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Abstract

Reinforced InterFuser is presented as an approach for utilizing recent sensor
fusion approaches in a reinforcement learning context for end-to-end autonom-
ous driving in simulated environments. The architecture uses both a pre-
trained and a custom-trained InterFuser model as a visual encoder to a stand-
ard reinforcement learning agent and is compared to a baseline RL agent’s
training performance. Safety mechanisms deduced from explicit predictions
from the InterFuser model is also explored to gauge the benefits of additional
safety mechanisms applied to an RL agent.

The approach shows promising results for specific configurations of utilizing
the InterFuser architecture as a visual encoder, outperforming the baseline
agent on unseen evaluation routes after a limited amount of training. Apply-
ing safety mechanisms to Reinforced InterFuser vastly improves the ability to
stop at red lights and avoid collisions, improving the agent’s ability to navig-
ate through unseen challenging scenarios.
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Sammendrag

Reinforced InterFuser presenteres som en metode for å utnytte nyere sensor-
fusjonsmetoder i en "reinforcement learning" kontektst for ende-til-ende autonom
kjøring i simulerte miljøer. Arkitekturen bruker en forhåndstrent InterFuser
modell, samt en spesialtilpasset InterFuser modell som en visuell enkoder
til en standard "reinforcement learning" algoritme og sammenlignes med en
grunnleggende RL agent’s treningsprosess og kjøreatferd. Sikkerhetsmekan-
ismer dedusert fra eksplisitte prediksjoner fra InterFuser modellen utforskes
også for å finne fordelene med ekstra sikkerhetsmekanismer på en RL agent.

Metoden viser lovende resultater for spesifikke konfigurasjoner av å bruke
InterFuser arkitekturen som en visuell enkoder, og overgår den grunnleg-
gende agenten på ukjente evalueringsruter etter en begrenset mengde tren-
ing. Å bruke sikkerhetsmekanismer til Reinforced InterFuser forbedrer evnen
til å stoppe ved røde lys og unngå kollisjoner, og forbedrer agentens evne til
å navigere gjennom ukjente utfordrende scenarioer.

v
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Chapter 1

Introduction

1.1 Motivation

Research and deployment of autonomous vehicles are nearing reality. Such
technology is already operational in several cities in the US, providing taxi
services in specifically dedicated areas. The primary aim of this technology
is not to supplant human drivers but to enhance safety and comfort dur-
ing commutes. Given that most traffic accidents result from human error,
full automation and the subsequent surpassing of human driving capabil-
ities could significantly mitigate the frequency of these incidents. Presently,
the technology is advancing towards exceeding human driving capabilities.
However, the most successful current approaches depend on a combination
of sensors and highly detailed pre-existing maps of the environment. This ap-
proach does not scale well to new environments, considering the infeasibility
of maintaining live 3D maps of the entire world.

Therefore, research into enabling autonomous vehicles to surpass human driv-
ing capabilities using live sensor data is vital for making this technology scal-
able to new environments. Humans can drive sufficiently using vision sup-
ported by mirrors and potential signals from the vehicle’s interface. However,
our driving capabilities are restricted by our field of view and attention span,
which limit us to focusing on one thing at a time. In contrast, autonomous
vehicles can utilize a constant 360-degree vision and additional information
from Lidar sensors, thereby enabling potential for better decision-making.
Recent high-performing approaches for autonomous vehicles in simulated
environments rely on imitation learning, which, however, is constrained by
the performance of an expert demonstrator.

Although deep reinforcement learning has shown promising results for autonom-
ous driving, it is currently outperformed by imitation learning in standard-
ized benchmarks. The latest advancements have utilized transformer archi-
tectures for efficient sensor data fusion and have yielded encouraging results.

1



2 : Markhus H.: Reinforced InterFuser

This sensor fusion approach holds promise and has not yet been extensively
explored within the context of reinforcement learning agents. Therefore, this
study seeks to fill this gap in the literature.

1.2 Goals and research questions

The primary objective of this thesis is to delve into the advancements of
sensor fusion in imitation learning for autonomous driving and assess their
applicability in the reinforcement learning space. Although the fusion of sensor
data from images and LiDAR has been successfully employed in imitation
learning, its exploration within reinforcement learning approaches remains
limited. The goal is to ascertain if there are methods where sensor fusion
could enhance or improve existing reinforcement learning approaches for
autonomous driving within simulated environments. This leads to the first
research question:

RQ1: Can reinforcement learning approaches in autonomous driving bene-
fit from novel sensor fusion model outputs as visual state representations?

Predicting interpretable aspects of the environment holds several advant-
ages. For instance, these predictions can be used to improve the interpretabil-
ity of decisions made by an agent. Furthermore, explicit calculations derived
from these predictions can guide when an agent should brake, effectively
instituting rule-based safety mechanisms. However, such predictions have
not been extensively explored in the reinforcement learning context, which
brings us to our second research question:

RQ2: Can reinforcement learning approaches in autonomous driving be-
nefit from safety mechanisms deduced from explicit predictions of the en-
vironment?

1.3 Methods

The methodology of the thesis involves setting up a baseline reinforcement
learning agent along with a proposed method for utilizing novel sensor fu-
sion methods as part of a reinforcement learning agent. Different approaches
of combining the sensor fusion methods are trained and evaluated within a
common process that is configured with stability in mind. Part of this pro-
cess is a reward function with the purpose of providing a simple and stable
driving behavior goal for each agent.
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1.4 Contributions

The following are the contributions of this thesis to the reasearch field of deep
reinforcement learning for autonomous driving in simulated environments:

• A summary and analysis of the state-of-the-art in deep reinforcement
learning for autonomous driving and sensor fusion for autonomous
driving.
• A novel combination of sensor fusion architecture and reinforcement

learning for autonomous driving.
• A study of the usage of various output features from the InterFuser

architecture as input to a reinforcement learning agent.
• A simplified framework for configuring agents and running route se-

quences for reinforcement learning approaches using the CARLA sim-
ulator.

1.5 Thesis Outline

Chapter 1: Introduction This chapter introduces the thesis by providing a
background and motivation for the thesis. It also provides some context on
the goals and questions to explore in the thesis.

Chapter 2: Background and related works This chapter provides the needed
theoretical background for the thesis and introduces many concepts used and
explored in the thesis. It also presents works heavily related to the methodo-
logy of this thesis.

Chapter 3: Methodology This chapter explains the method employed and
explored in the practical part of the thesis. It also presents the methods used
for conducting the experiments in this thesis.

Chapter 4: Experiments and results This chapter presents the results col-
lected during the experiments.

Chapter 5: Discussion This chapter discusses and analyzes the results presen-
ted in the previous chapter and tries to learn from and identify potential
shortcomings and strengths of the approach.

Chapter 6: Conclusion and future work This chapter draws conclusions
based on the analysis and discussions from the previous chapter, as well as
presenting strategies for future work and what can be done to potentially
further investigate the research question in mind.
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Appendix The appendix contains additional information that is not neces-
sary to understand the thesis, but can be useful for further investigation.



Chapter 2

Background and related work

2.1 Autonomous driving

Autonomous driving can be defined as "The capability of a vehicle to drive
partly or fully by itself, with limited or no human intervention." This encap-
sulates many different levels of autonomy. The Society of Automotive Engin-
eers (SAE) International [1] categorizes self-driving cars into six levels:

• Level 0 - No automation: The driver performs all the tasks.
• Level 1 - Hands-on/shared control: The vehicle can automatically con-

duct some parts of driving, like steering or acceleration, but not both
simultaneously.
• Level 2 - Hands-off: The vehicle can control both steering and accelera-

tion/deceleration.
• Level 3 - Eyes off: The vehicle becomes a fully autonomous system but

operates under certain traffic or environmental conditions.
• Level 4 - Mind off: The vehicle is fully autonomous in select conditions

defined by factors such as road type or geographic area.
• Level 5 - Optional steering wheel: Full-time performance by an auto-

mated driving system under all roadway and environmental condi-
tions.

Currently, the self-driving car market primarily operates at level 3 and above.
This means autonomous vehicles can already navigate certain areas without
requiring the driver to keep their eyes on the road. An example of such
vehicles in operation includes Waymo vehicles [2], which provide a driver-
less taxi service in specific parts of the US.

The autonomy of these vehicles stems from reading sensor inputs and con-
verting these into actions such as steering adjustments or brake and speed
controls. Autonomous driving technology employs a variety of sensors to in-
terpret the environment, which include:

5
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Figure 2.1: HD map example

• RGB Camera: A traditional camera affixed to the vehicle captures im-
ages at a predetermined rate, acting as the vehicle’s eyes. For instance,
Tesla’s Full Self-Driving feature uses eight cameras installed at different
locations on the vehicle.
• LiDAR Sensor: This sensor gathers points from the immediate sur-

roundings, which can be used to determine the distance between any
physical surface and the vehicle.
• Inertial Measurement Unit (IMU): This sensor tracks the force, velo-

city, orientation, and other data about the vehicle’s current state.
• Global Navigation Satellite System (GNSS): This technology provides

a rough estimate of the vehicle’s current location.

These types of sensors create the foundation of how the vehicle understands
the world.

Additionally, some autonomous vehicles utilize High Definition (HD) maps,
particularly for urban driving. As shown in Figure 2.1, HD maps provide
detailed, 3D representations of the environment, offering valuable inform-
ation for driving decisions. These maps contribute significantly to the per-
formance of some autonomous driving systems, particularly in areas with
varying weather conditions such as Nordic winters. During these conditions,
vehicle sensors can be obstructed, and roads may be covered in snow, making
lane detection challenging. HD maps can supply essential information about
the structure and placement of obscured roads. However, these maps are
geographically limited and may not be available everywhere. Relying solely
on such highly-detailed mapping information is not a practical solution for
achieving full autonomy in driving. It is infeasible to maintain detailed data
for all possible roads. Thus, fully autonomous systems must be designed to
function based on the data gathered by the vehicle’s own sensors to ensure
universal operation.
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Software capable of interpreting this sensor data and converting it into reas-
onable driving behavior is essential. The development of such software in-
volves intensive machine learning training and frequent performance evalu-
ations. Given the potential for catastrophic results in real-world testing, and
considering the inefficiencies of this approach, simulations become crucial.
They offer a safer and more efficient environment for training and evaluating
autonomous driving software before deployment on a physical vehicle.

2.1.1 Simulated environments

Driving simulators are invaluable tools for training and evaluating self-driving
software. They offer the ability to simulate dangerous situations that would
be unethical or impractical to generate in the real world. Furthermore, simu-
lators allow for more frequent training and evaluation sessions and can run
driving scenarios at an accelerated pace compared to real-world conditions.

However, these advantages come with some caveats. Simulations do not per-
fectly represent the real world, which could lead to challenges when deploy-
ing driving software trained and tested exclusively in simulated environ-
ments. This discrepancy, known as "distribution mismatch," can be substan-
tial and poses a challenge to the effective use of simulations. Additionally,
while simulations strive to mimic real-world conditions, they inevitably fall
short in terms of photorealism, leading to further mismatches between simu-
lated and real-world scenarios.

High-quality simulators are often proprietary, making them inaccessible to
many researchers and developers. Nonetheless, there are open-source op-
tions specifically designed for self-driving agents, such as the Carla simu-
lator [3]. On the other hand, proprietary alternatives like NVIDIA Drive Sim
[4] offer highly photorealistic graphics and physics, but as of June 2023, they
remain within an Early Access Program and are not publicly available.

2.1.2 Carla driving simulator

The CARLA simulator is a comprehensive platform designed for the critical
tasks of developing, training, and validating autonomous driving systems.
This platform is built upon open-source code and protocols, allowing for
transparency and adaptability in various research contexts. One of the unique
characteristics of CARLA is the provision of open digital assets. These assets,
encompassing urban layouts, buildings, and vehicles, have been specifically
designed for simulations in the context of autonomous vehicles and are freely
accessible. The simulator is characterized by its flexibility, providing the abil-
ity to configure a multitude of sensor suites and environmental conditions.
This allows for a broad spectrum of testing scenarios, which are essential in
the autonomous vehicle research landscape. CARLA also enables users to
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Figure 2.2: Carla driving simulator

exercise complete control over all static and dynamic actors within the simu-
lation. This feature is crucial for creating complex and detailed scenarios, en-
hancing the accuracy and relevance of the simulation results. Moreover, the
platform supports map generation, a feature that enriches its capabilities and
allows developers to create realistic and varied testing environments. This, in
combination with the other aforementioned features, positions CARLA as a
crucial tool in the field of autonomous vehicle research and development.

Sensors

To facilitate the development of autonomous driving systems, CARLA provides
a wide range of sensors that can be attached to a vehicle. These sensors are
designed to replicate the functionality of real-world sensors, providing a real-
istic simulation environment. The sensors can be attached to any vehicle in
the simulation, and the data they capture can be used to train an autonomous
driving agent. Some of the important sensors in the suite are:

Figure 2.3: Lidar point cloud data as a bird’s eye view histogram

• RGB camera: Captures footage from the vehicle’s point of view.
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• LiDAR sensor: Captures point cloud data from the agent’s surrounding
environment. This sensor is a realistic replication of real-world Lidar
sensors. The data can be restructured to create a 2D bird’s eye view
representation as shown in figure 2.3
• GNSS sensor: Tracks the vehicle’s approximate location, functioning as

a GPS for the car.
• IMU sensor: Tracks the vehicle’s acceleration and orientation.

The simulator also provides a range of ground truth sensors that can be used
for auto-labeled data in training an agent:

• Semantic segmentation camera: Gathers 2D images from a set view-
point where each pixel is semantically labeled based on the object it
represents.
• Instance segmentation camera: Similar to the semantic segmentation

camera, but instead of labeling pixels based on the object they represent,
they are labeled based on the instance of the object.
• Semantic LiDAR sensor: Adds semantic and instance ground-truth to

points in the point clouds. This means the identifier of the object hit
(the instance), as well as the semantic tag of the instance, whether it is a
vehicle, pedestrian, etc. It also includes the cosine between the angle of
incidence and the normal of the surface hit.

These sensors cover most of the needs for running a simulation for testing
autonomous driving systems and are the only ones relevant for this thesis.
Additional available information that can be used for setting ground truth
data includes lane waypoints.

Waypoint API

The Waypoint API is an essential part of the simulator for extracting vital
environmental information. It provides access to the position of continuous
points from all the lanes in the environment, which includes the implicit dir-
ection of the lane at each point. These waypoints can be used as examples to
train agents to follow lanes correctly.

Maps

The simulator has a set of default maps that are used for testing and training.
These maps are fictional and are designed to simulate real-world environ-
ments.

• Town01: The original CARLA map featuring a grid layout common to
many US cities. It offers a variety of junction types, with a mix of com-
mercial and residential buildings.
• Town02: Similar to Town01, but with a unique layout. It provides a

comparable urban driving experience with a diverse array of building
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types and junctions.
• Town03: A suburban map characterized by winding roads and a variety

of building types, offering a unique driving challenge.
• Town04: This map, primarily a highway layout, is ideal for testing high-

speed driving scenarios and overtaking behaviors.
• Town05: A rural map with country roads and fewer buildings, offering

a distinctly different driving experience compared to other maps.
• Town06: A complex urban environment designed to challenge any autonom-

ous vehicle, with a variety of road types, complex junctions, and high-
density buildings.

Figure 2.4: Dangerous pedestrian crossing scenario

Scenarios A scenario is an event triggered when a simulated ego vehicle
enters a designated area. It comprises a set of actors and conditions that must
be fulfilled for the scenario to be considered completed or passed. An ex-
ample of a scenario is demonstrated in figure 2.4.
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Figure 2.5: Short example of a route for Town03 in Carla

Routes A route, as depicted in figure 2.5, is a sequence of waypoints that
the agent must follow. Along with the route, a set of scenarios can be defined
to accompany the route. This results in a path through a town where at cer-
tain points, scenarios are triggered and must be addressed by the agent. The
route consists of a set of high-level waypoints and from these, a set of dense
waypoints can be interpolated. Carla provides functionality for interpolating
These dense waypoints to create a privileged global plan.

Commands Along with the dense waypoints, there are accompanying high-
level commands within a global plan for a route. These high level commands
can be one of:

• Go Straight: The agent should continue straight ahead.
• Follow lane: The agent should follow the lane.
• Left: The agent should turn left at the next intersection.
• Right: The agent should turn right at the next intersection.
• Change lane left: The agent should change to the left lane.
• Change lane right: The agent should change to the right lane.

Carla Scenario Runner The Carla Scenario Runner is an open-source tool
developed for running driving scenarios. It utilizes the Carla python API to
manage traffic and set up routes and scenarios for an agent to react to. To
run scenarios or routes with the scenario runner, the user must specify a con-
figured agent, as well as a scenario or list of scenarios with the option to
specify a set of routes. The scenario runner then uses the Carla Python API to
orchestrate the configured routes and/or scenarios, while injecting the con-
figured agent into the simulation.
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Agents For an agent to interact with specified scenarios, a custom imple-
mentation overriding specific methods in a simple interface class must be
provided to the scenario runner. Sensors and logic based on the data from
these sensors have to be specified in the agent class. The sensors specified will
be attached to the "hero" vehicle that the scenario runner sets up in the simu-
lation. The logic specification receives data from the sensors at each frame in
the simulation, where the logic of the agent can be implemented and based
on. This means the logic flow is to receive sensor data, then decide action.
The logic specified in the agent class runs every frame of the simulation and
is used to control the "hero" vehicle.

The CARLA Leaderboard

To test the proficiency of trained agents, Carla provides an online leaderboard
where agents can be benchmarked on their driving proficiency. These bench-
marks are a set of held-out routes and scenarios not seen during training
of an agent. Agent class specifications with compatible sensor specifications
that are within the leaderboard’s requirements can be submitted to the lead-
erboard. Two distinct types of benchmarks are defined: one for agents driving
using an HD map and another for agents using sensors only. This thesis will
focus on the sensor benchmark.

Offline leaderboard The scenario runner tool provides a set of 76 different
routes across the different towns described in 2.1.2. 50 of these are reserved
as training routes, and 26 are reserved as test routes. The training set con-
sist of routes for Town01, Town03, Town04, and Town05. The test set con-
sists of routes for Town02, Town04 and Town06. All the routes consist simply
of sparse waypoints for the agent to follow within the towns. These routes
are however accompanied by a large set of specific scenarios for each town.
The routes and scenarios are all specified in files passed to and read by the
scenario runner that facilitates these specifications. A link to these files are
provided in the Appendix: 6.2.

2.2 Learning for self-driving agents

2.2.1 Modular approach

The methodologies for training self-driving agents primarily fall into two cat-
egories: modular approach and end-to-end learning using a neural network.
In a modular approach, the problem is often divided into two parts: per-
ception and planning. The perception module is responsible for processing
sensor data and creating a comprehensible model of the environment. On the
other hand, the planning module interprets this model and decides the most
appropriate actions based on the current state of the world. An example of
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Figure 2.6: Modular system

this approach is Tesla’s Full Self Driving Beta, which separates the machine-
learning based perception module and rule-based planning module, enabling
each module to specialize and excel in its specific domain.

2.2.2 End-to-end approach

Figure 2.7: End-to-end system

In an end-to-end model, the system processes sensor data and directly gen-
erates corresponding actions. An intermediate step in this process might in-
volve the generation of way-points or trajectories, which can be interpreted
into specific actions via a controller. The controllers used can range from a
simple proportional–integral–derivative controller (PID-controller) to more
advanced options such as a model predictive controller (MPC).

A key distinction of end-to-end approaches lies in the decision-making pro-
cess. Instead of relying on potentially explainable hand-crafted algorithms,
these models typically use a neural network or another "black-box" method.
While this can introduce ethical challenges due to the lack of transparency in
decision-making, it also opens up possibilities for surpassing the capabilities
of explicitly defined algorithms.

End-to-end models typically employ two main strategies: reinforcement learn-
ing and imitation learning. Some approaches may even combine elements of
both. These strategies and their potential advantages and drawbacks will be
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further discussed in the following sections.

Reinforcement learning

Reinforcement learning is a method for training agents without the need for
labeled data. It revolves around the concept of trial and error and is typically
formulated within the framework of Markov Decision Processes (MDPs).

Markov Decision Process A Markov Decision Process (MDP) provides a
mathematical framework for modeling decision-making scenarios where out-
comes are partially random and partially under the control of a decision
maker.

An MDP consists of four components: a set of states (S), a set of actions (A),
a reward function (R), and a transition probability function (P). At each time
step, the system is in a state s ∈ S, and the agent selects an action a ∈ A.
This results in the environment transitioning to a new state s′ ∈ S and the
agent receiving a reward R(s, a, s′). The goal of the agent is to find the op-
timal policy π that maximizes the expected cumulative reward. The policy π
is a mapping from states to actions that dictates the agent’s behavior.

Figure 2.9: Reinforcement learning diagram - By Megajuice - Own work,
CC0, https://commons.wikimedia.org/w/index.php?curid=57895741

Environments Reinforcement learning environments are interactive settings
where an agent can learn to make decisions. Gymnasium is a common tool for
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developing and comparing reinforcement learning environments. It provides
pre-defined environments for agents to interact with and learn from. For ex-
ample, env = gym.make(’CartPole-v1’) creates a CartPole environment. The
step function of an environment lets the agent interact with the environ-
ment, returning the new state, reward, and a done flag. The reset function
is used to initialize the environment back to its starting state. Gymnasium’s
simplicity makes it ideal for testing and benchmarking reinforcement learn-
ing algorithms. These environments are compatible with many reinforcement
learning libraries, including Stable Baselines [5] and Ray RLlib [6]. Creating
a custom environment in Gym is achieved by defining a class that inherits
from gym.Env and implementing the specific methods, "init", "step", "reset"
and optionally "render".

An example of a simple custom environment:

import gymnasium as gym
from gym import spaces

class CustomEnv(gym.Env):
def __init__(self):

super(CustomEnv, self).__init__()
# example for a binary action space
self.action_space = spaces.Discrete(2)
# example for a 1D observation space bounded between 0 and 100
self.observation_space = spaces.Box(low=0, high=100, shape=(1,))

def step(self, action):
# Update environment state
# Calculate reward
# Check if episode is done
return observation, reward, done, info

def reset(self):
# Reset state
return observation

def render(self, mode=’human’):
# Visualize environment state

Learning The learning strategy of reinforcement learning is about learning
by interacting with the environment. The agent tries to optimize its expec-
ted reward by learning a policy based on rewards gotten from interacting
with the environment. An important aspect of reinforcement learning is the
"reward signal" coming from the environment, usually implemented as a re-
ward function calculated from the state (s′). If the environment is a scenario
in the CARLA simulator, the reward could be calculated based on the agent’s
placement in a lane, whether it’s following traffic rules and if the current
speed is desired based on the condition of the world. This way reward sig-
nals can be given to a driving agent, in which reinforcement learning can be
used to train a driving Policy.
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Classical reinforcement learning includes learning a direct mapping from
state to optimal action from given state based on experiences gathered dur-
ing training. This approach is however not sufficient in cases where the state
space is massive, like in the self-driving problem. Luckily, reinforcement learn-
ing can utilize function approximators, typically neural networks to account
for the massive state space. This way, information like sensor data can be
used as part of the state for determining actions in reinforcement learning.

Off-policy, on-policy, exploration and exploitation We can split policies
into a behavior policy πb, and an update policy πp. The behavior policy is
used during interaction with the environment and describes what actions the
agent should take given a current state s. The update policy is the policy that
is trained based on the decisions and reward signal gathered from the beha-
vior policy. In on-policy reinforcement learning, the behavior policy and the
update policy is the same. For off-policy reinforcement learning, the behavior
policy and update policy can be different. The update policy that is learned
could be different from the behavior policy used during exploration of the en-
vironment. In CARLA, an expert agent with "cheat sensors" and an optimal
policy can be used as a behavior policy, in which the reinforcement learning
algorithm can use the experiences gathered from the behavior policy to learn
optimal behavior. This can be seen as a type of imitation learning, or a special
case of imitation learning where reinforcement learning is used to achieve it.

Imitation learning

Imitation learning is a way of learning that focuses on imitating and gen-
eralizing the behavior of an expert demonstrator. When it comes to imita-
tion learning, no reward function is needed for learning a driving policy. The
learned policy is simply trying to mimic the behavior showcased in expert
demonstrations and should generalize to novel situations and still perform
well. The drawback of this approach is that technically, the learner cannot be
better than the expert demonstrations in any way, however learning is more
efficient than with reinforcement learning, as the process does not have to go
through a rigorous phase of trial and error to coincidentally find beneficial
actions. Any action the demonstrator makes is implicitly the optimal action
to take. Pure behavior cloning does however suffer from large error propaga-
tion when differing from the distribution found during training. If an expert
agent is optimal, it won’t make any mistakes. Expert data used as training
data for a learning agent will then not include experiences where a small
mistake has been made and how to correct this small mistake. This means
a small mistake might push the agent outside of experiences found during
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training, making it increasingly difficult to remedy the mistake. Appropriate
noise in the training data is needed for avoiding this problem, but has the
drawback of introducing non-optimal decisions in the training data. Another
approach to handle this is to use Generative Adversarial Imitation Learning
(GAIL) [7], which treats the imitation learning as an adversarial game.

For autonomous driving, expert demonstration data can include sensor in-
formation as input and a trajectory as well as semantically labeled data about
the environment as target data. In CARLA there are autopilot agents that can
generate expert data including waypoints at any time step, as well as inform-
ation from privileged sensors like semantic maps or other labeled data.

For any type of self-driving agent, it is important for it to be able to decode the
world around it. The information gathered from sensors can be very exhaust-
ive and has to be interpreted efficiently in order for the system to properly
learn how to drive. In other words, any driving agent must either way learn
to see and understand its environment in a meaningful way.

Combined approaches

Imitation learning and reinforcement learning can be combined to speed up
the learning process, like in AlphaGO [8] and GRI [9]. These combine im-
itation learning and reinforcement learning to handle issues of a slow ini-
tial learning phase to trial and error in classical reinforcement learning by
providing expert demonstrations with a constant reward as part of the train-
ing loop. These expert demonstrations can practically speed up the initial
tedious training phase of reinforcement learning. For complex learning tasks
like self-driving, where a lot of trial and error has to be done for even learning
the simplest tasks of following the road, expert demonstrations can be very
helpful for guiding the learning process initially.

2.3 Vision

Human drivers rely on just two eyes to understand the state of their driv-
ing environment. Despite this, humans can effectively navigate the complex
dynamics of driving. However, a self-driving agent potentially has access to
significantly more information, enabling superior decision-making capabil-
ities and faster reaction times. This is made possible by equipping vehicles
with a multitude of sensors, far surpassing the capabilities of the human
eye alone. To decode the vast amount of information that originates from
cameras, LiDAR, and other sensors integral to autonomous vehicles, visual
intelligence is required. Developing manual algorithms for processing this
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data is challenging, thus necessitating the use of neural networks for decod-
ing information from complex datasets such as images. Convolutional neural
networks are typically employed due to their proven efficacy in image pro-
cessing.

2.3.1 Convolutional Neural networks

Figure 2.10: Convolutional Neural network for image classification

Convolutional Neural Networks have been the state-of-the-art for different
image classification and visual intelligence tasks since it started gaining trac-
tion in the 2000s when the GPU implementations started popping up. A Con-
volutional layer in neural networks works as feature extractors as a way of
learning important features about images needed for tasks in visual intelli-
gence. CNNs have for a long time been the most important factor in the suc-
cess of visual intelligence, and is still widely used in the field. In self-driving
they are mainly used for semantic segmentation and object detection tasks.

2.3.2 Transformers

In recent years, the field of neural network architecture has witnessed the
rise of transformers, originally used for Natural Language Processing (NLP)
tasks. Introduced in 2017 by Vaswani et al. [10], transformers have effect-
ively superseded RNNs [11] and LSTMs [12] within NLP. The primary reason
for this shift is the efficiency of transformers in capturing context through
their self-attention mechanism. They are also parallelizable, enabling effect-
ive training on modern GPUs. Unlike transformers, RNNs and LSTMs must
process tokens sequentially to predict the next token in a sentence, which is
required to construct the final output in tasks such as next sentence predic-
tion. On the other hand, transformers can process each token in a sentence
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in parallel, resulting in significant speed improvements over traditional NLP
neural network architectures. Furthermore, RNNs suffer from the vanishing
gradient problem, meaning that the context of a token is determined by the
outcome of the previous token, and hence, each token prediction lacks direct,
precise information about preceding tokens. In tasks such as language trans-
lation, understanding the context of a word is crucial. Therefore, attention
mechanisms were integrated into RNNs to account for this context. How-
ever, during the development of the transformer architecture, these attention
mechanisms were found to be sufficiently powerful in their own right.

Figure 2.11: Transformer architecture. Illustration from Vaswani et al. [10]

As illustrated in Figure 2.11, the transformer architecture consists of two
main components: the encoder (left) and the decoder (right). In a sequence-to-
sequence language task, the encoder receives a set of tokens to be translated,
while the decoder processes the output tokens to which the input should be
translated. Observing Figure 2.11, it’s evident that the output serves as an in-
put in the decoder. During the training process, this output forms part of the
input, and the ground truth predictions are simply the output tokens shif-
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ted one position forward. This design allows each word to train the network
in parallel, with each word’s output prediction being the next token in the
sentence.

Encoder

Figure 2.12: Transformer encoder. Illustration from Vaswani et al. [10]

Initially, words are converted into embedded vector representations using
a pre-trained vectorization model. This word embedding encapsulates the
"meaning" of a word. It is then summed with a positional encoding to rep-
resent the "context" of the word. Each resulting vector undergoes processing
in a global self-attention block, which includes a Multi-head attention layer
followed by an Add & Normalization layer. The attention is computed using
vectors of queries (Q), keys (K), and values (V), as illustrated in equation 2.1:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.1)

During the first block in the encoder, the global self-attention block, Q, K, and
V all derive from the input vector. Each attention vector calculated reflects
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the relevance of a word in relation to others within the sentence. During the
multi-head attention block, the vectors are projected into multiple learned
versions of Q, K, and V. These are processed in parallel through the block,
then weighted-summed using other learned values. This approach allows the
representation of information from different subspaces, which according to
Vaswani et al. [10], enhances performance. The outcome of the entire block
is an attention vector for each word. These vectors are simultaneously pro-
cessed in the next block, a feed-forward neural network. A combination of
these two blocks constitutes one layer in the encoder, which can be stacked
N times

Decoder

Figure 2.13: Transformer decoder. Illustration from Vaswani et al. [10]

The output from the encoder is passed to the decoder, serving as keys (K) and
values (V) in the decoder’s second attention layer. The decoder’s input oper-
ates similarly to the encoder’s: each sentence is converted into a set of word
embeddings, which are summed with a positional encoding for each word.
During this block, the attention vectors are masked so that the ith word lacks
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information about subsequent words (i+ n). This process is essential for facil-
itating learning. The encoder’s output is then used as K and V values, while
the result from the first block of the decoder serves as the query (Q), and
is passed to another Multi-head attention layer. Subsequently, the resulting
vector undergoes processing in a feed-forward network and an Add & Nor-
malization step, akin to the encoder. This architecture can also be stacked N
times. The transformer’s final output emerges from a linear projection and
a softmax operation, effectively predicting the next word. Since the ith word
is not dependent on the result from the i − 1th word, the entire process can
occur in parallel.

In recent years, transformers have propelled the success of Large Language
Models (LLMs). Notable examples include ChatGPT with GPT-4 [13] — which
is constructed with extensive stacks of transformer decoders and fine-tuned
using reinforcement learning with human feedback — and BERT [14], char-
acterized by its use of multiple transformer encoders. Despite these achieve-
ments in language processing, this thesis shifts the focus to images and sensor
data. The subsequent section will explore the application of this architectural
framework in the computer vision tasks necessary for autonomous driving.

2.3.3 Vision Transformers

Vision Transformers (ViTs) apply transformer encoder architecture for tasks
such as image classification or other vision-related assignments. The concept
was introduced by Sharir et. al. [15] and achieved state-of-the-art results on
object detection datasets like COCO [16].

Figure 2.14: Vision transformer, By Davide Coccomini - Own work, CC BY-
SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110678226

The transformer scales quadratically with the input size, as the multi-
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attention block performs calculations based on every other input value for
each token. This process generates an attention vector signifying the token’s
relevance to the remainder of the input. When dealing with images, each
pixel must possess an attention value for each other pixel, making it com-
putationally infeasible due to the rapidly expanding size of attention vectors.
With e.g an image of size 224x224, the amount of patches would add up to
50, 176 To facilitate the transformer’s work with images, each image is seg-
mented into 16x16 pixel patches. These patches are subsequently flattened
into a vector using a linear projection and affixed with a positional encod-
ing. Alongside the patches, an extra learned parameter is incorporated into
the input as a predictive value. For image classification tasks, the output for
this additional learned parameter is transferred to a Multilayer Perceptron
(MLP) head which predicts the class, utilizing conventional loss functions for
model learning. ViTs are highly data-dependent, necessitating vast quantit-
ies of training data to perform effectively on vision tasks. The authors of "at-
tention is all you need" [15] recommend pretraining ViTs on large datasets,
despite the high computational expense, and then fine-tuning them on task-
specific, smaller datasets. When fine-tuning, the required training paramet-
ers are significantly reduced, as they only include parameters of a prediction
head outside the transformer encoder.

An alternative to the Vision Transformer is the Shifted Windows Transformer
(Swin Transformer), introduced by Liu et al. [17]. Swin Transformers are con-
ceptually similar to ViTs but address the challenge of scaling to high-resolution
images. Instead of applying self-attention to all patches globally at each layer,
Swin Transformers limit the self-attention mechanism to a subset of vectors
for each layer. To maintain a global context, the self-attention mechanism
shifts at every layer, effectively acting as a "sliding window" across the patches
iteratively along the layers. This method allows the complexity of the encoder-
blocks to remain manageable, even when the patch quantity is increased to
handle higher-resolution images.

2.4 Related works

2.4.1 Implicit Affordances - 2019

In this work, Toromanoff et al. [18] introduced a technique coined Implicit
Affordances to address the challenges associated with applying reinforcement
learning (RL) to complex environments such as autonomous driving. Implicit
Affordances refer to intermediate encoded vectors used to predict driving-
relevant state information from the environment.

Before the RL stage of learning how to drive is initiated, a visual encoder and
decoder are trained to predict crucial information about the state of the envir-
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onment. During the RL phase, the output from the visual encoder is utilized
as part of the environment’s state during training. The weights of the visual
encoder are kept constant during this RL training. In essence, the agent first
learns to "see" before it learns to drive.

Architecture

Figure 2.15: Implicit affordances architecture

As depicted in Figure 2.15, the system uses the previous four frames from a
center camera as its input. During the supervised phase, the blue and purple
components of the system are trained. The weights from these components
are frozen during the subsequent RL phase, and training is only performed
on the Conditional Reinforcement Learning network. This conditional net-
work is a combination of 6 equivalent fully connected neural networks, each
individually chosen and trained for a specific higher-order input command
from the simulation, such as "turn left," "turn right," or "go straight." The RL
head uses the output from the visual encoder as the world state, in addition
to the four previous vehicle speeds.

Visual Encoder and Decoder

Training the visual encoder involves the use of a custom ResNet-18 architec-
ture. The encoder processes inputs of size (4 · 288 · 288 · 3), which represent
sequential sets of 4 RGB images, each with a resolution of 288x288 pixels. The
output is a 522 · 4 · 4 vector, serving as an embedded vector used as implicit
features. These features are then passed onto a Semantic Segmentation De-
coder, which predicts the semantic segmentation of the images. Additionally,
a High-Level Traffic Information Decoder uses these vectors to predict the
traffic light state, the presence of an intersection, and the lane position. The
training data for this process is derived from the CARLA autopilot, which
provides examples where the agent is driving in the center of the lane. This
presents a challenge when training the RL agent, as it often veers off-road
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early in the training process - a condition not accounted for in the training
data. The authors address this problem by augmenting the viewport of the
autopilot during data collection. This involves randomly shifting the camera
positions offset to the vehicle, generating various perspectives of the envir-
onment from outside the center of the lane. This process introduces sufficient
noise in the training data to effectively train the RL agent.

Reinforcement Learning Head

The RL head builds upon the authors’ previous work, Rainbow-IQN APE-
X [19]. This represents a distributed value-based reinforcement learning ap-
proach, similar in nature to DQN. Utilizing a distributed approach enables
multiple CARLA simulations to run simultaneously during the RL loop, ex-
pediting the training process. The use of a visual encoder reduces the state
of the environment significantly compared to using raw sensor data. Con-
sidering that RL demands substantial data, it is essential for the model to be
compact enough for efficient inference. Another critical point is that most RL
approaches leverage a replay buffer for training, which, when populated with
numerous full RGB images for each saved transition, can lead to memory is-
sues. The visual encoder mitigates this problem by significantly reducing the
size of the replay buffer per transition.

Reward function

The reward function used during training mostly depends on information
extracted from the waypoint API described in 2.1.2 from CARLA. The reward
function is split into three main components:

• Desired speed
The reward is given if the agent is driving at the desired speed. The
desired speed scales linearly based on traffic light state and the distance
to obstacles in its direction. Otherwise, the desired speed is set to the
speed limit.
• Desired position

This depends heavily on the waypoint API. The closer the agent is to
the middle of the lane, the higher the reward.
• Desired rotation

Using the waypoint API, the further the agent’s heading differs from
the heading of the closest waypoint, the lower the reward.

As well as giving rewards for these three main components, the agent is also
punished for colliding into anything, driving too far from the lane and stop-
ping for no reason.

The approach solves many of the problems present if trying to apply rein-
forcement learning on the driving problem. The approach won the camera
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Only track of the CARLA challenge at the time, showing that pure reinforce-
ment learning approaches can be effective in the self-driving task, at least in
a simulated environment.

2.4.2 GRIAD - 2021

This work, General Reinforced Imitation for Autonomous Driving (GRIAD), from
Chekroun et al. [9] is in many ways similar to the approach in section 2.4.1,
and is placed 7th on the Carla SENSOR track leaderboard. The main differ-
ence in this work is that it uses the author’s proposed General Reinforced
Imitation (GRI) reinforcement learning strategy for teaching the agent how to
drive (AD). This means that instead of only learning from experiences dur-
ing simulation, examples from an expert demonstration agent are also incor-
porated into the training of the autonomous driving agent. This is done by
setting a constant reward rdemo for all actions taken by the expert agent and
adding episodes with these to a common replay buffer together with classic
exploration state transitions.

GRI algorithm

Algorithm 1: GRI algorithm
Input: rdemo demonstration reward value, pdemo probability of using demonstration agent

Initialize empty buffer B
while not converged do

if len(B) ≥ minbuffer then
DRL network update;

end
if random.random() ≥ pdemo then

e← collect episode from exploration agent;
B ← B ∪ e

else
e← collect episode from expert agent ;
B ← B ∪ e

end
end

Algorithm 1 shows the GRI algorithm. At each step, the algorithm col-
lects an episode comprising a sequence of state transitions, each of which
includes the state, the action taken, the resulting reward, and the new state.
For a probability pdemo this episode is drawn from an expert demonstration
dataset, otherwise the episode is gathered by an online exploration agent, in
essence normal reinforcement learning.
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For the autonomous driving task, collecting an episode as the exploration
agent means running the agent through a CARLA simulated scenario and
saving the state transitions until the episode ends. An episode concludes
when either the agent crashes or the maximum episode length is reached. The
demonstration agent episode data, which consists of 200k state transitions,
is gathered using a CARLA Autopilot. The reward for each state transition
sampled from the demonstration agent is set to a constant rdemo.

GRI architecture

Figure 2.16: System architecture of GRI for autonomous driving

As seen in figure 2.16, the system uses two distinct modules for classifica-
tion and segmentation encoding. The system also employs three cameras,
one front, left and right RGB camera as the sensor input. For the classifica-
tion encoder, only the input from the center camera is utilized. During the
supervised learning stage, the encoders and decoders are optimized and a
perception dataset is used for training the system. During the reinforcement
learning stage, the visual subsystem, the weights for the blue and purple
components are frozen, while the DRL weights are optimized instead. For
distributed training of the DRL network, the system also utilizes Rainbow-
IQN Ape-X [19].

2.4.3 TransFuser - 2022

This work is an approach by Chitta et al. [20] that, at the time of its public-
ation, surpassed all other submissions on the CARLA sensor track leader-
board and achieved state-of-the-art performance on this specific self-driving
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benchmark. As of this writing, the submission holds 5th place. The work is
an imitation learning approach to self-driving and focuses on sensor fusion
using the transformer architecture.

Figure 2.17: Simplified TransFuser architecture

Architecture

The TransFuser model takes three RGB images and a LiDAR bird’s eye view
as inputs. As depicted in Figure 2.17, RGB images from front-facing, left-
facing, and right-facing cameras are concatenated and then input to the model.
Raw LiDAR data is converted to a 2 bin histogram to construct a bird’s eye
view map before being passed to the model. The architecture is split into
two branches, one for image data and another for LiDAR bird’s eye view
data. Both the image branch and Lidar branch have convolutional blocks,
followed by both branches passing through a transformer block and element-
wise summing the output before moving to the next block. This repeats 4
times at different resolutions. The output of the branches are two flattened
vectors which are element-wise summed, then passed to an MLP. Finally, a
GRU (Gated recurrent Unit) is used to predict the next n waypoints, while
providing an approximate goal location to the GRU at each recurrent step.

Neural attention field decoders [21] are utilized for other prediction heads
associated with auxiliary computer vision tasks.

Training

Since the learning task follows an imitation learning approach, the agent un-
dergoes supervised training using a dataset collected by the CARLA autopi-
lot. During training, the system tries to predict several auxiliary tasks; Depth,
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semantic segmentation, an HD map, bounding boxes of other vehicles in the
scene and waypoints for the ego vehicle to follow in the next time-step. All
the ground-truth information needed is collected using the autopilot expert
demonstrator within the CARLA simulator.

2.4.4 InterFuser - 2022

InterFuser is a self-driving end-to-end imitation learning approach by Shao
et al.[22]. This work’s submission to the CARLA sensor track leaderboard is,
as of writing placed 2nd, only behind "ReasonNet", which is a submission
published by the same team. The work focuses on sensor fusion, leveraging
both RGB and LiDAR data, while also having interpretable state representa-
tion and extra safety features employed. The work is similar to that described
in section 2.4.3, but has additional focus on safety and interpretability and
leverages the transformer architecture very differently from the TransFuser
approach.

Figure 2.18: System architecture of InterFuser

The system uses five different input channels, which are all passed into
the system in parallel. The LiDAR data, in the same way as in section 2.4.3 is
converted to a bird’s eye view representation. As well as using a front, right
and left camera view, a focused view is also used, in an effort to effectively
capture information about distant traffic lights. The focused view is a cropped
part of the front view, resulting in higher resolution of an important part of
the image, i.e. where distant traffic lights are caught.

Sensor Fusion

The sensor fusion differs from the Transfuser approach in that it treats each
sensor input as a different modality to fuse, rather than having two expli-
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cit modalities for RGB and LiDAR. It also employs transformers similarly
to how they are used in language task, rather than in the way vision trans-
formers are used. While Transfuser uses several transformers to fuse inform-
ation between the two branches at several steps in the pipeline at differ-
ent resolutions. Interfuser initially converts all of the sensor inputs into one-
dimensional vector representations, which is more similar to how transformers
are used in classical machine translation tasks, instead of the vision trans-
former approach used in Transfuser.

As seen in figure 2.18, each sensor input is initially passed through a convolu-
tional neural network. Each RGB camera input uses a pre-trained ResNet-50,
while the LiDAR bird’s eye view uses a ResNet-50 trained from scratch. The
outputs of these are then converted to a one-dimensional vector represent-
ation, which then have a positional encoding added to them. Each token is
then passed through a Transformer encoder and used in the same way as
with standard transformer architectures, where the output of the encoder is
used as input to the decoder.

Prediction types

The InterFuser architecture, in addition to predicting waypoints for the vehicle
to follow the next time-step, it also predicts an object density map and traffic
rule state. Each of these prediction types have a specific set of queries and
learnable positional encodings that are passed to the transformer decoder.
These queries are learnable parameters designed to prompt the decoder to
output the desired information. For the object density map, R2 queries are
used to output an R2xC traffic feature map, where R2 is the resolution of a
bird’s eye view representation of the surrounding objects and C is a constant
representing the amount of hidden features for each cell. Each query repres-
ents a cell in the predicted traffic features, which in turn is used as input to the
prediction head for an object density map. The waypoints use L queries, one
for each waypoint to predict. For prompting the decoder predictions for the
traffic state, such as whether there is a red traffic light, a stop sign or whether
the ego vehicle is in a junction, 1 query is used. Together with the output from
the Encoder, all of queries these are passed through the decoder in parallel,
which are finally used in three different prediction heads.

Waypoints The waypoint prediction head is a GRU, similar to section 2.4.3.
To inject information about the goal location, the GRU’s hidden state is ini-
tialized with a vector embedded by the GPS coordinates of the goal location.
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The loss function used for the waypoint prediction is an L1 norm loss:

Lwaypoint =
1
L

L

∑
i=1
∥ŵi − wi∥1 (2.2)

where L is the number of waypoints to predict, ŵi is the predicted waypoint
and wi is the ground truth waypoint.

Object density map The 7 channels of the object density map represent the
probability of the existence of an object, an offset from the center of the cell,
the size of the objects bounding box, the object heading, and the velocity of
the object. It is predicted using MLPs to output an R2x7 feature map, which
is then reshaped into a map M ∈ RRxRx7. The loss function used for the object
density map is a custom L1 loss where the object probabilities that are ≥ 0.01
and ≤ 0.01 is split and calculated separately, then averaged together:

Lobject−probabilities = 0.5 · Lprob_0 + 0.5 · Lprob_1

The next channels are calculated for only the values where the object probab-
ilities are ≥ 0.01. The combined loss for traffic is then:

Ltra f f ic = 0.5 · Lobject−probabilities · λlambda + 0.5 · Ltra f f ic

The losses for the velocity Lvelocity are returned separately, and weighted in-
dividually along with the rest of the losses from the waypoints and traffic
rule states.

Traffic rule state The traffic rule state is predicted using a single linear layer
for each traffic category. The traffic state predictions consist of three predic-
tion heads for:

• Stop sign: Whether a stop sign is present.
• Traffic light: Whether a traffic light showing red is present.
• At junction: Whether the agent is at a junction.

The loss function used for all traffic predictions is cross-entropy loss with
label smoothing:

Ltra f f ic−state = (1− ϵ)ce(i) + ϵ ∑
ce(j)

N
(2.3)

In the loss function 2.3 ce(x) is standard cross-entropy loss, like−log(p(x)), ϵ
is the label smoothing parameter, i is the correct class, j is the predicted class
and N is the number of classes.
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The total loss adds up to:

L = λtra f f ic · Ltra f f ic

+ λvelocity · Lvelocity

+ λjunction · Ljunction

+ λtra f f ic−light · Ltra f f ic−light

+ λstop−sign · Lstop−sign

+ λwaypoints · Lwaypoints

Safety controller

The enhanced safety features of the InterFuser system are driven by the safety
controller, as illustrated from figure 2.18. This controller utilizes predictions
from each head to constrain control actions extracted from the predicted way-
points. From the waypoints, a desired heading αd is determined by averaging
the heading of the first two waypoints. From the desired heading, a lateral
steering action is found using a PID controller. The longitudinal acceleration
action is also found from the waypoints and used to attain the desired speed
vd, but is also constrained by factoring in the surrounding objects.

This is achieved by using explicit predictions from the object density maps to
recreate the presence of objects. In this context, ’objects’ refer to vehicles, ped-
estrians, or any other actors excluding the ego vehicle. The object density map
is a bird’s eye view representation with 1x1 meter cells, and an object is recog-
nized as present in a cell if the existence probability in the cell is higher than
threshold1, or if the existence probability in the cell is the local maximum in
surrounding cells and greater than threshold2, where threshold1 > threshold2.

Combined with predictions for the heading position and object velocity, the
safety controller can monitor the state of surrounding objects. To predict the
future trajectory of each object, a tracker records the historical dynamics of
each object. The future trajectory is then determined by propagating the his-
torical dynamics forward in time using the moving average. With the future
trajectories of all objects present in the nearest environment, the safety con-
troller calculates the maximum safe distance st. It does this by checking if any
predicted waypoints for the ego vehicle collide with any of the predicted tra-
jectories. The controller then records the shortest distance to any identified
collision. From the maximum safe distance st, a desired speed vd is found
by solving a linear programming problem to maximize vd with the following
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constraints:
(v0 + v1

d)T ≤ s1

(v0 + v1
d)T + (v1

d + v2
d)T ≤ s2

|v1
d − v0|T ≤ amax

|v2
d − v0|T ≤ amax

0 ≤ v1
d ≤ vmax

0 ≤ v2
d ≤ vmax

(2.4)

In this context, v1
d represents the desired speed that should be maximized,

while v2
d is a variable representing the desired speed in the second time step.

T is a constant for the time step duration, v0 is the current speed of the ego
vehicle, s1 and s2 are the maximum safe distances at the first and second
future time steps. vmax and amax denote the maximum allowed speed and
acceleration for the vehicle. The found speed v1

d is then finally sent to a PID
controller to decide the control actions for throttle and brake.

2.4.5 Imitation is not enough - 2022

This research from Waymo by Lu et al. [23] centers on the enhancement of
imitation learning methodologies via reinforcement learning. The authors ad-
dress a notable restriction of imitation learning - the inability of the trained
model to recover from situations that diverge from those encountered during
expert agent training. For example, if the expert agent consistently navigates
the center of the road, no training instances exist where the agent must return
to the lane after necessary deviation. While the expert agent faces no issue,
the imitation learning model lacks any knowledge on how to realign itself
within the lane. This unpredictability persists unless handled separately or
with emergent behavior developed during training. This scenario illustrates
the critical issue of deviation from the expert data distribution; the moment
an agent must diverge from familiar examples, it loses its ability to ’course-
correct’. It is not feasible to assume that expert data can cover all unforeseen
circumstances that may arise during actual deployment. The authors’ exper-
iments present a promising example of a solution to this problem, "BC-SAC,"
integrating behavioral cloning with the Soft Actor Critic (SAC) reinforcement
learning algorithm. This method exhibits substantial improvements over the
standard imitation learning approach, especially in challenging scenarios.
The addition of reinforcement learning significantly enhances performance
on challenging datasets compared to the baseline imitation learning model.

The authors propose a method to solve this problem by using reinforcement
learning in the cases where the agent deviates from the training distribution.
The authors hypothesize that reward signals are more effective for scenarios
of lower frequency, while demonstrations are more effective for scenarios of
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higher frequency.

Implementation

GRIAD, outlined in 2.4.2, blends reinforcement and imitation by incorporat-
ing demonstration and exploration agents into the RL loop. In contrast, this
work formulates a policy using a weighted blend of action selection, based
on maximum expected reward, and the log-probability of action selection by
the expert demonstrator.

max
π

ET , π, ρ0

[
∞

∑
t=0

γtR(st, at)

]
+ λEs,a∼D [log π(a|s)] (2.5)

Equation 2.5 integrates the objective function that maximizes the expected
discounted sum of rewards with the objective function that maximizes the
log-likelihood of the expert demonstrations. The parameter λ is employed to
balance these two objectives. The authors opted to use the Soft-actor-critic
(SAC) as the RL algorithm, given its simplicity in adding the imitation learn-
ing objective to the expected value of the critic function (Q-function). The
resulting comprehensive actor objective is:

Es, a ∼ π [Q(s, a) +H(π(·|s))] + λEs, a ∼ D [log π(a|s)] (2.6)

By selecting an appropriate value for λ, this enhanced SAC objective func-
tion promotes policy imitation of expert demonstrations whenever the cur-
rent state is within the data distribution (D). When regions of the state space
are visited that lie outside the data distribution, the policy primarily relies on
the reward signal to guide its actions.

Reward Function Designing a reward function that promotes "good" driv-
ing behavior remains an unresolved issue in the field of autonomous driving.
However, the authors circumvent this problem by primarily deriving driving
behavior from the expert agent’s learning. The reward function is explicitly
designed to incentivize safety. This function combines reward signals for col-
lision avoidance and lane maintenance. The reward for collision avoidance is
given by:

Rcollision = min(dcollision − 1.0, 0), (2.7)

where dcollision is the Euclidean distance in meters to the closest point on a
bounding box of surrounding vehicles. The reward for keeping within the
lane is calculated as follows:

Ro f f−road = clip(−1.0− dto−edge,−2.0, 0.0), (2.8)

In this case, dto−edge represents the Euclidean distance in meters from the
vehicle to the edge of the lane. A negative distance indicates the vehicle is on
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the road, while a positive distance suggests it is off the road. These rewards
are added together to form the final reward function:

R = Rcollision + Ro f f−road (2.9)

Architecture The BC-SAC (Behavioral Cloning with Soft-Actor-Critic) ap-
proach utilizes dual networks for the actor, critic, and target networks. Each
network employs a separate Transformer observation encoder, which encodes
all features such as vehicle states, road-graph points, traffic light signals, and
route goals. The experimental approach used is modular, wherein visual fea-
tures are implicitly available for the planning module.

Training

Figure 2.19: Imitation is not enough; architecture

The training process, as depicted in figure 2.19, involves two distinct classes
of worker nodes: the demo workers and the actor workers. Replay transitions
from each contribute to the optimization of the policy.

Training on Difficult Examples The authors also implement a method al-
lowing the agent to concentrate on learning difficult driving scenarios. This
method, as described by Bronstein et al. [24], provides significant advantage
in tackling complex conditions.

2.4.6 UniAD - 2023

Many modern autonomous driving systems are built as modular systems,
where the system is sequential in that the input data is first parsed through a
vision system, then used in a planning module to generate trajectories and ac-
tions. This has the inherent problem of errors in the system propagating. That
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is if the vision system fails, the planning system will be ill-informed and fail
consequently. The driving problem is naturally complex and can be categor-
ized through several subtasks, which with sequential pipeline systems can be
difficult to coordinate between. In the case of the system described in the pre-
vious chapter 2.4.5, a vision system is pre-trained and implied. This means
that the vision system cannot directly cooperate with the planning module to
optimize on the common goal of planning. It can only produce features that
are found by directly optimizing for sets of explicit vision tasks. Planning
optimization has not been part of the training loop of the vision module, res-
ulting in errors propagating through the system as a whole. In this work by
Hu et al. [25], propose a learning framework that aims to tackle this problem.
The authors propose a method "UniAD" based on the idea to orient the entire
system towards the ultimate goal of driving, namely planning. To achieve
this, the framework focuses on prioritizing perception and prediction tasks
such that all sub-optimizations contribute to the ultimate goal of planning.

Architecture

Figure 2.20: System architecture of UniAD

The model is made up of four transformer-decoder based perception and
prediction modules, as well as a planner at the end of the pipeline. Differ-
ent Queries Q, similar to those described in 2.4.4. The difference is that In-
terFuser uses one common module with different queries for the different
prediction heads in the same stack of transformer decoder layers. UniAD
also uses learned queries for the different predictions, but have several task-
specific modules that have their own sub-optimization problems. The quer-
ies and results are also used across modules to connect the pipeline model
to different interactions between the different units present in the driving
environment. The five different components of the model are the backbone,
perception, prediction and planning.

Backbone The backbone is the first step in the pipeline and contains a fea-
ture extractor that transforms a multi-view camera only input into a unified
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Bird’s Eye View (BEV) representation. This is done with an off-the-shelf BEV
encoder as specified in BEVFormer [26]. The BEV encoder is built with its
own ResNet101 backbone for feature extraction and a custom transformer
decoder. This decoder has an initial step of Temporal Self-attention. This ini-
tial layer uses The previous BEV representation BEV Bt−1 together with a set
of learned BEV queries Q. The rest of the layers of the decoder are built as a
normal transformer decoder, stacked 6 times, and gives the final output of a
rich BEV feature representation.

Perception The perception component contains two modules, TrackFormer
and MapFormer, that handles tracking objects and detecting semantic ab-
stractions of road elements, like lanes and dividers. Both use the BEV repres-
entation as input and learns embeddings for querying tracking information
for TrackFormer prediction heads, and MapFormer prediction heads.

Prediction The MotionFormer module is used for predicting the future mo-
tions of other agents in the environment. It uses the output from the Track and
Map queries instead of the BEV representation and learns Motion prediction
embeddings. The OccFormer uses the BEV representation as a query while
using the agent-wise output of the BEVFormer to predict multi-step future
occupancy with the identity of the agents preserved.

Planning At the end of the pipeline the Planning component includes only
the Planner module that uses the ego-vehicle specific agent query from the
MotionFormer as a query together with the BEV representation as different
queries. The planner module takes into context the output from the Occ-
Former to keep away from colliding with obstacles in the scene.

2.4.7 ReasonNet - 2023

This work by Shao et al. [27] shares similarities with InterFuser, as described
in section 2.4.4, and is published by the same team. It employs a more expans-
ive architecture than InterFuser, complemented by an additional module for
temporal reasoning.

Temporal reasoning The temporal reasoning module serves as a processing
step designed to address the challenge of temporally occluded objects, thereby
enhancing the agent’s capability to predict an object density map. This pro-
cessing step entails the use of an embedded query based on the current frame’s
LiDAR input to retrieve the most relevant historic frames from a memory
bank. The features of current and historical frames are subsequently fused
through an attention mechanism. A feature, which is predicted in parallel us-
ing all sensor data (including camera and LiDAR), is similar to the feature
for predicting an object density map described in section 2.4.4. This feature,
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often referred to as the Bird’s Eye View (BEV) feature, is combined with the
fused historical and current features to predict a BEV map and an occupancy
map. This additional processing step equips the agent with the ability to po-
tentially manage situations where other actors are temporarily occluded, fa-
cilitating the adjustment needed to avoid collisions.



Chapter 3

Methodology

In this chapter, an approach for utilizing novel sensor fusion architectures to
benefit reinforcement learning trained self-driving agents is described. The
approach is based on the InterFuser architecture described in section 2.4.4.
Along with the proposed method, the tools used and developed along with
the processes for training and evaluating are described.

3.1 Reinforced Interfuser

This work proposes a hybrid approach, "Reinforced InterFuser," that util-
izes novel sensor fusion approaches within a reinforcement learning agent.
The approach is inspired by the work "InterFuser" from Shao et al. [22], as
described in section 2.4.4. InterFuser, an end-to-end imitation learning ap-
proach, holds the second place on the Carla leaderboard’s sensor track. It has
only recently been superseded by a submission from the same team called
"ReasonNet" [27], which was published on May 17th, 2023.

However, for the scope of this work, InterFuser is considered as the state-
of-the-art in the field of sensor fusion for autonomous driving in simulated
environments. This is because ReasonNet was published too recently to be
included in the scope of this work. Consequently, the aim of this work is to
utilize techniques employed in InterFuser as a visual encoder for a reinforce-
ment learning planning agent.

39
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3.1.1 Architecture

Figure 3.1: Reinforced InterFuser architecture

This work proposes a visual encoder that employs an architecture similar to
InterFuser, but with a few modifications. The CNN backbones are downsized
to ResNet18 instead of the ResNet50 architecture used in InterFuser. This re-
duces the number of parameters. Furthermore, the number of stacked trans-
former encoders and decoders are decreased from six layers to three.

To generate a compact vector for input to the RL agent, an additional query
is added to the transformer decoder. This query functions as a special "end
of sentence" (EOS) token, similar to those used in language tasks. The output
of this query, referred to as the "EOS feature" (as shown in Figure 3.1), is not
used during the encoder’s training. Instead, it is employed to create a state
representation that captures the context of the scene.

This approach draws from strategies used in language tasks, where the out-
put of the EOS token is utilized during fine-tuning for tasks like text classific-
ation. In the context of this work, fine-tuning refers to training the RL agent
to drive in a simulated environment.

prediction heads The prediction heads for the visual encoder encompass
those delineated in 2.4.4, with the exception that the loss function for the
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waypoint prediction head is replaced with a Gaussian Negative log loss, as
described in equation 3.1:

GNLL =
1
2

(
log(max(σ, ϵ)) +

(x− y)2

max(σ, ϵ)

)
(3.1)

In this equation, σ represents the predicted variance, x is the predicted mean,
y is the ground truth value, and ϵ is a small constant (defaulting to 1e− 6) in-
troduced to avoid division by zero. Unlike its original form, the output of the
waypoint prediction head is modified to predict the mean x and variance σ
from equation 3.1 for each coordinate in the waypoint trajectory, rather than
predicting the coordinates directly. This alteration allows the output to rep-
resent a probability distribution for the predicted plan, instead of a single
specific value for each waypoint. Consequently, it can serve as a measure of
uncertainty during reinforcement learning and creates an opportunity to ex-
plore approaches like BC-SAC, as proposed by Lu et al. [23] (see 2.4.5 for
description).

3.1.2 Training strategy

The proposed hybrid approach is split into several stages of training and fol-
lows the idea of "learning to see", then "learning to drive" as described in
section 2.4.1. The first stage of training employs a training strategy similar
to the one described in section 2.4.4. This means pre-training the InterFuser
architecture on auxiliary vision tasks, as well as waypoint prediction. The
trained InterFuser model is then used with frozen weights during reinforce-
ment learning training to provide visual features in the form of a compact
encoded vector to the agent.

Data collection

Data collection follows the same method employed by Shao et al. [22] and
is executed for the purpose of training the InterFuser-inspired sensor fusion
visual encoder. An expert agent, identical to the one used for InterFuser, is
subjected to various driving scenarios delineated by the offline CARLA lead-
erboard routes. As these routes form part of the default offline leaderboard
in the scenario runner, it ensures a consistent exposure of all trained agents
to identical scenarios during their training. Moreover, these routes are used
during the following reinforcement learning phase, thereby maintaining uni-
formity in the data distribution across both stages of training.

The agent captures RGB images from five different cameras and approxim-
ately 15,000 LIDAR detection points per frame. Additionally, it records the
vehicle’s state details for every frame, including speed, compass heading, and
the vehicle’s world coordinates.
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Privileged information gathered includes data from Carla’s privileged sensors
such as depth cameras, segmentation cameras, and data about other environ-
mental actors. This privileged information is utilized to generate the ground
truth for the various prediction heads in the InterFuser architecture. These
include the object density map, future waypoints, stop sign state, traffic light
state, and an indicator determining whether the agent is at a junction.

Waypoint Disturbance A notable challenge when training data for a visual
encoder arises from the fact that data collection is facilitated by an expert
agent. This agent’s driving behavior significantly differs from that of a re-
inforcement learning agent during training. Consequently, this results in a
substantial distribution shift between the data used to train the encoder and
the sensor data encountered during reinforcement learning.

To mitigate this issue, the target waypoints of the expert agent undergo sig-
nificant disturbances during collection, leading to erratic driving behavior.
This process infuses the data with additional noise, making it more closely
resemble the data encountered during reinforcement learning.

Dataset The resulting dataset consists of 45k frames of information from all
scenarios in the offline leaderboard routes. These routes are spread between
four different towns in a single weather condition. The dataset used can be
downloaded from the link in appendix 6.2. Only data from the training routes
are used in the dataset, to ensure that the agent has only been exposed to data
from the training routes. No frames from scenarios from the routes in the test
set are included. For training of the InterFuser model, The dataset is split ran-
domly (80-20) into a training dataset and an evaluation dataset. Because of
this, the validation dataset consists only of samples from the training routes
instead. This results in no distribution shift between the training and valid-
ation dataset, but this is a trade-off to ensure that the visual encoder has not
been in any way biased by the evaluation routes during training.

Training the visual encoder

A custom InterFuser model is trained as a visual encoder for the RL head.
This is in place of the stage "learning to see", as with implicit affordances from
section 2.4.1. It is trained in a manner similar to the one described in Section
2.4.4. This means the model is trained to predict future waypoints, an object
density map and traffic state. The available sensor data for these predictions
is the same as the one described in section 2.4.4, which includes a front, left
and right -facing camera, a cropped version of the front-facing camera, and
LiDAR data in the form of a 2-bin histogram bird’s eye view. The objective of
the training of the visual encoder is to create a compact vector representing
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the visual information derived from input sensor data. To assess the viability
of this architecture as a visual encoder for an RL agent, the output from the
waypoint queries, traffic state query and the target query are made accessible
for the RL experiments, as well as the resulting object density map.

Training the reinforcement learning head

The Reinforced InterFuser approach employs a second training step, in place
of "learning to drive" after it has learned to "see" in the previous stage of
training the visual encoder. Here, the weights of the InterFuser model are
frozen, and an added RL head is optimized instead. A vision module that
encapsulates the trained InterFuser model is injected to the environment used
during RL training, such that the agent can use the output of it as part of the
observation space. In the context of figure 3.1, this would mean the "EOS
feature". Since other outputs from the InterFuser model are also available,
these are also possible to include in the observation space.

3.2 Tools and technologies

To realize the proposed method, a number of tools and technologies are util-
ized. This section goes over the different tools and technologies used, their
purpose, why and how they are used.

3.2.1 Simulator

Among the alternative driving simulators available for researching and de-
veloping autonomous driving systems, the CARLA simulator has been em-
ployed in this work. Its selection is justified by its open-source nature and
a substantial community of dedicated researchers and developers. Further-
more, CARLA offers a highly realistic simulation experience, encompassing
a wide variety of environments and weather conditions.

While TORCS [28] could be considered an alternative, it primarily focuses on
racing scenarios, making it less relevant to this work. NVIDIA’s DriveSim, al-
though promising with its real image-based assets and NeRF techniques for
reconstructing assets and environments, is not open-source and can only be
accessed through an early access program.

Besides being the most accessible option, CARLA is also the simulator most
frequently used in relevant publications for this work. Its use significantly
simplifies the task of reproducing the approaches used in this study. Further-
more, CARLA offers robust documentation support and a Python API for
managing an active CARLA instance.
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3.2.2 Programming language

Python has been selected as the programming language for developing, run-
ning, and testing the environment and agents in this work. It is a common
choice in autonomous driving research, so adhering to this standard is ad-
vantageous. Besides its widespread use and frequent appearance in relevant
code examples, Python offers a wealth of readily available tools surpassing
other languages.

Python has many available libraries for reinforcement learning, machine learn-
ing, deep learning, computer vision, image processing, and support for work-
ing with the CARLA simulator. While similar libraries exist for Java, JavaS-
cript, and C++, Python combines the benefits of these libraries with simplicity
and efficiency, enabling more output with less effort.

Python’s main limitation is its inherent execution speed, but most of the com-
putational heavy lifting is handled by libraries written in C and C++, making
this less of an issue for this study.

3.2.3 Carla Episode Manager

In this work, the objective is to train and compare the learning capabilities
of reinforcement learning agents with sensor fusion visual encoders. To en-
sure consistency with benchmark constraints akin to traditional evaluations
of imitation learning agents, the scenario runner described in section 2.1.2 is
utilized to facilitate scenarios and collect sensor data as part of the reinforce-
ment learning loop.

However, the typical method of exposing agents to scenarios involves inject-
ing an already trained agent, which is primarily used for evaluation or data
collection. The scenario runner is not designed for the iterative reinforcement
learning loops, as it assumes the injected agent to be fully trained. In rein-
forcement learning, an environment where the agent can take a step, provide
an action, and receive the next state and a reward is needed.

To bridge this gap, a package was developed to control the simulator, sim-
plify configuration, and represent the state of the simulator. The resultant
package, named "Carla Episode Manager", requires a sensor configuration
and a list of training and evaluation routes. This manager interacts with the
existing Scenario Runner code to facilitate a scenario based on a random se-
lection from the provided routes.

Furthermore, the manager oversees the collection of sensor data and the initi-
ation and termination of a Carla simulator instance. Consequently, it provides
an interface that controls the Scenario Runner and receives sensor data at each
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step of a route.

Episode Manager Interface

The manager provides three key methods — "start", "step", and "stop" — to
control the episodes collectively. The objective is to efficiently manipulate the
scenario runner tool so that it executes one episode at a time, each represent-
ing a specific route within the configured set of training or evaluation routes.
Essentially, this minimizes the complexity associated with operating scen-
arios with the scenario runner, transforming it into a streamlined interface
that oversees the initiation of a simulator, the facilitation of scenarios, the col-
lection of sensor data, and the provision of statistics for each episode

Figure 3.2: Carla episode manager "start" process

Start The start method simply
selects a random route from
the list of routes and initi-
ates the scenario runner with
the identified route. If no
server is running, a simu-
lator is started and connec-
ted to. Once the scenario and
all configured sensors are
set up, the simulator world
is advanced once (’ticked’),
and an initial state of the
world and sensors is gener-
ated, along with the high-
level global world plan and
a privileged world plan.

Step This method expects a control action, which is applied to the main
("hero") vehicle in the simulator. The simulator is then advanced once again,
and the state of the sensors and the world and whether the episode should
end after this step is collected and returned.

Stop The stop method halts the currently running scenario, destroys the
"hero" vehicle, and returns statistics about the executed route, including route
completion, time used, number of collisions, and red light violations.
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Managing a simulator A consistent issue when using the Carla simulator
are the occasional crashes, as well as the client timing out at random inter-
vals. These crashes usually occur when many scenarios are run in succes-
sion. This proved to be a large problem, as it is critically important for the
manager to handle running many episodes in sequence. The frequency of
crashes would be often enough to make any training process very inefficient.
The issue seemed to not happen if the simulator was restarted frequently
enough. The episode manager was therefore designed to handle the starting
and stopping of the simulator, as well as the restarting of the simulator at a
given interval of episodes. This effectively negated the crashes, but did not
completely remove the issue of the client timing out from time to time when
setting up scenarios. This issue was however ignored, as it did not occur fre-
quently enough to be able to reproduce easily or to argue spending a lot of
time handling the issue.

Traffic types

For this research, there is a need to compare approaches in different types of
situations to properly gauge the learning capabilities. To achieve this, three
different types of difficulty is proposed:

• Type 1: No traffic, no pedestrians
• Type 2: Normal background traffic
• Type 3: Normal background traffic, with challenging scenarios through-

out the route.

Realizing the possibility of simpler episodes across the same routes has some
complications. This is not an out-of-the box option with the scenario run-
ner, but more reserved to simpler interactions with the simulator. To keep
the benefits of the features of the scenario runner while also still being able
to simulate simple sequences, some modifications were made to the scen-
ario runner code. One specific default scenario used in every route is the
"Background traffic" scenario. To ensure that there is no traffic in the simu-
lation, this default scenario was modified to be configurable, such that if "No
traffic" is specified in the episode manager configuration, the scenario is not
added to the route configuration. Running a route with no scenarios, and
only the default traffic scenario, is already supported by the scenario runner,
by simply providing a scenario-list file that is empty whenever specifying a
route and coupled scenarios. With these modifications, the episode manager
implements and supports these types of traffic, and can be configured when
creating an instance of the manager.

The end-goal of the episode manager is intended to be used as a part of a
reinforcement learning loop, and can therefore be used as part of a custom
Gym environment, as described in 2.2.2. A link to the code for the episode
manager can be found in appendix 6.2.
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3.2.4 Gym environment

To easily integrate a reinforcement learning loop with the Carla simulator,
a Gym environment has been utilized. This simplifies the process of exper-
imenting with different Reinforcement learning solutions, as most off-the-
shelf solutions for training are reliant on a Gym environment implement-
ation. There are many pre-existing implementations to Gym environments
for Carla, but these are not grounded in the scenario runner and the offline
leaderboard. To effectively have an environment that can be used to bench-
mark the learning capabilities of different approaches, the training experi-
ences should be strictly related to a set of training routes as specified by the
offline leaderboard, as well as facilitating evaluation on a different set of held
out routes. To achieve this, a custom Gym environment utilizing the Episode
Manager described in 4.2.1 has been developed. The implementation simply
handles the declaration and facilitation of anything related to "gymnasium",
such that the observation space and action space is correctly defined based
on the configurations provided.

Action space For the purpose of this work, the action space is confined to
a discrete set of actions. Each action comprises a target speed (aspeed) and a
steering angle (asteer). Moreover, the environment can be configured to utilize
continuous intervals for these two parameters, e.g., aspeed ranging from 0 to 6,
and asteer varying between -1 and 1.

Observation space The observation space is a dictionary of "state", "com-
mand" and "images" or "vision_encoding", depending on whether a vision
module is used or not.

• State: The ’state’ is a vector comprising the current speed of the vehicle
and the relative position of the next goal waypoint in the global route
plan.
• command: This part of the observation dictionary is a one-hot encoded

vector representing the current high level command in the global route
plan
• images: This section of the observation dictionary is utilized when a

vision module is not configured. It consists of either one entry for each
of the images provided by the episode manager at each step, or, if re-
quested by the configuration, a single concatenated image of all the im-
ages provided by the episode manager.
• vision_encoding: This portion of the observation dictionary is used

when a vision module is configured. It represents the encoded visual
state of the world and is the output from the vision module.
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Figure 3.3: Gym environment architecture and communication each step

The environment is dependent on and makes use of several modules that can
be provided to the environment:

• Episode Manager (see 4.2.1)
• Vision module
• Speed PID controller
• Reward function

All the components are used within the environment to facilitate the rein-
forcement learning loop, as illustrated in figure 3.3. This is to ensure that
the environment behaves similarly across experiments both with a vision en-
coder, and to more easily experiment between different reward functions and
episode manager configurations.

Vision Module

The vision module is an expected component passed to the environment and
is an interface with a set of methods that needs implementation:

• __call__(st)->sencoded, t: This method should implement the translation
of world state st to an encoded vector small enough to be used as an
observation in a reinforcement learning setting.
• set_global_plan(plan): This initializes the global route plan and is called

by the environment as soon as an episode is reset.
• postprocess(at)->aprocessed: This method is called by the environment whenever

an action has been selected by the agent and lets the module modify the
Carla control action before it is applied to the ego vehicle based on any
internal predictions made by the module.

InterFuser vision module implementation In this work, an implementa-
tion of the InterFuser vision module was developed to integrate the Inter-
Fuser encoder into the environment. This implementation loads a trained In-
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terFuser model and parses the data from the world state into front, center,
right, and left images during each call step. Additionally, it includes a Bird’s
Eye View (BEV) representation of the Lidar point-clouds. This data is then
passed to the model. The ’end of sentence’ query output from the model, as
explained in 3.1.2, is used as the output from the call function of the module.
Subsequently, within the environment, this output forms part of the obser-
vation for the Reinforcement Learning (RL) agent. An optional post-process
step is also implemented. If utilized, it employs the safety controller actions
predicted as described in 2.4.4, limiting the throttle and brakes for any emer-
gency braking requirements.

Speed PID controller

To facilitate using target speeds as actions, a PID controller is used to convert
these target speeds to throttle and brake actions applied the ego vehicle. The
PID controller is used at every step() in the environment and is passed the
target speed and the current speed of the ego vehicle, which is obtained from
the episode manager.

Reward function

The reward function is passed the state st at every step() and is expected to
return a reward and whether the episode should terminate.

3.2.5 Reinforcement learning library

To leverage the benefits of a standard interface for reinforcement learning
environments, a library for distributed reinforcement learning was selected.
After a careful analysis of available options, Ray RL library [6] was selected
as the primary technology for this work due to its powerful distributed learn-
ing capabilities and a high degree of customizability. It ships with a large set
of pre-made reinforcement learning algorithms, which can be used as a start-
ing point for custom implementations. Ray RL library enables parallelization
of the training process by utilizing multiple CPU cores and multiple GPUs
to run many learning agents in parallel with the training process. This signi-
ficantly accelerates the training process and scalability of the reinforcement
learning process.

Parallelization

Initially, the choice of reinforcement learning library was set on using Stable-
baselines3 [5], as it is a well-known and simple to use library for reinforce-
ment learning. However, issues quickly arose when trying to scale the train-
ing process up across several parallel processes. The main issue being that the
library does not support asynchronous training of agents. This was an issue
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because of the way the environment was implemented. Since the environ-
ment is dependent on the Carla Scenario runner, this meant that the environ-
ment had to wait for the scenario runner to finish the scenario, then use time
to load the new map and route and facilitate the scenarios included for the
selected town. For each reset() call to the environment, this time-consuming
process occurs. The only Parallelization option for Stable-baselines3 is to run
the environment in a "SubProcVecEnv", which runs N environments in sep-
arate processes synchronously, i.e each step() is called in parallel but awaited
the result for. To handle whenever one of the environments needs a reset,
the entire training process halts while the single environment is reset, be-
fore continuing the collection of transitions with step() calls on each envir-
onment. This was a major bottleneck in the training process, and effectively
made training the agents not much faster even when running on hardware
capable of running many environments in parallel.

Parallelization with the ray RL library is achieved by utilizing rollout work-
ers. These workers are each loaded with a configuration for the environment,
and initializes it in a separate process from the main training process. This
architecture supports asynchronous collection of experiences, which means
there is no need to wait for step() to finish on all environments before con-
tinuing. This has tradeoffs in that there is no guarantee that the worker is
at any time up-to-date with the latest weights of the policy for on-policy al-
gorithms. With frequent enough weight-syncing between the main learning
thread and the rollout workers, this is however not an issue. The environment
is very complex and requires a lot of time steps to be able to learn anything
meaningful, so having out-of-date policies creating experiences is not a major
issue. With an appropriate choice of parameters and algorithm, the policy is
not likely to change drastically between each weight-syncing, meaning the
out-of-date experiences collected with asynchronous rollouts are still useful
for improving the policy.

Evaluation The framework supports several ways to include evaluation of
the agent during training. Separate rollout-workers specifically for evalu-
ation can be included, and can be used in parallel with the rollout workers
collecting experiences, or at a set interval. Problems with this approach for
this work in particular is that the environment is dependent on an external
Carla simulator. Since the Episode manager from 4.2.1 is used to facilitate the
scenarios, as well as starting, connecting and communicating with the simu-
lator, this means that each environment at any time might have a simulator
instance up and running, which takes up a lot of VRAM from the assigned
GPU. Since evaluation cannot be accomplished with the same workers as the
ones collecting experiences by default in the framework, this means that us-
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ing additional workers for evaluation would require a lot more VRAM than
is being used at any time, unless evaluation is run in parallel. For this work’s
case, constantly evaluating is not necessary, and only needed between a lar-
ger amount of training iterations. Parallelization of evaluation is therefore not
really beneficial, but creates the issue of using unnecessary large amounts of
extra VRAM while training. To solve this issue, the episode manager and
environment have to expose a function for stopping the simulator, and dy-
namically start a simulator whenever the simulator is off when an episode is
started. This way, the simulator can be stopped for all environments set up by
the rollout workers whenever evaluation is being performed, and in turn the
simulators for the evaluation workers can be stopped when the evaluation is
finished.

3.2.6 Logging and Visualization

To log and visualize the training process, an ML-Ops platform has been util-
ized. For this work, the important metrics are the general results of the routes,
and the gathered reward during training rollouts, as well as rewards and
route statistics from evaluation rollouts. To visualize the driving progress,
videos also have to be recorded while the agents are collecting experiences to
be able to make some qualitative assumptions on the learned behavior. There
are several alternatives to libraries that cover these requirements. The most
popular ones are TensorBoard [29], Weights & Biases [30], and Comet ML [31].
Which are all free to use and provide a similar set of features. However, for
this work, the most fitting solution was Weights & Biases, as uploading video
files is well-supported and there are pre-implemented integrations for this in
the chosen RL library. To support creating the needed data during training,
several key metrics are logged during training with weights and biases, each
which result in timeline graphs of the metrics over time in the training pro-
cess. The logging strategy includes logging the minimum, mean and max of
all collected statistics for each episode rollout, this includes:

• Accumulated reward
• Length of the episode
• Number of collisions
• Route completion percentage
• Number of red light infractions

On top of this, videos are recorded of entire episode rollouts at a set interval.
e.g. every 20th episode rollout is recorded and uploaded to the platform. All
of these metrics and videos are automatically kept separate between train-
ing and evaluation rollouts in the integration. Some modifications had to be
made to include the statistics from the routes, including route completion
and red light infractions. To include video upload in the integration, a cus-
tom callback for each rollout was implemented, which is used
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Experiments and Results

In this chapter the conducted experiments set up for answering the research
questions for this thesis, described in section 1.2 and their results are presen-
ted and discussed.

4.1 Experiment 1: Reducing InterFuser

The experiment is conducted as part of the investigation of RQ1. As part of
trying to answer the question of the benefits of sensor fusion in reinforcement
learning, the InterFuser model is trained with a more compact architecture
and a smaller dataset. Additionally, an "end of sentence" query is added as a
learnable parameter to investigate if the token can be used to produce a more
compact feature vector that encompasses the global context of the scene in
the following experiment 2a in section 4.3

4.1.1 Setup

The number of stacked transformer encoders and decoders are reduced from
6 to 3, and the ResNet-50 backbones are replaced with a ResNet-18 backbone.
The used dataset is the expert frames collected and described in 3.1.2, which
consists of expert frames from all training routes from the offline Carla lead-
erboard for one weather configuration. The dataset is split randomly into a
training set of 80% and a validation set of 20%. The architecture’s predic-
tion heads and loss functions are changed in the way described in the Rein-
forced InterFuser architecture in section 3.1.1, and the training of the model
is done in the way described in section 3.1.2 To evaluate the performance of
the model, the final loss values and metrics found on the evaluation split of
the dataset are used.

53
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4.1.2 Results

The results for training the reduced model are reported in parts of their dif-
ferent prediction heads.

Waypoints

The used loss function for the waypoints are different from the original In-
terFuser loss, which is the L1 norm between the predicted waypoints and the
target waypoints from the sequence generated by the global planner. For this
work, a Gaussian Negative Log Loss (GNLL) is used, where the mean and
variance of the predicted waypoints’ distribution is compared to the target
waypoints samples. The GNLL is described in section 3.1.1.

The loss is weighted for each of the 10 predicted waypoints {w0...w9} as
shown in figure 4.1.

Figure 4.1: Waypoint loss weights

Figure 4.2 shows the loss rapidly decreases over the first few epochs and
evens out after around 20 epochs. The final loss value after 35 epochs, or 1153
steps is 0.003651.

To sanity-check whether these predictions are reasonable, The mean for each
of the predicted waypoint distributions are compared to the target global
plan waypoints for each frame with random samples from each batch in the
evaluation dataset after 35 epochs:
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Figure 4.2: Waypoints loss, 1 epoch = 33 steps

Figure 4.3: Waypoint prediction samples
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Figure 4.3 shows the relative coordinates of each predicted mean for the
waypoints, along with the camera image of the same frame. Each example
show a reasonable trajectory compared to the situation of the vehicle. The
target waypoints have some zigzagging, which is intended as the waypo-
ints fed to the global plan in the dataset are disturbed during the collection
process. The predicted waypoints however, still end up having smooth trans-
itions between each waypoint. This is a result of the GRU architecture of the
waypoint prediction head.

Traffic State

The traffic state predictions consist of 3 classes:

• Stop sign: Whether a stop sign is present.
• Traffic light: Whether a traffic light showing red is present.
• At junction: Whether the agent is at a junction.

The loss functions used during the experiment is equal to the one used in the
original InterFuser model described in 2.4.4 To evaluate the performance of
the model on the traffic state predictions, the accuracy of the predictions are
used. These results are from the same evaluations as the waypoint predictions
in the previous section.

Figure 4.4: Traffic state accuracies, each epoch is 33 steps

The final accuracies for the predictions are:

• Stop sign: 99.678%
• Traffic light: 99.313%
• At junction: 97.939

The accuracies are all very high, likely because of the distribution shift not
being very prominent in the evaluation dataset. The tasks are all very simple,
and most frames in the dataset are negative examples for all the tasks. Mean-
ing a model that predicts only negative would have an accuracy of around
90% for all the tasks. The worst performing task is the junction task. This
might be because of the vague definition of what a junction might look like.
Stop signs are simple, as they are always the same shape and color, same with
traffic lights. Junctions are however more of a concept, than a physical object



Chapter 4: Experiments and Results 57

with limited variations. It requires a wider understanding of the environment
than the other tasks. 97.939% is still a very high accuracy, but this means that
even with this minimal distribution shift, there are still a handful of frames
where the model predicts incorrectly.

Object density map

The loss for the object density map are the same as the original InterFuser and
are described in section 2.4.4. This model output’s main purpose is to predict
explicit information that can be used to constrain the speed of the vehicle,
whenever the planned waypoint trajectory might run into a moving object.

Figure 4.5: Object density prediction loss

Figure 4.5 shows the loss for the object density map prediction at each
step in the training process. A lower loss reflects more accurate predictions
of a combination of surrounding object existence, their heading, the offset in
position from the center of the cell, and the size of the bounding box of the
object.

During the training period, the loss keeps decreasing without bouncing back
at any point, unlike the losses for traffic state and waypoint prediction. This
part of the total loss is weighted more heavily than the output from the other
prediction heads, and is the most important part of the model output. Since
this loss is a combination of several L1 losses across several explicit features
describing the vehicles in the local environment, it is difficult to interpret
whether the model is learning what it should. To empirically gauge the qual-
ity of the object density map predictions, the predictions from the frames
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used in the previous section for waypoints shown in figure 4.3 are compared
to the ground truth.

Figure 4.6: Traffic prediction examples

Figure 4.6 shows the predicted object density maps along with the ground
truth and accompanying camera images. The object density map is a bird’s
eye view that represents a 20x20 grid of several predicted features for each
cell. The cells represent a 1x1 meter area collectively covering 20 meters in
front of the vehicle and 10 meters to each side of the vehicle, with the ego
vehicle’s position in the bottom center of the bird’s eye view. This means the
architecture can at most predict objects in 400 different square meter slots.

The examples demonstrate the predictions mostly show the vehicles in the
scene, but often end up hallucinating vehicles that are not there. The first
(top) example shows that the model might be estimating vehicles to be closer
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than they really are, as there is a vehicle present in the Left camera, but should
be too far away to be visible in the object density map. It might also be the
case that the poles are interpreted as moving objects, which is not really a
problem. It is only when the model starts hallucinating objects present in the
scene that stop it from driving when the lane is clear that this becomes an
issue, as well as any phantom braking as a result from false positives.

4.2 RL agent training setup

The following experiments employ a set of different configurations for train-
ing RL agents, but all of them have some specific configurations in common
to make the training process as similar and comparable as possible. These
different agents are used to compare the performance of the Reinforced In-
terFuser method with baseline RL methods. The different types of RL agents
include:

• Blind: A blind RL agent without visual sensor data available, operat-
ing only on common observations not found in visual sensors like RGB
cameras or LiDAR.
• Baseline: A baseline RL agent trained directly on RGB camera sensor

data from the environment.
• RI: The proposed Reinforced InterFuser method from section 3.1

This section goes over the common configurations for the different RL agents
trained in this work, as well as the distinct differences in setup present for
each category of RL agent. The configurations all revolve around the de-
veloped custom Carla environment described in 3.2.4 and its configurable
modules.

4.2.1 Common configurations

Reward function

The reward function for each reinforcement learning agent is based on the
reward function used in [18]. It is made up of three different components:
a reward for the speed of the agent, a reward for the distance to the center
of the lane, and a reward for difference in heading compared to the current
closest waypoint.

The speed component is found by calculating a desired speed based on the
distance to the closest hazard. The desired speed vd is calculated as follows:

vd =

{
speed_limit, if dist < 0

min
(

speed_limit, speed_limit · max(clipped_dist−o f f set,0)
o f f set

)
, otherwise
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Where:
dist = distance to closest hazard

clipped_dist = min(dist, distance_cuto f f )

And the constants are defined as:

speed_limit = 4.0, distance_cuto f f = 20, o f f set = 10

The desired speed aims to be at the speed limit when no hazards are present,
and linearly go closer to 0 when closing in on a hazard. The reward for speed
is then calculated as follows:

Rspeed =


−1.0, if speed ≤ 0.5 and desired_speed > 2.0
0.0, if speed_di f f > max_speed_di f f
max_speed_di f f−speed_di f f

max_speed_di f f , otherwise

Where:

speed_di f f = |speed− desired_speed|,

max_speed_di f f =


0.5, if speed > desired_speed
0.01, if desired_speed ≤ 0.001
3.0, otherwise

The reward is designed to punish the agent for standing still if desired speed
is significantly higher than 0. Other than that, no reward is given if the agent
has a speed outside the maximum allowed speed difference. This speed dif-
ference is reliant on whether the agent is going faster or slower than the de-
sired speed.

The reward for distance to the center of the lane is based on the distance to
the closest waypoint in the dense privileged global plan of the current route.
It is calculated as follows:

Rdistance =

{
−10, if |distance| > max_distance
1− distance

max_distance , otherwise

Where:

max_distance = 2
distance = Distance from vehicle to the closest waypoint

The reward for the heading of the vehicle compared to the heading of the
lane is calculated as follows:

Rheading =

{
−10, if |di f f | > max_di f f
max_di f f−di f f

max_di f f , otherwise
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Where:

max_di f f =
π

2
di f f = Difference in heading between agent and two closest waypoints

The two closest waypoints are found from the privileged dense global plan
of the route. Additionally, the agent is given a reward of -50 if it collides with
any obstacle. The episode is stopped if any reward component is below -1.
The final collective reward is:

R =
Rspeed + Rdistance + Rheading

3

Action space

For the action space of each agent, the environment is configured to use
3x31 discrete actions, where there are three different goal speeds of Aspeed =
[0, 0, 2.0, 4.0]m/s and 31 different steering values of linearly spaced values
between [−1.0, 1.0], Where -1.0 is a full left turn, and 1.0 is a full right turn.

Observation space

The configured observation space for each agent includes the following, as
described in 3.2.4:

• Speed: The current speed of the agent
• Directional vector: A directional vector pointing towards the next goal

waypoint relative to the orientation of the ego vehicle.
• Command: The current high-level command for the agent, (e.g Turn left,

Turn right, Follow lane, Change lane left, etc.)

PID controller

A PID controller with Kp(Proportional gain) = 0.5, Ki( Integral gain) = 0.1,
and Kd( Derivative gain) = 0.2, is included in the environment used for each
type of RL agent. These are employed to convert the current speed and selec-
ted aspeed into control actions applied to the ego vehicle.

Carla episode manager

The episode manager employed when training each type of agent is con-
figured to use the training routes from the Carla offline leaderboard in ap-
pendix 6.2 during training, as well as the evaluation routes during evalu-
ation.
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Sensors

The ego vehicle is employed with an IMU sensor that provides orientation of
the vehicle, a privileged collision sensor, a speedometer and a GNSS sensor
that provides the current rough position of the vehicle.

Algorithm

For training the agents, the on-policy algorithm PPO by OpenAI [32] is used,
The reason for this over other algorithms, is that it has a simple implement-
ation as well as being stable without much hyperparameter tuning needed.
Since PPO is an on-policy algorithm, the trained policy is the same as the one
used for collecting the state transitions. The algorithm is not very sample ef-
ficient, as each sample is only used to train the model once, but this does give
a more stable training process, allowing for a more fair comparison between
the learning capabilities of different agents. Specifically the asynchronous
version of PPO, APPO provided by Ray RLlib [6] is used, which is an asyn-
chronous version of PPO.

The used hyperparameters for all agents during training are:

α = 3 · 10−5

γ = 0.95

Where α is the learning rate and γ is the discount factor. Initial testing showed
that having too high of a discount factor, like approaching 0.99, resulted in
the agents not picking up any useful strategies that improved reward accu-
mulation. Lower discount factors like 0.9 resulted in the agent learning to
approach the correct speed quickly, but not learning much beyond quickly
driving outside the lane or crashing. The rest of the hyperparameters are
set to the default values provided by Ray RL lib. This includes an entropy
coefficient of 0.01, which is used to encourage exploration and proved to be
sufficient for balancing exploration and exploitation during training.

Policy and value networks

"All agents utilize a common conditional, fully connected network for the
policy and value functions implemented in the chosen RL algorithm. The
policy predicts the action probability distribution, while the value function
estimates the value of the current state. The network architecture is an MLP
with hidden layer sizes of 1024, 512, and 256 , followed by a separate final
linear layer for value and policy predictions. The ReLU activation function
is used for all layers. The network is made conditional based on the high-
level command (e.g., turn left, turn right, follow lane, etc.) derived from the
observation space. This results in six parallel fully connected networks, in
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which outputs from all networks unrelated to the given high-level command
are masked to 0. This approach mirrors the method employed in ’implicit
affordances’, as described in section 2.4.1

4.2.2 Blind configuration

The "blind" agent uses all the same configurations as described in the previ-
ous section 4.2.1, and provides no additional observations. This means that
the agent only relies on the current speed, directional vector and high-level
command to navigate the environment.

4.2.3 Baseline configuration

The baseline agent adheres to all the configurations specified in section 4.2.1.
However, it is equipped with additional visual sensors:

• Front-facing camera: A 600x300 (width x height) resolution RGB cam-
era, angled 0 degrees relative to the ego vehicle’s heading.
• Left-facing camera: A 600x300 (width x height) resolution RGB camera,

angled -60 degrees relative to the ego vehicle’s heading.
• Right-facing camera: A 600x300 (width x height) resolution RGB cam-

era, angled 60 degrees relative to the ego vehicle’s heading.

At each step, all images are resized to 200x100 pixels and normalized to match
the mean and standard deviation of the ImageNet dataset [33]. The LiDAR
sensor is not used, as it proved to be too computationally expensive to com-
bine with the RGB cameras. This is because the resulting model and batched
frame samples would become too large to fit in memory.

Regarding the architecture, each image from the RGB cameras at each frame
is processed through its own 3-layer convolutional neural network.

filters Kernel size Stride
layer0 16 6x8 [3, 4]
layer1 32 6x6 4
layer2 256 9x9 1

Table 4.1: Baseline agent convolutional network configuration

The configuration for each layer is specified in table 4.3. Every layer em-
ploys a ReLU activation function. These are components of the RL policy and
value networks and are optimized during RL training. No weights are frozen
for this baseline agent.

Three of these convolutional feature extractors are utilized, one for each cam-
era input. The resulting flattened vectors from each CNN are of size 256 and
are concatenated along with other observations, such as speed, command,
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and directional vector. This concatenated vector is then passed to the com-
mon conditional fully connected network described in section 4.2.1.

4.2.4 Reinforced InterFuser configuration

The Reinforced InterFuser agent adheres to all the configurations specified in
section 4.2.1. However, it is equipped with three RGB cameras and a LiDAR
sensor. The additional visual sensors are as follows:

• Front-facing camera: An 800x600 (width x height) resolution RGB cam-
era, angled 0 degrees relative to the ego vehicle’s heading.
• Left-facing camera: A 400x300 (width x height) resolution RGB camera,

angled -60 degrees relative to the ego vehicle’s heading.
• Right-facing camera: A 400x300 (width x height) resolution RGB cam-

era, angled 60 degrees relative to the ego vehicle’s heading.
• LiDAR sensor: A 64-channel LiDAR sensor with a range of 85 meters.

The sensor is positioned at the center of the ego vehicle, angled 90 de-
grees relative to the vehicle’s heading, and collects 300,000 points per
second.

The agent’s environment incorporates an InterFuser vision module, as de-
scribed in 3.2.4. This module employs a pre-trained InterFuser model with
frozen weights. It processes sensor data and outputs between 1 and n vis-
ion_encoding vectors. These vectors, together with default observations like
speed, command, and the directional vector constitute the observation space.

The architecture of the RL policy is consistent with the common configur-
ations, yet accommodates any additional vision_encoding vectors from the
InterFuser vision module.

4.3 Experiment 2a: Reinforced InterFuser with "eos" fea-
ture

To address RQ1, the proposed Reinforced InterFuser architecture, outlined
in 3.1 and depicted in figure 3.1, is deployed. The "end of sentence" feature
vector, derived from the "eos" query token added during the training of the
custom-trained InterFuser encoder, serves as a single vision encoding for the
RI agent. This method’s potential for effective policy learning is evaluated
by comparison with the "blind" and "baseline" agents, with accumulated re-
wards monitored during training and evaluation. Additionally, metrics such
as route completion and red light infractions are collected during evaluation
phases.
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4.3.1 Setup

The vision encoding used for the Reinforced InterFuser method in this exper-
iment is a compact vector of size 256, aligning with figure 3.1. All other ob-
servations adhere to the default specifications of the environment described
in 3.2.4. Given the minimal context provided by this approach from a lean
custom-trained InterFuser model, the experiments are initially conducted in
an environment devoid of traffic. Thus, the agents navigate all Carla offline
leaderboard training routes without encountering traffic or other challenging
scenarios.

Agents This experiment employ the following agent configurations:

• Blind: The blind agent devoid of visual sensors, relying solely on "speed",
"command" and "directional vector" observations from the environment.
• Baseline: The baseline agent as described in 4.2.3, equipped with three

cameras and three CNNs forming part of the policy and value net-
works.
• RIeos: The Reinforced InterFuser agent incorporating the "eos" feature

vector into the observation space for the RL head.

All agents utilized the reward function outlined in 4.2.1. The action space
comprises the discrete 93 actions described in the common configuration sec-
tion 4.2.1. The simulator operates at 10 fps, translating to each time step being
equivalent to 0.1 seconds in the simulator. Each agent is trained for 1 million
time steps, using batches of 2048 environment time steps for each training
iteration. The agents are evaluated every 10th training iteration, or approx-
imately every 20k time steps.

4.3.2 Results

For the 1 million steps all agents are trained, these are the resulting average
reward gathered every 2048 steps in the training environment, as well as the
mean reward gathered during each evaluation:
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Figure 4.7: Average reward per 2048 steps on training rollouts. Reinforced
InterFuser with "eos" as vision encoding (dark blue), Blind agent (cyan),
Baseline agent (red)

Figure 4.8: Average reward first 10 evaluation routes, every 10th training
iteration. Reinforced InterFuser with "eos" as vision encoding (dark blue),
Blind agent (cyan), Baseline agent (red)

Figure 4.7 shows that the reinforced InterFuser agent (dark blue) performs
even worse than the agent deployed without visual sensors. It was stopped
early due to consistently performing worse than the blind agent.

To properly gauge the resulting performance of the agents after finished train-
ing, the top metrics during evaluation for several categories are gathered:
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RCmean (%) RCmax (%) rmean rmax TLI
Blind 4.69 26.08 222.89 1355.301 3
Baseline 6.361 37.7 332.201 2058 2
RIeos 3.367 11.08 155.565 615.296 1

Table 4.2: Evaluation metrics for experiment 2a

4.3.3 Discussion

The baseline agent achieves rewards marginally higher than the blind agent
during training, exhibiting strong performance during evaluation. Early in
training rollouts, the blind agent surpasses the other agents, potentially at-
tributable to the increased likelihood of adopting a strategy that merely in-
volves slow forward motion. This increased probability might stem from the
decreased noise or nuance in the agent’s observations, enabling a more rapid
alignment with a specific strategy.

Table 4.2 presents the maximum reward found during any episode of eval-
uation (rmax), as well as the mean reward rmean, route completion percentage
RCmean, maximum route completion percentage RCmax, and the number of
red light infractions TLI. All these metrics suggest the baseline agent outper-
forms both the blind and Reinforced InterFuser agents. Although the baseline
agent incurs more red light infractions, this occurs because it encounters more
red lights. However, none of the agents have achieved the proficiency needed
to correctly respond to red lights during the evaluation routes.
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Figure 4.9: Object density and traffic state predictions

Figure 4.9 presents explicit prediction examples from the custom-trained
InterFuser model, set in an evaluation environment with reserved routes and
towns. These highlight the model’s limitations, particularly when vehicles
are present in the scene. Predictions often indicate multiple vehicles where
there are either only one or none. Furthermore, the predicted vehicle direc-
tions frequently misalign with actual headings.

This discrepancy may be attributable to the distribution shift, as the rein-
forcement learning (RL) evaluation environment utilizes different weather
conditions and routes than those present in the dataset used for training the
encoder. Despite these prediction inaccuracies, they should offer the agent
some environmental information.

Empirical observations suggest that object density maps adequately predict
the presence and location of vehicles, and the traffic state predictions appear
consistently correct. These observations further support the result that the
compact "eos" vector in this experiment fails to provide any meaningful con-
text.



Chapter 4: Experiments and Results 69

4.4 Experiment 2b: Reinforced InterFuser with waypo-
int feature

Figure 4.10: Reinforced InterFuser with waypoint feature

To further investigate RQ1, we also explore using the waypoint feature inten-
ded for predicting the next waypoint w0 during training of the encoder. On
top of this, the InterFuser model is replaced with the pretrained model from
Shao et al. [22].

4.4.1 Setup

The environments for this experiment includes normal background traffic as
described in 3.2.4, instead of no traffic as in experiment 2a. This is to investig-
ate whether the compact waypoint feature is sufficient for the agent to brake
to avoid collisions, or if there is a need for additional context from the other
features extracted from InterFuser. This way, we can gauge if the waypoint
feature helps the agent learn following the lane and route, and if it is suffi-
cient for the agent to learn to stop at the correct time. All other aspects of the
experiment are equal to experiment 2a. The agents trained and compared for
this experiment are:

• Blind: The blind agent devoid of visual sensors, relying solely on "speed",
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"command" and "directional vector" observations from the environment.
• Baseline: The baseline agent as described in 4.2.3, equipped with three

cameras and three CNNs forming part of the policy and value net-
works.
• RIwp: The Reinforced InterFuser agent incorporating the first "waypo-

int" feature vector into the observation space for the RL head, as illus-
trated in figure 4.10

All RL agent configurations follow the specifications given in section 4.2.
Since evaluation performance compared to training rollout performance showed
a correlating consistent improvement, the evaluation performance is not in-
cluded during training for this experiment. Instead, the agents are evaluated
on each evaluation route once after training the full 1M steps while collecting
statistics for the accumulated rewards, route completion and traffic infrac-
tions. The simulator is set to 10 fps, meaning each time step is 0.1 seconds in
the simulator.

4.4.2 Results

The agents are instead evaluated after training the full 1M steps. The resulting
average reward gathered every 2048 steps in the training environment for the
baseline, blind and Reinforced InterFuser agent:

Figure 4.11: Average reward per 2048 steps, blind(cyan), baseline(red), and
RIwp (dark blue)

Some of the reinforced InterFuser’s rewards are missing due to technical
issues during rollouts, and thus is somewhat offset from the other agents.
However, the reinforced InterFuser agent shows a clear improvement over
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the baseline and blind agents. With the maximum average reward at 180,
and the baseline agent at 144. Empirical observations of the driving behavior
show that the baseline and RI agent learns to follow the lanes and route, but
fail to cross any intersections. Both seem to incorporate stopping to avoid
colliding into the preceding vehicle in its lane, while the blind agent simply
learns to slowly drive forward. Sample videos of the driving behavior can be
found in appendix 6.2.

RCmean (%) RCmax (%) rmean rmax light infr.
Blind 3.856 21.8 60.091 508.27 1
Baseline 4.187 19.15 124.79 562.01 1
RIwp 6.03 37.70 289.23 2595.53 1

Table 4.3: Evaluation metrics for experiment 2a

Table 4.3 shows the metrics for each agent running on the 25 evaluation
routes after training for 1M steps.

4.4.3 Discussion

While using the waypoint feature seems to be a vast improvement from us-
ing the "end of sentence" feature, beating out the baseline agent in all metrics,
The agent still does not learn to stop consistently and struggles to cross inter-
sections.

From observations of the driving behavior, there are some cases where the
RIwp agent ends up driving outside the lane to avoid colliding, which in-
dicates that the compact vector to some extent encodes information about
the surrounding vehicles, but does not seem to be sufficient for the agent
to learn to consistently stop to avoid colliding into vehicles in its lane. This
might be because the output from the feature during pre-training is only ex-
posed to a loss function that tries to predict the following waypoints in the
privileged dense global plan, disregarding any traffic. This trajectory still in-
cludes having to change lanes and avoid other vehicles this way, but is never
about stopping. For InterFuser, stopping is mostly handled by the explicit
rules employed in the safety controller described in 2.4.4. Which uses the ex-
plicit predictions from the traffic state and object density map to determine a
desired speed.
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4.5 Experiment 3: Reinforced InterFuser with all fea-
tures as input

Figure 4.12: Reinforced InterFuser with all features as input

This approach uses the waypoint feature, as well as the feature for traffic
state and the object density map. This differs from experiment 2, as the object
density map is a 20x20x7 array with explicitly predicted information about
the surrounding environment, and therefore is not a single feature vector.
Having this multidimensional array of information requires a convolutional
feature-extraction layer for the RL policy network to be used alongside the
rest of the compact features.

4.5.1 Setup

The architecture for extracting features from the object density map is set
up equally to the one in the baseline agent, as explained in section 4.2.3. This
means a 3-layer CNN that outputs a flattened vector of size 256, which is con-
catenated with the rest of the features before being passed to the conditional
fully connected network. The convolution filters are however configured dif-
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ferently, as the object density map is a 20x20x7 array, compared to the 200x100
pixel RGB images used in the baseline agent.

filters Kernel size Stride
layer0 16 5x5 2
layer1 32 5x5 2
layer2 256 5x5 2

Table 4.4: Convolutional network configuration

Agents For this experiment, the blind agent has not been included, and the
reinforced InterFuser approach is only compared to the baseline agent. The
compared agents in this experiment are therefore:

• Baseline: Baseline agent with the configuration described in section
4.2.3
• RI(all features): The proposed method as illustrated in figure 4.14 with

a feature extractor trained during RL for the object density map as out-
lined in table 4.4.

The baseline with no frozen weights and the proposed method of using All
features from the reinforced interfuser output as a vision_encoding to the RL
policy head are trained for 1 million steps each on the 50 offline Carla lead-
erboards training routes with challenging scenarios while collecting average
reward accumulations during rollouts, then evaluated on 26 offline leader-
board evaluation routes.

4.5.2 Results

Figure 4.13: Average reward per 2048 steps
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RCmean (%) RCmax (%) rmean rmax light infr.
Baseline 5.05 42.05 268.75 1592.52 0
RI(all features) 2.24 6.65 89.37 233.95 0

Table 4.5: Evaluation metrics for experiment 3

4.5.3 Discussion

From figure 4.13 it seems that the reinforced InterFuser agent with all features
as input is able to learn a policy that performs very similarly to the baseline
agent. However, when inspecting the driving behavior, the agent seems to
not be able to learn to follow the lane. It does well on the routes where it is
able to drive straight, but fails to follow the lane when it has to turn. The
agent perfectly learns to stop to avoid colliding into the car in front of it, and
therefore ends up with a decent average reward overall. Both agents fail to
cross any intersections, or handle any of the challenging scenarios set up in
the routes. Table 4.5 shows that the difference in performance between the
two agents is vastly different on the evaluation set compared to the training
rollouts. The baseline agent even manages to complete 42 % of a route, with
the reinforced InterFuser agent only completing maximum 6.65 % of a route
in the 25 evaluation routes. There could be numerous reasons as to why the
agent behaves seemingly worse when using all the features as input, but one
reason could be that the combination of the features is too noisy for the agent
to learn a good policy, potentially drowning the features from the waypoint
vector. Another reason could be that the checkpoint model used when eval-
uating is in a state where it has recently learned some strategies that perform
worse on the evaluation set than on the training routes. Since the average
route completion is heavily lifted by one route in the evaluation set, the dif-
ference indicated by the evaluation metrics might not be as significant as it
seems. It could be that the baseline agent happens to perform well on that
specific route, and that the reinforced InterFuser agent has a policy that hap-
pens to perform poorly on that route.

Given the observations from the driving behavior of the agent it is however
clear that the policy for the reinforced InterFuser agent is better at avoiding
collisions, but almost completely inept at following the lane.
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4.6 Experiment 4: Reinforced InterFuser with safety con-
troller

Figure 4.14: Reinforced InterFuser with all features as input

To address RQ2, the proposed Reinforced InterFuser architecture is utilized,
consistent with the approaches used in Experiments 2b and 3, with the Inter-
Fuser safety controller integrated into the action selection process.

4.6.1 Setup

The safety controller, as described in Section 2.4.4, calculates a constrained
"safe" action and overrides the selected throttle if

throttlesa f ety < throttleRL



76 : Markhus H.: Reinforced InterFuser

and the selected brake if

brakesa f ety > brakeRL

Given that this safety controller’s potential braking predictions are not aligned
with the reward function utilized in the RL policy network, rewards are not
used as performance indicators. Instead, metrics such as the number of colli-
sions, route completion rate, and red light violations are employed to assess
the agent’s performance, which are then compared with those of the baseline
agent.

The baseline agent used for comparison is the best performing agent from
Experiment 3 in section 4.5, trained on the most challenging traffic environ-
ment with scenarios. The Reinforced InterFuser agent is the best performing
agent from Experiment 2b, trained on a normal traffic environment without
scenarios. In this experiment, all agents are evaluated in both normal traffic
and difficult traffic environments with scenarios.

Due to certain scenarios causing the simulator to crash, 8 of the evaluation
routes are disabled when scenarios are involved in the environment. The ob-
jective of this experiment is to investigate whether the safety controller con-
tributes to improved avoidance of collisions and other traffic violations.

Agents The agents used in this experiment are:

• Blind: This is the blind agent without visual sensors, trained on training
routes with traffic and without challenging scenarios.
• Baseline: This is the best performing agent from experiment 3, trained

on training routes with traffic and with challenging scenarios.
• RIwp: The Reinforced InterFuser agent with waypoint feature, trained

on training routes with traffic and without challenging scenarios.
• RIwp + safety: The same RL agent as RIwp, but with the safety controller

from InterFuser included in the action selection process.
• InterFuser: The InterFuser agent, not trained in an RL process, but uses

the actual control output from the pretrained model from Shao et al.
[22].

Evaluation metrics

In this experiment we use similar metrics to those used in experiment 2b
and 3, and additionally include the number of collisions. Reward metrics
are excluded as the safety controller has a different configuration to when
the agent should be stopping, and thus conflicting with the reward function
employed during training. Since there is a conflict, the controller is also not
included during training, but used only during this evaluation experiment.
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To gauge how well a "good" agent should be doing with the current evalu-
ation setup, InterFuser’s imitation learning agent is used for comparison. The
metrics used are:

• RCmean: The average percentage route completion across all 25 routes in
the evaluation set.
• RCmax: The highest percentage route completion across all 25 routes in

the evaluation set.
• C: Number of collisions during the evaluation routes. Any evaluation

route ends whenever an agent collides with something, meaning that
the amount of collision reflects how many of the routes ended in a col-
lision.
• TLI: Traffic light infractions. The number of times the agent rand a red

light during the evaluation routes. The route does not end whenever the
agent runs a red light, so multiple infractions in one route is possible.

4.6.2 Results

The resulting metrics after running each agent on the evaluation routes once
are shown in Table 4.6.

Traffic evaluation routes

RCmean (%) RCmax (%) C TLI
Blind 3.856 21.8 7 1
Baseline 5.46 40.89 3 3
RIwp 6.03 37.70 8 1
RIwp + safety 6.5 37.58 2 0
InterFuser 18.40 43.91 5 2

Table 4.6: Evaluation metrics for environment with normal traffic and no
scenarios

Challenging scenario evaluation routes

RCmean (%) RCmax (%) C TLI
Blind 2.56 8.97 8 0
Baseline 5.05 42.05 3 1
RIwp 3.22 10.78 10 0
RIwp + safety 5.73 37.5 2 0
InterFuser 23.25 43.89 3 0

Table 4.7: Evaluation metrics for environment with challenging scenarios

Recorded driving behavior for the RIwp + safety agent and baseline agent can
be found in appendix 6.2.
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4.6.3 Discussion

The results presented in Table 4.6 demonstrate that the RIwp + safety agent
delivers superior performance in terms of average route completion and col-
lision metrics when compared to all other agents, excluding the InterFuser
agent. In normal traffic conditions, the performance of the RIwp agent does
not yet match that of the InterFuser agent, particularly in the context of route
completion. Furthermore, the performance improvement relative to the baseline
agent is minimal. This becomes particularly evident when comparing the per-
formance of the baseline agent after training on routes with challenging scen-
arios (as shown in Experiment 2b, Section 4.4, Table 4.3) to its performance
when trained in an environment with normal traffic conditions.

The inclusion of the safety controller notably impacts the performance dur-
ing normal traffic evaluation, substantially reducing the number of collisions
from 8 to 2. In fact, the RIwp agent shows an improved average route comple-
tion, increasing the mean from 6.03% to 6.50%.

Despite these improvements, a close observation of the RIwp + safety agent’s
behavior reveals certain inefficiencies. The agent frequently halts in the middle
of the road, a phenomenon not seen when the safety controller is not em-
ployed. This typically occurs when the ego vehicle’s heading points towards
the crossing lane while the front of the vehicle encroaches on the lane.

Furthermore, the autonomous actors in the simulation environment stop by
default when they encounter any obstruction, including the ego vehicle. This
can result in a deadlock, with the ego vehicle and other actors waiting for
each other to move until the scenario times out or, for an undetermined reason,
the ego vehicle begins to move.

All agents have some form of infraction with the traffic light, except for the
RIwaypoints + safety agent, where there are no cases of running a red light dur-
ing evaluation.

Considering that the pre-trained InterFuser agent still manages to collide and
run red lights, as well as not being able to fully complete the routes might
indicate that some of the evaluation routes or exit conditions might be mis-
configured or have some issue that might prematurely end the scenario eval-
uation. The InterFuser agent is employed in an environment where each time
step is 0.1 seconds, while the intended time step for InterFuser is 0.5 seconds.
This might cause some problems with the predicted control actions in the In-
terFuser agent in some cases. However, the huge route completion difference
between the RL agents and the InterFuser agent indicate that the agent is still
mostly correctly configured, as it on average completes 18.4% of the evalu-
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ation routes, crossing many intersections, following the lane and avoiding
collision with other actors. The difference in performance also indicate that
the RL agents are not performing particularly well in general, but does show
that the evaluation routes and exit configurations are reasonably indicative
of the driving performance, as the InterFuser agent is expected to perform a
lot better than the RL agents given the limited training time.

For the evaluation of the same agents on the challenging scenarios as seen
in table 4.7, the Reinforced InterFuser without the safety controller RIwp per-
forms much worse than on the normal traffic evaluation. It performs even
worse than the baseline agent. This might be due to the Reinforced InterFuser
agent not being trained on challenging scenarios, while the baseline agent is.
The routes used in the evaluation from table 4.7 are however equal to the
previous evaluation from table 4.6, meaning that the agent should be able to
follow the lanes just as well as on the previous evaluation. It does seem that
the addition of the scenarios along the route is enough to completely ruin
the route completion of the RIwp agent. However, with the safety controller
employed, the same agent performs much better. The collisions are reduced
from 10 to 2, the mean route completion is almost doubled, and the RCmax is
quadrupled. This huge leap in performance shows that the challenges RIwp
has on the novel scenarios not seen during training, are mostly handled by
the safety controller, resulting in a model not even trained on routes with
scenarios employed having a massive increase in collision avoidance, traffic
light handling, and route completion. Although the route completion of all
RL agents is not yet very good, the limited training time is still able to indic-
ate that the safety controller can handle most unexpected scenarios that the
agent may encounter.
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Discussion

This chapter discusses the results obtained from the experiments carried out
with variations of the proposed reinforced InterFuser approach. The discus-
sion is organized to broadly address the results of the experiments in light of
the proposed research questions.

5.1 Research question 1

In pursuit of an answer to the first research question mentioned in section 1.2:

Can Reinforcement learning approaches in autonomous driving benefit
from sensor fusion neural network outputs as state representations?

a series of experiments were conducted. These experiments incorporated vari-
ous methods of utilizing intermediate output from the InterFuser architec-
ture. The results point towards potential advantages of integrating the Inter-
Fuser architecture within a reinforcement learning setting, relative to a naive
RL approach. Experiment 2b, in particular, demonstrates that using the com-
pact feature from just a single waypoint query is adequate to outperform a
traditional RL approach that is given direct access to all camera images dur-
ing training.

One notable challenge lies in the fact that the experiments, despite covering 1
million transitions, account for only approximately 28 hours of driving exper-
ience. This duration seems sufficient for agents to learn fundamental behavi-
ors such as lane following and avoidance of forward collisions to a certain
extent. However, it falls short in providing the agents with ample opportun-
ity to learn more complex behaviors like managing intersections or adhering
to traffic signals. Due to this limited training time, the results of the experi-
ments can only provide a partial assessment of the learning potential of the
proposed Reinforced InterFuser method compared to a naive RL approach. A

81
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peculiar result is that the agent trained with additional context of the environ-
ment from experiment 3 in section 4.5 performs worse than the baseline agent
with no pre-trained visual encoder on the evaluation routes. Even though
during training rollouts, the agent performs better than the baseline agent.
The driving behavior does show that the RI(all f eatures) agent with access
to all output types from the InterFuser architecture is effectively blind to the
trajectory it should be following, but very aware of the vehicles in front of it.
While it has access to the same waypoint feature as the agent outperforming
it, it does not seem to utilize it to the same extent. Potentially the full-feature
agent is overfitting using the explicit predictions of the object density map
and consequently neglecting the information encoded in the waypoint fea-
ture. Additional training time might be required to allow the agent to learn
to utilize the waypoint feature to a greater extent. Different configurations of
learning rate and architecture for the CNN receiving the object density map
features might also have been useful to further analyze the performance of
the full-feature agent.

Missing from these findings is an indication of whether the architecture de-
livers a direct improvement in comparison to a similar encoder pre-training
strategy with a standard CNN architecture. An example of this would be a
strategy similar to the one employed by Toromanoff et al. [18]. This gap in
understanding is a limitation of the conducted experiments, a result of both
the limited open-source code availability and the time constraints inherent to
the thesis work. Nonetheless, the results hint at the potential utility of dif-
ferent features extracted from the InterFuser architecture in a reinforcement
learning setting.

5.2 Research question 2

In pursuit of an answer to the second research question mentioned in section
1.2:

Can Reinforcement learning approaches in autonomous driving benefit
from safety mechanisms deduced from explicit predictions of the envir-
onment?

For this research question, experiment 4 from section 4.6 is used to invest-
igate whether additional safety mechanisms from the InterFuser model can
be used to improve the performance and safety of the agent. In this experi-
ment, the safety controller of the pre-trained InterFuser model was used as a
post-processing step for the reinforced InterFuser agent from experiment 2b
in section 4.4. This agent was only trained on normal traffic with no challen-
ging scenarios. Results indicate that the agent, even with the safety controller
employed, still is far away from the performance of the InterFuser agent itself.
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However, using the safety controller in addition to the reinforced InterFuser
improved the agents average route completion and reduced the number of
infractions. When evaluating the agent on challenging scenarios, in which
it was not exposed to during training, the agent performed worse than the
baseline agent (which has no pre-trained visual encoder available relying on
using raw image data as observations). However, with the safety controller
attached, the agent performed better than the baseline, even managing to
complete up to 37% of a single route, while without the controller, it could
only complete maximum 10% of a route. These results strongly indicate that
InterFuser’s safety controller improves the safety of pure RL agents when it
comes to unseen and unexpected scenarios.

Training an agent that can handle crossing intersections is still a challenge
for the results from the experiments in this thesis. Employing the safety con-
troller, as well as comparing with other strategies for safety, on an RL agent
that more robustly handles intersections and lane following could lead to
a stronger indication on the usefulness of safety mechanisms. Experiment 4
does not indicate whether this type of safety mechanism is useful for state-of-
the-art performing agents, which is a shortcoming of the experiment. Addi-
tional training time, hyperparameter tuning and experimentation with other
visual encoders could also be useful to set a stronger indication of which
types of safety mechanisms are useful. The experiment does however show
strong indication specifically for the InterFuser safety controller on lower per-
forming agents, giving huge performance boosts when deployed in environ-
ments with unseen and unexpected scenarios.

5.3 Shortcomings

The conducted experiments show the potential of the various approaches
proposed for leveraging a state-of-the-art sensor fusion model. Nonetheless,
the execution of the thesis is marked by several limitations.

Reward Function The reward function in use is intended to model optimal
driving behavior, a task fraught with inherent complexities. As explained
by Lu et al. [23], modelling driving behavior with a reward function is a
challenging task, and is evident from the behaviors of the agents across the
experiments. The employed reward function does not effectively incentiv-
ize maintaining a practical driving speed. Rather, agents frequently resort to
significantly reducing their speed to avoid collisions. Despite the existence
of penalties for non-alignment with the lane, the agents—most notably the
baseline—tend to oscillate within the lane. The root cause of such behavior
could be attributed to the reduced likelihood of collisions or encountering an
unmanageable scenario when the travelled distance is artificially shortened.
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Consequently, oscillation while slowly progressing along the route emerges
as a seemingly viable strategy, as it allows the agent to accumulate higher
rewards for the same total route completion in a safer and more achievable
manner.

Baseline agent Worth noting is that the evaluation results of the baseline
agent (with no frozen weights and standard raw camera data as observations
for the RL head) are worse when training on the environment with back-
ground traffic, than when training on the environment on the same routes
with challenging scenarios. This might be an indication that the chosen train-
ing structure might not be fully suited for comparing performance. The in-
herent randomness for this type of training might not be sufficient to provide
a fair comparison between the set of agents, especially given the low number
of training steps. This is however only when it comes to the evaluation routes
and the baseline agent specifically. Performance of reward gathering during
training rollouts are still consistent for the baseline agent across the different
types of training environments.

Training time The number of training steps used in this thesis to train each
agent within the experiments is significantly lower than those suggested in
related works. For instance, the experiments in [18] and [9] train for 60 mil-
lion steps. Given the available hardware and training configuration, training
for 1 million steps takes approximately 28 hours, despite the parallelization
strategy described in section 3.2.5. This represents a constraint of this study,
as the possibility of extending the training time was not explored. Such an
extension could have provided insights into whether the agents would learn
to navigate intersections—a metric that could be compared with the perform-
ance of already well-trained models, such as the InterFuser model itself. One
way to expedite the training process while still limiting the number of train-
ing steps might involve the inclusion of imitation learning, either as a pre-
liminary step or through the use of workers during the reinforcement learn-
ing process. This method aligns with the approach employed by Chekroun
et al. [9]. Alternatively, the strategy proposed by Lu et al. [23], as described
in section 2.4.5, could be utilized. Given that the custom-trained InterFuser
architecture, as used in Experiment 2a, is trained to predict a probability dis-
tribution of future waypoints, this prediction could be applied to modify the
action selection within the utilized RL algorithm. Consequently, this would
incorporate the strategy of blending imitation learning with reinforcement
learning.

The focus of the experiments lies in evaluating whether the incorporated
sensor fusion architecture can enhance the performance of a reinforcement
learning agent within a pure reinforcement learning setting. Although there
are numerous methods to incorporate imitation learning into the reinforce-
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ment learning process, this thesis prioritizes exploring the sensor fusion ar-
chitecture as a visual encoder. Therefore, the integration of imitation learning
was not considered a primary necessity in the experiments.

Hardware Most of the experiments were run on a setup with dual A100
GPUs, capable of running many parallel workers for the reinforcement learn-
ing algorithm. Between the available choices for hardware usable for this
thesis, this was the most powerful setup available and reduced training time
of 1 million steps from several days to around 28 hours. However, the A100
GPUs produce some graphical glitches in the Carla simulator when collecting
images from the camera sensors of the ego vehicle.

Figure 5.1: Camera artifacts

These artifacts, as shown in figure 5.1 on the images might have affected
the performance of the predictions from the InterFuser models, as the training
data used to train the InterFuser models did not include images with these
artifacts.

Technical issues A significant amount of time has been spent getting around
various technical issues arising from basing much of the experiments on us-
ing the CARLA scenario runner as a core for running reinforcement learning
episodes. With the Carla simulator, running many routes in sequence often
results in crashes or potential memory leaks and illegal memory access. This
resulted in episodes ran with the episode manager being unpredictably ter-
minated or losing connection to the simulator. Debugging the frequent crash-
ing of the simulator was a time-consuming task, and the specific cause of the
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crashes was not found, but instead many workarounds were employed and
tested. The goal of having a reinforcement learning process with scenarios
at the core of the training process with a process robust enough to handle
crashes, keeping checkpoints, resuming training and getting enough inform-
ation from the simulator and reinforcement learning statistics proved to be
a much more difficult task than originally anticipated. Optimally, more time
should have been spent on testing additional strategies and tuning the re-
ward function based on results from the experiments, than on creating vari-
ous workarounds for technical issues.

5.4 Reflection

If this work were to be repeated, more time should have been allocated to
developing more robust and diverse baseline agents. It would have been be-
neficial to define and implement an agent with pre-trained visual encoders,
rather than relying on a naive deep reinforcement learning agent with raw
camera data as part of the observation space. This would have allowed for
a more comprehensive comparison between sensor fusion transformer ar-
chitectures and classical visual encoder architectures. Unfortunately, a sig-
nificant amount of time was spent on developing tools for running RL in the
CARLA simulator, particularly with the scenario runner at the core. Unexpec-
ted technical issues arose, resulting in this process taking much longer than
anticipated.

During the experiments, the performance of the agents did not reach a level
that would justify the use of challenging scenarios and specific sets of routes
through various map variations. Given the achieved performance, using two
similar towns, one for training and another for evaluation, might have been
sufficient. By settling with a simpler environment implementation, more time
could have been allocated to developing more robust baseline comparisons.
Additionally, this would have allowed for the inclusion of performance eval-
uation with other types of training regimes, such as GRIAD or the approach
used in "Imitation is not enough" by Lu et al. [23]. Moreover, it would have
been beneficial to compare the results with other RL algorithms instead of
limiting the experiments to using only PPO.



Chapter 6

Conclusion and Future Work

In this chapter, a conclusion based on the findings of the experiments are
drawn, as well as considerations for future work.

6.1 Conclusion

The advancement of self-driving technology is imminent, and crucial research
is required to ensure its safe and reliable implementation. This thesis explored
the potential of leveraging sensor fusion for deep reinforcement learning in
autonomous driving within simulated environments, with a particular focus
on the use of the InterFuser architecture as a visual encoder. The findings
revealed promising potential in applying the InterFuser architecture within
a reinforcement learning setting, outperforming a naive RL approach when
using a compact feature vector initially meant for waypoint prediction. Nev-
ertheless, the thesis’s results also highlighted certain limitations such as in-
sufficient training time and a lack of comparison to other pre-trained encoder
approaches. The reward function, which sought to model desired driving
behavior, often led to agents driving at exceptionally slow speeds to avoid
collisions, revealing a potential weakness in its design. Despite the flaws of
the reinforcement learning process within the experiments conducted in this
thesis, the experiments still produce agents that can follow lanes and stop to
avoid collisions with vehicles in front of the ego vehicle. Effectively, the pro-
posed Reinforced InterFuser architecture shows that reinforcement learning
can benefit from sensor fusion approaches, although the approach is not yet
fully realized and comparable to state-of-the-art approaches.

Deploying safety mechanisms to an agent trained with the proposed Rein-
forced InterFuser method proved to be especially useful for avoiding col-
lisions when new unseen challenging scenarios are involved in the environ-
ment, vastly improving the agent’s performance. In the simple test cases used
in this work, RL agents seem to benefit from additional safety mechanisms
deduced from explicit predictions of the environments.
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6.2 Future work

Future research might benefit from a more precise design of the reward func-
tion to promote optimal driving behavior more effectively. Crafting a reward
function that encourages optimal driving is a complex challenge, and reward
shaping strategies that align with this goal are critical if pure reinforcement
learning is to outshine imitation. Furthermore, the potential integration of
imitation learning into the reinforcement learning process warrants explora-
tion. While this integration wasn’t deemed essential for the experiments con-
ducted, it could present a fruitful area for future research. Most successful
approaches in the CARLA challenge have leveraged imitation learning; how-
ever, imitation is inherently restricted by the data it’s trained on. Strategies
that combine the benefits of imitation learning for standard driving behavior
and reinforcement learning for managing unseen, challenging scenarios may
represent a promising future research path, with the current work serving as
a basis.

The custom-trained InterFuser model used in this thesis could be adapted
to use waypoint prediction probabilities in conjunction with a GRU unit as
a waypoint-prediction RL head, as opposed to a simpler MLP action selec-
tion head. Other potential avenues for exploration include comparing other
pre-trained encoder models trained on implicit affordances and extending
the training duration to assess whether the approach can learn more com-
plex driving behaviors, such as navigating challenging scenarios and prop-
erly crossing intersections. Approaches like UniAD [25], discussed in section
2.4.6, appear promising for future research, as they build upon the concept
of sensor fusion using transformer architectures and centralize planning in
the architecture. Like all imitation learning approaches, this could also be
combined with reinforcement learning to manage edge cases where expert
demonstrations might be unavailable. Other works, like ReasonNet [27], which
include a temporal reasoning module, could have significant potential for re-
inforcement learning. An exploration of such a module in an RL setting could
be instrumental in handling situations where other actors are occluded but
were previously visible in the agent’s field of view.
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Appendix

Code

• Reinforced InterFuser: https://github.com/Haavasma/reinforced_interfuser
• Episode manager: https://github.com/Haavasma/episode_manager

Links

• Carla Online leaderboard: https://leaderboard.carla.org/leaderboard/

Data download links

• Expert dataset
• Reinforced InterFuser with waypoint features weights
• Baseline agent weights
• Custom InterFuser weights
• Carla routes

Driving behavior videos

• Reinforced interfuser with waypoint feature and safety controller, chal-
lenging scenario environment: https://youtu.be/DBnEtQ85d7Q
• Baseline agent, challenging scenario environment: https://youtu.be/

94lPLkKEMRg
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