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Abstract

Allocating resources, whether fairly or optimally, is a fundamental challenge in
many parts of society. We investigate the allocation of a set of indivisible items
amongst agents which each have a budget. Each item has two properties: a
profit and a cost. The profit depends on which agent it is allocated to, while
the cost is the same for every agent. The goal is to maximize the total amount
of profit, while ensuring that the total cost of the items allocated to an agent
does not exceed that agent’s budget. We call this problem the multiple opinion-
ated knapsack problem, and present an exhaustive algorithm for finding optimal
solutions to it, which intelligently prevents investigating suboptimal solutions.
The multiple knapsack problem is identical, except that the profit of an item
is the same for all agents, i.e., the agents are not opinionated. We adapt es-
tablished optimizations for the multiple knapsack problem to the opinionated
variant, and review their efficacy. Additionally, we consider which of these opti-
mizations could remain useful if one wished to adopt the algorithm to find fair
allocations of items as opposed to optimal ones.

We find that most of the optimizations survive the transition to subjective
profits rather well, although the increased complexity of the new problem does
have its consequences on how effective each optimization is. There are also cer-
tain optimizations that rely on arguing that the profit of an item is independent
of which agent receives it, which naturally have to be excluded. Unfortunately
our implementation is not efficient enough to outcompete current Integer Linear
Program (ILP)-solvers, but some of the optimizations may prove useful when
adapting the algorithm to find fair allocations, as ILP-solvers are generally ill-
suited for such tasks.



Sammendrag

Fordeling av ressurser, enten med m̊al om rettferdighet eller optimalitet, er en
grunnleggende problemstilling i flere deler av ethvert samfunn. Vi utforsker
fordeling av udelelige gjenstander mellom agenter som alle har et eget budsjett.
En gjenstand har to attributter: profitt og kostnad. Profitten til en gjenstand
varierer basert p̊a hvilken agent som f̊ar den, mens kostnaden er lik for alle
agentene. Målet er å maksimere den totale summen av profittene til hver agent,
under kravet om at summen av kostnadene til en agent ikke overskider budsjet-
tet. Vi kaller dette problemet “the multiple opinionated knapsack problem”,
og presenterer en algoritme som vurderer alle mulige fordelinger, untatt de den
kan bevise at ikke er optimale. “The multiple knapsack problem” er identisk,
unntatt at profitten til en gjenstand ikke endres basert p̊a hvilken agent som f̊ar
den. Vi endrer eksisterende optimaliseringer for the multiple knapsack problem
slik at de passer til varianten med subjektive profitter, og vurderer bidragene
deres etter endringene. I tillegg gjøres en vurdering av hvilke av optimaliserin-
gene som kan ha verdi dersom vi ønsker å endre algoritmen til å finne rettferdige
fordelinger i stedet for optimale.

Det viser seg at de fleste av optimaliseringene kan endres til å passe subjektive
profitter, og fortsatt redusere kjøretiden betydelig, til tross for at alle optimalis-
eringene blir svakere grunnet den økte kompleksiteten av problemet. Enkelte av
optimaliseringene baserer seg og p̊a å argumentere for at profitten en gjenstand
genererer er uavhengig av hvilken agent de blir allokert til, som naturligvis gjør
at de ikke kan anvendes med subjektive profitter. Vi konkluderer med at v̊ar
implementasjon av algoritmen ikke klarer å utkonkurrere tilgjengelige algorit-
mer for å løse “Integer Linear Program”(ILP) problemer, men at enkelte av
optimaliseringene kan anvendes for å løse rettferdig fordelingsproblemer, som
de generiske løsningene for ILP’er sliter med.
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Chapter 1

Introduction
The 0-1 knapsack problem (KP) is an optimization problem which involves fill-
ing a single container, also called a knapsack, with items. A knapsack has a
capacity which represents how much it can contain, while each item has both
a profit and a cost. The goal is to maximize the total profit in the knapsack,
while ensuring that the items’ combined costs do not exceed the capacity of the
knapsack. It has several real world applications, from literally filling containers
that are limited in volume or weight capacity with items that have a volume or
weight, to scheduling problems, where the capacity of the knapsack represents
some time slot, and the weight of an item is how much of that time slot it takes
up.

The multiple knapsack problem (MKP) is a natural extension of the knap-
sack problem, where we have multiple knapsacks with differing capacities that
we can distribute the items into. The optimal solution to the MKP is obvi-
ously different from the optimal solution to a single knapsack problem in which
we create one knapsack with the combined capacities of every knapsack, as an
item bigger than any single knapsack in the MKP may be possible to allocate
to the combined knapsack. The introduction of several knapsacks introduces
more flexibility to the problem, and can be useful in modeling many real-world
scenarios. The multiple knapsack problem may for instance be used to figure
out how to optimally distribute your belongings between the suitcase and the
backpack you plan to bring on vacation. In this scenario, the profit of an item
would be some measure of how badly you want to bring it. This allows us to
prioritize which items to exclude, given that there isn’t enough space to bring
everything you would like.

In the spirit of continuing to generalize this problem, there also exists a version
called the generalized assignment problem (GAP). It works much like the MKP,
where the multiple knapsacks can have differing capacities, but it allows the
costs and profits of the items to vary as well. Specifically, each knapsack has
their own opinion on both how much an item costs and how much profit it gener-
ates. This opens up for even more exact representations of real-world scenarios.

7



Continuing with the earlier vacation example, we may for example find it more
valuable to bring our headphones with us in the backpack as opposed to having
them stashed in the suitcase, since it allows us to listen to music on the flight.
We would represent this by giving the headphones a larger profit if they are
placed in the backpack than in the suitcase. Likewise, we may wish to adjust
the weight of an item based on the container. Since a suitcase has to abide
by a maximum weight at the airport while you can essentially get away with
as heavy of a backpack as you’d like, a small but heavy item can have a large
cost for the suitcase, and a small cost for the backpack. What this essentially
allows us to do is to change what the capacity of the container represents, with
the capacity of the suitcase in this scenario being a maximum weight, while the
capacity of the backpack represents its total volume.

The downside with treating the meaning of the cost of an item this way is
that we may lose information about an important aspect of the item. When
changing the cost of the small and heavy item to represent its weight instead
of its volume for the suitcase, we are essentially committed to changing the
suitcase’s capacity to be weight, not volume. While this allows us to ensure
the items we place in our suitcase won’t make it too heavy for the weigh-in,
there is no longer a restriction on how much volume fits in the suitcase, and so
there is no guarantee that the items assigned to the suitcase will physically fit
within it anymore. To properly model such realistic scenarios one would need
to implement several capacities for each knapsack, e.g., one for volume and one
for weight, which is another possible generalization.

Seeing as there are many real-world scenarios where the cost of some item is
objective, e.g., weight, volume, time spent, money etc., an appropriate middle
ground between the MKP and the GAP might be for the profits of an item to
be subjective, while the cost remains objective. Having not discovered a name
for this problem formulation in the literature, we will call this the multiple
opinionated knapsack problem (MOKP).

8



1.1 Our Work
The goal of this project is to explore whether optimization concepts for the
MKP can be translated to more dynamic settings, chiefly subjective valuations,
and to assess their efficacy after the transition. The long-term motivation being
to lay a foundation for utilizing branch-and-bound to find optimal solutions to
non-linear problems, which often arise in the field of fair allocation.

We present a branch-and-bound algorithm based on bin-completion for exactly
solving multiple opinionated knapsack instances. After presenting some relevant
theory in section 2, we thoroughly review existing optimizations for branch-and-
bound in the context of the MKP in section 3, and discuss which of them can
be modified to fit the MOKP, and which of them are incompatible. Section
4 describes the algorithm in its entirety, before experiments are conducted to
assess the efficacy of each optimization compared to their implementation in
the MKP in sections 5 and 7. At the end we share some thoughts on how the
algorithm may be improved in the future, and how MOKP may be altered to
solve problems in fair allocation.

1.2 Related Work
Pisinger has made several contributions to both the KP and the MKP, and has
written a book with Kellerer and Pferschy [13] which covers more than one could
ever wish to know about the knapsack problem and the family of problems sur-
rounding it. Fukuanga and Korf [10, 11] improved upon previous efforts to solve
the MKP, and came up with the branch-and-bound algorithm bin-completion,
which has inspired much of the structure of our own solution. Martello and
Toth, in addition to making several important contributions to efficiently solv-
ing the MKP [17], also have some work covering algorithms for solving GAPs
[18].

In addition, Martello contributed to an article covering a new algorithm for
solving MKPs by Dell’Amico et al. [7], which relies on a hybrid methodology.
In essence, it first searches for optimal solutions using branch-and-bound for a
set time limit. If the optimal solution is not found within this time limit, the
problem is modeled as a graph, in which the edges represent items and the nodes
represent partial knapsack fillings. One path then represents the complete allo-
cation to a knapsack, and the goal is to find the set of paths which maximize
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total profit. This approach produced successful results compared to previous
efforts by utilizing the strengths of different solution techniques on differing in-
stances.

The initial motivation for this project was to contribute to the field of fair
allocation, where we aim to allocate indivisible items to agents in a way which
satisfies every agent as much as possible. The measure we use to say something
about the fairness of a allocation is called a fairness criterion. EF-1 is one such
fairness criterion, but what actually constitutes a fair allocation is obviously
more of a philosophical inquiry than an algorithmic one. We specifically wished
to expand on Wu et al.’s work on budget-constrained fairness scenarios [25].
In this setting each agent has a budget, essentially the capacity constraint on a
knapsack, and each item has an objective weight and a subjective value. Instead
of attempting to maximize the Utilitarian Social Welfare (the sum of profits)
as in the MKP and MOKP, they investigate the maximum Nash Social Wel-
fare (NSW) solution, which aims to maximize the product of the profits of each
agent. The setting for the MOKP and the budget-constrained fair allocation
problem are identical, but they optimize for different welfare measures. They
show that the maximum NSW-solution cannot guarantee an EF1 -allocation,
but that it can guarantee 1

4 -approximate EF1 and Pareto-optimality. We will
describe these terms in more detail in section 2.7.

Shortly before the submittal of this thesis, Barman et al. published an arti-
cle expanding on the work of Wu et al. [1]. They proposed a greedy polynomial
algorithm for generating fair allocations under budget constraints with subjec-
tive valuations. This algorithm guarantees an EF-2 allocation, implying an
EF-2 allocation always exists under budget constraints with subjective valua-
tions. The result also applies for the case where we have subjective weights
instead of valuations, but not for the case where both are subjective.

10



Chapter 2

Theory
To ensure a consistent understanding of the terms used and to introduce some
central topics, we will briefly go over some definitions and concepts related to
both multiple knapsack and fair allocation problems. Note that sections 2.5 and
2.6.2, as well as 3.3.7 are largely inspired by the precursor project to this thesis
[23].

2.1 Multiple Knapsack
Throughout this thesis we may also refer to a knapsack as a container, bin or
agent. Given m knapsacks and n items, and letting:

• 1 ≤ i ≤ m

• 1 ≤ j ≤ n

• ci be the capacity of knapsack i

• wj be the weight, volume or cost of item j

• pj be the profit or value of item j

• xij be a binary variable, where xij = 1 means item j was placed in knap-
sack i

The MKP can be formulated as an Integer Linear Program (ILP), where the
variables are restricted to be integers, and both the constraints (limits on what
values xij can take) and the objective function are linear. The ILP-formulation
of the MKP is the following:

Maximize:
m∑

i=1

n∑

j=1
pjxij (2.1.1)

Constrained by:
n∑

j=1
wjxij ≤ ci, i = 1, . . . , m (2.1.2)
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m∑

i=1
xij = 0 ∥ 1, j = 1, . . . , n (2.1.3)

xij ∈ {0, 1} ∀i, j (2.1.4)

Where constraint (2.1.2) ensures the assignment to each knapsack is feasible (the
items fit within the knapsack), constraint (2.1.3) ensures no item is allocated to
more than 1 knapsack, and constraint (2.1.4) defines xij as a binary variable.
This means that we do not consider divisible items, which can be useful for
modelling real-world scenarios where two halves of an item have significantly
less value than the original, e.g., a car.

In addition, we will assume ci, wj and pj to all be positive integers. Note
that when the inputs are rational numbers, one may simply multiply them by a
common multiple of their denominators to transform them into integers. This
assumption will extend to the other problems mentioned below.

2.2 Generalized Assignment Problem
The general assignment problem is a general formulation of a large family of
optimization problems related to filling containers. MKP exists in this family,
and is a specific, simplified version of GAP. Using the same variables as we did
with the MKP, but changing them slightly such that

• wij is the weight of item j when placed in knapsack i.

• pij is the profit of item j when placed in knapsack i

we can also formulate the GAP as an ILP:

Maximize:
m∑

i=1

n∑

j=1
pijxij (2.2.1)

Constrained by:
n∑

j=1
wijxij ≤ ci, i = 1, . . . , m (2.2.2)
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m∑

i=1
xij = 1, j = 1, . . . , n (2.2.3)

xij ∈ {0, 1} ∀i, j (2.2.4)
Note that constraint (2.2.3), in contrast to constraint (2.1.3) for the MKP,
requires that an item be allocated to exactly one knapsack. This means that
technically, any instance where there are more items than can possibly fit within
the knapsacks have no feasible solution since excluding items is not an option.
This can be solved by borrowing the concept of a charity from fair allocation [5],
essentially an additional knapsack with infinite capacity which considers every
item to be worth nothing. By donating the leftover items to the charity, we can
obtain a feasible solution.

2.3 Multiple Opinionated Knapsack Problem
We are interested in solving a version of the GAP where the weights of the items
are objective, i.e., the same for every container, such that wij → wj in (2.3.2),
and where solutions are considered feasible even if not every item is assigned,
i.e. changing (2.2.3) such that

∑m
i=i xij can also equal 0.

The ILP formulation of the multiple opinionated knapsack problem is therefore:

Maximize:
m∑

i=1

n∑

j=1
pijxij (2.3.1)

Constrained by:
n∑

j=1
wjxij ≤ ci, i = 1, . . . , m (2.3.2)

n∑

j=1
wjxij ≤ ci, i = 1, . . . , m (2.3.3)

m∑

i=1
xij = 0 ∥ 1, j = 1, . . . , n (2.3.4)
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xij ∈ {0, 1} ∀i, j (2.3.5)

Note that when we refer to the “MOKP” we always mean the multiple opinion-
ated knapsack problem, and not the multiobjective knapsack problem with the
same acronym.

2.4 Related Container Problems
There are several container-filling optimization problems, often referred to as
multicontainer packing problems, which can be used to solve tangential prob-
lems. A closely related problem to the MKP is the bin packing problem, in
which the items are devoid of profit, and the objective is to fit all the items in
as few bins with identical capacity as possible. Similar to the MKP, bin packing
is also strongly NP-hard. It has applications in several fields, such as trans-
portation and memory allocation in computers. It can be solved by the same
bin-completion algorithm that inspired our own solution [10, 11] given adjust-
ments to domination criteria, upper bounds etc. The bin packing application of
bin-completion was later improved upon by Schreiber and Korf [22].

The dual problem of bin packing is bin covering, where the items are still de-
void of profit, but each bin has an identical quota instead of a capacity. Each
bin is assigned a set of items, the weights of which must sum to at least the
quota. The goal is then to maximize the number of bins that can be filled to at
least their quota. Reformulating the problem such that the weight of an item
instead represents its value, and the quota of a knapsack is some demand from
the agents for how much value they ought to receive, we can quickly see the rel-
evance of bin covering to fair allocation. Whilst perhaps not being best suited
for allocating items fairly unless we are fine with distributing the items amongst
arbitrarily many agents, the bin covering problem is well-suited for answering
questions such as: “How many agents can we grant their proportional share of
the total objective value of the items?”, where the quota for each agent is set to
1
m of the total objective value.
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2.5 Complexity
While the single knapsack problem is possible to solve in pseudo-polynomial
time with a dynamic programming approach, the multiple knapsack problem
does not grant the same luxuries. The MKP has been shown to be strongly
N P-complete [26], and does not admit a fully polynomial-time approximation
scheme (FPTAS) [13]. A FPTAS would allow for an approximate solution that is
polynomial in the size of the problem and in 1

ϵ , where ϵ is the fraction of error you
allow for. Therefore, the possible approaches are narrowed to polynomial-time
approximation schemes (PTAS), which still require the function to be polyno-
mial in the size of the problem, but allows for it to be exponential in the 1

ϵ -term.

For instance, a FPTAS may have a runtime of n × 1
ϵ , while a PTAS allows for

runtimes like n
1
ϵ . In this example, if we were to decrease ϵ from 0.1 to 0.01 (10x

the accuracy), the PTAS would go from n10 to n100, while the FPTAS would go
from 10n to 100n. This a considerable difference, which is why a FPTAS would
be preferable. Nonetheless, one does not exist for the MKP unless P = N P, so
branching strategies remain the preferred option.

2.6 Branch-and-Bound
Branch-and-bound (B&B) is a well known strategy for solving optimization
problems. Whilst any optimization problem can, given enough time, be solved
with brute force by enumerating through every solution and finding the max-
imum objective value among the feasible ones, the number of possible solu-
tions grows exponentially with the problem size. Recall the ILP-formulation of
MOKP in section 2.3. A solution is given by assigning a binary value to every
xij , which there are k = m · n of. The number of possible configurations of
k binary variables is given by 2k, such that for an instance with 10 knapsacks
and 28 items, there are more solutions than atoms in the universe. Naturally,
the constraints severely limit how many of these solutions are feasible, and any
remotely viable algorithm for solving moderately large instances must therefore
limit its search to the set of feasible solutions.

Instead of exploring the entire set of feasible solutions, branch-and-bound aims
to intelligently eliminate (or only implicitly explore) feasible solutions which
cannot be the optimal solution. We explore these solutions by generating a
tree. The root node represents the entire problem, and we create nodes called
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children of the root for each decision we have to make. For instance, the layer
of nodes under the root node may represent every knapsack we can put item 1
into. Each of those children get their own children, which represent in which
knapsack we place item 2. Every child node represents a subproblem, in which
we have already committed to making the choices given by the path from the
root down to that node. Eventually this will generate every feasible combina-
tion of items in knapsacks. When none of the remaining items can be placed in
any of the knapsacks, or we are out of items, we have a complete solution, and
the nodes are called leaf nodes.

The strategy can be explained in terms of the words that compose it. We
branch to build the tree by exploring feasible subsets of the search space, which
alone would constitute a brute force algorithm. The bounding principle is what
constitutes the intelligent elimination of non-optimal solutions, and is based on
computing two values, a lower and upper bound.

Assuming we are aiming to maximize some function f(x), the upper bound
is some optimistic value, which is guaranteed to be larger than or equal to the
optimal value of f(x). The lower bound is a pessimistic estimate, which is less
than or equal to the optimal value. Whilst exploring the tree we can set the
lower bound to be the value of the best solution thus far, and calculate an upper
bound for the current subproblem.

Considering a node in the tree where we have already allocated some items
and removed them from the problem, the upper bound for that node will be at
least the value of the optimal solution to the subproblem without the already
allocated items, and with the reduced capacities. If we then see that the sum of
the value gained from the already allocated items and the upper bound is less
than or equal to the lower bound, the entire subtree under that node can be ex-
cluded, or pruned, since it cannot possibly surpass the value of our best solution
so far. The efficacy of the branch-and-bound strategy is highly reliant upon the
tightness of the upper bound (how close it is to the actual optimal solution),
since a tighter upper bound will more often be able to eliminate subtrees from
consideration.
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2.6.1 Item-based Branch-and-Bound
The perhaps most natural approach to solving the multiple knapsack problem
relies upon an item-based approach. In this strategy, we start out with a node
representing an item, and construct the tree by making branches from that
node, which each represent a possible bin that the item could be put in. In
other words, at depth d in our tree we determine the placement of the d-th
item. The number of branches springing from this node is 1 + the number of
feasible options we had for placing the d-th item. The extra branch represents
not allocating the item to any knapsack, which me are forced to do if all the
items can’t fit in the knapsacks. In figure 2.1 going left means allocating the

Figure 2.1: Example of item-based B&B with 2 knapsacks and 2 items

item to knapsack 1, middle means not allocated and right means allocated to
knapsack 2. Feasible bins are those whose capacity would not be exceeded by
receiving the item.

2.6.2 Bin-based Branch-and-Bound
An alternate approach to item-based branch-and-bound, presented by Fukunaga
and Korf [10], is bin-based branch-and-bound. At depth d, instead of determin-
ing the placement of item d, we instead determine the complete filling of bin
d. The set of all items j in a bin is called a bin assignment, Ai = {j1, . . . , jk}.
This allows us to represent the solution to a multiple bin-packing problem as
S = {A1, . . . , Am}. In this model, the branches from a node represent the
possible feasible assignments for the current bin.

A rationale for why this is a more efficient approach can be explained in
terms of the depth and branching factors of the resulting trees. In the item-
based model, the depth of the tree is the number of items, while the branching
factor at each depth is the number of feasible bins. In contrast, the bin-based
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Figure 2.2: Example of bin-based B&B

model makes the depth of the tree be the number of bins, while the branching
factor at each depth is proportional to the amount of remaining items. Since
the number of leaves in a full tree is determined by bd, where b is the branching
factor and d is the depth, having a higher depth is worse for performance than
having a higher branching factor.

2.7 Fairness Notions
To form a basis for discussing MOKPs relationship with fair allocation, we will
briefly cover some relevant theory.

We will assume a set M of m agents and a set N of n indivisible goods, where
each agent i ∈ M has an additive valuation function vi(j) that returns the non-
negative value agent i has for one or more goods j ∈ N . An additive function
is a function such that f(S) =

∑
s∈S f(s). Whenever we refer to an agent’s

or bin’s valuations, we mean the vector [vi(1), vi(2), . . . , vi(n)]. Likewise, an
item’s valuations are represented by the vector [v1(j), v2(j), . . . , vm(j)].

An allocation A = (A1, . . . , Am) is a collection of subsets of N such that
Ai∩Ak = ∅ for every pair of assignments i and k. In the case where

⋃
Ai∈A Ai ̸=

N the allocation is called partial, if not it is called complete.
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2.7.1 Envy-freeness
An allocation is considered envy-free (EF) if for every pair of agents i, k ∈ M ,
vi(Ai) ≥ vi(Ak). That is, no agent prefers another’s assignment over their own.

An allocation is considered envy-free up to any good (EFX) if for every pair of
agents i, k ∈ M , vi(Ai) ≥ vi(Ak \ g), for all g ∈ Ak. That is, removing any item
from Ak would eliminate agent i’s envy towards agent k.

An allocation is considered envy-free up to one good (EF1) if for every pair of
agents i, k ∈ M , vi(Ai) ≥ vi(Ak \ g), where g = maxj∈Ak

(vi(j)). That is, no
agent prefers another’s bundle without the most valuable item in that bundle
from the envious agent’s perspective over their own.

EFX is a relaxation of the envy-freeness criterion, and EF1 is a relaxation of
EFX. While EF is an attractive notion of fairness, cases in which it is achiev-
able are relatively rare. For indivisible items, which we assume in this thesis,
an EF allocation is not guaranteed to exist. The simplest example of this is
an instance with two agents who positively value a single item which must be
allocated between them. The relaxations therefore function as weaker, but still
valuable notions of fairness, which are attainable in more circumstances.

Wu et al. redefine envy-freeness and its relaxations slightly to fit the context
of budget-constrained settings [25]. The need for this redefinition comes from
agents with smaller budgets being able to envy agents with bundles that don’t
fit in their own budgets under the definition above. Therefore, with a budget
B and cost c(S), an agent j is envious of an agent k if and only if there exists
a Sk ⊂ Ak such that vj(Sk) > vj(Aj) and Bj ≥ c(Sk). The relaxations are
changed similarly, such that EF1 is broken if j still values Sk more than Aj if
j’s most valued item from Sk is removed.

Envy-freeness is usually coupled with a requirement of completeness, to prevent
the trivial EF-solution of not allocating any items. With budget constrains, we
may not feasibly be able to allocate every item within the budgets. This can
be dealt with by introducing some requirement of efficiency, which Pareto opti-
mality (PO) is a good candidate for. An allocation of items is Pareto-optimal
if there is no feasible way of giving one agent more value without making some
other agent lose value. If we reintroduce the concept of a charity, an additional
agent with unlimited budget whose valuation function is vc(j) = 0 for every j
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as we mentioned for the GAP, the complete allocation A = (∅, ∅, . . . , M) is not
PO as long as any agent can feasibly attain an item.

2.7.2 Proportionality
A proportional allocation is an allocation in which every agent i ∈ M receives
their 1

m share of their valuation of the total pot. vi(Ai) ≥ vi(N)
m

The maximin share (MMS) fairness criterion is relaxation of proportionality.
It requires that each agent’s bundle be worth at least their MMS. Each agent
calculates their MMS by considering every feasible allocation of the items in
N to the agents in M , then considering the worst bundle (according to their
own valuation function vi) in each allocation, and taking the maximum value
among the worst bundles. We essentially ask the agents to delegate the items
themselves, and force them to only expect the value of the worst bundle in their
own allocation.

A compelling feature of MMS as a fairness notion for constrained settings is
that it is directly based on feasible allocations. Since constraints reduce the set
of feasible allocations, they cannot make it easier to guarantee the other fairness
notions, and usually make it harder, as evidenced by the findings of Bouveret et
al. in 2017 [2] and Hummel and Hetland in 2021 [12]. Unlike the other fairness
notions, MMS adapts to the reduced set of feasible allocations, which makes it
more achievable in constrained settings. Therefore, one can argue that it is a
more realistic expectation to have of a fair allocator.

2.8 Integer Linear Programming
Integer linear programming problems are linear optimization problems in which
the decision variables are required to be integers. The set of feasible solutions
may also be restricted by linear constraints. If some of the decision variables
are allowed to take continuous values, the problem is called a mixed-integer
linear programming problem. As an example, a possible ILP is to maximize
z(x, y) = 3y + x by finding the optimal value to the decision variables x, y
under the constraints:

y − x ≤ 0,

y + 3x ≤ 14,
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x, y ≥ 0,

x, y ∈ Z+

This ILP can be represented visually as shown in figure 2.3.

Figure 2.3: Visual example of an ILP

Constraints 1, 2 and 3 combine to form a feasible region which our decision
variables can exist within, and is defined by the orange and green lines, as well
as the x-axis. Constraint 4 further limits the possibilities to the integer points
within that feasible region, marked by blue dots. The dashed black line indi-
cates the convex hull, the smallest convex polyhedron containing all the possible
solutions within the feasible region. We are left with a set of feasible values for
x and y, and can for example utilize branch-and-bound to explore combinations
of x and y to find the maximum value of z.

The optimal solution if we allowed all rational values of x and y would be
z(3.5, 3.5) = 14, whilst the optimal integer solution is z(3, 3) = 12. Applied to
the MOKP, z would be a function of every binary variable xij , with a feasible
region marked by a polyhedron in (i · j)-dimensional space. We expand on how
problems like these are solved in section 3.4.
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Chapter 3

Optimizing Branching
The naive solution to the multiple knapsack problem is to simply explore ev-
ery possible configuration of items in bins by traversing through a tree. This
tree could as discussed earlier either have a depth equal to the number of bins
or the number of items, depending on whether we go for a bin-based or an
item-based solution. Here we will discuss how to improve upon the naive so-
lution by going through each component that contributes to the slowness of
the tree exploration. We can split the work of the algorithm into the following
categories: preprocessing, total number of nodes, and work done at each node.
Preprocessing happens before any search, and is usually done to either reduce
the problem size or to arrange the input in a favorable order for the search.
At each node some work will have to be done, e.g., generating feasible assign-
ments. The total amount of work done by the algorithm can be represented
by: preprocessing + n nodes · work at node. We will consider a number of op-
timizations to the MKP, and discuss their viability when subjective valuations
are introduced.

3.1 Preprocessing
There are instances when the problem size can be reduced before we even start
exploring the tree. Specifically, there are three trivial cases where we can remove
knapsacks or items before starting the search. Considering m knapsacks with
capacity ci and n items with weight wj , these cases are:

wj > max
1≤ i ≤m

(ci), (3.1.1)

ci < min
1≤ j ≤n

(wj), (3.1.2)

n∑

j=1
wj ≤ max

1≤ i ≤m
(ci), (3.1.3)

If (3.1.1) is true, we can remove item j as it is too large to fit into any of the
knapsacks. (3.1.2) allows us to remove any knapsacks which have a capacity
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smaller than the smallest item, since they cannot possibly fit any items. Whilst
the first two remain viable with subjective valuations, the third one only applies
to objective valuations. If true, it allows us to immediately return the trivial
solution of packing the largest bin with every item. This naturally doesn’t work
with subjective valuations as the optimal solution may only be achievable by
handing the items to different agents.

All of these tests can be done in linear time, and may potentially reduce the
number of items and/or knapsacks in the problem instance, which can have a
significant impact on the number of nodes in the tree. However, these cases are
unlikely to be present in realistic problems, as the user submitting the problem
ought to understand that asking an algorithm to allocate an item that is bigger
than all the potential containers is futile. Nonetheless, seeing as the potential
gain is so much higher than the initial cost, it seems a worthwhile implementa-
tion detail. These apply nicely to budget-constrained fairness scenarios as well,
as they are independent of the optimization goal.

Certain optimizations require a specific ordering of the items. Given that the
required ordering does not change throughout, one can save considerable time
by sorting the items in the preprocessing stage and maintaining that ordering
throughout the search, instead of sorting them at each node.

3.2 Work Done at Each Node

3.2.1 Generating Assignments
At each internal node we need to generate the feasible combinations of items
with respect to the current bin. The naive solution to this problem is to generate
every possible combination of items and test each of them for feasibility. This
will require us to create and loop through

∑n
r=1

n!
(n−r)!r! combinations of n items.

A well known optimization of this is to only calculate the combinations of length
up to an integer k ≤ n. If we first sort the items by ascending cost, we can sum
the lowest cost items until they exceed the capacity of the bin, and call the
number of items that fit within the capacity k. Since we only included the least
costly items, there can exist no feasible combination of items of size greater than
k. For instances with many more items than can fit in a bin this can severly
cut down on the number of combinations we need to test. If we have 20 items
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with weights [1, 2, 3, . . . , 20] and a capacity of 16, we get k = 5 and only need
to evaluate

∑k=5
r=1

20!
(20−r)!r! = 21 699 as opposed to

∑n=20
r=1

20!
(20−r)!r! = 1 048 575

combinations. Whilst up-to-k will return the same number of feasible assign-
ments, and therefore generates the same number of nodes for us to explore, it
was able to avoid testing over a million additional combinations for feasibility.
Luckily there are ways to reduce the number of feasible assignments we have to
explore as well, which we will consider in section 3.3.

3.2.2 Incrementally Generated Assignments
An alternative to generating every assignment at once is to incrementally gen-
erate them, by first generating h assignments, and then exhaustively exploring
all their subtress before generating the next h assignments. This concept has
shown promise in other applications [10, 22], but has not been implemented in
our solution.

Since bin-completion is a depth-first-search algorithm, we always completely
explore all k nodes before considering node k + 1. Incrementally generating the
assignments is therefore not with the intent of getting a tighter lower bound
for later nodes. The intent is to reduce the amount of time spent generating
assignments, which can become very large in situations where many items fit
within the knapsack. The hope being that we find an optimal solution early
and suspend the search. In order to know that a solution is optimal without
exploring the rest of the tree we rely on the bound-and-bound technique. We
describe this in more depth later, but the concept is essentially: Assume we
at node n calculate an upper bound and explore h assignments. If we manage
to find an assignment to each knapsack in a subtree under one of the nodes
in h whose profit is the same as the upper bound in n, we have found an op-
timal solution to n, and can confidently omit exploring the assignments not in h.

The trade-off we incur with this strategy is the efficacy of our value-ordering
heuristic, which is the heuristic we use to choose how to sort the assignments
for a bin. Assuming that the order generated by our value-ordering heuristic is
actually the optimal way to explore the assignments, we lose some of the bene-
fits of that when only considering h items at a time, since the h most optimal
assignments to explore first are very unlikely to be present in the h assignments
we generate first.
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According to Fukunaga and Korf [10] the optimal value of h varies significantly
based on the problem instance, and no clear best value was discovered for differ-
ent classes of problems, e.g., few knapsacks many items. For their experiments
they chose to set h = 100.

3.3 Number of Explored Nodes
The maximum number of leaf nodes in a tree is bd, where b is the branching
factor (how many direct child nodes spawn from a parent node), and d is the
depth of the tree. The total amount of nodes in the tree is then n =

∑d
i=1 bi.

For bin-based trees, the branching factor of a node is the amount of feasible
combinations of items in the bin at that node. This number varies depending
on both the weight of the remaining items and the capacity of the bin. Much of
the slowness of tree-based algorithms comes from the exponential relationship
between the problem size and the number of nodes to explore. Strategies for
reducing the number of explored nodes are therefore integral to speeding up
these algorithms.

3.3.1 Upper Bounds
As previously mentioned, an essential pruning technique for branching problems
relies on comparing an upper bound for the current subproblem to the lower
bound. Once we have derived an upper bound at a node, we can add it to our
profit from the bins we have already filled, and check if their sum is greater than
our best solution so far. If their sum is less or equal, the path we have taken in
the tree has no hope of superseding our best solution so far, so we can prune
the subtree under the node.

Calculating an upper bound requires a function u(s) such that u(s) ≥ f(s)
for any problem instance s, where f(s) returns the value of the actual optimal
solution to s. The function f(s) is itself therefore a valid candidate for u(s), but
would be no more efficient since we are accurately solving the entire subproblem.
For u(s) to be an advantageous inclusion it must therefore also be able to solve
the subproblem considerably more efficiently than f(s). A natural candidate
for u(s) is the solution to a version of f(s) with relaxed (weaker) constraints.
Since the set of feasible solutions to a problem is merely a subset of the set of
feasible solutions to a relaxed version of the same problem, the optimal solution
to the relaxed version must result in a value at least as large as the optimal
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solution for the original problem. Relaxations therefore lend themselves nicely
as candidates for u(s). Reconsidering the ILP-formulation of the MKP from
section 2.1, there are many ways one could relax the constraints. Two of the
most common are the linear relaxation and the surrogate relaxation [13].

The linear relaxation is based on replacing xj ∈ {0, 1} with 0 ≤ xj ≤ 1 for
j = 1, . . . , n. We call this new problem, where we consider including fractions
of the items, the LPMKP (LP-relaxed MKP). The equivalent problem for sub-
jective valuations will be referred to as LPMOKP. In the 0-1 knapsack problem
we can solve the LP-relaxed problem by greedily assigning items to the bin in
order of decreasing efficiency, and guarantee a valid bound [13]. This is done
by sorting the items in order of decreasing efficiencies (value-to-weight ratio),
assigning the most efficient to the bin until we get a break item, which is the
item responsible for hitting or exceeding the capacity. We then fill whatever
space is left in the bin with an appropriate portion of the break item’s profit.
The LPMKP can be solved in essentially the same way, by assigning the most
efficient items to bin 1, and splitting up the break item such that the first por-
tion goes in bin 1, while the remaining portion is introduced as its own item.
We then fill bin 2 in the same way with the most efficient remaining items, and
do this for every bin until they are all full.

Another possible constraint to relax is allowing a merger of the knapsacks into
a single aggregate knapsack. We call this the surrogate relaxation, and the re-
sulting problem the surrogate MKP (SMKP, or SMOKP for the MOKP). More
formally, we relax constraint (2.1.2) such that it instead becomes:

m∑

i=1
µi

n∑

j=1
wjxij ≤

m∑

i=1
µici (3.3.1)

by utilizing a set of multipliers for each knapsack (µ1, . . . , µm). The surrogate
dual problem for an instance I is then:

Minimize : z(S(I, µ)), µ ≥ 0 (3.3.2)

In essence, find the set of multipliers µ such that the value z of the SMKP (S)
is minimized. Martello and Toth [17] proved that setting all these multipliers
to be the same positive constant always leads to the smallest possible surro-
gate upper bound for the MKP. The choice of which positive constant does not
matter. Moreover, Nemhauser and Wolsey [19] show that the surrogate relaxed
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problem with optimal multipliers yields a bound no larger than the LP-relaxed
problem for the MKP.

The proof for the optimality of constant positive multipliers for the SMKP
relies on arguing that an item’s value is independent of which knapsack it is
placed in, which is not the case for the MOKP. This result does therefore not
extend to the MOKP, but whether the SMOKP with optimal multipliers dom-
inates the LPMOKP is unclear to us.

Upper bound-based pruning is still very much relevant when considering sub-
jective valuations, but the bound’s usefulness is directly associated with how
close it can get to the optimal value. With the introduction of subjective val-
uations this becomes harder, since we consider the value of the item to be its
maximum valuation when solving the SMOKP in order to ensure the validity
of the bound. This is especially costly in instances where a single agent values
many items highly, but only has capacity for a few of them. Naturally, the
bounds will become tighter the deeper in the tree we are, as we can then omit
the valuations of the knapsacks that have already been filled. In instances that
lend themselves nicely to normalizing the valuations, this may be a worthwhile
endeavor, since it would eliminate potentially skewed valuations generate too
optimistic upper bounds.

For budget-constrained fairness scenarios the upper bound would need to be
adjusted to fit the new objective function. With maximum NSW for exam-
ple, where we optimize the product of the profits of each agent, our upper
bound would need to be some optimistic estimate of the product. The surro-
gate relaxation is seemingly ill-suited for this, as the objective function relies
on multiplying the profit in each knapsack, which is hard to do when we have
combined all the knapsacks. In this scenario the LP-relaxation might therefore
be a more suitable choice.

3.3.2 Bound-and-Bound
Bound-and-bound is a procedure which calculates a lower bound distinct from
the best solution so far at each node in the search tree. It was first introduced
by Martello and Toth [17], as part of their MTM algorithm, which featured an
item-based search tree. After calculating an upper bound by solving the SMKP,
the MTM algorithm attempts to validate the upper bound by finding some fea-
sible solution who’s value is the lower bound. If the lower bound has the same
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value as the upper bound, the solution which generated the lower bound is an
optimal solution to the subproblem under the node, and we can backtrack. In
the scenario where the lower bound is less than the upper bound we are forced
to explore the subtree under the node.

The MTM algorithm uses a greedy solution which, for an instance with m
unfilled knapsacks, involves solving m 0-1 knapsack problems in order to pro-
duce the lower bound. It iterates through each knapsack, first optimally filling
knapsack i = 1, then removing the items assigned to it, and optimally filling
i = 2 with the remaining items. This repeats until every knapsack has been
filled, or we are out of items. We are then left with a feasible solution, with the
sum of the profit in each knapsack being our lower bound. These m problems
can be solved with the same dynamic programming approach used for deriving
the SMKP-based upper bound.

Pisinger [20] proposed an alternative approach to validating the upper bound in
his Mulknap algorithm. Instead of solving m 0-1 knapsack problems, he noted
that solving a series of subset-sum problems can also be used to validate the
upper bound. The relevant version of the subset sum problem is an optimiza-
tion problem, where one attempts to make a sum from a set of integers that is
as close to, but not above, some integer T. In this context the set of integers
are the weights of the items included in the upper bound, and the value T is
the capacity of the current knapsack. We essentially attempt to fill each knap-
sack as much as possible with the items. If we are able to assign all the items
included in the upper bound solution to the individual knapsacks, we have a
feasible solution with a lower bound that matches the upper bound, and we can
backtrack as in bound-and-bound.

Fukunaga and Korf [10] and Pisinger [20] report very promising results for the
application of the Mulknap bound-and-bound technique in problem instances
with large ratios of items to bins. Unfortunately, the Mulknap approach is ill-
suited to subjective valuations. Simply showing that every item allocated in
the SMKP can be packed into the bins is not enough to give us the optimal
solution, as the value of the solution is dependent upon which items go in which
bins. The MTM approach lends itself nicely to subjective valuations, however.
Since it is based on solving each bin optimally, we can pass in a parameter in-
dicating which valuation to consider for each bin, and receive a solution which
respects the valuations of each bin. Additionally, given that the upper bound
has been adjusted, similarly adjusting the lower bound allows bound-and-bound
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to remain a viable optimization for budget-constrained fairness scenarios.

3.3.3 Maximal Assignments
A maximal assignment is an assignment to a bin such that no remaining item
not already in the assignment can be added to the assignment without exceeding
the capacity of the bin. In the standard MKP setting with objective valuations,
one can leverage the fact that the bag in which an item is placed is irrelevant
to the value added by that item to remove any non-maximal assignments as
possible branching candidates.

When adapting the problem to budget constrained fairness scenarios, it is im-
mediately evident that forcing a bin to be completely filled is unlikely to be
conducive to generating fair allocations. However, it turns out that maximal
assignments are also not guaranteed to be the optimal solution when individual
valuations are introduced. To see this we will consider two agents, each with a
capacity of 10, and the items in table 3.1.

Item Value for A1 Value for A2 Weight
1 6 1 5
2 1 6 5
3 2 2 9

Table 3.1: Items with subjective valuations

The only maximal assignments are {1, 2}, {3}, which would produce a total
value of 9 when handed to the agents. This misses the optimal solution, which
is assigning {1} > A1 and {2} > A2 for a total value of 12. Therefore, we are
forced to explore a larger number of assignments than in the MKP setting with
identical valuations.
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3.3.4 Dominance
Another way of reducing the amount of assignments considered is to remove
any assignment which we can prove is dominated. Given two feasible candidate
assignments A and B, A dominates B if the optimal solution acquired by choos-
ing A has a value no smaller than the value of the optimal solution acquired by
choosing B. In the MKP, we can utilize this to eliminate candidate assignments
for a bin, thereby considerably reducing the branching factor since we only have
to consider a small subset of possible assignments. Fukukaga and Korf base
their dominance criterion for the MKP on the work of Martello and Toth [18],
and define it as such:

Proposition 1 (The MKP Dominance Criterion). Let A and B be feasible
assignments with respect to a capacity c. A dominates B if B can be partitioned
into i subsets B1, . . . , Bi such that each subset Bk is mapped one-to-one, but not
necessarily onto an element of A: ak. In addition, for all k ≤ i, both the weight
and the profit of ak must be greater than or equal to the sum of the weights and
profits in Bk respectively.

If each element ak fulfills this criteria, choosing ak and discarding Bk will lead
to at worst an equally good solution, and we can therefore avoid considering B.
The MKP dominance criteria applies for identical valuations, and is therefore
only used on maximal assignments. The criteria requires that the item ak is
heavier than or equally as heavy as the subset Bk, which may sound counter-
intuitive at first. However, this guarantees that the item we swapped for the
subset wouldn’t have been better placed in a later bin, as the total value is at
worst the same, whilst the later bins have more flexibility in terms of capacity,
since the item(s) in the discarded subset weigh less combined, and can poten-
tially be split into different assignments.

For subjective valuations however, although a subset may be dominated by an
item with respect to a certain bin, we must consider that the optimal solution
may require us to relegate the profit of that bin in favor of another bin with
more potential gain. In addition, subjective valuations require us to explore the
empty set as a possible assignment to every bin. A trivial example of why is
having two items which bin 2 value more than bin 1, such that both items fit in
bin 2, and the optimal value is obtained by granting bin 2 both items. Without
exploring the empty set, we would be unable to achieve the optimal solution if
we filled bin 1 first.
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Although this domination criteria doesn’t translate directly to subjective valu-
ations, being able to prune more nodes from the branching tree is an attractive
property. In order to retain this property we need a new dominance criterion
which is able to eliminate assignments that cannot lead to a better solution than
another assignment. This criteria must necessarily consider the potential value
of all items in every remaining knapsack to confidently exclude the item from
an assignment.

Proposition 2 (The MOKP Dominance Criterion). Let B be a feasible as-
signment with respect to a bin b with capacity c. B is dominated by another
assignment A if there exists a subset s ⊆ B and an excluded item x /∈ B such
that:
(1) B remains feasible after replacing s with x,
(2) x weighs at least as much as s,
(3) x is worth at least as much as s to b,
(4) The total value of scenario 1, where b gets x and the bin which values an
item in s the least is assigned that item, is greater than the total value of sce-
nario 2, where b gets s and the bin which values x the most is assigned x.

The assignment B is then dominated by an assignment A = (B/s) ∪ x

Requirement (1) is necessary for us to even consider the swap, whilst (2) is
derived from the same reasoning as in proposition 1. (3) may seem somewhat
out of place, as one may think (4) alone would be enough to ensure we don’t
throw away an optimal solution. However, it turns out that (3) is also required
for us to be sure. Consider two bins B1 with c1 = 43 and B2 with c2 = 108,
and the items in table 3.2.
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Item Value
for B1

Value
for B2

Weight

1 16 9 9
2 13 13 11
3 15 4 18
4 15 7 25
5 18 14 20
6 10 14 29
7 20 19 57

Table 3.2: Items for the MOKP domination criteria example

When considering the assignment {1, 2, 3} for B1, we can see that it is feasible
to swap the subset {1, 2} with item 4, and that w({4}) ≥ w({1, 2}). In scenario
1, where we give B1 item 4 instead of {1, 2}, we calculate a value of:

p1(4) + min
2≤i≤m

(pi(1)) + min
2≤i≤m

(pi(2)) = 15 + 9 + 13 = 37

In scenario 2, where we let B1 keep {1, 2} and take the most optimistic remaining
value for item 4, we get:

p1({1, 2}) + max
2≤i≤m

(pi(4)) = 29 + 7 = 36

According to requirement 4, this would indicate that the assignment {1, 2, 3} is
dominated by {4, 3}, which is not the case. Whilst the optimal solution would
be better if we had to assign item 4 to B1 or B2, we don’t know whether item
4 is included at all in the optimal solution. In fact, the optimal assignment
for B2 is {5, 6, 7}, and it is therefore disinterested in item 4 altogether. This
means we would have given up value for B1 in order to facilitate a better value
for B2 in a case where B2 had better options than the excluded item we were
testing against the subset. Therefore, due to the agnosticism toward optimal
assignments for later bins, we are also forced to ensure that the excluded item
grants the current bin more value than the candidate subset.

Whilst this domination criteria is less powerful than the one for objective valua-
tions, this is a natural consequence of the increased complexity of the problem.
An important implementation detail here is to only take the maximum and
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minimum of the valuations of the remaining bins, and not across all bins in the
problem. We are essentially computing an upper bound for the case where we
swap the subset with the item and comparing it to a lower bound for the case
where we keep the subset, and the tightness of these bounds are essential to
how much of the tree we are able to prune.

Requirement (4) in proposition 2 does not extend to other social welfare func-
tions like NSW. Instead, one would need some requirement which guarantees
that the total product is maximized by taking x and leaving s to the remain-
ing bins. Given a sum of profits, say 10, to be divided amongst 2 agents, the
assignment which maximizes the product of the profits of the two agents is the
one which distributes them profit the most equally, i.e. 5 · 5. Say we could
gain 10 total profit by assigning items such that the agents got 2 and 8 profit
respectively. This would not be better than an assignment which gained a total
of 9 profit, but distributed them as 4 and 5, since 4 · 5 = 20 > 2 · 8 = 16.
Essentially, depending on the difference in valuations for an item, giving up
total profit to boost the profit of the least profitable agent may grant a higher
product of profits. Knowing whether the current bin or one of the remaining
bins will be the least profitable is hard to do before exploring the options for the
remaining bins, so we don’t see a direct way to adjust this domination criteria
to fit the NSW.

Generating Undominated Assignments

An advantage of both the domination criteria for objective and subjective val-
uations is that they are able to assess whether an assignment is dominated
without making comparisons to other generated assignments. The only relevant
information is the assignment and the remaining items that are not part of the
assignment. This means that we can generate the assignments one by one, and
only store them if they turn out to be undominated. This is advantageous both
in terms of memory and complexity, which is essential for bins which can fit
many possible assignments.

We utilized a binary tree to generate the undominated assignments. In this
tree two branches spring from the root, representing whether we include item
1 or not. The branch which included item 1 reduces the remaining capacity by
the cost of item 1. We then generate two children for each of those, representing
whether to include item 2. If item 2 is not feasible to include, we just generate
one child. By checking for dominance at both every internal node and leaf node
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in this tree, we are left with exclusively all the assignments which are feasible
and undominated.

3.3.5 Pisinger R2 Reduction
In An exact algorithm for large multiple knapsack problems [20] Pisinger de-
scribes a reduction procedure for removing items from consideration. This is
done by deriving an upper bound for a solution which includes the item, and
comparing it to a lower bound representing the current best solution. If the
upper bound for the partial solution which includes the item is lower than the
lower bound, the inclusion of the item is suboptimal in the rest of that sub-
problem. This procedure can be performed at each node, and will eliminate
items for consideration in the subtree under that node. It works by first sorting
the remaining n items such that we have non-increasing profit-to-weight ratios,
p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn. We then combine the capacities of the remain-
ing m bins into a bin with c =

∑m
i=1 ci , and attempt to fill this combined bin

with the most efficient remaining item until we exceed the capacity.

We call the item responsible for (over)filling the bin the break item b, such
that

∑b−1
j=1 wj < c ≤ ∑b

j=1 wj . At this point we know the first b − 1 items
are the most efficient use of space in the aggregate bin. In order to derive an
upper bound u(k) for the items (b + 1 ≤ k ≤ n), we add k to the partially filled
aggregate bin:

pk +
b−1∑

j=1
pj (3.3.3)

We then find ourselves in one of three possible scenarios:

• Item k fit within the aggregate knapsack, and we have remaining capacity

• Item k filled the aggregate knapsack perfectly, and we have no leftover
space

• Item k did not fit in the aggregate knapsack, and it is overfilled

If k filled the knapsack perfectly we are left with a valid and relatively accurate
bound. In the case where we have remaining capacity to work with, (3.3.3) is
not a valid upper bound, as although the initially included items are the most
efficient in terms of profit/weight, there may be an excluded item which fills
the knapsack more optimally and generates more value. To correct this without
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introducing much computational complexity, we resort to filling the remaining
capacity of the knapsack with a fraction of the break item b.

Since b is the most efficient excluded item, it is the most optimistic candidate to
fill the remaining capacity with, thereby ensuring the validity of the bound. We
can therefore add the product of the profit-to-weight ratio and the remaining
capacity to fractionally fill the rest:

(c − wk −
b−1∑

i=1
wi) · pb

wb
(3.3.4)

In fact, this deals with the last scenario as well, since the remaining capacity
will be negative, and we subtract the fractional value of the break item with
respect to how much the bin was overfilled. Combining these two, and flooring
the value of the fractional part, since we only deal with integer values, gives us
a complete upper bound for item k:

u(k) = pk +
b−1∑

j=1
pj +

⌊
(c − wk −

b−1∑

i=1
wi) · pb

wb

⌋
(3.3.5)

The rationale for extending this notion is the exact same as for normal upper
bounds. Using the maximum valuation of the item among the remaining bins
and calculating the upper bound based on that value yields a valid, although
somewhat exaggerated upper bound. Note that there exists a trade-off here.
In order to calculate as accurate a bound as possible, we ought only take the
maximum of the relevant valuations. What the already filled knapsacks think
of the item is not relevant when the knapsacks can’t fit the item anyway. How-
ever, sorting the items at each node, such that they are sorted with respect to
the value of the remaining knapsacks, is computationally expensive and may
outweigh the benefit of the improved bound.

It turns out that sorting the items at each node is actually not necessary. Sim-
ply initially sorting the items once for each combination of remaining knapsacks
and querying the result at each node is enough. Since we can decide which
knapsacks will be filled in which order beforehand, we can cut down the number
of ways we need to sort the items significantly. We will expand on this opti-
mization and the trade-off in the results- and discussion-sections.
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Since the R2-reduction is based on combining a surrogate and linear relaxation
to derive an upper bound, its application to the maximum NSW solution suffers
from the same issue we described for surrogate upper bounds. It is therefore
not viable in a non-linear context.

3.3.6 Ordering of Bins and Items
The order in which we choose to fill the bins and which assignments we choose
to explore first can have large consequences for how many nodes have to ex-
plore. Martello and Toth’s item-based MTM algortihm [17] considers items in
order of non-decreasing efficiency ej = pj

wj
and which knapsack to then assign

the item to in order of non-decreasing remaining capacity. Fukunaga’s bin-
completion algorithm [11] fills the bins in order of non-decreasing capacity, such
that the smallest bins are filled first, but no explanation is provided for this
choice. The article’s precursor [10] does however discuss the importance of the
ordering of the assignments we consider for each bin, and finds that among 11
different heuristics for sorting assignments, one ought to sort them according to
increasing cardinality (how many items the assignment contains), breaking ties
by non-increasing profit.

Considering we found little convincing rationale for considering the knapsacks
in the order that was presented, and could therefore not reason about whether
that order would remain optimal (if it even is for bin-completion) when consid-
ering subjective valuations, we decided to experiment with some other orderings.

An interesting candidate was considering the knapsacks in order of decreas-
ing maximum number of top valuations, such that the knapsack which has the
top valuation for the most items is considered first. As previously mentioned,
a large issue with solving MOKPs as opposed to MKPs is the inflation of sur-
rogate upper bounds due to considering the max valuation of each item. By
removing the knapsacks that contribute the most to the inflation of these up-
per bounds first, we ought to be able to calculate more precise upper bounds
deeper in the tree, thereby increasing the utility of the upper bound pruning
and bound-and-bound.

To illustrate the potential impact of the ordering, we will take a sneak peek
as some experimental results comparing smallest capacity first, largest capacity
first and number of maximum valuations first in figure 3.1.
Whilst the orderings track each other decently for many instances, certain in-
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Figure 3.1: Comparison of bin ordering

stances seem to be extremely sensitive to the order in which we consider the
bins, resulting in large differences in runtime.

The order in which one considers assignments can have a similarly large im-
pact. If we are able to accurately predict which assignments will generate the
most optimal solutions, and explore these first, large parts of the tree may be
pruned. Other branching algorithms such as minimax, which amongst other
things is used to find the best moves in chess, have very strong ordering heuris-
tics for their branches. Since it is completely infeasible to explore every possible
game of chess, minimax only explores some d moves ahead. Each leaf node
is then given some value based on a heuristic. The optimal move is found by
comparing and propagating the values of these leaf nodes up to the root. If
we wished to explore d+1 moves deep, the previous tree would be seemingly
useless, since the entire tree is based on the value of the leaf nodes. However,
due to the pruning criteria alpha-beta pruning being much more effective when
the best moves are explored first, the ranking of moves from the previous tree
can be used as a value-ordering heuristic in the new tree. This ordering is so
strong in fact, that first exploring a tree of depth d, then using its result as
a value-ordering heuristic and exploring a new tree of depth d+1, is generally
more efficient than exploring just the d+1 tree [21].

The optimal ordering of assignments in the MKP and MOKP is not as ob-
vious as they are for minimax, but the potential impact they can have is hard
to understate.
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3.3.7 Path-symmetry
Fukunaga introduced the concept of path-symmetry and a nogood in a follow-up
article [11] to the original bin-completion paper [10]. Considering a node N and
its siblings S1 . . . Sb, we say that every sibling Si that has been expanded before
N is a nogood with respect to each child, direct or indirect, of N. In Figure 3.2,
S1 is a nogood with respect to C1 and C2, since S1 is a sibling of C1 and C2’s
parent N, and has already been expanded. Since bin-completion is a depth first
search (DFS)-algorithm, every child of S1 has been exhaustively searched.

Figure 3.2: Example of a nogood

We define a path from some depth d1 to dm as the union of the bins at each
depth between d1 and dm. For instance, the path from N (d1) to C2 (dm) is {N,
C1, C2}. The path items are the union of the items in each of these bins.
We say that there is path symmetry with respect to a nogood Sd1 for some
possible bin assignment Cdm and the path items P from d1 to dm given that:

1. Every item in Sd1 is in P .

2. We can:

a) Feasibly assign the items that are in Sd1 to N

b) Assign the remaining items in (P \ Nitems) to the rest of the bins down
to dm with all the assignments being feasible.
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If a path symmetry exists we can prune the node Cdm , since it will achieve the
same total value as the already expanded nogood. Requirement b) essentially
involves solving an instance of the bin-packing problem, another NP-complete
problem, but which can be approximately solved with a heuristic like first-fit-
decreasing (FFD).

With subjective valuations one can no longer argue that the assignments are
symmetric given the above requirements, since the placement of an item im-
pacts the value added by that item. In fact, the only times symmetries like this
would appear under subjective valuations is if two or more agents have identical
valuations of a set of items. This can of course be the case, but path-symmetry
would be unable to prune nodes at low depths unless many agents shared the
same valuations for the many remaining items. With the utility of this opti-
mization being restricted to such niche cases, we have chosen not to implement
it in our algorithm.

3.4 ILP-solvers
We will later compare our algorithm to an ILP-solver, of which there are several.
The purpose of this section is to briefly introduce the basic concepts behind how
they work, in order to have an understanding of what differences in runtime may
stem from. To be clear, this is not how our own algorithm in implemented.

ILP-solvers generally rely on some sort of branch-and-bound to find the optimal
solution. They work by dropping the integrality constraint (which requires that
the decision variables be integers), and solving the associated linear program
to obtain an upper bound. The fundamental theorem of linear programming
states that the maximum and minimum value of a feasible linear function which
is bounded below is found at the corners of the feasible polyhedron defined by
its constraints[24].

Recalling the visual example from section 2.8, this means that regardless of
what function z(x, y) is, so long as it is linear, the optimal solution will be in
one of the three corners. A candidate for finding the optimal solution amongst
the corners is the simplex algorithm. Describing the procedure in detail is be-
yond the scope of this thesis, but the important point is that the there exist
polynomial-time simplex algorithms [14]. This is important, because the num-
ber of corners grows very large when we have many variables, as in the MOKP.
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Once we have found the optimal solution to the relaxed non-integer linear pro-
gram in one of the corners, we have a valid upper bound for the ILP. If it so
happens that every decision variable in the optimal solution is an integer, we
have found the optimal solution to the original ILP. As with the previously
described upper bounds, we would like for these upper bounds to be as close
to the actual optimal solution as possible. In the scenario where the optimal
solution to the non-integer linear program was not an integer, we can introduce
cuts. These cuts are additional constraints which we add to the linear program
in hopes of reducing the feasible region. They are called cuts since the new
constraint can be thought of as introducing a plane to our polyhedron, creating
a smaller one.

One method for generating cuts is the knapsack cover. Considering the con-
straint:

3x2,1 + x2,2 + 4x2,3 ≤ 7

Where we have items whose costs are the coefficients of each xi,j (3, 1 and 4),
and knapsack 2, which has a capacity of 7. Clearly, every item can not fit in the
knapsack, since 3 + 1 + 4 = 8 > 7. This can be represented by adding another
constraint to the problem:

x2,1 + x2,2 + x2,3 ≤ 2

Since at most two of the items can be included in knapsack 2. We then draw a
plane representing the new constraint in our polyhedron, and thereby shrink it.
By iteratively adding such cuts, we can exclude more and more of the feasible
region, thereby finding optimal values to the non-integer LP which are closer
to the optimal value of the ILP. ILP-solvers utilize many different methods of
generating such cuts, as can be seen in figure 3.3. The eventual goal being to
get the feasible region of the LP as close to the convex hull as possible, since
the optimal solution then is guaranteed to be an integer solution by way of the
fundamental theorem of linear programming.
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Figure 3.3: Cut generators in the ILP-solver Cbc
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Chapter 4

Implementation
4.1 The Algorithm
The algorithm is implemented in Julia, and is available in its entirety at:
https://github.com/jorgstei/FairMulKnap. We describe it with pseudocode in
algorithm 1.

Lines 1-4 check whether we are at a leaf node in the tree, and whether the
solution we acquired is more optimal than the our current best.
Lines 6-8 are the Pisinger R2 reduction, described in 3.3.5. It returns the items
which it could remove from the instance, and if there were any we recurse with
the reduced set of items.
In lines 10-12 we calculate the surrogate-relaxed upper bound, which combines
the capacities of the bins into a single large bin, and solves a 0-1 knapsack
problem where the items have the value of the highest valuation among the
remaining bins.

The bound-and-bound procedure described in 3.3.2 happens in lines 13-17. By
first filling bin 1 optimally, then bin 2 with the remaining items and etc, we get
a set of feasible assignments to the bins. If it so happens that these assignments
have the same total value as our upper bound, the assignments are the optimal
solution, and we can avoid searching deeper.
Line 19 is responsible for picking the next bin to generate assignments for, which
is the remaining bin with the least capacity.
Line 20 generates the undominated assignments (section 3.3.4) for the bin, and
sorts them according to a value-ordering heuristic.

We loop through each assignment in 22-26, and solve a subproblem for each
without the assignment and the bin. The assignment which generated the best
total profit is then returned as the optimal choice for the bin. This propogates
up until we reach the root of the tree, and have the optimal solution to the
entire problem.
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Algorithm 1 MOKP-completion

Preprocessing(bins, items)
1 global best profit = 0
2 remove infeasible bins and items(bins, items)
3 sort items by max efficiency(items) /* If using R2 nosort */
4 search MOKP(bins, items, 0)

search MOKP(bins, items, sum profit)
1
2 if bins == ∅ or items == ∅
3 /* We are at a root node */
4 if sum profit > best profit
5 best profit = sum profit
6 return (sum profit, bins)
7
8 /* Run R2-reduction to get items which we can omit */
9 ri = r2 reduce(bins, items)

10 if ri ̸= ∅
11 return search MOKP(bins, items \ ri, sum profit)
12
13 upper bound = SMKP upper bound(bins, items)
14 if sum profit + upper bound ≤ best profit
15 /* Upper bound pruning */
16 return (−1, {})
17
18 /* MTM-version of bound-and-bound*/
19 lower bound = greedily fill bins(bins, items)
20 if lower bound.value == upper bound
21 if sum profit + lower bound.value > best profit
22 best profit = sum profit + lower bound.value
23 return (sum profit + lower bound.value, lower bound.assignments)
24
25 /* Get bin with least capacity */
26 B = select bin(bins)
27 /* Sort depends on value-ordering heuristic */
28 assignments = sort(generate undominated assignments(B, bins, items))
29 best assignment = {}
30 for A ∈ assignments
31 subproblem = search MOKP(bins \ B, items \ A, sum profit + B.value(A))
32 if subproblem.best value > best assignment.best value
33 best assignment.assignment = A
34 best assignment.best value = subproblem.best value
35 return best assignment
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Note that since none of the optimizations rely on symmetry between branches,
the algorithm is well-suited for multi-threading at essentially no cost.

4.2 JuMP algorithm
JuMP [8, 16] is a Julia framework for modeling mathematical optimization
problems, and solving them through external solvers. Cbc [4] is one such open-
source solver, implemented in C++, which can be used to solve mixed-integer
linear problems. The problems are formulated by defining the decision variables,
the optimization objective, and the constraints as shown in our implementation
in algorithm 2.

Algorithm 2 JuMP-program for MOKP in Julia
m = Model(Cbc.Optimizer) ▷ Init model

@variable(m, x[1 : nagents, 1 : nitems], binary = true) ▷ Init binary variable
@objective(m, Max, dot(values, x)) ▷ Define objective

for i in 1:nagents do ▷ Ensure no bin exceeds its capacity
@constraint(m, dot(weights[i, :], x[i, :]) ≤ capacities[i])

end for

for i in 1:nagents do ▷ Ensure no item is picked twice
@constraint(m, sum(x[:, i]) ≤ 1)

end for
optimize!(m) ▷ Solve
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Chapter 5

Experiments
After having implemented working versions of both our MOKP-solver and the
JuMP-program we wrote code to pseudo-randomly generate problem instances.
These functions take as input the number of knapsacks/items, in addition to
a range for values, weights and capacities. The experiments conducted and
presented in this article vary in number of agents and knapsacks, but have
constant ranges for values, weights and capacities.
These are:

1. Values: 1–30

2. Weights: 5–50

3. Capacity: 30–120

The rationale for these values was simply that they seemed somewhat reason-
able, and we wished to keep them constant to ensure some consistency between
the results. Note that it has been shown for the MKP that the difficulty of
solving instances scales with the number of significant digits in these values [20].

We ran experiments on instances with differing amounts of knapsacks and items
to get a wholistic understanding of the performance of the optimizations, but
the values chosen for the number of knapsacks and items were handpicked, due
to how rapidly the solving times scaled. Our understanding of performance
therefore generally came from running several experiments on different problem
types, e.g. different ratios of items to knapsacks, and then analyzing the results.

The implementations of the optimizations were made flexible in order to fa-
cilitate easy testing, so the optimizations were passed as arguments to the
search MOKP-function. A test consisted of a list of different versions of the
algorithm, in the form of a struct with the optimization options.
Each version of the algorithm was asked to solve the same instance for each
combination of number of items and knapsacks. The graphs presented in the
results section plot time against the number of knapsacks for a fixed number
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Algorithm 3 MOKP Options

struct MOKP Options()
1 individual vals::Bool
2 preprocess::Bool
3 reductions::Vector
4 compute upper bound::Function
5 validate upper bound::Bool
6 choose bin::Function
7 value ordering heuristic::Function
8 reverse value ordering heuristic::Bool
9 generate assignments::Function

10 is undominated::Function

of items. The items were also regenerated whenever the number of knapsacks
changed, such that although the number of items is the same in a graph, the
actual items differ in each datapoint.

To ensure accurate measurements of performance, even on small instances, we
used the “BenchmarkTools.jl” [6] package to solve the instances several times
when necessary, and return the mean time spent. This library does not re-
turn the result from the function itself, leading to us both benchmarking the
function and calling the function directly for each instance in order to ensure
parity in the results for the different optimization we were testing. This way we
could be relatively sure the implementation of the optimizations were not wrong.

The experiments were run on an 11th Gen Intel i7-1165G7 @ 2.8GHz, through
Windows Subsystem for Linux version 2 with Ubuntu 22.04.2. We used version
1.8.1 of Julia, and ran our algorithm on a single thread.
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Chapter 6

Results
To assess the efficacy of each optimization we will present some experimental
results for each, mentioning briefly in which types of instances the performance
gain seems to be the greatest. Unless otherwise stated, the different versions of
the algorithm preprocess the items and knapsacks, use SMKP upper bounds,
bound-and-bound, r2 reduction and undominated assignments. The default
value-ordering heuristic is min-cardinality, while the default choice for which
bin to fill is smallest capacity.

6.1 Assignments

6.1.1 The Loss of Maximal Assignments
To see the impact of having to consider non-maximal assignments, we solved
some MKP instances and compared the nodes explored with and without non-
maximal assignments.
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Figure 6.1: MKP instances, 20 items

As expected, the difference in the number of possible assignments to each bin
compounds to a massive difference in the number of nodes we are forced to
explore. Since the difference is so large, the graph is somewhat hard to read.
We have therefore included table 6.1, which shows the number of nodes explored
in each instance in the graph above.

Knapsacks 2 3 4 5 6 7 8 9 10
Maximal 65 1e4 2404 1838 1261 847 431 253 386

All 1120 1e5 4e4 3e5 9e4 4e5 4e5 1e6 1e6

Table 6.1: Maximal vs non-maximal, number of nodes
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6.1.2 Up-to-k vs All combinations
Whilst the up-to-k-optimization doesn’t allow us to explore fewer nodes, we
assumed the time saved at each node would produce a noticeable impact.

Figure 6.2: All combinations vs up-to-k, 16 items

For some instances however, the difference was barely noticeable. Although the
time saved by considering fewer combinations seems to consistently outweigh the
extra cost of sorting the items, it barely seems worthwhile for smaller instances.
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Figure 6.3: All combinations vs up-to-k, 24 items

The larger instances showed very different results. The efficacy of the up-to-k
approach scales significantly with the number of items in the instance, again
consistently outperforming checking all combinations, and even taking as little
as 1/20th of the time in certain instances.

Especially for instances with many items and where the sizes of the assign-
ments are small, e.g. due to large items or small bins, a massive number of
combinations must be considered at each level in the tree, exacerbating the
differences in runtime.

6.1.3 Up-to-k vs Undominated
We performed the same tests comparing up-to-k to our method for generat-
ing undominated assignments with a binary tree. In addition, we tested the
undominated approach with no domination criteria (“all undominated” in the
following graphs), in order to see how much of the performance difference can be
attributed to the alternate method for generating assignments, and how effective
the domination criteria is.
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Figure 6.4: Up-to-k vs Undominated, 16 items

Figure 6.5: Up-to-k vs Undominated, 24 items

Clearly the main improvement is the implementation of the domination criteria.
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Although the binary tree approach saves some time by itself, it is not nearly as
influential as the reduced amount of nodes we have to explore with help from
the domination criteria.

6.2 Upper Bounds
In order to be able to say something about the accuracy of the upper bounds
in the MKP in comparison to the MOKP, we ran some tests comparing the
surrogate upper bound computed at the root node to the optimal value of the
problem. We generated 100 instances for each combination of number of items
and knapsacks, and averaged the ratio between the root upper bound and the
optimal value. Both models solved the same instance each time, with the MKP-
version considering the valuations of the first bin to be the objective valuations
for each item. In figure 6.6 the ratio between the root upper bound and the
optimal solution is presented as the number of 1/100’s over 1. So 5 means 1.005,
while 65 means 1.065 etc. MKP is on the left, while MOKP is on the right.

Figure 6.6: Objective valuations / Subjective valuations

The MKP upper bound was consistently an order of magnitude more accurate
than the MOKP upper bound. The worst average accuracy for the MKP (14
items, 6 bins) was an overestimation of 0.6%. Meanwhile, the MOKP upper
bound overestimated the same combination by 9%.

On average across all the tests, the ratio between the root upper bound and
the actual optimal solution was 40 times higher for the SMOKP than it was for
the SMKP.
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6.3 Bound-and-Bound
Previous articles [10, 11, 20] report great efficacy of bound-and-bound, specif-
ically the Mulknap subset-sum approach, in cases with large ratios of items to
knapsacks n/m. Although we are utilizing the greedy approach of MTM in-
stead of subset-sum in order to conform with subjective valuations, we were
interested in seeing how much bound-and-bound would contribute considering
our less tight upper bounds.

(a) Nodes (b) Mean times

Figure 6.7: Bound-and-bound 2-5 knapsacks, 40 items

(a) Nodes (b) Mean times

Figure 6.8: Bound-and-bound 2-6 knapsacks, 35 items

In certain instances with large number of item-to-knapsack ratios we see lit-
tle improvement over omitting bound-and-bound altogether. Considering the
looseness of the upper bounds we derive, this is not surprising, as the upper
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bounds are often quite a bit higher than the best possible solution. It does how-
ever seem like bound-and-bound has something going for it, even with the looser
bounds. Bound-and-bound only serves to slow down the algorithm if the upper
bounds are infeasible to attain, but the upper bounds we derive seem to be tight
enough in certain subproblems in the tree to still enable bound-and-bound to
prune a respectable amount of nodes.

6.4 R2 reduction
As mentioned in the chapter on the R2 reduction procedure, an interesting
trade-off arises when adapting it to subjective valuations. We can derive tighter
upper bounds by only considering the valuations of the knapsacks which have
not yet been filled, but this requires us to sort the items again each time we
fill a knapsack. We ran these experiments on 3 different versions, all with
undominated assignments. “Normal” has no implementation of R2 reduction,
“R2” is the R2 procedure where we sort the items based on the set of relevant
valuations at each node, while “R2 nosort” sorts the items once according to
efficiency based on the highest valuation for each item at the root, and keeps
that ordering throughout the rest of the search.

(a) Nodes (b) Mean times

Figure 6.9: R2 comparison 2-10 knapsacks

As we can see, the R2 nosort prunes a marginal amount of nodes compared to
R2 (R2 nosort overlaps with normal in the node-graph), but makes up for it in
instances with small ratios of items-to-knapsacks due to the reduced overhead
at each node. However, for larger ratios of items-to-knapsacks, R2 seems to
begin outperforming R2 nosort, due to exploring as few as half the amount of
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nodes as R2 nosort.

(a) Nodes (b) Mean times

Figure 6.10: R2 comparison 2-6 knapsacks, 24 items

6.5 Value-ordering heuristic
We tested 6 different value-ordering heuristics to deduce which order we ought
to explore the assignments in. These were based on 3 different heuristics: car-
dinality, weight and profit. Both a version which maximized the heuristic, and
a version which minimized it, was included in the experiments.
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Figure 6.11: Value ordering heuristics, 25 items

We found that among these, exploring the heaviest assignments first was the
most consistently well-performing heuristic. Considering Fukunaga and Korf
found min-cardinality to be the best value-ordering heuristic, we were surprised
to see max-cardinality to perform as well as it did in many scenarios. In many
of our tests max-cardinality actually performed better than min-cardinality, but
in some instances it turned out to be by far the worst heuristic, such as in figure
6.12.
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Figure 6.12: Value-ordering heuristics, 27 items

6.6 Ordering of bins
The ordering criteria we chose to test for the bins were smallest/largest capacity,
largest number of maximum valuations, and smallest capacity divided by n
maximum valuations. To refresh, by number of maximum valuations, we mean
the number of items for which the knapsack k had the highest valuation out of
all the remaining knapsacks.

nmaxk =
n∑

j=1
x =

{
1, if pk(j) = max1≤ i ≤m(pi(j))
0, otherwise

By smallest capacity divided by number of maximum valuations we mean:

min
1≤ i ≤m

( ci

nmaxi
)
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Figure 6.13: Bin ordering, 2-10 agents, 18 items

Filling the largest capacity bin first consistently performed the worst of the
orderings. In certain instances like the one in figure 6.13 with 10 agents, it
explored an order of magnitude more nodes than its competitors. We therefore
chose to exclude it from further experiments, as it severely slowed down the
data-gathering process.

(a) Nodes (b) Mean times

Figure 6.14: Bin ordering, 2-5 agents, 26 items

58



The reasoning behind the inclusion of the smallest capacity divided by n maxi-
mum valuations was to strike a balance between the apparent efficacy of small-
est capacity first, and the improved bounds gained by filling knapsacks with
inflated valuations early. While this ordering often did end up exploring fewer
nodes than smallest capacity first, the overhead from calculating the number
of max valuations for each remaining bin at each node seems to cancel out the
advantage gained.

6.7 Compared to ILP-solvers
Unfortunately the algorithm in its current implementation does not hold up to
the standards of current ILP-solvers.

Figure 6.15: Cbc vs MOKP algorithm
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Chapter 7

Discussion
We aimed to adapt the bin-completion algorithm such that it could solve what
we chose to call multiple opinionated knapsack problems. Having developed
theory on how existing optimizations for the MKP could be adapted to fit the
MOKP, we implemented the theory and did experiments to assess their efficacy.

7.1 MOKP vs MKP
The multiple opinionated knapsack problem is more complex and harder to solve
than the multiple knapsack problem simply by virtue of containing more rele-
vant variables. The MKP is a specific case of the MOKP, where the valuations
are identical amongst all the agents.

The branch-and-bound approach, whether bin- or item-based, utilized to find
the optimal solution to a multiple knapsack problem can be transformed to also
work for the MOKP. With no optimizations implemented, this process just re-
quires adjusting any calculation which involves the value of an item such that
it respects the valuation of the knapsack we are considering putting the item
into. To ensure the validity of a surrogate upper bound, we made the surrogate
knapsack value each item the same as the knapsack which values that item the
most.

A valuable insight in the branch-and-bound tree one generates for the MKP
is that since the placing of the items don’t affect the item’s value added, many
of the generated solutions produce the same total value. Exploiting this sym-
metry and pruning unnecessary duplicates is one of the biggest improvements
to exactly solving multiple knapsack problems with branch-and-bound in the
last 20 years [3]. Unfortunately, these symmetries are not present in the MOKP
except in the very few cases where the valuations of the relevant items coincide
for two or more knapsacks. Although not studied in this thesis, the overhead
incurred by checking for such instances likely outweighs the benefits, unless one
plans to solve instances where knapsacks often have identical valuations.
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The rest of the traditional optimizations described in the literature are ap-
plicable to the MOKP, but are consistently weakened in the transition.

7.2 Upper Bounds and Their Consequences
The upper bound is the most essential pruning tool available for solving the
MKP with branch-and-bound, as it in addition to pruning many nodes by com-
paring it to the lower bound, also fuels other optimization techniques. The
usefulness of the upper bound scales rapidly with its tightness, mainly due to
the implementation of bound-and-bound. The bound-and-bound implemen-
tation of Mulknap has been shown to often be able to solve instances where
n/m ≥ 5 at the root node, not requiring any branch-and-bound search [11].
Unfortunately, the Mulknap approach of solving a series of subset sum prob-
lems is not applicable to the MOKP, and we therefore had to implement the
original bound-and-bound strategy proposed by Martello and Toth [17].

Our current best implementation of upper bounds is based on a surrogate relax-
ation where the knapsack’s capacities are combined, and the items take on the
value of their highest valuation. As mentioned in 3.3.1, the proof for the opti-
mality of constant multipliers by Martello and Toth [17] does not extend to the
MOKP, so there may exist better surrogate upper bounds by finding more opti-
mal multipliers. In section 6.2 we showed that the tightness of our SMKP upper
bound is significantly reduced in the MOKP compared to the MKP, especially at
the root node. In addition, the SMOKP upper bound more rarely matches the
optimal solution’s value, making the upper bound infeasible to attain, which is
detrimental to bound-and-bound as a concept. We see this reflected somewhat
in section 6.3, which reports minimal improvement with the implementation
of bound-and-bound in certain instances with large n/m. However, other in-
stances with slightly smaller n/m benefitted much more from bound-and-bound.

Another optimization which relies on deriving upper bounds is Pisinger’s R2
reduction [20]. It combines a surrogate relaxation of the knapsacks with a lin-
ear relaxation of the break item to derive an upper bound for a partial solution
which includes some item k. This upper bound is used to decide whether k
can be present in any later assignment, given the assignments we have already
chosen at that node, and still have a chance to beat our current best solution.
Experimentally we found some decent improvement with the implementation of
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R2, especially for instances with large ratios of n/m.

7.3 Assignments
With the help of a counterexample in section 3.3.3 we showed that the opti-
mal assignments in the MOKP are not guaranteed to be maximal. As shown
in 6.1.1, where we compared the nodes explored when including non-maximal
assignments to their exclusion, this negative result has significant impact on the
number of assignments generated at each node. This is the source of much of
the increase in difficulty we observe when transitioning from the MKP to the
MOKP.

While the domination criteria for the MKP is not suitable for the MOKP, we
proposed a new domination criteria for the MOKP, and proved the necessity
of each sub-criteria. Although it is weaker than the domination criteria for the
MKP, section 6.1.3 showed very promising results, especially on larger instances.
The performance gain can almost exclusively be attributed to the domination
criteria. While the binary tree approach for generating feasible assignments is
slightly faster than generating every assignment of length up-to-k, the version in
which we omitted the domination criteria did not compare to the one including
it.

Although briefly discussed, we did not implement any form of incrementally
generated assignments. The reason for this is twofold. Firstly, the issue of
the algorithm spending too much time at each node generating possible assign-
ments is not as severe for us as it was for Fukunaga and Korf [10]. Due to both
the increased complexity of the MOKP, and likely suboptimal implementation
of aspects of our algorithm, we are unable to solve instances large enough to
have an obscene amount of undominated and feasible assignments. Secondly,
as discussed in the previous section the efficacy of bound-and-bound is severely
limited due to our less tight upper bounds. The motivation behind incremen-
tally generated assignments is to more quickly reach leaf nodes, and hopefully
use bound-and-bound to find an optimal solution which allows us to backtrack
and never consider the assignments we haven’t generated yet. With our version
of bound-and-bound being so ineffective for the MOKP, this optimization is
unlikely to produce great results.
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7.4 Ordering
As shown in sections 6.6 and 3.3.6 both the order in which we explore assign-
ments, and the order in which we fill the bins, can have large consequences for
the amount of nodes we need to explore.

Our intuition that filling knapsacks which value many items highly first to
achieve more accurate upper bounds did not seem to outperform the previ-
ously established smallest capacity first ordering. The attempt at merging the
two measures was more competitive, exploring less nodes than just smallest ca-
pacity first, but lost much of its efficacy to the increased overhead at each node.

A key insight which we failed to implement in time is that the overhead of
calculating which bin to assign items to at each node can be moved to the pre-
processing stage, given that the heuristic does not rely on the items, e.g. smallest
capacity. This is an advantage of bin-based trees as opposed to item-based ones.
Since a knapsack is never partially filled, we never need to recalculate its re-
maining capacity. By precalculating the order of the bins and instead passing it
as an argument in the recursive function, we can presumably save a respectable
amount of processing time at each node.

This insight also allows for less overhead for the R2 reduction, since we can
sort the items by efficiency at the preprocessing stage, once for each combina-
tion of remaining bins we will encounter. Assuming we will fill the bins in the
order [1, 3, 2], we would only need to sort the items 3 times:

items{2} = sort(p2j

wj
)

items{3,2} = sort( max
i∈{3,2}

(pij

wj
)),

items{1,3,2} = sort( max
i∈{1,3,2}

(pij

wj
)),

We could pass an array of all the sorted arrays to the algorithm, index it by
how many bins we have to left, and create a new array with the same ordering
which only contains the remaining items.

The value-ordering heuristic for the assignments was one of the less clear-cut
results we obtained. We observed max weight to be a solid candidate, which
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makes sense considering that we would expect assignments which utilize as much
space as possible within a bin to generally be decent solutions. However, the
heuristics seemed to be very sensitive to changes in the instances, making it
hard to confidently assert an optimal choice.

This remains an area for others to explore, perhaps with heuristics more suited
to the MOKP specifically. The notion of comparing the value gained from an
item in the current knapsack to its maximum valuation among the remaining
knapsacks turned out to be an effective part of the domination criteria discussed
earlier. The same notion may for example be an applicable heuristic for the as-
signments, providing a more nuanced concept of which assignments are likely
to be optimal.

7.5 ILP-solvers
We found that our current implementation of the algorithm does not come close
to competing with open-source ILP-solvers. There could be multitudes of rea-
sons for this. Cbc has been developed and maintained by a much larger group
of people over a longer period of time, and is therefore much more optimized.
Our Julia implementation is far from as optimized as possible, which could con-
tribute to some of the difference in runtime.

All the different techniques Cbc uses to solve ILP’s is beyond the scope of
this thesis, but are naturally an important factor. Comparing the nodes ex-
plored by Cbc to our own solution proved difficult, as it often reports having
enumerated 0 nodes after explicitly reporting finding a new best solution by
branch-and-bound. As it stands, it seems the multiple cutting techniques it
deploys to reduce the set of feasible solutions to the linear relaxation of the
problem are very effective in limiting the number of nodes one has to explore
in B&B. Considering our version of the surrogate relaxation is not proveably
better than the linear relaxation, the more sophisticated techniques that have
been developed to tighten the linear relaxation may be a determining factor.
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Chapter 8

Conclusion
We set out to adapt known optimization strategies for the MKP to the MOKP,
where items are valued differently by each knapsack. A bin-based branch-and-
bound algorithm was presented and implemented in Julia, which managed to
incorporate versions of each optimization we considered, excluding the ones
that intrinsically relied on objective valuations. Specifically, these were path-
symmetry and the subset sum version of bound-and-bound.

The increased complexity of the MOKP weakened the contribution of each
optimization to differing degrees. Due to less tight upper bounds, the bound-
and-bound technique, which has significant impact in the MKP, was deemed
essentially worthless. Both R2 reduction and the normal upper bound pruning,
which also rely on upper bounds, suffered as well, but still remained valueable
strategies. Ways of deriving tigther upper bounds are the main insufficiency of
the proposed algorithm, and would go a long way towards optimizing it.

We proved that optimal assignments in the MOKP are not necessarily max-
imal assignments, and demonstrated the severe effect this has on the number
of assignments one must consider. To combat this a new domination criteria
was presented for the MOKP, which proved to be a very valueable inclusion.
Even with all of these optimizations we were unable to compete with the highly
optimized ILP-solver Cbc, which solved the problem instances in significantly
less time.

Regarding the algortihm’s relevance to fair allocation, we found that some of
the optimization concepts, such as bound-and-bound, can be adapted to fit
non-linear optimization goals such as maximum NSW, which ILP-solvers are
not designed for. Adjustments to the derivation of upper bounds are required,
but branch-and-bound remains a viable method for solving such scenarios as
well.
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Chapter 9

Further Work
As previously mentioned, the main way to improve the algorithm is by look-
ing for better ways to calculate upper bounds. A missing component of our
algorithm that has shown promise in other applications [10, 22] is incrementally
generated completions. Whilst we currently doubt its contribution somewhat
considering the reduced effectiveness of bound-and-bound, testing whether it
grants any improvement in this context may be a worthwhile endeavor after
improving the upper bounds.

The initial inspiration for this project was for it to be a contribution to the
field of fair allocation. Whilst we didn’t get as far with this as we would have
liked, the expansion of optimization techniques for the MKP to general assign-
ment problems with individual valuations and the discussion of their further
expansion to budget-constrained fairness scenarios hopefully leaves a clear path
for further work.

In order to relate the algorithm to fair allocation, one could for instance ex-
periment with changing the maximization goal to something like egalitarian or
utilitarian social welfare, or include a constraint which requires the solution to
satisfy some α-MMS for each agent. Perhaps the easiest to implement would be
the maximum Nash social welfare, where one attempts to maximize the product
of values instead of the sum, although this has already been explored by Wu et
al. [25].

There are also several intriguing open questions remaining in budget-constrained
fair allocation, including the existence and computation of EF-1 guarantees un-
der identical valuations, and what MMS and proportionality guarantees can be
provided by a Max-NSW allocation. Note that it has been proved that for in-
dividual valuations and m ≥ 3 agents, there is always a possible set of items
which result in no allocation satisfying the MMS-requirements of every agent
[15].
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9.1 Definition of MMS under budget constraints
Under budget constraints the definition of MMS is not immediately obvious,
and we are yet to find one proposed in the literature. Due to the variance in
agents’ budgets, agents may become envious of a bundle which they cannot af-
ford themselves. There are several possibilities for such a definition, but which
one is best boils down to what one expects from an MMS-share. One such qual-
ity, and why it is often useful especially in constrained scenarios, is its ability to
adapt to the shrinking set of feasible solutions, i.e. it is a more realistic expec-
tation than proportionality. At the same time, if one relaxes the fairness notion
too much, it can hardly be said to be a useful measure of how fair an allocation
is. Additionally, one could always simply scale the fairness notion some with
some 0 ≤ α ≤ 1 to relax the requirement of each agent.

We will present some ideas for a definition of MMS under budget constraints,
but leave the choice of which is better suited to future studies:

1. Assume that every other agent has the same budget as the agent we are
currently calculating the MMS-value of.

2. Calculate the MMS-value for an agent based a feasible allocation that
respects the actual budgets of the other agents.

3. Respect all the budgets, and scale the value of an assignment to an agent
j with the ratio between the budgets of the agent we are calculating the
MMS-value for i, and j.

Number 3. is essentially the notion of WMMS introduced by Farhadi et al. in
[9] for instances where agents have differing entitlements to the pot of items,
which is a possible way of thinking about budget constraints. It may therefore
be the most natural candidate, as to align with the related field.

67



References
[1] Siddharth Barman, Arindam Khan, Sudarshan Shyam, and K. V. N.

Sreenivas. Finding Fair Allocations under Budget Constraints. Mar. 17,
2023. arXiv: 2208.08168[cs]. url: http://arxiv.org/abs/2208.08168
(visited on 05/24/2023).
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Appendix
This appendix contains a wider selection of results than we were able to fit in
the results section. They are grouped by which optimization they relate to, and
contain both mean time spent and nodes explored for each. The code for our
implementation is not included here, but is retrieveable at
https://github.com/jorgstei/FairMulKnap.
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Upper bounds
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With and without bound-and-bound
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R2 reduction
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Bin ordering
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Value-ordering heuristics
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