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Abstract

A digital twin is a virtual representation of a physical asset or object that is linked
to its real-world counterpart through a data connection. In recent years, there has
been a rapid increase in interest and investments, mainly due to the arrival of In-
dustry 4.0. This emerging technology offers alternative solutions to conventional
challenges, which hold significant relevance to modern businesses.

This master thesis revolves around the automatic generation of digital twins
and the seamless integration of real-time data to facilitate dynamic updates. To
accomplish these objectives Python scripts and Omniverse Extensions were de-
veloped, which enabled the construction of digital twins using diverse data sources.
In addition to this, major research into different data sources and techniques has
been carried out, resulting in a deeper understanding of the field.

The results of this thesis show that the automatic generation of digital twins
is highly possible, which surpasses the capabilities of conventional software cur-
rently available. This advancement is manifested through notable improvement
in the quality of the textures and terrains created, as well as giving a more flexible
model that can be further developed with other sources and for different applica-
tions. Furthermore, the successful incorporation of real-time data was achieved by
collecting sensor data and data from other relevant sources, which subsequently
were sent to a database before getting integrated into the digital twin scene.
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Sammendrag

En digital tvilling er en virtuell representasjon av en fysisk eiendel eller et objekt
som er knyttet til sin virkelige motpart gjennom en dataforbindelse. De siste årene
har det vært en rask økning i interesse og investeringer i denne teknologien, hov-
edsakelig på grunn av ankomsten av Industri 4.0. Denne nye teknologien tilbyr
alternative løsninger på ordinære utfordringer, som har betydelig relevans for mo-
derne bedrifter.

Denne masteroppgaven handler om automatisk generering av digitale tvil-
linger og problemfri integrering av sanntids datastrømmer for å muliggjøre dy-
namiske oppdateringer. For å oppnå disse målene ble Python-skript og Omniverse
Extensions utviklet, noe som gjorde det mulig å konstruere digitale tvillinger ved
hjelp av ulike datakilder. I tillegg til dette har det blitt gjennomført omfattende
forskning på flere datakilder og teknikker, noe som har resulterer i en dypere for-
ståelse av feltet.

Resultatene av denne master oppgaven viser at automatisk generering av di-
gitale tvillinger er svært mulig, som også overgår de mer tradisjonelle program-
varene som er tilgjengelig for øyeblikket. Denne fremgangen viser seg gjennom
bemerkelsesverdig forbedring i kvaliteten på teksturene og terrengene som er la-
get, samt å gi en mer fleksibel modell som kan videreutvikles med andre kilder
og for andre brukstilfeller. Videre ble integrering av sanntidsdata oppnådd ved å
samle sensordata og data fra andre relevante kilder. Disse ble deretter sendt til en
database før de ble integrert i den digitale tvillingscenen.
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Chapter 1

Introduction

Digital twins have become essential to many projects such as autonomous vehicles,
city planning, and simulations. According to IBM, a digital twin is a virtual rep-
resentation of an object or system that spans its lifecycle, is updated from real-time
data, and uses simulation, machine learning, and reasoning to help decision mak-
ing [1]. The concept of digital twins dates back at least 50 years to the launch of
Apollo 13. When one of the oxygen tanks ruptured during the flight, NASA used
telecommunications to connect the physical object to their simulators to reflect
the real-world asset. NASA managed to repair the damage using these simulators,
and the mission was deemed a successful failure. However, a digital twin should
replicate the physical behaviors of an object in real-time data. In contrast, NASA
had 15 different simulators for separate tasks that could be tweaked but required
a good deal of manual work [2]. A digital twin also consists of several different
parts and models that work together, much like the simulators of NASA.

1.1 Motivation

The process of creating a digital twin can be an extremely time-consuming task
that involves constructing multiple 3D models of different parts of a physical en-
tity and assembling these into a single virtual representation. In addition to the
construction process, extensive data acquisition, generation and preprocessing are
necessary to build a digital twin. The current software and tools used to create
a digital twin either give a lackluster result or require significant manual work.
The motivation for this project was to delve into the intricacies of the digital twin
technology. We wished to not only comprehend its complexities but also to con-
tribute meaningfully to this burgeoning field. To achieve this, we have focused
on designing a unique, programmatic method to simplify the creation process of
digital twins. Our aspiration is not confined merely to understanding or contri-
bution; we are also striving to broaden the accessibility of this technology. By de-
vising an efficient and streamlined creation pipeline, we hope to facilitate greater
usage of digital twins across various sectors.

1
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1.2 Goal and Research Questions

This master thesis aims to contribute to the understanding and creation process
of digital twins while advancing the generation of digital twins programmatically.
Another goal for this project is to add and test dynamic updates of objects within a
digital twin with a stream of real-time data from a moving agent or other sources.
To guide the study, the following research questions have been formulated:

RQ.1 What parts of a digital twin can be automatically generated?

RQ.2 What parts of the digital twin are most important to give it a realistic feel?

RQ.3 Can real-time data be streamed from a moving agent for dynamic updates
in the digital twin?

RQ.4 Can digital twins be used to store and visualize meta-data received from a
smart sensor?

1.3 Research Method

We have mainly adopted design and creation research methodology for this re-
search but combined design science research methods where required. Design
and creation research methods are also known as "research through design". This
approach treats designing or creating an artifact as a form of research. Here,
the design process is seen as a method for generating knowledge. Following this
method, we created prototypes, deployed them in a real-world context, and stud-
ied their use to learn more about the problem space, the design solution, and
interactions. On the other hand, in design science research, the researcher often
goes through a process that includes identifying a problem, designing and cre-
ating an artifact (like a software application or a process), and evaluating that
artifact’s effectiveness in addressing the issue. The knowledge generated through
this process can then be used to guide future design efforts. We have produced
a rigorous, scientifically sound contribution to theoretical knowledge following
this research method. Our research method was iterative and reflexive, involving
cycles of design, implementation, testing, and refinement.

1.4 Contribution

This thesis has contributed to and experimented with the generation of digital
twins programmatically. The technology is based on Python scripts that take in
various data sources to create a dynamic and fully functional digital twin. The
software is also built in a way that makes it easy to add other sources and build
upon the foundation created in this project. By creating this foundation, we also
open up the possibility of introducing other technologies and opportunities to use
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digital twins. The model created delivered great results regarding the details of
the mesh created and the quality of the textures added.

The major contributions of this project are as follows:

1. Simplifying the Digital Twin Pipeline so future work can be built upon it
2. Automating the process of building a 3D digital twin given the GIS coordin-

ates of a place
3. Adding higher resolution Ortophoto in Omniverse
4. Adding higher quality elevation data to terrain
5. Real-time communication with the digital twin and a real world agent
6. Case study for real-time data stream: Car position in relation to road lines
7. Case study for Digital Twin: Validation of Traffic signs’ position and data in

NVDB
8. Case study for Digital Twin: Road Surface Monitoring
9. Case Study for Digital Twin: Key elements to create a realistic and immersive

digital twin

1.5 Thesis Structure

The paper is divided into these chapters:

1. Introduction
The introduction gives a short introduction to the overall subject of the
thesis and covers the research method, motivation, and previous studies
in the field.

2. Background
The background chapter gives insight into potential use cases for digital
twins, software, and methods currently used for creating digital twins and
3D objects.

3. Method
The methods chapter goes into deeper details about which methods were
developed and utilized to get the final results and how to reproduce these
results. This chapter is divided into two major parts, with the first part fo-
cusing more on our programmatic approach to digital twin creation. The
second part focuses more on the process of integrating live data streams
into the digital twin.

4. Results
The results chapter showcases our findings related to the research questions.
In addition to this chapter, several Youtube videos will present the results
from the programmatically generated digital twin and the real-time data
being streamed to it.

5. Discussion
The discussion chapter relates our results to our research questions and
delves into an in-depth analysis of some of the challenges encountered.

6. Conclusion
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The conclusion chapter summarizes our project and presents the main find-
ings and looks at possible use cases of a digital twin and future work.



Chapter 2

Background

This chapter will give an introduction to core concepts used in digital twin creation
and give examples of the current and potential uses of digital twins.

2.1 Digital twins

The rapid improvement of digital technologies in recent years has led organiza-
tions and companies to optimize their operations and drive innovations. One of
the leading technological concepts that have gained significant attention because
of this is digital twins. A digital twin is a virtual representation of a physical asset
or object that is linked to its real-world counterpart through a data connection.

The concept idea of digital twins, as mentioned in chapter 1, has roots that
can be traced back to the Apollo 13 mission. However, the term digital twin was
first coined in 2002 when Dr. Michael Grieves applied the concept of digital twins
in manufacturing [1]. Since then, the concept of digital twins has evolved signific-
antly and the fundamental idea of a digital twin today is to create a comprehensive
and dynamic model that mimics the behavior, characteristics, and functionalities
of a physical asset. This virtual representation can either replicate the physical
representation directly or incorporate it with some modifications to individual
factors. Digital twins are often used in simulations and planning to assess poten-
tial adjustments and predict their impact. Digital twins can enhance cost and time
efficiency by introducing new ways of testing and planning [3].

2.2 Potential use of Digital twins

As mentioned, digital twins are a virtual representation of an object or a place that
can be used for simulations, optimizations, and decision-making. The potential
use of these virtual representations has significantly increased with the arrival of
Industry 4.0. Different industries, such as manufacturing, healthcare, and urban
planning use this for training, maintenance, and planning.

5
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2.2.1 Stadt Zurich - Digital twin

In recent years, population growth in Zurich has posed several new challenges
such as population density, and it could lead to environmental issues, which are
also seen in other places such as Singapore. To handle this issue the city of Zurich
has tried to introduce a more adaptable solution with the use of digital twins. The
terrain of the digital twin is created using LIDAR images from 2014. These images
have a resolution of 50cm and are manually adjusted in some places to include
additional information. The building models are based on building floor plans and
are divided into sub-parts to ensure that each floor is accurately represented by a
prism with its intended height and shape [4].

An important aspect of the Zurich digital twin lies in its emphasis on facilitat-
ing public access to the data. This can enable private parties and partners to create
applications to enhance the use of the digital twin [5]. Several applications have
been made from this public database to address some of the issues with density
and climate change as previously stated. One of these applications can be seen
in Figure 2.1, where an open-source application initially developed for New York
City was adapted to include building mass from Zurich. This application can be
used to improve urban development and living spaces [6].

Figure 2.1: High rise building planner of Zurich
Source: https://link.springer.com/article/10.1007/
s41064-020-00092-2/figures/10

https://link.springer.com/article/10.1007/s41064-020-00092-2/figures/10
https://link.springer.com/article/10.1007/s41064-020-00092-2/figures/10
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WingtraOne

In 2021, WingtraOne, a Zurich-based company, tried creating a digital twin using
data collected from a drone equipped with a Sony A6100 mapping camera. The
drone required 6 hours of flight time to collect data from the whole city, which
resulted in a digital twin with a resolution of 3cm per pixel for the textures [7]
[8]. The benefit of using this technology is high-resolution information, and the
drawback is the large amount of data needed and the cost of such hardware-heavy
technology.

2.2.2 Virtual Singapore

Like Stadt Zurich’s Digital Twin, Virtual Singapore is a dynamic 3D city model.
The project, seen in Figure 2.2, is a collaboration between the National Research
Foundation of Singapore (NRF) and the Singapore Land Authority (SLA). NRF
will be taking the lead in developing the digital twin, while the SLA will provide
topographical data and other relevant information useful for the project. Other
public parties will also contribute to the process in ways such as modeling and
simulations [9].

Virtual Singapore is primarily intended to tackle various problems that have
surfaced in recent years. The most significant of these problems is climate change.
The digital twin is designed to empower stakeholders from diverse sectors. They
can create prediction tools and simulations using this technology, which can then
be used to devise efficient strategies for different scenarios. Another use for the
digital twin is to tap into new technologies, creating new job opportunities for the
people of Singapore and generating value [10].

Figure 2.2: Virtual Singapore’s digital twin
Source: https://www.geospatialworld.net/prime/case-study/
national-mapping/virtual-singapore-building-a-3d-empowered-smart-nation/

https://www.geospatialworld.net/prime/case-study/national-mapping/virtual-singapore-building-a-3d-empowered-smart-nation/
https://www.geospatialworld.net/prime/case-study/national-mapping/virtual-singapore-building-a-3d-empowered-smart-nation/
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2.2.3 Trondheim city model

The Trondheim city model is created by Trondheim municipality in an effort to en-
hance knowledge of how development areas or proposed individual projects will
impact the neighborhood, district, or the entire city of Trondheim. The project
utilizes a combination of software tools, including the Unity game development
program and 3d modeling software 3ds Max, to generate an interactive repres-
entation of Trondheim [11]. In Figure 2.3 you can see the Unity model created
for this project.

Figure 2.3: Trondheim city model presented in Unity
Source: https://youtu.be/03ikDhb1O9Q

The city model created serves as a great resource for different stakeholders in-
volved with the city. Property designers can leverage this model to assess the visual
implications of their projects, enabling them to make more informed decisions.
Furthermore, by making the model accessible to the public, it serves as an edu-
cational and information tool, offering valuable insights to the general populace.
However, it is worth noting that there is currently a lack of user-friendly inter-
faces for viewing the models created. Consequently, prior knowledge of 3D tools
is needed to examine these models. Interested individuals can access the models
from the following link: https://kart.trondheim.kommune.no/3d_bymodell/,
where both the 3ds Max and Unity models are available.

2.2.4 Oppdrag Mjøsa

Oppdrag Mjøsa is another ongoing project aimed at exploring the application of
digital twin technology. The project was initiated following the discovery of a new
shipwreck in Mjøsa during the autumn of 2022. This shipwreck, estimated to be in

https://youtu.be/03ikDhb1O9Q
https://kart.trondheim.kommune.no/3d_bymodell/
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between 300-700 years old and measures approximately 10 meters in length and
2.4 meters in width, is believed to be the first discovery of many to come. Given
the implications of climate change and changing rainfall patterns, it has become
important to address the restoration of these cultural heritage sites and manage
the lake in a sustainable manner [12].

Work has therefore been initiated to develop a digital twin of Mjøsa that will
receive and make available data from various sensors. The goal is to be able to un-
derstand the lake’s progressive development and proactively anticipate changes
earlier. Initially, researchers will focus on developing a detailed terrain model of
Mjøsa’s lake bed. Satellite data, historical data, and other measurements and re-
search data will eventually be incorporated into the digital twin [13].

2.3 3D object theory

3d modeling encompasses the process of creating a 3d representation of an object
from a set of points that can be viewed or interacted with using specialized 3d
software. This technology is used in many different fields of study and business.

The first step of 3d modeling involves the acquiring of data points, the process
varies based on what the user is trying to model. The biggest difference appears
when comparing the process of reconstructing an object versus creating an entirely
new model. In the case of creating a new model, the user needs to manually place
points and sculpt the object by hand. However, when it comes to reconstruction,
the user can get their points from many different sources. LIDAR is a common tool
used to gather point data of real-world geometry. The necessary equipment can
be placed on moving vehicles on the ground or in the air, gathering millions of
points over large areas.

When working with a set of vertices in 3D modeling, users have numerous
options available to them. However, no single method can be universally applied
to create a mesh from these vertices. The field of surface reconstruction and mesh
optimization offers various algorithms and methods that cater to different require-
ments. Each method involves adjusting different variables to get the most precise
mesh for a given purpose. To streamline the process of creating 3D models, several
libraries exist that simplify the implementation details of 3D modeling.

2.4 Software

The field of digital twin creation involves the integration of large amounts of data
and the use of advanced software. This section will provide an overview of soft-
ware that is currently being used in the field of digital twin creation. By under-
standing the current software landscape, researchers can make informed decisions
about which software and methods to utilize for their specific use case and pro-
cess.
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2.4.1 ArcGis Pro

ArcGIS Pro is a geographic information system application that allows the user to
visualize, edit, and share geographic data. ArcGIS Pro supports several different
data sources and formats which make it a versatile tool for both professionals and
passionate amateurs[14].

2.4.2 CityEngine

CityEngine is a 3D modeling software developed by Esri, which allows the user
to create interactive city scenes. These scenes are generated using real-world geo-
graphical information that is gathered from several different sources including Esri
and OpenStreetMap. Using these interactive scenes, users can easily modify and
manipulate a variety of elements within the scene such as buildings, roads, and
other urban features [15]. CityEngine is an efficient software that quickly gives
the user access to the models needed. CityEngine also offers exportation of this
model to several other platforms such as Unreal Engine and Nvidia Omniverse.
Despite its ease of use, CityEngine also comes with some limitations, notably the
lack of details in the model generated. While having procedurally generated tex-
tures for buildings that gives the scene a realistic feel, the low resolution of the
ground texture negatively impacts the overall outlook.

2.4.3 Roadrunner

Roadrunner is a 3d scene editor tool developed by Mathworks that allows for
simulating and testing automated driving systems. It offers the ability to create,
import, and export OpenDrive road networks, which can be used in other applic-
ations such as CARLA description and Nvidia Drivesim. In addition, Roadrunner
provides access to a 3D asset library, allowing users to easily utilize large amounts
of objects to create realistic scenes [16]. While Roadrunner gives realistic roads,
the drawback of using this is the amount of manual work needed for creating
accurate road networks.

2.4.4 Nvidia Omniverse

Nvidia Omniverse is 3D design and simulation software that revolutionizes real-
time collaboration for teams. Nvidia Omniverse can seamlessly connect various 3D
tools like Maya and Blender with Nvidia’s simulation technologies, such as PhysX 5
and RTX-accelerated rendering, through flexible bi- or uni-directional connectors
[17] [18]. One of Omniverse’s strengths is its utilization of the Universal scene
description (USD) file format. This makes the process of combining multiple assets
from different sources into a single model and scene easier. Omniverse is designed
to face challenges from multiple different industries such as film production and
engineering and has therefore developed purpose-specific apps, with notable ones
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being Code, Create, CreateXR, and Nucleus. These apps serve specific functions
to allow collaboration, creation of scenes, and simulations.

Omniverse Code

Omniverse code is an Integrated Development Environment (IDE) designed for
developers to create extensions and microservices for scenes and objects within
Omniverse. It provides support for Python and C scripts, along with various Om-
niverse packages, enabling developers to seamlessly integrate data sources and
additional functionalities into their scenes or worlds. There are two primary ways
of integrating data into Omniverse. The first way is by creating an Omniverse
Code extension, which seamlessly integrates with the Omniverse Code app and
modifies its behavior. This enables users to design custom modules that expand the
capabilities of Omniverse, changing it to fit their specific requirements. The second
method involves utilizing Omniverse Code Sample as a starting point to create a
connector. By doing this you create a bridge program that can interact with your
Omniverse scenes the same way you can in Code, but from an external context.
This allows for data transfer between any external application to the Omniverse
environment. Both methods offer powerful means to extend the capabilities of
Omniverse and enable seamless integration with external data sources.

Omniverse Create / CreateXR

Omniverse Create is an application created to accelerate scene composition and
world-building. Its purpose is to accelerate the process of simulating and render-
ing large scenes with several different models and objects. The application sup-
ports multiple file formats such as obj, GL Transmission Format (GLTF), and USD,
allowing the user to work with a wide range of assets [19]. Omniverse Create of-
fers a wide range of different features and applications to enhance different tasks.
For instance, it utilizes ray tracing which can give a scene more realistic reflections
and lighting. Create also support animations and different simulators, such as for
sun study or physics.

Omniverse CreateXR provides users with the capability to visualize their USD
scenes using Virtual Reality (VR) and Augmented Reality (AR) technologies. This
platform allows for an immersive exploration of models at a human scale. Cre-
ateXR is powered by NVIDIA RTX technology which enables fully ray-traced VR
scenes, resulting in enhanced visual effects such as accurate reflections, shadows,
and lights [20]. Despite CreateXR being in early beta, Omniverse claims that any
Create scene can be seamlessly integrated with XR.

Omniverse Nucleus

Omniverse Nucleus is the database and collaboration tool developed by Omni-
verse. By establishing a Nucleus infrastructure, teams are able to connect to the
database, which can facilitate simultaneous collaboration on shared assets [21].
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This enables teams from different geographical locations to engage in parallel
work and real-time collaboration, which can result in improved productivity and
better results [22].

Nvidia DriveSim

Nvidia DriveSim is a simulation platform developed by NVIDIA. DriveSim is spe-
cifically designed for testing and validating autonomous driving systems. It provides
a realistic virtual environment where autonomous vehicles can be simulated and
trained. Drive Sim provides several tools to the user for generating datasets that
can be used to train Deep neural network (DNN) for autonomous vehicle per-
ception. Some of these tools can be seen in Figure 2.4. DriveSim leverages high-
performance computing capabilities, including NVIDIA GPUs, to create detailed
and immersive virtual worlds. These virtual environments replicate real-world
scenarios, such as city streets, highways, and various weather conditions. The sim-
ulated environments also include dynamic objects like pedestrians, other vehicles,
and traffic signals, allowing developers to test their autonomous driving algorithms
and systems in a wide range of situations.

Figure 2.4: Different Nvidia Drive Sim tools
Source: https://blogs.nvidia.com/blog/2021/04/12/
nvidia-drive-sim-omniverse-early-access/

https://blogs.nvidia.com/blog/2021/04/12/nvidia-drive-sim-omniverse-early-access/
https://blogs.nvidia.com/blog/2021/04/12/nvidia-drive-sim-omniverse-early-access/
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2.4.5 Visualization Toolkit

Visualization ToolKit (VTK) is an open-source software for 3d graphics and mod-
eling. Originally it was created as accompanying software for a textbook in 1993.
Over the years the software grew and became popular with researchers and engin-
eers alike, and is used in scientific research, medical imaging, geospatial analysis,
and more.

2.4.6 Pyvista

PyVista is an open-source Python library for 3D visualization and analysis. It provides
a simple, intuitive interface to VTK. PyVista is essentially a Pythonic wrapper
around VTK that makes 3D visualization and analysis more accessible and straight-
forward. PyVista supports a wide range of 3D visualization features, including
volume rendering, surface shading, mesh plotting, and more. It also supports a
variety of data formats, including structured and unstructured grids, polygonal
data, and point clouds.

2.5 Geomatics

2.5.1 Coordinate refrence systems

When creating digital twins of real-life locations it is important to have an ac-
curate representation of the model in space. This is done by using a Coordinate
Reference System (CRS). A geographic coordinate system is based on a spheroid
that approximates the shape of the Earth and uses angular units(i.e. degrees) to
reference a point on Earth. Since Earth is not a perfectly smooth sphere there
are many different geographic coordinate systems for different parts of the world.
These systems use different datums, which define what spheroid model is used to
represent the earth, as well as deciding where the center is positioned [23].

Another type of CRS is projected coordinate systems. These systems use differ-
ent mathematical transformations to project a spherical earth onto a flat plane, as
seen in Figure 2.6. These systems use a geographic coordinate system to reference
the original earth model being projected and use linear units to represent points
in space(i.e. meters).
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Figure 2.5: Projecting a geographical representation to a flat plane
Source: https://www.earthdatascience.org/courses/
use-data-open-source-python/intro-vector-data-python/
spatial-data-vector-shapefiles/geographic-vs-projected-coordinate-reference-systems-python/

Within these two different ways to do coordinate referencing the most used
ones are World Geodetic System 1984 (WGS84) for geographic coordinate sys-
tems, and Universal Transverse Mercator (UTM) for projected coordinate systems.
WGS84 is the datum that GPS uses to represent locations on Earth and is the one
you will see used most for geographic coordinate systems. It uses the poles as
90 degrees north and south for latitude and 180 degrees east and west from the
Greenwich meridian for longitude. With the latitude and longitude, you can rep-
resent a position in two ways, either as decimals of a whole degree, or as degrees,
arcminutes, and arcseconds.

The UTM projection divides the earth up into 60 different zones such that
each zone is 6 degrees in width. The zones stretch from 80 degrees south to 84
degrees north. The points north and south of this use another projection called
UPS. The UTM belts can also be further divided by dividing them horizontally to
create a grid. Each square of the grid is then classified by letters ranging from
C to X, excluding I and O. This makes each square 6 by 8 degrees, except for X,
which is 12 degrees. The letters A, B, Y, and Z are reserved in the aforementioned
UPS projection. UTM uses meters as units, and each band has a central meridian
that is considered to be 500 000 meters east. This is done to avoid any negative
values. The position of the equator is 0 meters and increases as you go north
if the position is in the northern hemisphere. If the position is on the southern

https://www.earthdatascience.org/courses/use-data-open-source-python/intro-vector-data-python/spatial-data-vector-shapefiles/geographic-vs-projected-coordinate-reference-systems-python/
https://www.earthdatascience.org/courses/use-data-open-source-python/intro-vector-data-python/spatial-data-vector-shapefiles/geographic-vs-projected-coordinate-reference-systems-python/
https://www.earthdatascience.org/courses/use-data-open-source-python/intro-vector-data-python/spatial-data-vector-shapefiles/geographic-vs-projected-coordinate-reference-systems-python/
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hemisphere equator is considered to be 10 000 000 meters north, decreasing the
further south you get. This is also done to avoid any negative values. Due to how
the northening values are set it means there may exist points with the same value
north and south of the equator. To avoid confusing the points the letter of the
latitude band is used[24]. A visualization of the UTM grid system can be seen in
Figure 2.6.

Figure 2.6: Figure of UTM bands with grid letters
Source: https://no.m.wikipedia.org/wiki/Fil:LA2-Europe-UTM-zones.png

2.5.2 GNSS

Global Navigation Satellite System, most commonly referred to as GNSS, is a
satellite-based system for navigation and positioning that enables users to de-

https://no.m.wikipedia.org/wiki/Fil:LA2-Europe-UTM-zones.png
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termine their geographical position precisely at anytime and anywhere on Earth.
It consists of four major global navigation systems: the Global Positioning System
(GPS), operated by the United States Space Force; Galileo, created and operated
by the European Union; Glonass, operated by the Russian Military; and BeiDou,
China’s satellite system [25] [26] [27] [28]. Global Positioning System (GPS), Ga-
lileo, and Glonass employ a MEO, whereas BeiDou utilizes a Geostationary Earth
Orbit (GEO) configuration. The difference in these arises from the variance in or-
bital altitude. MEO orbits at an altitude of between 2,000 and 36,000 km above
the Earth’s surface, while GEO satellites are positioned at an altitude of around
36,000km. Additionally, it is worth noting the existence of Low Earth Orbit (LEO)
satellites, which traverse at altitudes ranging from 160 to 2,000 km and are often
used in imaging applications [29]. The different orbital configurations utilized in
GNSS can be viewed in Figure 2.7.

Figure 2.7: Orbital Configurations of GNSS Satellites
https://iasgyan.in/daily-current-affairs/geo-vs-leo-vs-meo

2.6 Virtual Reality

Virtual Reality (VR) is a technological concept that facilitates user immersion
within a simulated environment through the utilization of a specialized head-
set or device. These environments typically consist of generated models within
a 3d scene, which can be interacted with through movement and inputs. Virtual
reality usually consists of a head-mounted device, often called a VR headset, and
two motion joysticks. These joysticks are used to track the user’s physical move-
ment, thereby enabling their representation and manipulation within the virtual
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domain. Meta Quest 2, one of the most common Virtual reality headsets, can be
seen in Figure 2.8 accompanied by its joysticks.

Figure 2.8: The Meta Quest 2
Source: https://www.complex.com/pop-culture/
meta-quest-2-virtual-reality-headset-review

2.7 Previous works

This project will be based on research conducted in two previous master theses.
The first thesis, authored by Rune Strøm Brekke, aimed to create NTNU’s Gløshau-
gen campus as a USD model. As with many other digital twin projects, Brekke’s
work necessitated a considerable amount of manual work done in City Engin [30].
The second thesis, authored by Aleksander Knutsen, transferred the digital twin
to Nvidia Omniverse, and focused on wall texturing as well as automatic scene up-
dates. Knutsen used Python scripts to process data retrieved from an autonomous
vehicle. While a manual technique was employed for modifying the wall textures,
an automatic approach was tested but demonstrated some insufficiency [31]. The
digital twin model both these master theses were based upon was created by Rune
Brekke, which is illustrated in Figure 2.9.

https://www.complex.com/pop-culture/meta-quest-2-virtual-reality-headset-review
https://www.complex.com/pop-culture/meta-quest-2-virtual-reality-headset-review
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Figure 2.9: Digital twin model for Brekke and Knutsen’s master theses
Source: https://www.dropbox.com/s/vhp3kuwr0si57tn/Rune_Master-2021_
DT-HDmap.pdf?dl=0

https://www.dropbox.com/s/vhp3kuwr0si57tn/Rune_Master-2021_DT-HDmap.pdf?dl=0
https://www.dropbox.com/s/vhp3kuwr0si57tn/Rune_Master-2021_DT-HDmap.pdf?dl=0
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Methods

The process of creating a digital twin can be divided into two parts. The first
is creating the digital representation of the object or place you want to digital-
ize. This includes data collection, data generation, and the creation of the digital
representation. The result of this process is a static digital model replicating the
physical entity at a specific time. However, it is important to note that this model
might not represent the object in real time. The second task is to incorporate data
in real-time by communicating with various sensors or other data sources into
this digital model that converts this digital representation into a digital twin. This
can include live images, live data, and other sensor data that static images can
not capture. The traditional way of creating a digital twin can be time-consuming
and challenging as it requires large amounts of data and data processing. In the
coming chapter, we will present the methodology we used in our research in try-
ing to create a high-resolution digital twin through programmatic generation. Our
method of creating the digital twin makes it a good foundation and easily scalable
by adding new data. The first section will introduce our data collection sources
and programmatic approach to the problem, which includes the use of Python
scripts to automate the generation of the digital twin. The second part will go
into detail about the dynamic updates we added to our digital twin.

19
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3.1 Digital twin creation

The process of creating a digital twin requires a large number of different types
of data. The most important part is the topographic and orthographic data which
is used to create the mesh and texture of the DT. In this section, we will show our
methods of collecting data and what preprocessing we had to do before we ended
up with our final model.

3.1.1 Data collection

Høydedata - Laserinnsyn

Høydedata is an online platform developed by the Norwegian Mapping Authority
(NMA) that gives any user access to detailed heightmap datasets of Norway. NMA
is responsible for producing, monitoring, and managing digital maps and geodata
for Norway. The user interface of the platform allows users to define the area they
wish to access and select the desired resolution for the heightmap, which can
range from several points per meter, up to a single point every 50 meters.

However, there are some flaws with the system as it currently is. Firstly, the
back-end processing can take anywhere from twenty minutes to 2 hours after a
request was made by the user in the platform. This means the users are required
to plan in more detail what is needed in advance. Secondly, the online platform
offers a range of customizable settings that can significantly influence the output.
Regrettably, we initially failed to recognize one crucial setting hidden within the
program’s advanced options. This led to us using ArcGIS Pro to cut the segment
returned from Hoydedata into the smaller extent chosen from the start. In Fig-
ure 3.1 you can see the process of cutting the heightmap in ArcGis with the red
square being our selected extent and the black box being the full segment. This
process gave us valuable insight into different file formats and image processing
techniques. However, we later discovered that the platform itself offered the cap-
ability to clip the output to the chosen extent directly, contributing to the use of
additional tools being unnecessary.

Norge I Bilder

Norge I Bilder is an online platform developed through a collaboration between
the Norwegian Public Road Administration, NMA, and Norwegian Institute of
Bioeconomy Research (NIBIO). Through this online platform, you have the pos-
sibility to see orthographic photos of Norway that are made available by Norge
Digitalt. With an account linked to Norge Digitalt and GeoNorge, you have the
possibility of downloading these different Ortophotos. The resolution of the Or-
tophoto is determined by the establishment that has provided these to GeoNorge
and may vary from 1 meter to 4 centimeters per pixel.

One of the drawbacks of using the platform occurs when a user tries to down-
load images in their maximum resolution. Doing this will lead to the creation of
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Figure 3.1: Clipping of heightmap in ArcGis

files that are too large for file transfers, causing "Norge i bilder" to segment these
images into smaller images. As a part of doing this, the platform also includes a
black border around the image. This is done because "Norge i bilder" uses a fixed
size for their images and if one of the tiles from the extent is smaller than that size,
the platform tries to adjust the images according to this fixed size. The addition
of the black borders creates a new challenge for the creation of the digital twin,
requiring us to trim the black borders prior to creating the textures and mesh. To
accomplish this, we obtained the bounding box of the heightmap and the texture
image, and obtained the points where these intersected. Using these points we
could create a new image that excluded the black borders. The code snippet in
Code 1 shows how this was done. Once completed, the new image was stored as
a GeoTIFF dataset and used as a texture for the mesh created.

# Removes NorgeIBilder's black border on images
def trim(image, heightmap):

heightmap_bounds = shapely.geometry.box(*heightmap.bounds)
image_bounds = shapely.geometry.box(*image.bounds)
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intersection = heightmap_bounds.intersection(image_bounds)
mask1 = shapely.geometry.mapping(intersection)
trimmed_image, transform = mask.mask(

dataset=image,
shapes=[mask1],
crop=True,

)

Listing 1: Trimming of the black border from texture images

Nasjonal vegdatabank - Statens vegvesen

Nasjonal vegdatabank (NVDB) is a public database that includes information about
the road networks in Norway. This includes roads and road objects, such as signs
and speed bumps.NVDB is operated by the Norwegian Public Roads Administra-
tion and is used to implement and ensure good road quality. In this project,NVDB
was used to collect precise positional and geometric data regarding signs and
roads. This data was then processed and integrated into the digital twin.

To fetch the data from the database a GET request from the Python package
request was used. The request was set up to retrieve specific types of data using dif-
ferent query parameters. In Code 2 you can see one way of doing this. The base API
url, ’https://nvdbapiles-v3.atlas.vegvesen.no’, directs the GET request to the data-
base. The ’vegobjekter’ redirects you to the specified end-point, granting access to
different types of road objects. In this example, we used ’/96’ to specify that we
wanted the road signs. When doing this for the roads instead of the signs we used
’/vegnett/veglenkesekvenser/segmentert’ to specify the end-point. The parameters
for the query can be set up to define different road types or to use a specified ex-
tent. For our project, we retrieved the bounding box from the heightmap provided
by the user and used this to set the extent. This ensured that we received all the
necessary objects for the digital twin.

def get_data(link:str,start:str):
params = {'srid':'4326',

'vegsystemreferanse':'EV14',
'alle_versjoner':'true', 'inkluder': 'alle',
'start': start}

resp = requests.get(link,
params=params)

return resp.json()

BASE_API_URL = 'https://nvdbapiles-v3.atlas.vegvesen.no'
signal_pts = BASE_API_URL + '/vegobjekter/96' #96 for traffic signs
respjson = get_data(link=signal_pts,start=None)

Listing 2: NVDB GET request
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A shortcoming of NVDB seemed to happen when we wanted to fetch state-,
county-, and municipal roads. When combining the three only the municipal roads
and road objects were returned. This meant we had to divide the requests into 2
different queries. The first one included the parameters for the municipal roads
and the second included the parameters for the rest, this can be seen in Code 3.

def set_params(heightmap):
min_x, min_y, max_x, max_y = [*heightmap.bounds]
bbox = f"{min_x},{min_y},{max_x},{max_y}"
print(bbox)

params_main = {'srid':'5973',
'start': None,
'vegsystemreferanse':'E,F,R',
'kartutsnitt':f'{bbox}'
}

params_k = {'srid':'5973',
'start': None,
'vegsystemreferanse':'K',
'kartutsnitt':f'{bbox}'
}

return params_main, params_k

Listing 3: NVDB GET request for multiple road types

Open street map

Open Steet Map (OSM) is a collaborative project that aims to create a free and
open map of the world. Unlike other similar platforms, OSM is not controlled by
a single company or entity. Instead, it is maintained by a community of volunteers
who add and update data on roads, buildings, landmarks, public services, and
more. This makes OSM a valuable resource for individuals and organizations in
need of accurate and up-to-date map data. Organizations like Esri and QGIS use
and pull data from OSM.

Overpass API is one of the developer tools that OSM offers. It is a read-only
API that allows users to query OSM data and extract only the information they
need. By using the API, users can filter data by, location, tags, types, and many
other criteria. This makes it easier to work with the data and use it in custom
applications.

The query in Code 4 illustrates how the data is gathered for our digital twin.
In our case, we want to retrieve all the buildings within a designated area called
"bbox". A "way" in this case is just an ordered sequence of nodes that are accom-
panied by information tags. Meanwhile, relations are a group of members, such
as ways, which can store more complex features of the map, such as building
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with holes. The specific information that our code attempts to retrieve are build-
ing parts and buildings. Building parts are complex features divided into several
simpler features. The "out center" and "out geom" tags specify the desired informa-
tion to be included in the output. In this case, the query will return the geographic
center of the "way", as well as the geographic location of every node in the "way"

[out:json][timeout:25];
// gather results

(
// query part for: "building:part"
way["building:part"]({bbox});
relation["building:part"]({bbox});
// query part for: "building"
way["building"]({bbox});
relation["building"]({bbox});

);
// print results
out center;
out geom;

Listing 4: Overpass API GET query for buildings and building parts

3.1.2 Implementation

There are several steps from gathering our data to having a complete model in
Nvidia Omniverse. These steps are similar and implement similar technologies
across all the elements of our digital twin.

Omniverse extension

To create the static digital twin we use the Omniverse extension template that
follows with Omniverse code. The template includes boilerplate code, dependen-
cies, its own Python environment, and more. This allows for fast integration of
additional functionality to the Omniverse platform.

Terrain

The process of generating terrain is a process where reading and processing the
data can be a difficult task. For reading the data we used the Rasterio library
in Python. This library allows for reading geospatial raster data in the form of .tif
files. One of the challenges when working with our terrain is the size of our rasters,
as they require a sizable amount of memory. To address this issue, a generator
function has been developed to only load one texture into memory at once.

There are several steps of data processing needed to be done before a mesh can
be created. The first step is turning our heightmap image into the terrain model
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we want. The NumPy function meshgrid is used to generate two 2D arrays that
represent a grid of points in the x and y coordinates. The resulting arrays provide
a structured grid where each point corresponds to a specific combination of x and
y coordinates.

The heightmap from Kartverket is provided in a format with a specific number
of points per meter. The meshgrid function returns arrays representing the indices
of each value. In our case, we consider a one-unit increase to be one meter. This
means in cases where the elevation data is not one point per meter, the model
would not be geographically accurate. To address this issue we calculate a spa-
cing factor that divides all the values in the arrays. This approach also incidentally
solves another problem. When creating a structured grid mesh in Pyvista with in-
teger values for the x and y coordinates, it implicitly converts the elevation values
to integers. This is not the case when the values are converted to floats. A visual-
ization of this difference can be seen in Figure 3.2 and the final result is a blank
terrain model shown in Figure 3.3.

(a) Terrain created with float values (b) Terrain created with integer values

Figure 3.2: Comparison of data types in terrain generation

Figure 3.3: Terrain model before adding textures etc.

The initial step, shown in Code 1, involves trimming any black border from
the texture. This ensures that the texture correctly aligns with the heightmap.
The second step is to circumvent the 8000 by 8000-pixel limit Omniverse has on
texture sizes. To do this we find the number of rows and columns the texture
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can be divided into that keeps the size under this limit, as well as retaining the
dimensions as integer values.

To divide our textures into smaller images we use two functions. The first
one calculates the necessary data, and the second uses that data to create a new
texture.

To generate the necessary data we first compute a Cartesian product based on
the number of rows and columns to get all the necessary offsets. Using these offsets
we create a window of appropriate size for each sub-image. The dimensions of this
sub-image are determined by dividing the original image’s height and width by
the number of columns and rows.

Once the window has been created it is intersected with the original image
to get the necessary extent data. The resulting window and the extent are then
returned to the first function. Next, we select the pixels for our new sub-image
before adding both the extent and sub-image to their respective lists. These steps
are repeated for all our sub-images.

To extract the sub-meshes a function is made that takes the in a texture and the
respective extent. The extent is transformed to match the one of our terrain. This
value is used to extract a subset of the terrain mesh and to position the texture on
the mesh.

Buildings

The buildings are created from data gathered through a request to Overpass API.
This request gives us a list of buildings, which we then convert to SimpleNameSpace
objects. SimpleNameSpace converts each JSON object to key-value pairs. This con-
version enables the creation of objects that can be accessed using dot notation and
is a more simple form of the standard class. Making it easy to work with the data
from the request.

After retrieving the building data we iterate over the list of buildings. A func-
tion is then called that takes a "building" and the heightmap as inputs. This func-
tion generates the points that will be used for creating building meshes.

The buildings can be classified into two types, "multipolygon" or "way". The
difference between the two is that a multipolygon consists of one inner and one
outer set of nodes. We want to store the points in different lists so we can process
them differently. We retrieve the longitude and latitude for each point and convert
it from WGS84 to UTM33, which is the projection used in our project. For each
point, we sample the corresponding elevation data from the heightmap using the
UTM coordinates. We store the smallest height value for each building to ensure
the building does not float above the terrain in the model. This way we can treat
the polygon of points as a 2d footprint, simplifying the mesh creation process. We
perform additional checks on the list of points, such as removing duplicate points
if they exist at the start and end, and determining if the points are in clockwise
order. This is useful when we are generating our mesh as we use an algorithm
called Delaunay triangulation, which is affected by the order of the points.
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In our workflow, we utilize Pyvista to create a 2D representation of a building’s
footprint based on the generated points. This involves constructing a Polydata ob-
ject by combining the points and providing an initial approximation of the mesh’s
faces.

For buildings categorized as "multipolygonal," both the inner and outer points
are included in the same Polydata object. However, it’s crucial to note that the
ordering of the inner and outer points differs. This distinction becomes important
when applying Delaunay triangulation to optimize the constructed mesh. Specific-
ally, the outer points are in clockwise order, while the inner points are in counter-
clockwise order. The orientation of the points influences the triangulation process,
as well as the positioning of the mesh’s edges. Ultimately, the resulting footprint
is extruded to match the building’s height, finalizing its representation.

Road Lines

To create the road lines for our digital twin we use data fromNVDB’s API. We
represent the lines in Omniverse as 3d models.

To get the necessary data we use the request shown in Code 2 with the para-
meters set in Code 3. An additional call is also sent to a different endpoint in
the API to fetch the width of the roads. The response to both queries is stored
in separate pandas data frames. A function was created that aimed to associate
the road width information with the corresponding road based on their shared id.
The road width in the database can vary depending on several factors, such as if
it includes a road shoulder. Consequently, the function finds the smallest value as
it is presumed to represent the edge of the road.

To get the coordinates of the edges of our road, we first iterate through our list
of points for each road segment. The list is ordered as a polygonal chain, and we
select the current index and the next index for each iteration to select two points.
By calculating the angle between these points, we can use trigonometry functions
and the road width to find the coordinates of the edges at the beginning and end
of each line in our polygonal chain.
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In our code, we use the atan2 function and calculate the angle between two
points, p1 and p2. The calculation utilizes both the x and y values for these points
as inputs.

angle = atan2(p2[y]− p1[y], p2[x]− p1[x]) (3.2)

We create a new point by using the angle calculated, the original point p, and
the distance from the center line. We assume the height is the same for the edges
and center line. To create a point for each side of the road, the value of the new
point is modified by either adding or subtracting from the original value.

point =
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2
∗ sin(angle)

y = p[y]±
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2
∗ cos(angle)

z = p[z]

(3.3)

To be able to visualize this in Omniverse we create 3d meshes for the center
line of the roads, as well as for the edges of either side. The roads with only the
center and with edges are visualized in Figure 3.4
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(a) Roads generated with only center line

(b) Roads generated with side lines

(c) Road Center in our Digital Twin (d) Road with sidelines in our Digital Twin

Figure 3.4: Comparison of roads with and without side lines
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Signs

TheNVDB database contains positional data for all types of public signs on Nor-
wegian roads. The database was used to obtain the sign positions within the area
of the digital twin. This was done by extracting the boundaries of the digital twin
and using this as the parameters to an API call, following a similar approach as the
one we did with the road lines. The data returned from the database contained
several layers of information such as metadata, geometry, and location. The po-
sitional data and the sign information were then processed from this data and
subsequently stored in a Pandas data frame.

Leveraging the information obtained from theNVDB database made it possible
to automatically incorporate the signs into the Omniverse scene. This was accom-
plished by using the sign information to loop through a map in Python, which
contained the different types of sign assets we had. SinceNVDB contain hundreds
of different signs we made the decision to classify them into 4 different types:
hazard signs, give way sign, prohibition signs, and mandatory signs. This can be
seen in Code 5. In this asset map, the ranges of sign IDs are associated with corres-
ponding asset filenames. Additionally, a default asset named ’cube.usd’ is specified
for cases where a sign’s ID does not fall within any of the defined ranges.

asset_map = {
range(100, 157): 'hazard-sign.usd',
range(202, 215): 'give-way-sign.usd',
range(302, 379): 'prohibition-sign.usd',
range(402, 409): 'mandatory-sign.usd'

}
default_asset = 'cube.usd'

Listing 5: Asset map

3.2 Pipeline for automatic generation of static digital twins

The process of creating a digital twin can be divided into 5 steps for the user. A
step-by-step guide for this can be seen in section 3.2. The first step involves the col-
lection of the data used in the generation of the digital twin, specifically the height
map and the textures. We recommend using NorgeIBilder.no and Hoydedata.no,
it is also possible to other sources by ensuring the GeoTiff file format is used for
the heightmap and textures, and textures ordered from top left to bottom right.

The second step is to link the software we have created with Omniverse. After
doing this, it is possible to boot the program through the terminal by running the
following command: app\omni.code.bat –ext-folder exts –enable omni.hello.world.
The third and fourth steps involve selecting the various inputs collected in step
number 1 and setting the output for where you want the digital twin to be saved.
The final step involves starting the program by reviewing the input variables and

NorgeIBilder.no
Hoydedata.no
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clicking the button. As mentioned all of these steps are described further in the
step-by-step guide provided in section 3.2.



Digital Twin Creation Guide

Introduction:
The software that has been created has an ulterior motive of making high-quality digital 
twins more easily accessible to different user groups. This guide will walk you through using 
the software and what it takes to get a digital twin generated. First, a simple step-by-step 
tutorial will show you the fundamental steps of the software and after this it will go into more 
detail for each point.

Step 2



Start Software

 Link up your 
extension to 
Omniverse Cod

 Boot up the Digital 
Twin creation 
software by opening 
the script in any 
IDE and typing in 
the terminal

 app\omni.code.bat 
--ext-folder  
exts --enable 
omni.hello.world

Step 5



Generate DT

 Start generating 
you digital twin by 
hitting the “Create 
Mesh” button

 After this is done 
you cant sit back 
and wait while the 
digital twin is being 
processed.

Step 4



Choose Output

 After you have 
entered the input 
variables choose 
the output path to 
where you want to 
store the digital 
twin in your 
Omniverse Nucleus 
server.

Step 3



Choose Input

 When the software 
has booted up enter 
the collected 
images from step 
one into the input 
fields in the GUI

 NOTE: 
If there are more 
than one texture 
please enter the 
folder these are 
stored in.

 Step 1



 Collect the desired 
textures and 
heightmap for your 
digital twin

 NOTE:  
We recommend 
using GeoNorge and 
Hoydedata.no for 
this, but any GeoTiff 
file works

Collect Images

Step by step tutorial:

Detailed description:

Step 5:
After you have gone through all the previous steps and you 
are sure that all the variables are correct, you can click on 
the "create mesh" button.  The software will then create your 
digital twin and fill it with building meshes and more.  

NOTE: 
The time it takes to generate your digital twin will depend on 
several factors such as hardware quality and size of your 
textures and heightmap.

As seen in the image below you will be shown a simple GUI in 
your Omniverse Code window after finishing step 2. Here you 
will need to choose the correct input files, i.e the folder where 
your texture files are stored and the path to where your 
heightmap.tif is stored locally.   

After you have set the different input variables needed to 
create your digital twin, you will need to set a path to where 
the digital twin will be stored on your Nucleus server. Here we 
recommend creating a new folder for your project.



The path text in the input fields should change as you edit 
them so you can see that the right paths are entered. 

Step 3 and 4:

Step 2:
The first thing necessary to start the program is to link the 
source code to Omniverse Code. This can be done by going into 
the extensions tab in the Omniverse and adding the new path. 



NOTE: More info about this can be found on Omniverse Code's 
pages and at this link:



https://github.com/NVIDIA-Omniverse/kit-extension-template 



To boot up the program you then need to open the source code 
in an IDE, we and Omniverse recommend using VS Code. Once 
you have the code in front of you you can open a new terminal 
window and run the following command:



app\omni.code.bat --ext-folder exts --enable omni.hello.world













Change “omni.hello.world” to what package your omniverse 
extension is set to.



A new Omniverse Code window should appear in front of you.

Step 1:
In the image to the left you can see 
our recommended settings for 
retrieving the heightmap from 
hoydedata.no. Here we have the 
“hjørnekoordinater” as the extent of 
our digital twin.



In the next box, named “valgte 
prosjekt”, you can choose how 
detailed you want your terrain to be. 
We recommend using the best 
possible, which for this example is 
the 5pkt.



In the “avansert” tab, it is important 
that you choose the right resolution 
in “oppløsning” and that the box for 
“klipt til bestillingspolygon” are 
checked and “filoppdeling” is set to 
none, as this returns the image as 
one file.



NOTE: 

Remember to use your coordinate 
system, for this project we used 
UTM33.



It is important that the images are 
GeoTiffs as the bounds and internal 
coordinate system are used for the 
creation of the digital twin.




After you have retrieved the 
heightmap from Hoydedata.no you 
can do the same process for 
Norgeibilder.no
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After the user has taken the necessary steps to start our program, they start
creating the digital twin. As of now, the process is divided into 2 main subpro-
cesses, the generation of the terrain and the generation of additional data. The
most crucial part of the digital twin is the terrain model. To generate this, the
software takes in the elevation map and textures provided by the user and divides
this down into smaller tiles that Omniverse is able to interpret as 3D models. After
the tiles have been generated they are uploaded to the Nucleus server and entered
into the USD scene in Omniverse.

The next processes involve adding additional and significant data to the digital
twin. For this project, the building meshes and road network were the major focus
areas as this has a greater impact on our use case, autonomous vehicle training,
and visualization. To do this, we extracted the boundaries from the elevation map
and used this to extract data from different data sources, mainlyNVDB and Over-
pass API. After the data was collected, it was processed as discussed earlier in the
chapter and then added to the USD scene. A flowchart of the software processes
can be viewed in Figure 3.5.

Figure 3.5: High-level flowchart of our system
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3.3 Dynamic Digital Twin

A digital twin is a virtual replica of a physical object or system that allows for real-
time monitoring and analysis. For this to be possible it is important for the digital
twin to get real-time data from the physical object or system. Such data can be
obtained from different sources such as sensors, IoT devices, and cameras. This
information can be processed and fed into the digital twin to continuously update
and modify the digital twin. The benefits of using live sources are numerous and
the main point for our case is that it is easier for real-time monitoring of the
autonomous vehicle. In addition to this, the vehicle provides other data that can
be useful for our digital twin such as images and additional road information.
Overall, the integration of real-time data sources is a critical aspect of developing
an effective digital twin. In this section, we will address how we managed to
address research question 3, which explores the possibility of streaming real-time
data from an autonomous vehicle for dynamic updates.

3.3.1 Technologies

The coming section will explore the fundamental technologies employed that al-
lowed us to integrate live updates in our digital twin, with the main concept being
the PostgreSQL database.

PostgreSQL and TimescaleDB

Setting up the PostgreSQL database was a crucial point for enabling us to incorpor-
ate real-time data into our digital twin. The database consists of 3 distinct tables
that store the geographical coordinates from the vehicle, images taken from the
car, and information about potholes and cracks from the different roads that were
traversed. Once the data is stored in one of these database tables it is processed
through different Python scripts, which either leads to the information getting ad-
ded into the digital twin or modify already existing data. Since most of the data
that is captured are time-series data we thought it would be suited to introduce
Timescale db into our database, as it would provide better performance to the
overall product. Timescale is designed to handle high-frequency time-series data
better by reducing the amount of data being stored and dividing the data into
many smaller chunks. This could be crucial in our case where the geographical
coordinates from the autonomous vehicle are sent 10 times a second and could
lead to a large amount of data being stored. Timescale is easily added to any
project using time data and does not remove any features from Postgres. Times-
cale offers additional features, such as gap filling, which can prove valuable for
geographical data when there is a data outage or irregularities.
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Omniverse connector

An Omniverse connector is used to enable communication from external software
to Omniverse. The sample comes with boilerplate code, and examples to help the
user. Our experience is that the code is unnecessarily nested and complicated,
with poor or no documentation of the functions provided. After some refactoring
and trial and error, we were able to use data stored within a database to alter our
scene in Omniverse using this connector.

To enhance accessibility and facilitate future use, we have organized the classes
used in the Omniverse Live example into separate files for improved reusability.
The two files created are: "LiveSessionInfo.py" and "LiveSession.py".

The purpose of "LiveSessionInfo.py" is to collect all logic used and store the
Omniverse Live Session created. While "LiveSession.py" contains the code respons-
ible for creating, merging, and ending an Omniverse Live Session.

Robot Operating System

The Robot Operating System (ROS) is a free and open-source software that allows
different components of a robot to communicate with each other without being
tightly coupled together. ROS uses a publisher-subscriber architecture, meaning
that a publisher can send information and messages on a certain topic where the
subscribers of this topic will receive it.

When NTNU received the autonomous vehicle software, the developers cre-
ated separate data classes to assist communication within the car. These classes
needed to be integrated into our client script to establish a connection between
the data obtained from the car and the database. To accomplish this, a Rospy
client was developed to handle this transmission. The Rospy client utilized psy-
copg2, a PostgreSQL adapter that enables the execution of insertions and updates
on a database. With psycopg2, a connection to the database was established. For
each callback event, the Rospy client would perform an insertion operation, which
included the data retrieved from the car into the database. The snippet of the call-
back function can be seen in Code 6.

def callback(data):
global conn
if conn is None:

return
cursor = conn.cursor()
insert_query = "INSERT INTO car_position(time, position) "

"VALUES (%s, %s)"

time_stamp_since_epoch = data.header.stamp.secs
+ data.header.stamp.nsecs*1e-9

date = get_date(time_stamp_since_epoch)
position = str(data.utm_easting) + "," + str(data.utm_northing)
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cursor.execute(insert_query, (date, position))
conn.commit()

Listing 6: Callback function for Rospy client

In addition to the Rospy client created to retrieve real-time data from the car, the
use of rosbags was also incorporated. Rosbag is a file format and a playback tool
from ROS that lets a user record every message sent on a topic. This was used
to rerun the data, which could help support performance analysis and testing. By
using the command rostopic echo -b file.bag -p /topic we could easily create CSV
files from the data generated from the driving sessions. These CSV files were later
processed using scripts and fed into the PostgreSQL database or used to analyze
the data. With the Rospy client created we could also rerun the rosbag as if it
was coming from the car by using the command rosbag play recorded1.bag –topics
/UTMPosition. By executing this command, we could visualize and simulate real-
time updates in our digital twin, mimicking the data stream as if it came from the
vehicle.

3.3.2 Live updates from moving agent

Integration of real-time data from a moving agent into a digital twin was one of
our main goals for this project. This integration would allow for easier monitor-
ing of the vehicle and could lead to analyzing its patterns and driving capabilities.
This was done by sending information to the PostgreSQL server described in sec-
tion 3.3.1, where it would then be processed before modifying the digital twin in
real-time.

Modifying a digital twin in real-time with Omniverse necessitates setting up a
live connection through an OmniLive session. An OmniLive session enables users
from different platforms to collaborate on the same assets in real-time. Utilizing
non-destructive edits makes it possible for the users to edit a scene without al-
tering the base file. Once the live session is complete, the users can merge these
modifications into the base file [32]. To enable the database to function with these
OmniLive sessions, we created an Omniverse Extension with Python that could
alter these sessions directly from a script that reads data from the database. Om-
niverse provides basic sample codes from some different use cases, one of these
being altering a scene live. We employed this sample code to create a class to store
the live session and a script that could modify the car in the digital twin with the
new positions communicated to the database. The live session class created can
be reused to create other features that can alter the models in the digital twin.

3.3.3 Analysis of driving data

The driving data obtained from the rosbags generated from the trips were used
to analyze and examine the driving patterns. The road network data acquired
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fromNVDB contained two or more points, mainly the starting and ending point
of the current road segment. To overcome this limitation in the data, we used an
interpolation method from the NumPy library called linspace. This allowed us to
generate linearly spaced points in between the points gathered for the road. An
example of this can be seen in Figure 3.6 where a road segment from Skistua was
retrieved and filled with additional data points. With these points, the distance
from the car to the center line was calculated and subjected to further analysis.

(a) Roads segment without linearly spaced points

(b) Road segment with added linearly spaced points

Figure 3.6: Example of additional linearly spaced points

3.3.4 Potholes and cracks

Using the data acquired from the cameras connected to the vehicle gives access to
several new possibilities and opportunities. One possibility that was explored was
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the use of a deep learning algorithm to extract more information about road con-
ditions and integrate that into the digital twin. With the help of Mamoona Birkhez
Shami, a Ph.D. student, a deep learning model was created to analyze the acquired
camera footage to identify road defects. The data was stored in the PostgreSQL
database and fed into the digital twin. The integration of this data could help with
the assessment of road networks, leading to more proactive maintenance of the
road and easier monitoring.

3.4 Development process

Throughout the development of this project, an iterative development process has
been utilized, which was compromised into three distinct stages. A visual repres-
entation of this process can be seen in Figure 3.7. The initial stage involved the
implementation process, where the necessary additions were integrated into the
project. This primarily included further development of the previously mentioned
Omniverse extensions discussed in section 3.1.2, or by looking at the integration
of new data.

The second stage was the testing and evaluation part, where we studied and
evaluated the results of our implemented features. This process incorporated com-
parative analyses against earlier versions, as well as utilizing research acquired
by other developers or projects to evaluate against. By incorporating a test and
evaluation phase, we were able to engage in meaningful discussions about the
shortcomings and improvements of our product thus far. This process provided
valuable insights into each other’s work, enabling constructive conversations on
how to enhance the product further.

In the final phase of the iterative approach, we brought in expert feedback to
further process our results and decide on future goals for the next iteration. This
feedback could come from our supervisors and other stakeholders.
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Figure 3.7: Development process loop





Chapter 4

Results

The objective of this research was to advance the programmatic and automated
generation of digital twins. In this chapter, we will present the results we were
able to achieve, which are divided into two primary sections: the results from the
mesh and digital twin generation and the results we were able to gain from our
live sources.

4.1 Presenting the Power of Automatic Digital Twin Gen-
eration

As aforementioned, the goal of this project was to automate the generation of
digital twins. This was done to enhance access to high-resolution digital twins.
Through many different iterations and development, we have achieved significant
advancement in this field. The result of this is an Omniverse extension, which
has the capability of creating a high-resolution digital twin given the right input
variables.

To visually showcase our progress, we have created a video featuring several
digital twin models created with the help of the software developed through this
project. You can find the video from this link https://youtu.be/uK-7a0N-g94 or
in the box below, where we explore these advanced models and witness the power
of automatic generation in action.

Overview of Automatic Digital Twin Creation:
https://youtu.be/uK-7a0N-g94
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4.2 Exploratory process using CityEngine and RoadRun-
ner

During our project, we went through several iterations for the digital twin. The
first one we tested was a CityEngine model, which was generated entirely with
their program. CityEngine is a powerful urban planning tool that generates 3d
city models directly. This seemed like a suitable starting point for generating data
and gaining initial insights into the project.

The CityEngine model offers several different customizable settings that allow
the user to determine which component should be generated, as well as the qual-
ity of the model you want to create. In this initial iteration, we experimented with
these settings to generate building meshes and road networks, as well as test-
ing their vegetation model. This phase provided valuable insights into the area
of digital twin creation and helped us scope out the requirements for our own
program.

From our experience with CityEngine, we identified several key points. Firstly,
we appreciated the ease of creating new models and the ability to generate terrain
of different qualities. The second point we took from these tests was the differ-
ent types of models we could integrate into our own solution such as vegetation
and buildings. However, there were also some disadvantages to using CityEngine,
mainly the quality of the terrain and the flexibility of the model. Even though
you can alter the terrain quality to some extent, CityEngine is not specifically de-
signed to deliver high-resolution terrains. Meaning that the standard did not live
up to our expectations. Additionally, there were some flaws with the road network
model created by CityEngine, mostly occurring in roundabouts and crossroads.

To find a solution for the flaws found in the road network created by CityEn-
gine, we experimented with creating a road model using Matlab’s program Road-
runner. This road model was very detailed and had several other elements that led
to a good product for the digital twin, such as signs and guardrails. However, we
found it difficult to include this model in the digital twin scene after exporting it
as a USD object. This occurred due to the differences in elevation data used. Road-
runner divides the roads into tiles and uses the same height data for the entire tile
even though it might contain several different points. This could lead to the road
either being buried in the ground or floating on top of it. This can be seen in Fig-
ure 4.1, where the detailed road model is shown in two different places. The first
image shows a position where the model fits perfectly into the scene, leading to a
good addition to the digital twin. The second image shows when the model does
not fit as well and therefore passes beneath the terrain in some places, leading to
an inferior model.
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(a) Roadrunner model fits perfectly to the scene

(b) Roadrunner model passes beneath the terrain

Figure 4.1: Showcase of two different outcomes for the Roadrunner models

4.3 Advancing towards an automatic solution

Using the points we learned from the first iteration, we started to develop our
own model. For the initial iteration of our own model, we aimed to combine tex-
tures obtained from NorgeIbilder with heightmap data from HoydeData. However,
we encountered some restrictions within Omniverse when we tried to create one
big model. Specifically its maximum resolution for textures, which is limited to
8000x8000 pixels. Consequently, the model we developed couldn’t load into our
scene.

To overcome this constraint, we changed our approach to split the texture and
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heightmap into smaller tiles that would fit within Omniverse’s limitations. This
was done by calculating a common divisor for the height map and texture that
caused each tile to be under 8000x8000 pixels. Implementing this tile-based divi-
sion introduced a more complex code, resulting in multiple locations in the code
that could lead to errors. This can be seen in Figure 4.2, where the division system
failed to align the heightmap and the textures properly, leading to considerably
large gaps in the texture.

Figure 4.2: Gaps in the textures caused by complex code

Several modifications were made in the process of terrain generation from our
initial model to the final version. In this initial model, the height map was inter-
preted by Pyvista as containing integer values instead of floating points, due to
the utilization of integer values for the coordinates. As a consequence, the terrain
had to undergo a smoothing process after being generated, resulting in an inferior
product. The outcome of this smoothing procedure can be observed in Figure 4.3a,
wherein the road does not display a consistently level surface throughout its entire
path.
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(a) First iteration of terrain model

(b) Improved terrain for a later iteration

Figure 4.3: Comparison of terrain model from first and second iteration

Furthermore, in this initial iteration of our model, we deliberately chose not
to generate any extra data such as buildings and road outlines. Our intentions
for this iteration were solely on testing if such large texture files could be imple-
mented into Omniverse and get this up and running. However, in the subsequent



46 E. Torland, T. Jørgensen: Automated Digital Twin

testing and evaluation stage, we observed that the stage felt empty and was miss-
ing some elements to create an immersive scene. This emptiness within the scene
highlighted the importance of additional assets such as buildings for the digital
twin model. Consequently, for the subsequent iteration, we elected to prioritize
the incorporation of additional assets, mainly building meshes. Additionally, we
aimed to investigate deeper into the problem we encountered with the gaps in the
generated textures.

4.4 Creating a populated scene

For this third iteration of creating the digital twin, our main goal was to populate
the environment with diverse assets in order to address the identified emptiness
observed during the testing and evaluation phase of the previous iteration. As a
result, we collectively concluded that incorporating signs, road network outlines,
and buildings into the digital twin would greatly enhance the experience, particu-
larly from the perspective of autonomous cars, which has been our primary focus
since the early stages of the project.

4.4.1 Building meshes

Figure 4.4 illustrates the building meshes create for our model. To make the scene
more realistic and increase the feeling of depth we modeled the building mass of
the selected area. The buildings are made from data retrieved from OSM’s data-
base, modeled, and placed in the scene. OSM’s database contains detailed inform-
ation on the buildings such as height and position, allowing us to create a model
that is visually accurate, properly placed, and on a true-to-life scale.

The buildings still have a solid texture as a placeholder due to time constraints
for creating a texture-generating function. The color can be changed in our script
to the desired color that the user wants. It is also possible to generate roofs through
OSM’s data, although the function would need to be complex as the roofs can be
of 16 different types.
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Figure 4.4: Building meshes shown in Skistua digital twin

(a) Missing buildings near Gløshaugen

(b) Missing buildings near Skistua

Figure 4.5: Missing buildings
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In our model, some of the buildings are missing along the edges of the model,
as seen in Figure 4.5. This occurs due to the different coordinate systems used by
Kartverket and OSM. OSM is using the geographic coordinate system WGS84 for
selecting an area, while Kartverket is using the projected UTM coordinate system.
Kartverket is also using a different datum called EUREF89. According to GeoData,
this datum difference should only account for a maximum of 40 cm difference.
They state that transforming between these is unnecessary as the transformation
algorithm has an inaccuracy of +/- 1 meter[33].

That means our points should be in the right place geographically. This seems
to occur due to how Kartverkets UTM based map is rotated compared to OSM’s
WGS84 based map. This can be seen in Figure 4.6a and Figure 4.6b. The pink
extent in Figure 4.6b is Kartverkets extent on OSM’s map. The perfectly horizontal
extent has been skewed when represented in another coordinate system. It seems
that the Overpass API creates a horizontal square in its own map projection. This
interaction ends up creating an extent that does not include all the data in our
model.

(a) Extent from Kartverket

(b) Extent from Kartverket compared to OSM

Figure 4.6: Visualization of how projection affects the look of our extent
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4.4.2 Road network outlines

The road network is a fundamental component of the digital twin, especially when
considering its perspective from a vehicle’s point of view. A possibility to do this
manually was mentioned in section 4.2, where we created a road network with
Roadrunner and later imported it into the scene. However, we wanted to try to
automate this process to improve the result and easier integrate it into our scene.
This section showcases our investigation of automating the road network creation
process, as well as presenting our findings.

The road network created for the digital twin has its basis from the NVDB
where we retrieved the center line for each road in the specific extent obtained
from the boundaries of the model. With this center line, we calculate the position
of the parallel lines, which would represent the edge marking of the road, based
on the width of the road. In the digital twin, the edge markings of the road net-
work are visually represented by white-colored lines. whereas the center lines are
represented in yellow. This color scheme was chosen to differentiate between the
two elements in the road network and make it easier to interpret the road layout.

An example of this is shown in Figure 4.7, where a segment of our digital
twin of Stjørdal is shown with the highlighted road markings for easier visibility.
While the accuracy of these points is mostly right, there are some places where
the positioning is slightly off, particularly when the road is divided into an odd
number of lanes in each driving direction.

Figure 4.7: Road network visualized in Stjørdal Digital twin
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4.4.3 NVDB signs

Much like with the road network, we felt that including road signs would improve
the overall product. Furthermore, we aimed to assess the accuracy of the NVDB in
providing reliable data. A way of doing this was to compare different sign positions
in our digital twin against their real-world position. This is also further described
in Case Study 3, subsection 4.9.2.

In order to add signs to our USD scene, we utilized the different numerical
values assigned to each sign retrieved from the NVDB database. These numerical
values are organized in ranges, an example of this could be that sign numbers in
the range of 100 to 156 are hazard signs. By using these ranges we were able to
categorize and create assets for each sign group, which could eventually be for
each sign number instead of group.

In Figure 4.8, you can see the sign placement in our USD scene compared
to the real world. This comparison shows the accuracy that the NVDB database
can have in terms of positioning. The signs are placed in the same position as the
real world, albeit with some minor offsets. As you move further from the main
roads and city centers these offsets increase in some places. Since the items in the
database are separated, it does not take into account items that are placed on top
of each other, like in this case with the give way sign on top of the traffic light.

4.5 The final product

The final model we ended up with for this study is best characterized as a semi-
automatic model. The model needs manual work for the process of retrieving the
heightmap and textures from Hoydedata and NorgeIBilder. Once the necessary
data was obtained, the user can input it into our programs Graphical User In-
terface and get a high-resolution virtual representation of any given location in
a short amount of time. The representation includes building textures, road net-
work outlines, and signs retrieved from the NVDB. An Omniverse USD scene was
created from this data, making it easy to modify in later stages by incorporating
real-time data. This scene holds potential for utilization in diverse applications
such as simulations

In Figure 4.9, a visual representation of our model is presented, viewed from a
top-down perspective. From afar, there are no big differences between the CityEngine-
generated model and ours, but with a closer look you can see the details that come
out when using our model and the textures from Norgeibilder, this is presented in
more detail in subsection 4.5.1.
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(a) Custom model view of sign

(b) Real world picture for comparison

Figure 4.8: Comparison of real-world and digital twin sign location

Figure 4.9: Custom model from top-down view
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4.5.1 Mesh generation

Following the issues encountered with the textures during the previous iterations,
we conducted an in-depth analysis of our code. As a result, we made the decision
to abandon our previous approach and reprogram the texture generation process.
This time with a deeper knowledge of the field and with a better understanding of
the capabilities of Pyvista. In the final iteration, we adopted a new methodology
where a single mesh was generated from the heightmap. Subsequently, we calcu-
lated the number of tiles needed to divide the texture into segments of 8000x8000
pixels. By identifying the intersections between these texture tiles and the height-
map mesh, we were able to accurately cut the mesh at these points. Resulting in
a terrain mesh with a seamless texture, avoiding any gaps.

The mesh generated with our software is a more detailed model than what
is created by most other digital twin tools. This is because our model is created
with consideration of it suiting well for autonomous vehicle training, where de-
tails in terrain and textures are more crucial. A possibility with our model is the
option to adjust the resolution for other purposes. This is possible due to the in-
put data being completely customizable by the user with the data they choose
from Norgeibilder or other sources. This adaptability makes our model a good
foundation for many different use cases.

Figure 4.10: Custom model textures Figure 4.11: CityEngine textures

Figure 4.12: Side by side view of texture differences

As shown in Figure 4.12, a side-by-side view of the texturing of our digital
twin compared to the one of CityEngine is presented. Our digital twin uses a tex-
ture that has a resolution of 8 cm per pixel, whereas CityEngine uses a resolution
of 50 cm per pixel. For autonomous vehicle simulations, the degree of accuracy
in a terrain model is a crucial determinant. Therefore, we utilized a point dens-
ity of up to 5 points per meter for our models. This gives the terrain the closest
representation to the real world, which leads to a more realistic model.
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4.5.2 A visual journey through our final model

A video of the digital twin created with this final model can be found in the box
below or at https://youtu.be/EC5eOn1B5AQ. The first part of the video shows
a larger area outside Orkanger called Hemnekjølen. The area has a size of 4.8 x
2.4 kilometers and consists of a longer stretch of the E39 and slightly elevated
terrain. The second area shown in the video is Gløshaugen in Trondheim. Here, a
digital twin of 1.2 x 1.3 kilometers has been created that includes several larger
building models such as NTNU Gløshaugen, "Studentersamfunnet", and Lerkendal
stadium. There are also several road areas that are outlined with signs and road
lines.

Digital twin - Hemnekjølen and Gløshaugen:
https://youtu.be/EC5eOn1B5AQ

4.6 Manual work added to the final model

In our project, we experimented with using additional 3D models to enhance the
final model’s appearance. One of the key tools we used for this was the Omniverse
Create paint-fill tool. Using this tool, we could select areas within our scene and
fill them with various predefined and self-made assets. Another tool we employed
was the Omniverse paintbrush, which enabled us to fill specific areas in our scene
with these assets. We used this tool to include high-resolution assets such as trees
and grass, making our scene more realistic. However, it is important to note that
this process and these tools involve manual work and additional time to complete.

In Figure 4.13, it is possible to see the result this tool had on our scene. The left
image shows the scene with the addition of different tree assets, creating a more
realistic and immersive scene, while the right image lacks these assets, resulting
in a less complete scene. All things considered, we believe that these extra assets
are worth the time invested in integrating them into the scene as the rest of the
model is automatically generated. We also believe that not every extra asset added
needs to have a 1 to 1 correlation with a physical object as it is almost impossible
to keep it consistent with the real-world model.

Another tool we used to increase the lifelike feel of our scene was to include an
Omniverse environment. These environments can provide different lighting and
backgrounds to any scene. Using these contributed to the overall quality of our
scene significantly, making it more captivating for the viewer.

https://youtu.be/EC5eOn1B5AQ
https://youtu.be/EC5eOn1B5AQ


54 E. Torland, T. Jørgensen: Automated Digital Twin

(a) Digital twin model with tree models

(b) Digital twin model without tree models

Figure 4.13: Comparison of digital twin with and without trees

4.7 From Static to Dynamic: the Impact of Dynamic Up-
dates on Our Digital Twin

The second objective of this master’s thesis was to include live sources and dy-
namic updates to our digital twin. This objective was successfully achieved by
integrating a real-time stream of positional data obtained from a moving agent
with our USD scene.
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Utilizing the rospy client mentioned in section 3.3.1, we had the possibility
of integrating this real-time data from the moving agent. This data was streamed
from a vehicle with an interval of 0.1 seconds and included UTM32 coordinates
for easting, northing, and height data. As this data was streamed to the database,
it is processed through Python scripts which connected the data together with
Omniverse. This is done by the Python script continuously reading data that is
sent to the database. The script then converts the positional data from UTM32 to
UTM33 as this was the preferred coordinate system used when creating our mod-
els. Thereafter, the angle of the car is calculated based on the previous positions
retrieved and smoothed using an exponential moving average. The car object is
then extracted from the Omniverse scene so the position and rotation can be up-
dated.

Digital twin with live data from Skistua:
https://youtu.be/_siQFzXiUvE

Digital twin with live data from Stjørdal:
https://youtu.be/lhuj_DFT3mc

To visualize the integrations of real-time data in our digital twin we have
created 2 videos from two different places. Video 1.1, which can be found at
https://youtu.be/_siQFzXiUvE, shows an animation from the Skistua in Trond-
heim. After the video is finished with the overview, it transitions to a display of
real-time data stream from a moving agent connected to Omniverse. The second
video, which can be found at https://youtu.be/lhuj_DFT3mc, from this experi-
ment visualizes Stjørdal Center much like the Skistua animation and finishes with
a drive through the city. Both of the videoes can also be found in the box above.

4.8 Immersive Integration: Transforming our Scene into
Virtual Reality

In our pursuit of enhancing our model and exploring new possibilities with our
digital twin, we successfully integrated our scene into the virtual world. Through
the smooth integration of VR through Omniverse’s CreateXR application, it is now
possible to walk around in our digital twin to see surfaces, models, and other
aspects of our model. The immersive experience offers the user another point of
view which in turn gave us information and insight to use to improve the overall
product.

By following this link here https://youtu.be/wUvBY6wMixg or in the box be-
low, you can witness our integration visually. The video takes you on a quick tour

https://youtu.be/_siQFzXiUvE
https://youtu.be/lhuj_DFT3mc
https://youtu.be/_siQFzXiUvE
https://youtu.be/lhuj_DFT3mc
https://youtu.be/wUvBY6wMixg
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through Holtermanns veg in Trondheim and gives an insight into the actual size of
the models created. Additionally, the VR perspective highlights a noteworthy ob-
servation regarding the difference in heightdata retrieved from NVDB versus the
terrain generated from our model. Specifically, the small gap between the road
lines and the surface of our digital twin.

Experiencing the digital twin through Virtual reality
https://youtu.be/wUvBY6wMixg

That being said, it is important to acknowledge that there are some downsides
to the use of Omniverse CreateXR. Firstly, in order to ensure a seamless user ex-
perience, the scene requires compressing the models used. Resulting in textures
and visuals that are not as good when compared to the standards of Omniverse
Create. Another limitation is that CreateXR is only compatible with USD files. As
we faced challenges finding Python packages that supported the USD file format,
we resorted to using GLTF files. To get our digital twin into the virtual world, you
have to manually convert the assets to USD files, which can be time-consuming.

In conclusion, the integration of VR has expanded the use cases of our digital
twin model and given us useful information. However, there are still some im-
provements that need to be made to our model and the CreateXR application for
this to be beneficial.

4.9 Case studies

4.9.1 Case Study 1: Analysis of real-time car position data for in-
depth insights

The first case study was conducted to see if it would be possible to interpret some-
thing more from the positional data collected from the moving agent. As men-
tioned in section 4.7, the ROS client gathers positional data every 0.1 seconds.
If it had been possible to use this data for analyzing the previous trip, it would
have given access to large amounts of data that could give a better result and im-
proved interpretation. For this study, we utilized the ROSbags collected from the
trips through Skistua and Stjørdal and converted these to CSV files. The CSV files
contained approximately 4000 rows of data each.

After retrieving the data from the autonomous vehicle, we employed it to con-
duct an analysis of the driving patterns of the preceding trip. One way we did
this involved assessing the vehicle’s placement in relation to the center line of
the roads traversed. By doing this, we gathered insightful data into the quality
of the driving, which made it possible to draw further conclusions about driving
conditions and the data collected.

https://youtu.be/wUvBY6wMixg
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The data collected gave an average distance from the center line of 1.74 meters
when traversing Stjørdal center. This could indicate that the driver was reason-
ably placed in the middle of the roadway as an average lane is between 3 to 3.5
meters wide. It also shows that there may be opportunities to use the center and
outer markings for other goals, such as being a contributing factor in autonomous
driving. Additionally, to these measurements retrieved from Stjørdal, we averaged
3.09 meters in the same parameter over Skistua. The reason why the average was
substantially larger in Skistua may be because of the inaccuracy in the data due to
the dense foliage around the car blocking a good signal to the GNSS. This element
is further discussed in subsection 5.1.1.

The results we got from this analysis do not show any direct outcome. How-
ever, they offer an indication of the potential for utilizing the acquired data in a
broader context. One plausible application of this analysis and the road lines cre-
ated lies in the use of it within a controlled environment, such as a factory or a
construction site, where the lines and analysis could be employed to establish an
autonomous transportation system. The reason these sites would suit this better
arises from the fact that you can remove variables such as pedestrians and other
cars.

A drawback of using this approach is the variation in the data based on if
the road is a two-lane roadway or a single-lane road. The optimal way of doing
this analysis would be to use the center point of each lane instead of the center
line of the road. However, due to limitations in the level of detail provided by
NVDB, the database we retrieve the road network from, this option is not possible.
Nevertheless, NVDB offers very detailed information regarding the center lines,
which enabled us to stay consistent with the data used across all locations. A top-
down view of the car between the road lines created from NVDB is presented in
Figure 4.14. The image showcases the accuracy of the database and our positional
data retrieved from the moving agent, which strengthens our theory of the use of
the markings for other purposes than only visually.

Figure 4.14: Top-down view of the car in between the center and outer road
markings
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4.9.2 Case Study 2 Digital Twin: Validation of Traffic signs’ position
and data in NVDB

The purpose of this case study was to take a closer look at the accuracy of the geo-
graphical coordinates and data provided by the NVDB. This was done by compar-
ing the positions given by the NVDB against the real positions. The real positions
from the sign were taken from multiple data sources such as Google Street View,
our own Ortophoto, and footage retrieved from the car when recording data for
real-time streams.

One thing we noticed in our case study of pinpointing the sign’s geographical
positions from the NVDB, was that the small offsets caused by the database had
a greater impact on the scene as more signs accumulated around the same area.
The signs also gradually shifted closer to the road’s center point and, in some
instances, onto it. This could cause them to look somewhat out of place when
viewed from other angles than from the top-down view. This can be seen from the
video in section 4.7 (https://youtu.be/lhuj_DFT3mc?t=74), where some of the
signs appear out of place, especially in the roundabout and the main road later on.
Besides this, a portion of the places we looked into, showed that the signs were
positioned accurately with a few inches offset. This can be seen in the Figure 4.8
that was shown earlier from Skistua.

Figure 4.15: Start of the tunnel in Stjørdal with misplaced signs on top

Another thing you see missing when collecting data for signs from the NVDB
is the height data and the orientation of the sign. As a consequence of this missing
data, it is difficult to determine what rotation values the different signs should be
assigned in Omniverse. The same thing applies to the height of each sign. This
is especially evident for signs that were supposed to be underground in tunnels
or elsewhere. An example of this can be seen in Figure 4.15 where the tunnel on
E6 in Stjørdal begins. The signs that normally should be inside the tunnel, in the
image marked by an orange outline, are placed on top of it since we retrieve the

https://youtu.be/lhuj_DFT3mc?t=74
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height data from our heightmap which return the same value as the terrain.
All things considered, the concept of automatic sign generation through NVDB

has great value, but the inaccuracy both in the placement and some missing data,
leads to this solution not being good enough for the time being.

4.9.3 Case Study 3 Digital Twin: Road Surface Monitoring

This study aimed to investigate the feasibility of enhancing the digital twin by
incorporating road damage information. To do this, a Deep neural network (DNN)
model was created by Mamoona Birkhez Shami, which processes images obtained
from a vehicle and outputs if road damage is discovered. The processed data were
then sent to a dedicated database designed for this project.

To integrate this functionality into the digital twin, a Python script was de-
veloped. This script retrieves and processes data from the database, subsequently
incorporating the newly identified positions generated by the DNN model.

The results of this study were the creation of a foundation that can be used
to update and read information retrieved from different roads. Although a com-
prehensive test of the entire pipeline has not yet been conducted, it is expected
that the results will be good as there is a substantial overlap in the foundation
used for this and the code used for updating the moving vehicle shown earlier
in section 4.7. A potential visualization of potholes and cracks in our digital twin
is shown in Figure 4.16. Although these assets need a bit more fine-tuning and
thorough testing, they would bring additional value to our digital twin.

Figure 4.16: Potential visualization of cracked road in our digital twin

4.9.4 Case Study 4 Digital Twin: Key elements to create a realistic
and immersive digital twin

The final case study we did was to inspect closer what elements had the most
impact to ensure a realistic and immersive feel for our digital twin. This study
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was carried out throughout the whole process of creating the digital twin from
the early iteration with CityEngine to our final model.

The first variable we noticed had a big influence on how realistic the model felt
and looked when creating the digital twin was the terrain model. This is because
the terrain takes part in both the full 3d model, but also in all additional assets
that are added and changed after the creation of the scene. For this variable, we
iterated over several different types of elevation maps and smoothing algorithms
to ensure the best possible outcome. From our testing, we learned two important
points. Firstly, it is best to utilize a highly detailed heightmap for optimal results.
Secondly, it is crucial to ensure that PyVista interprets the provided values as floats.

A second thing we noticed played a big part in the digital twin is the addition
of detailed objects. After we had created our digital twin, it was easy to see that it
seemed empty when it was not populated with additional objects. To change this,
we chose to automatically generate building meshes which improved the scene
drastically. However, by conducting further research after including some objects
we saw that the building meshes mostly affected city centers and not places like
Hemnekjølen that only consist of some scattered houses throughout the scene.
This is also possible to see from the real-time data stream from Skistua when
moving away from the main road. An easy fix for this would be to utilize the
Omniverse Paint Brush mentioned in section 4.6 to include detailed tree, leaf,
and grass models.



Chapter 5

Discussion

This chapter will discuss challenges and other experiences we encountered during
the project. To do this we will enlighten our research questions, which were estab-
lished in section 1.2, and compare them against our work to discuss our findings.

5.1 Challenges and limitations

5.1.1 Real-time data stream

One of the major discoveries made in this project is the integration of real-time
data from sensors and other objects into Omniverse. During the integration of this
data, it was observed that the position data acquired from the vehicle had some
flaws. The first issue arises due to the fact that the flow of data obtained with ROS
uses a queuing system that is iterated through continuously. This data then needs
to be processed and written to a database to be stored, this takes an amount of
time for each iteration and leads to the digital twin being slightly behind where
the physical agent is.

The second point is about the precision of the data being sent. This point has
several factors that play into the accuracy, such as the measurements from the car
and the surrounding landscape. The surrounding landscape affects how good the
connection to the database is and whether it is possible to maintain a continuous
flow of data. If this is not possible, there will be jumps in the data that will look
unnatural in the virtual model. The measurements from the car are also a factor
that determines the precision of each point. The position data measured from
the car is taken from navigation satellites where the quality of the data can vary
widely. This can lead to some unnatural movements that both affect the position
of the car and the rotation it gets.

Aside from this aforementioned deficiency in the data, there are some other
locations such as under bridges and behind thick foliage where the GNSS can
not establish a connection to the satellite. Consequently, it will transmit a 0,0,0
positional reading to the database. These outliers caused by the inferior quality
can be seen in a side-by-side view with the normal readings in Figure 5.1. This can
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also be seen in the Youtube clip provided here: https://youtu.be/u6zd2zNnLOE
where the car drives under a bridge in Stjørdal.

A way to fix these outliers caused by inferior readings from the car is hard to
come up with as it is hard to tell which ones come from bad data and which ones
come from actual bad driving. However, it is easier to find a solution to the prob-
lem that arises when the car loses connection to the satellite. Here, extrapolation
can be used to predict the data points that do not fit in or interpolation to correct
afterward.

(a) Outliers from the GNSS readings

(b) Normal values from the GNSS readings

Figure 5.1: Comparison of GNSS data

https://youtu.be/u6zd2zNnLOE
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5.1.2 Limits of automation

Our method of creating a digital twin is not fully automatic. The user has to get
their hands on Ortophotos and elevation data in the form of .tif files. Optimally
this step would be something our software would take care of. This could be done
by letting the user only type in a geographical extent, or select an area on a map,
and the software would do the rest. Our solution right now works optimally for
areas within Norway, which limits our solution due to challenges in accessing data
from Kartverket and GeoNorge. The Ortophotos from GeoNorge require the user
to have an account, and both services deliver the data through email. Further-
more, there is no direct accessibility to this data through an API. Instead, the user
has to manually select the area in their GUI and undergo a delivery process that
can last up to two hours. Unfortunately, there is a shortage of alternative data
sources, however, we were fortunate to secure access to GeoNorge, along with its
Ortophotos, which played a pivotal role in this project.

5.1.3 Buildings

The best comparison for our buildings is GeoDatas clip and ship service. When
looking at the buildings that they offer in their service there is a significant differ-
ence in quality in the details. Unfortunately, this is not a free service and comes
with the same caveat that the Ortophoto and heightdata have. To get the data you
get sent an email with a download link, making it suboptimal for the creation of
our automatic digital twin.

Building details

One of the things missing from our buildings is detail. Right now we generate the
buildings from a footprint of the outline. This footprint then gets extruded to some
height given. This works well, as the two-dimensional points in OSM capture the
shape of the building very well. However, it falls short when looking at details like
roofs, in our current model all the roofs are flat. For our areas chosen in Norway,
this is seldom the case. A comparison from the same area can be seen in Figure 5.2.
Here we see the difference of how the roof shape and building details affect the
realism of our Digital Twin.
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(a) Buildings from our Digital Twin

(b) Buildings from GeoData showing the difference in detail

Figure 5.2: Comparison of roof and detail differences

For some buildings or building parts, OSM includes the roof type of the build-
ing, as well as the roof height. This data could be used to implement a solution to
create different roof shapes for some of the buildings.

Another detail that our model gets wrong is elevated walkways connecting
buildings. This happens because we gather two-dimensional points and assign
their ground height based on our terrain model. Consequently, when we extract
the building footprints, these elevated walkways are also retrieved meaning there
is no separation between the different parts. This leads to instances where building
meshes inaccurately cover areas that are not occupied in real life. An example is
shown in Figure 5.3.
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(a) Footpath going over the road in our model

(b) The same footpath taken from google streetview

Figure 5.3: Side-by-side of how footpaths get created in our Digital Twin

Building heights

In our current model, we get the building height from OSM. This data can be ex-
tracted in three different versions. The first one being in meters, where we utilize
this value to set the height of the building. The second version is the number of
floors a building has. With this value, we calculate the approximate height of a
building by multiplying the number of floors with a constant height value. This
can lead to a small offset due to the variations in floor heights, however, it gener-
ally provides an acceptable approximation. The last value possible is the "None"
value, indicating that there are no recorded values for the building. There are a
noticeable amount of buildings with no height data, resulting in a less accurate
representation of the building’s shape. Figure 5.4 is an example of this "None"
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value, which is taken from the gløshaugen campus in our model.

Figure 5.4: Height of buildings at Gløshaugen campus

When looking at sources like GeoData clip and ship we see that they have
a more realistic model when it comes to building heights. This can be seen in
Figure 5.5. GeoData has documentation on all the attributes they use for all of
their buildings in thislink. In the documentation, there are several fields pertaining
to height data, especially when it comes to the number of floors. This data is
gathered from Eiendomsregisteret and is updated almost daily. This could be one
source they use for their building height data.

Figure 5.5: Height of buildings in GeoData Clip and Ship

Another way to get the building height data is through Kartverket. Along with
the elevation data we have used for our terrain model they also offer another
form of elevation data. This is a surface model that includes elevation data for
buildings, trees, etc. This can be used to set the height data of buildings.
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Building textures

The biggest difference in our buildings from the real world is the lack of textures.
One solution to this would be to adopt the same approach utilized by CityEngine,
where textures are procedurally generated from a set pool. While this improves
the looks of the model it is just an approximation of real life. The ideal solution,
however, would be to use photogrammetry techniques to retrieve the real-life tex-
tures and integrate these with the corresponding building mesh in our scene.

5.1.4 NVDB assets

Signs

A current limitation of the integration of the signs is their unidirectional orienta-
tion, which fails to accurately represent real-world conditions. This inconsistency
arises due to the incorporation of predefined assets into the digital twin without
specifying the rotation. To address this issue, a potential solution could be to re-
trieve the road object from NVDB and link it up with the corresponding road seg-
ment to see whether the sign aligns or opposes the direction of road traffic. How-
ever, at present, we have not found a method to retrieve the cardinal direction
of the road segment obtained from NVDB, making a comprehensive calculation
impossible.

Another problem we encountered when implementing the signs into the di-
gital twin arises from the positioning of some of the objects in the database. This
can be seen in Figure 5.6, where some of the signs are slightly misplaced out to
the side of the road. This occurred to objects that were further away from the cen-
ter of the road or that were less accessible to the measurements that have been
entered into the NVDB.

Figure 5.6: Misplaced signs in Stjørdal
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5.1.5 Terrain and texture

There are several elements of the textures of the digital twin that can be discussed.
The first one is how good the resolution of the texture must be to get a reasonable
outcome for a digital twin. The second element is about the variables in Omniverse
that affect how good the result of these textures will be. Both of these elements
play an important role in answering RQ2.

Firstly, by using the 4-centimeter image resolution provided by https://www.
norgeibilder.no/, you get a highly realistic model that looks good both on closer
inspection, but also when viewed from afar. The downside with this is both the
storage capacity that these 3d meshes need and the run time of our program. The
USD file created is not that big since it just references other files. However, since
the texture needs to be stored locally and split into smaller tiles for it to work
with Omniverse, leads to us creating multiple GLTF’s that are approximately 1
gigabyte. We recommend that the user looks into their specific use cases of the
digital twin and review whether or not a 4cm resolution is needed. If the user is
going to create a digital twin for larger areas than 1.5km x 1.5km we believe it
is enough to use image resolution of 8-10cm per pixel. In addition to the storage
capacity needed, the run time of our program greatly increases with such big files
as it has to split up and generate meshes of large amounts of data. This is fine if
you have plenty of time, but if you want a digital twin generated quickly, some
quality will have to be forfeited.

Secondly, we need to discuss a big factor that plays into the texture. Through
Omniverse Code’s Python commands, it is possible to change variables for ma-
terials and other factors such as positional data for objects. This provides various
opportunities to modify your scenes so that they seem more natural and realistic.
This was done for the project on several factors, but when we tried to change the
Index of refraction (IOR), the value that says how much reflection there should
be in a material, it did not change. IOR is one of the most important factors for
the texture of the digital twin because by default Omniverse’s value provides far
too high of a reflection that makes the texture look glossy. If you want to change
this, you have to go in manually for each tile that the digital twin is split into and
change the value in Omniverse UI. Because of this error with Omniverse, you have
to perform a decent amount of manual work on the stage to get the best possible
and most realistic result.

5.1.6 Load time and runtime

Throughout the project, a considerable amount of time has been used to look
into the runtime and load time of our project. This is because we have seen a
trend of these increasing, which makes sense as we have drastically improved
the quality of both the terrain and the textures used, making the files created
larger. As previously highlighted in the discussion, we believe it is important for
the user to look at the use case of their digital twin before selecting the resolution.
On average, the runtime for generating a digital twin with an area of 1.5x1.5

https://www.norgeibilder.no/
https://www.norgeibilder.no/
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kilometers was 3 to 5 minutes. However, this increased drastically as the area
increased. in the most extreme cases, it could take up to 35 minutes to create
large digital twins. It is worth noting that these areas were so large they were
only meant for testing purposes, but it shows the importance of considering the
data used.

The load time of the model also increased when the models made were in-
creased in size. A solution to this was found when we tested the digital twin in
VR. Omniverse CreateXR only supports the USD file format, and when we manu-
ally converted our models to this file format, we saw a considerable change in
the load time of the digital twin. Due to not finding any packages that support
USD in Python, we chose to stick with GLTF and OBJ. However, it may be worth
looking into Pixar and other packages in the future to optimize the loading time
and storage of these objects.

5.2 Research Questions

In this section, we will go deeper into each of the research questions to answer
them and showcase our findings.

RQ.1 - What parts of a digital twin can be automatically generated?
As described in section 4.4, there are several parts that we were able to auto-
matically generate into our digital twin. Our research has made a significant con-
tribution to the field by introducing the ability to automatically generate digital
twins featuring varying resolutions in both textures and terrain. As a result, the
digital twins generated through our software can be used for many different use
cases, such as urban planning and simulations. In addition to this, our research
has shown that it is possible to automatically generate building meshes, road net-
works, and semi-automatically generate road signs.

RQ.2 - What parts of the digital twin are most important to give it a real-
istic feel?
There are several parts of a digital twin that affect how realistic the final model
looks. This is something we thought about during the entire process of creating
our model, all the way from our CityEngine model, up until our finished product.
The quality of the terrain model used was one main factor that affected how real-
istic the model looks and feel. The reason for that comes from using an inferior
terrain model leads to transitions in the terrain that does not appear in the real
world, making it look off and wrong to the viewer. Another factor that influences
how realistic a model looks comes from our application of the digital twin, which
is focused on autonomous vehicle training. This is particularly obvious when ob-
serving the road from a closer point of view, where smaller objects such as trees,
signs, and railings are more noticeable. Using higher quality assets for these ob-
jects and focusing on placement of these can result in a better product.

RQ.3 - Can real-time data be streamed from a moving agent for dynamic
updates in the digital twin?
In section 4.7, we showed the results we were able to achieve when it comes to



70 E. Torland, T. Jørgensen: Automated Digital Twin

streaming real-time data from a moving agent. This showed that it is possible to set
up a data stream from different data sources to Omniverse and thus dynamically
update our scene with new data. Another feature that was experimented with
was setting up a similar stream as the one used for the moving agent to update
our scene with information about potholes collected from the roads traversed. By
using the same method used to move the car in the digital twin, there should be
a possibility to add new assets in real-time such as potholes.

RQ.4 - Can digital twins be used to store and visualize meta-data received
from a smart sensor?
Through this project, we have shown that it is possible to integrate and visualize
meta-data received from various types of smart sensors. Our initial data source
was the NVDB, which provided comprehensive information on different road ob-
jects. Furthermore, we explored integrating data from smart sensors by employing
a DNN to augment the information retrieved. This demonstrates that we can also
store other data, like traffic lights, guard rails, and other objects in the digital twin.
The data can be obtained from different sources, such as through an API or from
other local software. It is also possible to visualize live data using an Omniverse
Connector as well, as we have proven with our live car data.

5.3 Reflection

Throughout the semester, we utilized an iterative approach to continually improve
our product. While this methodology proved effective for us, we believe that al-
locating more time to in-depth research at the beginning of the semester would
have expedited the decision-making process. This is particularly evident in our ac-
quisition of heightmaps. We selected the first method we came across, assuming
it to be the best from Hoydedata. Consequently, we overlooked several settings
that could have accelerated the creation of our digital twin.

For instance, we missed the opportunity to clip the heightmap to the extent
we wanted. Instead, we got the entire map of the surrounding area, causing us to
spend a lot of time using ArcGIS Pro to clip the heightmap to our selected extent.
We also missed the highest-quality height map with our approach, spending a lot
of time working with a lower-quality heightmap. When figuring out there was a
better heightmap available this also caused us to change the code, as we could no
longer assume all of the heightmaps were one pixel per meter.
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Conclusion and Future Work

6.1 Conclusion

The goal of this master’s thesis was to enhance knowledge in the field of digital
twin creation to create easier access to high-quality digital twins. In addition to
this, there was a goal to integrate real-time data into the digital twin using smart
sensors and other data sources to make dynamic changes to the model.

A way to automatically generate digital twins using Python scripts was de-
veloped to make the process easier. The results this program ended up having,
compared to more traditional approaches, were remarkably good both in terms
of visuals and terrain. That being said, the improved models led to a slightly longer
run-time when opening and creating the digital twin as it incorporates larger and
more detailed data. Generating the digital twins using custom scripts, allowed
for more freedom in what could be added and what parts of the digital twin we
wanted to dedicate more focus towards.

A method to include dynamic updates on the digital twin has been developed.
Here, Omniverse’s LiveSessions were used with Python scripts that read the data
sent from a moving car to a database. Subsequently, the data were processed and
used to alter the scene and move the car object in our digital twin. Additionally to
this, there were performed tests for integrating real-time data from other sources.

All in all, our project has helped create a good foundation for improved, but
also more accessible digital twins. The model can easily be further developed to
integrate other data sources for generating other objects, as well as to improve
the dynamic and real-time updates
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6.2 Future work

As this master thesis has focused on integrating live data into the digital twin, we
would say this would be a good way to proceed. Since the project showed that
it is possible to integrate real-time data with Omniverse, a way forward would
be to look at other sources that could provide value to the digital twin similarly.
Examples of this could be the use of weather data to alter the digital twin or the
use of other smart sensors. This would lead to a more dynamic digital twin that
reflects the real-world object better.

A way to improve the digital twin scene to feel more realistic would be to
include other 3D assets. As mentioned this project contributed to digital twin cre-
ation by providing a good foundation by creating a detailed terrain model auto-
matically as well as integrating some 3D assets. But when viewing this from the
driver’s point of view, particularly in the Stjørdal video, you become alert to the
missing 3D models seen in the real-world video. Adding guardrails and getting the
signs to be facing the right direction can quickly make the model better. Another
way to do this could be to take maps that are categorized into different segments
in the terrain and use the Omniverse paint brush to automatically generate 3D
assets into the scene.

Another part that would be worth looking into is using NVDB to generate
OpenDrive road networks that can be used in simulations with CARLA description
and other products. This would make generating sample data used for training
autonomous vehicle driving agents easier and more accessible. In late September
2022, Omniverse and CARLA description entered into a collaboration, this has yet
to show much, but this could lead to easier simulations and will certainly be worth
keeping an eye on for further work.

There are also some improvements that can be made to our code. The first
thing would be to rewrite the code but use asynchronous methods, which would
help reduce the wait time we discussed earlier and improve responsiveness. The
second thing that would be worth looking into would be finding an API to gather
the heightmap and texture data. This would turn our model from semi-automatic
to fully automatic making it easier for the user.
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Appendix A

Additional Material

A.1 Code

Our source code can be found here https://github.com/orgs/OmniverseDT/
repositories. Here we have divided the source code into two parts, DT_Creation
and DTLive. DT_Creation contains the source code for the generation of the di-
gital twin and DTLive has the source code for the real-time data stream connected
to Omniverse. Note that the code needs to be connected towards either the con-
nect sample from Omniverse or an Omniverse Code extension. More information
about this can be found in the repositories or on Omniverse’s pages.

77

https://github.com/orgs/OmniverseDT/repositories
https://github.com/orgs/OmniverseDT/repositories



	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	List of Listings
	Acronyms
	Glossary
	Introduction
	Motivation
	Goal and Research Questions
	Research Method
	Contribution
	Thesis Structure

	Background
	Digital twins
	Potential use of Digital twins
	Stadt Zurich - Digital twin
	Virtual Singapore
	Trondheim city model
	Oppdrag Mjøsa

	3D object theory
	Software
	ArcGis Pro
	CityEngine
	Roadrunner
	Nvidia Omniverse
	Visualization Toolkit
	Pyvista

	Geomatics
	Coordinate refrence systems
	GNSS

	Virtual Reality
	Previous works

	Methods
	Digital twin creation
	Data collection
	Implementation

	Pipeline for automatic generation of static digital twins
	Dynamic Digital Twin
	Technologies
	Live updates from moving agent
	Analysis of driving data
	Potholes and cracks

	Development process

	Results
	Presenting the Power of Automatic Digital Twin Generation
	Exploratory process using CityEngine and RoadRunner
	Advancing towards an automatic solution
	Creating a populated scene
	Building meshes
	Road network outlines
	NVDB signs

	The final product
	Mesh generation
	A visual journey through our final model

	Manual work added to the final model
	From Static to Dynamic: the Impact of Dynamic Updates on Our Digital Twin
	Immersive Integration: Transforming our Scene into Virtual Reality
	Case studies
	Case Study 1: Analysis of real-time car position data for in-depth insights
	Case Study 2 Digital Twin: Validation of Traffic signs’ position and data in NVDB
	Case Study 3 Digital Twin: Road Surface Monitoring
	Case Study 4 Digital Twin: Key elements to create a realistic and immersive digital twin


	Discussion
	Challenges and limitations
	Real-time data stream
	Limits of automation
	Buildings
	NVDB assets
	Terrain and texture
	Load time and runtime

	Research Questions
	Reflection

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Additional Material
	Code


