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Abstract

Understanding the volumetric features of vehicles in the tolling domain is crucial
for accurate identification and charging. Accurate measurement of these features
can be achieved through various methods, such as laser scanners or stereo cam-
eras. These methods are, however, not optimal in terms of cost and often require a
lot of data processing. Monocular 3D object detection seeks to identify volumetric
features using only a single image, making it a more practical and cost-effective
solution.

This thesis investigates this particular field as an initiative from Q-Free, a
global provider of tolling, traffic management, and C-ITS solutions. The mon-
ocular 3D object detection task is tackled using two different approaches. The
first approach includes exploring the performance of monocular 3D object de-
tection using different backbones. Convolutional Neural Networks (CNNs) are a
dominant approach in the computer vision field, including monocular 3D object
detection. However, with the introduction of the Vision Transformer in 2020, the
CNN dominance may be coming to an end. This type of neural network employs
self-attention mechanisms to process images and has demonstrated impressive
results. Due to limited research on the topic in the monocular 3D object detec-
tion field, this thesis aims to investigate the performance of vision transformers
compared to CNN-based approaches. The second approach involves utilizing data
augmentation techniques, specifically Mixup, which has demonstrated success in
various computer vision tasks, including the 3D object detection field. Inspired by
previous studies, an enhanced Mixup technique is also implemented, which uses
a threshold to determine when the technique should be applied.

The findings of this thesis suggest that CNNs remain superior in terms of fea-
ture extraction in the backbone, indicating that there is still room for improve-
ment in the application of vision transformers for monocular 3D object detection.
The results also indicate that implementing Mixup techniques may enhance the
model’s performance, particularly when using vision transformers as their back-
bone.

iii



Sammendrag

Forståelse av volumetriske egenskaper er avgjørende for nøyaktig identifikasjon
og korrekt beslatning av kjøretøy som passerer gjennom en bomstasjon. Presise
målinger av disse egenskapene kan oppnås med forskjellige sensorer, eksempel-
vis laserskannere og stereokameraer. Disse metodene er i imidlertid ikke optimale
med tanke på kostnad og behov for krevende databehandling. Monokulær 3D ob-
jektdeteksjon er en mer kostnadseffektiv og praktisk løsning, da det kun er behov
for ett enkelt bilde for å identifisere volumetriske egenskaper.

Denne oppgaven undersøker nettopp dette feltet som et initiativ fra Q-Free,
en global leverandør av løsninger innenfor bomstasjoner, trafikkstyring og C-ITS.
To tilnærminger for monokulær 3D objektdeteksjon benyttes i denne oppgaven.
Den første tilnærmingen innebærer å utforske ytelsen til monokulær 3D objek-
teksjonsmodeller ved å benytte forskjellige "backbones". Konvolusjonelle nevrale
nettverk (CNN) er en dominerende tilnærming i feltet innenfor kunstig intelli-
gens som omhandler datasyn. I nyere tid har imidlertig en ny tilnærming fått
mye oppmerksomhet, nemlig Vision Transformers. Denne typen nevrale nettverk
benytter "self-attention"-mekanismer for behandling av bilder, og har vist impon-
erende resultater. På grunn av begrenset forskning på denne tilnærmingen innen-
for det monokulære 3D objektdeteksjonsfeltet, ønsker denne oppgaven å under-
søke ytelsen til Vision Transformer-inspirerte metoder sammenlignet med CNN-
baserte metoder. Den andre tilnærmingen omhandler bruken av dataøkningsteknik-
ker, nærmere bestem Mixup, som har vist suksess i ulike datasynsopggaver, inkluder
3D objektdeteksjonsfeltet. Inspirert av tidligere studier, er i tillegg en forbedret
versjon av Mixup implementert og testet. Denne versjonen drar nytte av en ter-
skelverdi for å bestemme når teknikken skal benyttes.

Funnene i denne oppgaven tyder på at konvolusjonelle nevrale nettverk forblir
overlegne som "backbones", og indikerer at det forsatt er forbedringspotensiale for
"vision transformers" for monokulær 3D objektdeteksjon. Resultatene indikerer
også at bruken av Mixup-teknikker kan forbedre modellens ytelse, spesielt når
"vision transformers" brukes som "backbone".
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Chapter 1

Introduction

1.1 Motivation

Computer vision has made significant progress in recent years, revolutionizing
machines’ ability to perceive and interpret visual information. 3D object detection
is an important challenge with real-world applications that have caught the atten-
tion of many researchers. Traditional 3D object detection approaches often involve
combining data from multiple sensors, like stereo cameras or Light Detection and
Ranging (LiDAR), to determine the necessary depth information for precise de-
tection. However, the application and adoption of these sensors are limited due
to the need for complex and expensive sensor configurations.

Monocular 3D object detection, on the other hand, aims to obtain three-
dimensional properties of an object using a single image. This area of research
has attracted major interest due to its focus on creating easily accessible and
cost-effective autonomous systems, including autonomous vehicles, traffic surveil-
lance, and robotics. Accurately determining an object’s position, orientation, and
size is crucial for the perception system to understand and interact with the sur-
roundings.

Convolutional Neural Networks (CNNs) have become dominant in the com-
puter vision field, primarily due to their ability to extract hierarchical features
from input images [1]. This is also evident in the field of monocular 3D object
detection, where many models use CNNs as their foundation. In recent years, the
Vision Transformer has gained more attention in the computer vision field. The
fundamental idea behind the Vision Transformer is to represent an image as a
sequence of patches, treating them as tokens analogous to words in natural lan-
guage. The patches are subsequently fed into a transformer-based architecture
that employs self-attention mechanisms to allow the model focus on relevant im-
age features. Using this method allows the Vision Transformer to capture both
local and global relationships, which has resulted in improved performance in a
variety of computer vision tasks, such as serving as a backbone in 2D object detect-
ors. However, the utilization of Vision Transformers as backbones for monocular
3D object detectors is rather limited.

1
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Motivated by these concepts, this thesis aims to investigate their applicabil-
ity in the tolling industry. Q-Free is a global provider of Tolling, Traffic Manage-
ment, and Cooperative Intelligent Transport Systems (C-ITS) solutions. One of
their areas of specialization is vehicle detection and characterization based on
various sensor systems, with a particular focus on the application of Artificial In-
telligence (AI) on images. An area they want to explore further explore is the
identification of vehicles and their volumetric features. Today’s approach involves
using a laser scanner to measure the vehicle’s volumetric features, such as length,
width, and height. However, to be more efficient in terms of cost and potentially
performance, Q-Free wants to explore the possibility of using AI- based technolo-
gies to identify the volumetric features from images.

1.2 Goal and Research Questions

The main objective of this thesis is to explore the use of a monocular 3D object
detection model for detecting vehicles in Q-Free’s gantries, including investigat-
ing different approaches to enhance the performance of a monocular 3D object
detection model. This includes changing the model by investigating how Vision
Transformers can be integrated into existing 3D detection pipelines and their im-
pact on performance, as well as applying techniques during training to increase
the model’s precision without. The following research questions (RQs) are pro-
posed to address these goals:

RQ1. How accurate is volumetric detection of vehicles using monocular images?

RQ2. How do transformer-based architectures compare to CNNs as feature ex-
tractors for monocular 3D object detection?

RQ3. Can training strategies from 2D object detectors be utilized to enhance the
precision of monocular 3D object detectors?

1.3 Method

The proposed research questions in this thesis will be addressed through experi-
mentation inspired by a review of relevant literature. The experimental outcomes
will be evaluated using quantitative and qualitative methods. The quantitative
methods include standard object detection metrics and metrics specifically de-
signed to assess the accuracy of 3D bounding boxes, such as size and localization.
These metrics are particularly crucial for precise detection of vehicle volumes.

1.4 Contributions

This thesis makes a valuable contribution to the application of computer vision in
the tolling industry. Specifically, this involves examining the potential of a mon-
ocular 3D object detection model and exploring various approaches to improve
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its accuracy. The monocular 3D object detection area using Vision Transformers
has not been thoroughly investigated. Hence, this thesis aims to make a valuable
contribution to this field.

1.5 Thesis Outline

Chapter 1 Introduction gives an introduction to the problem and research ques-
tions this thesis seeks to address.

Chapter 2 Background and Related Work presents relevant theory central to
understanding this thesis, such as an introduction to neural networks, and object
detection, as well as presenting related work relevant for this thesis.

Chapter 3 Method describes the process which has been followed in this thesis.
A justification of the selected architecture and other configurations are described,
as well as an overview of the approach from dataset preprocessing to training and
evaluation configurations.

Chapter 4 Experiments and Results presents the results from the different ex-
periments conducted in this thesis.

Chapter 5 Discussion discusses the obtained results with regard to the proposed
research questions.

Chapter 6 Conclusion and Further Work concludes the work and identifies po-
tential future research areas.



Chapter 2

Background and Related Work

This chapter gives an introduction to the relevant concepts utilized in this thesis.
Certain material elements are derived from the author’s previous work [2] and
thus contain similarities. However, most of the content has been revised to better
align with this thesis.

2.1 Artificial Neural Networks

Artificial Neural Network (ANN) is a subfield of machine learning that draws in-
spiration from the human brain. ANNs seek to imitate how neurons in the human
brain process information [3]. The networks are comprised of three layers: input-,
hidden-, and output layer. In its simplest form, an ANN is commonly referred to
as a feedforward network. This is due to the unidirectional flow of information,
specifically from input to output. See Figure 2.1. Each layer consists of multiple
neurons that are connected with a neuron from the previous layer. At the connec-
tion point (output/input), equivalent to the synapse in a biological brain, a signal
can be transmitted from one node to the other. The neurons usually also have a
threshold, i.e. determining whether or not the node should be activated and thus
sending the signal to the connected nodes. Additionally, each connection has an
associated weight, which will be adjusted during the training process. The weight
determines the significance of the input in the output.

z = b+
n
∑

i

x iwi (2.1)

z in Equation (2.1) represents the aggregated sum of a neuron’s input. This
value is further passed through an activation function f that determines the
neuron’s (perceptron’s) final output. See Equation (2.2). Rectified Linear Unit
(ReLU) [4] is a widely used activation function in the hidden layers in a neural
network. It is defined as f (x) =max(0, x), where the function output is 0 for any
negative input and the input value itself for any positive input x .

4
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Figure 2.1: Illustration of an Artificial Neural Network (ANN) with and its lay-
ers. The design of this neural network is also known as a feedforward network,
wherein information is passed on from the input layer to the output layer. These
multi-layer networks are commonly referred to as Multilayer Perceptrons (MLPs).
Adapted from [5].

output = f (z) = f (b+
n
∑

i

x iwi) (2.2)

An illustration of a single neuron (perceptron) can be seen in Figure 2.2.

Figure 2.2: Illustration of a neuron (perceptron). Input values x i , wi , and b are
aggregated and further passed through the activation function f . Adapted from
[6].

The weights of an ANN are initialized randomly. The objective of training an
ANN is to obtain a set of weights that can accurately describe patterns within
the given data. The output of the forward pass, which is the predicted value of
the network, will be evaluated against the target value. This is accomplished by
utilizing a cost (or loss) function, which serves as a metric for the accuracy of the
network. The objective of the training procedure is to determine the weights and
biases that minimize the loss.
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Upon completion of the loss calculation, the weights are updated and correc-
ted. Backpropagation and gradient descent is essential for this part. The back-
propagation algorithm involves the computation of the gradient for each weight
in the neural network, which is then propagated backward through the network.
The gradient descent algorithm is an optimization technique used to determine
the parameters that minimize the loss function.

2.1.1 Regularization

The objective of machine learning is to have an algorithm that performs well on
both the training and test data. Regularization is a technique utilized to address
this issue, and there exist numerous regularization techniques that can be applied
in the context of deep learning. [7]

A common problem with neural networks is when the model has high accuracy
during training, but poor performance on the test data. The phenomenon referred
to as overfitting is a result of the model’s lack of generalization. This implies that
the model has become too reliant on the training data and is unable to identify
features in the test data. The contrary problem is referred to as underfitting. It oc-
curs when the model fails to learn from the training data, resulting in insufficient
performance on the training data. Consequently, the model is unable to generalize
on new data, leading to unreliable predictions on the test data.

Weight Decay

Weight decay is a regularization technique that involves applying a parameter
norm penalty to improve the generalizability of the model [7]. The technique
involves including a penalty to the loss function, usually in the form of the L2
norm. This approach helps to keep the weights small by encouraging the learning
of features less likely to cause overfitting on the training data [8, 9].

Data Augmentation

One effective approach to enhance the generalization of a model is to train it using
a larger dataset. Data augmentation is a technique that can be utilized to expand
the quantity of data available, particularly when it is limited. This technique ex-
pands the dataset by adding modified copies of the original data into the training
set [7]. Some common techniques for data augmentation include flipping, scaling,
translation, and adjustment of brightness and contrast [10].

Early Stopping

Early stopping is a common form of regularization and, thus, another strategy for
avoiding overfitting. This technique involves monitoring the training process and
creating a copy of the model every time there is an improvement in the validation
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loss, thus saving the best model. The training process is terminated when the met-
ric stops improving, indicating overfitting of the model. In contrast to other regu-
larization strategies, such as weight decay, where the network could get trapped
in a bad local minimum, early stopping can be implemented without damaging
the learning dynamics. [7].

Transfer Learning

Another technique for preventing overfitting is transfer learning, where know-
ledge, i.e. weights, from a source task is used to improve learning in the target
task. Transfer learning can help the training process converge more quickly and is
particularly useful when the dataset is small, making it take longer for the model
to overfit. [11].

Fine-tuning is a common approach for transfer learning, where the target
model uses a pre-trained model trained on the source tasks to train for further
training. Although the source and target tasks may have different problem-solving
goals, the former can offer valuable information that the latter can build upon,
such as general features like edges, shapes, and textures [12].

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of feed-forward neural network
that is especially suitable for computer vision tasks such as image processing. This
is due to its ability to extract features/patterns from the data. The key component
in a CNN is the convolutional layer [13]. In these layers, a matrix called the kernel
slides through the input, multiplying each element in the input matrix with the
corresponding position in the kernel. The result from this element-wise product
is then saved in an output matrix. This process continues until the whole input
matrix has been processed. As a kernel can identify different types of features
in the input, the output of this operation will be a matrix with reduced dimen-
sions, wherein the most significant features have been extracted. This matrix is
commonly referred to as the feature map.
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Figure 2.3: An example of the convolution operation. A 3×3 kernel slides through
the input matrix, performing an element-wise product between the input and
kernel matrix. The result is further summed, and results in a matrix with reduced
dimensions called a feature map. Adapted from [14].

Usually, the convolutional layer is followed by a pooling layer that reduces the
dimensionality of the convolution layer’s feature map. The most common type of
pooling utilized is max pool. The pooling operation is executed in a similar way as
the convolution operation. Using maxpool as an example, a filter with dimensions
of n × n is applied to the matrix (feature map). The maximum value from each
of the receptive fields is then chosen. The filter is associated with a stride, which
determines the number of positions (pixels) the kernel will move after each com-
putation. The max pool layer’s output is a matrix comprising the most prominent
features, as the less significant ones are ignored. Figure 2.4 illustrates an example
of the max pool operation.

The last part of a CNN is a fully connected layer. It is essentially a feed-forward
network similar to the one shown in Figure 2.1. The final output of either the con-
volutional or pooling layer is flattened into a one-dimensional vector and further
inputted into the feed-forward network. It is responsible for the actual prediction
of the network. The output of the final hidden layers undergoes a softmax activ-
ation function to produce a probability distribution that determines the class to
which an image belongs.

Figure 2.4: An example of the max pool operation using a 2 × 2 kernel and a
stride of 2, i.e. the kernel moves two positions to the right after each operation.
Adapted from [15].
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2.2.1 ResNet

Increasing the depth of CNNs, i.e. creating deeper neural networks, has been a
common approach for tackling more complex problems, which also has shown
promising results. However, adding more layers to the model has made it difficult
to train and has resulted in decreasing performance, which is known as the de-
gradation problem. ResNet [16] was designed to overcome this problem using a
residual block, hence the name Residual Neural Network. Illustrations of different
residuals block used in ResNet can be seen in Figure 2.5. The residual block makes
use of the concept shortcut connections, i.e. skipping one or more layers. In the
ResNet residual block, these shortcut connections perform identity mapping. This
means that the input gets mapped forward in the network, forcing the deep layers
to retain information learned in the early layers of the network.

(a) Basic building block consisting
of two convolutional layers. Used in
ResNet-18/34

(b) Bottleneck building block consisting of
three convolutional layers. Used in ResNet-
50/101/152.

Figure 2.5: Illustrations of different residual blocks used in different ResNet mod-
els. As seen in each example, the block consists of stacked (sequential) layers and
the shortcut connection. An input x goes through both routes, and the output
from the stacked layers (F(x)) and the shortcut connection are further added
(F(x) + x). Adapted from [16].

2.2.2 ResNext

The introduction of the residual block allowed the ResNet architecture to go much
deeper without running into the vanishing gradient problem. Another study [17]
also explored widening the ResNet block and found that increasing its width is a
more efficient method for improving residual network performance than increas-
ing its depth. However, the ResNext [18] architecture introduced a new dimension
C known as cardinality, which was considered to be a more significant factor than
the depth and width of the network.

Similar to ResNet, ResNext consists of residual blocks. However, the ResNext
residual block follows a split-transform-merge approach inspired by the Incep-
tion [19] module. Each block applies a set of transformations, determined by the
cardinality C , to a low-dimensional embedding and further aggregates the res-
ults. As can be seen in Figure 2.6, the transformation scheme is shared along all
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paths, making it flexible for any value of C . With the introduction of cardinality,
experiments showed that increasing the cardinality is a more effective strategy for
improving the model’s capacity than increasing the network’s depth or width.

Figure 2.6: Overview of the ResNext residual block. The input is split into C
branches, each comprising identical transformations, thus sharing the same topo-
logy. The branch transformations are aggregated and multiplied with the shortcut
connection, similar to the ResNet block. Adapted from [18].

2.3 Transformers

2.3.1 Transformer

The Transformer [20] was developed in 2017 to address the challenge of se-
quence transduction, e.g. machine translation. This is accomplished without Re-
current Neural Networks (RNN) or convolutions, relying solely on self-attention.
The model complies with the typical structure of other neural sequence transduc-
tion models, specifically an encoder-decoder architecture. Figure 2.8 provides an
illustration of the architecture.

Figure 2.7: The Transformer architecture consists of an Encoder (left) and De-
coder (right). Adapted from [20].
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Encoder

Input Embedding and Positional Encoding As previously mentioned, the
Transformer model aims to address the challenge of machine translation, which
involves processing input data containing words. However, neural networks re-
quire a numerical representation of the input data. In order to address this, the
encoder utilizes an embedding space in which every word is mapped to a vector
representation. Further, the concept of positional encoding is employed, which
involves using vectors that provide positional information for each word. This is
due to the fact that a word’s meaning may differ based on its position within a
sentence.

Multi-Head Attention The Transformer employs a specific attention mechanism
known as self-attention to effectively capture the relationship between words in
the input. The technique used is a type of self-attention called Scaled Dot-Product
Attention. This method generates a vectorized representation of the input through
query Q, key K , and value V vectors, where Q and K have a dimension of dk and
V a dimension of dv .

Initially, the dot product between Q and K is computed, which results in an
attention score matrix that signifies the relationship between a word in the input
sequence and all other words. The attention score is further scaled by dividing
it by
p

dk, which represents the square root of the common dimension of Q and
K . In order to derive the attention scores/weights, the scaled matrix is passed
on to a softmax function, which transforms the matrix values into probabilities.
The attention weights are then multiplied by the V vector. Figure 2.8a shows the
visual representation of the scaled dot-product technique, whereas Equation (2.3)
presents the corresponding mathematical equation.

Attention(Q, K , V ) = softmax
�

QK T

p

dk

�

V (2.3)

(a) Operations of Scale Dot-Product At-
tention.

(b) Design of the multi-head attention
component.

Figure 2.8: Two key components in the Transformer for self-attention. Adapted
from [20]



Chapter 2: Background and Related Work 12

The above description outlines the procedure for one single attention head.
However, the Transformer employs a multi-head attention mechanism to compute
attention scores or weights. This is achieved by performing the self-attention pro-
cess in h parallel attention layers, also known as heads. The inputs Q, K , and V are
each fed into each of the h heads and processed according to the above-described
method. The resulting output from each individual head is concatenated and sub-
sequently multiplied by a parameter matrix to obtain the final attention score.

Feed-Forward Network The second component of the encoder is a position-wise
fully connected feed-forward network that operates on a position-wise basis, i.e. a
fully connected feed-forward network is created for each word representation. The
network consists of two linear transformations, separated by the ReLU activation
function. The purpose of this layer is to make the output of a given attention layer
match the input of the subsequent attention layer.

Decoder

Input Embedding and Positional Encoding The first step of the decoder is to
map the words in the input sequence to a vector representation, similar to the
encoder, as previously described. For the decoder, the input sequence is the target
sequence.

Masked Multi-Head Attention The initial block of the decoder is a multi-head
attention block that includes a masking process, as illustrated in Figure 2.8a. This
block is similar to the encoder’s first block, however, with some modifications.
Prior to applying the softmax function to the scaled matrix, specific values are
masked by setting them to −∞. In particular, for a given word located at pos-
ition i, all words located at positions greater than i are masked out. Thus, the
softmax function will assign zero probability to each masked word. By limiting
the decoder’s self-attention to attend only to positions up to and including a spe-
cific position i, the autoregressive property of the decoder is preserved. This is
due to the lack of future words during inference, i.e. sentence translation. As a
result, the mask is incorporated into the training process to facilitate learning of
the input-target data relationship.

Multi-Attention Head The second multi-attention head of the decoder is also
referred to as the encoder-decoder attention layer. By combining queries Q from
the previous decoder layer with keys K and values V from the output of the last
encoder layer, the Transformer can learn the correlation between words in the
input and target sequences.

Feed-Forward Network, Linear Layer and Softmax The output generated by
the encoder-decoder attention layer undergoes additional processing through the
position-wise feed-forward network, following the same procedure as that of the
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encoder. The decoder’s output is fed into a linear layer which is essentially another
feed-forward layer that increases the number of outputs to match the vocabulary
size of the target language. The output from the decoder, i.e. the feed-forward net-
work, is then passed through a linear layer which is simply another feed-forward
layer that expands the number of outputs to the size of the vocabulary of the target
language. The softmax function is applied to produce a probability distribution,
wherein the word with the highest probability is considered next in the sequence.

2.3.2 Vision Transformer

The Transformer, as described in Section 2.3.1, is widely used for natural lan-
guage processing tasks. It has also been utilized in certain computer vision tasks;
however, often together with a CNN or replacing specific components of the CNN
while preserving the overall structure. Inspired by the Transformer, the Vision
Transformer [21] was introduced in 2020 to solve the image classification prob-
lem, achieving results comparable to State of The Art (SOTA) CNNs.

Figure 2.9: Overview of the Vision Transformer architecture. The Transformer
Encoder block has the same architecture as the encoder block of the standard
Transformer. Adapted from [21].

The main difference between conventional and Vision Transformers is in
their input. As described in Section 2.3.1, the Transformer operates with one-
dimensional sequences. However, in the case of the Vision Transformer, the in-
put will be a two-dimensional image. In order to address this issue, the image is
reshaped into a sequence of flattened 2D patches xp ∈ RN×(P2·C). Here, P rep-
resents the size of each image patch, C represents the number of channels, and
N = HW/P2 is the number of patches, where H and W denote the height and
width of the original input image.

Each flattened patch goes through a linear projection layer that generates
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patch embeddings of dimension d. Furthermore, a trainable positional embedding
is added into the patch embedding to incorporate positional information into the
transformer. Similar to how words can have completely different meanings de-
pending on their order in a sentence, the same is true for images. Prior to being
fed to the transformer encoder, the sequence of patch embeddings and position
encodings is enhanced with a trainable class embedding that represents the target
class, illustrated by the asterisk in Figure 2.9.

The output of the transformer encoder is represented by a vector C =
(C0, . . . , CN ). For classification, however, only the class token C0 is used, while
the rest of the transformer encoder’s output is disregarded. An MLP classification
head combined with a softmax function is utilized to create a probability distri-
bution that indicates the class the image represents.

2.3.3 Swin Transformer

The Swin transformer [22] was introduced in 2021 and is a variant of the Vision
Transformer. The Swin Transformer employs a hierarchical processing approach
and shifted windows approach to overcome the limitations of the vision trans-
former in managing high-resolution images. The Transformer and Vision Trans-
former utilize global self-attention, which requires calculating the connections
between a token/patch and all other tokens/patches. This results in a quadratic
increase in complexity to the number of tokens.

In the Swin Transformer, self-attention is computed within non-overlapping
windows using a fixed size, as seen in Figure 2.10b. Limiting the self-attention to
only be calculated within the windows would result in a lack of inter-window con-
nections. Thus, a shifted window approach was implemented to facilitate learning
of neighboring information between windows. Within these newly proposed win-
dows, self-attention is again computed. The shifted windows approach can be
seen in Figure 2.10b. Following this approach, the Swin transformer has a linear
computational complexity, making it suitable as a general-purpose backbone for
various vision tasks.
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(a) Visualization of the hierarchical struc-
ture of the Swin Transformer, generating
hierarchical feature maps that can be fur-
ther leveraged by a FPN. The standard Vis-
ion Transformer generates a single resolu-
tion feature map, as illustrated to the right.

(b) Visualization of the shifted window ap-
proach. Following the computation of self-
attention on Layer 1, the M × M windows
are shifted by M

2 in both the x and y direc-
tions.

Figure 2.10: Illustrations of the primary concepts of the Swin Transformer, i.e.
the hierarchical structure and shifted window scheme. Adapted from [22].

Inspired by the success of large-scale natural language processing models on
language tasks, the authors of [23] sought to further enhance the performance
of the Swin transformer by employing large-scale computer vision models. The
proposed architecture was named Swin Transformer V2, which scales the Swin
Transformer up to 3 billion parameters. The model was evaluated on four vision
tasks, namely image classification, semantic segmentation, object detection, and
video action recognition. The proposed architecture achieved new benchmark re-
cords in most of the experiments conducted.

2.4 Object Detection

Object detection is a field within computer vision that can classify and localize
object in an image. The field has gained significant attention in recent years due
to the emergence of deep learning, making it one of the most prominent branches
of computer vision [24]. The task of generating 2D bounding boxes on images,
also known as 2D object detection, has been successful with the implementation of
models such as You Only Look Once (YOLO) [25] and Single Shot Detector (SSD)
[26]. This technology has been utilized in various industrial products, including
security monitoring, transportation surveillance, and robotics [24, 27].

2.4.1 Architecture

An object detection model typically consists of three main parts, i.e. a backbone
for feature extraction, a neck that fuses features at different scales obtained by
the backbone, and finally, a head that performs classification and bounding box
regression. Some object detectors include a fourth stage that produces region pro-
posals between the neck and head. In recent years, CNNs have been the most used
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backbone. However, with the introduction of the Transformer, transformer-based
approaches have been explored [22, 28, 29].

Feature fusion in the neck is usually achieved by using a FPN [30]. This in-
volves fusing feature maps obtained from different levels, enhancing the model’s
ability to detect objects at different scales. The main components of the Fea-
ture Pyramid Network (FPN) are bottom-up and top-down pathways, and lat-
eral connections, as illustrated in Figure 2.11. The bottom-up pathway refers
to a hierarchy of feature maps generated by the backbone at various stages,
each stage corresponding to a pyramid level. The top-down pathway constructs
high-resolution feature maps by up-sampling low-resolution features that are se-
mantically stronger. The feature maps are further enhanced with features from
the bottom-up pathway via lateral connections which combine feature maps of
corresponding spatial dimensions from both pathways.

Figure 2.11: Illustration of a FPN with bottom-up and top-down pathways. Ad-
apted from [30].

2.4.2 Bounding Box Regression

Object detection involves accurately localizing objects in an image using bound-
ing boxes. The process of adjusting the predicted bounding box to improve the
localization of the targeted object is known as bounding box regression, making it
a crucial component in object detection tasks [31]. This includes minimizing the
distance between the predicted and ground truth bounding box. There are several
approaches for bounding box regression.

The traditional object detectors usually utilized the Mean Squared
Error (MSE) to perform regression on bounding boxes on the format
(xcenter , ycenter , width,height) or (xmin, ymin, xmax , ymax). Using the latter de-
scribed bounding box format, the MSE formula can be defined as in Equa-
tion (2.4). Here, g t i and pi are the ground truth and predicted coordinates, re-
spectively. A limitation of this approach is that it solely considers individual data
points rather than the overall coverage area of the object.

LMSE =
1
4

4
∑

i∈{
xmin,ymin,

xmax ,ymax}

(g t i − pi)
2 (2.4)

Researchers proposed the Intersection over Union (IoU) loss to address this
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problem. The proposed method involves computing the area of overlap between
the predicted bounding box and the ground truth bounding box. This is expressed
by the following formula, where Bp and Bg t are the predicted and ground truth
bounding boxes, respectively.

IoU =
Area of Overlap
Area of Union

=
Bp ∩ Bg t

Bp ∪ Bg t
(2.5)

A problem with this method is that the IoU is 0 if the ground truth and pre-
dicted bounding boxes do not overlap. Thus, the IoU metric has limitations in
terms of bounding box regression. If a predicted bounding box gets closer to the
actual bounding box without overlapping, the loss function would not reflect any
improvement, preventing the network from learning. As a result, improved vari-
ants of the IoU metric have been proposed. In the subsequent sections, these tech-
niques will be described in more detail.

GIoU

The Generalized Intersection over Union (GIoU) [32] addresses the non-
overlapping cases that the IoU could not handle optimally by moving the pre-
dicted bounding box toward the ground truth bounding box in the cases without
overlap. It can be described as follows, where Bp and Bg t are the prediction and
ground truth bounding boxes, respectively, and C is the smallest box enclosing
both Bp and Bg t :

GIoU= IoU −
|C − (Bp ∪ Bg t)|

|C |
(2.6)

As can be seen from Equation (2.6), the GIoU converges to IoU as the overlap
between Bp and Bg t increases. Despite being an improved variant of the standard
IoU, this approach has some limitations, such as slow convergence.

DIoU

Distance Intersection over Union (DIoU) [33] was proposed to solve the slow
convergence problem of GIoU. This was achieved by including a penalty term that
minimizes the normalized distance between the center points of two bounding
boxes. It is defined as follows:

DIoU= IoU −
ρ2(bp, bg t)

c2
(2.7)

where bp and bg t denote the central points of predicted bounding box Bp and
ground truth bounding box Bg t , ρ is the Euclidean distance, and c is the length
of the diagonal of the smallest box enclosing both Bp and Bg t .

Similar to the GIoU, DIoU moves the predicted bounding box closer to the
ground truth in cases where there is no overlap. However, due to the penalty
term, it converges much more quickly than GIoU.
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CIoU

Complete Intersection over Union (CIoU) [33] is an extension of DIoU, proposed
by the same authors. The metric includes three geometric parameters: IoU of the
predicted and ground truth bounding boxes, the distance between their center
points, i.e. DIoU, and the aspect ratio of the predicted and ground truth bounding
box. The CIoU penalty term includes the DIoU penalty term and a factor α which
considers the aspect ratio. The definition of the CIoU can be seen below:

CIoU= IoU −
ρ2(bp, bg t)

c2
−αv (2.8)

The parameter α is a positive trade-off parameter that prioritizes overlaps over
non-overlaps cases, and v measures the consistency of the aspect ratio. They are
defined as follows:

v =
4
π
(arctan

wg t

hg t
− arctan

w
h
)2 α=

v
(1− IoU) + v

(2.9)

Using these three geometric properties, the CIoU achieves better performance
and faster convergence.

CDIoU

Inspired by the DIoU and CIoU, the Control Distance Intersection over Union
(CDIoU) was proposed. CDIoU evaluates the similarity between predicted and
ground truth bounding boxes without directly computing their center point dis-
tances and aspect ratios. A higher CDIoU value indicates a greater degree of sim-
ilarity between the objects. The definition of CDIoU is as follows:

CDIoU= IoU +λ(1− diou) = IoU +λ(1−
AE + BF + CG + DH

4W Y
) (2.10)

W Y is the diagonal of the smallest enclosing box covering both the predicted
and ground truth box, similar to DIoU, and λ is a weight. AE, BF , CG, and DH
correspond to the difference between the vertices of a ground truth bounding box
(ABC D) and predicted bounding box EFGH.

2.4.3 3D Object Detection

In recent years, object detection, specifically 3D object detection, has become an
essential part of perception systems for onboard scenes, i.e. autonomous driving
[29]. The field of 3D object detection involves accurately identifying and locating
objects within the real-world 3D coordinate system. In contrast, 2D object detec-
tion primarily focuses on generating 2D bounding boxes within images, without
considering the actual distance information of objects from the ego-vehicle [34].
The roadside scene is another environment where 3D object detection has become
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essential, for example, in Intelligent Transportation Systems (ITS) and CVIS for
intelligent traffic management [29].

Light Detection and Ranging (LiDAR) and cameras are the most common
sensors for solving the 3D localization task. Although cameras are cost-effective
and easily accessible, resulting in their widespread implementation, they have cer-
tain limitations in the 3D localization task as they are unable to accurately estimate
depth. LiDAR sensors measure the reflected information of emitted laser beams,
thereby providing more precise 3D data than cameras. However, LiDAR techno-
logy is associated with higher costs and greater environmental requirements com-
pared to cameras. [27, 29, 34]

The methodology for detecting 3D objects can be divided into three groups:
point cloud based, vision-based, and multi-modal based. The vision-based method
can further be divided into monocular camera based and stereo camera based.
Monocular camera-based vision involves using a single image to identify objects
in 3D space. This presents a significant challenge in predicting an object’s 3D
location due to the lack of depth information. Stereo camera-based vision can of-
fer more accurate depth information than monocular images by utilizing a pair
of images, namely left and right images. Thus, the stereo-based methods gener-
ally show greater detection performance compared to monocular-based methods.
However, there is still a significant performance gap between stereo-based and
point cloud-based methods. [34]

(a) Anchor based.

(b) Anchor free.

Figure 2.12: Overview of the pipeline of the single-stage monocular detection
methods. Adapted from [34].
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Similar to known 2D detection networks [25, 26, 35], the monocular 3D de-
tection task can be solved by directly obtaining the 3D bounding box parameters
from images using a Convolutional Neural Network (CNN). These approaches can
be divided into single-stage and two-stage methods, where the former can further
be divided into anchor-based or anchor-free methods.

The two-stage methods employ a two-dimensional detector in the initial stage
to generate 2D Region of Interests (ROIs). The 3D object parameters are pre-
dicted based on the 2D ROIs, and the 2D boxes are further lifted to the 3D space.
The single-stage anchor-based approach involves placing a set of 3D anchor boxes
within every image pixel. Then, a CNN is employed to generate object parameters
from the anchor boxes. See Figure 2.12a. Anchor-free monocular detection meth-
ods have the ability to predict 3D object attributes directly from images without
the need to locate ROIs beforehand. A two-dimensional CNN is employed for im-
age processing, followed by multiple heads to separately predict the object attrib-
utes such as class, center, and size [34]. See Figure 2.12b.

2.5 Metrics

The most common metrics for evaluation of the object detection challenge are
Average Precision (AP) and mean Average Precision (mAP). To calculate the AP
and mAP, various metrics are utilized, such as Intersection over Union (IoU), True
Positive (TP), False Positive (FP), and False Negative (FN), precision and recall.

2.5.1 Intersection over Union

As described in Section 2.4, the IoU metric measures the difference between the
predicted bounding box and the ground truth and is a scalar value that ranges
from 0 to 1. A prediction is considered more accurate as the IoU value approaches
1. As described in Section 2.4.2, IoU can be used as a bounding box regression
technique when training the model. The IoU is, however, also central in other parts
of the evaluation of the model. During the evaluation of the model’s detection,
whether during training or testing, it is possible to establish an IoU threshold to
determine the categorization of the detection as TP, FN, or FP. For instance, a
threshold of 0.5 can be used. If the IoU between the predicted bounding box and
the ground truth falls below the predetermined threshold, the detection will be
classified as a FP. Similarly, when the IoU is greater than the specified threshold,
the detection is classified as a TP. FN occurs when the model fails to make a
prediction despite the presence of a ground truth.

2.5.2 Precision

Precision is a metric that measures the number of correct detections and is defined
as the ratio between the true positives and the total number of predictions. It thus



Chapter 2: Background and Related Work 21

serves as an indication of the model’s reliability of the positive predictions, i.e.
how often the model predicts correctly.

Precision=
T P

T P + F P
=

T P
All Detections

(2.11)

2.5.3 Recall

The recall metric determines the model’s ability to correctly identify all relevant
instances, i.e. ground truths. In order words, it indicates if the model predicts
something every time it should have predicted. The calculation involves dividing
the total number of true positives by the total number of ground truths.

Recall=
T P

T P + FN
=

T P
All Ground Truths

(2.12)

2.5.4 F1-Score

The F1-score is another evaluation metric for object detection tasks and is defined
as the harmonic mean of the precision and recall [36]. See Equation (2.13).

F1= 2×
Precision×Recall
Precision+Recall

(2.13)

2.5.5 Average Precision and Mean Average Precision

The precision and recall can further be plotted in a PR-curve. The AP can be found
by finding the area under the PR-curve. See Equation (2.14). The PR-curve is
obtained by plotting the precision and recall values against the model’s confidence
score threshold. Due to the characteristics of the two metrics, the curve will be
downward-sloping. A lower confidence threshold results in more detections by the
model, reducing the likelihood of missed detections and thus resulting in a higher
recall. A greater confidence threshold leads to the model’s predictions being more
precise, resulting in greater precision. [37]

AP =

∫ 1

0

p(r)dr (2.14)

The calculation is typically done on a per-class basis. However, if there are
multiple classes, the average AP score can be computed [38]. This is referred to
as the mAP.

mAP =
1
N

N
∑

i=1

APi (2.15)

where N is the total number of classes and i represents the ith class.
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2.6 Camera Calibration

Camera calibration aims to determine the relationship between 2D points cap-
tured by a camera and their corresponding 3D points using intrinsic and extrinsic
parameters. The extrinsic matrix denotes the conversion from the global coordin-
ate system to the camera coordinate system and relies on the camera’s placement
and alignment. The intrinsic matrix is a transformation matrix that maps camera
coordinates to pixel coordinates. This mapping is determined by camera proper-
ties such as focal length, pixel dimensions, and resolution. [39]

The projection mapping from world coordinates to pixel coordinates can be
defined as:

s





u
v
1



= KRT
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y
z
1






= H







x
y
z
1






(2.16)

Here, K represents the intrinsic matrix, while RT denotes the extrinsic matrix.
The vectors [u, v, 1]T and [x , y, z, 1] represent the homogeneous coordinates, i.e.
a third dimension is added, of the 2D image pixel coordinates and 3D world point
coordinates, respectively. The camera matrix, also known as the projection matrix,
is defined as H = KRT . The matrices in H can be further defined as follows:

K =





f 0 cx
0 f cy
0 0 1



 (2.17)

R=





cosθ − sinφ 0
− sinφ sinθ − sinφ cosθ − cosφ
cosφ sinθ cosφ cosθ − sinφ



 (2.18)

T =





1 0 0 0
0 1 0 0
0 0 1 −h



 (2.19)

The variables s, f , θ , φ, and h in the above equations represent the scale
factor, the focal length in pixels, camera pan angle, camera tilt angle, and camera
height above the ground, respectively. The values of cx and cy correspond to half
of the width and height of the image, respectively.

The adjusted world-to-image transformation can be described as follows,
where H = [hi j], i = 1, 2,3; j = 1, 2,3,4 :

u=
h11 x + h12 y + h13z + h14

h31 x + h32 y + h33z + h34
, v =

h21 x + h22 y + h23z + h24

h31 x + h32 y + h33z + h34
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The adjusted image-to-world transformation can be described as follows:

¨

x = b1(h22−h32v)−b2(h12−h32u)
(h11−h31u)(h22−h32v)−(h12−h32u)(h21−h31v)

y = −b1(h21−h31v)+b2(h21−h31u)
(h11−h31u)(h22−h32v)−(h12−h32u)(h21−h31v)

(2.20)

where

b1 = u(h33z + h34)− (h13z + h14), b2 = v(h33z + h34)− (h23z + h24)

2.7 Related Work

2.7.1 CenterLoc3D

CenterLoc3D [29] is a single-stage, anchor-free object detector focusing on 3D
vehicle localization for surveillance cameras in traffic scenes. In contrast, many
existing single-stage, anchor-free monocular 3D object detection networks [40–
42] target the onboard scene, i.e. for autonomous driving. The methodology com-
prises two fundamental components, namely camera calibration and 3D localiza-
tion.

The 50-layer CNN ResNet-50 is used as the backbone, pre-trained on the Im-
ageNet [43] dataset. Utilizing the hierarchical structure of ResNet, the feature
maps obtained from the backbone are further used to construct a FPN, followed
by a weighted feature-fusion to create a fused feature map. The actual 3D loc-
alization happens in the head of the model, using a multi-task detection head
responsible for extracting parameters such as vehicle type, centroid, vertices, and
dimensions of the 3D bounding box. An overview of the CenterLoc3D architecture
can be seen in Figure 2.13.

The model achieved a mAP@0.7 of 51.3% on the car class, outperforming
its competitors. However, it is important to note that the benchmark dataset for
CenterLoc3D is not the same as its competitors. The evaluation of CenterLoc3D’s
performance was conducted on their own [44] test dataset, whereas methods like
SMOKE [40] and KM3D [45] utilized the KITTI3D [46] dataset for evaluation. In
addition, the obtained precision of both localization and dimension was measured.
The results show that CenterLoc3D has an average 3D localization precision of
98%, and an average 3D dimension precision of 85%.

The architecture of the CenterLoc3D network can be seen in Figure 2.13
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Figure 2.13: The architecture of CenterLoc3D, consisting of a backbone, multi-
scale feature fusion, and a multi-task detection head. Adapted from [29].

2.7.2 Data Augmentation

Data augmentation is a widely used regularization method to prevent overfitting.
It involves applying image transformations such as flipping, scaling, and rota-
tion, as described in Section 2.1.1. This is attributed to its ease of implementation
and effectiveness. This is in contrast to other strategies, which try to increase the
model’s generalization by improving the model architecture, leading to more com-
plex architectures. Data augmentation, on the other hand, addresses overfitting
by going to the root, i.e. the training dataset.

The augmentation techniques mentioned above fall under the category of geo-
metric transformations, which modify the geometric structure of images by shift-
ing image pixels from their original locations to new locations while keeping the
pixel value unmodified. Transformations are applied to training data to enhance
their ability to represent real-world changes in appearance caused by variations
in perspective, scale, and viewpoint. [47]

Another technique is photometric transformation, or pixel-level data augment-
ation. The aim is to replicate photometric effects by modifying the visual proper-
ties of the image, such as brightness, contrast, saturation, and color adjustments.
By employing these methods, the deep learning model can become more robust
to environmental factors such as variations in weather and time of day, as well
as artifacts that may be caused by imaging devices, such as noise and camera
configurations. [47]

In the above described methods, data augmentation is applied using a single
image. In recent years, there have also been proposed methods for multiple image
processing, i.e. image mixing, such as Mosaic [48], Mixup [49], and CutMix [50].
Common methods for generating new image samples include pixel-wise mixing
and patch-wise mixing. Pixel-wise mixing involves performing pixel-wise trans-
formations on the entire image content, while patch-wise mixing involves extract-
ing patches from different images and combining them.
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Mixup

Mixup [49] belongs to the pixel-wise image mixing, i.e. combining two images
into one. In the context of image classification, Mixup is a technique utilized to
regularize neural networks by encouraging simple linear behavior. This is achieved
by mixing up pixels through interpolations between pairs of images [49]. The
implementation of the Mixup strategy demonstrated significant improvements in
the model’s robustness and generalization capability across diverse tasks, such
as image classification, text and acoustic scene classification, and medical image
segmentation [51].

It has a relatively straightforward approach:

x̃ = λx i + (1−λ)x j , ỹ = λyi + (1−λ)y j (2.21)

where i and j refer to the original and randomly drawn samples, respectively,
and x and y represent the image and bounding box. The λ parameter, which
regulates the mixing ratio of the two samples, is usually determined by a β(α,α)
distribution where α ∈ (0,∞). λ determines the mixing ratio between the two
samples and usually follows a β(α,α) distribution for α ∈ (0,∞). This means
that a greater value of α leads to a more smoothed distribution causing the mixing
ratio to be closer to 0.5. Thus, both images are effectively visible in the combined
image. In the case of image classification, x represents the raw input vectors, such
as images, while y denotes the one-hot label encodings.

The technique has also been applied and demonstrated improved results in 2D
object detection tasks [48, 51, 52]. The simple approach is the same as the one
presented in Equation (2.21); however, instead of representing one-hot encodings,
y represents the bounding boxes in the two images x . An example is illustrated
in Figure 2.14. The main difference in utilizing Mixup in the object detection task
is, however, the selection of α. Previous studies have reported conflicting optimal
values for α. One study [51] found that α = 0.2 gave the best results, whereas
another study [52] claimed that the α should be at least one as mixups with α =
0.2 were compared with noise with such beta distribution. The latter study found
that α = 1.5 was marginally better than α = 1. However, recent versions of the
YOLO object detector have experimented with α= 8.01 and α= 32.02.

1https://github.com/WongKinYiu/yolov7/blob/main/utils/datasets.py#L553
2https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/

augment.py#L274

https://github.com/WongKinYiu/yolov7/blob/main/utils/datasets.py##L553
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/augment.py##L274
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/augment.py##L274
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Figure 2.14: Illustration of the Mixup technique in the object detection task. The
mixed image x̃ is obtained in the same manner as for the original Mixup, i.e.
using a mixing ratio. ỹ is, however, a vector containing all the present bounding
boxes from the two samples. Adapted from [51].

The 2D object detection data augmentation techniques have also been tested
for 3D object detection [53], showing promising results. The proposed method
is a modified version of the original Mixup [49]. Instead of merging two com-
plete images, the original image is augmented with patches from another image,
thus providing the same advantages of the standard approach but localized over
multiple regions in the image.

The evaluation of this approach was conducted under two distinct condi-
tions. In the initial approach, the patches were directly inserted into the tar-
get image. The second approach incorporated an IoU threshold to guarantee
that there was no significant overlap between any two boxes in the two images,
IoU(Bi , B j),∀Bi ∈ yi , B j ∈ y j . If the calculated IoU between the bounding boxes
exceeds a certain threshold, the incoming bounding box will be rejected. Con-
sequently, the Mixup operation will not be performed. The experimental results
indicate that the approach utilizing the IoU threshold yields better results in terms
of mAP when compared to the approach without any filtering, particularly for
higher mAP IoU threshold.

2.7.3 Vision Transformers in Object Detection

ViTDet

In recent years, different Vision Transformers approaches have also seen increased
use in the computer vision field [21, 22], showing results comparable to or better
than SOTA CNNs [18, 54].

Commonly used CNN backbones for object detection, e.g. ResNet [16], have
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utilized the hierarchical nature of the convolutional network creating a feature
map at different stages of the network, leading to them having different resolu-
tions. Using a FPN is widely used in combination with hierarchical backbones as
its motivation is to combine high-resolution features obtained in the early stages
with stronger features from later stages.

The authors behind ViTDet [55] have explored the utilization of a FPN for
plain vision transformers. The vision transformer’s structural characteristics make
it unsuitable for object detection tasks as it does not naturally provide feature
maps at different resolutions, as discussed in Section 2.3.2. Therefore the authors
wanted to explore different approaches for converting the single-resolution fea-
ture map to different resolutions using a FPN. They proposed and compared three
different approaches for generating this FPN. These can be seen in Figure 2.15.

(a) FPN using four stages. (b) FPN using the last fea-
ture map.

(c) A simple FPN.

Figure 2.15: Illustration of different approaches for generating a FPN in plain
vision transformer approaches. Adapted from [55].

In the first variant, as illustrated in Figure 2.15a, the backbone is artifi-
cially divided into four stages to mimic a hierarchical backbone using top-down
connections, i.e. creating high-resolution layers from semantically stronger low-
resolution maps. The second variant, illustrated in Figure 2.15b, is similar to the
first one; however, it uses only the last feature map to construct the FPN. The last
variant is referred to as a simple feature pyramid, where only the last feature map
from the backbone is utilized. This variant is illustrated in Figure 2.15c. Further,
to create multi-scale feature maps of scale { 1

32 , 1
16 , 1

8
1
4} a set of convolutions of

strides {2,1, 1
2 , 1

4}, where a fractional stride indicates a deconvolution.
Experiments using these three approaches as backbones for object detector

was performed on the COCO [56] dataset using Mask R-CNN [57] and Cascade
Mask R-CNN [58]. The three experiments were done using the three variants pro-
posed in the original Vision Transformer paper [21]: ViT-Base, ViT-Large, and ViT-
Huge. For the object detection task, the results were reported using the AP metric.

The first experiment compared the different FPN variants using plain ViT-Base
and ViT-Large as backbones and compared them with a baseline with no feature
pyramid, i.e. the final layer of the backbone, i.e. the single-scale 1

16 feature map.
The experiments show that all three feature pyramid variants lead to better results
than the baseline with both backbones. However, the simple pyramid showing the
best performance, increasing the AP by 3.4% for both backbones, i.e. 51.2% and
54.6% for ViT-Base and ViT-Large, respectively.

When pre-training the ViT backbones as Masked Autoencoders (MAE) [59],
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ViTDet competes with methods based on hierarchical backbone detectors such as
Swin-B [22] for the base ViT for both detection heads Mask R-CNN and Cascade
Mask R-CNN. The larger versions, ViT-L and ViT-H, outperform the detectors using
a hierarchical backbone.

A study comparing different backbones for object detection on aerial images
show similar results [60]. The results from one of the experiments show that the
ViTDet outperforms ResNext-101 in most metrics on different datasets, e.g. an
improvement of 6-10% on the AP metric. The most extensive experiment of the
study compared three backbones, i.e. ViTDet, Swin Transformer, and ResNet, on
the DOTA [61] dataset. The results show that ViT-B can compete with hierarchical
architectures, both CNNs and Swin Transformers, achieving the best performance
with a mAP of 80.89% when using data augmentation.

PVT

Similar to the authors of ViTDet [55], the authors behind the Pyramid Vision
Transformer [28], hereby referred to as PVT, wanted to overcome the issue with
the standard Vision Transformer, namely that it generated a single resolution fea-
ture map, making it unsuitable for dense predictions tasks such as object detection
and semantic segmentation. To encounter this, they introduced a pyramid struc-
ture into the transformer network, thus being able to generate feature maps at
different stages with different scales.

The overall architecture, visualized in Figure 2.16, is divided into four stages,
each containing a patch embedding layer and a transformer layer. To generate fea-
ture maps at the four different stages, a progressive shrinking strategy is utilized.
The input feature map at each stage is divided into Hi−1Wi−1

P2
i

patches where Hi ,

Wi , and Pi denotes the height, width, and patch size at the i-th stage respectively.
The patches are further flattened and go through a linear projection to obtain
embedded patches.

Just like in the standard transformer, positional encoding is added to the input
to give the patches’ positional information. The combined input is then passed
through a Transformer encoder. The transformer used in PVT is, however, slightly
modified, i.e. by replacing the traditional multi-head attention layer with a spatial-
reduction attention layer which, similarly to the traditional multi-head attention,
receives a query Q, key K , and value V and outputs a refined feature. However,
in the spatial-reduction layer, the spatial scale of K and V are reduced before the
attention operation.

The output from the transformer is then reshaped into a feature map F of
size Hi−1

Pi
× Wi−1

Pi
× Ci . Using this approach for all four stages results in feature

maps of size 1/4,1/8, 1/16, and 1/32 of the input size, making it suitable for a
FPN. Comparing this proposed architecture with well-known CNNs like ResNet
and ResNext, the results show that on the object detection task evaluated using
the COCO [62] dataset, the PVT surpasses their counterparts in terms of AP.
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Figure 2.16: Overall architecture of the PVT. Each stage i is comprised of a patch
embedding layer and a transformer encoder with Li layers. Utilizing the progress-
ive shrinking strategy, the PVT obtains multi-scale feature maps suitable for use
with a FPN. Adapted from [28].

Swin Transformers

The Swin Transformer has successfully introduced the Transformer to the object
detection field. The Swin Transformer, as described in Section 2.3.3, introduced a
hierarchical feature representation that effectively optimizes the model for dense
prediction tasks, demonstrating noteworthy performance on various dense pre-
diction tasks by implementing the hierarchical structure.

The Swin Transformer demonstrated SOTA performance on the COCO [62]
dataset. In comparison to similar sized CNNs like ResNet-50 and ResNext-101,
the Swin Transformer demonstrated an improvement of 4.2 − 5.0% and 3.6 −
4.5% in AP, respectively, when utilized as the backbone of an object detector with
a Cascade Mask R-CNN head. Further, the enhanced Swin Transformer, namely
Swin Transformer v2, set new benchmark records, as described in Section 2.3.3.
Compared to the first version of Swin, the Swin Transformer v2 saw an increase
in AP of 2.1% on the COCO dataset.
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Method

This chapter provides an explanation and justification for the chosen architectures
and configurations used in this thesis. The process of dataset preprocessing is also
explained, including the collection of images and the generation of annotations.
Some parts of this chapter have been adapted from the author’s prior work [2].

3.1 Monocular 3D Vehicle Localization

The main focus of this thesis has been to investigate and experiment with dif-
ferent backbones for monocular 3D vehicle localization rather than investigating
different approaches for solving the 3D localization problem. However, research
done in the author’s specialization project [2] concluded that CenterLoc3D [29]
would be a good fit for solving this 3D localization problem. The main contribut-
ors for this conclusion was it solving the 3D localization task on a similar domain
to this thesis, namely on the roadside scene using monocular cameras. Other 3D
monocular object detection approaches have been used for solving the autonom-
ous driving problem. An additional advantage was that the model came with a
provided dataset comprising images that could be utilized for the project.

This thesis investigates two SOTA approaches for feature extraction, namely
using CNN and transformer-inspired architectures as the backbone of the Center-
Loc3D [29] network. When choosing the different methods belonging to the two
approaches, speed and accuracy were essential factors. The end product should
preferably work close to real-time and have good accuracy. Thus, methods that
could have a good trade-off were considered.

3.1.1 Choice of Backbones

CNN

With the introduction of the residual block, ResNet allowed creating deeper net-
works, i.e. increasing the number of layers without increasing the complexity. The

30
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suggested architecture achieved major success by obtaining the top rank in the Im-
ageNet [43] image classification and COCO dataset object detection challenges.

The CenterLoc3D [29] paper employed ResNet and achieved superior results
compared to other monocular 3D object detectors. It was thus seen as preferable to
use this for this thesis. Originally, the ResNet-50 architecture was utilized, which
is a 50-layer deep ResNet network.

However, this thesis utilized the 101-layer deep ResNet version, namely
ResNet-101. While the ResNet-50 is faster due to its reduced size compared to
ResNet-101, the latter has an increased accuracy [16]. As previously stated, it is
preferable for the model to work close to real-time while also having good accur-
acy. ResNet-101 was thus chosen as the backbone.

Additionally, the improved version of the ResNet architecture was used in this
thesis, namely ResNext. By implementing a new dimension, i.e. cardinality, the
experiments conducted in the ResNext paper [18], demonstrated that increasing
the cardinality effictively enhanced the model’s capacity. Despite having a similar
complexity to its ResNet counterpart, ResNext demonstrated improved perform-
ance. Specifically, the 50-layer network and 101-layer network showed an increase
of 2.1% and 0.8% of AP@0.5, respectively. Based on this success, it was decided to
use ResNext as a backbone as well. Specifically, the ResNext-101 with a cardinality
of 32 was utilized.

Vision Transformer

The standard vision transformer has demonstrated promising results in image
classification, with performance on par with SOTA CNNs.

Despite being used for dense prediction tasks such as object detection, the
vision transformer is not explicitly designed for this domain as it only produces
a single-resolution feature map. As described in Section 2.4.1, object detectors
usually comprise a neck to combine feature maps generated by the backbone
at different scales. Hierarchical Vision Transformer models, including the Swin
Transformer and the Pyramid Vision Transformer, have been proposed to address
this issue. As their names imply, they generate hierarchical feature maps that can
be used by a FPN, which makes them more applicable to the object detection
field. The Swin Transformer v2 demonstrated slightly better performance and was
therefore selected as a transformer-based backbone. The small Swin Transformer,
namely Swin-S, was chosen to have a fair comparison to the CNN approaches.

Despite being designed to only generate feature maps of a single resolution,
the plain Vision Transformers have been explored for their potential in the object
detection field. As described in Section 2.7.3, the ViTDet study implemented and
compared three methods for creating a feature pyramid from a single-resolution
feature map, where two of the approaches included concepts from the traditional
FPN. The first mimics a traditional hierarchical backbone by dividing it into mul-
tiple stages and utilizing lateral and top-down connections. The second approach
utilizes only the final feature map instead of the divided stages, while the third



Chapter 3: Method 32

approach is a basic feature pyramid without a FPN. This approach involves apply-
ing parallel convolutions or deconvolutions on the final feature map to generate
multi-scale feature maps.

The experimental results indicate that the simple pyramid approach is suf-
ficient for achieving good results on the COCO [62] dataset when compared to
hierarchical vision transformers, such as the Swin Transformer. According to the
findings, the ViTDet architectures utilizing the simple feature pyramid showed
a 0.2% − 3.2% increase in AP compared to their Swin counterparts when using
the Mask R-CNN head. Additionally, a 0 − 2.8% increase in AP when using the
Cascade Mask R-CNN head. Due to the intriguing findings in the ViTDet paper,
the approach was chosen for this thesis. Similar to when deciding which Swin
Transformer network size to choose, the decision was based on having a fair com-
parison to the CNN-based approaches. Therefore, the ViTDet-B/16 base version
was selected. As implied by its name, it utilized a patch size of 16.

3.2 Datasets

This thesis used two datasets: one provided by the author of CenterLoc3D [29],
namely Surveillance Vehicle Localization Dataset (SVLD-3D), and a custom data-
set including images provided by Q-Free. The dataset provided was considered
more favorable compared to other datasets for 3D object detection. The data-
set provided was preferred over KITTI3D [46] due to its similarity to the Q-Free
dataset containing images from the roadside scene. The purpose of the provided
dataset was to create pre-trained models which would serve as the source task
when using the Q-Free dataset for fine-tuning, following the approach described
in Section 2.1.1.

3.2.1 SVLD-3D dataset

The proposed dataset SVLD-3D included a combination of images from Sochor et
al. [44] and images collected by the author of CenterLoc3D [29]. It was decided
to convert the images from RGB to grayscale in order to have more similar images,
as the models trained on this dataset would serve as a basis for the custom data-
set. The dataset contained a total of 16830 images, of which 14593 were used for
training and 2237 were used for testing, including the classes car, truck, and bus.
The dataset was created using image sequences from videos taken from surveil-
lance viewpoints of the traffic. Thus, multiple instances of the same vehicle are
present in the dataset. The training dataset was initially divided into three separ-
ate datasets based on the scene from which they were recorded, with various class
distributions. However, it was preferable with a large volume dataset containing
all occurrences of the different classes. Thus the separate datasets were merged.
Table 3.1 shows the distribution of annotations in the merged training and testing
dataset.
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Dataset Class Annotations

Train
Car 37611
Bus 1166
Truck 700

Test
Car 7396
Bus 745
Truck 1

Table 3.1: Original dataset distribution.

(a) Scene A. (b) Scene B.

(c) Scene C. (d) Scene D.

(e) Scene E.

Figure 3.1: Example of converted grayscale images from the original dataset from
each of the five scenes. Adapted from [2].

3.2.2 Q-Free dataset

The main dataset used in this thesis comprised 8,484 grayscale images, of which
7,836 were utilized as training images, and 648 were reserved for testing. These
images were distributed over the car, truck, and bus classes. The images were
gathered from one of Q-Free’s sites in Trondheim which provided both front and
rear images of the vehicles. The image capture was initiated based on the specific
location of the vehicles underneath the gantry, resulting in a relatively homogen-
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eous dataset in terms of the vertical positioning of the included vehicles. Due to
this triggering mechanism, a specific vehicle for the majority of the cases only ap-
peared once per view (front and rear) in the dataset. An exception for this case
was, however, when other vehicles were close to the one triggering the image,
resulting in duplicates of the vehicles over two images. The number of instances
(annotations) per class for each view is presented in Table 3.2. As can be seen
from the distribution, the dataset was somewhat imbalanced, i.e. the number of
annotations were not equal for the three classes. The class car had nearly 1000
more samples in total compared to the truck and bus class. The imbalance was
also present in the test dataset.

Dataset Class View Annotations

Train

Car
Front 1799

3310
Rear 1511

Truck
Front 1368

2370
Rear 1002

Bus
Front 1294

2280
Rear 986

Test

Car
Front 272

494
Rear 222

Truck
Front 70

86
Rear 16

Bus
Front 65

81
Rear 16

Table 3.2: Q-Free dataset distribution.

(a) Front. (b) Rear.

Figure 3.2: Example images from the Q-Free dataset.

Because the vehicles in the Q-Free dataset are driving on a multi-lane road,
they may appear in both lanes for both perspectives. However, the positioning of
the vehicles demonstrated a high degree of uniformity in terms of their placement
for both views. From the front perspective, 3823 vehicles were located in the
left lane and only 442 in the right lane. The rear perspective demonstrated the
opposite trend, due to the rear image being a mirrored representation of the front
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view. Here, 3057 vehicles appeared in the right lane and 638 in the left lane.

3.3 Dataset Preprocessing

3.3.1 Dataset Labeling

The provided SVLD-3D dataset included images and a corresponding annotation
file containing the necessary information about the objects. The custom dataset,
referred to as the Q-Free dataset, had to be manually labeled. This was done using
LabelImg3D [63], which was also proposed by the author of CenterLoc3D [29].
To use this annotation tool, a file containing the camera calibration parameters
was required in order to translate data from image coordinates to real-world co-
ordinates and vice versa. This file included information such as focal length, tilt
and pan angle of the camera, camera height, and vanishing point. An example of
the camera calibration file can be seen in Code listing 3.1.

To comply with privacy standards, anonymization of the vehicles in the im-
ages was necessary for the Q-Free dataset. This was done prior to annotation. The
anonymization involved removing identifiable details like license plates and vis-
ible individuals. The licence plate blurring was achieved through a Q-Free library
provided for this purpose. After anonymizing the license plates, the dataset was
manually reviewed to identify images that contained visible individuals. These
images were then excluded.

<opencv_storage>
<f>X</f>
<fi>X</fi>
<theta>X</theta>
<h>X</h>
<vanishPoints>
X X X X

</vanishPoints>
</opencv_storage>

Code listing 3.1: Example of the camera calibration file.

The calibration file was originally the only prerequiste for using the annotation
tool. The tool was designed to automate the labeling process using a pre-trained
YOLOv4 [48]model for generating a 2D bounding box around the detected objects
in the image, functioning as a ROI for the 3D bounding box. However, the model
failed to detect any object on the majority of the images of the Q-Free dataset.

A Q-Free library was employed as a workaround to avoid manually labeling
images with 2D bounding boxes prior to the 3D annotation task. Given a folder
of images, the library could provide information such as 2D bounding box co-
ordinates, class, and vehicle dimensions. To make use of this information during
the annotation process, a script 1 was created to generate "dummy" annotation

1https://github.com/miafornes/tdt4900/blob/459f17a4a9d9af4f1da4596ebf9a49b5f5f2014f/
dataset_preprocessing.ipynb

https://github.com/miafornes/tdt4900/blob/459f17a4a9d9af4f1da4596ebf9a49b5f5f2014f/dataset_preprocessing.ipynb
https://github.com/miafornes/tdt4900/blob/459f17a4a9d9af4f1da4596ebf9a49b5f5f2014f/dataset_preprocessing.ipynb


Chapter 3: Method 36

files for each image, containing this information. For the annotation annotation
tool to comprehend the annotation file, all its fields had to be filled out. This was
solved by making the script set the value of all other fields to 0. An example of the
"dummy" annotation file can be seen in Code listing 3.2. As a result, the annota-
tion process only involved making minor adjustments, such as placement of the
3D bounding box with the labeling tool. This led to a significant reduction in the
workload associated with the annotation task. Figure 3.3 provides a visual rep-
resentation of this process, while Figure 3.4 illustrates the dataset preprocessing
workflow from beginning to end.

<annotation>
<filename>image_path</filename>
<calibfile>calibration_file_path</calibfile>
<size>

<width>image_width</width>
<height>image_height</height>
<depth>num_channels</depth>

</size>
<object>

<type>vehicle_type</type>
<bbox2d>top left width height</bbox2d>
<vertex2d>

(0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0)

</vertex2d>
<veh_size>length width height</veh_size>
<perspective>left</perspective>
<base_point>0 0</base_point>
<vertex3d>

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

</vertex3d>
<veh_loc_2d>0 0</veh_loc_2d>

</object>
</annotation>

Code listing 3.2: Example of the "dummy" annotation file needed in order to use
the provided annotation tool. All fields within the object tag, except for those that
have been set to zero, are filled with data provided by the Q-Free library.
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(a) Before 3D annotation.

(b) After 3D annotation.

Figure 3.3: A snippet of the LabelImg3D annotation tool. The 2D bounding box
(red) serves as a ROI for the 3D bounding box. Based on the camera calibration
file, the 3D bounding box is drawn and can further be adjusted.

Figure 3.4: Illustration of the overall pipeline for the preprocessing steps for the
Q-Free dataset. Adapted from [2].
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3.3.2 Normalization and Standardization

During training, the images undergoes the concepts of normalization and stand-
ardization. However, this procedure employed parameters optimized for the
SVLD-3D dataset. The Q-Free dataset contained grayscale RGB image, resulting
in an identical pixel distribution for each color channel, as shown in Figure 3.5.
The mean and standard deviation for the RGB channels for the Q-Free dataset are
presented in Table 3.3. These values were additionally limited to the range [0,1],
presented in Table 3.4.

Red Green Blue
Mean 57.6058029 57.6058029 57.6058029
Std 15.84698955 15.84698955 15.84698955

Table 3.3: Mean and standard deviation over Q-Free dataset.

Red Green Blue
Mean 0.22590511 0.22590511 0.22590511
Std 0.06214506 0.06214506 0.06214506

Table 3.4: Mean and standard deviation over Q-Free dataset in the range [0, 1].

Figure 3.5: Average pixel value distribution in the Q-Free dataset for each chan-
nel using a sample of 1000 random images from the dataset. As seen from the dis-
tributions, the values are clustered around the same mean, hence the low stand-
ard deviation in Table 3.3 and Table 3.4.

3.4 Experimental Setup

3.4.1 Data Augmentation

In addition to comparing the performance of traditional CNNs and vision trans-
formers as backbones for the monocular 3D object detection task, another ex-
periment in this thesis investigated whether the use of the data augmentation
technique Mixup had any effect on the model’s precision. Given its success in 2D
object detection, it was worth investigating whether this approach would improve
3D object detection.
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Two distinct methodologies were employed to implement the technique. The
first experiment involved the application of the standard Mixup strategy, which
consisted of merging an image with a randomly selected image and combining
the bounding boxes from both samples. The second experiment involved utilizing
an IoU threshold to determine whether or not an image and the randomly drawn
sample should be merged, as described in Section 2.7.2. If the IoU between the
bounding boxes in two images exceeded the given threshold, the Mixup was not
performed. As the dataset comprised two distinct perspectives, namely front and
rear, separate calibration files were necessary for each. To ensure accurate calib-
ration during image mixup, the randomly selected sample was restricted to match
the perspective of the original image.

The proposed Mixup method employed an IoU threshold of 0.4. This implies
that the Mixup operation was only executed if the IoU value of the bounding boxes
from each sample was below this threshold. The threshold value was adapted for
this thesis, as it appeared to be a reasonable threshold for the problem at hand.
As can be seen from the distribution of the vehicle’s positions in the dataset in
Section 3.2.2, most vehicles are positioned in the left lane when viewed from the
front, and in the right lane in the rear view. Thus, when drawing a random sample
from the same perspective, there was a high probability of a large overlap between
the samples, resulting in a behavior similar to the original Mixup strategy. How-
ever, if the threshold was set too high, the pool of available samples from the
same perspective would be rather limited due to the homogeneous distribution of
vehicle positions. A high threshold value would also reduce the likelihood of per-
forming the Mixup. It was therefore seen as more convenient to have a threshold
that handled both cases, i.e. both ensured that the images were mixed, but also
being more selective than the original Mixup.

The mixing of two images involved a mixing ratio λ to determine the strength
of each sample in the merged image. The λ value was derived from a beta distribu-
tion β(α,α) where α determines the shape of the beta distribution. As described
in Section 2.7.2, the original mixup used α= 1.0 in the image classification prob-
lem leading to a uniform beta distribution. This means that λ could be any value
on the range [0, 1]. In cases where λ approaches values of 0 or 1, the resulting
mixed image will contain one of the two samples - either the original image or the
randomly selected one. A larger α was thus preferred to increase the likelihood of
values closer to 0.5. As described in Section 2.7.2, recent versions of YOLO have
utilized α of 8.0 or 32.0. These values result in a mixing ratio λ centered around
0.5, resulting in an equal combination of the two samples. For this thesis, an α
value of 8.0 was chosen to achieve a balanced combination of the two images,
including some outliers. Figure 3.6 depicts a visualization of the mixing process
between two images using varying values of α.
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(a) α= 0.2, λ= 0.99. (b) α= 1.0, λ= 0.16.

(c) α= 8.0, λ= 0.62. (d) α= 32.0, λ= 0.51.

Figure 3.6: Examples of different beta distributions β(α,α) for varying alpha α
values resulting in different Mixup ratios lambda λ, along with their correspond-
ing Mixup images. As the value of λ approaches 0.5, the two samples have equal
visibility.

3.4.2 Training

Pre-Training

The Q-Free dataset has been the primary dataset for this thesis. However, all ex-
periments on the Q-Free dataset followed the concept of fine-tuning, i.e. trans-
ferring knowledge from a source task to a target task. A model trained on the
provided SVLD-3D dataset represented the source task, using its best weights. As
this thesis examined the utilization of various backbones for feature extraction, a
distinct model was developed for each of these backbones, namely ResNet-101,
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ResNext-101, ViTDet-B/16, and Swin-S. Utilizing a pre-trained model was con-
sidered advantageous for the vision transformer-based models like ViTDet-B/16
and Swin-S due to their need for a substantial amount of data to generalize on un-
seen data and avoid overfitting. Except for the backbone replacement, the training
configurations outlined in the original paper were mostly preserved. However, the
split ratio for dividing the training dataset into training and validation data was
changed to 1/8 from the initial ratio of 1/9. This resulted in a distribution close
to the typical 80-10-10 split for the training, validation, and test sets.

Training Configurations

Hyperparameters The Q-Free dataset experiments relied on training hyper-
parameters that were primarily based on those provided in the CenterLoc3D paper
[29] and were, therefore, comparable to those used for pre-trained models. The
model had an input size of 512× 512× 3 (W ×H × C), which was found reason-
able for this task as well, serving as a good trade-off between precision and speed
of the network. Further, Adam [64] was utilized as the optimizer with a weight
decay of 5e − 4, which seeks to adjust the attributes such as weights and learn-
ing rate to minimize the model’s loss. A learning rate scheduler was employed
with the Adam optimizer to improve the model’s learning rate during training.
The scheduler reduced the learning rate by a factor of 10 if the validation loss did
not decrease in 3 consecutive epochs. To ensure a fair comparison between CNN-
based and transformer-based approaches in this thesis, the same hyperparameters
were used for both methods. However, there were certain differences that will be
described in more detail.

Name Input
Size

Epochs Batch
Size

Learning
Rate

Early
Stopping

Weight
Decay

Optimizer BBox
Reg.

Data Aug.
Mixup MixupIoU

ResNet-101Basel ine
512× 512× 3 200 8 1e-4 12 5e-4 Adam CiouResNet-101Mixup ✓

ResNet-101MixupIoU ✓

Table 3.5: ResNet-101 training configurations.

Name Input
Size

Epochs Batch
Size

Learning
Rate

Early
Stopping

Weight
Decay

Optimizer BBox
Reg.

Data Aug.
Mixup MixupIoU

ResNext-101Basel ine
512× 512× 3 200 8 1e-4 12 5e-4 Adam CiouResNext-101Mixup ✓

ResNext-101MixupIoU ✓

Table 3.6: ResNext-101 training configurations.

Name Input
Size

Epochs Batch
Size

Learning
Rate

Early
Stopping

Weight
Decay

Optimizer BBox
Reg.

Data Aug.
Mixup MixupIoU

ViTDet-B/16Basel ine
512× 512× 3 300 8 1e-4 20 5e-4 Adam CiouViTDet-B/16Mixup ✓

ViTDet-B/16MixupIoU ✓

Table 3.7: ViTDet-B/16 training configurations.
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Name Input
Size

Epochs Batch
Size

Learning
Rate

Early
Stopping

Weight
Decay

Optimizer BBox
Reg.

Data Aug.
Mixup MixupIoU

Swin-SBasel ine
512× 512× 3 300 8 1e-4 20 5e-4 Adam CiouSwin-SMixup ✓

Swin-SMixupIoU ✓

Table 3.8: Swin-S training configurations.

Tables 3.5 to 3.8 include the training configurations used for the different
models. As previously stated, most of the original paper’s hyperparameters, such
as input size, batch size, weight decay, and optimizer, were adopted. However, the
number of epochs and early stopping patience were altered for this thesis.

The CNN-based methods, ResNet-101 and ResNext-101, were trained for 200
epochs with an early stopping patience of 12. Preliminary experiments revealed
that the models ended the training process too early with the initially proposed
early stopping patience value of 7. It was observed that the models continued to
converge in subsequent epochs as the value was increased. Increasing the patience
to 12 gave the models a chance to train longer before eventually being stopped due
to it starting to overfit. The early stopping patience was further increased for the
transformer-based approaches. This was based on the same evidence as the CNN-
based models. Transformer-based methods exhibited slower convergence than the
the CNN-based methods, necessitating an increase in the early stopping patience.

This also applied to the number of epochs. Due to the slower convergence of
the transformer-based approaches, the number of epochs was set to 300, com-
pared to 200 for the CNN-based approaches. However, it is essential to note that
the number of epochs does not necessarily indicate the actual number of epochs
for which the models were trained. The nature of the CenterLoc3D [29] code
affects training configurations, such as the number of epochs and learning rate,
when using a pre-trained model as a starting point. The epoch parameter refers
to the maximum number of epochs the model should train for; however, instead
of starting at 0, the count continues from the epoch of the pre-trained model.
Training a model for 200 epochs with a pre-trained model with the final check-
point at epoch 90 would require 110 training epochs for the target task. For this
thesis, all pre-trained models stopped training around epoch 100. This means that
CNN-based models with an epoch configuration of 200 would effectively train for
100 epochs, whereas transformer-based methods with 300 epochs would train
for about 200 epochs unless the early stopping strategy terminated the training
process earlier to prevent overfitting.

The same approach was employed when determining the appropriate learning
rate for the target task. The final learning rate used in the target varied due to the
implementation of a learning rate scheduler that dynamically adjusted the learn-
ing rate during the training process. As previously mentioned, it was preferable
to compare the methods on a consistent basis. The learning rate for all models
was thus set to 1e − 4, consistent with the unfreeze learning rate utilized in the
original paper.
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Loss The model employs a multi-task head, resulting in a multi-task loss func-
tion that comprising various components. One of its components is the IoU loss,
which serves as the bounding box regression. As outlined in Section 2.4.2, there
are several bounding box regression strategies. In the early stages of this thesis,
the bounding box regression methods were tested and compared. The findings
demonstrated that the CIoU approach exhibited superior performance compared
to other regression strategies in terms of both standard object detection metrics
like AP and mAP, as well as size and localization precision. Although the experi-
ments were conducted on a smaller dataset, the promising findings led to adopt-
ing the CIoU bounding box regression strategy for all four models. Appendix B
includes the bounding box regression results.

Feature Pyramid

The CenterLoc3D [29]model combines feature maps obtained from the backbone
and generates a fused feature map, as explained in Section 2.7.1. CNN models are
often designed to generate feature maps at different stages, which can be effect-
ively employed in a FPN. The standard vision transformer does, however, generate
a single-resolution feature map, making it unsuitable for the pyramid architecture.
However, the transformer-based architectures employed in this thesis have tried
to mimic the hierarchical structure. In order to ensure a fair comparison between
the various approaches, it was decided that the feature maps to be fused would
be of similar dimensions. Each of the four approaches generated feature maps C3,
C4, and C5 with sizes that were 1/8, 1/16, and 1/32 of the input size, respectively.
For an input size of 512, the corresponding sizes were 64, 32, and 16, respectively.

However, the number of channels varied for the different feature maps. For the
CNN-based approaches, the number of channels was 512, 1024, and 2048 for C3,
C4, and C5, respectively. The ViTDet architecture used a simple pyramid structure
to produce feature maps of varying sizes, such as those mentioned above. How-
ever, the number of channels remained consistent across all three feature maps.
C3, C4, and C5 all consisted of 768 channels. In the case of the vision transformer,
this refers to the embedding dimension, which corresponds to the dimension of
the vector representation of a patch, as described in Section 2.3.2. For the small
Swin Transformer version, namely Swin-S, the last three feature maps consisted
of 192, 384, and 768 channels, respectively, referring to the embedding dimen-
sion similar to the ViTDet-B/16. Table 3.9 provides a summary of the information
mentioned above.
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Backbone C3 Size C4 Size C5 Size
ResNet-101 64× 64× 512 32× 32× 1024 16× 16× 2048
ResNext-101 64× 64× 512 32× 32× 1024 16× 16× 2048
ViTDet-B/16 64× 64× 768 32× 32× 768 16× 16× 768
Swin-S 64× 64× 192 32× 32× 384 16× 16× 768

Table 3.9: Overview of the different feature map sizes (H×W ×C) for the differ-
ent backbones. Due to the non-hierarchical nature of the standard vision trans-
former, ViTDet-B/16 creates feature maps with the same number of channels, but
decreases the size of the feature maps.

Hardware

Additional computational resources beyond those available to the author were
required to conduct the experiments outlined in this thesis. The majority of this
thesis’ development was conducted on two distinct platforms. Preprocessing, de-
velopment, and evaluation of the proposed models, i.e. work that could benefit
from a Graphical Processing Unit (GPU), were completed using a provided Virtual
Machine (VM) with a NVIDIA RTX8000. The training jobs were executed on the
IDUN [65] cluster at NTNU. This cluster is dedicated to providing computational
resources for research-related tasks. All experiments were trained using two GPUs,
specifically NVIDIA A100 or NVIDIA P100.

As mentioned earlier, the VM was used for various purposes, including de-
velopment and testing of model changes before initiating a larger training job
on the IDUN [65] cluster. A graphical user interface was beneficial for this task,
which was achieved using two different approaches: VMWare Horizon View [66]
and the remote Secure Shell (SSH) connection feature in Visual Studio Code
(VSCode). For the IDUN [65] cluster, the remote connection was primarily es-
tablished through the terminal since it mostly included submitting Simple Linux
Utility for Resource Management (SLURM) scripts via the command line.

3.4.3 Evaluation

The models were evaluated using standard metrics for object detection, as out-
lined in Section 2.5. These metrics include mAP, AP, F1-score, Precision, and Re-
call. The IoU thresholds of 0.5 and 0.7 were employed for this thesis when meas-
uring the mAP and AP, following the standards defined in the CenterLoc3D [29]
paper. As this thesis aims to address the localization task, it was also preferable
to evaluate the model’s precision in estimating the dimension and localization of
the proposed bounding box. To determine the precision and error of the localiz-
ation and dimension of the predicted 3D bounding box, the proposed metrics in
the CenterLoc3D [29] paper were used. These are defined in Equation (3.1) and
Equation (3.2), respectively.
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Pdim = (1−
∑

k∈{lv ,wv ,hw}

| kpred − kg t |
kg t

)× 100% Edim =
∑

k∈{lv ,wv ,hw}

| kpred − kg t |

(3.1)

Ploc = (1−
∑

k∈{x ,y}

| kpred
cen − kg t

cen

Drk/2
)× 100% Eloc =

∑

k∈{x ,y}

| kpred
cen − kg t

cen | (3.2)

Drk is the maximum distance that the roadside camera can perceive along and
perpendicular to the road direction. The 3D vehicle centroids are obtained using
Equation (2.20).



Chapter 4

Experiments and Results

The following sections present the findings for the Q-Free dataset. The results
that were obtained from the SVLD-3D dataset, which was utilized as a pre-training
dataset, are presented in Appendix A. The results are presented based on the used
data augmentation strategy and include a quantitative and qualitative comparison
of the model’s performance utilizing different backbones. The models will hence-
forth be referred to by the backbone they employ. For instance, the model using
the ResNet-101 backbone will be referred to as the "ResNet-101 model".

46
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4.1 Experiment 1: No Data Augmentation

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%) FPS

ResNet-101Basel ine @0.5 61.4
Car 91.7 0.94 92.9 95.8

23Truck 50.0 0.57 42.4 87.2
Bus 42.6 0.59 58.3 60.5

ResNext-101Basel ine @0.5 49.7
Car 93.4 0.95 94.3 96.2

17Truck 46.8 0.61 56.3 67.4
Bus 8.9 0.16 27.3 11.1

ViTDet-B/16Basel ine @0.5 27.1
Car 72.3 0.83 95.5 73.7

18Truck 9.2 0.16 72.7 9.3
Bus 0 0 0 0

Swin-SBasel ine @0.5 22.3
Car 48.7 0.66 94.7 50.6

16Truck 5.3 0.12 60.0 7.0
Bus 12.8 0.26 41.7 18.5

ResNet-101Basel ine @0.7 52.5
Car 79.6 0.87 85.7 88.3

23Truck 38.2 0.49 36.2 74.4
Bus 39.7 0.57 56.0 58.0

ResNext-101Basel ine @0.7 38.8
Car 85.5 0.90 88.9 90.7

17Truck 22.1 0.42 38.8 46.5
Bus 8.9 0.16 27.3 11.1

ViTDet-B/16Basel ine @0.7 17.6
Car 42.8 0.64 73.8 56.9

18Truck 4.9 0.12 54.6 7.0
Bus 0 0 0 0

Swin-SBasel ine @0.7 15.2
Car 35.0 0.54 77.7 41.5

16Truck 3.2 0.08 40.0 4.7
Bus 7.6 0.21 33.3 14.8

Table 4.1: AP, mAP, F1-score, precision, and recall for the models using no data
augmentation technique.

Based on the data presented in Table 4.1, it is evident that the ResNet-101 model
demonstrated the highest mAP for both IoU thresholds of 0.5 and 0.7, achiev-
ing scores of 61.4% and 52.5%, respectively. For the car class, however, the
ResNext-101 model achieved the highest AP for both thresholds, namely 93.4%
and 85.5%. Due to the relatively poor performance of the bus class for ResNext-
101, it achieved a mAP 11.7% and 13.7% lower than ResNet-101 for the IoU
thresholds 0.5 and 0.7, respectively. Both CNN-based backbones demonstrated
high precision and recall for the car class, indicating that the models accurately
identified most of the relevant instances and that their predictions were reliable,
i.e. the models predicted correctly. This can be seen in connection with the con-
fusion matrix in Table 4.2.

As can be seen for the transformer-based models, i.e. ViTDet-B/16 and Swin-S,
both had problems with the truck and bus class, resulting in an overall lower mAP
than the CNN-based models. The ViTDet-B/16 model in particular, had issues with
the bus class, showing no results for both IoU thresholds. Despite showing no de-
tections for one of the three classes, ViTDet-B/16 achieved a higher overall mAP
than Swin-S for both IoU thresholds. In contrast to the CNN-based backbones, the
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transformer-based backbones had an overall higher precision than recall, indicat-
ing that the models predicted correctly when first predicting something but did
not identify all relevant cases. As shown in Table 4.2, the transformer-based mod-
els had a much lower number of TPs than their CNN counterparts, indicating that
they had many FNs, resulting in low recall. However, they did have relatively few
FPs, hence the higher precision. The ResNet-101 model demonstrated superior
performance in this experiment, achieving the highest overall scores and highest
FPS rate. The ResNet-101 model exhibited a FPS of 23, while the other methods
had similar a FPS ranging from 16 to 18.

Backbone IoU Threshold Class TP FP

ResNet-101Basel ine @0.5
Car 473 36
Truck 75 102
Bus 49 35

ResNext-101Basel ine @0.5
Car 475 29
Truck 58 45
Bus 9 24

ViTDet-B/16Basel ine @0.5
Car 364 17
Truck 8 3
Bus 0 1

Swin-SBasel ine @0.5
Car 250 14
Truck 6 4
Bus 21 15

ResNet-101Basel ine @0.7
Car 436 73
Truck 64 113
Bus 47 37

ResNext-101Basel ine @0.7
Car 448 56
Truck 40 63
Bus 9 24

ViTDet-B/16Basel ine @0.7
Car 281 100
Truck 6 5
Bus 0 1

Swin-SBasel ine @0.7
Car 205 59
Truck 4 6
Bus 24 12

Table 4.2: Confusion matrix for the different models using no data augmentation
technique.

While the CNN-based models demonstrated the highest mAP scores, the
transformer-based models exhibited higher precision in predicting the sizes of the
vehicles. Table 4.3 illustrates that the ViTDet-B/16 and Swin-S achieved a size
precision of 85.4% and 84.4%, respectively, compared to 81.7% and 83.3% for
ResNet-101 and ResNext-101. For instance, ViTDet-B/16 had a length estimation
error of 27cm, 24cm, and 34.5cm less than the errors observed for ResNet-101
and ResNext-101, respectively. The CNN-based approach ResNet-101, however,
outperformed the other models in terms of localization precision which refers to
the accuracy in terms of placement of the centroid of the proposed 3D bounding
box. This was particularly evident for the XC error, i.e. the horizontal error of the
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centroid, with an error of 7cm compared to around 20cm for the other approaches.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error (m)

Loc.
Error (m)

L
Error (m)

W
Error (m)

H
Error (m)

XC
Error (m)

YC
Error (m)

ZC
Error (m)

ResNet-101Basel ine 81.7 92.4 0.839 0.542 0.615 0.0596 0.165 0.0721 0.387 0.0823
ResNext-101Basel ine 83.3 90.3 0.699 0.601 0.510 0.0510 0.138 0.225 0.307 0.0691
ViTDet-B/16Basel ine 85.4 90.8 0.421 0.543 0.270 0.0509 0.101 0.238 0.254 0.0503
Swin-SBasel ine 84.4 89.8 0.553 0.634 0.361 0.0558 0.136 0.212 0.355 0.0680

Table 4.3: Size and localization precision and error for the baseline models using
no data augmentation technique.

Figures 4.1 and 4.2 show prediction and ground truth visualizations for the
four models, for the front and rear views, respectively. The 3D bounding box
for ResNet-101 and ResNext-101 appears more accurate when compared visually.
These also have higher mAP values than the transformer-based models. ViTDet-
B/16 and Swin-S both exhibit missing detection, less precise 3D bounding box
localization, and overall low mAP. Swin-S also incorrectly classifies the car as a
bus, as illustrated in Figures 4.1h and 4.1l.
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(a) ResNet-101Basel ine (b) ResNext-101Basel ine

(c) ViTDet-B/16Basel ine (d) Swin-SBasel ine

(e) ResNet-101Basel ine (f) ResNext-101Basel ine

(g) ViTDet-B/16Basel ine (h) Swin-SBasel ine

(i) ResNet-101Basel ine (j) ResNext-101Basel ine

(k) ViTDet-B/16Basel ine (l) Swin-SBasel ine

Figure 4.1: Predictions and ground truth (purple bounding box) for the four
models utilizing no data augmentation on the front view.
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(a) ResNet-101Basel ine (b) ResNext-101Basel ine

(c) ViTDet-B/16Basel ine (d) Swin-SBasel ine

(e) ResNet-101Basel ine (f) ResNext-101Basel ine

(g) ViTDet-B/16Basel ine (h) Swin-SBasel ine

Figure 4.2: Predictions and ground truth (purple bounding box) for the four
models utilizing no data augmentation on the rear view.
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4.2 Experiment 2: Mixup

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%) FPS

ResNet-101Mixup @0.5 63.4
Car 87.8 0.93 90.2 95.0

24Truck 56.1 0.59 45.9 83.7
Bus 46.3 0.64 73.0 56.8

ResNext-101Mixup @0.5 46.0
Car 91.3 0.92 89.4 95.3

16Truck 48.0 0.57 52.9 62.8
Bus 0.9 0.08 17.4 4.9

ViTDet-B/16Mixup @0.5 11.8
Car 23.6 0.41 81.4 27.5

18Truck 5.2 0.16 31.0 10.5
Bus 6.5 0.19 24.5 16.1

Swin-SMixup @0.5 31.6
Car 48.7 0.65 91.9 57.0

17Truck 38.5 0.58 59.8 57.0
Bus 7.7 0.19 45.5 12.4

ResNet-101Mixup @0.7 50.3
Car 80.5 0.87 85.0 89.5

24Truck 36.0 0.46 35.7 65.1
Bus 34.3 0.54 61.9 48.2

ResNext-101Mixup @0.7 35.7
Car 76.3 0.83 80.1 85.4

16Truck 30.6 0.40 37.3 44.2
Bus 0.2 0.04 8.7 2.5

ViTDet-B/16Mixup @0.7 6.6
Car 11.8 0.29 57.5 19.4

18Truck 3.4 0.10 20.7 7.0
Bus 4.5 0.16 20.8 13.6

Swin-SMixup @0.7 16.8
Car 31.8 0.50 69.6 38.5

17Truck 11.7 0.32 32.9 31.4
Bus 7.1 0.17 40.9 11.1

Table 4.4: AP, mAP, F1-score, precision, and recall for the models using the Mixup
data augmentation technique using the different backbones

Table 4.4 demonstrates that the CNN-based methods exhibited superior perform-
ance in AP for the different classes compared to the transformer-based methods,
resulting in higher mAP values for both 0.5 and 0.7 thresholds. However, there
were also considerable differences between the CNN-based approaches. Although
ResNext-101 obtained the highest score for the car class, ResNet-101 demon-
strated much higher scores for the remaining classes, namely truck, and bus. This
was particularly evident for the bus class, where ResNext-101 nearly failed to
detect any objects. As can be noticed from Table 4.5, ResNext-101 succeeded in
detecting only 4 and 2 instances of the bus class out of the total 86 instances
in the test dataset, for the thresholds of 0.5 and 0.7, respectively. Compared to
the baseline models in Table 4.1, it can be seen that the ResNet-101 achieved
a higher mAP, while ResNext-101 demonstrated a lower mAP, using the Mixup
data augmentation technique. The increase for the ResNet-101 model was due to
increased AP for the truck and bus class, whereas the decrease for ResNext-101
was mainly due to a significant drop in AP for the bus class. For the 0.5 threshold,
ResNext-101Mixup showed a decrease of 8% for this class from 8.9% to only 0.9%.

As previously stated, the transformer-based approaches exhibited worse per-
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formance overall than the CNN-based ones for all classes. This was particu-
larly evident for the ViTDet-B/16 model, which only obtained a mAP of 11.8%
and 6.6% for the two IoU thresholds. This represented a 15.3% and 11.0%
decrease for the same threshold compared to the baseline ResNet-101 model,
ResNet-101Basel ine, from the first experiment, as seen in Table 4.1. This was mainly
due to the poor results for the car class, where ViTDet-B/16 only demonstrated
an AP of 23.6% for the 0.5 IoU threshold and an AP of 11.8% for the 0.7 IoU
threshold. Compared to the ViTDet-B/16 model, the Swin-S results did seem
promising. A common observation among the transformer-based methodologies
was their poor performance in terms of recall, which suggests that the models
had problems identifying the relevant instances. This is evident from the confu-
sion matrix presented in Table 4.5. Using the car class as an example, Swin-S with
an IoU threshold of 0.5 had the highest number of TPs among the transformer-
based approaches, with a count of 251. However, this number only represents
around 50% of the total number of cars in the test dataset.

Table 4.4 demonstrates, similar to the results presented in Section 4.1, that
ResNet-101 also outperformed the other models in terms of speed, achieving a
FPS of 24, whereas the remaining models ranged between 16 and 18.

Backbone IoU Threshold Class TP FP

ResNet-101Mixup @0.5
Car 469 51
Truck 72 85
Bus 46 17

ResNext-101Mixup @0.5
Car 471 56
Truck 54 48
Bus 4 19

ViTDet-B/16Mixup @0.5
Car 136 31
Truck 9 20
Bus 13 40

Swin-SMixup @0.5
Car 251 22
Truck 49 33
Bus 10 12

ResNet-101Mixup @0.7
Car 442 78
Truck 56 101
Bus 39 24

ResNext-101Mixup @0.7
Car 422 105
Truck 38 64
Bus 2 21

ViTDet-B/16Mixup @0.7
Car 96 71
Truck 6 23
Bus 11 42

Swin-SMixup @0.7
Car 190 83
Truck 27 55
Bus 9 13

Table 4.5: Confusion matrix for the different models using the Mixup data aug-
mentation technique.

The poor results for the ViTDet-B/16 were also evident in its performance
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in terms of size and localization precision, achieving the lowest scores of 82.7%
and 86.2%, respectively. The Swin-S model achieved higher precision for both
metrics than ViTDet-B/16 and demonstrated greater size precision than ResNext-
101. However, the size and localization precision of the Swin-S model were 0.5%
and 0.8% higher for the Swin-SBasel ine from the first experiment, respectively.
ResNext-101 was, however, outperformed in terms of size precision by ResNet-
101, which showed an increase of 1.3%. This was also much higher than for
ResNet-101Basel ine, which had a size precision of 81.7%, as presented in Table 4.3.
The localization performance of ResNet-101 was, on the other hand, slightly worse
than that of ResNext-101.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error (m)

Loc.
Error (m)

L
Error (m)

W
Error (m)

H
Error (m)

XC
Error (m)

YC
Error (m)

ZC
Error (m)

ResNet-101Mixup 84.3 89.2 0.716 0.668 0.533 0.0521 0.130 0.230 0.372 0.0651
ResNext-101Mixup 83.0 89.9 0.684 0.619 0.495 0.0556 0.134 0.237 0.315 0.0669
ViTDet-B/16Mixup 82.7 86.2 0.730 0.873 0.529 0.0478 0.152 0.219 0.578 0.0762
Swin-SMixup 83.9 89.0 0.658 0.681 0.464 0.0495 0.145 0.233 0.375 0.0723

Table 4.6: Size and localization precision and error for the models using the
Mixup data augmentation technique.

Figures 4.3 and 4.4 show prediction and ground truth visualizations for the
four models, for the front and rear views, respectively. The ViTDet-B/16 findings
are also evident in these figures, with three of five samples missing detections.
Swin-S demonstrated more predictions compared to ViTDet-B/16 but did overall
achieve low APs and poor localization of the 3D bounding box. It also incorrectly
classified the car from Figure 4.4d as a bus. ResNet-101 appears to have the best
trade-off between AP and size and localization precision among the CNN-based
approaches, despite ResNext-101 demonstrating the highest localization precision
in Table 4.6.
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(a) ResNet-101Mixup (b) ResNext-101Mixup

(c) ViTDet-B/16Mixup (d) Swin-SMixup

(e) ResNet-101Mixup (f) ResNext-101Mixup

(g) ViTDet-B/16Mixup (h) Swin-SMixup

(i) ResNet-101Mixup (j) ResNext-101Mixup

(k) ViTDet-B/16Mixup (l) Swin-SMixup

Figure 4.3: Predictions and ground truth (purple bounding box) for the four
models utilizing the standard Mixup approach on the front view.
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(a) ResNet-101Mixup (b) ResNext-101Mixup

(c) ViTDet-B/16Mixup (d) Swin-SMixup

(e) ResNet-101Mixup (f) ResNext-101Mixup

(g) ViTDet-B/16Mixup (h) Swin-SMixup

Figure 4.4: Predictions and ground truth (purple bounding box) for the four
models utilizing the standard Mixup approach on the rear view.
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4.3 Experiment 3: Mixup with IoU

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%) FPS

ResNet-101MixupIoU @0.5 55.0
Car 90.9 0.95 94.4 95.6

25Truck 44.8 0.54 44.7 68.6
Bus 29.3 0.49 52.9 45.7

ResNext-101MixupIoU @0.5 43.9
Car 94.3 0.96 95.0 96.8

18Truck 21.8 0.38 45.2 32.6
Bus 15.5 0.27 66.7 17.3

ViTDet-B/16MixupIoU @0.5 42.9
Car 72.4 0.83 93.2 39.5

18Truck 38.1 0.54 87.2 39.5
Bus 18.2 0.31 88.2 18.5

Swin-SMixupIoU @0.5 24.5
Car 54.0 0.70 95.8 55.3

16Truck 2.6 0.07 75.0 3.5
Bus 16.8 0.32 58.1 22.2

ResNet-101MixupIoU @0.7 46.6
Car 81.7 0.89 88.4 89.5

25Truck 29.7 0.44 36.4 55.8
Bus 28.5 0.48 51.4 44.4

ResNext-101MixupIoU @0.7 39.1
Car 82.5 0.88 87.5 89.1

18Truck 19.4 0.34 40.3 29.1
Bus 15.5 0.27 66.7 17.3

ViTDet-B/16MixupIoU @0.7 33.6
Car 53.4 0.67 75.4 60.1

18Truck 29.3 0.46 74.4 33.7
Bus 18.2 0.31 88.2 18.5

Swin-SMixupIoU @0.7 16.2
Car 38.3 0.55 75.1 43.3

16Truck 1.6 0.04 50.0 2.3
Bus 8.9 0.23 41.9 16.1

Table 4.7: F1-score, precision, recall, and corresponding AP and mAP for the
models using the Mixup with IoU data augmentation technique.

According to the findings in Table 4.7, the ResNet-101 model demonstrated the
most promising results in terms of mAP for both thresholds when implement-
ing the Mixup strategy with the IoU threshold. In particular, the model achieved
a mAP of 55.0% and 46.6% for the two thresholds, respectively. These results
were significantly better than for the ResNext-101 model, which had a mAP 11.1%
and 7.5% lower than ResNet-101 for the 0.5 and 0.7 IoU threshold, respectively.
ResNet-101 also showed the best results in terms of speed, with an observed FPS
of 25, compared to 16-18 for its competitors. These results correspond to those
presented in both Sections 4.1 and 4.2. However, the mAPs obtained for ResNet-
101 and ResNext-101 stand out negatively compared to the prior experiments. For
instance, the ResNet-101 mAP was 9.4% lower than for ResNet-101Mixup for the
0.5 IoU threshold. The ResNext-101 also obtained a lower mAP for the 0.5 IoU
threshold compared to the two prior experiments; however, the mAP for the 0.7
IoU threshold was 0.3% and 3.4% higher than the ones presented in Sections 4.1
and 4.2, respectively.

In this experiment, the Swin-S performed relatively poorly compared to the
other models, primarily due to the poor performance of the truck class. As presen-



Chapter 4: Experiments and Results 58

ted in Table 4.8, the Swin-S model had only 3 and 2 TPs for the truck class for the
two thresholds, respectively. This resulted in over 80 non-identified instances for
this particular class.

ViTDet-B/16, on the other hand, achieved comparable results to those of the
CNN-based ResNext101 in terms of overall mAP. At the 0.5 threshold, the ob-
served difference between them was only 1.0%. However, the difference increased
notably for the 0.7 threshold due to a significant drop in the car AP for ViTDet-
B/16. For the truck and bus classes, it can be observed that the ViTDet-B/16 ob-
tained higher AP compared to the ResNext-101 model. Additionally, for the truck
class in particular, the obtained AP was on par with the ResNet-101 results for
the 0.7 IoU threshold. The ViTDet-B/16 outcomes were the best among all exper-
iments, outperforming both ViTDet-B/16Basel ine and ViTDet-B/16Mixup.

Backbone IoU Threshold Class TP FP

ResNet-101MixupIoU @0.5
Car 472 28
Truck 59 73
Bus 37 33

ResNext-101MixupIoU @0.5
Car 478 25
Truck 28 34
Bus 14 7

ViTDet-B/16MixupIoU @0.5
Car 367 27
Truck 34 5
Bus 15 2

Swin-SMixupIoU @0.5
Car 273 12
Truck 3 1
Bus 18 13

ResNet-101MixupIoU @0.7
Car 442 58
Truck 48 84
Bus 36 34

ResNext-101MixupIoU @0.7
Car 440 63
Truck 25 37
Bus 14 7

ViTDet-B/16MixupIoU @0.7
Car 297 97
Truck 29 10
Bus 15 2

Swin-SMixupIoU @0.7
Car 214 71
Truck 2 2
Bus 13 18

Table 4.8: Confusion matrix for the different models using the Mixup with IoU
data augmentation technique.

The positive results for the ViTDet-B/16 model were also evident in terms of
size and localization precision, as presented in Table 4.9. This particular model
demonstrated the highest size precision when compared to its competitors, sur-
passing ResNet-101, ResNext-101, and Swin-S by 1.8%, 0.8%, and 0.2%, respect-
ively. Regarding localization precision, ResNext-101 exhibited the highest preci-
sion of 91.9%, beating its CNN- and transformer-based competitors. Overall, the
localization precision results for all models in this experiment were higher than
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those documented in Table 4.6 in Section 4.2.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error (m)

Loc.
Error (m)

L
Error (m)

W
Error (m)

H
Error (m)

XC
Error (m)

YC
Error (m)

ZC
Error (m)

ResNet-101MixupIoU 83.3 89.5 0.724 0.656 0.525 0.0548 0.145 0.224 0.360 0.0722
ResNext-101MixupIoU 84.4 91.9 0.562 0.492 0.390 0.0520 0.120 0.204 0.228 0.0598
ViTDet-B/16MixupIoU 85.1 90.1 0.497 0.588 0.335 0.0485 0.114 0.245 0.286 0.0570
Swin-SMixupIoU 84.9 89.2 0.541 0.648 0.375 0.0507 0.115 0.247 0.343 0.0574

Table 4.9: Size and localization precision and error for the models using the
Mixup with IoU data augmentation technique.

Figures 4.5 and 4.6 show prediction and ground truth visualizations for the
four models, for the front and rear views, respectively. ResNet-101 produced
the most accurate predictions overall for the front view, whereas ResNext-101
was more promising for the rear view, displaying a higher AP and more precise
bounding box localization. Low APs and missing detections were apparent for
the transformer-based ViTDet-B/16 and Swin-S models. However, ViTDet-B/16
produced one more prediction than Swin-S., which can be seen in Figures 4.5g
and 4.5h.
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(a) ResNet-101MixupIoU (b) ResNext-101MixupIoU

(c) ViTDet-B/16MixupIoU (d) Swin-SMixupIoU

(e) ResNet-101MixupIoU (f) ResNext-101MixupIoU

(g) ViTDet-B/16MixupIoU (h) Swin-SMixupIoU

(i) ResNet-101MixupIoU (j) ResNext-101MixupIoU

(k) ViTDet-B/16MixupIoU (l) Swin-SMixupIoU

Figure 4.5: Predictions and ground truth (purple bounding box) for the four
models utilizing the Mixup with IoU approach on the front view.
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(a) ResNet-101MixupIoU (b) ResNext-101MixupIoU

(c) ViTDet-B/16MixupIoU (d) Swin-SMixupIoU

(e) ResNet-101MixupIoU (f) ResNext-101MixupIoU

(g) ViTDet-B/16MixupIoU (h) Swin-SMixupIoU

Figure 4.6: Predictions and ground truth (purple bounding box) for the four
models utilizing the Mixup with IoU approach on the rear view.

4.4 Summary

This section attempts to summarize the findings from Tables 4.1, 4.4 and 4.7 into
one table, Table 4.10, for easier comparisons between the results from the three
experiments. Only the mAP for IoU thresholds of 0.5 and 0.7 is presented for better
readability. Additionally, the figures included in Sections 4.1 to 4.3 are combined
into four distinct figures, Figures 4.7a to 4.7d, based on the utilized backbone.

The experiments’ findings are evident from Table 4.10 and Figure 4.7. The
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transformer-based approaches, namely ViTDet-B/16 and Swin-S, achieved the
best results using Mixup with IoU and Mixup, respectively. The visualizations in
Figures 4.7c and 4.7d demonstrate that in most cases, the models got more detec-
tions using either Mixup or Mixup with IoU than their baseline models. However,
these detections are imprecise in terms of both localization, size, and confidence.

For the CNN-based approaches, namely ResNet-101 and ResNext-101, some of
the best results were obtained using the baseline model, using no data augment-
ation technique. This is also visually evident. In most cases shown in Figures 4.7a
and 4.7b, the baseline models exhibit the most accurate 3D bounding box, while
the models utilizing Mixup techniques tend to be less precise.

Backbone mAP Baseline Mixup Mixup with IoU

ResNet-101
@0.5 61.4 63.4 55.0
@0.7 52.5 50.3 46.6

ResNext-101
@0.5 49.7 46.0 43.9
@0.7 38.8 35.7 39.1

ViTDet-B/16
@0.5 27.1 11.8 42.9
@0.7 17.6 6.6 33.6

Swin-S
@0.5 22.3 31.6 24.5
@0.7 15.2 16.8 16.2

Table 4.10: Summary of the obtained mAP scores in the different experiments,
i.e. baseline, Mixup, and Mixup with IoU for the different backbones. The ex-
periments involving Mixup and Mixup with IoU yielded the highest mAP for the
transformer-based model for both thresholds. ResNet-101 achieved the highest
mAP@0.5 with the Mixup strategy and the highest mAP@0.7 with the baseline
model. The ResNext-101 showed the highest mAP@0.5 with the baseline model
and the highest mAP@0.7 on the Mixup with IoU experiment.
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(a) ResNet-101.

(b) ResNext-101.
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(c) ViTDet-B/16.

(d) Swin-S.

Figure 4.7: A summarized visualization of the four models used in the various
experiments. First column: Baseline, second column: Mixup, and third column:
Mixup with IoU.
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Discussion

This chapter focuses on analyzing and interpreting the results obtained in this
study. The discussion will be revolved around the research questions posed in this
thesis.

Regarding RQ1 (How accurate is volumetric identification of vehicles using mon-
ocular images?), the findings presented in Sections 4.1 to 4.3 demonstrated
that ResNet-101 models achieved the best results in terms of mAP across all
three experiments and both IoU thresholds. The best ResNet-101 models were,
however, achieved in different experiments, namely with ResNet-101Mixup and
ResNet-101Basel ine, where the former achieved an mAP of 63.4% and the latter
an mAP of 52.5% for the 0.5 and 0.7 IoU thresholds, respectively. When compar-
ing the CNN-based approaches, the results were somewhat counterintuitive. The
mAP for the ResNet-101 models was around 11.1-17.4% and 7.5%-14.6% higher
than the ResNext-101 models for the IoU thresholds of 0.5 and 0.7, respectively.
ResNext models have demonstrated improved performance in the object detection
tasks with the incorporation of the cardinality dimension, resulting in higher val-
ues of AP. It is, however, important to note that the majority of favorable ResNext
outcomes have been observed solving the 2D object detection tasks, whereas this
thesis has focused on 3D object detection.

The car class achieved the highest AP among all the models examined in this
thesis. A potential factor contributing to this outcome may be attributed to the im-
balanced distribution of samples for each class within the training dataset, with
the truck and bus classes having approximately 1000 fewer samples than the car
class. However, the primary contributor to why the model encountered a signific-
ant challenge with the truck and bus class may have been the nature of the training
images. The perspective from which the images were captured did not fully cap-
ture the larger vehicles, such as trucks and buses. The vehicle’s full height and
length were not visible in most images containing these classes. It can thus have
been a factor for the inaccurate results for these classes. For these classes, it would
be preferable to use images where the entire vehicle is visible to see if the accuracy
would increase.

65
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Furthermore, the rear images of trucks may have caused a more significant
challenge for all models. The number of annotations and the diversity in the ap-
pearance of trucks from the rear view may have been major contributors. While
cars and most buses usually contain similar features from the rear view, trucks
have significant variations depending on the load they are transporting. From the
rear view, trucks encompass a range of vehicles, including those with standard
cargo beds, agitator trucks, empty truck trailers, and those carrying loads such as
wooden planks, logs, or other vehicles. A possible solution to enhance the model’s
robustness for such scenarios could be to add more samples from this view.

It was also evident in all experiments that the models had problems estimat-
ing the vehicle’s length. The width and height errors were approximately 5-6cm
and 10-15cm, respectively. However, in some cases, the length error was as high
as 60cm. This could also be highly attributed to the perspective from which the
images were taken. The camera pan angle was relatively close to 0, making the fea-
tures along the vehicle length direction somewhat incomplete and consequently
harder to estimate.

In addition to the already-discussed metrics, and as mentioned in Section 3.1,
the speed of the models was also considered when choosing the different back-
bones for this thesis in addition to accuracy. All three experiments demonstrated
that ResNet-101 overall had the best performance, with an FPS between 23-25.
This was, however, not very surprising as it was one of the smallest models in this
thesis. Based on the findings mentioned above, ResNet-101 seemed to be the most
complete model as it served the best precision and speed.

With regards to RQ2 (How do transformer-based architectures compare to CNNs
for feature extraction for monocular 3D object detection?), the results of all experi-
ments indicate that ViTDet-B/16 and Swin-S models consistently underperformed
compared to the CNN-based approaches, exhibiting a relatively low mAP. This was
evident when considering the number of TPs for the transformer-based methods
across all experiments. The Swin-S models consistently had around 200 fewer
detections than ResNet-101, its CNN counterpart. Like the Swin-S model, ViTDet-
B/16 exhibited a notable difference in performance compared to its ResNext-101
counterpart, where ResNext-101 outperformed ViTDet-B/16 in most experiments.
An exception was, however, found in the third experiment for the truck and bus
classes, wherein ViTDet-B/16 outperformed its CNN counterpart. For the car class,
however, the results were significantly lower for ViTDet-B/16.

When comparing the transformer-based approaches, it can be seen that the
results favored the ViTDet-B/16 model. The ViTDet-B/16 models often demon-
strated a greater number of TPs, and thus fewer FNs and FPs compared to
the Swin-S models, resulting in higher mAPs. An exception was, however,
ViTDet-B/16Mixup which had a relatively bad performance. Apart from this ex-
periment, the results indicate that the simple pyramid is sufficient compared to
the hierarchical approach Swin-S utilizes. The ViTDet-B/16 model was, however,
larger than Swin-S, which could be the reason behind the findings in this thesis.

However, the transformer-based approaches seemed to achieve more prom-
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ising results regarding size and localization precision. In terms of size preci-
sion, the ViTDet-B/16 achieved the highest results in the first and third experi-
ments, ViTDet-B/16Basel ine and ViTDet-B/16MixupIoU , with a precision of 85.4%
and 85.1%, respectively. Furthermore, the Swin-S model obtained the second-
highest size precision score in all three experiments. Although these results seem
promising, it should be taken into consideration that these models produced fewer
predictions overall than the CNN-based approaches. As the size and precision
measurements were solely performed on images with model detections, a consid-
erable number of samples were excluded from the evaluation for the transformer-
based approaches. Truck and bus detection were especially missing for these ap-
proaches. As discussed above, regarding RQ1, these classes presented an addi-
tional challenge as the entire vehicle was not captured within the image, making
the estimation of the vehicle’s dimension much harder. Thus, the promising res-
ults for the transformer-based approaches were most likely due to the fact that
the measurements were mainly based on the results for the car class.

Regarding both RQ1 and RQ2, a limitation of this thesis was the relatively
limited amount of time dedicated to tuning the model’s training hyperparamet-
ers. As discussed in Section 3.4.2, this was to ensure a fair comparison between
the different models. However, the transformer-based approaches may have re-
quired other hyperparameters, given their distinct architecture compared to tra-
ditional CNNs. The hyperparameters utilized in this thesis were primarily derived
from the original CenterLoc3D [29] paper, potentially resulting in a bias towards
the CNN-based approaches such as ResNet-101 and ResNext-101. This may have
contributed to the overall poorer performance of the transformer-based models
compared to the CNN-based ones. As described earlier, transformer-based models
have outperformed traditional CNNs in image classification and dense prediction
tasks like object detection. Thus, the findings in this thesis were rather unexpected
as they contradicted this trend. However, it should be noted that the domain of
this thesis differs from that of the related work, as this thesis focuses on 3D object
detection rather than 2D object detection.

To address RQ3 (Can training strategies from 2D object detectors be utilized to
enhance the precision of monocular 3D object detectors?), the primary focus of this
thesis was implementing the Mixup data augmentation technique. Related work
on the topic found that utilizing this technique increased the models’ generaliz-
ation ability and made them more robust. An enhanced version of the technique
was also proposed, using a threshold to determine whether or not the mixing of
two images should be performed. This approach demonstrated superior perform-
ance in the 3D object detection task compared to the original strategy. According to
the findings presented in this thesis, the observed effect of the Mixup approaches
was less prominent.

Looking at the standard Mixup technique, it can be observed that the
ResNet-101Mixup obtained the highest mAP among all experiments using this
strategy. The Swin-SMixup also demonstrated some improved results in terms of
mAP for both thresholds compared to its baseline counterpart, Swin-SBasel ine,



Chapter 5: Discussion 68

which did not employ any data augmentation. However, the results obtained
using the standard Mixup strategy indicated that the models did not benefit
from it, as they exhibited lower performance. This was especially evident for the
ViTDet-B/16Mixup, which demonstrated a significant reduction in mAP for both
IoU thresholds when utilizing the standard Mixup technique. Although the AP for
the bus class showed an increase from 0% to 6.5% and 3.4% for IoU 0.5 and
0.7, respectively, the AP for the car class demonstrated a substantial drop. The
former could be attributed to the nature of the standard Mixup technique, where
the number of samples of the bus class could have increased when selecting a
random sample for mixing. The latter may be closely associated with the former.
More bus samples during training may have increased the likelihood of noise gen-
eration for the car class. Due to the dataset’s homogeneous distribution of vehicle
placement, the randomly selected image would likely contain a vehicle in a sim-
ilar position to the original image. Consequently, if the drawn image contained a
bus, it would most likely cover the car completely, making the car less prominent
than when not using the Mixup technique.

In terms of the enhanced Mixup strategy, utilizing an IoU threshold to de-
termine whether or not to perform the Mixup, appeared to have a positive effect
on the transformer-based approaches. Specifically, ViTDet-B/16MixupIoU showed
significant improvement compared to its baseline counterpart. The CNN-based ap-
proaches exhibited the opposite results compared to their baseline counterpart,
except for ResNext-101MixupIoU , which demonstrated a slight improvement in
mAP for IoU threshold 0.7 compared to ResNext-101Basel ine at the same threshold.
Compared to the standard Mixup strategy employed in the second experiment, it
is evident that the Mixup strategy utilizing the IoU threshold generally resulted in
lower mAP. One exception observed was the ViTDet-B/16MixupIoU model, which
was primarily attributed to its poor precision using the standard Mixup technique.
The results presented in this thesis related to the Mixup strategy differ from those
of the prior study. The prior study suggested that including the IoU threshold in
Mixup led to superior outcomes compared to the standard Mixup method. Al-
though the IoU threshold of 0.4 was argued to be a good match for this thesis, it
may have appeared too liberal. It was observed that despite being from the same
position in the image, cars and larger vehicles, such as trucks and buses, often had
an overlap below the set IoU threshold, resulting in the Mixup being performed.
This could have generated more noise than the initial wished effect of serving a
more diverse dataset.

Another observation was that the transformer-based methods benefited more
from the Mixup data augmentation strategy than CNN-based strategies. Vision
transformer networks have a history of being hard to optimize and suffering from
overfitting, so it may appear that the Mixup strategies successfully addressed these
challenges. However, it would be reasonable to assume that the CNN-based ap-
proaches would also benefit from these approaches.
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Conclusion and Further Work

This chapter presents the conclusions drawn from this thesis and identifies areas
that require further investigation in future research.

6.1 Conclusion

The focus of this thesis has been to evaluate the performance of monocular 3D
object detection, using both conventional object detection metrics and metrics
specific for 3D object detection, such as size and localization precision and error.
This thesis explored methods of optimizing the precision of the monocular 3D
object detection model, which initially employed a CNN backbone.

The first strategy involved the integration of two vision transformer methodo-
logies, namely ViTDet and Swin Transformer, as a backbone for the monocular 3D
object detection task. They had shown remarkable results in image classification
and dense prediction tasks such as object detection. Due to limited research on
the topic, it was intriguing to investigate the potential benefits of this approach in
this field and how they would compare to CNN backbones.

Another strategy was to investigate if the 3D object detection tasks could be-
nefit from techniques that have shown great success in the 2D object detection
task. The main focus of this thesis was on the Mixup data augmentation tech-
nique, which has been proven to be effective in improving model robustness and
generalization Two different Mixup approaches were utilized. The first approach
resembled the original Mixup, whereas the second approach incorporated an IoU
threshold, which had shown enhanced performance compared to the standard
Mixup technique in previous studies.

The results presented in this thesis indicated that transformer-based ap-
proaches did not provide any improvements for the 3D monocular object detection
task. In all experiments conducted, it was observed that the transformer-based
approaches were outperformed by either the CNN-based ResNet-101 or ResNext-
101 models. Regarding the Mixup techniques, the results were also unexpected. In
general, the CNN-based approaches demonstrated worse results when employing
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the Mixup techniques than when no data augmentation was used. In contrast to
the previous study, which found the Mixup with the IoU threshold to produce bet-
ter results, most models in this thesis performed better with the standard Mixup
approach.

6.2 Further Work

Further investigation into various aspects of the dataset would be the primary
factor in improving the precision of the models. The Q-Free dataset used in this
thesis had an imbalanced class distribution, particularly for the truck and bus
classes, which was not beneficial. In addition to having fewer samples, the trucks
and buses also posed an additional challenge. As previously discussed, the entire
vehicle was not visible for these classes in the provided images, making the 3D
object detection task challenging. Hence, it would be recommended to use images
where the entire vehicle is visible in future work to better evaluate the model’s
performance in terms of size and localization.

The camera pan angle may also have contributed to imprecise vehicle size
and localization measurements. Estimating the length was particularly hard due
to the pan angle being relatively close to 0◦. Hence, a solution for further work
could be to use cameras with more suitable pan angles to see if the precision could
be improved.

The data is also highly relevant regarding the precision of the transformer-
based approaches. The results indicated that the ViTDet-B/16 and Swin-S mod-
els performed better when including the Mixup data augmentation strategy. This
suggests that a more extensive and diverse dataset could potentially enhance
their performance even further. Thus, it would be necessary to have a larger data
volume and conduct additional experiments with the Mixup strategy for further
work. Another critical factor when exploring the use of a transformer-based back-
bone would be to conduct further research on the optimal tuning of hyperpara-
meters for these models. As discussed in Chapter 5, this was not investigated in
this thesis, which may have affected the obtained results.
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Appendix A

Original Dataset Results

A.1 ResNet-101

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%)

ResNet-101

@0.5 26.6
Car 71.3 0.76 79.1 73.8
Truck 0.0 0.0 0.0 0.0
Bus 8.6 0.18 78.7 9.9

@0.7 18.4
Car 47.9 0.57 59.0 55.0
Truck 0.0 0.0 0.0 0.0
Bus 7.4 0.16 70.2 8.9

Table A.1: AP, mAP, F1-score, precision, and recall for ResNet-101.

Backbone IoU Threshold Class TP FP

ResNet-101

@0.5
Car 5455 1446
Truck 0 33
Bus 74 20

@0.7
Car 4070 2831
Truck 0 33
Bus 66 28

Table A.2: Confusion matrix for ResNet-101.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error /m

Loc.
Error /m

L
Error /m

W
Error /m

H
Error /m

XC
Error /m

YC
Error /m

ZC
Error /m

ResNet-101 89.6 98.6 0.316 0.374 0.226 0.0444 0.0453 0.0449 0.307 0.0226

Table A.3: Size and localization precision and error for ResNet-101.
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A.2 ResNext-101

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%)

ResNext-101

@0.5 31.1
Car 71.1 0.78 81.1 75.0
Truck 0.0 0.0 0.0 0.0
Bus 22.2 0.38 80.3 24.6

@0.7 20.4
Car 51.6 0.60 62.8 58.1
Truck 0.0 0.0 0.0 0.0
Bus 9.6 0.22 46.5 14.2

Table A.4: AP, mAP, F1-score, precision, and recall for ResNext-101.

Backbone IoU Threshold Class TP FP

ResNext-101

@0.5
Car 5546 1297
Truck 0 60
Bus 183 45

@0.7
Car 4296 2547
Truck 0 60
Bus 106 122

Table A.5: Confusion matrix for ResNext-101.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error /m

Loc.
Error /m

L
Error /m

W
Error /m

H
Error /m

XC
Error /m

YC
Error /m

ZC
Error /m

ResNext-101 88.9 98.5 0.355 0.418 0.259 0.0450 0.513 0.0493 0.343 0.0257

Table A.6: Size and localization precision and error for ResNext-101.
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A.3 ViTDet-B/16

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%)

ViTDet-B/16

@0.5 21.0
Car 57.7 0.66 70.0 62.2
Truck 0.0 0.0 0.0 0.0
Bus 5.3 0.20 30.1 15.4

@0.7 11.9
Car 35.7 0.46 48.7 43.3
Truck 0.0 0.0 0.0 0.0
Bus 0.13 0.03 4.7 2.4

Table A.7: AP, mAP, F1-score, precision, and recall for ViTDet-B/16.

Backbone IoU Threshold Class TP FP

ViTDet-B/16

@0.5
Car 4600 1977
Truck 0 0
Bus 115 267

@0.7
Car 3202 3375
Truck 0 0
Bus 18 364

Table A.8: Confusion matrix for ViTDet-B/16.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error /m

Loc.
Error /m

L
Error /m

W
Error /m

H
Error /m

XC
Error /m

YC
Error /m

ZC
Error /m

ViTDet-B/16 89.8 97.8 0.310 0.476 0.216 0.0444 0.0498 0.0815 0.310 0.0249

Table A.9: Size and localization precision and error for ViTDet-B/16.
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A.4 Swin-S

Backbone mAP (%) AP (%) F1 Precision (%) Recall (%)

Swin-S

@0.5 25.5
Car 63.6 0.69 69.3 69.0
Truck 0.0 0.0 0.0 0.0
Bus 12.9 0.26 56.2 17.1

@0.7 16.3
Car 41.8 0.49 49.3 49.0
Truck 0.0 0.0 0.0 0.0
Bus 7.1 0.18 38.1 49.0

Table A.10: AP, mAP, F1-score, precision, and recall for Swin-S.

Backbone IoU Threshold Class TP FP

Swin-S

@0.5
Car 5101 2258
Truck 0 10
Bus 127 99

@0.7
Car 3626 3733
Truck 0 0
Bus 86 140

Table A.11: Confusion matrix for Swin-S.

Backbone
Size
Prec.
(%)

Loc.
Prec.
(%)

Size
Error /m

Loc.
Error /m

L
Error /m

W
Error /m

H
Error /m

XC
Error /m

YC
Error /m

ZC
Error /m

Swin-S 89.6 98.0 0.318 0.472 0.224 0.0432 0.0510 0.0724 0.374 0.0255

Table A.12: Size and localization precision and error for Swin-S.



Appendix B

Q-Free Dataset BBox Regression
Results

Dataset Distribution (Car/Bus/Truck):

• Train: 3260/23/108

• Test: 490/2/9

Iou

Backbone mAP@0.5 mAP@0.7 Size
Precision

Loc.
Precision

Size Error
(m)

Loc. Error
(m)

L Error
(m)

W Error
(m)

H Error
(m)

XC Error
(m)

YC Error
(m)

ZC Error
(m)

ResNet101 28.3% (Car = 84.8%) 26.5% (Car = 79.5%) 84.7% 89.7% 0.423 0.531 0.265 0.0540 0.104 0.151 0.328 0.0521

Ciou

Backbone mAP@0.5 mAP@0.7 Size
Precision

Loc.
Precision

Size Error
(m)

Loc. Error
(m)

L Error
(m)

W Error
(m)

H Error
(m)

XC Error
(m)

YC Error
(m)

ZC Error
(m)

ResNet101 30.0% (Car = 90.0%) 28.1% (Car = 84.2%) 86.4% 94.3% 0.375 0.313 0.236 0.0440 0.0485 0.0880 0.178 0.0474

Cdiou

Backbone mAP@0.5 mAP@0.7 Size
Precision

Loc.
Precision

Size Error
(m)

Loc. Error
(m)

L Error
(m)

W Error
(m)

H Error
(m)

XC Error
(m)

YC Error
(m)

ZC Error
(m)

ResNet101 27.97% (Car = 83.9%) 25.8% (Car = 77.5%) 84.5% 90.8% 0.413 0.478 0.248 0.0574 0.108 0.143 0.281 0.0539

Diou

Backbone mAP@0.5 mAP@0.7 Size
Precision

Loc.
Precision

Size Error
(m)

Loc. Error
(m)

L Error
(m)

W Error
(m)

H Error
(m)

XC Error
(m)

YC Error
(m)

ZC Error
(m)

ResNet101 27.1% (Car = 81.2)% 25.4% (Car = 76.3%) 84.3% 88.5% 0.431 0.583 0.269 0.0584 0.103 0.168 0.364 0.0517

Giou

Backbone mAP@0.5 mAP@0.7 Size
Precision

Loc.
Precision

Size Error
(m)

Loc. Error
(m)

L Error
(m)

W Error
(m)

H Error
(m)

XC Error
(m)

YC Error
(m)

ZC Error
(m)

ResNet101 29.3% (Car = 87.8%) 27.6% (Car = 82.9%) 84.1% 90.1% 0.448 0.514 0.285 0.0532 0.110 0.140 0.320 0.0548

82




	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Motivation
	Goal and Research Questions
	Method
	Contributions
	Thesis Outline

	Background and Related Work
	Artificial Neural Networks
	Regularization

	Convolutional Neural Networks
	ResNet
	ResNext

	Transformers
	Transformer
	Vision Transformer
	Swin Transformer

	Object Detection
	Architecture
	Bounding Box Regression
	3D Object Detection

	Metrics
	Intersection over Union
	Precision
	Recall
	F1-Score
	Average Precision and Mean Average Precision

	Camera Calibration
	Related Work
	CenterLoc3D
	Data Augmentation
	Vision Transformers in Object Detection


	Method
	Monocular 3D Vehicle Localization
	Choice of Backbones

	Datasets
	SVLD-3D dataset
	Q-Free dataset

	Dataset Preprocessing
	Dataset Labeling
	Normalization and Standardization

	Experimental Setup
	Data Augmentation
	Training
	Evaluation


	Experiments and Results
	Experiment 1: No Data Augmentation
	Experiment 2: Mixup
	Experiment 3: Mixup with IoU
	Summary

	Discussion
	Conclusion and Further Work
	Conclusion
	Further Work

	Bibliography
	Original Dataset Results
	ResNet-101
	ResNext-101
	ViTDet-B/16
	Swin-S

	Q-Free Dataset BBox Regression Results

