed over time due to its high degree of detail, accuracy, and accessibility (National Land
Cover Database 2023). The total map is comprised of tiles of di↵erent sizes examples of which are
demonstrated in figure 8. All of the labeled tiles were combined to represent the whole labelled
map of Sweden (Figure 9).

Figure 8: Labeled tiles of Sweden

Figure 9: Merged labeled tiles of Sweden

Co-located data for terrestrial dataset. To obtain matched data for terrestrial dataset, DEM
patches of 100x100 pixels are obtained by dividing DEM tiles from Jaxa dataset. Two datasets
have di↵erent coordinate reference systems (CRS). For example, DEM pathces are in EPSG:4326.
It is a coordinate reference system (CRS) that utilizes latitude and longitude values to represent
locations on Earth’s surface. In this CRS, the equator serves as the point of reference for latit-
ude, while the prime meridian, which runs through Greenwich, London, serves as the reference for
longitude. For NMD, it’s CRS is in EPSG:3006, or SWEREF 99 TM. It is a coordinate reference
system employed in Sweden to precisely depict locations within the country. It serves as a spatial
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reference framework, ensuring accurate representation of geographical points. The system utilizes
meters as its unit of measurement, o↵ering convenience for a range of applications such as survey-
ing, mapping, and geospatial analysis. Large labelled imaged patches of Swedish territory were
reprojected into corresponding coordinate reference system of DEM patches. After that, smaller
labelled image patches were obtained for each DEM patch matching the same latitude and lon-
gitude coordinates and dimensions. Since their dimensions varied from DEM patches, they were
rescaled from around 350x175 to 100 by 100 pixeled images. Overall, two datasets of di↵erent
sizes were created, smaller one making up around 2300 DEM patches and corresponding segment-
ation images, and bigger one comprising of over 100 thousand DEM patches and corresponding
segmentation images. Furthermore, the categories provided by NMD were grouped together into
9 di↵erent classes such as forests on wetland, forests not on wetland, open wetland, ararble land,
water surfaces, artificial surfaces, other open land, non-forest on wetland, and non-forest not on
wetland. The process of grouping these categories was guided by the hierarchical structure outlined
in the NMD, as well as informed judgments based on similarity and proximity, as indicated in the
table containing thematic categories. Figure 10 shows pairs of DEM and labeled images from the
dataset.

Figure 10: DEM and labeled image pairs from Swedish dataset
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These two datasets extracted from ALOS Global Digital Surface Model and Swedish National Land
Cover Database, respectively, was used for training the segmentation model and contrastive SSL
model to establish standard metrics of how the system would perform on vast data with available
corresponding labels.

4.1.2 Underwater dataset

The next step would involve evaluating the SSL model on the underwater data. The Southeastern
Tasmania dataset, which was gathered in 2008 as a result of a partnership between The University
of Sydney, The University of Tasmania, and Geoscience Australia (Spinoccia 2011; Williams et
al. 2010), was utilized for the underwater dataset. The dataset and its acquisition process are
described in the sections that follow.

Bathymetry. The scientific study of the topography and depth of oceans and other vast bodies
of water is known as bathymetry. Typically, a ship’s onboard sonar equipment, such as multi-beam
echosounder (MBES), is used to collect bathymetric data. A transmitter and receiver are fastened
to a ship’s underbelly in order for an MBES to function. The sonar receiver picks up the ‘pings’
— a series of sound pulses—that the sonar head initially sent out and received after they were
reflected o↵ the ocean floor. The distance to each place on the ocean floor can be calculated by
timing how long it takes for each pulse to travel there and return (How Multibeam Sonar Works
2009). This procedure is repeated repeatedly as the ship goes forward to map out a section of
the bottom that corresponds to the sonar’s sweep width. Detailed maps of the ocean floor can be
made using the resulting bathymetric data, which is helpful for a variety of applications, such as
ocean navigation, geological research, and oceanographic investigations. Bathymetric data is often
processed after it has been collected by removing anomalies and merging measurements from the
same place. A 2.5D Digital Elevation Map (DEM), which captures the depth of the ocean at each
place in a two-dimensional matrix, is finally created from the bathymetric data. Figure 11 exhibits
bathymetry map of the underwater seafloor at the Southeastern Tasmania. This bathymetric data
of the interest is Geoscience Australia’s vast gridded data. The 5 to 104 meter depth range is
covered by a regularly spaced grid with 1.6 meter grid point intervals. The grid was produced by
using a Simrad EM3002(D) 300kHz MBES system to analyse bathymetric data gathered by the
research vessel Challenger in 2008 (Spinoccia 2011).
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Figure 11: The bathymetry map over the entire Southeastern Tasmania region. The colorbar on
the rigth shows the depth range from 5m depicted in red to 104m depicted in pink

Underwater Visual images. The AUV Sirius’s downward pointed stereo cameras took high-
resolution pictures of the ocean floor for the visual dataset (Williams et al. 2010). The photographs,
which were taken on 11 dives and have a resolution of 1360 by 1024 pixels, depict a variety of
ecosystems, including kelp forests and flat sandy areas. The majority of the photographs were
shot at a height of 2 meters over the seafloor; photographs taken at higher altitudes appear dark,
whereas photographs taken at lower altitudes are extraordinarily bright. The image labels for the
eight di↵erent habitat classes were provided by expert annotations. Due to labeling mistakes and
actual uncertainty within the fine-grained habitat groups, many labels were noisy. Figures 12 and
13 show RGB images of underwater terrain. Figure 14 represent the AUV dive path superimposed
on the bathymetry data map.
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Figure 12: RGB image samples for the class labels between 1 and 4 presented per column. Between
some habitat classes, there is visual ambiguity, and there is also some labeling noise.

Figure 13: RGB image samples for the class labels between 5 and 8 presented per column. Between
some habitat classes, there is visual ambiguity, and there is also some labeling noise.
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Figure 14: Survey path of the AUV obtaining underwater terrain photographs with corresponding
labels. Path depicted in black on the bathymetry map.

Co-located multimodal data for Underwater dataset. As illustrated in 15, the multimodal
data is created by extracting a 16 x 16 bathymetry patch and a 32 x 32 bathymetry patch that
are both centered at the AUV point for each image. Because the AUV’s position did not exactly
match up with the centers of the grid cells, the bathymetric patch values were derived by using
linear interpolation in the grid. Due to the certain distance between grid points, each patch
corresponds to an area of approximately 30 x 30 and 60 x 60 meters, respectively. It is important
to remember that this area is considerably greater than the standard 2-3 m2 that an acquired
image covers. Therefore, a bathymetric patch that matches the footprint of the optical image
would not e↵ectively detect much local structure.
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Figure 15: An example demonstrating the matching of photo (approx. bounding image radius
under 1m) from an AUV survey to the appropriate bathymetry patch (30x30 meters) extracted
from the whole bathymetry map. Pairs of 16 by 16 and 32 by 32 patches of gridded bathymetry
are derived for each picture point along the AUV route which is depicted in black. The patch
extends much beyond the size of the image. The colorbar on the right shown depth in meters for
the bigger bathymetry map.

The size of the patch is determined by two criteria: it must be big enough to capture enough texture
in the bathymetry and small enough to prevent encompassing di↵erent habitat classifications.
The method described in (Bender et al. 2012) uses multi-scale features up to a 50m 50m region,
while the author of (Rao, De Deuge, Nourani-Vatani et al. 2014) uses 15x15 bathymetry patches.
Errors in the AUV’s localization could be a problem with multimodal matching. Despite this, the
habitats of interest often exhibit significant variations at larger scales, and the precision of AUV
navigation is similar to the spacing of the bathymetric grid (Rao, De Deuge, Nourani-Vatani et al.
2014). Therefore, it is safe to infer that any potential alignment issues between the images and
bathymetry caused by localization di�culties have minimal influence on the relationship between
these two modalities (Rao, De Deuge, Nourani-Vatani et al. 2014). Some samples from the complete
multimodal dataset is represented in figure 16 and the complete one consists of around 11 thousand
visual pictures with corresponding label, each matched with a bathymetric patch. Additionally, the
pure dataset of just bathymetry patches of similar patch dimensions were extracted from the whole
bathymetry image, which resulted in approximately over 100 thousand bathymetry patches without
labels for the purpose of self-suprevised learning. There are also substantial amount of unlabelled
visual images taken during other surveys inside the same bathymetry area, which is shown in figure
17. For these images, corresponding bathymetry patches of two sizes were extracted as well, for
the purpose of self-supervised learning.
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Figure 16: Instances of the marine data corresponding to various habitat classes between 1 and
8 are depicted in rows. Each image on the left part is paired with its corresponding bathymetric
patches of sizes 16x16 and 32x32. The bathymetric patches cover a bigger area, measuring around
30 by 30 and 60 by 60 meters respectively, whereas the images often only catch an area of about
1.2m x 1.5m.
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Figure 17: Di↵erent survey paths for visual image extractions depicted in black on the bathymetry
map
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4.2 Methods

To assess the e↵ectiveness of contrastive learning on both terrestrial and underwater datasets, a
systematic approach was adopted. Firstly, a terrestrial dataset which was manually constructed by
consolidating diverse sources of digital elevation model and labelled map, ensured a representative
collection of remote sensing data of Swedish territory. To establish a benchmark, a U-Net model
was employed for segmentation on this dataset, providing a performance baseline for subsequent
comparisons. Once the terrestrial dataset was adequately processed and analyzed, the contrastive
learning method was applied, and the resulting performance improvements were evaluated. Fur-
ther, the contrastive learning method was transferred to work on the underwater dataset which is
the main focus of the study.

4.2.1 Segmentation - U-Net

The development of UNet, a novel convolutional neural network (CNN) architecture by Ronneber-
ger et al (Ronneberger et al. 2015). in 2015, has significantly changed the area of picture segment-
ation. UNet has become a staple method in a variety of fields thanks to its extraordinary accuracy
and precision. It has many uses, including in fields of the medical imaging (Ronneberger et al. 2015)
in addition to autonomous driving (Giurgi et al. 2022) and satellite and aerial imagery(Rakhlin
et al. 2018). The influence of UNet is noticeable in a variety of fields, where it continues to be
crucial in obtaining insightful knowledge from intricate visual data. The encoder-decoder structure
of the U-Net architecture’s design enables it to successfully handle image segmentation tasks. The
encoder component of the architecture downsamples the input image using convolutional and pool-
ing layers, capturing crucial global features and contextual data. While adding skip connections,
the decoder component reconstructs the segmented image using up-sampling techniques. In U-Net,
the skip connections are essential. They create links between corresponding layers in the encoder
and decoder, allowing information to be transferred and fine-grained details to be preserved. Dur-
ing the process of upsampling, this aids the model in maintaining precise segmentation borders
and retaining crucial spatial information. The ability of U-Net to gather multi-scale contextual
data is one of its main features. It increases segmentation accuracy and provides a better grasp of
complicated images by mixing data from several levels of the network. Additionally, U-Net max-
imizes parameter usage, enabling quicker convergence during both training and inference. Due to
its e�ciency, it can be used in real-time applications where getting results quickly is crucial. The
U-Net architecture for semantic segmentation includes both a contracting path and an expansive
path. The contracting path follows the structure of a typical convolutional network. A rectified
linear unit (ReLU) activation function is applied repeatedly to two 3x3 convolutions without pad-
ding, and then a 2x2 max pooling operation with a stride of 2 is used for downsampling. The
number of feature channels doubles with each downsampling step. The expanding route consists
of several steps, where each step starts with an upsampling of the feature map and ends with
a ”up-convolution” (also known as a 2x2 convolution) that cuts the number of feature channels
in half. The appropriate cropped feature map from the contracting path is then concatenated
with the upsampled feature map. Two 3x3 convolutions are then applied, with a ReLU activa-
tion coming after each one. In order to compensate for the border pixel loss that occurs during
convolutions, cropping is required. Each feature vector, which has 64 components, is mapped to
the desired number of classes using a 1x1 convolution in the architecture’s top layer. There are 23
convolutional layers altogether in the U-Net architecture (Ronneberger et al. 2015). The overral
achritecture of U-Net can be seen in figure 18
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Figure 18: Overall U-Net architecture

Source: Ronneberger et al. 2015

4.2.2 Contrastive Feature Learning - SimCLR

Numerous cutting-edge approaches have recently surfaced in the field of self-supervised learning
that are designed specifically toward image-based applications. When compared to supervised
models, these developments have produced measurable performance improvements, especially when
dealing with a shortage of labeled data. One of the novel methods include contrastive learning
approaches. Contrastive learning techniques, more exactly, require training a model to e�ciently
group an image and its slightly transformed copy inside the latent space while also maximizing the
dissimilarity to other images. SimCLR is a recent and simple method for reaching this goal. The
general approach is to use provided unlabeled image dataset to train a model that can then quickly
adapt to di↵erent image identification problems. A batch of image data is sampled in the usual way
for each training iteration. Through the use of various data augmentation techniques including
cropping, Gaussian noise, blurring, and others, two di↵erent copies of each unique image are created
for each image. These augmentations are then processed using a convolutional neural network
(CNN) architecture, such as ResNet, to produce a one-dimensional feature vector. These latent
space representations are then taught to be similar, whilst all other image feauture representations
in that batch should be as dissimilar as possible. In this manner, the model must learn to recognize
visual content that is una↵ected by data augmentations, such as objects that are typically of
interest in supervised tasks. The implementation of SimCLR is made possible by using the data
loader process with augmentations such as random cropping, grayscaling, gaussian blur, and color
distortion. Two separate enhanced copies of an image, designated as xi and xj, are obtained at
each iteration. The next step is to encode these photos into one-dimensional feature vectors with
the aim of increasing their similarity to one another while decreasing their similarity to all other
images in the batch. A base encoder network, designated as f(. ), and a projection head, denoted
as g(. ), make up the encoder network. The deep convolutional neural network that serves as the
base network is normally in charge of obtaining a representation vector from the enhanced data
samples. The widely used ResNet-18 architecture is employed as f(.), and its output is referred
to as f(xi) = hi. In order to compare similarity across vectors, the projection head g(.) transfers
the representation vector h to a space where the contrastive loss is applied. A tiny Multi-Layer

26



Perceptron (MLP) with non-linearities is frequently used as the projection head. The projection
head is described as a two-layer MLP in the original SimCLR paper, with ReLU activation in the
hidden layer. The authors claim that wider or bigger MLPs can greatly improve performance in
SimCLRv2. Since it was shown that increasing the MLP’s depth resulted in overfitting on the
provided dataset, we thus use an MLP with hidden dimensions that are four times larger. The
rojection head g(.) will be dropped and f(.) will be used as a pretrained feature extractor after
the contrastive learning training is complete. It has been seen that when fine-tuning the network
for a new problem, the representations z produced by the projection head g(.) perform worse than
those created by the base network f(.). This discrepancy might be attributable to the fact that
the representations z are trained to become invariant to di↵erent properties, such as color, which
may be essential for downstream tasks. Therefore, g(.) is only required at the contrastive learning
stage. Regarding the training procudre, as previously stated, the goal is to maximize the similarity
between two representations of the same image that have been enhanced, designated as zi and zj,
while simultaneously limiting their similarity to all other examples in the batch. The illustration
of SimCLR method is shown in figure 19.

Figure 19: SimCLR network setup

Source: Chen et al. 2020

SimCLR uses the Information Noise-Contrastive Estimation (InfoNCE) loss, which was first de-
veloped by Aaron van den Oord et al. for contrastive learning, to do this. By applying a softmax
function to the similarity data, the InfoNCE loss essentially compares the similarity of zi and zj to
the similarity of zi with any other representation inside the batch. The loss is formally expressed
as follows:

li,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 1k 6=i exp(sim(zi, zk)/⌧)
= �sim(zi, zj)/⌧) + log

"
2NX

k=1

1k 6=i exp(sim(zi, zk)/⌧)

#

The hyperparameter ”tau” acts as the temperature parameter, controlling the concentration of
the final distribution, while the function sim represents a similarity measure. The e↵ect of several
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di↵erent image patches can be changed in comparison to a single comparable patch by using a
temperature parameter. The similarity metric selected for SimCLR is cosine similarity, which is
defined as follows:

sim(zi, zj)) =
zTi · zj

kzik · kzjk
The range of cosine similarity is between -1 and 1, with -1 denoting the least potential similarity
and 1 the most. The characteristics of two di↵erent photographs typically converge towards a
cosine similarity value that is near to zero. This tendency results from the requirement that zi
and zj be exactly opposite in direction across all feature dimensions in order to achieve a cosine
similarity of -1, which drastically limits the flexibility and variety of the representations (Chen
et al. 2020).
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4.3 Approach

This thesis work adopts a self-supervised multimodal learning approach to establish correlations
between visual and underwater acoustic data, enabling them to complement each other. The
proposed methodology involves the separate extraction of latent representations from bathymetry
data and visual data through self-supervised learning techniques (approach 1). These pre-trained
networks are then utilized to obtain their respective latent spaces, which are subsequently employed
to train a classifier capable of categorizing di↵erent habitat classes. It is important to consider
the tradeo↵ between the coverage provided by bathymetry and visual images. While the optical
images o↵er higher discrimination capabilities, their coverage is limited to a small portion of the
seafloor. Conversely, bathymetry, as a form of remote sensing, covers larger areas but exhibits lower
resolution, potentially resulting in inferior feature representations. The overall model architecture
is presented in 20.

Figure 20: Overall model for separate training of bathymetry and optical images.

Other thing to compare, would be to simultaneously train bathymetry and optical images for self-
supervised learning task (approach 2). By feeding to model pairs of acoustic image and optical
image corresponding for the same positions, the model could learn to project high-quality features
of optical images to acoustic ones, and hence, increase the performance of predicting class labels
from bathymetry latent space representations. The overall model of paired training is presented
in figure 21.
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Figure 21: Overall model for synchronous training of bathymetry and optical images pairs. The
presence of a double arrow connecting the bathymetry patch and visual image signifies their co-
registration as paired data.

Next strategy, which is approach 3, would be to find out if the same approach of paired training
would work if additionally to the paired data, separate bathymtry data would be also fed to the
SSL model. The limited quantity of optical images might give the network rich details and make
it correspond to bathymetry data of the same quantity, while additional supply of large unlabeled
bathymetry data would make it able to generalize to the whole seafloor. The overall model of
non-paried and paired training is presented in figure 22.

Figure 22: Overall model for synchronous training of single bathymetry plus bathymetry and
optical images pairs. The presence of a double arrow connecting the bathymetry patch and visual
image signifies their co-registration as paired data.

The final approach 4 will consist of simultaneous training of two networks connected via their loss.
In this case, it would not be required to transform optical images into bathymetry patch size, and
unlike using greyscale of acoustic images, three channel RGB information could be feed instead

30



into the separate SSL network, thus conserving more information. During the training, the losses
from each of the nerworks would be added and back-propagagated thtrough the networks. The
overall model of non-paried and paired training is presented in figure 23.

Figure 23: Overall model for synchronous training of single bathymetry plus bathymetry and
optical images pairs with common loss.
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5 Results

5.1 Results - Terrestrial dataset

5.1.1 Experiment and testing

The dataset employed for this purpose encompassed 2300 tiles along with their corresponding
segmented images. The dataset was randomly split to train and test set with 85% and 15%,
respectively. The class distributions for each are shown in figure 24. As can be seen from the figure,
class ‘Di↵erent forests not on wetland’, which is made of 7 categories, constitute the majority of
the distribution, followed by a ‘Open wetland class’. Other classes make up comparatively smaller
proportion of the dataset, while 2 other classes such as ‘Temporarily non-forest on wetland’ and
‘Arable land’ comprise tiniest insignificant part. It is clear from the dataset’s class imbalance
that some classes are vastly underrepresented in comparison to others. During the creation and
assessment of the model, the impact of the class imbalance found in the dataset will be taken into
consideration.

Figure 24: Swedish dataset class distribution

5.1.2 Segmentation

Initially, a UNet model was constructed and trained using terrestrial data derived from the Swedish
territory. The training process spanned 1000 epochs, during which diverse hyperparameters, in-
cluding learning rate and batch size, were systematically varied and evaluated. The training results
are shown in figure 25.
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Figure 25: U-Net training results for Sweden Dataset

The training involved four versions of a segmentation model with local normalization along with
batch size 32 and batch size 128, and global normalization along with batch size 32 and batch size
128. Local normalization refers to the normalizing the values in the image between 0 and 1 by
subtracting lowest value from the image and dividing by the di↵erence between highest and lowest
values. the formula is given below:

normalized image =
image�min image

max image�min image

Global normalization refers to subtracting from each image the highest value from the all available
images and dividing it by the di↵erence between highest and lowest values from the all available
images. The formula is following:

normalized image =
image� globalmin image

globalmax image� globalmin image

The findings depicted in the figure demonstrate a noteworthy training accuracy, achieving an
exceptional value of 99% in terms of pixel accuracy. However, this impressive performance may
potentially indicate the presence of overfitting, as the corresponding results on the test set yielded
a comparatively lower pixel accuracy of approximately 60%.
To gain visual insights into the predictions generated by the trained model, Figure 26 presents
visualizations of the model’s predictions for a subset of samples from the training set. These
visualizations reveal that the segmented images predominantly exhibit hues of red and orange,
corresponding to the ‘Di↵erent forests not on wetland’ and ‘Open wetland’ classes. Additionally,
the predictions closely align with the label structures observed in the ground truth images. Notably,
there exist strong correlations between the patterns in the segmented images and the DEM patches
for certain classes such as ‘Open Wetland’ and ‘Di↵erent forests not on wetland’, while weaker
correlations are observed for other classes.
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Figure 26: Visualization of U-Net predictions on train set

Likewise, Figure 27 portrays visualizations of the model’s predictions for selected samples from
the test set. The visualizations of the test set samples exhibit a similar trend, with the segmented
images predominantly composed of the two prominent classes mentioned earlier. It is evident that,
when not considering pixel-perfect accuracy, the predicted images generally align with the ground
truth patterns derived from the DEM patches.
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Figure 27: Visualization of U-Net predictions on test set

Additionally, the confusion matrices for the predictions on the training and test sets are presented
in figures 28 and 29 respectively. The left side of the matrices represents the true labels, while
the bottom part represents the predicted labels. It is evident that the confusion matrix from the
training set exhibits a structure closely resembling an identity matrix, where the diagonal elements
are 1 and the remaining elements are 0. This observation can be attributed to overfitting, thereby
highlighting the model’s excessive adaptation to the training data.
Contrarily, the confusion matrix obtained from the test set does not exhibit a similar identity matrix
structure. Upon closer inspection, it becomes apparent that the first class, namely ‘Di↵erent forests
not on wetland’ is predicted as the first class in 75% of cases, while 13% of instances are incorrectly
predicted as ‘Open wetland’. Furthermore, the ‘Open wetland’ class is correctly predicted in 63%
of cases, while in 26% of instances, it is misclassified as ‘Di↵erent forests not on wetland’. The
remaining classes display a predominance of incorrect predictions, mainly oscillating between the
‘Di↵erent forests not on wetland’ and ‘Open wetland’ classes. This behavior can be attributed to
class imbalance, as these two classes account for less than 80% of the overall class distribution, in
addition to the overfitting exhibited on the training set.
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Figure 28: Confusion matrix from U-Net predictions on the train set

Figure 29: Confusion matrix from U-Net predictions on the test set

Having established the performance baseline using the U-Net segmentation model, the subsequent
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objective is to assess the e�cacy of contrastive learning on the identical dataset.

5.1.3 Contrastive learning

Following the evaluation of the segmentation model’s performance on the custom dataset, the
subsequent phase involved the implementation of a contrastive self-supervised learning model.
The selected model for this purpose was SimCLR, which stands for Simple Contrastive Learning
Framework. It was trained on DEM patches obtained from the Sweden dataset for a total of 500
epochs. The pretrained model was then frozen, and its feature extractor was employed to derive
feature representations of the DEM patches. These representations were subsequently utilized in
training a simple regression classifier. To provide labels for the training process, a single label per
image was assigned by extracting the most frequent class label within each image patch. These
labels were then incorporated into the model alongside the corresponding DEM patches. The
results of the training process are presented in 30.

Figure 30: Classification results from downstream task

The evaluation of the downstream classification task reveals a noteworthy achievement, wherein
the utilization of the contrastive learning model yields an approximate accuracy of 75%. This
outcome underscores the e�cacy of the contrastive learning model and underscores its potential
for application in the subsequent analysis of the underwater dataset, augmented by the integration
of multimodal training techniques.

5.2 Results - Underwater dataset

Following the successful testing and validation of the model on the terrestrial dataset, its application
was extended to the underwater dataset. Analogous to the training process employed for the
Swedish dataset, the SimCLR model underwent training on a substantial quantity of unlabeled
bathymetry patches for 300 epochs, utilizing various hyperparameters such as learning rates and
batch sizes. The pre-trained model successfully extracted the latent space representations of the
bathymetry patches using the available corresponding labels after the training phase. These latent
space representations were then utilized as inputs for training a regression classifier.
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5.2.1 Experiment and testing

The distribution of classes among the 11,000 labeled images is presented in Figure 31. It is evident
from the figure that class 2 labels account for a substantial proportion of the dataset, comprising
approximately 37%. Following class 2, class 1 labels make up around 22% of the dataset. Classes
5, 6, 7, and 8 collectively constitute the remaining portion, albeit with smaller proportions, while
class 4 and class 3 exhibit the smallest representation. This distribution shows that there is a
significant class imbalance in the dataset, with some classes being significantly underrepresented
relative to others. Consequently, the impact of this class imbalance will be considered during the
development and evaluation of the model.

Figure 31: Underwater labelled dataset class distribution

Figure 32 illustrates the camera path overlaid with the corresponding class labels. The Autonomous
Underwater Vehicle (AUV) path encompasses both straight lines and zigzag lines, with the zigzag
lines intersecting the straight path. For model testing purposes, two approaches will be employed.
The first approach involves randomly dividing the labeled dataset into training and testing groups
of 90% and 10%, respectively. In contrast, the second approach, referred to as the ‘line split’
utilizes line labels, which account for 40% of the labeled dataset, for training, while the remaining
60% comprising zigzag labels are used for testing.
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Figure 32: Class labels superimposed on the path of the AUV. The horizontal axis coordinates
are presented in degrees Latitude, and the vertical axis coordinates are preseneted in degrees
Longitude.

5.2.2 Bathymetric Feature Learning

Feature Learning

The approach 1 related to bathymetric feature learning outlined in Figure 20 was employed for
this case. The SimCLR model was executed on bathymetric patches of sizes 16x16 and 32x32.
A batch size of 256 was chosen for training, as larger batch sizes were observed to enhance the
model’s training process. The model was trained for 300 epochs, requiring approximately 4 days
to complete.
The outcome of the training procedure is illustrated in Figure 33. The training progress exhibited
a similar pattern for both patch sizes. The training loss steadily decreased over time, while the
validation loss showed a fluctuating behavior with an initial increase followed by a subsequent
decrease, demonstrating a considerable level of noise. The top-1 accuracy metric on the training
set exceeded 80%, while on the validation set, it varied between 60% and 80%.
The top-5 accuracy metric is often preferred over top-1 accuracy as it provides a less noisy measure.
It quantifies the frequency at which the correct image patch appears among the top-5 most similar
samples within a batch. For the top-5 accuracy, the model achieved 98% on the training set and
a similar level on the validation set.
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Figure 33: SimCLR for latent representation learning from bathymetry patches of sizes 16x16 and
32x32

Classification

The feature representation obtained from contrastive learning for bathymetry patches is sub-
sequently utilized for classification purposes using Logistic regression. The training procedure
involves training on patches of sizes 16x16 and 32x32, with corresponding batch sizes of 128 and
64, as illustrated in Figure 34.
The training process demonstrates consistent improvement, as indicated by the decreasing trend
in both train and validation losses over time. Concurrently, the train and validation accuracies dis-
play an upward trajectory, albeit with fluctuations around a mean value of approximately 0.75%.
It is worth noting that these fluctuations could be attributed to factors such as dataset variability,
inherent noise, or model complexity.
However, the ultimate measure of performance lies in the test accuracy on the entire test set.
For the latent space representations of patches 16x16 and 32x32, the obtained test accuracies are
approximately 63% and 59%, respectively. These results provide insights into the model’s ability
to generalize and accurately classify unseen data instances. Nonetheless, further investigations
are required to assess the significance of these accuracies and to compare them with alternative
approaches, such as contrastive learning from visual features and multimodal contrastive learning
utilizing both bathymetry and visual images.
The forthcoming comparative analysis will shed light on the relative strengths and weaknesses of
the proposed methodology and enable a comprehensive evaluation of its e↵ectiveness in capturing
relevant patterns and discriminating between di↵erent bathymetry classes.
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Figure 34: Logictic Regression as a downstream task of classification on feature representations
from SimCLR

5.2.3 Visual Feature Learning

Feature Learning

The approach 1 related to visual feature learning outlined in Figure 20 was employed for this
case. The SimCLR model was applied to visual images with dimensions of 1360x1024 pixels. The
training process involved batch sizes of 256 and 512, as larger batch sizes were observed to enhance
the model’s training performance. The model was trained for 300 epochs using two variations of
the dataset: one comprising 36,000 visual images, including both labeled and unlabeled samples,
and the other consisting solely of labeled visual images.
The outcomes of the training procedure are depicted in Figure 35. Notably, the loss values exhib-
ited a decreasing trend for both the train and validation sets, indicating an improvement in the
model’s ability to minimize the discrepancy between predicted and true labels. Simultaneously,
the accuracy values displayed an upward trend, signifying an increasing precision in the model’s
predictions.
Comparing the two dataset variations, it is observed that the accuracy values for the larger dataset
surpassed those of the smaller dataset by a slight margin in terms of both top-1 and top-5 accuracy
metrics. The top-1 accuracy values for both datasets fluctuated around 85% for both the train
and validation sets, while the top-5 accuracy values hovered around 95%.
Moving forward, the next step in the pipeline involves training a classifier on the extracted features
obtained from this feature extractor. This classifier will further refine the predictions based on the
encoded visual representations, potentially enhancing the model’s discriminative capabilities and
enabling more accurate classification outcomes.
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Figure 35: SimCLR for latent representation learning from visual images of size 1360x1024

Classification

After extracting feature representations through contrastive learning for visual images, the next
step involves classification using a Logistic regression approach. The training process focuses on
utilizing the latent space representations derived from the SimCLR model, which was initially
trained on a larger visual image dataset. Two di↵erent dataset splits are considered: a random
split set and a line split set. Both splits employ a batch size of 64 during training.
The training procedure and its outcomes are illustrated in Figure 36. It is evident that the training
and validation losses decrease over time for both dataset splits. However, the validation loss ex-
hibits more significant fluctuations in the case of the line split set. On the other hand, the training
accuracy steadily increases for both the training and validation sets.
The final accuracy values for the line split set are 91% for the training data and 86% for the
test data, indicating a strong classification performance. These accuracy values demonstrate the
model’s ability to e↵ectively classify visual images based on the extracted latent space representa-
tions.
Moving forward, the subsequent task involves incorporating multimodal learning to enable the
model to learn from both visual and bathymetry data. By integrating these two modalities, the
model can leverage the combined information to further enhance its classification capabilities and
improve the overall performance.
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Figure 36: Logictic Regression as a downstream task of classification on feature representations
from SimCLR

5.2.4 Multimodal learning from visual and bathymetric features

Feature Learning - single network

The approaches 2 and 3 outlined in Figures 21 and 22, resepctively, was employed for the following
cases. For the purpose of multimodal feature learning, two distinct approaches were employed. The
first approach involved training a single network capable of handling both bathymetry and optical
images. In this setup, augmentations of bathymetry patches were contrasted against augmentations
of visual images. Given that the two modalities possess di↵erent representations, with bathymetry
patches being single-channel and smaller in size, while RGB images consist of three channels and
have larger dimensions, it was necessary to transform them into a unified representation.
Two potential transformation options were considered. The first option entailed converting the
visual image to grayscale and reducing its size. The second option involved transforming the
bathymetry patches by expanding them into three-channel images through channel stacking. In
this case, the former option of converting the visual image to grayscale was selected. The dataset
provided to the model encompassed paired images, including augmented views of bathymetry
patches and augmented views of visual images, along with non-paired bathymetry patches sampled
from the entire bathymetry map.
The model was trained for 300 epochs, employing a batch size of 512 for patches sized 16x16
and 32x32. The results of the training procedure are depicted in Figure 37. It can be observed
that the training and validation losses decreased over time, while the top-1 and top-5 accuracy
values exhibited an upward trend throughout the training process. The top-5 accuracy for both
the training and validation sets reached approximately 70
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Figure 37: Single network SimCLR for latent representation learning from bathymtry and visual
images

Classification - single network

After obtaining feature representations from bathymetry images using contrastive learning on both
datasets, logistic regression is employed to classify the extracted representations of bathymetry
patches. The training process for bathymetry patches of sizes 16x16 and 32x32 is presented in
Figures 38 and 39, respectively, considering both the random split and line split sets.
As depicted in the figures, the training and validation losses decrease over the course of training,
with the validation loss showing more pronounced fluctuations for the line split case. The final
train and test accuracies for the line split set were determined to be 76% and 71%, respectively.
These results indicate the model’s ability to e↵ectively classify bathymetry patch representations,
achieving reasonably high accuracy levels.
Moving forward, the next step involves employing two separate networks with a shared loss function
to facilitate the learning of multimodal features. This approach aims to enhance the model’s
capability to capture and leverage the complementary information present in both the bathymetry
and optical image modalities, further improving the overall performance of the system.
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Figure 38: Logictic Regression as a downstream task of classification on feature representations
from SimCLR for patches of 16x16

Figure 39: Logictic Regression as a downstream task of classification on feature representations
from SimCLR for patches of 32x32

Feature Learning - double network

The approach 4 outlined in Figure 23 was employed for this case. The second approach involved
utilizing separate networks for each modality and combining their losses during backpropagation.
This approach eliminated the need to modify the representation of either modality, such as ad-
justing the number of channels or dimensions. The dataset used for training consisted solely of
paired samples, consisting of corresponding bathymetry patches of sizes 16x16 or 32x32 and visual
images.
The training procedure was carried out for 300 epochs with a smaller batch size of 256, which was
chosen to accommodate memory limitations. The results of the training process for the bathymetry
network and the visual image network are presented in Figures 40 and 41, respectively.
Analyzing the training results for the bathymetry modality, it can be observed that the train loss
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gradually decreased over time. The validation loss also showed a decreasing trend but with some
fluctuations. The top-1 accuracy exceeded 60% for the 32x32 bathymetry patches and reached
approximately 70% for the 16x16 bathymetry patches. The validation top-1 accuracy achieved
around 60% for both patch sizes. In terms of top-5 accuracy, both the training and validation sets
surpassed 80%.
Examining the training results for the visual image modality, the top-5 accuracy remained around
40%. Further analysis and refinement of the model’s performance on visual images will be ne-
cessary to improve its accuracy and align it with the performance achieved on the bathymetry
modality.

Figure 40: SimCLR with double network for latent representation learning from bathymetry
patches of 16x16 and 32x32

Figure 41: SimCLR with double network for latent representation learning from visual images

Classification - double network

Logistic regression was employed to perform a classification task aimed at identifying the labels
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corresponding to image and bathymetry patch locations, utilizing the feature representations ob-
tained through contrastive training for both bathymetry and visual images.
The training process encompassed bathymetry patches with dimensions of 16x16 and 32x32, as well
as visual images, using random and line split sets. A detailed exposition of the training procedure
is presented in Figures 42, 43, and 44.
Analyzing the outcomes pertaining to the 16x16 bathymetry patches, it is apparent that both the
training and validation losses decreased over the course of the training iterations. Notably, the line
split set exhibited relatively higher fluctuations compared to the random split set. Concurrently,
the training and validation accuracies exhibited a progressive increase, culminating in final values
of 76% and 71% on the line split set, respectively. Similar observations were made for the 32x32
bathymetry patches, with the classification accuracy approximating 76% for both the training and
test sets on the line split set.
Turning to the classification results for the visual images, the accuracy achieved on the line split
set amounted to 76% for the training set and 75% for the test set.
These findings underscore the e↵ectiveness of feature learning through contrastive learning with
further dowsntream task accurately classifying the acquired feature representations, thereby facil-
itating the identification of labels for the corresponding image and bathymetry patch locations.
Moreover, the consistency of performance across di↵erent patch sizes and modalities demonstrates
the robustness and generalizability of the feauture learning approach.

Figure 42: Logictic Regression as a downstream task of classification on feature representations
from SimCLR with double network for patches of 16x16
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Figure 43: Logictic Regression as a downstream task of classification on feature representations
from SimCLR with double network for patches of 32x32

Figure 44: Logictic Regression as a downstream task of classification on feature representations
from SimCLR with double network for visual images
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6 Discussion

The final results depicting the performance of di↵erent approaches are presented in Table 1. These
performance metrics are based on the line split of the labeled dataset, where the straight line was
utilized for training (approximately 40% of the labeled data) and the zigzag path was used for
testing (about 60% of the labeled data). The table reveals that conducting contrastive learning on
a large amount of bathymetry data and subsequently performing classification using the extracted
features yielded test accuracy rates of approximately 59% and 63% for patch sizes 16x16 and 32x32,
respectively. This lower performance can be attributed to the lower resolution of the bathymetry
data.
In contrast, performing the same contrastive learning on visual images resulted in a test accuracy
performance of over 86%. This signifies the superior performance of visual images, which possess
high angular resolution and o↵er detailed spatial information about the observed scene.
Regarding the multimodal learning approach, where visual images were contrasted with bathy-
metry patches within a single network, it yielded accuracies of about 71% and 72% for patch sizes
16x16 and 32x32, respectively. Furthermore, employing separate networks for visual and bathy-
metry data, with a shared loss function to preserve their representations, achieved accuracies of
approximately over 71%. These results highlight the benefits of multimodal learning, as it enables
one modality with extensive coverage capabilities to learn rich features from the other modality,
which may have a narrower scope. In this context, synchronous learning of the feature space of
visual images, with their high angular resolution and detailed spatial information, and bathymetry
patches, providing valuable depth information about the underwater topography and seafloor char-
acteristics despite their lower resolution, proved to be advantageous.
Thus, the utilization of multimodal learning with the contrastive learning technique demonstrated
its feasibility and e↵ectiveness in this study.

Table 1: Table of performance results of training classifier on feauture representations from con-
trastive learning.

SimCLR model Approach Split Train accuracy

(%)

Test accuracy

(%)

Bathymetry 16 1 Line 77.21 63.97
Bathymetry 32 1 Line 65.22 59.79
Visual Images 1 Line 91.03 86.10
Single network bathymetry
16 and image pairs

2,3 Line 76.83 71.12

Single network bathymetry
32 and image pairs

2,3 Line 77.84 71.89

Double network bathymetry
16 and image pairs on bathy-
metry

4 Line 76.36 71.59

Double network bathymetry
32 and image pairs on bathy-
metry

4 Line 76.25 71.23

Double network bathymetry
16 and image pairs on images

4 Line 76.34 74.08
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7 Conclusion

In conclusion, this thesis work aimed to explore multimodal learning techniques involving remotely
sensed and visual data in the context of habitat classification. Gathering visual imagery of large
underwater areas is a resource-intensive task, while bathymetry data obtained from multibeam
sonar devices provides a more easily accessible representation of the underwater terrain. Combin-
ing these modalities allows for e�cient and reliable habitat classification. The limited availability
of underwater visual imagery can serve as ground truth, while the widespread availability of ba-
thymetry data can be used to estimate and predict habitat classes based on the imagery data. By
leveraging both modalities, they can complement each other and contribute to a common task and
goal.
In this master’s thesis work, self-supervised multimodal learning techniques, specifically contrast-
ive learning, were investigated, implemented, and tested on terrestrial and underwater datasets.
The results demonstrated the mutual benefit of each modality. Multimodal learning enhanced the
performance of models in predicting bathymetry data by leveraging the contrastive learning of
features from abundant but low-quality bathymetry data and scarce but rich visual data.

7.1 Future work

In future work, it is anticipated that the predictions of the habitat classes will be visualized across
the entire bathymetry map. Another future research in this domain entails the incorporation of
uncertainty models into the existing approaches to facilitate uncertainty estimation in predictions.
This would enable the generation of e�cient sampling trajectory plans for autonomous underwater
vehicle (AUV) surveys. By identifying areas with higher uncertainty, subsequent AUV surveys
can focus on collecting data from these regions, thereby improving the model’s performance and
enhancing habitat classification. This approach also has the potential to reduce costs associated
with data collection.
Furthermore, additional work extends to exploring additional self-supervised multimodal learning
approaches that can be applied to underwater datasets. The aim is to identify the most e↵ective
models that achieve high scores on evaluation metrics such as accuracy, precision, and recall.
Continued research and development in this field will contribute to advancing the understanding
and application of multimodal learning techniques in underwater data analysis.
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Appendix

Codes related to this thesis are included in the Github repository linked below.

Github repository link

• https://github.com/AzamatKaibaldiyev/Contrastive learning Underwater
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