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“If you’re going to try, go all the way. Otherwise, don’t even start. This
could mean losing girlfriends, wives, relatives and maybe even your mind. It
could mean not eating for three or four days. It could mean freezing on a park
bench. It could mean jail. It could mean derision. It could mean mockery
–isolation. Isolation is the gift. All the others are a test of your endurance,
of how much you really want to do it. And, you’ll do it, despite rejection and
the worst odds. And it will be better than anything else you can imagine. If
you’re going to try, go all the way. There is no other feeling like that. You
will be alone with the gods, and the nights will flame with fire. You will ride
life straight to perfect laughter. It’s the only good fight there is.”

Charles Bukowski, Factotum
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Preface

This master thesis was written at the Norwegian University of Science and Technology
(NTNU), Department of Marine Technology (IMT) and Centre for Autonomous Ma-
rine Operations and Systems (AMOS) in Trondheim between January and May 2023 as
the final fulfilment of the Erasmus Mundus Joint Master Degree in Marine and Maritime
Intelligent Robotics Study track 2: Safe autonomous subsea operations (Norway, NTNU).

This work builds upon the work done in the course Marine Control Systems, Special-
ization Project TMR4510. The work was done independently between September and
December 2022 under the supervision of Prof. Asgeir J. Sørensen and co-advisor Markus
Fossdal. The work was based on research about underwater snake robots control and
assessing the risks associated with confined environments operations, mainly Eely under-
water snake robot from Eelume. Simulations were performed using Plankton open-source
simulator and ROS2. Eely model used for simulation was coded by Bendik Jørgensen,
with modifications by Christopher Janjua and me.

The influence to carry out this thesis started in the summer of 2022 when I was hosted
at Explore Team, Laboratoire d’informatique, de robotique et de microélectronique de
Montpellier LIRMM as an intern working with A.Prof. Lionel Lapierre on the topic of
underwater karst exploration. Through the work of this thesis, I have been under the
supervision of Prof. Asgeir J. Sørensen and Prof. Ingrid Bouwer Utne. Their guidance
and assistance have been of great help both in terms of collaboration and support.

The thesis is written as a collection of two scientific papers and a summary about them.
The first paper, titled "Risk Assessment of an Autonomous Underwater Snake Robot
in Confined Operations", is to be published at OCEANS 2023 Limerick, Ireland, and
the second paper, titled "Robust Altitude Controller for Underwater Snake Robot using
Fractional Order PID Controller (FOPID)", is a draft paper for future submission.
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Abstract

The growing interest in ocean discovery imposes a need for inspection and intervention
in confined and demanding environments. To tackle these demanding environments, ar-
ticulated underwater robots, such as Eely, with their slender shape and adaptable body
configurations, have emerged as a viable solution. However, operating Eely in such envi-
ronments presents a set of complex challenges. It must navigate through uncertain and
unstructured surroundings, withstand extreme environmental conditions, and overcome
limited navigational capabilities.

This thesis addresses these challenges by proposing a Bayesian approach to assess the
risks associated with the loss of Eely during mission scenarios. The primary goal of this
thesis is to enhance Eely’s performance and increase the likelihood of mission success.
In addition, an altitude controller based on a nonlinear Fractional Order PID (FOPID)
controller is proposed. This controller aims to regulate and stabilize the altitude of Eely
underwater snake robot.

Through simulations, the proposed controller is thoroughly evaluated to demonstrate its
robustness and effectiveness in controlling the altitude of Eely. The simulations pro-
vide valuable insights into the controller’s performance in diverse underwater conditions,
including scenarios with uncertain and unstructured environments. By leveraging the
benefits of the FOPID controller, Eely showed improved altitude regulation capabilities,
enabling it to navigate through challenging terrains with enhanced precision and stabil-
ity. The simulation results are compared to the results obtained from field experiments
in which similar tests are conducted.

Moreover, the Bayesian risk assessment approach serves as a valuable tool in quantify-
ing the potential risks and uncertainties associated with Eely’s missions. By assessing
and mitigating these risks, the proposed approach contributes to increasing the overall
reliability and safety of Eely’s operations in demanding underwater environments.

In short, this thesis presents a comprehensive study focused on the challenges faced by
Eely in confined and demanding underwater environments. By combining a Bayesian
risk assessment methodology with a sophisticated FOPID altitude controller, this re-
search aims to improve Eely’s performance, enhance mission success rates, and ensure
the successful exploration and intervention in sophisticated underwater landscapes. The
findings and insights obtained from this study have significant implications for the future
development and deployment of underwater snake robots in challenging environments.
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Chapter 1
Introduction

This chapter will give an introduction to the motivation and background, objectives,
research questions, methodology and main contributions.

1.1 Background and Motivation

1.1.1 Underwater Vehicles

The development of underwater robots has a long history. In the 1990s, over 46 models
of Autonomous Underwater Robots (AUVs) were created for various missions [1]. To-
day, there are many different types of underwater robots that have been developed for
both commercial and scientific purposes. Underwater robots can be divided into several
categories based on their appearance and function:

1. Unmanned Surface Vehicles (USVs) are deployed on the water surface and
are able to receive global positioning system (GPS) signals for localization and
navigation. Since their range of operation is two-dimensional, the control challenges
they face may be simpler. USVs can also take advantage of wind or wave energy
for propulsion. However, environmental disturbances and ships traffic can impact
their performance and pose significant scientific and technological challenges.

2. Remotely Operated Vehicles (ROVs) are able to operate underwater and com-
municate with an operator via an umbilical cable, which allows for real-time control.
ROVs can receive power, data, and control commands through this link. The first
ROV models were created for use in the oil and gas industry for deep-sea missions.
With the increasing use of underwater robots in science, many smaller ROV models
have been developed for use in shallow water. However, the operating range of
ROVs is limited by the length of the umbilical cable and the cumbersome link it
creates.

3. Autonomous Underwater Vehicles (AUVs) do not have an umbilical link and
are able to operate autonomously. As a result, they are able to perform a limited
range of missions. AUVs are often divided into two categories: torpedo-shaped
and cubic-shaped AUVs. Torpedo-shaped AUVs are typically under-actuated and
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designed for long-range missions, while cubic-shaped AUVs are often fully or over-
actuated and useful for short-range missions. The two types of AUVs also differ in
their hovering and pivot steering capabilities and operating speed range.

4. Hybrid Remotely Operated Vehicles (HROVs) are a hybrid of ROVs and
AUVs, but not fully so. HROVs are able to perform manipulation tasks like ROVs,
but integrated into an AUV (without a tether). However, the poor quality of the
acoustic communication link complicates the teleportation process and reduces its
performance.

5. Glider Vehicles (GVs) use buoyancy variation and depth control for propulsion.
Attitude is controlled through the adaptive redistribution of mass or external control
surfaces. The advantages of GVs include their ability to perform long-range missions
and low-cost operations.

6. Bio-inspired Vehicles (Bio-Vs) take inspiration from biological forms, which
have been optimized through natural selection. Many Bio-Vs have been developed
in recent years to mimic the shapes of living organisms. Bio-Vs are able to maneuver
by changing their shape, taking advantage of the flexibility inherent in natural
systems.

In general, controlling an underwater system involves managing six degrees of freedom
(roll, pitch, yaw, surge, sway, and heave), but many applications only require control of
three or four of these degrees of freedom, depending on the capabilities of the system
and the goals of the mission. The number and placement of actuators on an underwater
vehicle determines whether it is underactuated, iso-actuated, or over-actuated. This
classification depends on the number and position of the actuators and the degrees of
freedom that they can affect.

1.1.2 Underwater Robots in Confined Environments

Underwater confined environments, such as shipwrecks and sunken caves, present unique
challenges for exploration and study. These environments often have limited access points
and tight spaces, making it difficult for divers and underwater vehicles to enter and
maneuver. In addition, the water pressure at these depths can be immense, requiring
specialized equipment and techniques to safely operate in these environments.

Despite these challenges, studying underwater confined environments can yield valuable
information about the history and geology of the area, as well as provide habitat for
unique and fragile marine life. For example, shipwrecks can serve as artificial reefs,
providing a rich and diverse ecosystem for marine organisms to thrive.

To explore and study these environments, divers and underwater vehicles must be equipped
with specialized tools and equipment, such as lights, cameras, and instruments for mea-
suring water quality and other conditions. In addition, careful planning and coordination
is required to ensure the safety of the divers and the preservation of the environment.

The first known use of an underwater robot in a confined environment was reported
in 1967, when the IFP (Institut Francais du Pétrole) used the Télénaute to explore the
Fontaine de Vaucluse down to a depth of 106 meters. This marked an important milestone
in the use of underwater robotics for exploring and studying karst environments [2].
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One of the most advanced underwater systems for exploring karst environments is DEPTHX
shown in Figure 1.1(left), developed by the University American Consortium in 2005 with
funding from NASA [3]. DEPTHX is designed for autonomous exploration of unexplored
environments, and is capable of generating high-resolution 3D maps, collecting biological
samples, and returning to its starting point [4].

Another example is the Unexmin project shown in Figure 1.1(right) [5], an European
initiative that aims to design and develop autonomous systems for exploring and mapping
abandoned flooded mines. This project focuses on adapting deep-sea robotics technology
for use in these environments, as well as on interpreting the geoscientific data collected.

Figure 1.1: DEPTHX (left) and Unexmin (right)

The Aleyin project [6], led by the University of Montpellier, has also developed two
systems for exploring karst environments: the ROV Ulysse shown in Figure 1.2(left) and
the manned system Navscoot shown in Figure 1.2(right). Ulysse is equipped with a
profiling sonar and a suite of navigation sensors, while Navscoot uses the same sensors
mounted on an underwater scooter. These systems have been used to create 3D acoustic
topographies and partial photogrammetric reconstructions

Figure 1.2: Ulysse (left) and Navscoot Underwater scooter (right)

1.1.3 Underwater Snake Robots

Underwater snake robots combine the advantages of several types of underwater vehicles.
They have the range of Autonomous Underwater Vehicles (AUVs), the ability to access
challenging areas like small ROVs, and the intervention capabilities of ROVs shown in
Figure 1.3. These robots are inspired by the way snakes move and are able to navigate
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virtually any terrain with ease. They are composed of links connected by actuated joints
and are essentially robotic arms that can produce locomotion by actuating the joints
to create a periodic body wave motion, allowing them to swim like a biological snake.
Additionally, the snake robot’s slender and flexible body allows it to cover large distances
and perform inspections, maintenance, and repair in areas that would not be accessible
to traditional underwater vehicles.

Figure 1.3: Eely Vehicle concept [7]

1.2 Research Question and Objectives

The main goal of this thesis is to investigate the high level of interdisciplinarity between
control and risk assessment of autonomous underwater snake robots operating in confined
environments by testing different mission/operation scenarios for Eely and validating
whether or not Eely will be a suitable sensor-carrying platform for such missions in terms
of adaptability and the risks associated with these missions. The main research questions
of the thesis can be summarized as follows:

1. What are the advantages and disadvantages of using Eely in confined environments?

2. What are the risks associated with the operation of Eely in confined environments?

3. How to extend this BN to a DN to autonomously adapt Eely’s behavior based on
its belief about the current state of the risk?

4. How to robustly control the altitude of Eely?

5. In future work, how can the proposed methodology be extended to cover wider
operational scenarios of Eely?

Figure 1.4 summarize the objectives and interdisciplinarity of fileds presented in the
thesis.
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Figure 1.4: Thesis interdisciplinarity

1.3 Main Contributions

Main contributions are listed below:

• Development of a simulation model for Eely in Gazebo which allows for simulations
in real time and visualization.

• An Altitude controller for Eely is proposed.

• Proposed a risk model that combines BBN with an altitude control model to as-
sess the risk of losing Eely for three case/mission scenarios: seabed mapping, and
confined environments operations.

The first two contributions, as well as the last, are mainly achieved in the papers. The
individual contributions of the papers are included below for reference.

Paper 1: The main scientific contribution [of this paper] is risk assessment of Eely in
confined operations. This is important for improving Eely’s performance and the likelihood
of mission success. Relevant data are collected to perform a quantitative risk analysis to
develop a Bayesian model that considers almost the entire system of Eely, thus avoiding
potential risks. Although the model was developed specifically for Eely, it can be transferred
to the operations of other autonomous underwater vehicles.

Paper 2: The primary scientific contribution [of this paper] is the development of an
altitude controller model based on a nonlinear Fractional Order PID (FOPID) controller.
The results of the study are promising for the Fractional Order PID (FOPID) controller
in regulating the altitude of Eely Underwater Snake Robot. Unlike classical PID con-
trollers, FOPID controllers have five parameters that can be adjusted to optimize their
performance. This flexibility allows them to achieve better results, particularly for higher
order systems where classical PID controllers may struggle.
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1.4 Thesis Outline

The thesis is divided into seven chapters describing each of the project’s main aspects.
The following chapters are included:

Chapter 2 - Mathematical Modeling and Sensors of Underwater Snake Robot:
This chapter explains how an underwater snake robot can be modeled. In particular, the
kinematics, hydrodynamics, and dynamics of an underwater snake robot. In addition to
a brief overview about the main sensors used by Eely for mapping and monitoring.

Chapter 3 - Risk Assesment: This chapter proposes a risk model based on BN
to assess the risk of losing Eely for two case/mission scenarios: Seabed mapping, and
confined environments operations.

Chapter 4 - Altitude Control of Underwater Snake Robot: This chapter presents
the altitude controller applied to Eely and the two Control methods applied to Eely, the
nonlinear PID and the nonlinear FOPID.

Chapter 5 - Simulator Implementation: This chapter describes the implementation
of Eely’s model inside Plankton simulator and presents the simulation results.

Chapter 6 - Field Experiments: This chapter describes the field experiments with
Eely in Trondheim Fjord and presents the results.

Chapter 7 - Conclusion and Further Work: This chapter covers the concluding
remarks of the thesis, and presents the main challenges that is to be addressed in further
work.
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Chapter 2
Mathematical Modeling and Sensors of
Underwater Snake Robot

This chapter explains how an underwater snake robot can be modeled. In particular, the
kinematics, hydrodynamics, and dynamics of an underwater snake robot. The last part
of the chapter provides a brief overview about the main sensors used by Eely for mapping
and monitoring, and their setup on the robot in the main scope of objectives.

2.1 Kinematics of Eely

The position and orientation of a marine craft moving in six Degrees of Freedom (DOF)
can be described using several reference frames. The most common reference frames for
underwater vehicles are:

• North-East-Down (NED) frame {n} = (xn, yn, zn)

• Body-fixed (BODY) frame {b} = (xb, yb, zb)

The NED frame is a flat tangential plane fixed at the Earth’s surface used for local
navigation, typically an area of 10 × 10 km, with the origin on. It is also assumed that
the NED frame is an inertial frame. An inertial reference frame is a non-accelerating
reference frame in which Newton’s laws of motion apply. The NED frame rotates with
the Earth and is technically not inertial, however this rotation is neglected for marine
crafts moving at low speeds. The BODY frame is a moving coordinate frame that is fixed
to the vehicle, and has the origin ob. Usually, the position is expressed in the NED frame,
and the velocities are expressed in the BODY frame. Each DOF can be expressed with
the notation of [8], showed in Table 2.1.

Figure 2.1 illustrates the velocities in the BODY frame for Eely underwater vehicle.
The generalized position and velocity coordinates are given by Equations 2.1 and 2.2
respectively:

⌘ = [⌘T1 ⌘T2 ]
T = [x y z � ✓  ]T (2.1)
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SNAKE ROBOT

Table 2.1: Degrees of freedom

BODY NED
DOF Forces and moments Linear and angular velocities Positions and Euler angles

1 Motions in the xb-direction (surge) X u x
2 Motions in the yb-direction (sway) Y v y
3 Motions in the zb-direction (heave) Z w z
4 Rotation about the xb-axis (roll) K p �
5 Rotation about the yb-axis (pitch) M q ✓
6 Rotation about the zb-axis (yaw) N r  

⌫ = [⌫T1 ⌫T2 ]
T = [u v w p q r]T (2.2)

Figure 2.1: Degrees of freedom for Eely Underwater Vehicle

In order to transform between the BODY and NED frames, a rotation matrix is used. A
rotation matrix R is an element in SO(3), which is the special orthogonal group of order
3, shown in Equation 2.3:

SO(3) :=
�
R | R 2 R3⇥3, R�1 = R>, det(R) = 1

 
(2.3)

The transformation between reference frames are based on the Euler angles of the vessel.
These are roll (�), pitch (✓) and yaw ( ), they are defined as the orientation of the
vehicle with respect to the NED frame. By using the Euler angles, it is possible to
express the body fixed linear velocity vector, vb

nb
in the NED frame, according to the

following Equation:

vn
nb

= Rn

b
vb
nb

(2.4)

where Rn

b
is the rotation matrix from {b} to {n}, vn

nb
= ṗn

nb
= [ẋn, ẏn, żn]T is the velocity

vector expressed in the NED-frame, and vn
nb

is the velocity vector expressed in the BODY-
frame. Rn

b
is calculated as:
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Rx,� =

2

4
1 0 0
0 c� �s�
0 s� c�

3

5 ,Ry,✓ =

2

4
c✓ 0 s✓
0 1 0
�s✓ 0 c✓

3

5 ,Rz, =

2

4
c �s 0
s c 0
0 0 1

3

5 (2.5)

Rn

b
= R(⇥nb) = Rz, Ry,✓Rx,� =

2

4
c c✓ �s c�+ c s✓s� s s�+ c c�s✓
s c✓ c c�+ s�s✓s �c s�+ s✓s s�
�s✓ c✓s� c✓c�

3

5 (2.6)

where ⇥nb is the vector containing the Euler angles.

Similarly, transformations can be carried out for the angular velocity. Let wb

nb
= [p, q, r]T

be the BODY fixed angular velocities, and T (⇥nb) be the transformation matrix that
relates BODY fixed angular velocities and Euler rates. The Euler rate vector ⇥̇nb can be
obtained as shown in Equation 2.7:

⇥̇nb = T (⇥nb)w
b

nb
(2.7)

where,

T (⇥nb) =

2

4
1 s�t✓ c�t✓
0 c� �s�
0 s�

c✓

c�

c✓

3

5 (2.8)

In case of ✓ = 90�, the robot would face a singularity. So, we avoid getting the joint
angles to be exactly 90�. Another possible solution to this problem is to use quaternions.

So, the 6-DOF kinematic equations becomes:

⌘̇ = J⇥(⌘)⌫ (2.9)

The Jacobian matrix that relates the linear and angular velocities in the NED frame and
the BODY frame J⇥(⌘) can be written as:

J⇥(⌘) =


ṗn
nb

⇥̇nb

�
=


R(⇥nb) 03⇥3

03⇥3 T (⇥nb)

� 
⌫n
nb

wb

nb

�
(2.10)

where ⌘ 2 R6 is the position and orientation in the NED frame, J⇥(⌘) 2 R6⇥6 is the
Jacobian matrix that relates the linear and angular velocities in the NED frame and the
BODY frame, and ⌫ 2 R6 is the velocity in the BODY frame.

Skew-symmetric matrices and quaternions are other useful tools for describing the sys-
tem’s kinematics. Skew-symmetric matrices provides a way for calculating the cross-
product of two vectors without using the cross-product-operator. Let � = [�1,�2,�3]T ,
the the skew-symmetric matrix S is defined as:
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S(�) = �ST (�) =

2

4
� ��3 �2
�3 0 ��1
��2 �1 0

3

5 (2.11)

So, the cross product for two vectors can be calculated as:

�⇥ a = S(�)a (2.12)

where a is a vector having the same dimensions of �, i.e a = [a1, a2, a3]T .

Quaternions allow the kinematic equations to be represented without using Euler angles.
The drawback of using quaternions is that the transformation matrix T is not defined
when the pitch angle ✓ = ±90�. So, quaternions are introduced to improve the robustness.
A quaternion q is a complex number that consists of one real part ⌘, and three imaginary
parts " = ["1, "2, "3]T . A set of a unit quaternions Q can be defined as:

Q :=
�
q | qTq = 1, q = [⌘, "T ]T , ⌘ 2 R, " 2 R3

 
(2.13)

For our application case, an underwater snake robot consisting of multiple articulated
rigid bodies with separate coordinate frames attached to each body, there is a high
probability of having a shape configuration with at least one of the coordinate frames
oriented with a 90� pitch angle. So, using quaternions representation for each body can
limit the cases where transformations are not defined. Euler angles, on the other hand are
easier for a person to understand when defining orientation. So, being able to represent
the relation between Euler angles and unit quaternions is useful. Equation 2.14 shows
how to transform from quaternions to Euler angles:

⇥nb =

2

4
atan2(2("2"3 + "1⌘, 1� 2("21 + "22))

�asin(2("1"3 � "2⌘))
atan2(2("1"2 + "3⌘, 1� 2("22 + "23))

3

5 (2.14)

In the same way, Equation 2.15 shows how to transform from Euler angles to quaternions:

q =

2

664

c
�
1
2 
�
c
�
1
2✓
�
c
�
1
2�
�
+ s

�
1
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�
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2�
�

c
�
1
2 
�
c
�
1
2✓
�
s
�
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2�
�
� s

�
1
2 
�
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�
1
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�
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�
1
2�
�

s
�
1
2 
�
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�
1
2✓
�
s
�
1
2�
�
+ c

�
1
2 
�
s
�
1
2✓
�
c
�
1
2�
�

s
�
1
2 
�
c
�
1
2✓
�
c
�
1
2�
�
� c

�
1
2 
�
s
�
1
2✓
�
s
�
1
2�
�

3

775 (2.15)

On using quaternions, the rotation matrix R, and the transformation matrix T can be
expressed as:

R(qn
b
) = I3 + 2⌘S(") + 2S2(") (2.16)

T (qn
b
) =

1

2


�"T

⌘I3 + S(")

�
(2.17)
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where S(") is skew-symmetric matrix presented in Equation 2.11, and I3 is the identity
matrix.

So, the 6-DOF kinematic equations in terms of quaternions becomes:

⌘̇ = Jq(⌘)⌫ (2.18)

The Jacobian matrix that relates the linear and angular velocities in the NED frame and
the BODY frame J⇥(⌘) can be written as:

Jq(⌘) =


ṗn
nb

q̇nb

�
=


R(qn

b
) 03⇥3

04⇥3 T (qb
n
)

� 
⌫n
nb

wb

nb

�
(2.19)

where ⌘ 2 R7 is the position and orientation in the NED frame, Jq(⌘) 2 R7⇥6 is the
Jacobian matrix that relates the linear and angular velocities in the NED frame and the
BODY frame, and ⌫ 2 R6 is the velocity in the BODY frame.

2.2 Hydrodynamics of Eely

Hydrodynamic model of Eely combines linear and non-linear drag forces, added mass
effect, fluid moments and current effect. The hydrodynamic model in Equation 2.20 is in
closed-form to avoid numerical evaluations with drag forces [9] [10].

f =


fx
fy

�
=


fAx

fAy

�
+


f I

Dx

f I

Dy

�
+


f II

Dy

f II

Dy

�
(2.20)

where fAx and fAy are the effects due to the added mass forces and are expressed as:


fAx

fAy

�
= �


µ (S✓)

2 �µS✓C✓

�µS✓C✓ µ (C✓)
2

� 
Ẍ
Ÿ

�
�

�µS✓C✓ �µ (S✓)

2

µ (C✓)
2 µS✓C✓

� 
V a

x

V a

y

�
✓̇

(2.21)

where µ = diag(µ1, . . . , µn) 2 Rn⇥n, V a

x
= diag(Vx,1, . . . , Vx,n) 2 Rn⇥n, V a

y
= diag(Vy,1, . . . , Vy,n) 2

Rn⇥n and [Vx,i, Vy,i]T are the ocean current velocity expressed in the inertial frame,
S✓ = diag(sin ✓)T 2 Rn⇥n and C✓ = diag(cos ✓)T 2 Rn⇥n.

f I

Dx
and f I

Dy
are the linear drag effects, while f II

Dx
and f II

Dy
are the non-linear drag effects

expressed in Equations 2.22 and 2.23:


f I

Dx

f I

Dy

�
= �


ctC✓ �cnS✓
ctS✓ cnC✓

� 
V link

rk

V lin

ryk

�
(2.22)


f II

DI

f II

Dy

�
= �


ctC✓ �cnS✓
ctS✓ cnC✓

�
sgn

✓
V link

rx

V link
ry

�◆2

4
�
V link

rx

�2
⇣
V link
ry

⌘2

3

5 (2.23)
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where ct = diag(ct,1, ..., ct,n), cn = diag(cn,1, ..., cn,n), while V link

rx
and V link

ry
are expressed

as:


V link
rx

V link
ry

�
=


C✓ S✓
�S✓ C✓

� 
Ẋ � Vx

Ẏ � Vy

�
(2.24)

where Vx = diag(Vx,1, . . . , Vx,n) 2 Rn⇥n and Vy = diag(Vy,1, . . . , Vy,n) 2 Rn⇥n are the
current velocities.

2.3 Dynamics of Eely

An efficient algorithm for the forward dynamics of Eely was proposed in [11]. The equa-
tion of motion for Eely after eliminating the constraint forces is expressed as:

H(#)⇣̇ + C(#, ⇣)⇣ + F (#, ⇣)⇣ + g(#) = ⌘ (2.25)

where H(#) is the system inertia matrix, C(#, ⇣) the hydrodynamical drag matrix, g(#)
contains forces due to weight and buoyancy, and ⌘ = [⌘T1 . . . ⌘T

n
] 2 Ra is a vector of

external forces with ⌘i 2 Rai .

The forward dynamics algorithm for the hydrodynamically decoupled form of Equation
2.25 including the effect of steady and uniform ocean current and motor and thruster
forces, is presented in Algorithm 1

This algorithm is based on the composite rigid body algorithm presented in [12]. Note
that the terms Hi,j 2 Rai⇥aj are sub-matrices of the system inertia matrix H(#) which
give the inertial coupling between joint i and joint j.
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Algorithm 1 Forward Dynamics
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CHAPTER 2. MATHEMATICAL MODELING AND SENSORS OF UNDERWATER
SNAKE ROBOT

2.4 Sensors

Eely uses an advanced sensor suite to help navigate. Some of these sensors are described
in the following subsections below. A full sensor suite can be seen in table 2.2.

Table 2.2: Full sensor suite for Eely

Device Quantity
DVL 1

HD Camera 1
IMU 1

Leakeage sensor 3
Multibeam echosounder 1

Ping Sonar Altimeter and Echosounder 1
Pressure sensor 1

UHI 1

2.4.1 DVL

The Doppler Velocity Log (DVL) is an acoustic sensor device utilized for measuring
velocities based on the Doppler shift in frequency. When an object is moving towards or
away from the DVL, the sensor measures the change in frequency of the acoustic signal
reflected from the object. This allows the DVL to accurately determine velocities and
estimate the distance traveled.

Typically, a DVL consists of four transducer heads, each emitting a beam of sonic pulses.
By analyzing the echoes received from these pulses, the DVL can calculate the velocity
vector of the vehicle relative to either the seafloor or the water column. The output of
the DVL includes three-dimensional velocity measurements: u, v, and w components.
The coverage of each beam is determined by the angle at which each transducer head is
positioned [13].

2.4.2 UHI

In recent years, the demand for hyperspectral imaging for environmental mapping and
monitoring has steadily increased. This includes sensor deployment on aerial, satellites,
and most recently, underwater platforms [14]. The underwater hyperspectral imager
(UHI) in Figure 2.2 combines a push-broom hyperspectral imager with an external light
source [15]. For the external light source, Halogen and LED lights are usually used.
Halogen lights are mostly used as they have close to a uni-formally distributed energy
spectrum across the frequencies of visible light, while LED lights have the capability
to boost the spectrum as required within the range of interest which is beneficial for
applications where illumination is needed to make up for any deficiencies caused by a
camera’s response sensitivity or when matching a specific spectral profile is a requirement
for the light source [16]. The imaging sensor is capable of measuring reflected light from
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380 to 800 nm in contrary to normal RGB cameras which are only using 3 colour, and
thus creating an energy spectrum of the environment. This in turn might be used to
create an unique spectrum for specific OOIs [17].

Recently, Ecotone a Spin-off company from NTNU [18] has developed the first complete
UHI system on the market. An illustration of their product mounted on Eely snakerobot
is shown in Figure 2.2.

Figure 2.2: Underwater Hyperspectral Imager mounted on Eely

2.4.2.1 Hyperspectral Imaging Principles

A UHI sensor weighs about 5 kg and is able to dive to depths of up to 6000 meters, thanks
to its titanium housing. It consists of both a regular RGB camera and a hyper-spectral
imager. Many UHI sensors also have an altimeter to calculate the distance from the
object being measured.

The hyperspectral imager measures light across a range of frequencies, including those
outside the range of visible light to humans. The amount of light received by the UHI
is measured in radiance, which is a unit of measurement for electromagnetic energy de-
noted L [Wm�2sr�1nm�1]. Radiance is the most important parameter in evaluating the
usefulness of the data, as it is affected by factors such as water visibility, the intensity of
sunlight and other external light sources, and the distance and material of the object of
interest (OOI).

Two principles affect the radiance when light is emitted from an external light source:
attenuation and backscattering. Attenuation is the principle that the intensity of the light
decreases as the distance from the light source increases. This relationship is exponential,
and assuming only one external light source is present, it can be represented by the
function:

L(z, ⇠̂) = L(0; ⇠̂)e�c(�)z (2.26)

where z and ⇠̂ represent the distance and direction from the light source, respectively, and
c(�) is an attenuation coefficient that depends on the wavelength of the emitted signal.

Backscattering is an additive effect, meaning that it adds unwanted radiance as the
emitted light reflects off particles in the water and surrounding environment. This effect
causes the quality of measurements to decrease with distance and the presence of particles
in the water [19]. Filtering this radiance out of the measured signal is not straightforward,
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but in clear water and at moderate distances, high-quality results can still be obtained
despite the presence of backscattering.

The main principle behind the UHI sensor is that it sends out light in a push-broom, or
fan-like pattern, and measures the spectrum of light received from the environment. A
simplified model often assumes a flat surface, such as the sea bed or ice. This means that
the spatial range of the sensor is proportional to its altitude, allowing it to map a larger
area by increasing its altitude. However, this also reduces the usefulness of the data,
which can be assumed to be proportional to the radiance. A sketch of the simplified UHI
model is shown in Figure 2.3.

Figure 2.3: Simplified UHI model assuming a flat surface [20]

2.4.2.2 Applications in the Underwater Domain

The main challenge in seabed mapping and exploration is the complex and dynamic
behaviour of the seabed, as it is exhibiting large variation of biogeochemical composition
over time and space [17]. The traditional mapping methods often have spatial limitations
and are qualitative on a high level of human interpretation to obtain results. These
methods include in situ diver surveys, ship-based acoustics (echosounders), benthic box
core, epibenthic sledge and beam trawl samples, underwater photography, and video
towed from boat as some examples. Most of these methods depend on the luminosity
from sunlight and how far can it penetrate the water layers which does not help in seabed
mapping as the seafloor is usually optically deep and a very small portion of sunlight
reaches it depending on the OOI location as well [20].

The main strength point of UHI is the use of an external light source to provide the
required luminosity to rely on the spectral signature of the unique features of the benthos.
Thus, different OOIs absorb and reflect different intensities for different frequencies in the
visible spectrum giving them a unique optical fingerprint. So, mounting the UHI sensor
on a underwater platform like Eely will make use of these fingerprints to qualitatively
and quantitatively develop maps of minerals, benthic habitats, substrates, and organisms
living on the seabed [21].

The dominating factor limiting the use of UHI sensor is the water visibility, as it varies
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a lot from a place to another and from a season to another especially in confined envi-
ronments which are our regions of interest. Plankton drifting in the water can to a large
extend limit the use if UHI sensor [22].

2.4.3 Setup of Sensors on Eely

Figure 2.4 shows the DVL and UHI sensors that were incorporated into the simulation
model of Eely. The UHI sensor is positioned at the head of Eely, while the DVL sensor
is situated in the middle of Eely’s sensor module.

Figure 2.4: Sensor placements onboard Eely
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Chapter 3
Risk Assessment

This chapter contains two parts. Firstly the most important terms that will reoccur
throughout the chapter will be presented. In the second part, a Bayesian approach to
asses the risks of losing Eely during two mission scenarios will be presented. The goal
of this chapter is to improve Eely’s performance and the likelihood of mission success.
Sensitivity analysis results are presented in order to demonstrate the causes having the
highest impact on losing Eely.

3.1 Definitions

3.1.1 Risk

Risk can be defined in various ways. According to ISO 31000 [23], risk refers to the
potential impact of uncertainty on objectives, where the impact is a deviation from ex-
pected outcomes. Another definition, provided in NORSOK Z-013 [24], states that risk
is a combination of the probability of occurrence of harm and the severity of that harm.
However, for the purpose of this thesis, Rausand’s [25] definition of risk is considered
more appropriate and easier to understand. Rausand defines risk as the answer to three
critical questions:

1. What can go wrong?

2. What is the likelihood of it happening?

3. What are the potential consequences?

The combination of these responses creates a comprehensive picture of the hazards, the
associated consequences, and the likelihoods of their occurrence. These factors together
make up the qualitative dimensions and components of risk.

The definition of risk related to a hazardous event ei [26] can be represented by the
following relation:

r = {ei, ci, q}|k (3.1)
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where ci is the consequence of ei, q is the measure of involved uncertainty, and k is
the background knowledge for determining ei, ci and q. This is the most commonly
used definition for Bayesian risk modeling. By accounting for previous knowledge about
the operational conditions and mission scenarios, events with low background knowledge
would not have a strong effect when making a decision in contrast to events with high
background knowledge.

3.1.2 Hazard

A hazard according to NORSOK Z-013 [24] is defined as a potential source of harm that
can result in loss of life, damage to health, environment, assets, or a combination of these.
A hazardous event refers to the occurrence when a hazard is released.

3.1.3 Risk Management

Risk management is the process of designing and implementing a framework, procedures
and processes to manage risk [23]. The risk management process according to ISO 31000
consists of five interrelated steps: establishing context, risk assessment, risk treatment,
communication and consultation, and monitoring and review, thus ensuring continuous
improvement of risk management. Figure 3.1 depicts the process outlined in ISO 31000.
Communication and consultation play a critical role in identifying all risks and hazards
by involving experts from different fields.

Figure 3.1: ISO 31000 Risk Management Process [23]

Establishing the context involves defining the scope, purpose, and goals of the risk man-
agement process. The risk assessment process includes three steps: risk identification,
risk analysis, and risk evaluation. During risk identification, hazards are reviewed and
the possible harm is identified. Risk analysis examines how the hazards might manifest
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and assesses their relevance in the established context. Risk evaluation determines the
level of risk and provides input for decision-making and risk treatment

Risk treatment involves identifying measures to reduce the risk induced by relevant risk
contributors. The principle that risk should be reduced as long as the associated effort
is not disproportional should always be applied [27]. The process of monitoring and
review continually reduces the level of risk. Reassessing risk with the knowledge and
experience gained during the process allows for the discovery of better and new ways of
risk mitigation.

3.2 Risk Modeling using BNs

3.2.1 Bayesian Networks

A Bayesian network is a graphical model used to address problems involving uncertainty
[28, 29]. It describes the dependencies between random variables in a directed acyclic
graph, where nodes stand for random variables and directed arcs between nodes signify
conditional dependencies between them. The Bayesian network, which is based on proba-
bility theory [30], allows for two-way reasoning by handling both causal reasoning, which
derives posterior probabilities from prior probabilities, and diagnostic reasoning, which
uses a formula to derive prior probabilities from posterior probabilities. The traditional
static Bayesian network (SBN) has limitations when it comes to evaluating variables that
change over time, but it is useful for analyzing and forecasting data at a specific time.
The dynamic Bayesian network was created to overcome this drawback. The dynamic
Bayesian network (DBN) incorporates methods that take into account the relationship
between moments in time, known as the state transition probability, in contrast to SBN
[31]. By considering this relationship, the network can learn to effectively use changes in
values over time, producing better results.

DBNs rely on the Bayesian formula and the independence hypothesis as the foundation
for their reasoning, which is based on probabilistic calculations based on an existing
model. The calculation uses the joint distribution of all nodes in the evaluation model,
denoted as P (X1, X2, ..., Xn), and the set of parent nodes for Xi denoted as Pa(Xi), as
follows:

P (x | y) = P (xy)

P (y)
=

P (xy)P
x
P (xy)

(3.2)

P (X1, X2, . . . , Xn) =
nY

i=1

P (Xi | Pa (Xi)) (3.3)

Combining the formulas and presumptions mentioned above, the following inference
mechanism can be derived for the SBN model, which typically has n hidden nodes and
m observation nodes:
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P (x1, x2, . . . , xn | y1, y2, . . . , ym)

=

Q
j
P (yj | Pa (yj))

Q
i
P (xi | Pa (xi))P

x1,x2,...,xn

Q
j
P (yj | Pa (yj))

Q
i
P (xi | Pa (xi))

(3.4)

The value of i in the formula ranges from 1 to n, and the value of j from 1 to m. xi

denotes the value of the random variable Xi, yj denotes the value of the observation
variable Yj. In particular, Pa(xi) and Pa(yj) represent the set of parent nodes for xi and
yj, respectively. The reasoning process for the DBN can be derived from Equation 3.4
by extending it along the timeline to create a dynamic network with T time points. In
Equation 3.5, where i ranges from 1 to T , j ranges from 1 to m, and k ranges from 1 to
n, the distribution of hidden variables can be described when the observation values are
in a single composite state. In this equation, the hidden node Xij value state is denoted
by xij, where i and j are the hidden node current time point and the hidden node within
this time point, respectively. The observation variable Yij value is denoted by yij, and
the set of parent nodes for yij are denoted by Pa(yij).

P (x1n, . . . , xTn | y1n, . . . , yTn) =

Q
ij
P (yij | Pa (yij))

Q
ik
P (xik | Pa (xik))P

x1n,...,xTn

Q
ij
P (yij | Pa (yij))

Q
ik
P (xik | Pa (xik))

(3.5)

Equation 3.6 can be applied if the observation variable has multiple states. yijs denotes
the state of the j observation node xij, during the i time slice. The likelihood that yij is
present in the appropriate state is P (yij = yijs). With this, the inference process for the
DBN is completely described.

P (x1n, . . . , xTn | y1ns, . . . , yTns) =
X

y1n,...,yTn

⇥
Q

ij
P (yij = yijs | Pa (yij))

Q
ik
P (xik | Pa (xik))

P
x1n,...,xTn

hQ
ij
P (yij | Pa (yij))

Q
ik
P (xik | Pa (xik))

i

⇥
Y

ij

P (yij = yijs)

(3.6)

3.2.2 Risk Assessment

Risk in the context of operating Eely is associated with several potential hazards. These
hazards encompass risks to the operators’ life and health, as well as the potential loss or
damage to Eely and other AUVs when deployed as part of an underwater monitoring fleet.
Additionally, an important consideration is the potential environmental damage that may
occur due to contact between Eely and subsea infrastructure or the seabed. To focus the
assessment, specific areas of risk will be considered, namely the loss of the vehicle, and
damage to the vehicle. In terms of environmental impact, the risk arising from the loss of
the vehicle is considered to be negligible, given the vehicle’s low environmental impact.
Additionally, it should be noted that Eely will not be operated in close proximity to
offshore or subsea facilities, reducing the risk of incidents in those areas.

Although the risk of loss of life and health related issues is assumed to be under control,
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it is important to acknowledge that these aspects should be evaluated in a separate risk
assessment to ensure that comprehensive safety measures are in place.

The analysis is limited to a functional assessment of the major components. Figure
3.2 provides a summary of the subsystems of interest and the considered influences.
Furthermore, it is assumed that personnel are well trained on the operation of Eely and
follow the procedures outlined in the Eely user manual. However, it is important to
account for the possibility of errors or incidents during operation, as no system is entirely
exempted from them.

Figure 3.2: Subsystems and interactions taken into account for the risk assessment.
Adopted from [27]

Another important point to note is that, up until now, Eely has not been lost, and no
critical incidents have occurred at NTNU. Therefore, it is crucial to have a balance and
avoid too conservative estimations that may hinder progress or efficiency for developing
Eely.

3.2.3 HAZID

In context of risk assessment, Definition 3.1 may imply a Bayesian approach to proba-
bilities, and hence the use of BN is a suitable approach to estimate the probability of
losing Eely during different operational scenarios. HAZID was performed for the two case
scenarios: i. Seabed mapping and ii. Confined environments operations in the form of a
preliminary hazard analysis (PHA) prior to the development of the Bayesian risk model.
Using the five-step method described in [32], the Bayesian risk model is developed.

HAZID aims to identify the hazards related to the operation of Eely for the two proposed
case scenarios. Detectability is defined as Eely’s ability to detect and monitor a spe-
cific hazard during its operation, where a high degree of detectability suggests a strong
background knowledge, while a low degree of detectability suggests a weak background
knowledge. The collection of hazards was mainly based on [33] as it offered a compre-
hensive compilation of potential risks and served as the foundation for the identification
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procedure, along with our own judgment and similar systems [32]. In addition to, pre-
vious field trials with Eely in Trondheim Fjord [34] and previous experiments in karstic
exploration [6, 35, 36] were also taken into account.

Table 3.1, adopted from [32] which was used for hazards in the context of AUV operation
under ice, the same criteria was selected and modified based on hazards related to Eely’s
operation. Then, these hazards were assigned possible consequences depending on each
case scenario, and the most noticeable hazards were identified. The risk priority number
(rpn) for each hazard is obtained from the categories shown in Table 3.1. The rpn is the
product of the frequency rating, the consequence rating, and the detectability rating. To
assess the risk, the worst-case scenario is assumed which is losing Eely. Note that this
loss may be temporary, as in the case of seabed mapping and deploying a vessel may
recover Eely [37], or it can be a permanent loss as in the case of underwater caves. Tables
VII-VIII in the Appendix of Paper 1 lists the hazards identified for the two case scenarios
presented in the study. The assessment sheets design in the tables is based on the PHA
sheet from [38].

Table 3.1: Criteria used to rate Frequency, Consequences and Detectability of events

Rating Score Description
Frequency
Low 1 The event may occur less than once per mission
Medium 2 The event will be encountered, on average, once per mission
High 3 The event will be encountered several times per mission
Consequences
Low/None 1 The event will have no negligible influence on the mission with

respect to damage to Eely or loss of mission data
Medium 2 The event may lead to damages or delays that will minorly

reduce the time available for the mission or affect the data
collection

High 3 The event may lead to loss of Eely, early abortion of the mission,
or significant loss of scientific data

Detectability
Low/None 3 Eely is not able to detect or assess the hazardous event during

the operation
Medium 2 Eely may infer information about the hazardous event. However,

the inference will be associated with high uncertainty
High 1 Eely may collect and infer information about the hazardous

event with high certainty

3.2.4 Failure Probabilities

The failure probabilities per year are given in Table 3.2, which are used in the BN nodes.
However, it should be noted that failure probabilities for some parts of the robot’s sensors
were taken as for the general parts and not for a product of a specific brand from a specific
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company. For example, the failure probability for the Underwater hyperspectral imager
(UHI) sensor was taken as the same value for the general camera as the UHI is simply
a more advanced camera as it combines a push-broom hyperspectral imager with an
external light source [39]. The obtained data which is available is used as an initial
attempt for quantitative risk assessment, but more proper assumptions and precise data
could be extracted in future trials and for system suppress analysing own design.

Table 3.2: Failure Probabilities

Sensor/Item Failure Probability
Joint module actuators 0.125

Thruster module actuators 0.1
DVL sensor 0.1
IMU sensor 0.01
UHI sensor 0.01
Cameras 0.01

LED lights 0.02
Leakage sensor 0.05

Batteries 0.000001

3.2.5 Conditional Probability Tables

The conditional probability tables (CPT) 3.3-3.7 are quantified based on the PHA. Table
3.4 shows the CPT for the failure of the propulsion system node. This table shows how
critical is it in case of the failure of thruster module actuators as shown in red in any case
of failure of thruster module actuators the probability of losing Eely is true as in confined
environments the robot can’t use its neutral buoyancy to float back to the surface. This is
further illustrated in the sensitivity analysis subsection. Moreover, thrusters were one of
the most susceptible components to failure as Eely operators at the Applied Underwater
Robotics Laboratory (AUR Lab) have communicated that they have lost on average one
thruster per year.

Table 3.3: CPT for Environmental complexity

Ocean current TRUE FALSE
Dusty sediments TRUE FALSE TRUE FALSE

Absence of natural
light

T F T F T F T F

TRUE 0.95 0.9 0.6 0.4 0.7 0.6 0.15 0.01
FALSE 0.05 0.1 0.4 0.6 0.3 0.4 0.85 0.99
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Table 3.4: CPT for Failure of propulsion system

Failure of thruster module
actuators

TRUE FALSE

Failure of joint module actuators TRUE FALSE TRUE FALSE
Environmental complexity T F T F T F T F

TRUE 1 1 1 1 0.3 0.1 0.35 0
FALSE 0 0 0 0 0.7 0.9 0.65 1

Table 3.5: CPT for Failure of remote control

Failure of
communication

system

TRUE FALSE

Failure of operator
intervention

TRUE FALSE TRUE FALSE

Environmental
complexity

T F T F T F T F

TRUE 0.4 0.3 0.3 0.2 0.1 0.01 0.05 0.01
FALSE 0.6 0.7 0.7 0.8 0.9 0.99 0.95 0.99

Table 3.6: CPT for Failure of autonomous control

Failure of propulsion system TRUE FALSE
Failure of altitude control TRUE FALSE TRUE FALSE

TRUE 1 1 0.6 0
FALSE 0 0 0.4 1

Table 3.7: CPT for Loss of Eely

Failure of autonomous control TRUE FALSE
Failure of remote control TRUE FALSE TRUE FALSE

TRUE 1 0.75 0.1 0
FALSE 0 0.25 0.9 1

3.2.6 Launching the BN Model

After gathering the failure probabilities data, the BN model is constructed using the
software GeNIe 4.0, which allows interactive model building and learning, developed by
Bayes Fusion company [40]. Figures 3.3 and 3.4 show the developed BNs for the two case
scenarios.
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Figure 3.3: BN for Losing Eely during Seabed Mapping Operations

Figure 3.4: BN for Losing Eely during Confined Environments Operations

3.2.7 Dynamic Simulation

Figures 3.5 and 3.6 show the developed DBNs for the two case scenarios.
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Figure 3.5: DBN for Losing Eely during Seabed Mapping Operations

Figure 3.6: DBN for Losing Eely during Confined Environments Operations

The simulation results of the DBNs for the two case scenarios can be observed in Figures
3.7 - 3.8. The results indicate that the DBN can take into account changes over time
and the likelihood of events occurring. In this regard, the probability of losing Eely in
confined environments is higher than in seabed mapping due to various factors such as
extreme pressures on the thrusters, poor communication with the vehicle, high mission
complexity, and the complexity of the environment.
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(a) Environmental Complexity

(b) Mission Complexity

(c) Failure of Propulsion System

(d) Failure of Remote Control

(e) Failure of All Sensors

(f) Failure of Altitude Control

(g) Failure of Autonomous Control

(h) Loss of Eely

Figure 3.7: Dynamic Simulation Results for Seabed Mapping Operations
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(a) Environmental Complexity

(b) Mission Complexity

(c) Failure of Propulsion System

(d) Failure of Remote Control

(e) Failure of All Sensors

(f) Failure of Altitude Control

(g) Failure of Autonomous Control

(h) Loss of Eely

Figure 3.8: Dynamic Simulation Results for Confined Environments Operations

3.2.8 Sensitivity Analysis

The goal of sensitivity analysis is to identify the causes that have the most significant
impact on the probability of losing Eely, and to limit these causes by introducing risk
reduction measures. It also works as an indicator for adding more constraints and efforts
for data collection. Decreasing the uncertainty of a cause that has little or no influence on
the probability of losing Eely will result in a negligible change in the overall uncertainty
value, making it of little importance. In our case, we aim to identify the top factors that
influence the probability of losing Eely. Figures 3.9 - 3.10 show the sensitivity analysis
results for losing Eely for the two case scenarios.

In the first case of seabed mapping operations shown in Figure 3.9, it can be seen that
the probability of losing Eely is most sensitive to the failure of autonomous control.
Other main factors are comprised of failure of thruster module, failure of altitude control,
mission complexity, and DVL failure. The second case of sensitivity analysis is performed
for confined environment operations and is shown in Figure 3.10. It can be seen that
the failure of autonomous control is the most sensitive factor for losing Eely as well.
Environmental complexity, failure of propulsion system, failure of altitude control, and
mission complexity account for the remaining factors to which the loss of Eely is sensitive.
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Figure 3.9: Sensitivity tornado diagram for losing Eely during Seabed Mapping Oper-
ations

Figure 3.10: Sensitivity tornado diagram for losing Eely during Confined Environments
Operations

3.2.9 Pros and Cons of the BN Model

The model looks upon almost Eely’s entire system to avoid potential risks. Despite the
fact that the model was built specifically for Eely, it can be transferred to the opera-
tions of other autonomous underwater vehicles. On the other hand, the model has some
limitations, such as not including all of the possibilities with details which can cause
the loss of Eely and not completely extending some nodes. For instance, nodes such as
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failure of communication system and failure of operator intervention, the latter being a
non-technical node, could be further developed, and other non-trivial factors could have
been included in the model. For such expansion, it would require searching for more data
including human and organizational factors and their influence on mission risk, which
would take a significant amount of time and resources, having the current model seem to
be adequate for the two investigated case scenarios. Moreover, DBN is time dependent
where the state of a variable at one time depends on its previous states and the states
of other variables and it can be computationally expensive to compute more time steps,
and GeNIe is only limited to 1000 time step [40].

3.3 Discussion

From the results of the DBN and sensitivity analysis, improving the robustness of the
autonomous control part would significantly decrease the risk of losing Eely robot during
different operations. Regarding seabed mapping operations, from the sensitivity tornado
graph in Figure 3.9 shows that improving the thruster module actuators and altitude
control systems would also substantially reduce the risk of losing Eely.

As for confined environments operations, the sensitivity tornado graph in Figure 3.10
indicates that, except for environmental and mission complexity, improving the robustness
of the thruster module actuators, propulsion system, and altitude control system would
also significantly reduce the risk of losing Eely. The uncertainties associated with confined
environments environmental complexity are reflected in the DBN in Figure 3.6 as they
affect critical nodes, and in Tables VII-VIII in the Appendix of Paper 1 as they are the
main reason for a high rpn, mainly for DVL failure and Controller failure.
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Chapter 4
Altitude Control of Underwater Snake Robot

This chapter will present and describe the altitude Control method based on for local
sea floor geometry approximation from the DVL sensor measurements based on [41] and
[42]. Two Control methods will be applied to Eely, the nonlinear PID and the nonlinear
FOPID.

4.1 Altitude and Sea Floor Gradient

Figure 4.1 shows Eely fully submerged above the seabed. Eely position in the {n} frame
is p = [xp, yp, zp]T

Figure 4.1: Eely above the Seabed in the NED-frame. Adopted from [13]

The NED-frame velocity vector ṗ can be expressed as:
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ṗ = Rn

b
(⇥nb)v (4.1)

where ⇥nb = [�, ✓, ]T is the altitude vector, Rn

b
(⇥nb) is the rotation matrix from {b} to

{n} frame, and v = [u, v, w]T is the velocity vector in {b} frame.

Seabead is assumed to be a surface expressed by the following equation:

F (x, y, z) = f(x, y)� z = 0,
@F

@t
= 0 (4.2)

4.1.1 Altitude

The altitude is defined as the length of the vector from the center of origin (CO) of Eely
to the point on the seabed with the same horizontal coordinates as the CO.

Eely’s depth zp is the vertical distance from the sea surface to the CO of Eely. This
should not be confused with the water depth or altitude. The altitude vector is expressed
as:

a = ra � p =

2

4
xp

yp
f(xp, yp)

3

5 �

2

4
xp

yp
zp

3

5 =

2

4
0
0

f(xp, yp)� zp

3

5 (4.3)

where ra is is the NED position of the point on the seabed below the CO of Eely, as
shown in Figure 4.1. The altitude length can be written as:

a = f(xp, yp)� zp = F (xp, yp, zp) (4.4)

From Equation 4.4, the altitude can be expressed by the same function F as the seabed,
when F is evaluated at Eely’s position.

4.1.2 Altitude Rate of Change

The altitude rate of change is given in Proposition 4.1.1, which is valid for 6 DOFs motion.

Proposition 4.1.1.
ȧ = rF (p) · ṗ (4.5)

where rF (p) =


@f

@x

��
xp,yp

, @f
@y

���
xp,yp

,�1
�

is the gradient vector of Equation 4.2 at the

horizontal position (xp, yp) of Eely. The proof for Equation 4.5 is given as follows

Proof 4.1.1. The expression for the altitude rate of change is shown in Equation 4.6
using partial derivatives of a and chain rule.

ȧ = Dta(p(t)) = Dt [a (xp(t), yp(t), zp(t))]

=
@a

@xp

· dxp

dt
+
@a

@yp
· dyp
dt

+
@a

@zp
· dzp
dt

(4.6)
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Substituting from Equation 4.4 in Equation 4.6, the altitude rate of change becomes:

ȧ =
@f

@xp

· dxp

dt
+
@f

@yp
· dyp
dt
� dzp

dt
(4.7)

Since x = xp and y = yp in the function f presented in Equations 4.2 and 4.4. So, the
partial derivatives @f

@xp
= @f

@x

��
xp,yp

and @f

@yp
= @f

@y

���
xp,yp

. The altitude rate of change becomes:

ȧ =

"
@f

@x

����
xp,yp

,
@f

@y

����
xp,yp

,�1
#
·

2

4
ẋp

ẏp
żp

3

5 = rF (p) · ṗ (4.8)

where rF =
h
@f

@x
, @f
@y
,�1

i
if F = F (x, y, z) = f(x, y)� z = 0.

Equation 4.5 can be written as Equation 4.9 which shows how the altitude rate of change
is related to the seabed from the gradient vector, and to Eely attitude and velocity vector.

ȧ =

"
@f

@x

����
xp,yp

,
@f

@y

����
xp,yp

,�1
#
Rn

b
(⇥nb)

2

4
u
v
w

3

5 (4.9)

4.2 DVL Measurements

The DVL sensor is used to measure Eely’s velocity over the seabed and to measure the
altitude. DVL uses accoustic beams in a Janus configuration, these beams are transformed
the DVL fixed frame {d} to {b} and finally to {n}.

4.2.1 DVL Beams and Kinematics

The used DVL has 4 acoustic beams in a Janus configuration is proposed in order to
decrease the influence of the vehicle inclination [43]. The DVL jth beam with its paramters
is shown in Figure 4.2a. The jth is represented by vector rd

j
expressed in Equation 4.10

and it goes from the DVL to the seabed.
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(a) DVL j
th beam vector components (b) DVL beam vector in the DVL and Eely

frame

Figure 4.2: The DVL beam components and beam vectors in the DVL and Vehicle
frame. Adopted from [13]
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=

2
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j
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j
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5 = ad
j
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tan (�j) sin (�j)
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3

5 (4.10)

where �j is the angle of the jth beam from the DVL z-axis, and �j is the angle from the
DVL x-axis. aj

d
is the vertical component of rj

d
, and rj

d
is expressed in terms of aj

d
and the

constant angles �j and �j. aj
d

is the measurement output from the DVL, and the vector
with all 4 altitude measurements is noted as ad.

4.2.2 Transformation of Beams

The vector rj
d

is transformed and shifted to {b} frame in Equation 4.11, then transformed
to {n} frame in Equation 4.12. The first transformation and shift are illustrated in Figure
4.2b.

rb
j
= Rb

d
(⇥bd)r

d

j
+ rb

dvl/b
(4.11)

rn
j
= Rn

b
(⇥nb)r

b

j
(4.12)

where ⇥bd is the orientation of {d} relative to {b}. rb
dvl/b

is the vector from CO of Eely
to the DVL center in {b} frame.

Finally, the 4 vectors from Eely CO to the seabed are given in {n} as:

rn

j
=

2

4
xn

j

yn
j

an
j

3

5 , j = 1, 2, 3, 4 (4.13)
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Equation 4.13 will be used to approximate the seabed geometry locally under Eely given
that at least 3 DVL beams measurements are available.

4.2.3 Linear Approximation

A linear approximation function of the seabed requires at least 3 points. The linear
seabed function is f(x, y) = a + bx + cy. In case all of the 4 DVL beams measurements
are available, 4 different approximations can be calculated by different combinations of 3
of 4 beams. But, only one of the approximations must be chosen. It is advised to use the
combination which gives the most preview while going forward as the forward looking
beam will give some collision avoidance feature [13]. The seabed approximation using 3
DVL beams is obtained by solving Equation 4.14 to compute aj, bj, cj.

2

4
1 xn

j
yn
j

1 xn

j+1 yn
j+1

1 xn

j+2 yn
j+2

3

5
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4
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3

5 =

2

4
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j

an
j+1

an
j+2

3

5 (4.14)

4.3 Controllers

4.3.1 Speed Control

The surge, sway, heave, and yaw velocities of Eely are to be controlled using inputs from
a joystick. The 4-DOF position and velocity vectors are given in Equations 4.15 and 4.16,
respectively:

⌘ = [u v w r]T (4.15)

⌫ = [u v w r]T (4.16)

In this case, the control objective is to guide Eely by minimizing the error between the
desired velocities provided by the joystick ⌫cmd and the actual velocities of the vehicle ⌫.
The actuator forces that are used to control the Eely’s motion are given by:

⌧ = [X Y Z N ]T (4.17)

Joystick commands can be represented as a vector ⇥js = [ujs vjs wjs rjs]T , where
each component of this vector corresponds to a different command, where ujs represent
the surge command, vjs represent the sway command, wjs represent the heave command,
and rjs represent the yaw command. The buttons corresponding to these commands are
illustrated in Figure 4.3, and each command can take on values in the range [-1, 1], where
a value of -1 represents the maximum negative command (for example, full reverse for
the surge command), a value of 0 represents no command, and a value of 1 represents
the maximum positive command (for example, full forward for the surge command).
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Figure 4.3: Commands given by the Controller

The commanded speed of Eely will be proportional to the joystick commands, and can
be expressed as:

⌫cmd = K⌫

js
T b

js
⇥js (4.18)

where K⌫

js
2 R4⇥4 is a diagonal scaling matrix that determines the maximum command

velocity in each direction, and T b

js
2 R4⇥4 is a transformation matrix that maps the

joystick reference to the BODY frame of Eely. In order to counteract potential roll and
pitch moments that arise from these inputs, ⌫cmd is expanded such that:

⌫cmd = [ucmd vcmd ucmd 0 0 rcmd]
T (4.19)

This expanded form of ⌫cmd allows the speed of Eely to be controlled using a Proportional
Integral Derivative (PID) control law of the form:

⌧c = �Kp (⌫cmd � ⌫)�Ki

Z
t
0

0

(⌫cmd (t
0)� ⌫ (t0) dt0)�Kd (⌫̇cmd � ⌫̇) (4.20)

where KP , KI , Kd 2 R6⇥6 are the proportional, integral, and derivative gains, respectively.
In order to produce stable and realistic results, the controller must be carefully tuned
by choosing appropriate values for the gains. The commanded speed is also saturated
according to Equation 4.21. In this case, the proportional, integral, and derivative gains
are chosen to be equal for translation in all directions and rotation in all directions, as
shown in Equation 4.22. This simplifies the tuning process by reducing the number of
gains that must be chosen, but may decrease the quality of the controller as the behavior
of the system is likely different in different directions due to the different dimensions of
the vehicle.

K⌫

js
= KjsI4 (4.21)

Kp =


Kp,linearI3 03⇥3

03⇥3 Kp,angularI3

�
(4.22)
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4.3.2 Joint Torque Control

Joint torque control is used to control the body configuration of Eely. The desired joint
angles are represented by qd = [✓1d , ..., ✓(N�1)d ]

T , and the actual joint angles are repre-
sented by q = [✓1, ..., ✓N�1]T . The difference between the actual and desired joint angles
is q̃ = q � qd. The joint angles can be controlled with the following PD control law [44]:

⌧✓ = �Kp,✓q̃ �Kd,✓
˙̃q (4.23)

The commanded joint torques are represented by ⌧✓ 2 RN�1, and the proportional and
derivative gains are represented by Kp,✓ and Kd,✓ 2 RN�1⇥N�1. These are positive definite
diagonal matrices. To control the joints, it is necessary to measure the joint angles.
Rotary encoders can be used for this purpose. These encoders can be installed on each
joint motor to measure the relative rotation angle of each joint.

4.3.3 Thrust Allocation

Thrust allocation involves distributing the control signal from a controller to the thrusters
on a vehicle. The generalized 6 DOF control forces and moments ⌧ can be distributed
to the thrusters using Equation 4.24, where B is the input matrix, n is the number of
inputs, and rb

bpi
= [lxi, lyi, lzi]T are the lever arms. Lever arms refer to the distance from

the CO of the body of Eely to the line of action of the force at each thruster.

⌧ =
nX

i=1


f b

i

rb
bpi
⇥ f b

i

�
=

nX

i=1

2

6666664

Fxi

Fyi

Fzi

lyiFzi � lziFyi

lziFxi � lxiFzi

lxiFyi � lyiFxi

3

7777775
= Bu (4.24)

To control an Eely robot, we use r thrusters and N � 1 joints, giving us a total of
n = r + N � 1 inputs. The commanded forces and moments, represented by ⌧c are 6
DOF, while the commanded joint torques are represented by ⌧✓. The forces and moments
applied to the robot from the joint motors and thrusters can be described as follows:


⌧✓
⌧c

�
= Btotutot =

⇥
B B⇤(q)

⇤  u
u⇤

�
(4.25)

The vectors u 2 RN�1 and u⇤ 2 Rr contain the joint motor forces and thrust forces,
respectively. These vectors represent the inputs to the system. The matrix B 2 R6⇥N�1

represents the input map for the joint motor forces, while B⇤(q) 2 R6⇥r represents the
thruster configuration matrix that maps the desired control forces and moments to the
thrusters. Note that the position and orientation of the thrusters relative to the base of
Eely can change as the joints rotate, so B⇤(q) must be recomputed when Eely’s shape
changes, while B remains constant [45]. It is possible to find geometric Jacobians that
map the forces and moments ⌧tj from the thruster frames {tj} to the BODY frame {b}
of Eely, as shown in Equations 4.26 and 4.27:
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⌧(q) =
rX

j=1

JT

tj
(q)⌧tj (4.26)

⌧tj =


1

05⇥1

�
uthrj (4.27)

The scalar force applied by each thruster uthrj can be used to find the forces ⌧b(q) acting
on the BODY frame placed at the head link. The selection matrix H = [I6⇥6 06⇥N ] can
be used to express ⌧b(q) as:

⌧b(q) = H⌧(q) =
rX

j=1

HJ>
tj
(q)⌧tj =

rX

j=1

⇣
Ad�1

btj

⌘T

⌧tj (4.28)

where Ad�1
btj

is the inverse map between the BODY frame and the thruster frame. Equa-
tion 4.28 can be re-written as:

⌧b(q) =
rX

j=1

Bj(q)uthr,j (4.29)

where,

Bj(q) =
⇣
Ad�1

btj

⌘>


1
05⇥1

�
=


Rbtj 03⇥3

p̂btjRbtj Rbtj

� 
1

05⇥1

�
(4.30)

The complete thruster configuration matrix can be expressed as:

⇥
B B⇤(q)

⇤
=
⇥
B B1(q) B2(q) . . . Br(q)

⇤
(4.31)

This matrix is used to control the forces and moments applied by the thrusters, which in
turn allows Eely to move and maneuver as desired.

4.4 Nonlinear PID Control

Let ⌘d denote the desired pose of the vehicle in the NED frame, which can be provided by
a guidance law. The difference between the actual pose and the desired pose is represented
by e = ⌘ � ⌘d. The control objective is to minimize e with a feedback loop that reaches
the desired states. This can be accomplished with the following nonlinear Multiple Input
Multiple Output (MIMO) PID control law:

⌧c = �KpJ
�1
⇥ e�KdJ

�1
⇥ ė�KiJ

�1
⇥

Z
t

0

e (t0) dt0 (4.32)

where ⌧c represents the control torque, J⇥ is the Jacobian matrix, Kp, Kd, and Ki are the
proportional, derivative, and integral gain constants, respectively, e is the error between
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the reference signal and the system output, and ė and
R

t

0 e (t
0) dt0 represent the time

derivative and the time integral of the error, respectively.

To achieve a more satisfactory response, a nonlinear PID controller has been developed.
This controller replaces each term of the conventional PID controller with a nonlinear
function f(e), which is a combination of sign and exponential functions of the error signal
[46]. The controller’s derivative and integral are also modified using similar nonlinear
functions and can be given as:

8
<

:

UNLPID = f1(e) + f2(e) + f3
�R

edt
�

fi(�) = ki(�)|�|↵i sign(�)
ki(�) = ki1 +

k2
1+exp(µi�

2) , i = 1, 2, 3
(4.33)

where � could be e, ė, or
R
edt,↵i 2 R+, the function Ki(�) is a positive function with

coefficients Ki1, Ki2, µi 2 R+.

4.5 Fractional Order Calculus and Control

4.5.1 Introduction

Podlubny [47, 48, 49] introduced fractional PID controller with integrator order � and
differentiator order µ which showed that the performance of Fractional dynamics perfor-
mance becomes better with FOPID. In 2010, an interesting perspective to the subject,
unifying all mentioned notions of fractional derivatives and integrals, was introduced and
studied in [50, 51, 52]. After this work, different researchers composed FOPID controllers
utilizing diverse outlines and tuning techniques. In [53] motion control of dynamical
rigid body using FOPID showed the effect of fractional order controller on the dynamical
response of the rigid body. The application fields of fractional calculus are increasingly
widening, including areas such as electrical engineering, automation and control engi-
neering, robotics [54], bio-medical engineering and recently the renewable energy domain
introduced in [55].

The main motivation in fractional order operators and systems are their good perfor-
mances, hereditary properties [56], and the recent advances in computer science and
numerical tools allowed for FOPID to be implemented. The existing problems in altitude
and motion control of underwater vehicles have prompted research into more effective
control methods; therefore, different altitude tracking control approaches for UUVs have
been proposed to achieve the best performance including high operational speed, high
tracking accuracy (minimized tracking error), low energy consumption and smoothness
of velocity control signal obtained. This section introduce the FOPID applied to the
altitude controller to follow a specified sea mount and maintain a safe distance from the
sea bed [57].

4.5.2 Fractional Order PID Controller PI�Dµ

The FOPID controller was presented for the first time by Podlubny in 1999 [58]. The
FOPID controller is a natural extension of the classical PID controller with an arbi-
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trary order of its integration and differentiation actions [59]. With a more sophisticated
controller, new design strategies are possible with the most flexible controller for plant
with performance limitations. The differential equation of the PI�Dµ controller in time
domain is described by:

U(t) = Kpe(t) +KiD
��e(t) +KdD

µe(t) (4.34)

Figure 4.4 shows that by selecting � = 1 and µ = 1, the nonlinear PID controller can be
used. Selecting � = 1 and µ = 0 is equivalent to a PI controller, while selecting � = 0
and µ = 1 is equivalent to a PD controller. These are all special cases of the FOPID
controller.

Figure 4.4: FOPID convergence graph

Figure 4.5 illustrates the plane of the integral and derivative actions of the PID controller.
Obviously, the classical PID controller can be only represented by four points in the plane,
while the FOPID controller is represented by the whole limited plane [60].

Figure 4.5: FOPID Plane

The transfer function of the fractional order PID controller (PI�Dµ) is given by:
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GFO�PID(s) = Kp +
Ki

s�
+Kds

µ (4.35)

where Kp, Ki, Kd are proportional, integral and derivative gains respectively. µ and �
are positive numbers that represent the order of differentiation and integration [56]. The
control signal in the time domain representation given by:

uFO�PID(k) = Kpe(k) +KiD
��e(k) +KdD

µe(k) (4.36)

In order to find a series approximation for s�� in terms of z�1 which has infinite direct
current gain, first we write it as s�� = (1/s) ⇥ s1�� and then apply the Tustin method
to it. Finally we get the following expression:

s�� =

✓
2

T

◆�� 1 + z�1

1� z�1

NX

n=0

fn(1� �)z�n (4.37)

where fn(1� �)z�n are again calculated as:

fn(1� �) =
1

n!
⇥ dn

dZ�1k

✓
1� Z�1

1 + Z�1

◆����
Z�1=0

(4.38)

The following formulation for the discrete-time PI�Dµ controller:

Gc(z) = Kp +Ki

1 + z�1

1� z�1

NX

n=0

fn(1� �)z�n +Kd

NX

n=0

fn(µ)z
�n (4.39)

where

Kp = kp, Ki = ki

✓
2

T

◆��

, Kd = kd

✓
2

T

◆µ

(4.40)

By using the inverse z-transform, the difference equation relating e(k) to u(k) can be
written as the following:

u(k) =u(k � 1) +Kp[e(k)� e(k � 1)]

+Ki

NX

n=0

fn(1� �)[e(k � n) + e(k � n� 1)]

+Kd

NX

n=0

fn(µ)[e(k � n)� e(k � n� 1)]

(4.41)

where N is number of Memory locations.
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4.5.3 Nonlinear Fractional Order PID Controller (FOPID)

Figure 4.6 shows a block diagram which represent the FOPID control structure.

Figure 4.6: FOPID Controller block diagram

The nonlinear FOPID control law applied to Eely is expressed as:

⌧c = �KpJ
�1
⇥ e�KdJ

�1
⇥ ėµ �KiJ

�1
⇥

Z
t

0

e (t0) dt0

�
(4.42)

The difference between PID and FOPID controllers is that, FOPID provides extra degree
of freedom not only for the controller gains (Kp, Ki, Kd) but also for the orders of integral
� and derivative µ [56]. FOPID will increase the disturbance rejection of the system
especially that Eely is operating at a turbulent flow environment (water).
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Chapter 5
Simulator Implementation

This chapter presents the implementation and the simulations carried out during this
work on Eely. The simulations were carried out using the Robotics Operating System
(ROS) framework, Gazebo, and Plankton simulator.

5.1 ROS2

ROS2 was developed from scratch, and it is a complete new ROS with goals to make it
more compatible with industrial applications compared to ROS1 which was dedicated to
accelerating robotics research. ROS2 was built with the following design requirements
[61] in order to make it ready for commercial use and adoption:

• Security — It needs to be safe with proper encryption where needed

• Embedded Systems — ROS2 needs to be able to run on embedded systems

• Diverse networks — Need to be able to run and communicate across vast networks
since robots from LAN to multi-satellite hops to accommodate the variety of envi-
ronments where robots could operate and need to communicate.

• Diverse networks — Need to be able to run and communicate across vast networks
since robots from LAN to multi-satellite hops to accommodate the variety of envi-
ronments where robots could operate and need to communicate.

• Real-time computing — Need to be able to perform computation in real time reli-
ably since run time efficiency is crucial in robotics

• Product Readiness — Need to conform to relevant safety / industrial standards
such that it ready for market

ROS2 is built as a decentralized framework compared to ROS1 which was centralized,
meaning that there is a ROS Master node, which provides naming and registration services
for other ROS nodes. In that way, ROS master node acts as the mediator for establishing
connections between nodes, and if this connection dies, there is no way of communicating
with other nodes. In ROS2, ROS master node was eliminated, because ROS2 uses DDS
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which allowed for nodes to communicate with each other in a peer-to-peer fashion without
the need for a mediator. Thus the system’s fault tolerance increase as it don’t have a single
point of failure compared to ROS1 [62]. ROS2 infrastructure follows a publish-subscribe
architecture, where nodes receive information by subscribing to a topic, and can send
information by publishing messages to a topic. This structure allows the program to
run multiple processes simultaneously, since none of the nodes need to know about the
existence of other nodes [61].

5.2 Plankton Simulator

Simulations are carried out using Plankton open source simulator [63]. Plankton simu-
lator is directed towards marine and maritime robotics researchers, aiming to simplify
robotics research in these domains. The simulator runs using Gazebo and UUV Sim-
ulator [64] plugin in ROS2. Gazebo is an open source physics engine used to simulate
robots and environments allowing the user to receive good visual information about how
systems behave. It can also be used with several plugins, where the UUV Simulator is
the most important one for this project. The UUV package have the required tools for
simulating Unmanned Underwater Vehicles (UUVs), such as ROVs and AUVs. Also, the
UUV Simulator has the ability to compute the thruster allocation matrix based on the
placement of the thruster frames in relation to the base link.

5.3 Eely Platform in Simulation

The properties used for the Eely’s model are from the Eely500 user manual. Parameters
for the simulation model are given in Appendix Table A.1. Eely is simulated in its fully
extended configuration having 5 links as shown in Figure 5.1.

Figure 5.1: Eely in torpedo shape with all modules

The topology of Eely can be represented by a connectivity graph [65]. For illustration, the
connectivity graph of Eely is shown in Figure 5.2. Every node (vertex) in the connectivity
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graph represents a reference frame with the same label, where frame {0} is the NED frame,
and the superscript ⇤ indicates the thruster frame. Physical parameters for Eely vehicle
are shown in Table 5.1.

Table 5.1: Eely properties

Parameter Value Unit
radius 100 mm
total length 6182 mm
total dry mass 199 kg
link 1 length 494 mm
link 2 length 1185 mm
link 3 length 1435 mm
link 4 length 1185 mm
link 5 length 740 mm
joint module 285 mm

Figure 5.2: Connectivity graph describing Eely. Adopted from [11]

The full simulation architecture is illustrated in Figure 5.3, which provides a simplified
overview of the main topics and modules that the system relies upon. The basic com-
ponents include signal processing, altitude controller, and thrust allocation. The YAML
configuration file, shown on the right, offers an easy and human-readable approach to
adjust and define various parameters without the need to modify the main code by the
operator.
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Figure 5.3: Simulation Architecture

5.4 Results

Figures 5.5 - 5.10 show the altitude control results for Eely using Proportional, PID, four
FOPID controllers over a specified seamount shown in Figure 5.4.

Figure 5.4: Seamount to be mapped
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5.4.1 Eely with Proportional Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.5: Altitude Control Simulation results of Eely with Proportional Controller

Figure 5.5 shows the results obtained from the Proportional controller. According to
the results, Eely required more control forces to maintain its desired altitude, indicating
that it may have had to use more energy to navigate through the seamount. It can be
noticed that not all of the thrusters were utilized, which can contribute to the increased
oscillations of Eely and the risk of losing thrusters.
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5.4.2 Eely with PID Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.6: Altitude Control Simulation results of Eely with PID Controller

Figure 5.6 shows the results obtained from the PID controller. According to the results,
Eely performed significantly better when using a PID controller. The settling time and
oscillations were greatly improved compared to the previous simulation. Additionally,
the thrusters were utilized more effectively, particularly in creating smoother thrust in
the heave direction, compared to the previous simulation.
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5.4.3 Eely with FOPID 1 Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.7: Altitude Control Simulation results of Eely with FOPID 1 Controller

Figure 5.7 shows the results obtained from the FOPID 1 controller. According to the
results, Eely performed slightly better than when using a PID controller in terms of
adaptability to sudden changes caused by the unstructured variations in the seamount.
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5.4.4 Eely with FOPID 2 Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.8: Altitude Control Simulation results of Eely with FOPID 2 Controller

Figure 5.8 shows the results obtained from the FOPID 2 controller. According to the
results, Eely performed slightly better than when using a PID controller in terms of
adaptability to sudden changes caused by the unstructured variations in the seamount.
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5.4.5 Eely with FOPID 3 Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.9: Altitude Control Simulation results of Eely with FOPID 3 Controller

Figure 5.9 shows the results obtained from the FOPID 3 controller. According to the
results, Eely performed slightly better than when using a PID controller in terms of
adaptability to sudden changes caused by the unstructured variations in the seamount.
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5.4.6 Eely with FOPID 4 Controller

(a) Thrusters output 0-3 (b) Thrusters output 4-7

(c) Thrusters output 8-11 (d) Velocity

(e) Altitude

Figure 5.10: Altitude Control Simulation results of Eely with FOPID 4 Controller

Figure 5.10 shows the results obtained from the FOPID 4 controller. According to the
results, Eely surpassed the PID controller and other FOPID controllers in terms of dis-
turbance rejection and its ability to closely follow the intricate details of the unstructured
seamount with minimal deviation from the desired setpoint of 8.5 m altitude, as demon-
strated in Table 5.2.
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5.5 Discussion

The simulation results presented in Figure 5.11 show the combined altitude outputs of
Eely over a period of 10 minutes on the specified seamount using six different controllers,
namely Proportional, PID, and four FOPID controllers.

Figure 5.11: Combined Altitude results of different Controllers

The performance of different controllers combined with the altitude controller for Eely,
the tracking error, and the power for each controller are shown in Table 5.2.

Table 5.2: Performance comparison of Controllers and Error

Controller
Controller Parameters Error

(%)
Power consumed

(%)Kp Ki Kd � µ

Proportional 0.5 0 0 0 0 40 55
PID 0.5 0.2 0.05 1 1 20 12

FOPID 1 0.5 0.2 0.05 0.6 0.7 12 7.1
FOPID 2 0.5 0.2 0.05 0.4 0.7 5 5.2
FOPID 3 0.5 0.2 0.05 0.17 0.35 3 4.9
FOPID 4 0.5 0.2 0.05 0.2 0.6 1 60
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The nonlinear PID gave satisfactory performance with 20% error from the specified alti-
tude. It is clearly evident that nonlinear FOPID had superior altitude regulation perfor-
mance in confined environments with 1% error from the specified altitude for FOPID 4
controller. This was demonstrated in the simulation results, which showed Eely’s ability
to map a steep part of a seamount with greater detail and precision as shown in Figure
5.12 which gives a close look on Eely while mapping a steep part of the seamount. The
power comparison between each controller was computed based on [66]. A noticeable
indication of power efficiency is that having very high tracking precision, but with high
gain, is not necessarily good in terms of power efficiency. Precision may be sacrificed to
reduce power consumption and increase operational time.

Figure 5.12: Eely mapping a Confined part of the Seamount with FOPID 4 Controller

The FOPID controller appears to be a promising option for controlling Eely Underwater
Snake Robot, especially when over-shoot and settling time are important considerations,
according to these results. FOPID was more resilient to disturbances and uncertainties,
such as those brought on by outside environmental forces and measurement noise.
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Chapter 6
Field Experiments

Field experiments with Eely were performed on April 26, 2023. The robot was launched
from onboard RV Gunnerus in Trondheim Fjord, close to Trondheim Biological station.
Figure 6.1 shows pictures of Eely taken during the field experiments.

Figure 6.1: Eely in Trondheim Fjord during the experiments
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The position of the robot is measured with a HiPAP system installed on RV Gunners,
which gives the acoustic position of Eely relative to RV Gunnerus. The global position is
in turn measured with a GNSS system. This allows the north and east position of Eely
to be given in Universal Transverse Mercator (UTM) coordinates [34]. This coordinate
system divides the world into multiple zones that can be projected on a flat plane [67].
Each of these zones can be compared to a NED frame. Resulting north and east positions
from the field experiments are given in this coordinate system, where the axes are scaled
to make the results more readable.

The duration of the trials was approximately 50 minutes, and three successful recordings
were captured. The recordings were taken in Coordinated Universal Time (UTC) because
all GNSS satellites in a constellation carry atomic clocks that are synchronized to UTC
by the network’s ground stations [68].

The purpose of the field experiments was divided into two parts:

• For the control part of the thesis:

To test and record the log from Eely while doing altitude control with the same specified
range from the seabed as the simulator, which is 8.5 meters. The objective area of interest
was an unstructured surface similar to the one in the simulator to compare the behavior
of Eely in the physical and simulated environment.

• For the risk part of the thesis:

To test the performance and capabilities of Eely for the proposed two case scenarios:
seabed mapping and confined environments. For saftey issues, only the first case scenario
for seabed mapping was considered. For the seabed mapping case: Eely was mapping
the seabed in both contouring and platforming manner, monitor the performance of the
thrusters as it was mentioned in the literature that usually there happens a thruster
failure in one or more thrusters and from the field trials of Eely last year one of the
thrusters also stopped working [34], to record the log from different sensors like the DVL-
IMU-UHI-cameras to check their accuracy and the quality of the recorded data to be
used to asses the failure probabilities of such sensors as there were not a clear failure
probability for them in terms of being mounted on a vehicle like Eely.

6.1 Signal Processing

Signals produced by sensor measurements can vary in quality, and sometimes a measured
signal may contain noise and errors. Controlling the signal quality is crucial to identify
and remove errors in a system that relies on measured signals for direction and control.
The observed signals from the field experiments contained a few errors. For example,
Figure 6.7 shows a few sudden jumps or spikes in the measurements, which are known as
wild points. A wild point is identified by determining whether a measurement significantly
deviates from the prior measurements. As illustrated in Equation 6.1, a sampled value
of a signal may be accepted if it is within a range around the calculated mean signal.

x[k] 2 [x̄k � a�, x̄k + a�] (6.1)

where x[k] is a sample from a signal, x̄k is the estimated mean signal, a is a scaling
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factor, and � is the standard deviation. If the sample x[k] is rejected, it is replaced with
an estimated mean value. The wild point check is illustrated in Figure 6.2.

Figure 6.2: Wild point check [66]

6.2 Results

6.2.1 Altitude control

The results for measured altitude from the DVL of Eely are shown for a torpedo-shaped
body configuration. The processed data is used to create altitude control plots similar to
the ones obtained from the simulator for three trials, as shown in Figures 6.3, 6.5, and
6.7, respectively. Unfortunately, the data about velocities and thruster output were not
available. Therefore, the analysis of the altitude tracking performance is based solely on
the changes in position from the desired altitude set-point, which is 8.5 meters.

Figures 6.4, 6.6, and 6.8 shows the OOIs outputs of the seabed obtained from Eely during
the three trials. These figures were obtained from the multibeam echosounder mounted
on Eely and were processed using NaviScan Online and Helmsman softwares from EIVA
[69].
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Figure 6.3: Altitude Control of Eely Trial 1

Figure 6.4: Multibeam echosounder scan of Eely Trial 1
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Figure 6.5: Altitude Control of Eely Trial 2

Figure 6.6: Multibeam echosounder scan of Eely Trial 2
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Figure 6.7: Altitude Control of Eely Trial 3

Figure 6.8: Multibeam echosounder scan of Eely Trial 3

6.2.2 Risk Assessment

The robot was controlled in a hybrid manner, utilizing a fiber optic cable connection as
shown in Figure 6.9. This cable served the purpose of supplying power to the robot and
transmitting a live feed from its cameras and sensors. The operator had the ability to
intervene at any time and manually control the robot using a joystick.

However, after the first Altitude control trial, the robot experienced a sudden blackout,
making communication and data reception from the robot and its sensors impossible.
Our first suspicion regarding this blackout was related to a potential issue with the fiber
cable itself. Given its high sensitivity, it could have become entangled or disconnected
from the robot due to an excessive tension. To address the situation, we waited for the
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robot to float back to the surface using its neutral buoyancy, and subsequently recovered
it with the assistance of the lifting basket and the boat. We replaced the defected fiber
cable with a new one and proceeded to deploy Eely back into the water, where it operated
normally and successfully completed the remaining two trials. Apart from this particular
incident, Eely encountered no problems with any of its thrusters or sensors throughout
the experimental sessions.

Figure 6.9: Fiber cable connected to Eely

6.3 Discussion

The goal of the field experiments was to validate the simulator and compare the simulated
altitude capabilities of Eely with its real-world performance. However, it is evident that
the simulations were conducted in an idealistic environment, free of significant sensor
noise and harsh environmental conditions, unlike the challenging conditions encountered
during the field experiments. Consequently, differences and challenges emerged in the
field experiments that were not accounted for in the simulator.

Additionally, due to restrictions imposed by the manufacturing company, intervention in
the low-level controller of the real robot was prohibited, which may explain the better
altitude performance observed in the simulations.

Moreover, the current loads may be different compared to the simulator as there was no
precise measurement of it, and the weather was changing during the field trial day.
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Another noteworthy disparity between the simulations and the field experiments was the
difference in their durations. While the simulations adhered to a fixed timing, the field
experiments were subject to variable time frames dictated by practical constraints. This
temporal inconsistency could have influenced the performance outcomes, particularly in
dynamic and time-sensitive scenarios.

Tether management, a critical aspect for the real robot, was not taken into account in
the simulator. Maneuvers may be required to avoid entanglement, a factor that was not
considered in the simulated environment.
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Chapter 7
Conclusions and Further Work

This chapter presents conclusions for the presented work, as well as recommendations for
further work.

7.1 Conclusions

In this thesis, the challenges faced by Eely, an articulated underwater snake robot, op-
erating in confined and demanding underwater environments was addressed. A Bayesian
risk assessment approach was proposed to evaluate the risks associated with the loss of
Eely during mission scenarios. Additionally, a nonlinear Fractional Order PID (FOPID)
altitude controller was introduced to regulate and stabilize Eely’s altitude underwater.
Through comprehensive simulations, the effectiveness and robustness of the proposed con-
troller in controlling Eely’s altitude in diverse underwater conditions was demonstrated.

The results of the Bayesian risk assessment provided valuable insights into quantifying
and mitigating the potential risks and uncertainties associated with Eely’s missions. By
identifying critical factors such as the robustness of the autonomous control, thruster
module actuators, propulsion system, and altitude control system, the areas where im-
provements could significantly reduce the risk of losing Eely during different operations,
including seabed mapping and confined space operations were highlighted.

Furthermore, the simulation results revealed that the FOPID altitude controller exhibited
superior altitude regulation performance in confined environments, demonstrating Eely’s
ability to navigate challenging terrains with enhanced precision and stability. The FOPID
controller proved to be resilient to disturbances and uncertainties, making it a promising
option for controlling underwater snake robots when overshoot and settling time are
crucial considerations.

However, it is important to note that field experiments presented some disparities com-
pared to the simulated results. The real-world conditions introduced sensor noise, harsh
environmental challenges, and restrictions on low-level controller intervention, which af-
fected Eely’s altitude performance. Additionally, factors such as the duration of field
experiments, current loads, and tether management, which were not considered in the
simulator, played significant roles in the robot’s performance.
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7.2 Further Work

The work developed in the thesis opens avenues for future research and development in
the field of underwater snake robots operating in confined environments. Here are some
potential areas for further investigation:

1. Enhanced Risk Assessment: Expand the Bayesian risk assessment methodology to
encompass additional risk factors and uncertainties. Incorporate real-time sensor
data and environmental feedback to continuously update risk models and adapt
control strategies accordingly.

2. Adaptive Control Strategies: Investigate adaptive control algorithms that can dy-
namically adjust Eely’s control parameters based on the changing environmental
conditions and uncertainties encountered during missions. Develop intelligent con-
trol systems that can optimize performance and mitigate risks in real-time.

3. Hybrid Control Approaches: Explore the integration of machine learning techniques
and traditional control methods to enhance the performance and adaptability of
Eely in confined environments. Develop models that can learn from past mission
experiences to make informed decisions and improve control strategies.

4. Experimental Validation: Conduct extensive field experiments to validate the simu-
lator’s accuracy and further compare the simulated altitude capabilities with Eely’s
real-world performance. Consider factors such as sensor noise, harsh environmen-
tal conditions, tether management, and intervention in the low-level controller to
provide a more comprehensive evaluation.

5. Collaborative Robotic Systems: Investigate the potential for collaborative behav-
ior among underwater snake robots and an unmanned surface vehicles to enhance
exploration and intervention capabilities in confined environments. Explore coor-
dination, communication, and task allocation strategies to enable efficient and safe
operations in complex underwater landscapes.

6. Active Tether Self-management System: Integrating the fiber optic cable between
Eely and an unmanned surface vehicles as an embedded winch system to assist in
maintaining the cable in a semi-stretched configuration, thereby preventing entan-
glement with obstacles [70].

By addressing these research areas, we can further advance the field of underwater snake
robots and contribute to their successful exploration and intervention in confined environ-
ments, ensuring safer and more reliable operations in challenging underwater landscapes.
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Risk Assessment of an Autonomous Underwater
Snake Robot in Confined Operations

Abdelrahman Sayed Sayed

Abstract—The growing interest in ocean discovery imposes a
need for inspection and intervention in confined and demanding
environments. Eely’s slender shape, in addition to its ability to
change its body configurations, makes articulated underwater
robots an adequate option for such environments. However,
operation of Eely in such environments imposes demanding
requirements on the system, as it must deal with uncertain and
unstructured environments, extreme environmental conditions,
and reduced navigational capabilities. This paper proposes a
Bayesian approach to assess the risks of losing Eely during two
mission scenarios. The goal of this work is to improve Eely’s
performance and the likelihood of mission success. Sensitivity
analysis results are presented in order to demonstrate the causes
having the highest impact on losing Eely.

Index Terms—Autonomous underwater vehicles, Bayesian Be-
lief Network, Decision Network, Dynamic Bayesian Network,
Eely, Risk Assessment

I. INTRODUCTION

The growing interest in ocean discovery imposes a need
for inspection and intervention in confined and demanding
environments. Underwater confined environments, such as
shipwrecks and sunken caves, present unique challenges for
exploration. These environments often have limited access
points and tight spaces, making it difficult for divers and
underwater vehicles to enter and maneuver [1]. Autonomous
underwater vehicles (AUVs) are considered to be efficient
sensor-carrying platforms for seabed mapping and monitoring
[2]. The likelihood of the underwater vehicles being lost while
performing these missions can under certain circumstances
be high, and some AUVs have been lost during missions due
to technical failures [3].

Underwater snake robots, like Eely which is a snake robot
from Eelume [4], [5] is a promising option for these environ-
ments due to their slender shape and ability to change body
configurations. Eely’s articulated structure shown in Figure
1 combines the advantages of several types of underwater
vehicles, as it has the range of AUVs, the ability to access
challenging areas like small Remotely operated underwater
vehicles (ROVs), and the intervention capabilities of ROVs [6].
Thereby, Eely covers a broad range of operational scenarios
as the vehicle can be configured to follow a torpedo-shaped
AUV for platforming missions requiring the robot to map a
big area [7] or to vary the joint’s modules to follow snake
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Norwegian University of Science and Technology (NTNU), Otto
Nielsens veg 10, 7491 Trondheim, Norway; Université de Toulon,
Toulon, France. abdelrahman.s.s.e.ibrahim@ntnu.no,
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configuration to map confined or steep environments which
can not be achieved by a normal AUV. However, operation of
Eely in such environments imposes demanding requirements
on the system, as it must deal with uncertain and unstructured
environments, extreme environmental conditions, and reduced
navigational capabilities [8].

Figure 1. Triple joint snake robot from Eelume

Bayesian networks (BNs) have been widely used to assess
the risks associated with Autonomous Underwater Vehicles
(AUVs) in operational scenarios, as demonstrated in previous
studies [9]–[12]. However, there has been no prior work that
has specifically addressed the risks associated with modular
underwater snake robots operating in confined environments.

The main scientific contribution in this paper, we present
a novel approach to risk assessment for Eely, an underwater
snake robot, in confined environments operations. Our aim is
to improve Eely’s performance and increase the likelihood
of mission success. Relevant data are collected to perform a
quantitative risk analysis to develop a Bayesian model that
considers almost the entire system of Eely, thus avoiding
potential risks. We demonstrate that our Bayesian model can
be extended to a Decision network (DN), enabling Eely to
adapt its behavior autonomously and maximize mission utility
[13]. Although our model was developed specifically for Eely,
it can be transferred to the operations of other AUVs. To
the best of our knowledge, the topic of risk associated with
modular underwater snake robots has not been previously
explored in existing research. Therefore, our study presents a
state of the art contribution to the field of risk assessment of
underwater vehicles.



The paper is organized as follows: Section II presents the
background on risk and Bayesian networks. In Section III,
the application of the proposed BN risk model for the two
case scenarios, including data collection for parameters for
these models, dynamic simulation, and sensitivity analysis
to identify the causes with the most significant influence on
losing Eely. In Section IV the steps to extend the BN to a DN
for autonomous risk-based decision making are presented. This
is followed by Section V, which gives a brief discussion of the
results. Finally, Section VI concludes this paper and presents
suggestions for future work.

II. RISK MODELING USING BNS

A. Definition of Risk

The definition of risk related to a hazardous event ei [14]
can be represented by the following relation:

r = {ei, ci, q}|k (1)

where ci is the consequence of ei, q is the measure of
involved uncertainty, and k is the background knowledge
for determining ei, ci and q. This is the most commonly
used definition for Bayesian risk modeling. By accounting
for previous knowledge about the operational conditions and
mission scenarios, events with low background knowledge
would not have a strong effect when making a decision in
contrast to events with high background knowledge. Accord-
ing to [15], risk assessment is an overall process including
risk identification, risk analysis, and risk evaluation. Risk
identification identifies and illustrates the possible risks with
respect to the mission objective. A common approach for risk
identification is to identify the known hazards as a source[s] of
prospective harm. These hazards can be later analyzed in the
risk analysis step, where the known possible events and their
expected outcomes are modeled. Therefore, risk identification
is an essential step towards developing a control system with
risk management and decision-making capabilities for Eely
which is known as supervisory risk control [16]. There are
many of risk identification methods, such as hazard iden-
tification (HAZID) and preliminary hazard analysis (PHA).
In order to have effective supervisory risk control, the most
significant mission and operation hazards should be identified
and combined into a risk model to aid in the system’s decision-
making.

B. Bayesian Networks

A Bayesian network is a graphical model used to address
problems involving uncertainty [11], [12]. It describes the
dependencies between random variables in a directed acyclic
graph, where nodes stand for random variables and directed
arcs between nodes signify conditional dependencies between
them. The Bayesian network, which is based on probability
theory [17], allows for two-way reasoning by handling both
causal reasoning, which derives posterior probabilities from
prior probabilities, and diagnostic reasoning, which uses a

formula to derive prior probabilities from posterior proba-
bilities. The traditional static Bayesian network (SBN) has
limitations when it comes to evaluating variables that change
over time, but it is useful for analyzing and forecasting
data at a specific time. The dynamic Bayesian network was
created to overcome this drawback. The dynamic Bayesian
network (DBN) incorporates methods that take into account
the relationship between moments in time, known as the state
transition probability, in contrast to SBN [18]. By considering
this relationship, the network can learn to effectively use
changes in values over time, producing better results.

III. CONSTRUCTION OF BAYESIAN RISK MODEL

In the context of risk assessment, Definition (1) may imply
a Bayesian approach to probabilities, and hence the use of BN
is a suitable approach to estimate the probability of losing Eely
during different operational scenarios. HAZID was performed
for the two case scenarios: i. Seabed mapping and ii. Confined
environments operations in the form of a preliminary hazard
analysis (PHA) prior to the development of the Bayesian
risk model. Using the five-step method described in [13], the
Bayesian risk model is developed.

A. HAZID

HAZID aims to identify the hazards related to the operation
of Eely for the two proposed case scenarios. Detectability is
defined as Eely’s ability to detect and monitor a specific hazard
during its operation, where a high degree of detectability
suggests a strong background knowledge, while a low degree
of detectability suggests a weak background knowledge. The
collection of hazards was mainly based on [19] as it offered
a comprehensive compilation of potential risks and served as
the foundation for the identification procedure, along with
our own judgment and similar systems [13]. In addition to,
previous field trials with Eely in Trondheim Fjord [20] and
previous experiments in karstic exploration [21]–[23] were
also taken into account.

Table I, adopted from [13] which was used for hazards
in the context of AUV operation under ice, the same crite-
ria was selected and modified based on hazards related to
Eely’s operation. Then, these hazards were assigned possible
consequences depending on each case scenario, and the most
noticeable hazards were identified. The risk priority number
(rpn) for each hazard is obtained from the categories shown
in Table I. The rpn is the product of the frequency rating,
the consequence rating, and the detectability rating. To assess
the risk, the worst-case scenario is assumed which is losing
Eely. Note that this loss may be temporary, as in the case
of seabed mapping and deploying a vessel may recover Eely
[10], or it can be a permanent loss as in the case of underwater
caves. Tables VII - VIII in the Appendix lists the hazards
identified for the two case scenarios presented in the study.
The assessment sheets design in the tables is based on the
PHA sheet from [24].



Table I
CRITERIA USED TO RATE FREQUENCY, CONSEQUENCES AND

DETECTABILITY OF EVENTS

Rating Score Description
Frequency
Low 1 The event may occur less than once per mission

Medium 2 The event will be encountered, on average, once per
mission

High 3 The event will be encountered several times per
mission

Consequences
Low/None 1 The event will have no negligible influence on the

mission with respect to damage to Eely or loss of
mission data

Medium 2 The event may lead to damages or delays that will
minorly reduce the time available for the mission or
affect the data collection

High 3 The event may lead to loss of Eely, early abortion
of the mission, or significant loss of scientific data

Detectability
Low/None 3 Eely is not able to detect or assess the hazardous

event during the operation

Medium 2 Eely may infer information about the hazardous
event. However, the inference will be associated
with high uncertainty

High 1 Eely may collect and infer information about the
hazardous event with high certainty

B. Failure Probabilities
Some of the issues related to conducting a quantitative

risk assessment are obtaining the failure data of the sensors
and components of the robot. Since Eely robot is in the
early stages of experiments, the availability of its failure data
is scarce. Different data sources were used, which include
literature and technical specifications, etc. For the non-
available data, assumptions based on overall knowledge were
applied, which provides rough estimates for the scenarios.

The failure probabilities per year are given in Table II,
which are used in the BN nodes. However, it should be noted
that failure probabilities for some parts of the robot’s sensors
were taken as for the general parts and not for a product of
a specific brand from a specific company. For example, the
failure probability for the Underwater hyperspectral imager
(UHI) sensor was taken as the same value for the general
camera as the UHI is simply a more advanced camera as it
combines a push-broom hyperspectral imager with an external
light source [25]. The obtained data which is available is used
as an initial attempt for quantitative risk assessment, but more
proper assumptions and precise data could be extracted in
future trials and for system suppress analysing own design.

C. Conditional Probability Tables
The conditional probability tables (CPT) III-VI are quan-

tified based on the PHA. Table III shows the CPT for the
failure of the propulsion system node. This table shows how

Table II
FAILURE PROBABILITIES

Sensor/Item Failure Probability Source

Joint module actuators 0.125 [1]

Thruster module actuators 0.1 [26]

DVL sensor 0.1 [27]

IMU sensor 0.01 [28]

UHI sensor 0.01 [29]

Cameras 0.01 [29]

LED lights 0.02 [30]

Leakage sensor 0.05 [31]

Batteries 0.000001 [32]

critical is it in case of the failure of thruster module actuators
as shown in red in any case of failure of thruster module
actuators the probability of losing Eely is true as in confined
environments the robot can’t use its neutral buoyancy to
float back to the surface. This is further illustrated in the
sensitivity analysis subsection. Due to the limit on the number
of pages, the CPTs for other nodes are omitted from this
version of the paper. Moreover, thrusters were one of the
most susceptible components to failure as Eely operators at
the Applied Underwater Robotics Laboratory (AUR Lab) have
communicated that they have lost on average one thruster per
year.

Table III
CPT FOR FAILURE OF PROPULSION SYSTEM

Failure of thruster
module actuators

TRUE FALSE

Failure of joint module
actuators

TRUE FALSE TRUE FALSE

Environmental
complexity

T F T F T F T F

TRUE 1 1 1 1 0.3 0.1 0.35 0

FALSE 0 0 0 0 0.7 0.9 0.65 1

Table IV
CPT FOR ENVIRONMENTAL COMPLEXITY

Ocean
current

TRUE FALSE

Dusty
sediments

TRUE FALSE TRUE FALSE

Absence of
natural light

T F T F T F T F

TRUE 0.95 0.9 0.6 0.4 0.7 0.6 0.15 0.01

FALSE 0.05 0.1 0.4 0.6 0.3 0.4 0.85 0.99

D. Launching the BN Model

After gathering the failure probabilities data, the BN model
is constructed using the software GeNIe 4.0, which allows



Table V
CPT FOR REMOTE CONTROL

Failure of
communica-
tion system

TRUE FALSE

Failure of
operator

intervention

TRUE FALSE TRUE FALSE

Environmental
complexity

T F T F T F T F

TRUE 0.4 0.3 0.3 0.2 0.1 0.01 0.05 0.01

FALSE 0.6 0.7 0.7 0.8 0.9 0.99 0.95 0.99

Table VI
CPT FOR LOSS OF EELY

Failure of autonomous
control

TRUE FALSE

Failure of remote control TRUE FALSE TRUE FALSE

TRUE 1 0.75 0.1 0

FALSE 0 0.25 0.9 1

interactive model building and learning, developed by Bayes
Fusion company [33].

E. Dynamic Simulation
Figure 2 shows one of the developed DBNs for the case

of confined environments operations. The simulation results
of the DBNs for the two case scenarios can be observed in
Figures 3 - 4. The results indicate that the DBN can take
into account changes over time and the likelihood of events
occurring. In this regard, the probability of losing Eely in
confined environments is higher than in seabed mapping due to
various factors such as extreme pressures on the thrusters, poor
communication with the vehicle, high mission complexity, and
the complexity of the environment.

F. Sensitivity Analysis
The goal of sensitivity analysis is to identify the causes

that have the most significant impact on the probability of
losing Eely, and to limit these causes by introducing risk
reduction measures. It also works as an indicator for adding
more constraints and efforts for data collection. Decreasing
the uncertainty of a cause that has little or no influence
on the probability of losing Eely will result in a negligible
change in the overall uncertainty value, making it of little
importance. In our case, we aim to identify the top factors
that influence the probability of losing Eely. Figures 5 - 6
show the sensitivity analysis results for losing Eely for the
two case scenarios.

In the first case of seabed mapping operations shown in
Figure 5, it can be seen that the probability of losing Eely is
most sensitive to the failure of autonomous control. Other main
factors are comprised of failure of thruster module, failure of
altitude control, mission complexity, and DVL failure. The

second case of sensitivity analysis is performed for confined
environment operations and is shown in Figure 6. It can be
seen that the failure of autonomous control is the most sensi-
tive factor for losing Eely as well. Environmental complexity,
failure of propulsion system, failure of altitude control, and
mission complexity account for the remaining factors to which
the loss of Eely is sensitive.

G. Pros and Cons of the BN Model

The model looks upon almost Eely’s entire system to avoid
potential risks. Despite the fact that the model was built
specifically for Eely, it can be transferred to the operations
of other autonomous underwater vehicles. On the other hand,
the model has some limitations, such as not including all
of the possibilities with details which can cause the loss of
Eely and not completely extending some nodes. For instance,
nodes such as failure of communication system and failure of
operator intervention, the latter being a non-technical node,
could be further developed, and other non-trivial factors could
have been included in the model. For such expansion, it
would require searching for more data including human and
organizational factors and their influence on mission risk,
which would take a significant amount of time and resources,
having the current model seem to be adequate for the two
investigated case scenarios. Moreover, DBN is time dependent
where the state of a variable at one time depends on its
previous states and the states of other variables and it can be
computationally expensive to compute more time steps, and
GeNIe is only limited to 1000 time step [33].

IV. RISK-BASED DECISION MAKING

Bayesian probability theory is used by both DNs and DBNs
to represent uncertain relationships between variables. The
main difference is that DNs do not take into account time
dependence and provide a snapshot of the system at a specific
moment. DNs are employed to simulate the relationship
between choices and results when making decisions. In
contrast, DBNs can also include decision-making only as part
of a dynamic system that changes over time.

For decision-making, the novel approach presented in [13]
can be followed, in which the HAZID results of Eely’s oper-
ations can be used as a basis for constructing the BN model.
The BN model can then be extended to a DN to autonomously
adapt Eely’s behavior with decision nodes, i.e., by adjusting
the altitude set point, speed set point, and control strategy
[7]. In our case, the maximum joint angle for dynamically
changing the robot’s shape can be adjusted based on its belief
about the current state of the risk.

A. Decision Nodes

The decision nodes that should be directly controlled by
Eely are: altitude/depth set point, speed set point, the control
strategy. In the articulated snake robot case, we can add one
more node, “changing shape” based on mission category and



Figure 2. DBN for Losing Eely during Confined Environments Operations

(a) Environmental Complexity

(b) Mission Complexity

(c) Failure of Propulsion System

(d) Failure of Remote Control

(e) Loss of Eely

Figure 3. Dynamic Simulation Results for Seabed Mapping Operations

(a) Environmental Complexity

(b) Mission Complexity

(c) Failure of Propulsion System

(d) Failure of Remote Control

(e) Loss of Eely

Figure 4. Dynamic Simulation Results for Confined Environments
Operations



Figure 5. Sensitivity tornado diagram for losing Eely during Seabed
Mapping Operations

Figure 6. Sensitivity tornado diagram for losing Eely during Confined
Environments Operations

environmental constraints. Therefore, our decision nodes could
be as follows:

• D1 = as as the altitude set point
• D2 = vs as the speed set point
• D3 = cs as the control strategy
• D4 = sc as the desired/optimum shape configuration

B. Online Reasoning
The DN continuously updates based on the sensory and

temporal contexts. It is also important to include dwelling time
based on the task to avoid rapid switching of states generated
from sensor noise or in transient situations in-between state
transitions. This can also help to avoid sensor outliers that
bypassed the filtering process.

C. Hard Coding Safety/contingency Handling
This will impose predefined safety protocols that override

the suggested control actions from the DN and perform strictly
defined actions, such as Eely’s preexisting safety functions,
like collision avoidance.

V. DISCUSSION

From the results of the DBN and senstivitity analysis,
improving the robustness of the autonomous control part
would significantly decrease the risk of losing Eely robot
during different operations. Regarding the seabed mapping
operations, from the sensitivity tornado graph in Figure 5
shows that improving the thruster module actuators and al-
titude control systems would also substantially reduce the
risk of losing Eely. As for confined space operations, the
sensitivity tornado graph in Figure 6 indicates that, except
for environmental and mission complexity, improving the
robustness of the thruster module actuators, propulsion system,
and altitude control system would also significantly reduce the
risk of losing Eely. The uncertainties associated with confined
environments environmental complexity are reflected in the
DBN in Figure 2 as they affect critical nodes, and in Tables
VII - VIII as they are the main reason for a high rpn, mainly
for DVL failure and Controller failure.

VI. CONCLUSION AND FUTURE WORK

In this paper, a BN model is developed for risk assessment
of autonomous operations for Eely underwater snake robot.
The model is populated with data to perform a specific quan-
titative probabilistic estimation of the loss of Eely during two
challenging mission scenarios. The data is based on literature,
PHA, and our own judgement based on similar systems. The
results from the dynamic simulation and sensitivity analysis
show that the highest risk of losing Eely was during confined
environments operations, which is related to many factors, but
the highest of them is the uncertainty of these environments
compared to the other case scenario. In the future, this work
can be build upon to include more mission scenarios. Also,
implementing a behavior tree can allow for more complex
mission scenarios and improve the modularity of Eely control
systems [34] during different mission scenarios.
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Table VII
RELEVANT HAZARDS FOR SEABED MAPPING OPERATIONS OF EELY

Hazard Hazardous Event Cause Consequence
Risk

Freq. Conseq. Detect. Prod.
(rpn)

Strong
currents.

Currents are too strong
for Eely to handle.

Currents are not accounted for in
the mission plan.

Reduced mission duration. Re-
duced maneuverability in different
configurations for Eely.

1 Low 2 Med 1 High 2

Strong currents lead
Eely to hit the seabed.

Eely is doing contouring for a
steep area, wall.

Damage to Eely or one of its mod-
ules. Loss of Eely.

1 Low 3 High 2 Med 6

Contact
with
seabed.

Eely collides with
seabed

Failure to detect the seabed. Fail-
ure to follow the safe distance
between Eely and the seabed.

Damage to Eely or one of its mod-
ules. Loss of Eely.

1 Low 3 High 1 High 3

Eely is stuck in soft sed-
iment and algae in the
seabed.

Failure to detect the seabed. Fail-
ure to detect algae or OOI. Failure
to follow the safe distance be-
tween Eely and the seabed.

Damage to Eely or one of its mod-
ules. Loss of Eely.

1 Low 3 High 1 High 3

Power
supply
failure.

Eely losses its power
supply

Short circuit in one of Eely’s mod-
ules/sensors/thrusters. Lose cable.
Water leakage. overheating of the
batteries module.

Loss of Eely. 1 Low 3 High 2 Med 6

Propulsion
system
failure.

Thruster module failure Wear of the thrusters blades.
Failure of the electronic speed
controller (ESC). Stucked
algae and sediments over
the thrusters/blades. Salt
contamination over the thrusters

Loss of Eely. 1 Low 3 High 1 High 3

Joint module failure Wear of the mechanical compo-
nents of the joint module. Wear
of the joint module motors. Un-
coordinated movements of the
joint module. Leakage of oil from
the cushions insulating the joint
module.

Loss of Eely. 1 Low 3 High 2 Med 6

Shape configuration
failure

Uncoordinated movements of the
joint module due to uncontrolled
stiffness variance. Strong water
pressure on the joint module.

Loss of Eely. 1 Low 3 High 3 Low 9

Controller
failure.

Failure to supply the
desired inputs to the
thruster module and
joint module. Failure to
follow the safe distance
between Eely and the
seabed.

Software failure. Sensor failure.
Hardware failure.

Loss of Eely. Reduced mission
duration

2 Med 3 High 2 Med 12

Failure to differentiate
between contouring and
platforming operations

Software failure. Sensor failure. Inaccurate mapping of the seabed.
Damage to Eely or one of its mod-
ules. Loss of Eely.

1 Low 3 High 1 High 3

DVL
failure.

Failure to accurately de-
tect the distance be-
tween Eely and the
seabed.

Software failure. Sensor failure. Inaccurate mapping of the seabed.
Damage to Eely or one of its mod-
ules. Loss of Eely.

3 High 3 High 2 Med 18

Poor detection of
seabed features.

Software failure. Sensor failure. Inaccurate mapping of the seabed.
Reduced mission duration. Dam-
age to Eely or one of its modules.
Loss of Eely.

2 Med 1 Low 1 High 2

UHI
failure.

Failure to accurately de-
tect the distance be-
tween Eely and the
seabed.

Software failure. Sensor failure. Inaccurate mapping of the seabed.
Reduced mission duration. Dam-
age to Eely or one of its modules
due to collision due to poor con-
trol decision of whether to map
on a contouring or platforming
manner.

1 Low 2 Mid 1 High 2

Poor detection of
seabed features.

Software failure. Sensor failure. Inaccurate mapping of the seabed.
Reduced mission duration. Dam-
age to Eely or one of its modules
due to collision due to poor con-
trol decision of whether to map
on a contouring or platforming
manner.

1 Low 2 Mid 1 High 2



Table VIII
RELEVANT HAZARDS FOR CONFINED ENVIRONMENTS OPERATIONS OF EELY

Hazard Hazardous Event Cause Consequence
Risk

Freq. Conseq. Detect. Prod.
(rpn)

Strong
currents.

Currents are too strong
for Eely to handle.

Currents are not accounted for in
the mission plan.

Reduced mission duration. Re-
duced maneuverability in different
configurations for Eely.

1 Low 2 Med 1 High 2

Strong currents lead
Eely to hit the cave or
tunnel.

Eely is doing contouring for the
inside of a cave or tunnel.

Damage to Eely or one of its mod-
ules. Loss of Eely.

2 Med 3 High 2 Med 12

Eely is stuck in soft sed-
iment and algae in cave
or tunnel.

Failure to detect the cave or tun-
nel. Failure to follow the safe dis-
tance between Eely and the inside
of cave or tunnel. Loss of Eely

Damage to Eely or one of its mod-
ules. Loss of Eely.

2 Med 3 High 3 Low 18

Power
supply
failure.

Eely losses its power
supply

Short circuit in one of Eely’s mod-
ules/sensors/thrusters. Lose cable.
Water leakage. overheating of the
batteries module.

Loss of Eely. 1 Low 3 High 2 Med 6

Propulsion
system
failure.

Thruster module failure Wear of the thrusters blades.
Failure of the electronic speed
controller (ESC). Stucked
algae and sediments over
the thrusters/blades. Salt
contamination over the thrusters.
High water pressure.

Loss of Eely. 1 Low 3 High 2 Med 6

Joint module failure Wear of the mechanical compo-
nents of the joint module. Wear
of the joint module motors. Un-
coordinated movements of the
joint module. High water pressure.
Leakage of oil from the cushions
insulating the joint module.

Loss of Eely. 1 Low 3 High 2 Med 6

Shape configuration
failure

Uncoordinated movements of the
joint module due to uncontrolled
stiffness variance. Strong water
pressure on the joint module.

Loss of Eely. 1 Low 3 High 3 Low 9

Controller
failure.

Failure to supply the
desired inputs to the
thruster module and
joint module. Failure to
follow the safe distance
between Eely and the
seabed.

Software failure. Sensor failure.
Hardware failure.

Loss of Eely. Reduced mission
duration

2 Med 3 High 2 Med 12

Failure to differentiate
between contouring and
platforming operations

Software failure. Sensor failure. Inaccurate mapping of the inside
of cave or tunnel. Damage to Eely
or one of its modules. Loss of
Eely.

1 Low 3 High 1 High 3

DVL
failure.

Failure to accurately de-
tect the distance be-
tween Eely and the in-
side of cave or tunnel.

Software failure. Sensor failure. Inaccurate mapping of the inside
of cave or tunnel. Damage to Eely
or one of its modules. Loss of
Eely.

3 High 3 High 2 Med 18

UHI
failure.

Failure to accurately de-
tect the distance be-
tween Eely and the in-
side of cave or tunnel.

Software failure. Sensor failure. Inaccurate mapping of the the in-
side of cave or tunnel. Reduced
mission duration. Damage to Eely
or one of its modules due to
collision.

1 Low 2 Med 1 High 2

Poor detection of the in-
side of cave or tunnel
features.

Software failure. Sensor failure. Inaccurate mapping of the the in-
side of cave or tunnel. Reduced
mission duration. Damage to Eely
or one of its modules due to
collision.

1 Low 2 Med 1 High 2
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Robust altitude controller for Underwater Snake
Robot using Fractional Order PID Controller

(FOPID)
Abdelrahman Sayed Sayed

Abstract—The growing interest in ocean discovery imposes a
need for inspection and intervention in confined and demanding
environments. Eely’s slender shape, in addition to the ability to
change its body configurations, makes the articulated underwater
snake robot an adequate option for such environments. This
paper presents an altitude controller of underwater snake robots
based on a nonlinear Fractional Order PID (FOPID) controller.
The proposed controller is evaluated through simulations to
demonstrate its robustness and effectiveness in controlling the
altitude of Eely underwater snake robot. The results show that the
nonlinear FOPID controller is a promising solution for altitude
control of underwater vehicles in various operational scenarios.

Index Terms—Altitude control; Eely; Underwater snake
robots; Robot kinematics; PID; Fractional Order PID

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are considered to
be efficient sensor-carrying platforms for seabed mapping and
monitoring [1]. Eely articulated structure allows the vehicle
to combine the functionality of several types of more con-
ventional subsea vehicles and thereby cover a broad range
of operational scenarios [2] as the vehicle can be configured
to follow a torpedo-shaped AUV for platforming missions
requiring the robot to map a big area or to vary the joint’s
module to follow snake configuration to map confined or steep
environments which can’t be achieved by a normal AUV.

Fractional calculus has emerged as an important tool in
extending the ordinary calculus by introducing non-integer
orders of derivatives and integrals [3]. This extension has
enabled the development of fractional order controllers for
various practical applications [4]. The Fractional Order PID
controller (FOPID) includes parameters such as the integrator
order � and differentiator order µ, which have been shown to
improve the performance of fractional dynamics. The applica-
tion fields of fractional calculus are continually expanding,
and it has found practical use in areas such as electrical
engineering, automation and control engineering, robotics,
biomedical engineering, and renewable energy domains [5],
[6].

Recent advances in computer science and numerical tools
have made fractional order operators and systems increas-
ingly attractive for control applications due to their good

Abdelrahman Sayed Sayed is with Department of Marine Technology,
Norwegian University of Science and Technology (NTNU), Otto
Nielsens veg 10, 7491 Trondheim, Norway; Université de Toulon,
Toulon, France. abdelrahman.s.s.e.ibrahim@ntnu.no,
abdelrahman-ibrahim@etud.univ-tln.fr

performance and hereditary properties [7]. However, existing
problems in altitude and motion control of underwater vehicles
have prompted research into more effective control methods
[8]. This paper introduces a simplified kinematic model of
Eely underwater snake robot in a confined steep environment
[9], along with an altitude controller that enables the robot to
follow a specified sea mount and maintain a safe distance from
the sea bed [10]. The paper proposes an effective altitude con-
troller based on Fractional Order PID (FOPID) controller that
provides better performance compared to conventional PID
controllers. The FOPID controller gains are optimized using
different tuning algorithms to adjust and correct the altitude for
the Eely robot. The proposed controller is evaluated through
simulations to demonstrate its robustness and effectiveness in
controlling the altitude of the underwater snake robot.

The paper is structured as follows: Section II presents a
simplified kinematic model of Eely underwater snake robot in
II-A, the hydrodynamic model in II-B and the dynamic model
in II-C. Section III present the two control methods applied to
Eely, the nonlinear PID in III-A and the nonlinear FOPID in
III-B. Section IV-A presents the altitude controller proposed in
[11] applied to Eely. Section V details the simulation results
and analysis. Lastly, section VI will present the concluding
remarks with future directions.

II. MODELING OF UNDERWATER SNAKE ROBOTS

A. Kinematic model of Eely

The position and orientation of a marine craft moving in six
Degrees of Freedom (DOF) can be described using several
reference frames. The most common reference frames for
underwater vehicles are:

• North-East-Down (NED) frame {n} = (xn, yn, zn)
• Body-fixed (BODY) frame {b} = (xb, yb, zb)

Figure 1 illustrates the velocities in the BODY frame for
Eely underwater vehicle. The generalized position and velocity
coordinates are given by Equations 1 and 2 respectively:



Fig. 1. Degrees of freedom for Eely Underwater Vehicle
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In order to transform between the BODY and NED frames,
a rotation matrix is used. A rotation matrix R is an element
in SO(3), which is the special orthogonal group of order 3,
shown in Equation 3:
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n
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o
(3)

The transformation between reference frames are based on
the Euler angles of the vessel. These are roll (�), pitch (✓)
and yaw ( ), they are defined as the orientation of the vehicle
with respect to the NED frame. By using the Euler angles,
it is possible to express the body fixed linear velocity vector,
v
b
nb in the NED frame, according to the following Equation:

v
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where ⇥nb is the vector containing the Euler angles.

Similarly, transformations can be carried out for the angular
velocity. Let w

b
nb = [p, q, r]T be the BODY fixed angular

velocities, and T (⇥nb) be the transformation matrix that
relates BODY fixed angular velocities and Euler rates. The
Euler rate vector ⇥̇nb can be obtained as shown in Equation
6:

⇥̇nb = T (⇥nb)w
b
nb (6)

where,
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Incase of ✓ = 90�, the robot would face a singularity. So,
we avoid getting the joint angles to be exactly 90�. Another
possible solution to this problem is to use quaternions.

So, the 6-DOF kinematic equations becomes:

⌘̇ = J⇥(⌘)⌫ (8)

The Jacobian matrix that relates the linear and angular
velocities in the NED frame and the BODY frame J⇥(⌘) can
be written as:

J⇥(⌘) =
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n
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where ⌘ 2 R6 is the position and orientation in the NED
frame, J⇥(⌘) 2 R6⇥6 is the Jacobian matrix that relates the
linear and angular velocities in the NED frame and the BODY
frame, and ⌫ 2 R6 is the velocity in the BODY frame.

B. Hydrodynamics model of Eely
The hydrodynamic model of Eely combines linear and non-

linear drag forces, added mass effect, fluid moments and
current effect. The hydrodynamic model in Equation 10 is in
closed-form to avoid numerical evaluations with drag forces
[12] [13].
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where fAx and fAy are the effects due to the added mass
forces and are expressed as:
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where µ = diag(µ1, ..., µn) 2 IRnxn, V
a
x =

diag(Vx,1, ..., Vx,n) 2 IRn⇥n, V
a
y = diag(Vy,1, ..., Vy,n) 2

IRn⇥n and [Vx, Vy]T are the ocean current velocity expressed
in the inertial frame, S✓ = diag(sin ✓)T 2 Rn⇥n and
C✓ = diag(cos ✓)T 2 Rn⇥n.
f
I
Dx

and f
I
Dy

are the linear drag effects, while f
II
Dx

and f
II
Dy

are the non-linear drag effects expressed in Equations 12 and
14:
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where ct = diag(ct,1, ..., ct,n), cn = diag(cn,1, ..., cn,n),
while V

link
rx and V

link
ry are expressed as:
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Ẋ � Vx
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where Vx = diag(Vx,1, ..., Vx,n) 2 IRnxn and Vy =
diag(Vy,1, ..., Vy,n) 2 IRnxn are the current velocities.

C. Dynamic model of Eely
The dynamic model of Eely is based on the forward

dynamics algorithm proposed in [14]. The model also includes
the effect of steady and uniform ocean current and motor and
thruster forces.

III. CONTROL OF UNDERWATER SNAKE ROBOTS

During underwater inspections, Eely can be controlled by
a human operator using a joystick. However, this can reduce
the accuracy of the results due to less stable motion [15].
Path following can be a good choice for visual inspection and
mapping, whether by following a pipeline or a lawnmower
pattern. This can be achieved by defining multiple way-points
along the path [16].

Path following can be accomplished by designing a line-
of-sight guidance law [17]. This method relies on generating
forward speed and changing the orientation of the vehicle
based on the distance to the path. It’s worth noting that path
following is independent of time, which means there are no
temporal constraints and no constraints on the commanded
velocity of the vehicle. In some cases, such as paths with
many sharp turns, it may be necessary to control the vehicle
at a specific speed while moving along a curved path. In these
situations, one can define a parameterized path that is time-
dependent. The maneuvering problem becomes converging the
position of the vehicle to the desired path and converging the
speed of the vehicle to the desired speed [18].

A. Nonlinear PID Control
Let ⌘d denote the desired pose of the vehicle in the

NED frame, which can be provided by a guidance law. The
difference between the actual pose and the desired pose is
represented by e = ⌘�⌘d. The control objective is to minimize
e with a feedback loop that reaches the desired states. This can
be accomplished with the following nonlinear Multiple Input
Multiple Output (MIMO) PID control law:

⌧c = �KpJ
�1
⇥ e�KdJ

�1
⇥ ė�KiJ

�1
⇥

Z t

0
e (t0) dt0 (15)

where ⌧c represents the control torque, J⇥ is the Jacobian
matrix, Kp, Kd, and Ki are the proportional, derivative, and

integral gain constants, respectively, e is the error between the
reference signal and the system output, and ė and

R t
0 e (t0) dt0

represent the time derivative and the time integral of the error,
respectively.

To achieve a more satisfactory response, a nonlinear PID
controller has been developed. This controller replaces each
term of the conventional PID controller with a nonlinear
function f(e), which is a combination of sign and exponential
functions of the error signal [19]. The controller’s derivative
and integral are also modified using similar nonlinear functions
and can be given as:

8
<

:

UNLPID = f1(e) + f2(e) + f3

�R
edt

�

fi(�) = ki(�)|�|↵i sign(�)
ki(�) = ki1 +

k2
1+exp(µi�2) , i = 1, 2, 3

(16)

where � could be e, ė, or
R
edt,↵i 2 R+, the function

Ki(�) is a positive function with coefficients Ki1,Ki2, µi 2
R+.

B. Nonlinear Fractional Order PID Controller (FOPID)

Fractional order PID (FOPID) controller was first intro-
duced in [3]. Figure 2(a) shows a block diagram which
represent the FOPID control structure.

Fig. 2. FOPID controller block diagram and convergence graph

Figure 2(b) shows that by selecting � = 1, µ = 1, the
nonlinear PID controller can be used. Using � = 1, µ = 0, and
� = 0, µ = 1, is equivalent to PI PD controllers, respectively.
These are all special cases for FOPID controller.

The nonlinear FOPID control law is expressed as:

⌧c = �KpJ
�1
⇥ e�KdJ

�1
⇥ ė

µ �KiJ
�1
⇥

Z t

0

e (t0) dt0

�
(17)

The difference between PID and FOPID controllers is that,
FOPID provides extra degree of freedom not only for the
controller gains (Kp,Ki,Kd) but also for the orders of integral
� and derivative µ [7]. FOPID will increase the disturbance
rejection of the system especially that Eely is operating at a
turbulent flow environment (water).

IV. ALTITUDE CONTROL AND TERRAIN FOLLOWING

In this section the altitude Control method for local sea floor
geometry approximation from the DVL sensor measurements
based on [20] and [21].



A. Altitude and Sea floor Gradient

Figure 3 shows Eely fully submerged above the seabed. Eely
position in the {n} frame is p = [xp, yp, zp]T

Fig. 3. Eely above the Seabed in the NED-frame. Adopted from [11]

The NED-frame velocity vector ṗ can be expressed as:

ṗ = R
n
b (⇥nb)v (18)

where ⇥nb = [�, ✓, ]T is the altitude vector, Rn
b (⇥nb) is

the rotation matrix from {b} to {n} frame, and v = [u, v, w]T

is the velocity vector in {b} frame.
Seabead is assumed to be a surface expressed by the

following equation:

F (x, y, z) = f(x, y)� z = 0,
@F

@t
= 0 (19)

The altitude is defined as the length of the vector from the
center of origin (CO) of Eely to the point on the seabed with
the same horizontal coordinates as the CO. Eely’s depth zp is
the vertical distance from the sea surface to the CO of Eely.
This should not be confused with the water depth or altitude.
The altitude vector is expressed as:

a = ra � p =

2

4
xp

yp

f(xp, yp)

3

5 �

2

4
xp

yp

zp

3

5 =

2

4
0
0

f(xp, yp)� zp

3

5

(20)
where ra is is the NED position of the point on the seabed

below the CO of Eely, as shown in Figure 3. The altitude
length can be written as:

a = f(xp, yp)� zp = F (xp, yp, zp) (21)

From Equation 21, the altitude can be expressed by the
same function F as the seabed, when F is evaluated at Eely’s
position.

B. DVL Measurements
The DVL sensor is used to measure Eely’s velocity over

the seabed and to measure the altitude. DVL uses accoustic
beams in a Janus configuration, these beams are transformed
the DVL fixed frame {d} to {b} and finally to {n}.

The used DVL has 4 acoustic beams in a Janus configuration
is proposed in order to decrease the influence of the vehicle
inclination [11]. The DVL j

th beam with its paramters is
shown in Figure 4a. The j

th is represented by vector r
d
j

expressed in Equation 22 and it goes from the DVL to the
seabed.

Fig. 4. The DVL beam components and beam vectors in the DVL and Vehicle
frame. Adopted from [11]

rdj =

2

4
x
d
j

y
d
j

a
d
j

3

5 = a
d
j

2

4
tan (�j) cos (�j)
tan (�j) sin (�j)

1

3

5 (22)

where �j is the angle of the j
th beam from the DVL z-axis,

and �j is the angle from the DVL x-axis. ajd is the vertical
component of r

j
d, and r

j
d is expressed in terms of a

j
d and the

constant angles �j and �j . ajd is the measurement output from
the DVL, and the vector with all 4 altitude measurements is
noted as a

d.
The vector r

j
d is transformed and shifted to {b} frame in

Equation 23, then transformed to {n} frame in Equation 24.
The first transformation and shift are illustrated in Figure 4b.

r
b
j = R

b
d(⇥bd)r

d
j + r

b
dvl/b (23)

r
n
j = R

n
b (⇥nb)r

b
j (24)

where ⇥bd is the orientation of {d} relative to {b}. rbdvl/b is
the vector from CO of Eely to the DVL center in {b} frame.

Finally, the 4 vectors from Eely CO to the seabed are given
in {n} as:

rnj =

2

4
x
n
j

y
n
j

a
n
j

3

5 , j = 1, 2, 3, 4 (25)

Equation 25 will be used to approximate the seabed
geometry locally under Eely given that at least 3 DVL beams



measurements are available.

A linear approximation function of the seabed requires
at least 3 points. The linear seabed function is f(x, y) =
a + bx + cy. In case all of the 4 DVL beams measurements
are available, 4 different approximations can be calculated
by different combinations of 3 of 4 beams. But, only one
of the approximations must be chosen. It is advised to use
the combination which gives the most preview while going
forward as the forward looking beam will give some collision
avoidance feature [11]. The seabed approximation using 3
DVL beams is obtained by solving Equation 26 to compute
aj , bj , cj .

2
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1 x
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j y

n
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1 x
n
j+1 y

n
j+1

1 x
n
j+2 y

n
j+2

3

5

2

4
aj

bj

cj

3

5 =

2

4
a
n
j

a
n
j+1

a
n
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3

5 (26)

V. SIMULATION RESULTS AND ANALYSIS

Simulations are carried out using Plankton open source
simulator [22]. The simulator runs using Gazebo and UUV
Simulator [23] plugin in ROS2. The two controllers were
tested on Eely by maneuvering over a specified seamount as
shown in Figure 5 while maintaining an altitude of 8.5 meters
[10] from the seamount and to compare which controller had
superior altitude regulation over the confined spaces in the
seamount compared to the other.

Fig. 5. Seamount to be mapped

Figure 6 shows the output results for Eely over the spec-
ified seamount for a period of 10 minutes with Proportional
controller and PID controller.

Fig. 6. Altitude control results with Proportional and PID controllers

Figure 7 shows the output results for Eely over the specified
seamount for a period of 10 minutes with four different FOPID
controllers.

Fig. 7. Altitude control results with FOPID controllers

The performances of different controllers combined with
the altitude controller for Eely and the tracking error for each
controller are shown in Table I.

The nonlinear PID gave satisfactory performance with 20%
error from the specified altitude. It is clearly evident that
nonlinear FOPID had superior altitude regulation performance
in confined environments with 1% error from the specified
altitude for FOPID 4 controller. This was demonstrated in the
simulation results, which showed Eely’s ability to map a steep
part of a seamount with greater detail and precision as shown
in Figure 8 which gives a close look on Eely while mapping
a steep part of the seamount.



TABLE I
PERFORMANCE COMPARISON OF CONTROLLERS AND ERROR

Controller
Controller Parameters Error

(%)Kp Ki Kd lambda mu

Proportional 0.5 0 0 0 0 40

PID 0.5 0.2 0.05 1 1 20

FOPID 1 0.5 0.2 0.05 0.6 0.7 12

FOPID 2 0.5 0.2 0.05 0.4 0.7 5

FOPID 3 0.5 0.2 0.05 0.17 0.35 3

FOPID 4 0.5 0.2 0.05 0.2 0.6 1

Fig. 8. Eely mapping a confined part of the seamount with FOPID

VI. CONCLUSION

In this paper, a simulation model for the underwater snake
robot Eely is proposed in order to analyze and visualize its
behavior when subjected to various controllers. The main
goal of the study is to enable the robot to perform visual
mapping and investigation tasks. To achieve this, the nec-
essary mathematical theory for modeling underwater snake
robots was presented and an altitude controller model was
designed and implemented. The developed model was then
tested in a simulated environment using Gazebo and the UUV
Simulator with ROS2 as the middleware. The results of the
study are promising for the Fractional Order PID (FOPID)
controller in regulating the altitude of Eely Underwater Snake
Robot. Unlike classical PID controllers, FOPID controllers
have five parameters that can be adjusted to optimize their
performance. This flexibility allows them to achieve better
results, particularly for higher order systems where classical
PID controllers may struggle. Based on these findings, FOPID
controllers can be recommend for achiving a robust altitude
control of Underwater snake robots.
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A - Simulation Parameters

Parameter Value Unit Description
N 5 [�] Number of links
r 12 [�] Number of thrusters
ri 0.1 [m] Radius of each link
l1 494 [mm] Length of link 1
l2 1185 [mm] Length of link 2
l3 1435 [mm] Length of link 3
l4 1185 [mm] Length of link 4
l5 740 [mm] Length of link 5
lj 286 [mm] Length of joint module
m 199 [kg] Total dry mass
rb
bbi

(0, 0, 0.025) [m] Distance from CO to CB
⇢ 1025

⇥
kg
m

⇤
Density of sea water

CD 0.3 [�] Drag coefficient
vref 1 [�] Reference velocity
� 0.1 [�] Linear drag parameter in surge
� 0.2 [�] Linear drag parameter in roll
↵

3 0.0003 [�] Ratio of thruster model parameters
Ct 0.5 [�] Proportionality constant
� 0.2 [�] Linear drag parameter in roll
desired altitude 8.5 [�] Distance between the robot and seabed
lx 0.3 [m/s] Linear velocity in x-direction
ly 0.3 [m/s] Linear velocity in y-direction
lz 0.5 [m/s] Linear velocity in z-direction
Kp 0.5 [�] Proportional gain
Ki 0.2 [�] Integral gain
Kd 0.05 [�] Derivative gain
µ 0.6 [�] Order of differentiation
� 0.2 [�] Order of integration
DVL sensor 10 [Hz] DVL refresh rate

Table A.1: Simulation parameters of Eely
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