
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Zaim ul-Abrar Imran
Max Torre Schau

Exploring the Efficiency of
Zero-Cost Proxies in NAS for
Human Action Recognition

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro
Co-supervisor: Espen A. F. Ihlen & Felix Tempel
June 2023

Zaim ul-Abrar Imran
Max Torre Schau

Exploring the Efficiency of
Zero-Cost Proxies in NAS for
Human Action Recognition

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro
Co-supervisor: Espen A. F. Ihlen & Felix Tempel
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Neural Architecture Search (NAS) and Graph Convolutional Networks (GCNs)
are two fields within machine learning that have undergone major devel-
opment in recent years. Finding a GCN architecture which yields optimal
results can be time-consuming and resource-intensive. Zero-cost proxies,
which are designed only to require a single minibatch of training data to
score a neural network, have been introduced to make this process more
efficient. The core focus of this thesis is to investigate the application and
performance of zero-cost proxies for evaluating GCNs within the context of
Human Action Recognition (HAR) tasks as a first step towards using them
in a NAS algorithm. Furthermore, given the need for further research, the
study aims to bridge this gap by evaluating different zero-cost proxies on
GCN architectures. To the best of our knowledge, the study is the first to
explore how zero-cost proxies perform on GCNs.

Through a series of analyses and experiments, the study demonstrates
that integrating zero-cost proxies can significantly enhance the efficiency
of NAS algorithms. The results reveal that the top-performing zero-cost
proxies display a Spearman Rank Correlation (ρ) of approximately 0.8,
indicating a strong to very strong correlation. However, no substantial im-
provement in correlation is detected when analysing architectures as they
are trained for several epochs, implying that the zero-cost proxies might
be most efficient at the initialisation of the neural network. Attempts to
combine zero-cost proxies through vote and weighted arithmetic mean are
showing promise, but they are not resulting in significant improvement
compared to the individual application of each zero-cost proxy.

i

Sammendrag

Både Neural Architecture Search (NAS) og Graph Convolutional Networks
(GCNs) er to felter innen maskinlæring som har gjennomgått en stor utvik-
ling de seneste årene. Det å finne en GCN-arkitektur som gir gode resultater
kan være svært tidskrevende og ressurskrevende. Zero-cost proxyer, som er
utformet for å kun kreve en enkelt minibatch med treningsdata for å score
et neural nettverk, har blitt introdusert for å gjøre denne prosessen mer
effektiv. Hovedfokuset med denne avhandlingen er å undersøke bruken og
ytelsen av zero-cost proxies for å evaluere GCN innenfor oppgaver relatert
til gjenkjenning av menneskelig aktivitet (HAR) som et første steg mot å
bruke dem i en NAS-algoritme. Basert på behovet for videre forskning i
feltet, tar studien sikte på å bygge bro over dette gapet ved å evaluere for-
skjellige zero-cost proxies på GCN-arkitekturer. Så vidt vi vet, er studien
den første til å utforske hvordan zero-cost proxies presterer på GCN.

Gjennom en serie analyser og eksperimenter, viser studien at integrering av
zero-cost proxies kan betydelig forbedre effektiviteten til NAS-algoritmer.
Resultatene viser at de best presterende zero-cost proxyene viser en Spear-
man Rank Correlation (ρ) på omtrent 0.8, noe som indikerer en sterk til
veldig sterk korrelasjon. Imidlertid blir ingen betydelig forbedring i kor-
relasjon oppdaget når arkitekturene blir analysert etter å ha blitt trent i
flere epoker, noe som antyder at zero-cost proxies er mest effektive ved
initialiseringen av det nevrale nettverket. Forsøk på å kombinere zero-cost
proxier ved hjelp av stemmegiving og vektet aritmetisk gjennomsnitt viser
potensial, men gir ikke noen betydelig forbedring sammenlignet med å
bruke zero-cost proxies individuelt.

iii

Preface

This is the final project for our Master’s in Computer Science at the Norwe-
gian University of Science and Technology (NTNU). It’s written by us, Zaim
ul-Abrar Imran and Max Torre Schau, and is the last step in our studies.

The project is part of DeepInMotion, a collaboration project between NTNU
and St. Olavs Hospital in Trondheim. Head of Department and Professor at
the Department of Computer Science, Heri Ramampiaro has been the main
supervisor of this Master’s thesis, with Associate Professor at the Depart-
ment of Neuromedicine and Movement Science, Espen Alexander F. Ihlen
and PhD Candidate at the Department of Computer Science, Felix Tempel
as co-supervisors.

v

Acknowledgement

We would first like to thank our supervisor, Heri Ramampiaro, for allowing
us to work on the project. His guidance, support, and encouraging feed-
back have been invaluable. He also gave us many chances to showcase and
discuss our work, which we found both inspiring and educational.

We would also like to thank our co-supervisors, Associate Professor Espen
Alexander F. Ihlen and PhD Candidate Felix Tempel. The guidance meet-
ings have been instrumental in our project’s success, alongside their expert
advice and continuous support. We are deeply grateful for their invaluable
contribution to our learning experience.

Lastly, we want to thank our friends. Your friendship, helpful advice, and
all the fun times we have had together truly helped us through our time
at NTNU. We are so grateful for your support during this part of our lives.
We also want to express our gratitude to our families for all your support
and motivating words.

To Zaim: I want to thank you for all our memories; it’s been a blast! Thank
you for being a fellow student, colleague, collaborator, problem-solver, and,

most importantly, a best friend through my five years at NTNU.
- Max

Max, the past five years have been an incredible journey filled with both
friendship and partnership. Our shared experiences, from late-night study

sessions to exhilarating concerts, have only served to deepen and strengthen
our bond. Your support and friendship have been invaluable; I am deeply

grateful. Thank you.
- Zaim

vii

Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgement vii

Contents ix

Figures xiii

Tables xv

Algorithms xvii

Acronyms xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Scope of the Thesis . 2
1.4 Goal and Research Questions 3
1.5 Research Method . 4
1.6 Contributions . 4
1.7 Thesis outline . 5

2 Theory 7
2.1 Deep Learning . 7

ix

Contents x

2.1.1 Neural Networks . 8
2.2 Graph Convolutional Network (GCN) 9

2.2.1 Graph Convolutions . 10
2.3 Automated Machine Learning (AutoML) 11

2.3.1 Hyperparameter Optimisation 11
2.3.2 Meta-learning . 12

2.4 Neural Architecture Search (NAS) 12
2.4.1 Challenges . 14
2.4.2 Search Space . 14
2.4.3 Search Strategies . 16
2.4.4 Performance Estimation 17

2.5 Human Action Recognition (HAR) 19

3 Related work 21
3.1 Performance Predictors . 21

3.1.1 How Powerful are Performance Predictors in Neural
Architecture Search . 21

3.1.2 Neural Architecture Search without Training 22
3.2 Zero-Cost Proxies . 22

3.2.1 Zero-Cost Proxies for Lightweight NAS 22
3.2.2 A Deeper Look at Zero-Cost Proxies for Lightweight

NAS . 23
3.2.3 NAS Bench Suite Zero 24

3.3 NAS for GCN . 24
3.3.1 Auto-GNN . 24
3.3.2 One-shot Graph Neural Architecture Search with Dy-

namic Search Space . 25
3.4 Summary and Implications . 25

4 Method 27
4.1 Research Plan . 27
4.2 Dataset . 28
4.3 Benchmark . 30

4.3.1 GCN-NAS . 30
4.3.2 Definition of Fully Trained Models 32
4.3.3 Experimental Setup and Benchmarking Methodology 32

4.4 Zero-Cost Proxies . 34
4.4.1 EPE-NAS . 34
4.4.2 Fisher . 35
4.4.3 Flops . 36
4.4.4 Grad Norm . 36
4.4.5 GradSign . 36

Contents xi

4.4.6 Grasp . 37
4.4.7 Jacov . 37
4.4.8 L2-norm . 37
4.4.9 NAS-WOT . 37
4.4.10 Params . 38
4.4.11 Plain . 38
4.4.12 Snip . 39
4.4.13 Synflow . 39
4.4.14 Zen-score . 40
4.4.15 Summary . 41

4.5 Zero-Cost Framework . 41
4.6 Correlation . 43
4.7 Exploration of Zero-Cost Proxies via Warmup Strategy . . . 47

4.7.1 Theoretical and Practical Considerations 47
4.8 Combining Zero-Cost Proxies 48

4.8.1 Majority Vote Method 48
4.8.2 Weighted Arithmetic Mean 50

5 Results 53
5.1 Correlation Analysis . 53

5.1.1 Vote . 55
5.1.2 Warmup . 55

5.2 Weighted Arithmetic Mean . 57

6 Discussion 59
6.1 Interpretation and Significance of Results 59

6.1.1 RQ1 How well can different zero-cost proxies rank
GCN architectures compare to their validation accur-
acy? . 59

6.1.2 RQ2 How early can we identify the correlation between
zero-cost proxies and validation accuracy during the
warm-up phase of GCN training to potentially halt
the training process sooner? 61

6.1.3 RQ3 How can we effectively combine zero-cost prox-
ies using various techniques to enhance the efficiency
and accuracy of architecture search in NAS algorithms? 62

6.2 Limitations . 64
6.2.1 Dataset size . 64
6.2.2 Limitations of Relying Solely on the GCN-NAS Frame-

work . 64
6.3 Environmental Implications . 65

6.3.1 Energy consumption / Creating benchmark 65

Contents xii

6.3.2 Reduced Search Time and Future Benefits 66

7 Conclusion and Future Work 67
7.1 Conclusion . 67
7.2 Future Work . 68

Bibliography 71

Appendix A Use of the Zero-Cost Framework on GNN-NAS Project i

Figures

2.1 Illustration of Neural Network 9
2.2 Graph with 4 nodes . 11
2.3 Adjacency matrix corresponding to the graph without self-

connections . 11
2.4 Adjacency matrix corresponding to the graph with self-connections 11
2.5 An overview of the different methods in NAS (Elsken et al.,

2019) . 13
2.6 Search Space variations . 15

4.1 Flowchart illustrating the research process. 28
4.2 Body joints in NTU RGB+D dataset 29
4.3 Each zero-cost proxy normalised with the validation accuracy 45
4.4 Scatter plots illustrating perfect positive, perfect negative

correlations and very poor correlation 46

5.1 Correlations for all zero-cost proxies over multiple epochs . 56
5.2 Each zero-cost proxy with the correlation over multiple epochs 57
5.3 Weighted Arithmetic Mean . 58

xiii

Tables

2.1 Search Space Parameters . 15
2.2 List of performance predictors 18
2.3 Different zero-cost proxies within the two categories data-

independent and data-dependent 19

3.1 List of biases . 24

4.1 The searched architecture in the paper 32
4.2 Hyperparameters for the training 33
4.3 Benchmark Dataset Statistics 34
4.4 Summary of the implemented zero-cost proxies in the project 41
4.5 P-values for each variable using the Shapiro-Wilk test 43
4.6 Guidelines for interpreting Spearman’s correlation 47
4.7 Example of two architectures with validation accuracy and

zero-cost proxy metrics. 50

5.1 Correlation coefficients between proxy scores and model per-
formance before training . 54

5.2 Vote scores . 55

6.1 Comparison of various methods on different datasets 60

xv

Algorithms

1 Random Architecture Generation and Evaluation 33
2 Calcuate Zero-Cost Proxies . 42
3 Voting algorithm . 48
4 Voting Accuracy for Metric Combinations 49
5 Weighted Arithmetic Mean for datapoint d 51

xvii

Acronyms

ANN Artificial Neural Network.
Auto-GNN Automated Graph Neural Network.
AutoML Automated Machine Learning.
BO Bayesian Optimisation.
CNN Convolutional Neural Network.
CP Cerebral Palsy.
DAG Directed Acyclic Graphs.
EC Evolutionary Computations.
EcoNAS Economical Evolutionary-based NAS.
Flops Floating Point Operations per second.
GCN Graph Convolutional Network.
GNN Graph Neural Network.
GPU Graphics Processing Unit.
Grasp Gradient Signal Preservation.
HAR Human Action Recognition.
NAS Neural Architecture Search.
NTNU Norwegian University of Science and Techno-

logy.
NTU RGB+D Nanyang Technological University’s Red Blue

Green and Depth-information.
Snip Single-shot Network Pruning.
Synflow Iterative Synaptic Flow Pruning.
VCNN Vanilla Convolutional Neural Network.

xix

Chapter 1
Introduction

This chapter introduces the background and motivation behind the re-
search, as well as the problem statement and scope of the study. It also
includes the main goal and research questions, which aim to investigate the
potential of using zero-cost proxies to enhance the efficiency in Neural Ar-
chitecture Search (NAS) algorithms, specifically for Graph Convolutional
Network (GCN) applied to Human Action Recognition (HAR) tasks. Finally,
the chapter concludes with a section on the research method and contri-
butions of the study.

1.1 Background and Motivation

This thesis is written as part of a project named DeepInMotion (‘DeepIn-
Motion’, 2023). Researchers from the Norwegian University of Science and
Technology (NTNU) and St. Olavs Hospital cooperate in a cross-disciplinary
collaboration involving child physiotherapists, paediatricians, neonatolo-
gists, movement scientists and computer engineers. The project has de-
veloped a pipeline for detecting Cerebral Palsy (CP) in infants by provid-
ing a video of the infant’s movement. The pipeline employs a Convolutional
Neural Network (CNN) to accurately extract movement from 2D images or
videos (Groos et al., 2021). A GCN then processes the output to predict CP
in high-risk infants at three months of age (Groos, 2022a).

The CP-prediction pipeline used NAS to find a suitable architecture auto-
matically. However, the search could be faster and more efficient while still
finding optimal architectures. Performance prediction offers a way to pre-
dict an architecture’s relative performance for a specific issue. Compared to

1

Chapter 1: Introduction 2

training the architecture until convergence, this approach may be consid-
erably more effective. Recent studies (Abdelfattah et al., 2021; White et al.,
2022) show that zero-cost proxies yield great promise regarding using it to
rank different architectures on image classification tasks. However, to our
knowledge, research is yet to be done on how zero-cost proxies perform
on GCN architectures. Consequently, additional studies in this field may
provide important findings which can be used to improve the CP-prediction
pipeline. Also, additional knowledge about how zero-cost proxies can be
used with graph-based learning could be gained.

1.2 Problem Statement

In recent years, NAS has emerged as a promising technique for automating
designing neural networks with excellent performance on specific tasks
(Zoph & Le, 2016). Several studies have shown that NAS can effectively
identify suitable architectures for GCN problems. Particularly in the field
of HAR, GCN have demonstrated their utility due to the representation of
the human body as a graph.

Despite the recent advancements in NAS for GCN, evaluating architectures
in existing studies remains a significant challenge. It is often infeasible to
thoroughly train each candidate’s architecture to obtain its ground truth
accuracy (Zoph & Le, 2016). This issue is particularly pressing in resource-
constrained environments, where training large numbers of models is in-
feasible.

Moreover, a significant limitation of the existing literature on GCN-NAS is
the absence of performance predictors, further complicating the optimisa-
tion process. The lack of such predictors can make it challenging to effi-
ciently identify the most promising architectures for a given task. Novel
approaches, such as zero-cost proxies, have been proposed to predict can-
didate architectures’ performance without requiring full training.

1.3 Scope of the Thesis

This thesis investigates the potential of utilising zero-cost proxies to en-
hance the efficiency of architecture search in NAS algorithms, specifically
targeting GCN applied to HAR tasks. The research questions formulated
for this study are designed to explore various aspects of zero-cost proxies
and their effectiveness in ranking GCN architectures.

Chapter 1: Introduction 3

Nonetheless, it is crucial to outline the scope and limitations of this thesis
to ensure that readers understand which topics will and will not be dis-
cussed. Although the overall goal is to improve and optimise the efficiency
of NAS with GCN for HAR, the primary focus of this study is to analyse and
evaluate different zero-cost proxies. As a result, a full implementation of
the research findings within an NAS algorithm will not be provided.

By clarifying the scope of this thesis, the intention is to offer readers a more
comprehensive understanding of the research focus and the study’s limit-
ations. While recognising that incorporating the findings into a practical
NAS algorithm is an essential and valuable subsequent step, the primary
objective of this thesis is to lay the foundation for future research by ex-
ploring the potential of zero-cost proxies in the context of GCN for HAR
tasks.

1.4 Goal and Research Questions

This section highlights the overall goal and the research questions of this
thesis. The goal outlines what the research ultimately seeks to achieve,
while the research question lays out the central issues the study will ad-
dress to accomplish this goal. Together, these guide the research design,
methodology, and analysis.

Goal Improve and optimise the efficiency of neural architecture search with
graph convolutional networks for human action recognition.

NAS has been used with GCN in different studies (Groos, 2022b; Peng et
al., 2020; Zhou et al., 2019), but finding other, more efficient methods is
still possible. By finding methods that are more effective than what exists
today, more architectures can be researched, which may result in detect-
ing other well-performing architectures. Also, as training and searching
for neural networks may impact the environment, effective methods will
significantly reduce the carbon footprint.

Research question 1 How well can different zero-cost proxies rank GCN
architectures compare to their validation accuracy?

The motivation behind the research question is that evaluating the cor-
relation between zero-cost proxies and ground truth validation accuracy
can determine if they accurately indicate the ground truth. A potential en-
hancement to these results could make NAS algorithms more efficient by
eliminating the necessity for exhaustive training.

Research Question 2 How early can we identify the correlation between

Chapter 1: Introduction 4

zero-cost proxies and validation accuracy during the warm-up phase of GCN
training to potentially halt the training process sooner?

Research Question 2 aims to investigate the potential for early identifica-
tion of the correlation between zero-cost proxies and validation accuracy
during the warm-up phase of training for GCN. The aim is to determine
how early this correlation can be identified because it can halt the training
process sooner, thus saving computational resources and time.

Research question 3 How can we effectively combine zero-cost proxies us-
ing various techniques to enhance the efficiency and accuracy of architecture
search in NAS algorithms?

Through investigating Research Question 3, the study aims to identify ef-
fective techniques for combining zero-cost proxies. By leveraging the strengths
of multiple zero-cost proxies, future NAS algorithms may become more ef-
ficient and accurate in discovering high-performing architectures. The out-
comes of this research question can provide insights into how to optimise
the use of zero-cost proxies in NAS algorithms and improve the architec-
ture search process in the future.

1.5 Research Method

We conducted a comprehensive literature review in the fall of 2022 to un-
derstand current state-of-the-art approaches in the NAS field. Additionally,
a thorough analysis of existing papers concentrating on performance pre-
dictors within the NAS domain was completed. The project’s conclusion
presents several recommendations for advancing research in the NAS field
based on the insights gained from the review.

The research plan involves conducting multiple quantitative investigations
to examine the performance and behaviour of zero-cost proxies on a HAR
dataset. Subsequently, the study aims to explore the potential of these prox-
ies in improving NAS algorithms.

1.6 Contributions

This thesis presents several critical contributions to the NAS field with
GCNs for HAR. The following are the primary contributions made by this
study:

Investigation of Zero-Cost Proxies: In this thesis, a thorough analysis of

Chapter 1: Introduction 5

the relationship between zero-cost proxies and the performance of GCN
models in HAR tasks is conducted. The study sheds light on the usefulness
of using zero-cost proxies to estimate the performance of GCN architec-
tures without costly training.

Combining Zero-Cost Proxies: The thesis presents methods, such as the
majority vote method and the weighted arithmetic mean method, for com-
bining different zero-cost proxies to improve the efficiency of the NAS al-
gorithms.

Environmental Considerations: The study highlights the importance of
considering the environmental implications of NAS and artificial intelli-
gence research. Furthermore, the study contributes to developing more
sustainable practices by reducing the NAS process’s computational demands
and training time.

In view of these contributions, the work in this thesis advances the under-
standing of NAS with GCNs in the context of HAR and provide a founda-
tion for further exploration of zero-cost proxies and their potential applic-
ations.

1.7 Thesis outline

The thesis consists of the following seven chapters:

Chapter 1 - Introduction: The introductory chapter presents the study’s
background, motivation, problem statement, scope, goal, and research ques-
tions.

Chapter 2 - Theory: Chapter 2 introduces necessary background theory,
including deep learning, NAS, GCN and HAR.

Chapter 3 - Related Work: A comprehensive review of the literature on
NAS and GCN-NAS is provided, encompassing zero-cost proxies and recent
research on GCN-NAS. In addition, a discussion on the gap and limitations
in the literature is presented.

Chapter 4 - Method: This chapter covers the use of zero-cost proxies in
NAS, including various proxies and their implementation, the use of war-
mup, and the combination of proxies using a custom vote measure and
weighted arithmetic mean.

Chapter 5 - Results: The results, namely the correlation analysis, vote
measure and weighted arithmetic mean, are presented in this chapter.

Chapter 1: Introduction 6

Chapter 6 - Discussion: This chapter discusses the study’s findings and
analyses and interprets the results and their implications. In addition, it
discusses the study’s limitations as well as the environmental implications.

Chapter 7 - Conclusion and Future Work: The conclusion of the thesis
summarises the findings and discusses future work.

Chapter 2
Theory

This chapter begins by discussing the fundamentals of deep learning and
neural networks, setting the groundwork for the subsequent exploration
of challenges with using machine learning on graphs. Further, the chapter
describes the core of GCNs, the graph convolution operation, and how it
aggregates local information from neighbouring nodes to generate a new
representation for each node. The chapter also introduces Automated Ma-
chine Learning (AutoML), an emerging area of machine learning that seeks
to automate designing optimal machine learning architectures. In addition,
the chapter provides an overview of NAS, a sub-field of AutoML that aims
to automate the creation of high-performing neural networks. Finally, the
field of HAR is presented.

This chapter builds upon the unpublished specialisation project from the
fall of 2022; portions of the work presented here originate from that pro-
ject.

2.1 Deep Learning

Deep learning, a subfield of machine learning, has gained significant at-
tention in recent years due to its ability to learn hierarchical representa-
tions from raw data, especially in domains such as computer vision, nat-
ural language processing, and speech recognition. This contrasts conven-
tional machine-learning techniques, which are limited in processing the
same (LeCun et al., 2015).

The core building blocks of deep learning are Artificial Neural Network
(ANN) inspired by the biological neural networks found in the human

7

Chapter 2: Theory 8

brain. ANNs consist of interconnected layers of artificial neurons called
nodes, each receiving input from previous layers, processing the inform-
ation, and propagating the output to the subsequent layers. Deep learn-
ing architectures typically involve multiple layers of these interconnected
nodes, hence the term "deep" (Goodfellow et al., 2016).

One key advantage of deep learning over traditional machine learning
techniques is its ability to automatically learn and extract features from raw
data without relying on manual feature engineering. This process, called
representation learning, enables deep learning models to understand hier-
archical representations of the input data, with each layer capturing in-
creasingly abstract and complex features (Bengio et al., 2013). This cap-
ability has led to breakthrough performance improvements in various ap-
plications, including image classification, natural language understanding,
and speech recognition (Krizhevsky et al., 2017).

2.1.1 Neural Networks

Neural Networks are a part of neurocomputing, which aims to develop
computational systems inspired by the human brain’s structure and func-
tion. For example, pattern recognition, motor control, vision, flexible infer-
ence, intuition, and accurate guessing are all skills the brain is particularly
good at, which is what neural networks aim to emulate (Anderson, 1995).

At a high level, a neural network is a collection of related nodes (called
"neurons") arranged in layers. Data is sent to the input layer, where one or
more hidden levels process it before being output by the final layer.

The basic unit of a neural network is a neuron, which receives input from
other neurons or the input layer. The neuron then uses a mathematical
function to this input, producing an output which is sent to other neurons
in the next layer. The most commonly used function is the sigmoid function,
given in equation 2.1.

σ(z) =
1

1+ e−z
, (2.1)

where z is the input to the neuron. The sigmoid function always outputs a
decimal between 0 and 1.

The output of a neuron is determined by the weights and biases associated
with its inputs. Each input is multiplied by a weight, and these weighted
inputs are summed together with a bias to produce the neuron’s input, as
shown in equation 2.2.

Chapter 2: Theory 9

z =
n
∑

i=1

wi x i + b, (2.2)

where wi is the weight, x i is the value of the ith input, n is the number of
inputs, and b is the bias.

Equation 2.3 exhibits the neuron output when applying the sigmoid func-
tion to the input.

y = σ(z) (2.3)

During the training process, which includes feeding training data through
the network (illustrated in figure 2.1) and modifying the weights and bi-
ases based on the difference between the predicted output and the actual
output (target), the weights and biases of a neural network are adjusted.
Usually, a gradient descent optimisation technique is used to perform this
operation.

x1

x2

x3

x4

y1

y2

y3

y4

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2.1: Illustration of Neural Network

2.2 Graph Convolutional Network (GCN)

Graphs are commonly used structures representing complex systems, in-
cluding social networks, biological networks, and transportation systems
(Scarselli et al., 2008). They consist of nodes and edges, representing the
entities and relationships between them. Despite their widespread use,

Chapter 2: Theory 10

graphs pose unique challenges in machine learning due to their irregu-
lar structure, which makes it difficult to apply conventional learning tech-
niques that rely on fixed-size inputs and Euclidean data representations
(Battaglia et al., 2018).

Graph Neural Network (GNN) has emerged as a solution to these chal-
lenges, generalising deep learning techniques to graph-structured data (Gori
et al., 2005). Among GNNs, Graph Convolutional Networks (GCNs) have
become particularly popular owing to their ability to perform localised and
efficient convolutions on graph data (Kipf & Welling, 2016). GCNs extend
the concept of convolution from grid-like structures, such as images, to
irregular graph structures, enabling the extraction of meaningful features
from graph data while preserving their spatial relationships (Bronstein et
al., 2017).

2.2.1 Graph Convolutions

The core of GCNs lies in the graph convolution operation, which aims to
aggregate local information from neighbouring nodes to generate a new
representation for each node. The main idea is to perform a weighted sum
of the feature vectors of a node and its neighbours, where the weights are
determined by the edge weights or some measure of node similarity. For
instance, the feature vector of a node (a person) in a social network graph
could include elements such as age, number of friends, job category, etc.,
that offer unique details about that node. This aggregation scheme allows
GCNs to learn node representations that effectively capture the local graph
structure. The equation 2.4, found in (Kipf & Welling, 2016), shows how
the graph convolution operation is mathematically described.

H l+1 = σ(D̂−
1
2 AD̂−

1
2 H l W l) (2.4)

The components in equation 2.4 are defined as follows (Kipf & Welling,
2016):

H (l+1) stands for the updated node representations (features) at layer (l +
1), while H (l) indicates the node features at layer l. H (0) is the input feature
matrix for the first layer. The graph’s adjacency matrix, represented by A,
is modified to incorporate self-connections. This is achieved by adding a
diagonal matrix with ones to the original adjacency matrix A, ensuring
that the node’s features are considered during the aggregation process.

The degree matrix, denoted by D̂, corresponds to the modified adjacency
matrix Â. It is a diagonal matrix wherein each diagonal entry signifies the

Chapter 2: Theory 11

degree (number of connections) of the corresponding node. The learnable
weight matrix at layer l is represented by W (l) and is employed to transform
the node features at each layer linearly.

Lastly, the activation functionσ introduces non-linearity to the model. Typ-
ical choices for activation functions are ReLU, sigmoid, and tanh.

In the graph shown in figure 2.2, the nodes represent entities, and the lines
between nodes represent the relationships between these entities. Here, we
have four nodes: A, B, C, and D, and the connection between them.

The adjacency matrices (figure 2.3 and figure 2.4) are mathematical rep-
resentations of the graph. In the matrices, the value at the intersection of
a row and a column represents the presence (1) or absence (0) between
the nodes.

A B

CD

Figure 2.2: Graph with
4 nodes

A=

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

Figure 2.3: Adjacency
matrix corresponding to
the graph without self-
connections

A=

1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 1

Figure 2.4: Adjacency
matrix corresponding
to the graph with self-
connections

2.3 Automated Machine Learning (AutoML)

Fields such as computer vision, speech recognition, and natural language
processing have seen significant progress, primarily due to the develop-
ment and application of deep learning techniques in recent years. However,
despite these advancements, designing optimal machine learning architec-
tures remains complex and time-consuming for data scientists. Automated
Machine Learning (AutoML) is an area that seeks to automate this process.

2.3.1 Hyperparameter Optimisation

Hyperparameter optimisation is a critical component of the AutoML pipeline.
Machine learning algorithms often contain hyperparameters that control
their behaviour, and their optimal values are not learned directly from
the training data. Instead, these parameters need to be set manually or

Chapter 2: Theory 12

searched for systematically. Traditional techniques for hyperparameter tun-
ing include grid search, random search, and manual tuning. However, these
approaches can be computationally expensive and inefficient. AutoML aims
to streamline this process by employing advanced techniques such as Bayesian
optimisation, evolutionary algorithms, and gradient-based methods. These
methods can efficiently explore the hyperparameter space and identify suit-
able configurations, ultimately leading to improved model performance
and reduced computational cost (Bergstra et al., 2011; Snoek et al., 2012).

2.3.2 Meta-learning

Meta-learning, also called "learning to learn", is another crucial compon-
ent of AutoML. The central idea is to utilise prior knowledge gained from
solving multiple related tasks to improve the learning efficiency and gen-
eralisation ability on new tasks. This is achieved by learning a model or an
algorithm that can adapt quickly to novel tasks with limited data. In the
context of AutoML, meta-learning can be employed in various ways. One
popular approach is to use meta-learning for transfer learning, wherein a
pre-trained model is fine-tuned on a new task with limited available data
(Pan & Yang, 2010). Another application of meta-learning is hyperpara-
meter optimisation, where a meta-model can be trained to predict the per-
formance of different configurations across various tasks. This knowledge
can guide the search for optimal hyperparameters more efficiently (Swer-
sky et al., 2014).

2.4 Neural Architecture Search (NAS)

Most neural architectures are created by specialists, which is labour-intensive
and susceptible to other weaknesses, including the need for an extensive
expertise and the potential to introduce human bias. Subsequently, a way
of automatically designing and developing such algorithms has been a re-
search field for a couple of years. Neural Architecture Search (NAS) aims to
automate the previously manual process of designing architectures (Elsken
et al., 2019). Consequently, NAS is a sub-field of AutoML.

Given a search space F , a training set Dtrain, validation set Dvalid and an
evaluation metric M , a NAS algorithm aims at finding an optimal archi-
tecture f ∗ ∈ F with the best metric M ∗ (such as validation accuracy) on
the validation set Dvalid. This can be written mathematically as shown in
equation 2.5

Chapter 2: Theory 13

f ∗ = argmax f ∈F M(f (θ ∗), Dvalid),

θ ∗ = argminθ L(f (θ), Dtrain),
(2.5)

where θ ∗ is the learned parameters for the architecture f and L is the loss
function (Zhou et al., 2019).

Figure 2.5 illustrates the overall concept of NAS. The search space gives
the algorithm constraints regarding its development by defining a set of
architectural choices the model might use. For example, a constraint might
be different operations such as convolution, fully connected and pooling.
One might argue that this is vital as selecting the search space can reduce
the search’s complexity, which is essential to produce an acceptable model
(Kyriakides & Margaritis, 2020).

Search Space
A

Search Strategy
Performance
Estimation
Strategy

architecture
A∈A

performance
estimation of A

Figure 2.5: An overview of the different methods in NAS (Elsken et al., 2019)

After defining a search space for the given problem, the search strategy will
specify how to analyse the search space and propose a set of candidate ar-
chitectures. This introduces the exploration-exploitation trade-off, which
indicates that selecting an appropriate optimisation technique is vital be-
cause we want to find a global optimum and ensure that the search space
is sufficiently investigated (Kyriakides & Margaritis, 2020).

The framework must perform performance estimation for each candidate
architecture to adjust the search strategy. The simplest solution is to train
and validate the model. However, this might require many hours of train-
ing, which requires a lot of energy and has a high environmental cost. An-
other downside of training the architectures is that it will limit the number
of architectures the search algorithm might discover. As a result, methods
simplifying this phase have been undergoing heavy research (Elsken et al.,
2019).

Chapter 2: Theory 14

Ultimately, the goal of NAS is to automatically discover the most optimal
architecture regarding performance and processing power.

2.4.1 Challenges

Computational power

The most straightforward approach to determine the performance of a
neural network is to train it until the validation accuracy has converged
against a value or has been run for a fixed amount of epochs. However,
training thousands of architectures may require hundreds or more Graph-
ics Processing Unit (GPU) days (Ren et al., 2021). The computational power
required may be available for larger companies with plentiful resources.
However, for most users, this is computationally infeasible. As a result, the
necessary computational power is considered a significant challenge for
NAS.

Black-box optimisation and lack of interpretability

NAS algorithms often treat the architecture search space as a black box,
meaning they cannot access the internal workings of the searched model
architectures. This can make it difficult to incorporate domain knowledge
or bias the search towards certain types of architectures. This results in
difficult-to-interpret architectures, making it challenging to understand how
they make predictions or identify potential problems with the architecture
(Liu et al., 2018).

2.4.2 Search Space

When searching for a high-performing architecture, there are infinite vari-
ations that one might investigate. As a result, one defines a search space
that gives the search algorithm constraints regarding what kind of combin-
ations it might examine. Prior knowledge of what kind of search space is
effective on specific tasks may reduce the size, but it has the disadvantage
of introducing human bias in the search space (Elsken et al., 2019).

Global search space is a way in which it tries to combine all possible oper-
ations to create chain-structured (sequential) networks. Then, the search
space has the parameters given in table 2.1.

Such a network can be described as a sequence of n layers, where layer
Li takes Li−1 as input, as given in figure 2.6a. However, this sort of search
space is enormous and very expensive.

Chapter 2: Theory 15

Table 2.1: Search Space Parameters

The number of layers
The type of each operation
The hyperparameters of each operation,
namely kernel size, number of filters etc.

Cell-based representations were inspired by successful architectures using
repeated modules (Inception, ResNet). The NASNet paper (Zoph et al.,
2017) is one of the most popular cell- or block-based approaches. Cell-
based representations differ from global search space because they search
for cells or blocks instead of whole architectures (Elsken et al., 2019). Zoph
et al., 2017 explains two sorts of cells; a normal cell which performs feature
extraction (preserving dimensionality), and a reduction cell which reduces
the dimensionality. By stacking such cells, we get the final architecture, as
shown in figure 2.6b.

Input

L0

L1

Ln

Output

(a) Chain-structured network

Input

Output

(b) Cells combined into an architecture

Figure 2.6: Search Space variations

Chapter 2: Theory 16

Directed Acyclic Graphs

Directed Acyclic Graphs (DAG) is often used in NAS to represent the struc-
ture of a neural network. In this context, the graph’s vertices represent
different operations or layers in the network, and the graph’s edges rep-
resent the data flow between these operations. This allows researchers to
efficiently represent and manipulate the structure of a neural network dur-
ing the search process.

One of the main advantages of using DAGs in NAS is that they provide
a convenient way to encode the constraints on the network architecture.
For example, a DAG can enforce the requirement that a neural network
must have a certain number of layers or that individual layers must be
connected in a specific way. This can help ensure that the search process
only considers valid network architectures, which can speed up the search
and improve its accuracy (Liu et al., 2018).

In addition to representing the structure of a neural network, DAGs can also
represent the search space over which the architecture search algorithm
operates. This allows the algorithm to explore different network archi-
tectures efficiently and evaluate their performance, ultimately discovering
novel and effective network architectures (Dong & Yang, 2019).

2.4.3 Search Strategies

Random Search

Random search is the most naive search strategy, and it will simply ran-
domly pick a good architecture based on the search space. Therefore, the
method is relatively fast and does not require any learning model. A ran-
dom search may be effective if a search space is well constructed.

Reinforcement Learning

On the very basic, reinforcement learning is an area within machine learn-
ing in which an agent learns behaviour by some trial-and-error interac-
tion with a dynamic environment (Kaelbling et al., 1996). One can con-
sider NAS a reinforcement problem by looking at the creation of the ar-
chitecture as the agent’s action, in which the action space is the problem’s
search space. The agent gets rewarded depending on the performance of
the trained architecture. There are numerous approaches to representing
an agent’s policy, such as a recurrent neural network, proximal policy op-
timisation and q-learning (Elsken et al., 2019).

Chapter 2: Theory 17

Evolutionary algorithms

Evolutionary algorithms are techniques used in optimisation and search
methods. It is a subset of Evolutionary Computations (EC) and is an ef-
fective way of problem-solving for often encountered global optimisation
problems (Vikhar, 2016). Evolutionary algorithms in NAS randomly select
N initialised models and then evaluate performance by the given evalu-
ation strategy. The best models are chosen as parents, and new models
have mutated clones of the parents, which are re-evaluated. Finally, the
worst N models are removed from the population to make room for new
children (Real et al., 2017).

Bayesian optimisation

Bayesian Optimisation (BO) has been a popular approach for hyperpara-
meter optimisation (Elsken et al., 2019). In general, BO optimises expens-
ive functions to evaluate, such as the performance of architectures. This
is a global optimisation problem that BO tries to solve. Given a costly to
evaluate function f , BO aims at finding its optimal score within some do-
main x (Kandasamy et al., 2018). In other words, BO pursues to calculate
a∗ = arg mina∈A f (a), where A is the given search space, and f (a) is the
performance function of the neural network after training the architecture
a for a fixed number of iterations (White, Neiswanger et al., 2021).

2.4.4 Performance Estimation

Performance Predictors

As mentioned in section 2.4, NAS aims to automate the designing of high-
performing neural networks. However, this often requires training all the
candidate networks, either partly or wholly, to get the accuracy of the
neural networks. In most cases, this is an infeasible approach when we
have a large search space dimension, which is why performance predictors
are introduced (Akhauri et al., 2022).

Any function that predicts the eventual accuracy or ranking of architectures
without fully training the architecture is referred to as a performance pre-
dictor f . Therefore, the performance predictor’s function should take sig-
nificantly less time than training and validating the neural network fully
and have a high correlation or rank correlation with the validation error
(White, Zela et al., 2021).

A performance predictor is defined by two main routines - initialisation

Chapter 2: Theory 18

and query. The initialisation routine performs general pre-computation, of-
ten before the NAS algorithm. For model-based methods, the initialisation
routine consists of fully training a set of architectures to get data points.
Then, the query routine will output the predicted accuracy with the archi-
tecture details as input (White, Zela et al., 2021).

Multiple categories of performance predictors exist, as given in table 2.2.

Table 2.2: List of performance predictors

Model-based (trainable) methods
Learning curve-based methods
Hybrid methods
Zero-cost proxies
Weight sharing methods

Zero-Cost Proxies

Zero-cost proxies are a class of performance predictors. The name zero-cost
comes from analysing a neural network at initialisation, indicating that it
costs ‘zero’ to generate the score.

By performing a single forward/backward propagation pass using a single
minibatch of data, zero-cost proxies methods can score a neural network
(Akhauri et al., 2022). The intuition is that one can measure the ‘trainab-
ility’ of a neural network by looking at the initial gradient flow.

The paper Zero-Cost Proxies for Lightweight NAS, (Abdelfattah et al., 2021)
showed the usefulness of a range of zero-cost proxies inspired by the pruning-
at-initialisation literature. Each method can be divided into two categories
- data-independent or data-dependent.

Data-dependent zero-cost proxies use data to generate the score, whereas
data-independent will not use the dataset in principle. Sometimes, it is
used to set dimensions (White et al., 2022). Table 2.3 lists data-independent
and data-dependent zero-cost proxies. However, this collection is not ex-
haustive, and the other zero-cost proxies are not included.

Chapter 2: Theory 19

Table 2.3: Different zero-cost proxies within the two categories data-independent
and data-dependent

Data-independent Data-dependent
Synflow EPE-NAS
Zen-score Fisher
GenNAS Grad-norm
number of parameters in network Grasp

2.5 Human Action Recognition (HAR)

Human Action Recognition (HAR) is a method that interprets the human
body’s gestures or motions via sensors, accelerometers or videos and uses
these to predict human action (Jobanputra et al., 2019). Like many other
computer vision tasks, HAR can be supervised and unsupervised, where
supervised training requires a large amount of data (Ann & Theng, 2014).
We can classify HAR into two problems; the localisation problem and the
recognition problem. The localisation problem concerns where something
is located in the video, whereas the recognition problem concerns the type
of action we see (Vrigkas et al., 2015).

Due to problems like background clutter, partial occlusion, and changes in
scale and frame resolution, capturing the specific action of a human within
a video is a challenging task (Vrigkas et al., 2015). However, modelling
the human body as three-dimensional data is another approach that has
emerged in recent years. The human body can be divided into connecting
joints forming a three-dimensional structure.

Chapter 3
Related work

This chapter reviews the literature on NAS and GCN-NAS. It covers the
concept of zero-cost proxies in NAS and the key findings from research on
the topic. Additionally, the chapter presents recent research on GCN-NAS,
including automated graph neural networks and one-shot GNN-NAS with
dynamic search space. Also, the chapter highlights the gaps and limitations
of the literature today.

As there is no concrete literature on zero-cost proxies for GCN, we have
chosen to include related work on other tasks (i.e. image classification)
than HAR.

This chapter builds upon the unpublished specialisation project from the
fall of 2022; portions of the work presented here originate from that pro-
ject.

3.1 Performance Predictors

3.1.1 How Powerful are Performance Predictors in Neural
Architecture Search

White, Zela et al., 2021 conducted a extensive study of performance pre-
dictors for NAS. 31 different predictors were utilised within the experi-
ments across four search spaces and four datasets (NAS-Bench-201 with
CIFAR-10, Cifar-100 and ImageNet16-120, NAS-Bench-101 and DARTS with
CIFAR-10, and NAS-Bench-NLP with Penn TreeBank). For each predictor,
the evaluation consisted of the initialisation time, query time and perform-
ance.

21

Chapter 3: Related work 22

The study’s motivation was that there were no existing approaches in the
literature comparing the different performance predictors to each other.
For each performance predictor, one had to go to the original paper propos-
ing the method to find the evaluation. Consequently, the authors wanted to
determine how zero-cost, model-based, learning curve extrapolation and
weight-sharing methods compared.

Further, the paper proposed a new predictor, OMNI, which combines com-
plementary information from three different families (learning curve, zero-
cost and model-based) of performance predictors. OMNI showed great
promise with substantially improved performance.

3.1.2 Neural Architecture Search without Training

Mellor et al., 2021 argued that NAS algorithms tend to be slow due to their
extensive need for training architectures to guide the search algorithm.
As a result, a proposed method for estimating a neural network’s trained
performance without needing to train it was developed. So, the authors
show that it is, in fact, possible to perform NAS without training any of
the architectures. The paper shows that by utilising the method, a network
which achieves 92.81% accuracy was obtained within 30 seconds within
the NAS-Bench-201 search space - remarkably faster than standard NAS
algorithms. The results sparked the interest in scoring neural networks at
initialisation and inspired other authors to create similar metrics.

3.2 Zero-Cost Proxies

3.2.1 Zero-Cost Proxies for Lightweight NAS

Abdelfattah et al., 2021 published a paper which did prominent research
on the effect zero-cost proxies had on NAS. The authors proposed seven
different zero-cost proxies and investigated them in the context of NAS
on three different datasets; CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Kr-
izhevsky, 2009) and ImageNet16-120 (Deng et al., 2009). Spearman Rank
Correlation was used to calculate the correlation between the validation
accuracy and the provided score of each proxy. The validation accuracies
were obtained using the NAS-Bench-201 benchmark (Dong & Yang, 2020).
NAS-Bench-201 contains 15,625 models for the three different image clas-
sification datasets. The study demonstrated that the zero-cost proxies presen-
ted by the authors not only matched but also surpassed conventional meth-
ods in terms of Spearman Rank Correlation. The paper reported that Iter-

Chapter 3: Related work 23

ative Synaptic Flow Pruning (Synflow) achieved a Spearman rank correl-
ation of 0.82 on NAS-Bench-201, whereas Economical Evolutionary-based
NAS (EcoNAS) attained a correlation of 0.61. Later, the study was exten-
ded with three new benchmarks; NAS-Bench-101 (Ying et al., 2019), NAS-
Bench-NLP (Klyuchnikov et al., 2020) and NAS-Bench-ASR (Mehrotra et
al., 2021). The results showed that the Synflow metric was the most con-
sistent across the different benchmarks.

Further, the paper showed how zero-cost proxies could be applied as a zero-
cost warm-up, which means that the proxies are used at the start of the
search to initialise the algorithm. Thus, the expensive training and evalu-
ation process is removed. The crucial factor in the zero-cost warm-up is the
number of models for which we calculate and utilise the zero-cost metric
(N). The advantage lies in that this value can often be much greater than
the number of models we have the resources to train because T << N ,
where T is the number of models one can afford to train. The warm-up
is performed on aging evolution, reinforcement learning and a binary pre-
dictor. The results showed that even the moderated correlated zero-cost
proxies significantly speed up the different search algorithms across the
datasets. In addition, the algorithms can find good-performing architec-
tures.

3.2.2 A Deeper Look at Zero-Cost Proxies for Lightweight
NAS

Building upon the research of Abdelfattah et al., 2021, White et al., 2022
delved deeper into the domain of zero-cost proxies for NAS. The team
extensively analysed existing work regarding zero-cost proxies and per-
formed novel experiments on the NAS-Bench-360 (Tu et al., 2021) and
TransNAS-Bench-101 (Duan et al., 2021) benchmarks to increase the range
of datasets and tasks involved.

In addition to the six zero-cost proxies in Abdelfattah et al., 2021, the paper
added two baseline zero-cost proxies, Floating Point Operations per second
(Flops) and params (number of parameters in the network). Their research
shows that the zero-cost proxies perform unstable across different tasks
and that no current zero-cost proxy consistently outperforms the others.

They argue that zero-cost proxies should be considered "weak learners",
which can rapidly enhance the performance and effectiveness of other
techniques within NAS.

Chapter 3: Related work 24

3.2.3 NAS Bench Suite Zero

Krishnakumar et al., 2022 evaluated 13 zero-cost proxies on 28 different
tasks and is thus the most extensive dataset for zero-cost proxies in the
literature. This dataset may be vital in conducting faster experiments of
zero-cost proxies as it offers precomputed zero-cost proxies scores on all
tasks. To demonstrate the usefulness of the dataset, the authors conducted
significant analyses of the different proxies, such as a bias analysis.

The article demonstrates that a technique is available to enhance the ef-
ficiency of a zero proxy by reducing biases. In this situation, biases may
include a tendency to prefer more extensive architectures or those with
more convolutions. In the paper, the authors consider the biases given in
table 3.1.

Table 3.1: List of biases

conv:pool
cell size
num. skip connections
num. parameters

Through their research, they find that although many zero-cost proxies
demonstrate different forms of biases to varying degrees, it is possible to
reduce these biases and thus enhance their performance.

3.3 NAS for GCN

3.3.1 Auto-GNN

Automated Graph Neural Network (Auto-GNN) is a proposed method for
automatically finding an optimal architecture of graph neural networks
for a given graph-based task presented by Zhou et al., 2019. It is one of
the earlier papers within GCN-NAS. The technique uses a reinforcement
learning-based approach to search for an architecture that maximises task
performance. Auto-GNN uses an RL agent to learn how to select and com-
bine various GCN layers to construct an optimal GNN architecture.

The RL agent compiles the candidate architecture before the architecture
can be trained on a graph classification task. During the training, the agent
uses the model’s accuracy on the validation set as the reward signal. As
a result, the process is highly time-consuming as it requires training the
network for multiple iterations of training and evaluations.

Chapter 3: Related work 25

3.3.2 One-shot Graph Neural Architecture Search with
Dynamic Search Space

There are no apparent applications of traditional NAS methods for GNNs
because GCNs naturally differ from CNNs. The main reason is that the
search space of GNNs is much more significant because of the variety of
GNNs’ message-passing components. Li et al., 2021 propose a dynamic
search space that maintains a subset of the significant search space and
a set of importance weights for operation candidates in the subset as the
architecture parameters. After each iteration, the subset is pruned by re-
moving candidates with low-importance weights and expanding with new
operations. This dynamic subset of operation candidates is tailored for each
edge in the computation graph of the neural architecture, ensuring the di-
versity of operations in the final architecture.

The paper demonstrates the effectiveness of this method through exper-
iments on semi-supervised and supervised node classification tasks using
citation networks, such as Cora, Citeseer, and Pubmed. The results show
that the proposed method outperforms current state-of-the-art manually
designed architectures and achieves competitive performance compared
to existing GNN-NAS approaches, with up to 10 times speedup.

3.4 Summary and Implications

Section 3.1 presents the existing literature on performance predictors in
NAS algorithms and the variety of types available. Further, the chapter
shows that prior work has been performed on zero-cost proxies, but there
is a lack of research on zero-cost proxies on GCNs. However, some work
concerning NAS for GCN has been done, as shown in section 3.3. Still,
the lack of performance predictors in the papers is a significant limitation,
leaving a critical gap in evaluating and comparing proposed architectures
effectively.

Applying zero-cost proxies in NAS for GCNs could potentially offer valuable
insights into the performance of different network architectures without
the need for expensive and time-consuming training processes.

Moreover, investigating zero-cost proxies for GCNs could also improve the
efficiency of NAS algorithms. This would allow for a more rapid and ac-
curate selection of optimal architectures and the discovery of novel GCN
architectures more suited to specific tasks or datasets.

The limitations and gaps highlight the necessity of this thesis. Thus, the

Chapter 3: Related work 26

next logical step in this area of research is to conduct empirical testing and
evaluation of zero-cost proxies within the context of GCNs.

Chapter 4
Method

This chapter discusses the different methods utilised in the experiments
and the rationale behind the choices. The chapter begins with an over-
view of the planned research plan and explains how the benchmark is
developed. After that, various zero-cost proxies, such as Flops, Params,
EPE-NAS, L2-norm, Plain, Zen-score, and GradSign, are mathematically
explained. Also, the implementation of the zero-cost proxies is provided.
The chapter then looks into the combination of zero-cost proxies, discuss-
ing how to use the weighted arithmetic mean and vote to combine proxies
to rank architectures.

4.1 Research Plan

In this section, the research methods employed in this study are presen-
ted. As figure 4.1 illustrates, the process comprises several steps. First, the
process starts with generating random architectures, followed by compre-
hensive training of these architectures for benchmarking purposes. Simul-
taneously, research on zero-cost proxies is conducted, followed by devel-
oping a zero-cost framework. When the framework is created and all the
architectures are fully trained, data regarding the performance of zero-cost
proxies is collected. Lastly, a quantitative analysis is conducted using the
acquired data to conclude the performance and effectiveness of the zero-
cost proxies.

27

Chapter 4: Method 28

Generate Random
Architectures

Conduct Compre-
hensive Training
on Architectures

for Benchmarking

Research Zero-
Cost Proxies

Establish Zero-Cost
Proxy Framework

Collect Data on
Zero-Cost Proxies

Performance

Perform Quantitat-
ive Analysis Using

Collected Data

Figure 4.1: Flowchart illustrating the research process.

4.2 Dataset

Nanyang Technological University’s Red Blue Green and Depth-information
(NTU RGB+D) is a large-scale dataset for HAR. It contains over 56 thou-
sand video samples and 4 million frames. The NTU RGB+D dataset con-
tains 60 action classes such as drinking, eating, staggering, punching and
kicking (Shahroudy et al., 2016).

The dataset is collected using Microsoft Kinect v2 sensors, in which they
collected four modalities: depth maps, 3D joint information, RGB frames
and IR sequences. In total, 25 body joints were captured in the dataset, in
which each body joint is represented by x-coordinates, y-coordinates and
depth (Shahroudy et al., 2016). The body joints are illustrated in figure 4.2.

Chapter 4: Method 29

4

3

219 5

10 6

2

1 1317

18

19

14

15

20 16

11 7

12
8

25
24

22
23

Figure 4.2: 1-base of the spine, 2-middle of the spine; 3-neck, 4-head, 5-left
shoulder, 6-left elbow, 7-left wrist, 8-left hand, 9-right shoulder, 10-right elbow,
11-right wrist, 12-right hand, 13-left hip, 14-left knee, 15-left ankle, 16-left foot,
17-right hip, 18-right knee, 19-right ankle, 20-right foot, 21-spine, 22-tip of the
left hand, 23-left thumb, 24-tip of the right hand, 25-right thumb

The NTU RGB+D dataset was later expanded into NTU RGB+D 120. The
new dataset contains 114 480 video samples of 120 action classes, all from
106 separate human subjects.

The NTU RGB+D dataset has been employed in numerous studies, making
it a well-established choice for research in the field of HAR (Cheng et al.,
2020; Si et al., 2019; Yan et al., 2018). The dataset’s large scale and diverse
range of activities facilitate the training of models with high generalisation
capabilities, which aligns with the goals of this study in achieving optimal
final validation accuracy. Given the dataset’s widespread application and
success in HAR-related research, it is an appropriate foundation for this
study.

Chapter 4: Method 30

4.3 Benchmark

Within NAS, a benchmark is a collection of already trained and evaluated
models that can be queried to obtain their validation accuracy. Such bench-
marks are crucial for research within NAS, as they spare the researchers
thousands of GPU training time. Popular benchmarks within the literature
are NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201 (Dong & Yang,
2020) and NAS-Bench-360 (Tu et al., 2021). These benchmarks contain
thousand of trained and evaluated models on different datasets. How-
ever, to our knowledge, no similar benchmarks exist for GCN within HAR.
Consequently, a benchmark had to be created for later experiments in the
thesis.

4.3.1 GCN-NAS

The framework from the paper Learning Graph Convolutional Network for
Skeleton-Based Human Action Recognition by Neural Searching (Peng et
al., 2020) was used to create the benchmark. This approach offers ways
to train individual models and run the provided NAS algorithm to find
the best architectures for a given problem. In addition, the framework is
developed to be used on the NTU RGB+D dataset.

The search space consists of eight function modules that can be applied
in each network layer. To extract features U from a given node in a graph,
the filter gθ is approximated using Chebyshev polynomials with R-th order.
The more significant R, the bigger the local receptive field of the GCN layer
will be. Chebyshev polynomial is recursive and is given in equation 4.1.

Y =
R
∑

r=0

θ ′r Tr (L̂)X , (4.1)

in which θ ′r is the Chebyshev coefficient. Recursively, the Chebyshev poly-
nomial Tr(L̂) is defined by equation 4.2.

Tr (L̂) = 2L̂Tr−1(L̂)− Tr−2(L̂), (4.2)

where T0 = 1 and t1 = L̂. In the framework, L̂ is normalised to the range
[−1,1], where L̂ = 2L

λmax
− In. Based on the work of (Kipf & Welling, 2016),

R = 1 and λmax = 2. This results in a first-order approximation of spectral
graph convolutions, as shown in equation 4.3.

Chapter 4: Method 31

Y = θ ′0X + θ ′1(L+ In)X

= θ ′0X − θ ′1(D
− 1

2 AD−
1
2)X

(4.3)

Similarly, θ
′
can be approximated with a unified parameter θ ; this means

that instead of using a separate parameter for θ
′
, it can be estimated using

a single parameter, θ , which will be a simplified representation of θ
′
. Then,

Y is given by equation 4.4.

Y = θ (In + D−
1
2 AD−

1
2)X (4.4)

Given the available search space, the networks may have different combin-
ations of R-th order Chebyshev-polynomials. Intuitively, using higher R-th
order, the filters of each layer will be able to aggregate more information
from the neighbours as the hops increase.

In addition, the search space consists of three dynamic graph modules;
spatial, temporal and spatial-temporal. The composition of the joints in a
single frame is referred to as a spatial feature, and it is commonly repres-
ented as a set of 3D coordinates. These spatial features capture the posture
and pose of the human body at a given time point, but they do not capture
the motion over time. On the other hand, temporal features capture how
spatial features change over time. Through a series of frames, these fea-
tures capture movement and action information. Finally, spatial-temporal
features combine the spatial and temporal aspects to capture both the pos-
ture and dynamics of motion over time.

To illustrate, table 4.1 shows the best-performing architecture found in
Peng et al., 2020. The table illustrates that the different layers of the archi-
tecture prefer different mechanisms. For instance, the lower layers prefer
all the dynamic modules, whereas the deeper layers prefer the temporal
representation correlations (Peng et al., 2020).

Chapter 4: Method 32

Table 4.1: The searched architecture in the paper

M L L4
n L4 L3 L2 M(S) M(T) M(ST)

k1 ✓ ✓ ✓ ✓
k2 ✓ ✓ ✓
k3 ✓ ✓ ✓
k4 ✓ ✓ ✓
k5 ✓ ✓ ✓
k6 ✓ ✓
k7 ✓ ✓ ✓ ✓ ✓
k8 ✓ ✓
k9 ✓ ✓
k10 ✓

4.3.2 Definition of Fully Trained Models

Defining what constitutes a fully trained model is essential in the bench-
mark development context. Due to time and hardware resource limitations,
a balance must be struck between training the models for optimal duration
and ensuring the process remains feasible within the given constraints.

A threshold was determined based on the trade-offs between computa-
tional cost, training time and model performance. By setting this upper
limit, it was possible to maintain a reasonable training duration while still
allowing the models to reach a satisfactory level of performance. In the
paper that introduced the framework, the authors (Peng et al., 2020) de-
cided to stop the training process at 70 epochs, a practice adopted in this
thesis.

Although the imposed threshold may not guarantee that every model reaches
its absolute peak performance, it ensures that each model is trained suffi-
ciently to compare relative performances. Furthermore, this definition of
"fully trained" (up to 70 epochs) facilitates the efficient generation and
evaluation of many models, which is crucial for successful benchmark de-
velopment.

4.3.3 Experimental Setup and Benchmarking Methodo-
logy

The algorithm for generating and evaluating random architectures is de-
scribed in algorithm 1. The benchmark consists of a large-scale dataset

Chapter 4: Method 33

comprising a diverse set of fully trained architectures to facilitate a com-
prehensive investigation into the performance of zero-cost proxies.

To generate random architectures, the framework described in section 4.3.1
was utilised to develop an algorithm that avoids generating already gen-
erated architectures. The algorithm was constrained to create models con-
sisting of four, six, eight, or ten layers to ensure a various range of architec-
tures and explore a more comprehensive search space. In addition, other
constraints were imposed, such as requiring at least one spatial, temporal,
or spatial-temporal function module for effective feature extraction from
the data.

Algorithm 1 Random Architecture Generation and Evaluation

Input: Number of architectures N
1: Define constraints for layer count and function modules
2: Initialize i← 0
3: while i < N do
4: Generate a random architecture Ai within constraints
5: while exists(Ai) do
6: Generate a new random architecture Ai within constraints
7: end while
8: Train Ai for up to 70 epochs
9: Compute validation accuracy Vi of Ai

10: Store Ai and Vi in the benchmark dataset
11: i← i + 1
12: end while

The following hyperparameters were used for the training process:

Table 4.2: Hyperparameters for the training

Name Value
weight decay 0.006
base learning rate 0.1
step [30,45, 60]
batch size 40
num. epochs 70

It should be noted that while previous work in this field has utilised signi-
ficantly larger benchmark datasets, time and hardware constraints neces-
sitated limiting the scope of this benchmark to produce baseline results.

Chapter 4: Method 34

To provide insight into the characteristics of the benchmark dataset, table 4.3
displays the minimum, average, and maximum values for training time and
validation accuracy.

Table 4.3: Benchmark Dataset Statistics

Statistic Minimum Average Maximum
Training time (hours) 4.35 13.16 53.30
Validation accuracy 0.92 0.94 0.95

4.4 Zero-Cost Proxies

This section aims to provide a comprehensive overview of the different
zero-cost proxies implemented in the project and clarify their respective
methodologies.

4.4.1 EPE-NAS

The main idea behind EPE-NAS is to assess how the network’s gradients
behave concerning the neural network’s input. Thus, the need for training
an entire network is eliminated (Lopes et al., 2021).

A linear map is defined as wi = f (x i), in which x i is a sample from a batch
X . The linear map can be computed by equation 4.5.

Ji =
δ f (x i)
δx i

(4.5)

However, it is necessary to see how the network will behave through dif-
ferent data points from the dataset. Therefore, the Jacobian matrix wi for
different data points, f (x i), is calculated:

J =
�

δ f (x1)
δx1

δ f (x2)
δx2

. . . δ f (xN)
δxN

�T
(4.6)

The Jacobian matrix shows how the output of the network changes based
on the input. After that, the correlation between data points of the same
class is calculated to say how the untrained network can model complex
functions (Lopes et al., 2021). The correlations are then used to calculate
the covariance matrix for each class in the dataset:

Chapter 4: Method 35

CJc
= (J −MJc

)(J −MJc
)t (4.7)

, where MJ is:

(MJc
)i, j =

1
N

∑

n∈1,...,N

Ji,n (4.8)

Then, the correlation matrix is calculated for each class:

CJc
=

(CJc
)i, j

Æ

(CJc
)i, j ∗ (CJc

) j, j

(4.9)

Each class is individually evaluated by summing the logarithm of the ab-
solute values of the correlation matrix elements plus a small value k =
1× 10−5.

Ec =

∑N
i=1

∑N
j=1 log(|(
∑

Jc
)i, j|+ K), if C ≤ τ

∑N
i=1

∑N
j=1 log(|(
∑

Jc
)i, j |+K)

||
∑

Jc
|| , otherwise

(4.10)

The network’s score can be calculated using the evaluations of the correl-
ation matrices above:

s =

∑C
t=1 |et |, if C ≤ τ

∑C
t=e

∑C
j=i+1 |ei−e j |
||e|| , otherwise

(4.11)

e is the vector with the scores of the correlation matrices. For example, in
the original paper (Lopes et al., 2021), they found empirically that τ =
100.

4.4.2 Fisher

Initially introduced as a pruning method in (Theis et al., 2018), Fisher aims
to remove feature maps or parameters that do not significantly contribute
to the model’s overall performance. This is achieved by eliminating activ-
ation channels and their corresponding parameters, estimated to have a
negligible impact on the loss (Abdelfattah et al., 2021).

Chapter 4: Method 36

Theis et al., 2018 employed equation 4.12 to calculate the network score.

Sz(z) =
�

∂ L
∂ z

z
�2

, Sn =
M
∑

i=1

Sz(zi) (4.12)

where M is the length of the vectorised feature map, and Sz is the saliency
per activation z.

By mapping all the different layers of the network, the activations can be
captured and used to score the network.

4.4.3 Flops

As a zero-cost proxy, Flops is one of the simpler baselines as it simply goes
through the model and calculates the number of floating point operations
performed per second required to pass the input through the network.
Therefore it could be considered a measure of the architecture’s complexity
(Ning et al., 2021).

4.4.4 Grad Norm

The Gradient Norm is a straightforward zero-cost proxy that computes the
sum of the Euclidean norms of gradients after conducting a single forward
and backward pass using a minibatch of training data (Abdelfattah et al.,
2021). Given a vector of gradients G = [g1, g2, ..., gn], the gradient norm
is calculated according to the formula presented in equation 4.13.

s =
n
∑

i=1

q

g2
i (4.13)

4.4.5 GradSign

GradSign uses the network’s initial gradients like many other zero-cost
proxies do. However, the proxy’s central concept uses Ψ(psi) to examine
the optimisation landscape of various networks at the level of specific train-
ing samples. Thus, GradSign differs from most other gradient-based meth-
ods because of its theoretical insights. Under plausible assumptions, these
theoretical results show that a network with denser sample-wise local op-
tima has lower training and generalisation losses.

Chapter 4: Method 37

The calculation of Ψ is often considered computationally infeasible for
modern networks. To tackle this issue, the authors propose GradSign, which
approximates Ψ. This method takes as input a mini-batch of sample-wise
gradients that are evaluated at a randomly initialised point. Using this in-
put, the method produces statistical evidence strongly associated with the
well-trained predictive performance of the network, as measured by its
accuracy on the entire dataset (Zhang & Jia, 2021).

4.4.6 Grasp

Gradient Signal Preservation (Grasp) is one of the pruning-at-initialisation
techniques. Wang et al., 2020 argue that efficient training depends on pre-
serving the gradient flow, from which the name gradient signal preserva-
tion comes. Therefore, Grasp aims at finding the sub-networks as initialisa-
tion rather than after training. This is done by pruning the weights whose
removal will cause a minor fall in the gradient norm after pruning (Wang
et al., 2020).

4.4.7 Jacov

The Jacov-score is a zero-cost proxy that estimates architecture perform-
ance by analysing the gradient correlation structure in a neural network’s
output space (Mellor et al., 2020). The Jacov-score is computed using the
eigenvalues of the correlation matrix of the batch Jacobian, as shown in
equation 4.14.

s = −
∑

i

�

log(vi + k) +
1

vi + k

�

(4.14)

where k is a small constant. The Jacov-score offers an efficient performance
evaluation in NAS without extensive computation.

4.4.8 L2-norm

L2-norm is calculated by summing over the norm of all weights of each
layer in a neural network.

4.4.9 NAS-WOT

Mellor et al., 2020 derived a metric by investigating linear maps of binary
activation codes from the overlapping ReLU present at initialisation. These

Chapter 4: Method 38

linear maps provide insight into how the network divides the input space.

The intuition is that the more similar the binary codes associated with two
inputs are, the more challenging it is for the network to learn to separate
them. When two inputs have the same binary code, they lie within the same
linear region of the network and are particularly difficult to disentangle
(Mellor et al., 2020).

Let’s consider a mini-batch of data X = {x i}Ni=1 mapped through a neural
network as f (x i i). We can define an indicator variable ci, forming a binary
code defining a linear region. Using the binary codes, we can use Hamming
distance dH(ci, c j) to measure how different the two inputs are (Mellor et
al., 2020).

The correspondence between binary codes in the mini-batch can be com-
puted with the kernel matrix, as given in equation 4.15.

KH =

NA− dH(c1, c1) . . . NA− dH(c1, cN)
...

. . .
...

NA− dH(cN , c1) . . . NA− dH(cN , cN)

 , (4.15)

where NA is the number of ReLU activations in the network. Then the final
score metric s is derived from the logarithm of the kernel norm at initial-
isation.

s = |log|KH || (4.16)

Because of matrix instability, a small epsilon was added to the diagonal to
make it possible to calculate a determinant.

4.4.10 Params

Within a neural network, there exist several trainable parameters, which,
similarly to Flops, are considered a measure of the architecture’s complex-
ity (Ning et al., 2021).

4.4.11 Plain

The Plain-score is simply looping through all layers of the network. If the
layer’s weight contains a gradient, the gradient is multiplied by the layer’s
weights. Ultimately, the method is summing the scores to obtain the final
score.

Chapter 4: Method 39

4.4.12 Snip

The Single-shot Network Pruning (Snip) method was introduced by (Lee
et al., 2018) as a pruning-at-initialisation technique, aiming to reduce the
number of parameters within a neural network without affecting the accur-
acy during inference (Frankle et al., 2020). Frankle et al., 2020 proposed
a data-dependent saliency criterion that identifies significant connections
in the network related to the current task before training. This approach
enables the pruning of redundant connections, thus reducing the neural
network’s parameter count. The connections are identified based on their
influence on the loss function.

In the paper Zero-Cost Proxies for Lightweight NAS (Abdelfattah et al.,
2021), Snip was repurposed as a zero-cost proxy. The score of the neural
network was obtained by summing all parameters N in the model accord-
ing to equation 4.17,

Sn =
N
∑

i=1

Sp(θ)i (4.17)

Sp(θ) =

�

�

�

�

∂ L
∂ θ
⊙ θ
�

�

�

�

(4.18)

where L is the loss function, θ represents the parameters of the neural
network, and ⊙ denotes the Hadamard product.

4.4.13 Synflow

Iterative Synaptic Flow Pruning (Synflow), originally proposed in (Tanaka
et al., 2020), is a method for parameter pruning. By pruning less significant
parameters, highly sparse networks can be obtained with reduced network
size while maintaining similar accuracy. Synflow is built on three main
principles: avoiding layer collapse, conservation of synaptic saliency, and
magnitude pruning.

Layer collapse occurs when an algorithm prunes all parameters in a single
weight layer, even when prunable parameters remain elsewhere in the net-
work. This makes the network untrainable, as evidenced by sudden drops
in achievable accuracy (Tanaka et al., 2020). Therefore, it is crucial to avoid
layer collapse since the network will become unusable if a layer is removed.

Synaptic saliency is a class of score metrics that can be expressed as the
Hadamard product (equation 4.19).

Chapter 4: Method 40

S(θ) =
∂ R
∂ θ
⊙ θ (4.19)

where R is a scalar loss function of the output y of a feed-forward network
parameterized by θ (Tanaka et al., 2020). The conservation of synaptic
saliency theorem demonstrates that the sum of synaptic saliency for all in-
coming parameters to a hidden neuron equals the sum of the synaptic sa-
liency for the outgoing parameters from the hidden neuron (Tanaka et al.,
2020). Consequently, the sum of synaptic saliency for all incoming para-
meters to a hidden layer equals the sum of the synaptic saliency for the
outgoing parameters from the hidden layer. This can lead to issues when
performing one-shot pruning, where a larger layer would have parameters
with lower synaptic saliency. In comparison, a smaller layer would have
parameters with higher synaptic saliency. Pruning one of the parameters
for a smaller layer would result in pruning almost all the parameters in a
larger layer to compensate for the conservation of synaptic saliency, lead-
ing to layer collapse.

To prevent this, Synflow introduces iterative pruning (magnitude prun-
ing) by recalculating the synaptic saliency for all parameters at each itera-
tion. This re-evaluation process gives new scores to parameters with lower
scores in previous iterations, eliminating the imbalance between smaller
and larger layers and reducing the possibility of layer collapse. The Syn-
flow algorithm is described in equation 4.20:

RSF = 1
T

�

L
∏

l=1

|θ [l]|

�

1 (4.20)

The algorithm takes an input of ones (e.g., an image where all the pixels
have the value 1) and performs a forward pass through the network. The
loss R is obtained by calculating the product of the output. This loss is then
backpropagated through the network to the layers, and equation 4.19 is
used to compute the synaptic saliency score for each parameter θ .

4.4.14 Zen-score

Zen-score is a measure of the expressivity of the network, which is compu-
tationally efficient and correlates positively with the model accuracy (Lin
et al., 2021). Zen-score builds upon the expected Gaussian complexity (Φ-
score), which can define the expressivity of a Vanilla Convolutional Neural
Network (VCNN). In theoretical investigations, VCNN is a frequently used

Chapter 4: Method 41

prototype in which several convolutional layers are stacked to form the
main body of the network. Each layer has a convolutional operator fol-
lowed by a ReLU activation function, where residual links and Batch Nor-
malisation are excluded. A global average pool layer (GAP) brings the fea-
ture map resolution down to 1 x 1 before a fully-connected layer (Lin et al.,
2021).

However, numerical overflow may occur for deep networks when directly
calculating the Φ-score because of gradient explosion without batch nor-
malisation layers (Lin et al., 2021). Zen-Score addresses this problem by
adding batch normalisation layers and re-scaling the Φ-score by some con-
stant.

4.4.15 Summary

Table 4.4 displays an overall view of the discussed zero-cost proxies, with
the characteristics of each method’s data dependence, data independence
and type outlined.

Table 4.4: Summary of the implemented zero-cost proxies in the project

Zero-Cost Proxy Data-dependent Data-independent Type
Epe-NAS ✓ Jacobian
Fisher ✓ Pruning-at-init
Flops ✓ Baseline
GradNorm ✓ Pruning-at-init
GradSign ✓ Gradient Sign
Grasp ✓ Pruning-at-init
Jacov ✓ Jacobian
L2-norm ✓ Baseline
Nwot ✓ Jacobian
Params ✓ Baseline
Plain ✓ Baseline
Snip ✓ Pruning-at-init
Synflow ✓ Pruning-at-init
Zen ✓ Piece. Lin.

4.5 Zero-Cost Framework

A novel Zero-Cost framework was created to calculate the scores of each
zero-cost proxy. The framework, influenced by section 3.2.1, was developed
as a versatile plug-and-play solution to be easily integrated into any NAS
project. The primary goal of this framework is to provide an efficient and
effective method of using zero-cost proxies for performance prediction.

Chapter 4: Method 42

Algorithm 2 outlines calculating zero-cost proxies for a given model. The
algorithm takes four inputs: the model, a data loader, a loss function, and
an optional override parameter. The model represents the neural network
architecture under evaluation, while the data loader and the loss function
are used for calculating the proxy metrics. The optional override parameter
allows users to calculate only specified proxies selectively.

Algorithm 2 Calcuate Zero-Cost Proxies

Input: model, data_loader, loss_function, override
1: score_store← dict()
2: proxies← getProxies()
3:

4: for proxy in proxies do
5: if override is not empty then
6: if proxy not in override then
7: skip
8: end if
9: end if

10:

11: start_time← now()
12: score← proxy.calculateProxy(model, data_loader, loss_function)
13: scor_store.proxy.time← now()− start_time
14: score_store.proxy.score← score
15: end for
16:

17: return score_store

An empty score_store is initialised to keep track of the calculated scores
and the time taken for each proxy. The algorithm then retrieves all the
available proxy implementations using the getProxies() function. Next, a
loop iterates through each proxy, and if the optional override parameter is
not empty, it checks whether the current proxy is included in the override
list. If the proxy is not in the list, it is skipped, and the loop continues to
the next proxy.

For each selected proxy, the algorithm records the start time. Then, it cal-
culates the proxy score using the calculateProxy() function with the model,
data loader, and loss function as inputs. After calculating the score, the al-
gorithm computes the time taken by subtracting the start time from the
current time. Each proxy’s calculated score and time are stored in the
score_store.

Chapter 4: Method 43

4.6 Correlation

Calculating the correlation between the score of each zero-cost proxy and
the validation accuracy is a logical approach to understanding the impact
of the zero-cost proxies. Spearman Rank Correlation is a non-parametric
statistical test that measures the strength and direction of the association
between two ranked variables (Hauke & Kossowski, 2011). The Spearman
Rank does not assume a linear relationship between the two variables. It
is suitable for cases where the connection between the validation accuracy
and the zero-cost proxy may not be linear. Additionally, the metric is less
vulnerable to outliers because it focuses on the rank of the variables rather
than their raw values.

Pearson correlation coefficient is the most commonly used correlation coef-
ficient. The coefficient provides insights into the strength and direction of
a linear relationship (Turney, 2022).

However, its utility for our project is limited due to several constraints.
First, it assumes the variables in the dataset are normally distributed (Turney,
2022). The Shapiro-Wilk test is a statistical test used to check whether a
sample of numbers has been drawn from a normally distributed popula-
tion. The starting assumption (or null hypothesis) is that the population
is normally distributed (Shaphiro & Wilk, 1965). The null hypothesis is
disregarded if the test’s calculated p-value is less than the predetermined
alpha level, typically 0.05. Discarding the null hypothesis means we have
enough evidence to conclude that the data set under investigation does not
exhibit a normal distribution. The Shapiro-Wilk test result for each variable
(zero-cost proxy) is shown in table 4.5.

Table 4.5: P-values for each variable using the Shapiro-Wilk test

ZC-proxy P-value ZC-proxy P-value
EPE-NAS < 1e− 6 NAS-WOT 0.003
Fisher < 1e− 6 Params < 1e− 6
Flops < 1e− 6 Plain < 1e− 6
Grad Norm < 1e− 6 Snip < 1e− 6
GradSign < 1e− 6 Synflow < 1e− 6
Grasp < 1e− 6 Val. acc < 1e− 6
Jacov < 1e− 6 Zen < 1e− 6
L2 norm < 1e− 6

The p-values for all variables are smaller than the significance level (α =
0.05), as seen in the table 4.5. Therefore, we can disprove the Shapiro-

Chapter 4: Method 44

Wilk test’s null hypothesis for each variable, showing that the distributions
of those variables considerably differ from the normal distribution.

Further, Pearson’s correlation is highly sensitive to outliers. A few extreme
observations can greatly distort the correlation coefficient, potentially lead-
ing to incorrect interpretations. This sensitivity is unwanted given that the
zero-cost proxies may contain such outliers, as illustrated in figure 4.3, in
which one can observe that the data contains outliers (i.e. Synflow in the
bottom left corner).

Chapter 4: Method 45

(a) EPE-NAS (b) Fisher (c) Flops

(d) Grad Norm (e) GradSign (f) Grasp

(g) Jacov (h) L2 Norm (i) NAS-WOT

(j) Params (k) Plain (l) SNIP

(m) Synflow (n) Zen

Figure 4.3: Each zero-cost proxy normalised with the validation accuracy

Chapter 4: Method 46

These findings are all pointing in favour of using the Spearman Rank.
Lastly, the Pearson correlation coefficient relies on the actual values of the
variables, whereas our focus is more on their rankings, which makes the
Spearman rank correlation a more suitable measure for our project.

The Spearman Rank Correlation is denoted by the symbol ρ (rho) and
ranges from -1 to 1, where -1 indicates a perfect negative relationship, 1
indicates a perfect positive relationship, and 0 shows no connection, as
illustrated in figure 4.4 (Ltd, 2013).

0 2 4 6 8 10
0

2

4

6

8

10

Variable x

Va
ri

ab
le

y

Positive Correlation (ρ = 1)

0 2 4 6 8 10
0

2

4

6

8

10

Variable x

Va
ri

ab
le

y

Negative Correlation (ρ = −1)

0 2 4 6 8 10
0

2

4

6

8

10

Variable x

Va
ri

ab
le

y

Very poor Correlation (ρ ≈ 0)

Figure 4.4: Scatter plots illustrating perfect positive, perfect negative correlations
and very poor correlation

Spearman Rank Correlation works by calculating the difference in ranks
of the two variables for each observation, then squaring these differences
and summing them up, as given in equation 4.21.

ρ = 1−
6
∑

d2
i

n(n2 − 1)
, (4.21)

Chapter 4: Method 47

where di is the difference in ranks for each observation, and n is the number
of observations.

According to statstutor, 2011, Spearman’s correlation can generally be de-
scribed using guidelines from table 4.6.

Table 4.6: Guidelines for interpreting Spearman’s correlation

Correlation coefficient Strength of correlation
.00-.19 Very weak
.20-.39 Weak
.40-.59 Moderate
.60-.79 Strong
.80-1.0 Very strong

In the context of zero-cost proxies and validation accuracy, Spearman Rank
Correlation can be used to determine whether there is a monotonic rela-
tionship between the two. A positive correlation would indicate that as the
zero-cost proxy improves, so does the validation accuracy, while a negat-
ive correlation would imply an inverse relationship. A correlation near zero
would suggest that the two variables have little or no association.

4.7 Exploration of Zero-Cost Proxies via War-
mup Strategy

4.7.1 Theoretical and Practical Considerations

In this section, we introduce the concept of a warmup strategy, which aims
to determine an optimal epoch threshold that can provide a reliable estim-
ation of the relative performance of different architectures. This contrast
with the naive NAS approach of training numerous architectures, which
can be computationally prohibitive.

The underlying principle for this strategy is based on the assumption that
training an architecture for x epochs offers a more efficient evaluation
than training the same architecture for y epochs if x < y . By identifying
an appropriate warmup threshold, researchers can effectively balance the
trade-off between computational expense and the accuracy of architecture
performance estimation.

To achieve this, each architecture is trained for a predetermined number
of warmup epochs, and the zero-cost proxies are calculated at each epoch.

Chapter 4: Method 48

Then, for every epoch, the Spearman Rank correlation coefficient between
the zero-cost proxies and the final validation accuracy for all architectures
is calculated. The epoch with the highest correlation is considered the op-
timal warmup point.

4.8 Combining Zero-Cost Proxies

Upon analysing the outcomes from addressing research question 1 and
research question 2, it became necessary to reconsider the experimental
plan. The insights gained from the initial results prompted further explor-
ation into utilising zero-cost proxies. Consequently, a decision was made
to undertake additional ad hoc experiments to delve deeper into this area
of investigation.

4.8.1 Majority Vote Method

The majority vote method, introduced by Abdelfattah et al., 2021, is an ap-
proach for ranking candidate architectures based on the combined results
of multiple zero-cost proxy metrics. This technique consolidates the rank-
ings generated by different zero-cost proxy metrics, and the architectures
are ranked according to the majority vote derived from these metrics. The
algorithm of the voting method is outlined in algorithms 3 and 4.

Algorithm 3 Voting algorithm

1: function VOTE(mets, g t)
2: numpos← 0
3: for each element m in mets do
4: if m> 0 then
5: Increment numpos by 1
6: end if
7: end for
8: if majority of elements in mets are positive then
9: si gn← +1

10: else
11: si gn←−1
12: end if
13: return si gn ∗ g t
14: end function

Chapter 4: Method 49

Algorithm 4 Voting Accuracy for Metric Combinations

1: function CALC(acc, metrics, comb)
2: tot ← 0, ri ght ← 0
3: for each pair of distinct indices i and j do
4: di f f ← acc[i]− acc[j]
5: if di f f ̸= 0 then
6: di f f s yn /* Initialize an empty list */
7: for each metric m in comb do
8: di f f s yn← metrics[m][i]−metrics[m][j]
9: end for

10: /* Check if di f f s yn and di f f have same sign */
11: same_si gn← VOTE(di f f s yn, di f f)
12: if same_si gn> 0 then
13: Increment ri ght
14: end if
15: Increment tot
16: end if
17: end for
18: votes← ri ght

tot /* Calculate the voting accuracy */
19: return (comb, votes)
20: end function

Given that it is uncertain which combination of zero-cost proxies would
yield the best results, we developed a function to generate all possible sub-
sets of the 14 zero-cost proxy metrics. Subsequently, the majority vote for
each subset was calculated and compared to the ground truth provided by
the validation accuracy of every trained architecture in the benchmark. For
example, table 4.7 displays two architectures with given values for three
zero-cost proxies (Synflow, Snip and Grad Sign) and their validation ac-
curacy.

Chapter 4: Method 50

Table 4.7: Example of two architectures with validation accuracy and zero-cost
proxy metrics.

Architecture Metrics
1 Validation Accuracy: 0.85

Synflow: 0.62
Snip: 0.75
Grad Sign: 0.28

2 Validation Accuracy: 0.89
Synflow: 0.48
Snip: 0.82
Grad Sign: 0.36

By examining the validation accuracy, one can deduce that Architecture 2
is superior to Architecture 1. Upon analysing the computed zero-cost proxy
metrics, the following observations can be made:

• Synflow: Architecture 1 (0.62)> Architecture 2 (0.48)
• Snip: Architecture 1 (0.75)< Architecture 2 (0.82)
• GradSign: Architecture 1 (0.28)< Architecture 2 (0.36)

In this case, one positive difference (Synflow) and two negative differences
(Snip and Grad Sign). Consequently, the majority vote favours Architecture
2, consistent with the validation accuracy.

4.8.2 Weighted Arithmetic Mean

The weighted arithmetic mean, as described in (Weighted Arithmetic Mean,
2008), is a widely used technique in statistics and data analysis. This study
applied the weighted arithmetic mean method to the zero-cost proxies us-
ing Spearman’s rank correlation as weights for ranking various architec-
tures. The algorithm is outlined in algorithm 5.

Chapter 4: Method 51

Algorithm 5 Weighted Arithmetic Mean for datapoint d

Input: Zero-cost proxies Pd = {p1, p2, . . . , pn}
Input: Validation accuracy Ad

1: Normalise zero-cost proxies: Pdnorm
= {p1norm

, p2norm
, . . . , pnnorm

}
2: for i = 1 to n do
3: Calculate Spearman’s rank correlation ri between pinorm

and Ad

4: Assign weight wi = ri

5: end for
6: Initialize: Scored ← 0, total_weight ← 0
7: for i = 1 to n do
8: Scored ← Scored + (pinorm

∗wi)
9: total_weight ← total_weight +wi

10: end for
11: Scored ←

Scored
total_weight

12: Calculate correlation between Scored and Ad using Spearman’s rank
correlation

Each zero-cost proxy value is first normalised with min-max normalisa-
tion, ensuring they are on a comparable scale for accurate comparison and
combination. Next, weights were assigned to each zero-cost proxy based
on their performance. Finally, Spearman’s rank correlation evaluated the
correlation between each proxy and the validation accuracy. Higher correl-
ation values indicated better performance and proxies with stronger cor-
relations received larger weights.

For the weighted arithmetic mean calculation, the normalised value of each
zero-cost proxy was multiplied by its respective weight for every data point,
and the products were summed. The combined score was then calculated
by dividing the sum of these products by the total sum of the weights using
equation 4.22.

Score=

∑

x i ∗wi
∑

wi
, (4.22)

where wi is the weight assigned to the i-th zero-cost proxy, x i represents
the normalised value of the i-th zero-cost proxy. The sums are calculated
using all zero-cost proxies.

After obtaining the combined scores, the architectures were ranked based
on these scores, with higher scores indicating better-performing architec-
tures. Finally, the effectiveness of the weighted arithmetic mean approach
was evaluated by calculating the correlation between the weighted arith-

Chapter 4: Method 52

metic mean score and the validation accuracy using Spearman’s rank cor-
relation coefficient.

Chapter 5
Results

This chapter outlines the study’s findings, responding to the defined re-
search questions. The first section evaluates the capability of zero-cost
proxies in ranking GCN architectures concerning their validation accuracy.
Subsequently, the correlation analysis during the warm-up phase of GCN
training is identified. Lastly, sections 5.1.1 and 5.2 examines techniques
for combining zero-cost proxies to improve efficiency and accuracy in NAS
algorithms.

5.1 Correlation Analysis

Establishing a benchmark provided the foundation for investigating the
correlation between various zero-cost proxies and the ground truth rep-
resented by the validation accuracy. The Spearman Rank Correlation was
employed to measure the correlation, as discussed in section 4.6.

Table 5.1 displays the obtained results, utilising the 693 architectures from
the created benchmark.

53

Chapter 5: Results 54

Table 5.1: Correlation coefficients between proxy scores and model performance
before training

ZC-proxy ρ

EPE-NAS 0.0090
Fisher 0.2405
Flops 0.7241
Grad Norm 0.2653
GradSign 0.4979
Grasp −0.4244
Jacov −0.0465
L2 norm 0.7325
NAS-WOT 0.1214
Params 0.6164
Plain 0.2490
Snip 0.2468
Synflow 0.7599
Zen 0.7827

The results in table 5.1 reveal that specific proxies correlate strongly with
the validation accuracy, while others demonstrate weaker correlations. Table 5.1
exhibits that Zen has the highest correlation with model performance, with
a coefficient of 0.7827. Synflow is also performing well, with a coefficient
of 0.7599. This suggests that Zen and Synflow are the most effective zero-
cost proxies among the ones considered in this study.

Conversely, the EPE-NAS and Jacov proxies exhibit a weak correlation with
the model performance, with coefficients of 0.0090 and −0.0465, respect-
ively.

It is also worth noting that the L2-norm, Flops, and params proxies show re-
latively strong correlations with coefficients of 0.7325, 0.7241, and 0.6164,
respectively. Although these proxies might be less effective than Zen and
Synflow, they still demonstrate considerable potential for predicting model
performance.

The findings of this correlation analysis provide valuable insights into the
predictive capacity of each proxy in relation to the ground truth. This un-
derstanding can inform the development of more efficient and effective
NAS approaches, thereby reducing computational demands and enabling
more rapid progress in the field.

Chapter 5: Results 55

5.1.1 Vote

The results will only display the top-5 combinations, as showing all possible
variations would not be feasible. From the results shown in table 5.2, the
top-performing combinations of metrics exhibit almost the same custom
correlation measure (majority vote score) of > 0.788. This suggests that
these combinations of metrics perform similarly in terms of the agreement
between the majority of metrics and accuracy differences.

Table 5.2: Vote scores

ZC-proxies Value
Synflow, Zen, Fisher 0.7899
Synflow, Zen, NAS-WOT 0.7888
Synflow, Zen, Flops 0.7885
Synflow, Zen, Plain 0.7883
Synflow, Zen, Grad Norm 0.7883

It is important to note that these results are based on the custom correlation
measure (see section 4.8.1), which differs from standard correlation meas-
ures such as Spearman’s rank correlation. The custom correlation measure
captures the extent to which the majority of metric differences agree with
the differences in dataset accuracies. A higher correlation value indicates
a stronger agreement, while a lower correlation value suggests a weaker
agreement.

5.1.2 Warmup

Figures 5.1 and 5.2 presents the variation in correlation during the initial
ten epochs, with epoch -1 representing the starting correlations (same as
table 5.1). As shown in the figures, Synflow and Zen exhibit the highest
performance, maintaining a stable correlation at ≈ 0.8 throughout the ob-
served epochs. A minor increment in correlation can be observed, although
its impact is relatively insignificant. Furthermore, Params, L2-norm, and
Flops exhibit consistently strong performance with a correlation coefficient
(ρ) exceeding 0.6 across all epochs under consideration.

Chapter 5: Results 56

Figure 5.1: Correlations for all zero-cost proxies over multiple epochs

Chapter 5: Results 57

Figure 5.2: Each zero-cost proxy with the correlation over multiple epochs

5.2 Weighted Arithmetic Mean

Figure 5.3 displays a scatter plot illustrating the relationship between val-
idation accuracy and the weighted arithmetic mean. Every data point dis-
played within the graph corresponds to a unique architecture evaluated
during the experiment. A dotted red line represents the best-fit linear re-
gression line through the data points. Additionally, the graph includes Spear-
man’s rank correlation coefficient in the title (0.766), which measures the
monotonic relationship between the validation accuracy and the weighted
arithmetic mean.

Chapter 5: Results 58

Figure 5.3: Weighted Arithmetic Mean

Chapter 6
Discussion

This chapter discusses the study’s findings on improving and optimising
the efficiency of NAS with GCN for HAR. The chapter aims to analyse and
interpret the results of each research question and their implications in
the context of the overall goal. We also discuss the significance and po-
tential impact of the findings on the field of NAS with GCN for HAR and
acknowledge the study’s limitations. In addition, a discussion on the over-
all environmental implication is included.

6.1 Interpretation and Significance of Results

6.1.1 RQ1 How well can different zero-cost proxies rank
GCN architectures compare to their validation ac-
curacy?

Section 5.1 highlights the results for the given research question in which
the correlation between the different zero-cost proxies and the validation
accuracy is presented. Positive correlation values indicate that as the proxy
metric increases, the validation accuracy also increases, whereas negative
values indicate the opposite. The magnitude and sign of the Spearman rank
correlation coefficient, also known as Spearman’s rho (ρ), can be used to
interpret the strength and direction of the association between two ranked
variables (Pallant, 2016).

The results showed that Zen and Synflow performed the best with a spear-
man ρ of 0.7827 and 0.7599, respectively. This is a strong, close to very
strong, correlation, as indicated by statstutor, 2011, demonstrating that

59

Chapter 6: Discussion 60

the zero-cost proxies can confidently predict model performance without
incurring significant computational overhead. The strength of these cor-
relations suggests that both Zen and Synflow effectively capture proper-
ties critical for achieving high validation accuracy in neural networks in
this context. Furthermore, given the variations in the validation accuracy
in the benchmark [0.92,0.95], and the provided correlations, both Syn-
flow and Zen are sensitive to slight differences in performance among the
models, effectively ranking them based on their validation accuracy.

For comparison, Abdelfattah et al., 2021 reported the results on zero-cost
proxies on NAS-Bench 201 given in table 6.1. Note that this is a benchmark
for a different task (image classification).

Table 6.1: Comparison of various methods on different datasets

Dataset Grad Norm Snip Grasp Fisher Synflow Jacov
CIFAR-10 0.58 0.58 0.48 0.36 0.74 0.73
CIFAR-100 0.64 0.63 0.54 0.39 0.76 0.71
ImageNet16-120 0.58 0.58 0.56 0.33 0.75 0.71

The results in table 6.1 from Abdelfattah et al., 2021 show that the per-
formance of the zero-cost proxies varies across different datasets. It is im-
portant to note that NAS-Bench 201 is a different benchmark and has other
properties than the dataset used in this study. Nonetheless, a comparison
can provide valuable insights into the generalisability and robustness of
these methods across various tasks.

From table 6.1, it is evident that Synflow performs consistently well across
all three datasets, with correlation coefficients of 0.74, 0.76, and 0.75 for
CIFAR-10, CIFAR-100, and ImageNet16-120, respectively. The results sup-
port the thesis’ finding that Synflow is a reliable and robust predictor of
model performance. Similarly, Grad Norm and Snip exhibit relatively high
correlations across the datasets, although not as strong as Synflow. This
suggests that these methods may also provide valuable information when
predicting model performance but with varying effectiveness.

The practical implications of this thesis’s findings imply that Synflow and
Zen could be valuable components of a NAS algorithm in the context of
GCN for HAR tasks, given their strong correlations with model perform-
ance. However, it is essential to note that the current study utilised a spe-
cific framework designed for GCN HAR tasks with the NTU RGB+D data-
set. This means that the demonstrated efficiency of using zero-cost proxies,
such as Synflow and Zen, is effective for this case.

However, the generalisability of these results to other tasks, datasets, or

Chapter 6: Discussion 61

frameworks remains to be established. Further research is needed to as-
sess the effectiveness and applicability of Synflow, Zen, and other zero-
cost proxies across a broader range of neural network architectures and
tasks. By doing so, the academic community can better understand the po-
tential benefits and limitations of incorporating zero-cost proxies into NAS
algorithms for various problem domains.

The significance of these findings lies in their potential to improve the ef-
ficiency and effectiveness of NAS methods by identifying zero-cost prox-
ies with solid predictive capacities. Furthermore, by understanding which
proxies are more reliable in ranking GCN architectures to their validation
accuracy, researchers can prioritise their use in NAS algorithms and reduce
the overall computational demands of the architecture search process.

This is particularly important given neural networks’ growing scale and
complexity, often requiring significant computational resources to explore
and evaluate. Focusing on zero-cost proxies with strong correlations can
significantly reduce the time required to identify optimal architectures.

Furthermore, these findings stimulate additional research into developing
and refining zero-cost proxies that exhibit stronger correlations with valid-
ation accuracy. This could lead to the discovery of new proxies that further
improve the efficiency and accuracy of NAS methods, thus accelerating
progress in the field.

Finally, the reduced computational demands also result in lessening the
environmental impact. One can significantly lower the process’s energy
consumption and associated carbon footprint by decreasing the training
time and computational resources required for NAS. This aligns with the
growing global concern for sustainable practices in artificial intelligence
research and development.

6.1.2 RQ2 How early can we identify the correlation between
zero-cost proxies and validation accuracy during
the warm-up phase of GCN training to potentially
halt the training process sooner?

The results presented in chapter 5 provide insights into how the relation-
ship between zero-cost proxies and validation accuracy evolves during the
warmup phase of GCN training. By analysing the Spearman Rank correl-
ation coefficients between the 14 proxies and the model performance for
each epoch (see figure 5.1), one can determine the optimal warmup point
for each architecture.

Chapter 6: Discussion 62

The correlation coefficients reveal that some zero-cost proxies, such as Syn-
flow, Flops, Params, and L2 norm, consistently show strong positive correl-
ations with the validation accuracy throughout the warmup phase. On the
other hand, some proxies, like Grasp, GradSign, and Jacov, display weak
correlations. This indicates that specific zero-cost proxies are more reliable
indicators of an architecture’s potential performance.

Moreover, the optimal warmup points vary across the different zero-cost
proxies, as evident from the highest correlation coefficients achieved at
different epochs. For example, Synflow achieves its highest correlation at
epoch 8, while L2 norm peaks at initialisation. This indicates that there is
no optimal warmup point for all proxies, and the choice of a warmup point
depends on the specific proxy used for performance estimation.

The significance of the results is that there is no improvement in using
warmup regarding the correlation and that the zero-cost proxies are most
effective when the network is initialised. From an academic perspective, it
is crucial to note this study’s implications on NAS algorithms. The findings
suggest that the necessity of training architectures within a NAS algorithm
may be an oversimplified assumption. Given that zero-cost proxies were
found to be most effective at the initialisation stage, one can assume that
the requirement of training architectures may be less vital to the successful
implementation of a NAS algorithm than previously believed.

6.1.3 RQ3 How can we effectively combine zero-cost prox-
ies using various techniques to enhance the effi-
ciency and accuracy of architecture search in NAS
algorithms?

White et al., 2022 argued that zero-cost proxies have untapped potential
and referred to preliminary research, which showed zero-cost proxies shine
when combined rather than individually. How to combine them is another
question that one should raise, as there are many different opportunities to
discover. This study investigated the effectiveness of combining zero-cost
proxies to improve the efficiency and accuracy of architecture search in
NAS algorithms, as posed in Research Question 3.

Considering the high Spearman’s rank correlation for Zen and Synflow,
combining methods has little room for improvement, as the correlation
is already strong. However, it is important to note that by using methods
which combines zero-cost proxies, one can utilise properties of different
proxies, which can maximise the different metric’s variety to create a better

Chapter 6: Discussion 63

correlation.

The presented methods in this study are relatively simple yet efficient meth-
ods discovered. However, various other methods can be explored for com-
bining zero-cost proxies. One approach is supervised learning, which in-
volves training a model on labelled input-output pairs to learn the under-
lying relationship between input features and target outputs. An approach
in the context of NAS is developing a machine learning model specifically
designed to learn how to rank architectures, utilising zero-cost proxies as
input features. This method aims to leverage the information the zero-cost
proxies provide to establish a relative ranking of architectures, guiding the
search process towards the most promising candidates effectively and effi-
ciently.

RankNet is a pairwise ranking model based on a neural network architec-
ture proposed by Burges et al., 2005 in the paper Learning to rank using
gradient descent. The model is designed to learn how to rank entities by
minimising a pairwise loss function, typically using cross-entropy loss or a
variant thereof. The core idea behind RankNet is to represent entities using
input features and predict their relative ranking based on pairwise com-
parisons. During training, the model receives pairs of entities represented
by their respective feature vectors and learns the underlying relationship
between these features and the desired ranking. The training data includes
binary labels indicating which entity in a pair is superior based on their
ranking.

Applying RankNet to NAS algorithms offers several advantages. First, by
leveraging the pairwise ranking approach, RankNet allows for a more nu-
anced understanding of the relative performance of different architectures
based on their zero-cost proxies. This is particularly beneficial in the con-
text of NAS, where the search space is vast and evaluating each architecture
based on its actual performance is computationally expensive.

Furthermore, by training a neural network to learn the relationships between
zero-cost proxies and architecture performance, RankNet has the potential
to uncover hidden patterns and interactions among these proxies that may
not be immediately evident. This can lead to a more accurate and efficient
ranking of candidate architectures, reducing the search time and compu-
tational resources required for NAS.

Chapter 6: Discussion 64

6.2 Limitations

6.2.1 Dataset size

One of the main limitations of this study is the relatively small dataset
size. Comparable studies like (Abdelfattah et al., 2021; White et al., 2022)
used state-of-the-art benchmarks consisting of thousands of fully trained
architectures. The developed dataset in this thesis consists of 693 trained
architectures, each with their respective validation accuracy. For each ar-
chitecture, the score of 14 different zero-cost proxies is calculated and then
used for various analyses, such as determining the correlation between the
proxies and the validation accuracy.

Although this dataset provides insights into the relationship between zero-
cost proxies and the performance of GCN models within HAR tasks, the
small number of trained architectures may limit the generalisability of the
findings. A larger dataset with more architectures could reveal more subtle
relationships between the proxies and the validation accuracy, leading to
more accurate conclusions.

The relatively small dataset size may also affect the statistical significance
of our results. Additionally, a larger dataset would allow for a more robust
exploration of potential relationships between different architectures and
proxy scores.

Future work should expand the dataset to address these limitations by in-
corporating more trained architectures with varying characteristics. This
would increase the generalisability of the findings and enable a more com-
prehensive understanding of the relationships between zero-cost proxies
and the performance of GCN models within HAR tasks.

6.2.2 Limitations of Relying Solely on the GCN-NAS Frame-
work

Using the GCN-NAS framework for exploring the effectiveness of zero-cost
proxies offers a valuable starting point. However, focusing exclusively on
this framework introduces limitations that may affect the approach’s gen-
eralisability, robustness, and thoroughness. This section will discuss these
limitations and their potential impact on the approach’s applicability to
other GCN-NAS frameworks.

By concentrating on the GCN-NAS framework, the approach may become
tailored to the specific characteristics of this framework, thereby restrict-

Chapter 6: Discussion 65

ing its generalisability to other GCN-NAS frameworks. This limitation could
compromise the method’s effectiveness when applied to alternative GCN-
NAS frameworks with different search spaces, function modules, or optim-
isation techniques.

The unavailability of multiple GCN-NAS frameworks for evaluation pre-
vents a comprehensive comparative analysis, making it challenging to identify
the relative strengths and weaknesses of the proposed NAS acceleration
technique. However, with the ability to compare performance across frame-
works, pinpointing areas of improvement or potential pitfalls in the accel-
eration method becomes more effortless.

Evaluating the zero-cost proxies on a single GCN-NAS framework restricts
the ability to assess the technique’s robustness. The proxies should be tested
across multiple frameworks to determine their adaptability to various search
spaces, hyperparameter configurations, and problem domains. This lack of
validation can lead to overestimating the technique’s performance, poten-
tially concealing its weaknesses.

It should be noted that an attempt to implement the Zero-Cost Framework
(section 4.5) into a new GCN-NAS framework developed by the DeepIn-
Motion team at NTNU and St. Olavs Hospital was conducted. However,
as this is outside this thesis’s scope, the results are not included. The ini-
tial experiments exhibit a Spearman Rank ρ ⪆ 0.8 for multiple proxies.
The GCN-NAS framework is still under development and can be explored
further when completed. The initial results can be found in appendix A.

Future research could consider utilising multiple GCN-NAS frameworks to
address these limitations, exploring diverse search strategies and validat-
ing the technique across different problem domains.

6.3 Environmental Implications

6.3.1 Energy consumption / Creating benchmark

As elaborated in section 4.3.3, 693 neural network architectures were trained
and evaluated to obtain their validation accuracy for later use in experi-
ments. The training process required a significant investment of computa-
tional resources. A script was utilised to capture the total training time in
seconds to measure the training time for each architecture accurately.

The total training time, represented by T , was captured to be 32833726
seconds. To provide a more comprehensible measure, the seconds were

https://www.ntnu.edu/inb/deepinmotion
https://www.ntnu.edu/inb/deepinmotion

Chapter 6: Discussion 66

converted into GPU days, where one GPU day represents the continous
use of a single GPU for 24 hours. By dividing T by the number of seconds
in an hour (3600), and then again by the number of hours in a day (24),
we could obtain the number of GPU days:

GPU days=
T

3600× 24
=

32833726
3600× 24

≈ 380

So in total, 380 GPU days were used to obtain the benchmark for the ex-
periments.

For contextual comparison, NASBench-101 is a benchmark for NAS intro-
duced by (Ying et al., 2019). The benchmark contains many CNN architec-
tures trained and evaluated on the CIFAR-10 dataset using over 100 TPU
1 years of computation time.

6.3.2 Reduced Search Time and Future Benefits

Creating a benchmark involves substantial time and energy investments, as
demonstrated in this study and other benchmarks (Dong & Yang, 2020; Tu
et al., 2021; Ying et al., 2019). In addition, training and evaluating diverse
neural network architectures requires significant computational resources,
leading to increased energy consumption and longer training durations.
Therefore, although the research required a considerable investment in
GPU days, the long-term benefits of this investment should be considered.

The most naive approach for any general NAS algorithm is to generate a
set of candidate architectures, train them until convergence, and find the
best-performing architecture. However, this approach is computationally
infeasible with a large search space dimension. In addition, this specific
approach exhibits a substantial carbon footprint because of its extensive us-
age of GPU days. This study and similar studies (Abdelfattah et al., 2021;
White et al., 2022) have discussed how zero-cost proxies might be used
within a NAS algorithm to speed up the search process significantly. Con-
sequently, creating a benchmark for exploring the possibilities of reducing
the computationally heavy search process should be considered as a small
investment for a more significant impact. The investment can be perceived
as a stepping stone towards developing more efficient and sustainable ap-
proaches in the long run.

1Tensor Processing Unit introduced by Google purposely designed for machine learn-
ing workloads

Chapter 7
Conclusion and Future Work

7.1 Conclusion

This thesis has explored the application of zero-cost proxies in NAS with
GCN for HAR tasks. It has been demonstrated through comprehensive ana-
lysis and experimentation that using zero-cost proxies can enhance the effi-
ciency of NAS algorithms. The experiments show that the best-performing
zero-cost proxies exhibit a strong to very strong correlation of a Spear-
man ρ of ≈ 0.8, indicating that some of the zero-cost proxies can confid-
ently rank architectures. Since the benchmark consists of high-performing
architectures, the results imply that the best zero-cost proxies correlate
strongly with high-performing architectures. In addition, the thesis showed
no improvement regarding warm-up, as no significant correlation was dis-
covered after training the architectures compared to the initialisation. The
results showed that some of the proxies did improve, but considering it
requires training and the improvement was not significant, it can be con-
cluded that further research and optimisation are necessary to enhance
their performance. Finally, vote and weighted arithmetic mean were im-
plemented to combine zero-cost proxies, and the result showed that the
combination yields potential but not any substantial improvement com-
pared to using each zero-cost proxy individually.

The limitations of this study have been acknowledged, including the relat-
ively small dataset size and the dependence on the GCN-NAS framework
for NAS acceleration. These limitations emphasise the need for continued
research and validation to ensure the generalisability and robustness of the
findings. Furthermore, the significance of considering the environmental

67

Chapter 7: Conclusion and Future Work 68

implications of this work has been emphasised, as the advancement of
more efficient and sustainable algorithms and techniques is vital for ad-
dressing the escalating concerns surrounding the carbon footprint and en-
ergy consumption in research.

With regards to the overall goal of the thesis, namely to improve and optim-
ise the efficiency of neural architecture search with graph convolutional net-
works for human action recognition, the thesis has shown that there is great
potential in using zero-cost proxies within a NAS algorithm. Especially as
the experiments show that the best zero-cost proxies have a spearman ρ
of ≈ 0.8, there is no doubt that utilising zero-cost proxies in a NAS al-
gorithm will be far more efficient than today. As discussed in the thesis,
earlier work showed that utilising zero-cost proxies in different NAS al-
gorithms (Random Search, Reinforcement Learning, Aging evolution and
Binary Predictor) exhibits great improvement in efficiency, which backs our
statement that the study’s findings will have a positive impact on NAS in
GCN for HAR.

7.2 Future Work

Considering the findings and limitations of this thesis, various directions
for additional future research are suggested.

Expand dataset size Increasing the number of trained architectures in
the dataset would reinforce the generalisability and statistical significance
of the results. Furthermore, by incorporating more architectures with di-
verse characteristics, future research could examine more nuanced rela-
tionships between zero-cost proxies and the performance of GCN models
within HAR tasks.

Investigate other zero-cost proxy combination techniques Exploring
alternative methods for combining zero-cost proxies, such as supervised
learning models (neural networks or decision trees) or unsupervised learn-
ing approaches (clustering), could improve the efficiency and accuracy of
architecture search in NAS algorithms.

Explore multiple GCN NAS frameworks Utilising various GCN NAS frame-
works would allow for a more comprehensive comparative analysis, eval-
uation of the robustness of the acceleration technique, and investigation
of different search strategies, optimisation methods, and search space con-
figurations.

Chapter 7: Conclusion and Future Work 69

Validate zero-cost proxies across different problem domains Testing
the zero-cost proxies across diverse problem domains would ensure their
adaptability to various search spaces and hyperparameter configurations
and comprehensively evaluate their performance.

By following these research directions, the field of NAS can continue pro-
gressing, particularly in the context of GCN for HAR, and contribute to
developing more efficient, accurate, and sustainable algorithms and tech-
niques.

Incorporate zero-cost proxies in a NAS algorithm Incorporating zero-
cost proxies into NAS algorithms has great potential for improving their
performance and efficiency by reducing search time with no cost of accur-
acy. Zero-cost proxies are good at predicting validation accuracy at fully
trained, which means they can be used to estimate the performance of
GCN architectures without costly training. This approach can be used to
optimise different aspects of NAS algorithms, such as accuracy and effi-
ciency.

Bibliography

Abdelfattah, M. S., Mehrotra, A., Dudziak, Ł., & Lane, N. D. (2021). Zero-
cost proxies for lightweight nas. arXiv preprint arXiv:2101.08134.

Akhauri, Y., Munoz, J. P., Jain, N., & Iyer, R. (2022). Evolving zero cost
proxies for neural architecture scoring. arXiv preprint arXiv:2209.07413.

Anderson, J. A. (1995). An introduction to neural networks. MIT press.
Ann, O. C., & Theng, L. B. (2014). Human activity recognition: A review.

2014 IEEE international conference on control system, computing and
engineering (ICCSCE 2014), 389–393.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner,
R., et al. (2018). Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8), 1798–1828.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for
hyper-parameter optimization. Advances in neural information pro-
cessing systems, 24.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017).
Geometric deep learning: Going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4), 18–42.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., &
Hullender, G. (2005). Learning to rank using gradient descent. Pro-
ceedings of the 22nd international conference on Machine learning,
89–96.

Cheng, K., Wei, Y., & Mu, C. (2020). Skeleton-based action recognition
with synchronous local and non-local spatio-temporal learning and
frequency attention. Sensors, 20(4), 1194.

71

Bibliography 72

Deepinmotion. (2023). https://www.ntnu.edu/inb/deepinmotion
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Im-

agenet: A large-scale hierarchical image database. 2009 IEEE con-
ference on computer vision and pattern recognition, 248–255.

Dong, X., & Yang, Y. (2019). Searching for a robust neural architecture in
four gpu hours. https://doi.org/10.1109/CVPR.2019.00186

Dong, X., & Yang, Y. (2020). Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326.

Duan, Y., Chen, X., Xu, H., Chen, Z., Liang, X., Zhang, T., & Li, Z. (2021).
Transnas-bench-101: Improving transferability and generalizability
of cross-task neural architecture search. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 5251–5260.

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search:
A survey. The Journal of Machine Learning Research, 20(1), 1997–
2017.

Frankle, J., Dziugaite, G. K., Roy, D. M., & Carbin, M. (2020). Pruning
neural networks at initialization: Why are we missing the mark?
arXiv preprint arXiv:2009.08576.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning

in graph domains. Proceedings. 2005 IEEE International Joint Con-
ference on Neural Networks, 2005., 2, 729–734.

Groos, D. (2022a). Convolutional networks for video-based infant move-
ment analysis. towards objective prognosis of cerebral palsy from
infant spontaneous movements.

Groos, D. (2022b). Convolutional networks for video-based infant move-
ment analysis. towards objective prognosis of cerebral palsy from
infant spontaneous movements.

Groos, D., Ramampiaro, H., & Ihlen, E. A. (2021). Efficientpose: Scalable
single-person pose estimation. Applied Intelligence, 51(4), 2518–
2533.

Hauke, J., & Kossowski, T. (2011). Comparison of values of pearson’s and
spearman’s correlation coefficients on the same sets of data. Quaes-
tiones geographicae, 30(2), 87–93.

Jobanputra, C., Bavishi, J., & Doshi, N. (2019). Human activity recogni-
tion: A survey. Procedia Computer Science, 155, 698–703.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of artificial intelligence research, 4, 237–
285.

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., & Xing, E. P.
(2018). Neural architecture search with bayesian optimisation and

https://www.ntnu.edu/inb/deepinmotion
https://doi.org/10.1109/CVPR.2019.00186

Bibliography 73

optimal transport. Advances in neural information processing sys-
tems, 31.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907. http://arxiv.org/
abs/1609.02907

Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., &
Burnaev, E. (2020). Nas-bench-nlp: Neural architecture search bench-
mark for natural language processing. https://doi.org/10.48550/
ARXIV.2006.07116

Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., & Hutter, F. (2022).
Nas-bench-suite-zero: Accelerating research on zero cost proxies.
arXiv preprint arXiv:2210.03230.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny im-
ages.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classifica-
tion with deep convolutional neural networks. Communications of
the ACM, 60(6), 84–90.

Kyriakides, G., & Margaritis, K. (2020). An introduction to neural architec-
ture search for convolutional networks. arXiv preprint arXiv:2005.11074.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553),
436–444.

Lee, N., Ajanthan, T., & Torr, P. H. (2018). Snip: Single-shot network prun-
ing based on connection sensitivity. arXiv preprint arXiv:1810.02340.

Li, Y., Wen, Z., Wang, Y., & Xu, C. (2021). One-shot graph neural archi-
tecture search with dynamic search space. Proceedings of the AAAI
conference on artificial intelligence, 35(10), 8510–8517.

Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., Li, H., & Jin, R.
(2021). Zen-nas: A zero-shot nas for high-performance image re-
cognition. Proceedings of the IEEE/CVF International Conference on
Computer Vision, 347–356.

Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture
search. https://doi.org/10.48550/ARXIV.1806.09055

Lopes, V., Alirezazadeh, S., & Alexandre, L. A. (2021). Epe-nas: Efficient
performance estimation without training for neural architecture search.
Artificial Neural Networks and Machine Learning–ICANN 2021: 30th
International Conference on Artificial Neural Networks, Bratislava,
Slovakia, September 14–17, 2021, Proceedings, Part V, 552–563.

Ltd, L. R. (2013). Spearman’s rank-order correlation: A guide to when and
how to use the spearman’s rank-order correlation test. https://statistics.
laerd.com/statistical-guides/spearmans- rank-order-correlation-
statistical-guide.php

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.48550/ARXIV.2006.07116
https://doi.org/10.48550/ARXIV.2006.07116
https://doi.org/10.48550/ARXIV.1806.09055
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php

Bibliography 74

Mehrotra, A., Ramos, A. G. C., Bhattacharya, S., Dudziak, Ł., Vipperla, R.,
Chau, T., Abdelfattah, M. S., Ishtiaq, S., & Lane, N. D. (2021). Nas-
bench-asr: Reproducible neural architecture search for speech re-
cognition. International Conference on Learning Representations.

Mellor, J., Turner, J., Storkey, A., & Crowley, E. J. (2021). Neural architec-
ture search without training. International Conference on Machine
Learning, 7588–7598.

Mellor, J., Turner, J., Storkey, A., & Crowley, E. J. (2020). Neural archi-
tecture search without training. https://doi.org/10.48550/ARXIV.
2006.04647

Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., & Wang, Y. (2021).
Evaluating efficient performance estimators of neural architectures.
Advances in Neural Information Processing Systems, 34, 12265–12277.

Pallant, J. (2016). Spss survival manual: A step by step guide to data ana-
lysis using ibm spss (6th ed.). Open University Press/McGraw-Hill
Education.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transac-
tions on knowledge and data engineering, 22(10), 1345–1359.

Peng, W., Hong, X., Chen, H., & Zhao, G. (2020). Learning graph convo-
lutional network for skeleton-based human action recognition by
neural searching. Proceedings of the AAAI conference on artificial in-
telligence, 34(03), 2669–2676.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q., &
Kurakin, A. (2017). Large-scale evolution of image classifiers. https:
//doi.org/10.48550/ARXIV.1703.01041

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X., & Wang, X. (2021).
A comprehensive survey of neural architecture search: Challenges
and solutions. ACM Computing Surveys (CSUR), 54(4), 1–34.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G.
(2008). The graph neural network model. IEEE transactions on neural
networks, 20(1), 61–80.

Shahroudy, A., Liu, J., Ng, T.-T., & Wang, G. (2016). Ntu rgb+d: A large
scale dataset for 3d human activity analysis. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Shaphiro, S., & Wilk, M. (1965). An analysis of variance test for normality.
Biometrika, 52(3), 591–611.

Si, C., Chen, W., Wang, W., Wang, L., & Tan, T. (2019). An attention en-
hanced graph convolutional lstm network for skeleton-based action
recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1227–1236.

https://doi.org/10.48550/ARXIV.2006.04647
https://doi.org/10.48550/ARXIV.2006.04647
https://doi.org/10.48550/ARXIV.1703.01041
https://doi.org/10.48550/ARXIV.1703.01041

Bibliography 75

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optim-
ization of machine learning algorithms. Advances in neural inform-
ation processing systems, 25.

statstutor. (2011). Spearman’s correlation. Retrieved November 29, 2022,
from https://www.statstutor.ac.uk/resources/uploaded/spearmans.
pdf

Swersky, K., Snoek, J., & Adams, R. P. (2014). Freeze-thaw bayesian op-
timization. arXiv preprint arXiv:1406.3896.

Tanaka, H., Kunin, D., Yamins, D. L. K., & Ganguli, S. (2020). Pruning
neural networks without any data by iteratively conserving synaptic
flow.

Theis, L., Korshunova, I., Tejani, A., & Huszár, F. (2018). Faster gaze predic-
tion with dense networks and fisher pruning. CoRR, abs/1801.05787.
http://arxiv.org/abs/1801.05787

Tu, R., Khodak, M., Roberts, N. C., & Talwalkar, A. (2021). Nas-bench-360:
Benchmarking diverse tasks for neural architecture search.

Turney, S. (2022). Pearson correlation coefficient (r) | guide & examples.
Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and its fu-

ture prospects. 2016 International Conference on Global Trends in
Signal Processing, Information Computing and Communication (ICGT-
SPICC), 261–265. https ://doi .org/10.1109/ ICGTSPICC.2016.
7955308

Vrigkas, M., Nikou, C., & Kakadiaris, I. A. (2015). A review of human activ-
ity recognition methods. Frontiers in Robotics and AI, 2, 28.

Wang, C., Zhang, G., & Grosse, R. (2020). Picking winning tickets before
training by preserving gradient flow. arXiv preprint arXiv:2002.07376.

Weighted arithmetic mean. (2008). Springer New York. https://doi.org/
10.1007/978-0-387-32833-1

White, C., Khodak, M., Tu, R., Shah, S., Bubeck, S., & Dey, D. (2022).
A deeper look at zero-cost proxies for lightweight nas [https://iclr-
blog-track.github.io/2022/03/25/zero-cost-proxies/]. ICLR Blog Track.
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

White, C., Neiswanger, W., & Savani, Y. (2021). Bananas: Bayesian op-
timization with neural architectures for neural architecture search.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(12),
10293–10301.

White, C., Zela, A., Ru, B., Liu, Y., & Hutter, F. (2021). How powerful are
performance predictors in neural architecture search?

Yan, S., Xiong, Y., & Lin, D. (2018). Spatial temporal graph convolutional
networks for skeleton-based action recognition. Thirty-second AAAI
conference on artificial intelligence.

https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
http://arxiv.org/abs/1801.05787
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1007/978-0-387-32833-1
https://doi.org/10.1007/978-0-387-32833-1
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

Chapter 7: Conclusion and Future Work 76

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., & Hutter, F. (2019).
Nas-bench-101: Towards reproducible neural architecture search.
International Conference on Machine Learning, 7105–7114.

Zhang, Z., & Jia, Z. (2021). Gradsign: Model performance inference with
theoretical insights. arXiv preprint arXiv:2110.08616.

Zhou, K., Song, Q., Huang, X., & Hu, X. (2019). Auto-gnn: Neural architec-
ture search of graph neural networks. arXiv preprint arXiv:1909.03184.

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2017). Learning transferable
architectures for scalable image recognition. CoRR, abs/1707.07012.
http://arxiv.org/abs/1707.07012

http://arxiv.org/abs/1707.07012

Appendix A
Use of the Zero-Cost Framework on
GNN-NAS Project

The research group at DeepInMotion is currently engaged in a project that
develops a GNN-NAS framework for HAR. By giving us access to the code-
base and providing 38 trained architectures with the corresponding val-
idation accuracy, we could perform a small experiment similar to what
is conducted in this thesis. We calculated the Spearman Correlation for
every zero-cost proxy using this thesis’s developed Zero-Cost framework
(section 4.5). The results are presented in table A.1.

Spearman ρ
acc_top1 acc_top5

EPE-NAS 0.0712 0.0806
Fisher -0.5170 -0.5589
Flops 0.2923 0.2740
Grad Norm 0.8720 0.8989
GradSign -0.2323 -0.2790
Grasp 0.6172 0.6594
Jacov -0.0951 -0.0561
L2 norm -0.1661 -0.1403
NAS-WOT 0.1326 0.2132
Params 0.2658 0.2658
Plain -0.0117 0.0028
Snip 0.7937 0.8097
Synflow -0.1710 -0.2460
Zen -0.1852 -0.1875

Table A.1: Spearman Correlation between zero-cost proxies and validation accur-
acy.

i

Appendix A: Use of the Zero-Cost Framework on GNN-NAS Project ii

The results show that both Grad Norm and Snip exhibit very strong correla-
tion with a Spearman Rank Correlation of (0.8720,0.8989) and (0.7938,0.8097),
respectively. Note that with only 38 data points, the analysis might lack the
statistical power needed to detect the correlation confidently. Nevertheless,
the results show great potential and can be a good option to include in the
framework in the future.

	Abstract
	Sammendrag
	Preface
	Acknowledgement
	Contents
	Figures
	Tables
	Algorithms
	Acronyms
	Introduction
	Background and Motivation
	Problem Statement
	Scope of the Thesis
	Goal and Research Questions
	Research Method
	Contributions
	Thesis outline

	Theory
	Deep Learning
	Neural Networks

	Graph Convolutional Network (GCN)
	Graph Convolutions

	Automated Machine Learning (AutoML)
	Hyperparameter Optimisation
	Meta-learning

	Neural Architecture Search (NAS)
	Challenges
	Search Space
	Search Strategies
	Performance Estimation

	Human Action Recognition (HAR)

	Related work
	Performance Predictors
	How Powerful are Performance Predictors in Neural Architecture Search
	Neural Architecture Search without Training

	Zero-Cost Proxies
	Zero-Cost Proxies for Lightweight NAS
	A Deeper Look at Zero-Cost Proxies for Lightweight NAS
	NAS Bench Suite Zero

	NAS for GCN
	Auto-GNN
	One-shot Graph Neural Architecture Search with Dynamic Search Space

	Summary and Implications

	Method
	Research Plan
	Dataset
	Benchmark
	GCN-NAS
	Definition of Fully Trained Models
	Experimental Setup and Benchmarking Methodology

	Zero-Cost Proxies
	EPE-NAS
	Fisher
	Flops
	Grad Norm
	GradSign
	Grasp
	Jacov
	L2-norm
	NAS-WOT
	Params
	Plain
	Snip
	Synflow
	Zen-score
	Summary

	Zero-Cost Framework
	Correlation
	Exploration of Zero-Cost Proxies via Warmup Strategy
	Theoretical and Practical Considerations

	Combining Zero-Cost Proxies
	Majority Vote Method
	Weighted Arithmetic Mean

	Results
	Correlation Analysis
	Vote
	Warmup

	Weighted Arithmetic Mean

	Discussion
	Interpretation and Significance of Results
	RQ1 How well can different zero-cost proxies rank GCN architectures compare to their validation accuracy?
	RQ2 How early can we identify the correlation between zero-cost proxies and validation accuracy during the warm-up phase of GCN training to potentially halt the training process sooner?
	RQ3 How can we effectively combine zero-cost proxies using various techniques to enhance the efficiency and accuracy of architecture search in NAS algorithms?

	Limitations
	Dataset size
	Limitations of Relying Solely on the GCN-NAS Framework

	Environmental Implications
	Energy consumption / Creating benchmark
	Reduced Search Time and Future Benefits

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Use of the Zero-Cost Framework on GNN-NAS Project

