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Abstract

The field of Neural Radiance Fields (NeRF) has experienced a surge in research
and development over the past years, with significant enhancements to model
performance and an increasing scope of application areas. Amidst this growth, the
use of NeRFs in Autonomous Driving (AD) systems has emerged as a promising
area of exploration, as NeRFs can enable the generation of photorealistic edge
case scenarios and an environment to evaluate systems for AD.

The primary research goal of this thesis is to design and develop an end-to-end
pipeline for generating NeRFs, leveraging vehicle-captured video sequences and
corresponding camera poses with varying degrees of accuracy.

Initially, a data capture pipeline is created for CARLA, providing synthetic data
from a controlled environment. Connecting this data capture pipeline with a NeRF
pipeline facilitates the creation of a performance baseline for further experiments.
Having established a baseline and an end-to-end pipeline, the thesis explores
large-scale NeRF approaches and implements a performant prototype. Finally, the
pipeline is extended to enable the input of real data captured by a specialized vehi-
cle with accurate Global Navigation Satellite System (GNSS) and high-resolution
cameras.

Most of the findings from the experiments are consistent across synthetic and
real data; the configuration of the data-capture significantly affects the data and
the resulting NeRF’s quality; a large-scale approach where a scene is learned by
multiple smaller NeRFs, contrary to a single NeRF, performs better; joint camera
pose optimization efficiently reduces the impact of imperfect camera poses, but
approximating the poses with Structure from Motion (SfM) a priori demonstrates
superior results.

Wrapping up, the application of rendering novel views for generating data from
edge case scenarios is investigated. Although the renderings don’t match the orig-
inal images’ quality, they are largely successful in producing clear and structurally
accurate renderings. This reaffirms NeRFs’ effectiveness and potential for AD ap-
plications.
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Sammendrag

Neural Radiance Fields (NeRF) har opplevd en omfattende vekst i forskning og
utvikling de siste årene, med betydelige fremskritt innen modellprestasjon og en
økende rekkevidde av bruksområder. En av de lovende anvendelsene er innen
autonome kjøretøy, hvor NeRFs blant annet kan benyttes til å generere simulerte
miljøer for evaluering av autonome kjøretøy og til å skape fotorealistiske datasett
av sjeldne scenarier.

Denne masteroppgaven har som hovedmål å designe og utvikle en ende-til-ende-
pipeline for generering av NeRFs, ved å bruke videosekvenser fra kjøretøy og
tilhørende kameraposisjoner av varierende nøyaktighetsgrad.

Først etableres en datainnsamlings-pipeline for CARLA, som gir tilgang til syn-
tetiske data fra et kontrollert miljø. Ved å integrere denne pipelinen med en NeRF-
pipeline har man en ende-til-ende-pipeline for generering av NeRFs som iterativt
kan konfigureres for å danne et utgangspunkt for videre eksperimenter. Etter å
ha etablert et utgangspunkt utforskes tilnærminger for stor-skala NeRF og det
implementeres en fungererende prototype. Pipelinen utvides deretter til å kunne
håndtere ekte data fra et spesialisert kjøretøy utstyrt med nøyaktig GNSS og høy-
oppløselige kameraer.

Resultatene er stort sett konsistente mellom syntetiske og ekte data; konfigurasjo-
nen av datainnsamlingen har en betydelig innvirkning på kvaliteten av både dataene
og den resulterende NeRF-modellen; en tilnærming som involverer flere mindre
NeRF-modeller i stedet for én stor NeRF-modell, viser seg å være mer effektiv
for å lære en scene i stor skala; parallell optimalisering av kameraposisjonen
reduserer effekten av uperfekte kameraposisjoner, men forhåndsprosessering av
kameraposisjonene med Structure-from-Motion (SfM) verktøy gir overlegne re-
sultater.

Avslutningsvis undersøkes anvendelsen for å generere bilder fra usette, spesielle
scenarier. Til tross for at de genererte bildene ikke gjenspeiler samme kvalitet som
de originale bildene er de i stor grad vellykkede i å produsere klare og strukturelt
nøyaktige gjengivelser. Dette bekrefter NeRF sitt potensiale i anvendelser for au-
tonome kjøretøy.
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Chapter 1

Introduction

1.1 Motivation

The field of Neural Radiance Fields (NeRF) has experienced a surge in research
and development over the past years, with models becoming exponentially better
and more performant [1]. These models have demonstrated impressive, photo-
realistic reconstruction and novel view synthesis of 3D scenes, given a set of posed
2D camera images. This surge in research has opened up new frontiers in many ap-
plications including the expansion of mapping and navigation capabilities (Google
Immersive View1), computer graphics and visual effects (Volinga2), asset creation
(Luma AI3), and AD (Wayve4).

Looking further into the realm of AD, one area of application that could benefit
from these advances stands out. The evaluation of AD systems often involves the
re-simulation of scenarios that have been encountered in the past. Yet, the vehi-
cle’s path could be altered by even the slightest divergence from the original in-
cident, thus necessitating high-quality rendering of novel views along the altered
trajectory [2]. Wayve, a pioneer in the autonomous vehicle industry, has already
integrated NeRF technology into their system for the purpose of rendering novel
views along altered paths. However, as with most commercial applications, their
tools and code remain proprietary leaving them inaccessible for wider research
purposes.

In order to explore the use of NeRFs in applications such as AD that could benefit
from the generation of high-quality renders of novel views, this thesis seeks to
design and develop an end-to-end pipeline capable of capturing data from a scene,
and subsequently generating a NeRF representing the same scene.

1https://blog.google/products/maps/three-maps-updates-io-2022/
2https://volinga.ai/
3https://lumalabs.ai/
4https://wayve.ai/neural-rendering/
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The first part of the project focuses on creating a data capture pipeline for a vehicle
in a controllable environment. Having created a pipeline for data capture, it is
connected to a pipeline for training, rendering, and evaluating NeRFs. The end-to-
end pipeline is then used to configure the data capture and NeRF-settings in order
to obtain a performance baseline. Further experiments investigating approaches
to deal with noise or increasing scene-size is conducted, before the pipeline is
extended to enable input of real data.

1.2 Goal and Research Questions

The primary research goal of this thesis is to design and develop an end-to-end
pipeline for generating NeRFs, leveraging vehicle-captured video sequences and
corresponding camera poses with varying degrees of accuracy. In order to achieve
this goal, four research questions were posed:

RQ 1: What are the critical factors that need to be considered when capturing
data for training NeRF models, and how do they impact the performance
of the resulting models?

RQ 2: How does the initial camera pose accuracy and segment length impact
the final reconstruction? Can rough initial camera poses be optimized to
achieve comparable results to those obtained from tools such as COLMAP?

RQ 3: How do different NeRF methods (Instant-ngp [3], Mip-NeRF [4], Nerfacto
[5]) perform on unbounded scenes in terms of reconstruction quality and
computational efficiency?

RQ 4: What are the technical challenges and considerations for implementing a
functional approach for large-scale NeRF within the Nerfstudio API, and
how does it compare to approaches not optimized for large-scale in terms
of scalability, efficiency, and rendering quality?

1.3 Research Method

The chosen research method for this report is experimental research. The exper-
iments in this report will compare different methods, techniques, and configura-
tions used to capture and process data, and subsequently used to train NeRFs. Ob-
servation will be used for the quantitative and qualitative evaluation of the results.
The quantitative evaluation will span common image reconstruction quality met-
rics, whereas the qualitative assessment primarily will consist of analyzing video
rendering outputs looking for abnormalities or other interesting findings.
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1.4 Contributions

One of the primary contributions of this master’s thesis is the establishment of
a pipeline from CARLA [6] to Nerfstudio [7]. This pipeline serves as a tool for
conducting a variety of experiments, which could further be applied to real-world
scenarios. By permitting the manipulation of various experiment settings, such as
the camera setup, vehicle speed, route, and image resolution, this pipeline stream-
lines the process. Furthermore, the pipeline’s data output follows standard con-
ventions, thereby enabling the training of NeRFs on synthetic data captured in
CARLA. This consequently facilitates the refinement of settings to enhance the
resulting image synthesis based on the evaluation of the NeRF. Furthermore, the
pipeline is also extended to allow the input of real data captured by the NTNU
Autonomous Perception Lab (NAPLab) car [8].

In addition to the pipeline, this thesis introduces a baseline for NeRFs trained on
synthetic data captured in CARLA. This baseline can be used to augment both
the data capture and the NeRF models on synthetic data. It offers a platform for
experimenting with data capture and NeRF settings, and its evaluation metrics
(PSNR, SSIM, and LPIPS) align with those widely used in NeRF research, ensuring
comparability.

Another contribution lies in the development of a Proof of Concept (POC) for
large-scale NeRF approach with the Nerfstudio API. By creating a naive Block-
NeRF implementation, it demonstrates how such an approach can dramatically
enhance the quality of large-scale NeRFs. This POC provides a testing ground
for determining crucial parameters when capturing large-scale data for NeRFs,
such as the segment size, the overlap between the blocks, and image merging
techniques.

Lastly, the thesis includes the creation of a utility for generating side-by-side view
using FFMPEG[9]. This enables the creation of a comparative view of the rendered
NeRF and the ground truth. This addition not only facilitates the qualitative assess-
ment of the resulting NeRF but also enhances the overall analysis process.

1.5 Report Outline

Chapter 1 - Introduction: Presents the study’s motivation, goal, research method,
contributions, and research questions.

Chapter 2 - Background and Related Work: Provides an overview of prelimi-
nary methods, techniques, tools, frameworks, and metrics in order
to establish a common ground for successive chapters.

Chapter 3 - Methods: Provides details about the multi-stage process necessary
for the designed and developed end-to-end pipeline. Sections span
in-depth discussion and overview of the virtual environment, the data
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capture pipeline, the NeRF pipeline, the extension to large-scale scenes,
and lastly the extension from synthetic to real data.

Chapter 4 - Experiments and Results: Presents the conducted experiments and
subsequent results.

Chapter 5 - Discussion: Presents a detailed discussion of the results and their
implications in the context of the research questions.

Chapter 6 - Conclusion and Future Work: Summarizes the main findings of the
study and further suggests a direction for future work.



Chapter 2

Background and Related Work

The background chapter of this paper focuses on the use of NeRFs for representing
and rendering 3D scenes. The chapter discusses several important NeRF meth-
ods, including NeRF [10], Mip-NeRF [4], mip-NeRF 360 [11], Block-NeRF [2],
and Instant-ngp [3]. Additionally, the chapter covers several key techniques used
in the NeRF pipeline, including positional encoding, hierarchical sampling, strat-
ified sampling, appearance embeddings, learned pose refinement, and visibility
prediction.

The chapter also discusses the use of SfM and COLMAP [12] as important tools
for the pre-processing step in the NeRF pipeline, and presents several metrics
for evaluating NeRFs. By providing an overview of these methods, techniques,
tools, and metrics, the background chapter aims to establish a common ground
for future chapters.

This thesis assumes a foundational understanding of deep learning. A great re-
source for individuals looking to acquire such knowledge is the publication by
Goodfellow et al. [13].

Please note that, in order to cover the relevant background, some sections of the
following chapter have been adapted from my unpublished project work on NeRFs
for novel view synthesis and 3D reconstruction, which was completed as part of
the course “TDT4501 Computer Science, Specialization Project”.

2.1 Volume Rendering

Volume rendering is a powerful technique for visualizing 3D data sets, which is
frequently used in a variety of fields, including medical imaging, scientific visu-
alization, and computer graphics [14]. The method involves the projection of a
3D volume onto a 2D plane, leveraging algorithms where colors and opacities
are assigned to each point based on its physical characteristics, such as density

5
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or temperature. The resulting 2D image provides a representation of the entire
3D volume, allowing the user to visualize both the external and internal struc-
ture of the object. One of the main advantages of volume rendering is that it can
simulate complex volumetric effects that are challenging to model using tradi-
tional geometric primitives, such as points, lines, triangles, or polygon meshes.
Examples of such volumetric effects that may be better simulated with volume
rendering include fluids, clouds, flames, smoke, fog, and dust [15].

There are multiple ways of rendering a volume. Well-known techniques include
ray casting or raymarching [16], resampling or shear-warp [17], texture slicing
[18], and splitting [19]. The basic algorithm, depicted in Figure 2.1, can be broken
into four steps:

• Ray casting: Cast rays from the image plane into the volume. The volume
is often enclosed within a bounding primitive like a cuboid.
• Sampling: As the ray enters the volume, sample equally spaced points from

the volume. This equidistant sampling builds an intensity profile for the
ray; density per volume depth. In the general case where the volume is
not aligned with the ray’s direction, the sampling point will be positioned
in between voxels, and the values must be interpolated from its adjacent
voxels.
• Shading: Utilizing the generated intensity profile and a transfer function,

compute the RGB↵-color and an illumination-value gradient. The gradient
vector points in the direction of the greatest increase, indicating where the
most rapid increase in illumination is. The samples are colored with their
RGB↵ value and shaded according to the gradient vector and the location
of the scene’s light source.
• Compositing: The final color of the pixel is retrieved by compositing all the

shaded samples along the ray.

Figure 2.1: The four basic steps of volume rendering [20]. 1) A ray is cast from the
image plane into the volume. 2) Points in the volume are sampled. 3) The points
are shaded based on their RGB↵-value and the illumination-value gradients in
relationship with the local light source. 4) The final pixel color is obtained by
compositing all the shaded samples along the ray.
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2.2 Neural Fields

A neural field refers to a field that has been parameterized, either entirely or par-
tially, by an Artificial Neural Network (ANN). The field is a quantity that may be
defined for any set of temporal or spatial coordinates. By design, neural fields
are both continuous and adaptable. Neural fields are commonly parameterized as
Multilayer Perceptrons (MLPs) with gradient-defined activation functions [21].

A typical neural fields algorithm in visual computing would first, across space-
time, sample coordinates and feed them into an ANN to produce field quantities.
The field quantities are samples from the desired reconstruction domain of the
problem, which defines how we represent the world, such as a radiance field or
another appropriate representation. Then, we apply a forward map to relate the
reconstruction to the sensor domain, which defines how we observe the world,
such as through an RGB image. In the sensor domain, supervision is available and
we calculate the reconstruction error that guides the ANN optimization process by
comparing the reconstructed signal to the sensor measurement. Important parts
from the neural field algorithm are visualized in Figure 2.2.

Figure 2.2: A typical neural fields algorithm in visual computing. Inspired by
Figure 3 from Neural Fields in Visual Computing [21].

2.2.1 Neural Radiance Fields

The volumetric data we interact with through computer games, movies, and other
computer graphic applications, are predominantly represented by meshes. A mesh
is a collection of vertices, edges, and faces combined in order to define the shape of
objects. Meshes are easy to manipulate and interact with. Another common repre-
sentation of volume is voxels, where a 3D point in space is represented by a value,
for example a color. Both of these modeling techniques are explicit representations.
As we want to increase the resolution of a scene, we have to model increasingly
smaller regions of space, that is, increase the number of voxels/triangle-meshes
in the volume. This does not scale well as the memory requirements increase as
we increase the number of voxels/triangle-meshes. Due to memory constraints,
we have to find another way to represent the scene, instead of representing it as
explicit blocks or meshes in space. NeRF provides an implicit representation of the
scene by utilizing an MLP.
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NeRF is a neural volumetric representation. The name, neural radiance fields,
provides a clue as to what it is. It is a field, a space full of particles, where each
particle has a given radiance, a color emitted by the particle in a certain direction,
and the field is represented with an ANN. NeRF parameterizes 3D scenes as 3D
neural fields, mapping 3D coordinates to radiance and density. The 3D scene can
subsequently be rendered via volume rendering, as discussed in section 2.1.

2.2.2 Differentiable Rendering

NeRFs are made possible due to differentiable rendering, a major breakthrough
in 3D reconstruction. Differentiable rendering enables the rendering process to
be implemented in a way that is amenable to gradient-based optimization. This
in turn allows for the use of techniques such as backpropagation to optimize the
parameters of a scene in order to produce a desired visual result. It allows recon-
struction of 3D neural fields representing shape and/or appearance given only 2D
images, instead of 3D supervision. This is particularly valuable as 3D data is often
expensive to obtain, while 2D images are ubiquitous. As a result, non-experts can
become 3D content creators without the barrier of specialized hardware, which
has important social implications [21].

2.3 NeRF - Representing Scenes as Neural Radiance Fields
for View Synthesis

The first paper to present NeRFs was NeRF - Representing Scenes as Neural Radi-
ance Fields for View Synthesis [10]. NeRFs provide a method for reconstructing 3D
scenes and synthesizing novel views. Given multiple 2D images and their corre-
sponding camera poses, NeRF builds a dataset by sampling points in the volume.
The points in the dataset are passed through an MLP in order to predict the given
points’ density and color. The predicted density and color values are then compos-
ited into a final color which is compared to the reference image pixel’s color. The
MLP is optimized to minimize the difference between the predicted and reference
pixel color.

Given multiple 2D images and their corresponding camera poses, which can be
retrieved from calibrated camera rigs or approximated with SfM techniques as
will be discussed in section 2.4, NeRF builds a dataset by sampling points in the
volume. Points are sampled along a ray rrr(t) with origin o, the camera’s center of
projection, and viewing direction d. The sampling rate of significant parts of the
volumetric scene is increased with a technique called hierarchical sampling, which
will be discussed in section 2.3.

rrr(t) = ooo+ tddd (2.1)

Points (3D-coordinates) xxxk = rrr(tk), where tk 2 t, in conjunction with their view-
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ing direction dddk, make up the dataset in which the MLP is trained on. It has been
shown that MLPs have a hard time learning high-frequency signals given low-
dimensional input [22]. In order to remedy this, the points are normalized to lie
in the interval of [�1,1] and the signals’ dimensionality is increased by apply-
ing positional encoding. The dimensionality of the points and their corresponding
viewing directions are increased by applying �(·), shown in Equation 2.2. Posi-
tional encoding will be further explained in section 2.3.

�(p) = [sin(⇡p), cos(⇡p), ..., sin(2L�1⇡p), cos(2L�1⇡p)]T (2.2)

A predicted color can be obtained by passing the encoded 3D coordinate and its
corresponding encoded camera pose through the MLP denoted F✓ , where ✓ repre-
sents the network parameters. The output of F✓ is a 4D vector containing a color
RGB and a density �. In order to retain multiview consistency, NeRF first predicts
the volume density � as a function of only the location x. Subsequently, the RGB
color ccc is predicted as a function of both the location and viewing direction.

Using the points’ density� and color ccc we can approximate the volume rendering,
as discussed in section 2.1, to synthesize a novel view of the scene. The expected
color C(rrr) can be derived by Equation 2.3, which further can be approximated
with numerical quadrature as shown in Equation 2.4.

C(rrr) =
Z t f

tn

T (t)�(rrr(t))ccc(rrr(t),ddd)d t T (t) = exp

Ç
�
Z t f

tn

�(rrr(s))ds

å
(2.3)

Ĉ(rrr) =
X

i=1

Ti↵iccck, where Ti = exp (�
i�1X

j=1

� j� j), (2.4)

↵i = (1� e��i ), (2.5)

�i = ti+1 � ti (2.6)

The transmittance T (t) represents the probability that the ray will not intersect
any objects up to point t. �(rrr(t)) and c(rrr(t),ddd) represents the density and color
of point rrr(t), respectively.

Since volume rendering is differentiable, we optimize the loss between the syn-
thesized and ground truth observed image. This is done by calculating the total
squared error between the ground truth pixel colors C(rrr) and the synthesized
pixel color Ĉ(rrr) over all the rays rrr 2 R. This loss is called the photometric loss.
Both the coarse and fine networks, subscripted with c and f respectively and later
elaborated upon in section 2.3, are optimized over.

L =
X

rrr2R

î��Ĉc(rrr)� C(rrr)
��2

2 +
��Ĉ f (rrr)� C(rrr)
��2

2

ó
(2.7)



10 Støle, Ole A.: Developing End-to-End Pipeline for NeRF

Positional Encoding

Positional encoding is one of the many proposed encoding schemes, first intro-
duced in the original NeRF paper. It is a method used to increase the dimen-
sionality of an input vector, as it is shown that deep networks are biased toward
learning lower-frequency functions. It is important to note that positional encod-
ing in the context of NeRF is distinct from the positional encoding employed in
transformers.

Stratified sampling

Stratified sampling, illustrated in Figure 2.3, is a sampling method that has proven
benefits in machine learning as it helps prevent overfitting. The sampling method
can be broken into three steps:

• Partition the dataset into strata: In the case of NeRF, the rays are par-
titioned into equally sized bins where the points contained within a bin
xxx 2 [ti , ti + 1] along the ray rrr(t), comprises the respective stratum.
• Determine the number of samples to take from each stratum: The sam-

ple size from a stratum can vary based on predefined functions. Importance
sampling can be achieved by increasing the sample size in accordance with
a PDF.
• For each stratum, apply simple random sampling: Simple random sam-

pling is applied to each stratum to select a predefined number of points
randomly and with equal probability.

Figure 2.3: Illustration of stratified sampling. a) The ray is uniformly binned from
the near bound tn to the far bound t f of a ray r(t), defining the strata. b) A single
random point is randomly sampled from each stratum.

Hierarchical sampling

When training a NeRF, different sampling strategies can be utilized. The sampling
strategy is an important choice as it is core to how the dataset for the MLP is
constructed. The original NeRF paper [10] proposed the use of a sampling ap-
proach called hierarchical sampling. This method involves training two MLPs: a
coarse MLP and a fine MLP. During training, the coarse MLP employs stratified
sampling which involves uniform interval sampling within each bin along the ray.
The coarse MLP outputs a Probability Distribution Function (PDF) that highlights
the samples that significantly contribute to the final predicted RGB value. This PDF
is then passed to the fine MLP which sample points along the ray in accordance
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with the PDF. This strategy of having a coarse network predict the important ar-
eas to sample, that is the regions containing volume, facilitates the fine network
in generating improved predictions.

An overview of the NeRF pipeline can be viewed in Figure 2.4

Figure 2.4: Overview of the NeRF pipeline

2.4 COLMAP (Structure from Motion)

SfM is a technique for estimating 3D structures from sequences of 2D input im-
ages. Although some NeRF approaches have endeavored to eliminate the neces-
sity for pose supervision [23][24], accurate camera poses are typically a strict re-
quirement in most NeRF methods. As a result, SfM techniques may be employed
as a preprocessing mechanism for retrieving the camera poses of the input im-
ages.

COLMAP is a general-purpose SfM [12] and Multi-View Stereo (MVS) [25] pipeline.
The general overview of the pipeline contains the following steps:

1. Feature detection and extraction
2. Feature matching and geometric verification
3. Structure and motion reconstruction

During the first step, Scale-Invariant Feature Transform (SIFT) [26] is used to
extract features in the images. This algorithm finds sparse feature points in the
image and describes their appearances using numerical descriptors.

During the second step, features are matched. Correspondences between the fea-
ture points are matched across different images, leveraging feature matching and
geometric verification. There are different options for matching algorithms, some
presented in Table 2.1. Exhaustive matching would match every image against ev-
ery other image, leading to the best reconstruction results. The time complexity
is not an issue if the number of images is relatively low (several hundreds). An-
other option is sequential matching which is useful if the captured images are in
sequential order, for example, if they are sampled from a video.
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During the third step, structure and motion is reconstructed. First, COLMAP will
generate a sparse reconstruction of the scene, extracting the camera poses. The
sparse output serves as input to the MVS to recover a dense representation of the
scene. The dense representation estimates the dense surfaces. In NeRF-applications,
COLMAP is primarily used as a preprocessing step for retrieving the camera poses
of input images. Because of this, the pipeline is usually ceased after the sparse
reconstruction.

Table 2.1: An overview of the time and memory complexities of a selection of
COLMAP matching algorithms. For sequential matching k is the number of adja-
cent images each image n is matched against. For Vocabulary tree-based match-
ing, k is the number of top-retrieved images that each image n is matched against.

Matching algorithm Time complexity Space complexity
Exhaustive O(n2) O(n2)
Sequential O(nk) O(nk)
Vocabulary Tree O(n2) O(nk)

2.5 Nerfstudio

Since the publication of the original NeRF paper [10], a multitude of different
methods regarding NeRF has been published. With the magnitude of published
methods, some with corresponding source code and some not, it is not trivial
to compare them on self-captured data. Nerfstudio [7] is an open-source frame-
work/API that streamlines the process, training, evaluation, and rendering of
NeRFs. The components that make up NeRFs are modularized in a way that al-
lows interpretable implementation of different NeRF methods. In addition, Nerf-
studio ships with implemented versions of some of the most important published
methods to date for real-world captures. The core concepts within Nerfstudio are
presented in Figure 2.5.

2.6 CARLA

CARLA [6] is an open-source simulator for AD research which enables the capture
of synthetic data in a controllable and programmable environment. Its highly cus-
tomizable simulation environment allows for the creation and testing of a wide
range of driving scenarios and conditions. CARLA includes a variety of sensors,
such as cameras, Light Detection and Ranging (LiDAR), and Global Positioning
System (GPS)/GNSS, which can be used to collect both visual and non-visual
data. We can interact with the CARLA simulator via a Python API, which allows
for the control of vehicle position, orientation, and most other behaviors within
the simulation. This flexibility enables the generation of diverse and realistic data,
making CARLA, among many other things, a powerful tool for the development
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Figure 2.5: The components of the Nerfstudio pipeline. DataManagers process
input images into bundles of rays (RayBundles) that are rendered by the Model
to produce a set of NeRF outputs (RayOutputs). A dictionary of losses supervises
the pipeline. Figure and caption adapted from Figure 2 in Nerfstudio: A Modular
Framework for Neural Radiance Field Development [5].

and testing of data capture pipelines. Data captured from CARLA can be seen in
Figure 2.6.

Figure 2.6: A screenshot from a simulation in the CARLA environment where a
car has been equipped with three cameras rotated at different angles. The output
from the mounted cameras have been horizontally stacked and rendered with
OpenCV [27].

2.7 Evaluating NeRFs

Evaluating the quality of NeRFs is a difficult task due to the visual nature of the
modality. Once a NeRF is trained, it is typically employed to render an image, mak-
ing image similarity metrics the most critical measure for evaluating NeRF quality.
The evaluation of image similarity has been a persistent challenge in computer
graphics, but the following metrics are commonly used throughout most papers
comparing NeRFs [28].
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2.7.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is a common measure for quantifying reconstruction quality for images and
videos. It builds upon Mean Squared Error (MSE) which measures the absolute
difference between each pixel in two images I1 and I2.

PSNR= 20 · log10

Å
MAXIp

MSE

ã
, where (2.8)

MSE=
1

mn

m�1X

i=0

n�1X

j=0

[I1(i, j)� I2(i, j)]2 , (2.9)

and MAXI represents the dynamic range of an image; the largest range of pixel
values that the picture may contain. This is 255 when pixels are represented with 8
bits per sample. In more general terms, MAXI is 2B�1 when samples are recorded
with B bits per sample. Due to the high dynamic range of many signals, PSNR is
typically expressed as a logarithmic number using the decibel (dB) scale.

2.7.2 Structural Similarity (SSIM)

While MSE and PSNR are effective measures of reconstruction error, they do not
evaluate an image in the same manner as humans. Rather than comparing pixel
values in order to conclude if two images are similar, humans assess images holis-
tically. SSIM attempts to replicate this approach by comparing an image’s lumi-
nance l, contrast c, and structure s between two windows xxx and yyy of a common
size N ⇥ N .

SSIM(xxx , yyy) = l(xxx , yyy)↵ · c(xxx , yyy)� · s(xxx , yyy)� with ↵,� ,�= 1 (2.10)

=
(2µxµy + c1)(2�x y + c2)
(µ2

x +µ2
y + c1)(�2

x +�2
y + c2)

(2.11)

SSIM is bounded by �1 SSIM 1 where 1 implies perfect correlation, 0 implies
no similarity, and �1 implies perfect anti-correlation.

2.7.3 Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS [29] is a perceptual similarity metric based on deep network activations.
Unlike MSE, PSNR and SSIM which uses relatively shallow functions in order
to determine similarity across images, LPIPS leverages deep neural networks to
obtain a metric that perceives similarity in a way that is similar to humans.

The dataset used to train LPIPS includes two types of perceptual judgments; Two
Alternative Forced Choice (2AFC) and Just Noticeable Differences (JND). In 2AFC,
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people were asked to select which of two distorted images was “closer” to the
reference, while in JND, people were presented with two image patches, one ref-
erence and one distorted, and asked if they were the same. Some samples from
the dataset is depicted in Figure 2.7. By training on this dataset, LPIPS is able to
capture higher-level features of images that are more relevant to human percep-
tion, such as object shapes and textures. This makes it a more effective similarity
metric than traditional metrics like MSE, PSNR, and SSIM. Image patches with a
low LPIPS score are perceptually similar.

Figure 2.7: LPIPS is trained to perceive image similarity the same way humans
do. The dataset used to train the similarity metric contains two types of perceptual
judgments; 2AFC and JND. Figure 1 from LPIPS [29].

2.8 Related Work

Since the publication of the original NeRF paper, there has been a surge of re-
lated papers proposing new methods, techniques, and applications. This section
covers some of the significant NeRF methods, including more specific work on the
application of NeRF on vehicle-captured data.

2.8.1 Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neu-
ral Radiance Fields

NeRF demonstrates impressive performance when the training and evaluation im-
ages are captured at similar distances from the scene, without the need to account
for scale or aliasing effects. When you add more cameras, pulled away from the
scene, NeRF starts to deteriorate because it is a single-scale model now trying to
solve a multi-scale problem. As a consequence, renderings from the NeRF exhibit
aliasing artifacts in distant views and excessive blur in close-up views.

A solution to this problem would be to adopt a technique that is used in offline
ray tracing, supersampling. With supersampling, we would march multiple rays
through the same pixel’s footprint. This technique does not resolve the issue of
aliasing effects, but it does result in improved visual quality of the rendered image.
However, doing so would be very computationally expensive and it would further
increase the lengthy training times of NeRF, which already relies on querying an
underlying MLP hundreds of times for a single ray.
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Another sampling strategy apart from casting rays through each pixels’ footprint
would be to cast a cone, as seen in Figure 2.8. The cone’s radius is determined
by the size of the pixel’s footprint on the image plane, thereby enabling the cone
to model the whole volume of space visible by the pixel. When the pixel’s cone is
rendered, all the content within that visible volume will be averaged out, instead
of rendering out whatever intersects with the infinitely narrow ray cast by NeRF.
The cone is divided into conical frustums. The frustums are approximated with a
multivariate Gaussian since they are easier to manipulate and have a closed-form
solution.

Instead of positionally encoding a single point along the ray, we compute the ex-
pected positional encoding with respect to the constructed Gaussian. With this
encoding, Mip-NeRF is able to reason about the scale of its input by analyzing
the scale of the encodings. This allows the model to understand the difference
between small and large volumes. This encoding scheme is called Integrated Posi-
tional Encoding (IPE), and has a simple closed-form solution that can be computed
quickly.

Figure 2.8: A comparison of sampling strategies. NeRF (a) samples points along
rays traced through each pixel before positionally encoding the points. Mip-NeRF
(b) cast cones through the pixels’ footprint and into the volume before applying
IPE. Figure 1 from Mip-NeRF [4].

This method draws inspiration from mipmapping [30], a technique traditionally
used in computer graphics pipelines to mitigate aliasing artifacts. Mipmapping
involves generating a pre-filtered set of discretely downsampled signals, typically
images, which accelerates rendering by shifting the responsibility of anti-aliasing
to a pre-computation phase. Mip-NeRF extends NeRF to simultaneously repre-
sent the pre-filtered radiance field for a continuous space of scales, thereof "Mip-
NeRF".

Figure 2.9 provides an overview of the Mip-NeRF pipeline. The primary distinction
from the NeRF pipeline, as depicted in Figure 2.4, is the incorporation of the Mip-
NeRF field, which utilizes IPE.
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Figure 2.9: Overview of the Mip-NeRF [4] pipeline.

2.8.2 Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Mip-NeRF introduces several valuable techniques for advancing the capabilities of
NeRFs. However, the techniques are primarily focused on forward-facing scenes
[31] as opposed to unbounded scenes that are object-centric, featuring elaborate
backgrounds and images captured from 360� around the object. To extend the
capabilities of Mip-NeRF to unbounded scenes, Mip-NeRF 360 [11] proposes three
primary techniques, which are covered in this subsection.

Representation

The first challenge with extending Mip-NeRF to unbounded scenes is that such
scenes are large, but Mip-NeRF requires a bounded domain. Mip-NeRF handles
scenes unbounded in one direction by warping the space into projective space,
Normalized Device Coordinates (NDC), but the challenge arises when the scene
is unbounded in all directions. A solution is to apply a Kalman-like warp to Mip-
NeRF Gaussians in order to warp the Mip-NeRF into non-Euclidean space. All the
Gaussians outside a sphere of radius one will smoothly be warped into a non-
euclidean space within a sphere of radius two. This non-Euclidean space is used
to represent the input to the MLP.

Efficiency

Expanding a bounded scene to an unbounded scene results in larger scenes that
require a more substantial network capacity. However, using a large MLP is too
expensive given that it has to be queried hundreds of times for a single ray. A solu-
tion is to distill scene geometry from a large NeRF MLP into a small proposal MLP
while training. The proposal MLP will only output a set of weights, no colors. By
feeding a set of location points through the proposal MLP, the outputted weights
can then be used as a PDF to resample the ray, similar to how the coarse network
in hierarchical sampling guides the fine network’s sampling. The resampled points
are then used to render a color, which as normal is supervised with photometric
loss. Rather than supervising the proposal MLP to accurately reconstruct the im-



18 Støle, Ole A.: Developing End-to-End Pipeline for NeRF

age, which is done for both the coarse and fine MLPs in Mip-NeRF, the output
weights are supervised to be consistent with the output weights from the NeRF
MLP. This is accomplished using a loss function that encourages the outputted
weight histograms to be consistent with one another. This is made possible with
some strong assertions on the relation between the two distributions, which ulti-
mately summarizes the same underlying and true distribution. This new approach
to training accelerates training speeds by 300%.

Ambiguity

Reconstructing 3D content from 2D photos is inherently ambiguous since the con-
tent of unbounded scenes can be everywhere and will only be seen by a tiny
number of rays. This problem becomes more pronounced as scene size increases.
The original NeRF-paper partially addressed this behavior by introducing random
Gaussian noise to the output � values, before passing them through the Rectified
Linear Unit (ReLU) [32]. This stimulated densities to drift toward either zero or
infinity, which slightly enhanced visual performance. However this regularization
is insufficient for the more challenging task that Mip-NeRF 360 tackles. Instead,
Mip-NeRF 360 introduces a novel regularizer, specifically designed for Mip-NeRF
ray intervals, that encourages each ray’s histogram to be as close to a delta func-
tion as possible. This regularizer reduces the occurrences of "floaters", which are
semi-transparent objects that appear to be floating in space.

Figure 2.10: Overview of the Mip-NeRF 360 [11] pipeline

Figure 2.10 provides an overview of the Mip-NeRF 360 pipeline, which differs
in several respects from the previous Mip-NeRF pipeline depicted in Figure 2.9.
Notably, the pipeline does not render a redundant RGB value, and instead features
two distinct fields: a density field and a Mip-NeRF field.

2.8.3 Block-NeRF: Scalable Large Scene Neural View Synthesis

Block-NeRF [2] is a paper that demonstrates a method for reconstructing large-
scale scenes using NeRFs. This is achieved by splitting large areas into multiple
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blocks of a certain radius, with each block having a connected NeRF referred to
as a Block-NeRF. The different Block-NeRFs are trained on images within their
respective radius of responsibility. At inference time, only the Block-NeRFs with
a radius that spans the requested location are kept. These have all been trained
on image data from the requested location and can render an output. Some of
the remaining Block-NeRFs might still lack a direct line of sight to the requested
location, which results in low "visibility", which will be discussed further in sec-
tion 2.8.3. These Block-NeRFs are also filtered out, resulting in a pool of Block-
NeRFs with good visibility. The remaining Block-NeRFs render the given location,
and their outputs are merged to render the final image output.

Block-NeRF leverages multiple techniques in order to enable the reconstruction
of large scenes. These include appearance embeddings, learned pose refinement and
visibility prediction.

Appearance embeddings

Per-image appearance conditioning is a technique that was first proposed for
NeRFs in NeRF-W [33] and has since been employed in multiple other meth-
ods. The appearance embeddings help reduce artifacts in the scene, especially
"ghosting" artifacts which present themselves as fog in the final render. The ap-
pearance embedding is a vector in a low-dimensional space, unique for every in-
put image, that is optimized jointly with the NeRF in order to allow the NeRF to
process and represent 3D scenes with variable lighting, exposures, weather, and
post-processing effects. To account for these variations, the final part of the MLP
is conditioned by passing the viewing direction concatenated with the appearance
embedding.

Learned pose refinement

Camera pose refinement is a technique that has been proposed to alleviate the
strict requirement for accurate camera poses in NeRF. This is accomplished by
treating the camera poses and intrinsics as learnable parameters and jointly opti-
mizing them with the 3D scene representation, that is, optimizing both the pho-
tometric loss and the corresponding camera poses. It was proposed for forward-
facing scenes in NeRF-- [24] and later built upon in BaRF [23] to support the use
on object-centric scenes. Block-NeRF leverages this technique on a per-driving-
segment basis. Although it is a technique optimized for forward-facing and object-
centric scenes, Block-NeRF demonstrates the technique’s efficacy in reducing cloudy
artifacts and increasing the sharpness and overall quality of the resulting 3D rep-
resentation.
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Visibility prediction

Visibility prediction is performed to predict whether a given point is within the
line of sight of a specific Block-NeRF. The prediction is made by a secondary MLP
Fv that is trained to learn an approximation of the visibility of a sampled point.
Given a location and a viewing direction, Fv outputs an approximation of that
location’s transmittance (T in Equation 2.3). The transmittance of a location will
be close to 1 if it is visible, that is, if it is located in free space or on the surface
of the first intersected object. Objects inside or behind the first intersected object
will have a transmittance close to 0. If the point is visible from multiple viewing
directions, the resulting transmittance will be the average of these observations.
Fv is supervised by the Block-NeRF’s main MLP F�.

2.8.4 Instant-ngp: Instant Neural Graphics Primitives with a Mul-
tiresolution Hash Encoding

Instant-ngp [3] is a paper that introduces a method for accelerating the training-
and inference of NeRFs. Previous NeRF methods have required hours or even
days of training to learn a scene, but the team at Nvidia was able to significantly
reduce both the training- and inference time while maintaining the same level of
quality. This achievement represented a significant advancement in the field of
NeRFs, and has greatly improved the efficiency and effectiveness of NeRF-based
applications.

Figure 2.11: Illustration of the multiresolution hash encoding in 2D. Figure 3
from Instant-ngp [3].

The main technique proposed by Instant-NeRF is a new parametric encoding for
the scene’s spatial data, coined Multi-resolution hash encoding. In the original
NeRF paper, the location x is represented by a positional encoding as described
in section 2.3. With the multiresolution hash encoding, the location x is repre-
sented in a hash table by a linear interpolation of its closest vertices at multiple
resolutions. This parametric encoding has several advantages in terms of compu-
tational effectiveness, resulting in several magnitudes of increased training and



Chapter 2: Background and Related Work 21

inference speed. Although a larger memory cost is imposed by allocating several
hash tables, the number of required parameter-updates per backpropagation is
significantly reduced. An overview of the multiresolution hash encoding can be
seen in Figure 2.11.

2.8.5 Nerfacto

Nerfstudio, discussed in section 2.5, also provides its own method dubbed Ner-
facto [5]. Nerfacto leverages techniques from several other published methods
that have proved to work well for real data capture. The combination of tech-
niques, partially depicted in Figure 2.12, results in a method that strikes a great
balance between quality and speed. The primary techniques implemented in Ner-
facto have already been discussed. However, they will be briefly listed and sum-
marized in this section:

Figure 2.12: Overview of the Nerfacto pipeline

Camera pose refinement, as described in section 2.8.3 is a technique proposed to
reduce the impact of imperfect camera poses. It is an effective measure to reduce
cloudy artifacts and increase the sharpness and overall quality of the resulting 3D
representation.

Per image appearance conditioning, as described in section 2.8.3, is a technique
that allows the NeRF to process and represent 3D scenes with variable lighting,
exposures, weather, and post-processing effects. In Nerfacto, the appearance em-
bedding is a vector of size 32, which is concatenated with the viewing direction
before it is passed through the MLP.

Hash encodings, as described in subsection 2.8.4, is an effective encoding scheme
used to severely decrease training- and inference time. In Nerfacto, 16 hash tables
with 219 rows, each storing a feature vector of size 2, are allocated. The subse-
quent MLP has a very low capacity, with only one hidden layer containing 64
neurons.

Proposal sampling, as described in subsection 2.8.2, is a sampling technique used
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to increase the sampling density of areas that contribute most to the final render.
Nerfacto extends the proposal sampler used in Mip-NeRF 360 [11] by utilizing
two density functions implemented as small fused-MLP with hash encodings [3].
This provides accurate and fast density estimations.

Scene contraction, as described in subsection 2.8.2, is a technique proposed in
Mip-NeRF 360 [11] to extend Mip-NeRF to support unbounded scenes.

2.8.6 Wayve - Building City-Scale Neural Radiance Fields for Autonomous
Driving

Wayve1, a London-based company, is a leading innovator in AD technology. At
Nvidia GTC, they presented a talk on how they leverage NeRFs to extend their
pipeline used to train autonomous vehicles. Their initial need was a simulator
that was indistinguishable from reality, but building such a simulator is very time-
consuming, challenging, and expensive. Their solution was to use NeRFs to auto-
matically "build the simulator with data."

The pipeline, partially depicted in Figure 2.13, begins by creating a large corpus
of data, captured by a specialized Wayve-vehicle fitted with high-quality cameras.
The corpus is then split into data segments spanning roughly 100 meters and con-
taining a small overlap between the previous and successive segments. In order to
mask out transient objects and separate foreground and background, a segmenta-
tion model is applied to each segment. After this, each segment utilizes COLMAP to
approximate the images’ corresponding camera poses. Once the camera poses are
acquired, each of the NeRFs are trained in parallel with an undisclosed method.
Using the capture trajectory, a camera path is created and rendered by swapping
NeRFs on-demand when the current camera within the path is close to another
NeRF’s boundary.

Figure 2.13: An overview of Wayve’s pipeline for large-scale NeRF. Screenshot
from Wayve’s talk at Nvidia GTC [34].

Wayve’s pipeline is simpler and more straightforward than that of Block-NeRF be-
cause their goal is to stitch together scenes that were recorded one after the other,
rather than creating a scene that can be traversed in all directions. This differ-

1https://wayve.ai

https://wayve.ai
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ence in objective allows Wayve to sidestep many of the technicalities involved in
Block-NeRF making their pipeline more streamlined.





Chapter 3

Methods

This chapter is split into multiple sections, all essential for the end-to-end pipeline,
depicted in Figure 3.1, to allow the capture of data and subsequent training,
evaluation, and render of a NeRF. The following sections thoroughly discuss the
separate components that comprise the end-to-end pipeline. The code developed
and used throughout the project can be found in the attached GitHub reposito-
ries123.

Figure 3.1: Overview of the end-to-end pipeline that captures data from CARLA
or the NAPLab car, converts the data into Nerfstudio format, and utilizes the re-
sulting data to train, evaluate, and render a camera path for the NeRF.

3.1 Implementing the CARLA Data Capture Pipeline

This section will explain how the CARLA-simulator, introduced in section 2.6, is
utilized to capture synthetic data. It’ll cover basic CARLA-concepts and give a thor-
ough explanation of how the different concepts are combined and utilized in order
to create a data capture pipeline.

1https://github.com/olestole/nerfstudio
2https://github.com/olestole/carlo
3https://github.com/olestole/naplab-data-capture

25
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https://github.com/olestole/carlo
https://github.com/olestole/naplab-data-capture
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Creating a CARLA Actor

To capture data in the virtual CARLA-environment, a vehicle that is both control-
lable and programmable is required. This vehicle is commonly referred to as the
“ego” vehicle (carla.Vehicle) and is a special instance of the most basic CARLA
instance, the carla.Actor. It can be spawned by defining a spawn point, a choice
of vehicle, and whether the vehicle should operate on autopilot or not. Although
an arbitrary number of autopilot vehicles can be spawned to simulate a complex
traffic environment, the objective is to capture synthetic data with minimal tran-
sient objects; therefore, only the ego vehicle is spawned.

Setting up the environment with the traffic manager

In order to define the environment in which the spawned ego vehicle will operate,
we leverage the carla.TrafficManager available on the carla.Client that is
used to connect to the simulator. The traffic manager enables the definition of
some important aspects of the environment:

• Define the ego vehicle’s route: The traffic manager allows us to set the
route instructions for a specific actor. We can define arbitrary routes by creat-
ing an array of route instructions, for example, [’Left’, ’Left’, ’Right’,
’Straight’, ’Right’].
• Select to ignore the traffic lights: Since the only moving vehicle in the

environment is the ego vehicle, we do not have to abide by the rules of
traffic. In order to speed up the data capture we choose to ignore the traffic
lights.
• Set the vehicle speed: The traffic manager provides the ability to configure

a vehicle’s speed as a percentage of the default speed of 30 km/h. A setting
of 100% adheres to the default speed, while a setting of 50% corresponds
to a speed of 15 km/h, and so on.

Experiment configuration

In order to evaluate numerous environment and vehicle setups, along with their
corresponding outcomes, an ExperimentConfig-class was created. This class en-
ables the definition of the following configurations:

• Camera rig: Mounts a list of RGB-cameras with configurable camera set-
tings, location, and rotation to the ego vehicle. A "rig"-file, a special type
of JSON file exported from the NAPLab car discussed in section 3.7, can
optionally be parsed into a camera rig for the ego vehicle.
• Data capture frequency: Sets the frequency of data capture, namely images

and camera poses.
• Stop-criteria: Specifies the ego vehicle’s stop condition either by a stop dis-

tance or a number of completed turns.
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• Camera noise: Enables the simulation of noisy GPS/GNSS sensor readings
by adding Gaussian noise to the location output from the mounted cameras.
• Spawn transform: Enables specifying the spawn-location/-rotation of the

ego vehicle.
• Speed: Sets the target speed for the ego vehicle.
• Route: Sets the route instructions for the ego vehicle.

CARLA data parser

To capture and store data during the vehicle’s drive, a custom CarlaDataParser-
class is created. This class provides methods for capturing an image with its corre-
sponding camera pose, transforming the camera poses into specified formats, and
exporting the captured data. The format and data conventions will be thoroughly
described in section 3.2.

CARLA data capture loop

The CARLA Run-loop includes the following steps:

• Read and apply the configurations from ExperimentConfig.
• Spawn an ego vehicle.
• While the ego vehicle has not met a stop-criteria, such as having driven the

set amount of distance/turns, keep driving and capture data.

� Get the image from all the cameras mounted to the car: Each sensor
in CARLA has a listen method, triggered whenever data is retrieved
by the sensor. The Carlo-repository4 simplifies the process of obtain-
ing image data from the corresponding camera, a process which tra-
ditionally would involve managing the listen-callback, decoding the
carla.Image data, and converting raw data bytes into np.ndarrays.
Using the Carlo abstraction, the steps are reduced to creating a list of
cameras, retrieving the np.ndarray containing the image data, stack-
ing the camera outputs, and presenting the resulting image using a
library like OpenCV [27].
� Pass the captured image and corresponding camera pose to the Car-
laDataParser’s append_frame method.

• Export the parsed CARLA-data with CarlaDataParser’s export_transforms
method.
• Terminate the simulation and perform necessary clean-up activities.

4https://github.com/olestole/carlo/

https://github.com/olestole/carlo/
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3.2 Implementing the CARLA Data Parser for Nerfstudio

Having obtained a pipeline that enables the creation of a controllable environment
for a vehicle with an arbitrary setup of sensors, and subsequent data-capture,
the captured data have to be exported in a format readable by Nefstudio. This
section will elaborate on the creation of CarlaDataParser and the conversion
from CARLA to Nerfstudio

In order to train a NeRF, images and corresponding camera poses are needed. As
discussed in section 2.3, the camera poses are 4x4 homogeneous transformation
matrices, containing both the translation and rotation in reference to a coordinate
system. Nerfstudio expects the data in a file structure as shown in Figure 3.2. In or-
der to handle the data parsing from CARLA to Nerfstudio we create a helper-class
CarlaDataParser which has methods for saving images as PNG files, calculating
the camera’s intrinsic parameters, transforming the extrinsic parameters, and ap-
pending parsed frames to a transforms.json-file. The transforms.json-file con-
tains the camera’s intrinsics and a list of frames where each frame holds an image
path and the respective image’s camera pose. An example transforms.json-file
can be seen in Figure 3.3.

your_nerf_data/

images/

0001.png

0002.png

0003.png

. . .

transforms.json

Figure 3.2: File structure expected by Nerfstudio

CARLA provides access to basic camera attributes that can be used to approximate
the intrinsic parameters. Given the image’s width w and height h, in accordance
to the camera’s Field of View (FOV), we can calculate the focal length f and
subsequently the x- and y-component of the focal length fx and f y :

f = tan
Å

FOV
2

ã
fx =

0.5⇥ w
f

f y =
0.5⇥ h

f

The camera’s principal points cx and cy are assumed to be the center of the image
plane, and obtained with:
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1 {
2 "camera_model": "OPENCV",
3 "fl_x": 200.0,
4 "fl_y": 150.0,
5 "cx": 200.0,
6 "cy": 150.0,
7 "w": 400,
8 "h": 300,
9 "k1": 0,

10 "k2": 0,
11 "p1": 0,
12 "p2": 0,
13 "frames": [...]
14 }

Figure 3.3: Example of a transforms.json-file with the intrinsic parameters and
a collapsed list of frames containing the extrinsic parameters of the camera.

cx =
w
2

cy =
h
2

Once calculated, the intrinsic values are added to the transforms.json-file.

CARLA is built with Unreal Engine and subsequently uses its coordinate conven-
tion. The Unreal Engine coordinate convention, illustrated in Figure 3.4, is a left-
handed system where +X is forward, +Y is right, and +Z is up. Nerfstudio uses the
OpenGL/Blender coordinate convention for cameras, which is a right-handed sys-
tem, and its world space is oriented such that +X is right, +Y is forward, and +Z is
up. The disparity in coordinate conventions between CARLA and Nerfstudio would
make the NeRF-renderings non-interpretable, if we trained a NeRF directly on the
transformation matrices exported from CARLA. In order to convert the transfor-
mation matrices that contain both rotation and translation we apply CarlaDat-
aParser’s carla_to_nerf-transformation. The transformation from CARLA’s left-
handed coordinate system to NerfStudio’s right-handed coordinate system can be
represented as a matrix multiplication.

Let Mcarla be the transformation matrix in CARLA convention, and Mner f be the
transformation matrix in Nerfstudio convention. The transformation can be ex-
pressed as:

Mner f = Rz(90) · Rx(�90) · T ·Mcarla

where T is a translation matrix to swap the y and z coordinates, and Rx , Rz are
rotation matrices around the x and z axes, respectively. The order of multiplication
is from right to left.
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Figure 3.4: CARLA uses the Unreal Engine’s coordinates system, which is a Z-up
left-handed system [35].

3.3 Implementing the NeRF Pipeline

Having obtained the synthetic data captured from CARLA in a format suitable for
training NeRFs in Nerfstudio, the next step is to develop and utilize a pipeline that
automates the processing, training, evaluation, and rendering of various experi-
ments using this data and the Nerfstudio API. This section will elaborate on the
pipeline and its components depicted in Figure 3.5.

Figure 3.5: The components of the NeRF pipeline implemented in Nerfstudio.
The quantitative results are obtained through the evaluation step, while the qual-
itative results are obtained through the render step.

Process

In most scenarios when working with real data, such as images of an object cap-
tured with a handheld camera, we do not have accurate camera poses. In those
scenarios we have to pre-process the data in order to approximate camera poses
for the captured images. It can be accomplished by leveraging SfM-algorithms as
discussed in section 2.4. In the scenario where the data is captured from CARLA,
the poses are as accurate as they can be as they’ve been calculated in a determin-
istic environment. Assuming the CARLA-data is parsed according to the method
discussed in section 3.2, no further preprocessing is necessary.
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Train

During training, the parameters in the model are optimized to represent the 3D
scene. A batch of pixels is created for each training iteration. The default batch
of 4096 pixels is obtained by randomly sampling the training images which de-
faults to 90% of the total dataset, leaving 10% as an evaluation dataset. Rays are
marched through the sampled pixels and the model’s networks predict RGB val-
ues and densities for the points sampled along the rays. The points’ values are
composited and the photometric loss, in combination with more complex losses,
is computed. The losses are backpropagated through the model’s networks and
the ADAM optimizer[36] is used to update the network parameters.

For the Nerfacto-model, the primary model used throughout this thesis and previ-
ously discussed in subsection 2.8.5, the training process entails backpropagating
the loss and updating both the NeRF MLP and the proposal MLP. The Nerfacto-
model leverages three different losses to guide the training; photometric loss, inter-
level loss, and distortion loss. Photometric loss is the standard NeRF-loss explained
in Equation 2.7. Interlevel- and distortion-loss are both from the Mip-NeRF 360
[11] implementation explained in subsection 2.8.2. The interlevel loss encourages
the model to generate consistent predictions across different levels of the multi-
scale hierarchy, while the distortion loss encourages the model to generate smooth
and continuous predictions.

Nerfstudio provides an API to configure all aspects of the pipeline, including dataset-
split, number of pixels to sample, which optimizer to use, the configuration of
the optimizer’s exponential decay, the ANN’s dimensionality, and much more. The
implementation details and configurations used for the models in this thesis are
attached in section A.1.

Evaluate

To quantitatively evaluate the quality of the NeRF models, we utilize the metrics
PSNR, SSIM, and LPIPS, as elaborated upon in section 2.7. During the evalua-
tion, the camera poses from the evaluation dataset are fed into the trained model
which subsequently renders the novel views. The rendered images are then com-
pared against the corresponding ground truth images from the evaluation dataset
according to the aforementioned metrics.

The Nerfstudio API provides a script to load a model-checkpoint and compute
these metrics, providing a quantitative assessment of the trained NeRF. To fur-
ther facilitate the comparison of NeRF models across multiple experiments, an
additional script was developed. This script load the evaluation outputs of multi-
ple experiments, compares the resulting metrics, and produces a formatted LaTeX
table that highlights the best and worst metrics.
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Render

Although the quantitative metrics offer valuable insights into the quality of the
model, it is crucial to assess the qualitative output. Consequently, all trained NeRF
models are rendered in order to visually compare the results across different meth-
ods, configurations, and datasets.

The Nerfstudio API provides a script for rendering trained NeRF models given a
camera path; a sequence of camera poses, each with a corresponding FOV and
aspect ratio. The Nerfstudio viewer, depicted in Figure 3.6, enables the creation
and editing of camera paths, which can be exported and used for rendering. In
addition to the possibility to create a custom camera path, a script to render the
NeRF based on the input data’s camera path was created. This option enables the
creation of a side-by-side render, a useful and intuitive way to evaluate how well
the NeRF has learned the input scene, that is, qualitatively assessing the NeRF’s
performance.

Figure 3.6: An overview of the Nerfstudio viewer. The scene seen on the left has
been trained on the set of images and camera poses revealed within the viewer
in the image to the right.

3.4 Establishing the CARLA-Baseline

A pipeline to evaluate numerous CARLA configurations to identify a configuration
that generates high-quality data for NeRF training has been established. In order
to facilitate further experiments, a baseline need to be created.

The experiments chosen to define a suitable baseline are mostly based on heuris-
tics and knowledge of what is important for good NeRF results. When capturing
video or images for a NeRF it is important that the scene is well-lit, that the cap-
tured images are not blurry, and that there are no transient objects present. If the
camera poses of the captured images are to be approximated with the use of SfM-
methods like COLMAP, it is also very important that the images have an overlap in
order to secure feature-matching across the images. The five experiments chosen
to define the baseline, which will be elaborated upon in chapter 4, were:
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• Camera setup: How many cameras should be mounted to the ego vehicle,
and in what translation and rotation?
• Capacity: How long should the segments used to capture data be?
• Number of frames: How many frames should be captured?
• Image size: What resolution should the mounted cameras capture at?
• Vehicle speed: At what speed should the ego vehicle drive while capturing

data?

The best results from each of the experiments, based on qualitative results and
quantitative metrics discussed in section 2.7, were used to iteratively build a base-
line used for further experiments.

3.5 Comparative Experiments with the CARLA-Baseline

Having established a baseline, the impact of different NeRF- and capture settings
on the quality of the resulting models can be evaluated. This provides a starting
point for conducting further experiments, which can be systematically varied to
explore the factors that impact the quality of resulting trained NeRF. Additionally,
we can simulate real-world capture scenarios using the synthetic data generated
by the baseline. The specific experiments ran with the established baseline, elab-
orated upon in chapter 4, were:

• Simulated noise conditions: Noise in the camera poses due to inaccurate
readings from the GPS/GNSS. Additionally, the COLMAP’s effectiveness in
approximating the camera poses is compared to the joint camera optimiza-
tion.
• Comparing NeRF-models: How do the different NeRF models perform and

compare against each other?
• Large-scale NeRF: How can we train NeRFs on increasingly larger scenes?
• Real data: How does the end-to-end pipeline extend to real data?
• Novel views along altered trajectory: How is the quality of renders from

altered trajectories?

3.6 Extending the Pipeline to Support Large-Scale Scenes

When we change the route of the CARLA-baseline and create a larger dataset,
spanning kilometers of road data, the NeRF models evidently have a hard time
generating high-quality image synthesis. That result is expected as the models’
underlying MLPs only have a certain capacity. We could increase the capacity by
increasing the number of hidden layers and neurons per layer, but this would
lead to linearly increasing training -and rendering times. Rendering is already an
expensive operation which further supports the claim for another solution.

As discussed in subsection 2.8.3 it is an open research field within the NeRF
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community to expand the capability of NeRFs to enable the representation of
large scenes. Compared to the other fields within NeRF research, there are not
a lot of papers exploring large-scale NeRFs, which might be due to the amount
of data needed and the corresponding data capture endeavor. Luckily, we have
constructed a pipeline that automates synthetic data capture and the subsequent
processing, training, evaluation and rendering of the NeRF. Due to this we expand
the pipeline to enable the evaluation of a large-scale NeRF approach, based on a
naive implementation of Block-NeRF [2].

One of the main challenges in implementing Block-NeRF is obtaining the camera
poses for the captured images. Traditional SfM methods, such as COLMAP, be-
come computationally expensive and slow when dealing with large datasets, as
is demonstrated by the feature matching complexity overview presented in Ta-
ble 2.1. However, being in possession of the image’s corresponding camera poses
simplifies the process. As we are in possession of both, a naive Block-NeRF POC
was created. The steps in the algorithm can be summarized as follows:

• Split the dataset into multiple smaller datasets:
The split_transforms function takes an original transforms.json file and a
sequence of images and splits them into n roughly equal-sized new datasets,
which are formatted according to the structure shown in Figure 3.2, result-
ing in a file structure shown in Figure 3.7.
• Train separate NeRFs on the split dataset:

Run a standard training loop on each of the n datasets created in the previ-
ous step.
• Create a camera path spanning the segments contained in the complete

dataset:
There are multiple options for creating the camera path: A custom camera
path can be created in the Nerfstudio viewer, a previously exported camera
path can be used, or a helper function could be utilized to extract the camera
path of the input images. The latter option will later be used to generate
the side-by-side render. No matter which option is chosen, an important
aspect in this naive implementation is that the camera-to-world matrices in
the camera path are in the same scale and coordinate system as the Block-
NeRF’s transforms.json-files.
• Create a lookup table for which Block to render which camera pose:

In order to know which NeRF to render given a specific 3D point and di-
rection, expressed by the 4x4 camera-to-world matrix in the camera path,
we create a naive lookup table. The lookup table is indexed on the cam-
era path’s location index and returns the Block-NeRF with the minimum
Euclidean distance.
• Modify the camera path to account for the offset, transformations, and

scales of each NeRF:
Before a NeRF is trained, the input camera poses are scaled to fit a [�1, 1]
bounding box, and transformed so that the average up vector is aligned
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with the Z-axis. The respective transformation which is carried out to make
the training easier is stored in a dataparser_transforms.json-file. The re-
spective file contains the applied transform matrix and scale. Each of the
Block-NeRF’s dataparser_transforms.json-file is different, and in order
to render the desired camera path seamlessly across the different Block-
NeRFs according to the lookup table, we have to augment it to account for
the transformations. We achieve this by creating a new, transformed camera
path where the segments which are to be rendered by Block-NeRFi have
their camera-to-world transformed by applying Block-NeRFi ’s scale s and
transformation matrix t.
• Render the created camera path:

Building upon Nerfstudio’s render script, the lookup table is passed as a
parameter and used to conditionally select which model to render. As all the
changes to the camera path have been done a priori, the resulting render is
a seamless video through the scene leveraging multiple Block-NeRFs.

block_nerf

block_0

images/

0001.png

0002.png

0003.png

. . .

transforms.json

. . .

block_n

. . .

Figure 3.7: Block-NeRF file structure after having split a single dataset into mul-
tiple smaller datasets.

3.7 Extending the Pipeline to Support Real Data

The pipeline from data capture in CARLA to image synthesis with a trained NeRF
demonstrates efficacy. This final section of the method chapter discusses how the
pipeline is extended to enable the input of real data, not captured in a virtual
environment like the CARLA simulator.
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The traditional approach for generating NeRFs involves the use of real data. The
real data is usually captured from handheld cameras. With handheld cameras it is
uncomplicated to capture well-lit, non-blurry, object-centric images that does not
contain transient objects. Until now we’ve used a virtual environment to capture
data as it has provided a fully controllable environment in which we could test
different setups and ensure optimal conditions. The following challenge in this
project is capturing high-quality data from sensors, mounted to a moving vehicle,
that is suitable for training NeRF models.

To capture data, we utilized the NAPLab car [8]. The NAPLab car is fitted with
multiple sensors, including cameras, GPS/GNSS, and LiDAR. The cameras cap-
ture data with a resolution of 1920 ⇥ 1080. The GPS/GNSS-system consists of
two Swift Navigation Duro Ruggedized Receivers [37], which offer superior posi-
tioning accuracy compared to regular GPS/GNSS systems. According to the man-
ufacturer’s documentation, each Duro module has a horizontal position accuracy
of 0.75 meters (Circular Error Probability [CEP] of 50 in Satellite-Based Augmen-
tation System [SBAS]mode) without Real-Time Kinematic Positioning (RTK), and
can achieve centimeter-level accuracy with RTK enabled. This high level of accu-
racy enables the capture of rough camera poses alongside the images.

After having captured data with the NAPLab car, the data has to be parsed and
processed before it can be transformed into the expected Nerfstudio-format. A
repository5 that streamlines the reading and parsing of NAPLab’s data into a man-
ageable format was leveraged. Firstly, in order to read the video data, FFMPEG
is utilized to transform .h264-files into sequences of np.ndarrays that are subse-
quently served by a generator function. Secondly, the GPS data is read and parsed
using regex and subsequently served by a generator function. The GPS data is for-
matted as National Marine Electronics Association (NMEA) sentences, a message
standard used by GPS receivers to communicate with other devices.

A key aspect of the data parsing is the synchronization of the camera with the
GPS timestamp. This is achieved by leveraging functionality from the same repos-
itory5 that aligns the camera with the frame closest in time to the GPS timestamp.
Following synchronization, the sensor data can be accessed and further processed
using a regular loop.

The synchronized data need to be converted into Nerfstudio’s data format in order
to be used in the predefined pipeline. In order to achieve this, a NAPLabDataParser
that implements the same methods as the CarlaDataParser, is created. The main
difference is the implementation of the transformation function that converts the
translation and rotation data from one coordinate convention to another. The
transformation matrix construction process involves several steps:

5https://github.com/olestole/naplab-data-capture

https://github.com/olestole/naplab-data-capture
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1. The initial GPS latitude, longitude, and altitude readings are stored as the
reference point.

2. The geodetic2ned function from the pymap3d library [38] is used to trans-
form GPS data into North, East, Down (NED) coordinates.

3. The NED coordinates are then converted to East, North, Up (ENU) coordi-
nates and then to Blender coordinate conventions.

4. The cameras’ rotation is estimated by comparing adjacent GPS data points
using trigonometry.

5. The resulting translation and rotation data are combined into a single trans-
formation matrix.

The computation of intrinsic values follows the same methodology as discussed in
section 3.2. These intrinsics, in combination with the transformation matrix, are
assembled into a transforms.json file. The output from the NAPLabDataParser,
that is the transforms.json file and images, is in the same format as that from the
CarlaDataParser. Therefore, the subsequent stages of the pipeline remain unaf-
fected, ensuring the smooth extension from synthetic to real data inputs.

The dataset captured from the NAPLab car is presented in Figure 3.8.
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Figure 3.8: Overview of the datasets of real data captured from the NAPLab car.
1) contains 235 images over a straight road segment of approximately 170m,
2) contains 199 images over a segment of approximately 380m, 3) contains 160
images over a segment of approximately 280m.



Chapter 4

Experiments and Results

This chapter provides a detailed account of the experiments conducted and re-
sults obtained, in order to establish a baseline for NeRFs trained on synthetic data
captured from the CARLA simulator. The defined baseline is then utilized to con-
duct further experiments investigating the impact of various settings and methods
for training NeRFs, including pre-processing, different NeRF-models, and camera
optimization. Furthermore, the experiments’ insights are applied to evaluate the
proposed pipeline’s transferability from synthetic to real data.

The results obtained from the experiments are evaluated both quantitatively, using
the metrics discussed in section 2.7, and qualitatively. The included qualitative
results are frames extracted from video renders of the respective NeRFs. Although
the frames convey important results, the video renders provide a much clearer
understanding of correspondences between frames, potential artifacts, learned
geometry, and other relevant information. To showcase these results, a companion
page is available where different renders from this chapter’s experiments can be
browsed and compared.

Quantitative results are highlighted in the tables, with green signifying the best
results, and red indicating the worst. Blue is employed to denote a configuration
selected for subsequent experiments.

Link to companion page with video renders1

1https://nerf.olestole.com/
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4.1 Experiment 1: Defining a Baseline

To facilitate comparison between experiments, it is crucial to be in possession of
a baseline. However, no existing baselines for NeRF models trained on synthetic
data captured in CARLA currently exist. Therefore, this study established a base-
line by optimizing settings across various categories in CARLA, including camera
setup, capacity, camera settings, vehicle speed, and number of frames. Both a
quantitative and qualitative assessment was conducted for the results of each ex-
periment. Based on the assessment, one of the configurations was selected and
kept for further experiments.

By establishing this baseline, it can be used as a reference point for improving both
the data capture and NeRF models on synthetic data. The metrics used to evaluate
the baseline (PSNR, SSIM, and LPIPS) are widely used in NeRF research, ensuring
the comparability of results with future experiments and research.

The CARLA configurations held constant for the respective experiments are de-
picted in Table 4.1.

Table 4.1: Overview of the configurations that were kept constant for each ex-
periment conducted to define the baseline. The configurations that were selected
to be part of the baseline data capture configuration, based on the results from
the experiments, are highlighted in blue

Experiment Camera setup Distance Image freq. Image res. Speed

1.1 � 125m 3.3 FPS 600⇥ 450 100%

1.2 [�10�, 10�] yaw � 3.3 FPS 600⇥ 450 100%

1.3 [�10�, 10�] yaw 4 turns � 600⇥ 450 100%

1.4 [�10�, 10�] yaw 4 turns 5 FPS � 100%

1.5 [�10�, 10�] yaw 4 turns 5 FPS 400⇥ 300 �
1.6 [�10�, 10�] yaw 4 turns 5 FPS 400⇥ 300 50%

4.1.1 Experiment 1.1: Camera Setup

The CARLA simulator provides a convenient way to attach multiple cameras with
varying settings to a vehicle. To optimize the performance of NeRFs on RGB im-
ages, a series of experiments were conducted to determine the optimal camera
setup. All cameras were positioned at the same base translation, at the roof of the
ego vehicle approximately 3 meters above ground level. While this camera place-
ment may be considered unrealistically elevated, it facilitates an unobstructed
capture of the scene without interference from the ego vehicle. The camera se-
tups tested in this study were:
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• Single forward-facing camera.
• Two forward-facing cameras, with a counterrotated yaw.
• Three cameras, one with zero yaw and two with counterrotated yaw.

Table 4.2: Comparison of different camera setups’ impact on the NeRF’s perfor-
mance.

Description PSNR " SSIM " LPIPS #
Single camera, [0�] yaw 22.76 0.742 0.150

Two cameras, [�10�, 10�] yaw 23.90 0.782 0.136

Two cameras, [�30�, 30�] yaw 23.24 0.756 0.155

Two cameras, [�50�, 50�] yaw 23.73 0.739 0.174

Two cameras, [�70�, 70�] yaw 24.32 0.740 0.173

Three cameras, [�50�, 0�, 50�] yaw 23.79 0.764 0.165

Three cameras, [�70�, 0�, 70�] yaw 23.68 0.755 0.177

From Table 4.2, we can see that the camera setups produce relatively similar re-
sults across the three metrics, with only small differences between them. The cam-
era setup with two cameras at -70� and 70� yaw achieves the highest PSNR score,
indicating that it produces the most accurate images. On the other hand, the con-
figuration with two cameras at �10� and 10� yaw achieves the highest SSIM and
lowest LPIPS scores, indicating that it produces the most visually similar and per-
ceptually pleasing images. Due to the configuration’s high SSIM and low LPIPS, it
was chosen as the camera setup baseline for further experiments.

4.1.2 Experiment 1.2: Capacity

As discussed in subsection 2.8.3 and section 3.6, the capacity of a NeRF is lim-
ited. In order to quantitatively assess this capacity, an experiment was designed
involving five increasingly longer routes for a CARLA vehicle to capture data. The
routes’ length ranged from 50m to approximately 450m, as depicted in Figure 4.1.
The longest route corresponds to a full lap around the block.

The results, presented in Table 4.3, show that the quality of the rendered im-
ages degrades as the segments’ length increases. The longest segment, the full lap
around the block which includes four turns, achieves the worst results across all
three metrics. Despite achieving the worst results, we selected the longest run as
the baseline for further experiments. This is because conducting experiments on
a full lap around the block provides a more realistic scenario for evaluating the
performance of the NeRF on data captured by a vehicle. The full lap encompasses
a variety of different scenes, including straight roads, curves, intersections, and
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Table 4.3: Comparison of different segment lengths’ impact on the NeRF’s per-
formance.

Description PSNR " SSIM " LPIPS #
50 meters 23.54 0.773 0.109

100 meters 23.59 0.763 0.141

2 turns 23.60 0.757 0.182

3 turns 22.63 0.720 0.211

4 turns 22.50 0.696 0.241

Figure 4.1: Overview of the increasingly longer routes used to capture data in
CARLA, during Experiment 1.2.

varying lighting conditions. This diverse range of environments can help to test
the NeRF’s ability to learn a varying scene and provide a more comprehensive
evaluation of its performance.

4.1.3 Experiment 1.3: Number of Frames

A NeRF’s dataset is comprised of images and corresponding camera poses. The
size of this dataset determines the amount of information available for the NeRF
to learn the underlying 3D scene’s structure and appearance. A larger dataset can
provide more diverse and detailed information about the scene, which can help
the NeRF to capture fine-grained details and generalize better to novel views.
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Given that the NeRF is set to sample batches across all input images, a larger
set of input images should result in higher-quality image synthesis. To test this
hypothesis, we conducted an experiment in which we varied the number of frames
captured from a CARLA run, resulting in different-sized datasets. The results of
this experiment are shown in Table 4.4.

Table 4.4: Comparison of different data capture frequencies’ impact on the NeRF’s
performance. The simulator operates at 10 FPS.

Description PSNR " SSIM " LPIPS #
Capture data every frame (10 FPS) 23.26 0.724 0.228

Capture data every 2nd frame (5 FPS) 23.25 0.727 0.221

Capture data every 3rd frame (3.3 FPS) 22.56 0.697 0.240

Capture data every 4th frame (2.5 FPS) 22.22 0.685 0.250

Capture data every 5th frame (2 FPS) 21.92 0.678 0.259

The results indicate that the trained NeRF performs better when trained on a
larger dataset. Furthermore, the difference in performance between capturing
data every frame or every second frame is negligible. As a result, we select the
latter option for the baseline, as the decreased capture frequency enhances the
performance of the CARLA pipeline.

4.1.4 Experiment 1.4: Image Resolution

CARLA allows the configurations of image resolution outputted by mounted cam-
eras. To evaluate the impact of input image resolution on the output image synthe-
sis, data was captured from CARLA at five increasingly higher image resolutions.
The obtained results are presented in Table 4.5.

Table 4.5: Comparison of different image resolutions’ impact on the NeRF’s per-
formance.

Description PSNR " SSIM " LPIPS #
Image resolution of 200⇥ 150 23.35 0.749 0.082

Image resolution of 400⇥ 300 23.61 0.776 0.104

Image resolution of 800⇥ 600 23.24 0.763 0.169

Image resolution of 1200⇥ 900 23.07 0.732 0.233

Image resolution of 1600⇥ 1200 22.82 0.727 0.267

Figure 4.2 depicts the resulting image synthesis of the same frame across the mod-
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els trained on low-, medium-, and high-resolution data. Although the quantitative
results indicate that the 200 ⇥ 150-dataset performs best, the qualitative results
demonstrate that NeRF trained on higher-resolution data is able to represent fine-
grained details and produce more visually pleasing images. Based on both the
qualitative and quantitative assessments, the configuration with an image resolu-
tion of 400⇥ 300 was chosen as the baseline for further experiments.

Figure 4.2: Comparison of frames rendered from models trained with training-
data of different image resolution during Experiment 1.4. The bottom row pro-
vides a detailed view of the same cropped section, across the three model renders.
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4.1.5 Experiment 1.5: Vehicle Speed

Higher vehicle speeds result in the capture of larger portions of the scene in a
shorter amount of time. However, the motion of the vehicle during capture can
lead to image blurring and distortion, potentially decreasing the performance of
the resulting NeRF. To investigate the impact of vehicle speed on the quality of
the captured data and the resulting NeRF, we conducted a series of experiments
where data was captured at varying speeds.

Table 4.6: Comparison of different vehicle speeds’ impact on the NeRF’s perfor-
mance. CARLA convention conveys speed as a percentage of the default speed of
30 kmh.

Description PSNR " SSIM " LPIPS #
50% speed 24.06 0.775 0.181

100% speed 23.50 0.755 0.184

150% speed 23.41 0.742 0.190

200% speed 22.72 0.714 0.200

The results of the experiments, presented in Table 4.6, indicate that the speed of
the vehicle significantly impacts the quality of the NeRF trained on the captured
data. Specifically, we observe that the NeRF trained on the data captured at 50%
speed achieves the highest scores on all three metrics (PSNR, SSIM, and LPIPS),
while the NeRF trained on the data captured at 200% speed achieves the lowest
scores on all three metrics. These findings suggest that slower vehicle speeds can
lead to higher-quality data capture, while faster vehicle speeds can lead to lower-
quality data capture. As a result, the configuration of 50% reduced vehicle speed
was selected for further experiments.

4.1.6 Experiment 1.6: Assessing the Combined Baseline

The configurations selected for the baseline used in further experiments are a
combination of the configurations that produced the best results across the pre-
vious experiments. The baseline’s distance is the only setting that deviates from
the configurations that produced the best results, and it will remain constant with
a full lap around the block. As a result, the baseline’s configurations, depicted in
Table 4.8, consist of two forward-facing RGB-cameras, counterrotated with �10�-
and 10� yaw, capturing data every second frame, along a city-block that spans
⇠ 450 meters in distance, with an image size of 400⇥ 300, and a vehicle speed
that is 50% slower than the default of 30 km/h. With this configuration, the base-
line achieves a PSNR, SSIM, and LPIPS of 24.20, 0.767, and 0.167 respectively, as
presented in Table 4.7.

The baseline’s high scores across all three metrics demonstrate that this config-
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uration yields high-quality data capture. As a result, the combined baseline can
serve as a useful starting point for future research and applications.

Table 4.7: The baseline metrics for a Nerfacto model trained on synthetic data
captured from CARLA, with the configurations depicted in Table 4.8.

Description PSNR " SSIM " LPIPS #
Combined baseline 24.20 0.767 0.169

Table 4.8: Overview of the configurations that were selected to be part of the
baseline data capture configuration, based on the results from the previous ex-
periments.

Parameter Value

Camera setup Two cameras, [�10�, 10�] yaw

Distance 4 turns

Image capture freq. Capture data every 2nd frame

Image resolution Image resolution of 400⇥ 300

Speed 50% speed

4.2 Experiment 2: Simulated Noise Conditions

During the capture of images and corresponding camera poses from a vehicle in
a real-world scenario, the accuracy of camera poses is often impaired, primarily
due to imperfections in GPS/GNSS-readings. To investigate the impact of noisy
camera poses and the effectiveness of camera pose optimization, an experiment
was conducted in which Gaussian noise was introduced to the translational com-
ponent of the camera poses obtained from the CARLA pipeline. The addition of
Gaussian noise to the camera poses simulates the effects of imperfect camera poses
in real-world data capture. The magnitude of the added noise is determined by
the standard deviation of the Gaussian distribution, which increases progressively
throughout the experiments. The results for the runs with and without camera
optimization, either treating the camera parameters as joint learnable parameters
or not, are presented in Table 4.9 and Figure 4.3, with a full table of additional
increments in subsection A.2.1.

As seen from the results in Table 4.9, the NeRF’s quality degrade across all met-
rics as the noise increases. While the difference in quantitative results between the
runs with and without camera pose optimization may appear small, the qualitative
comparison depicted in Figure 4.3 provides clear evidence of the optimization’s
efficacy. In addition, it seems to have a more substantial impact on shorter seg-
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Table 4.9: Results for Gaussian Noise experiment on both the baseline and shorter
segments. The shorter segment is 10% the size of the baseline segment, approxi-
mately 50m in length.

Description PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #
Baseline segment

With camera optimizer Without camera optimizer

N (0, 0.0) 23.41 0.714 0.321 24.70 0.793 0.179

N (0, 0.12) 22.51 0.674 0.321 22.46 0.677 0.281

N (0, 0.52) 19.08 0.501 0.372 19.37 0.499 0.474

N (0, 1.02) 17.67 0.434 0.433 18.21 0.444 0.560

N (0, 3.02) 16.66 0.408 0.637 16.32 0.386 0.648

Shorter segment

With camera optimizer Without camera optimizer

N (0, 0.0) 24.83 0.825 0.102 25.68 0.862 0.077

N (0, 0.12) 23.03 0.753 0.115 23.32 0.755 0.147

N (0, 0.52) 19.06 0.483 0.197 20.07 0.513 0.299

N (0, 1.02) 18.09 0.407 0.338 18.29 0.418 0.405

N (0, 3.02) 15.71 0.345 0.613 15.08 0.363 0.699

Figure 4.3: Comparison of the effect of simulated noise conditions for the trained
NeRF.
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ments, than larger ones.

4.2.1 Experiment 2.1: COLMAP versus Camera Pose Optimization

The camera optimization in the previous experiment produced stable, qualitative
results. In order to further investigate the effect of direct camera optimization on
vehicle-captured data, a comparison to COLMAP’s result on the same dataset is
conducted. Table 4.10 presents the results from the NeRF trained on the same
images as in Experiment 2, but with camera poses approximated with the SfM
tool, COLMAP.

Table 4.10: Results for approximating camera poses with COLMAP for the base-
line and short segment.

Description PSNR " SSIM " LPIPS # Time processing

COLMAP - Baseline segment 24.19 0.759 0.160 01:12:15

COLMAP - Shorter segment 25.23 0.827 0.093 00:02:00

First, looking back at the results in Table 4.9, we observe that small amounts of
noise severely degrade the quality of the NeRF even when the camera poses are op-
timized throughout the NeRF’s training. Comparing those results with COLMAP’s
results on the same datasets as depicted in Table 4.10, it becomes apparent that
although direct pose optimization offers the benefit of avoiding pre-processing,
the NeRF trained with camera poses approximated by COLMAP consistently de-
livers superior performance across all metrics when the camera poses are noisy,
regardless of segment size. The results thus suggest that employing COLMAP for
initial pose approximation could significantly improve model performance when
the initial camera poses are inaccurate, despite the longer processing time re-
quired.
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4.3 Experiment 3: Comparing NeRF-models

Nerfstudio has implemented multiple well-known NeRF-models including Instant-
ngp [3] and Mip-NeRF [4]. In this experiment, we investigate the model’s impact
on the output. The comparison of the different models is presented in Table 4.11
and Figure 4.4.

Table 4.11: The result of training different models implemented in the Nerfstudio
framework on the combined baseline dataset.

Description PSNR " SSIM " LPIPS # Iterations

Nerfacto 24.20 0.767 0.169 15’000

Instant-ngp 24.25 0.756 0.232 15’000

Nerfacto-big 23.56 0.741 0.283 100’000

Mip-NeRF 9.49 0.165 0.775 300’000

Figure 4.4: Qualitative comparison of different NeRF-models trained on the same
dataset.

The quantitative results indicate that there are no significant differences between
the fast methods, Nerfacto, Nerfacto-big, or Instant-ngp. However, both the quan-
titative and qualitative results reveal that the Mip-NeRF model is unable to learn
the unbounded scene, resulting in the worst scores across all metrics.

4.4 Experiment 4: Large-Scale NeRF

The naive Block-NeRF implementation allows for the captured scene to be split
into an arbitrary number of segments. In this experiment, we would like to ex-
plore the impact of splitting the scene on the overall quality of the generated
results. In particular, we compare the performance of Block-NeRF to that of a sin-
gle NeRF trained on the entire scene. Table 4.12 shows the result of splitting the
baseline-scene into 4 segments, while Table 4.13 shows the result of splitting a
larger scene, a trajectory of approximately 1200 meters, into 12 segments. The
qualitative results of the 12-segment run can be seen in Figure 4.5.

The experimental findings indicate that the naive Block-NeRF implementation
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Table 4.12: The average metrics across the four segments compared to the met-
rics for a single NeRF trained on the same scene. The full overview of each seg-
ment’s metrics can be viewed in the appendix in Table A.6.

Description PSNR " SSIM " LPIPS #
Average across 4 Block-NeRFs 24.47 0.790 0.184

Single NeRF 24.20 0.767 0.169

Table 4.13: The average metrics across the twelve segments compared to the
metrics for a single NeRF trained on the same scene. The full overview of each
segment’s metrics can be viewed in the appendix in Table A.7.

Description PSNR " SSIM " LPIPS #
Average across 12 Block-NeRFs 24.77 0.801 0.159

Single NeRF 22.52 0.654 0.424

Figure 4.5: Comparison of two renders from models that have been trained on
the same dataset. Left) A single NeRF trained on the full dataset, Right) 12 Block-
NeRFs trained on equally spaced segments of the dataset.

enables high-quality image synthesis across large scenes, while a single NeRF
trained on the same large scene experiences a decline in performance, result-
ing in poor image synthesis quality. These results suggest that Block-NeRF rep-
resents a promising approach for generating high-quality results for large-scale
scenes.
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4.4.1 Experiment 4.1: Removing Artifacts

Despite the significantly lower quality of the single NeRF implementation com-
pared to the Block-NeRF implementation, the resulting render exhibits clear co-
herence without sudden changes in detail or the abrupt appearance of artifacts.
In contrast, the naive Block-NeRF implementation suffers from this issue, as illus-
trated in Figure 4.6.

Figure 4.6: Comparison of two consecutive frames from a 12 Block-NeRF. The
first frame (left) is the last frame rendered by Block-NeRF number 1. The second
frame (right) is the first frame rendered by Block-NeRF number 2 and contains
artifacts in the outer edges.

This issue could possibly be attributed to the hard cutoff between each Block-
NeRF, in which Block-NeRFi only trains on a single data-bin datai where each
data-bin is a disjunct collection of images and corresponding camera poses. A
possible solution to the issue is to include an overlap of data from the previous
and successive data-bin. Let datai be the i-th data-bin with the corresponding
interval [i, i + 1]. Then, the new interval for Block-NeRFi with overlap can be
defined as [i��, i + 1+�] where � is the size of the overlap. In other words, the
new interval includes not only the data-bin datai , but also a portion of the previous
data-bin datai�1 and a portion of the successive data-bin datai+2. A quantitative
and qualitative comparison of the effects from this can be seen in Table 4.14 and
Figure 4.7 respectively.

Table 4.14: Average across different Block-NeRF overlap configurations. The
overlap becomes less visible with higher overlap values, but it comes at the cost
of the previously explored capacity issue.

Description PSNR " SSIM " LPIPS #
Average metrics with � = 100 23.80 0.746 0.248

Average metrics with � = 50 24.31 0.776 0.206

Average metrics with � = 0 24.80 0.802 0.158
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Figure 4.7: Comparison of Block-NeRF trained with 0, 50 and 100 images over-
lap, respectively. The top row corresponds to the last frame rendered by Block-
NeRF number 0. The bottom row is the first frame rendered by Block-NeRF num-
ber 1.

As shown in Figure 4.7, an increase in � results in a significant reduction in the
visible overlap between the blocks. Correspondingly, as indicated in Table 4.14,
an increase in � leads to a decline in NeRF quality across all three metrics. These
findings suggest that it is necessary to identify a suitable value of � that minimizes
the visible overlap between blocks, while simultaneously maintaining high NeRF
quality.

4.5 Experiment 5: Real Data

The implementation of the real data-capture pipeline and the subsequent NAPLab-
DataParser allows the end-to-end pipeline to be run with data captured from the
NAPLab car. The real data captured was split into three datasets and is presented
in Figure 3.8. With the ability to conduct experiments on real data, we want to
investigate the quality of the capture, if the captured data is suitable for training
NeRFs, how the camera poses estimated from the GPS compare to the camera
poses approximated with COLMAP, how splitting up the data and leveraging a
Block-NeRF approach affects performance, and how camera optimization affects
the results.

In order to test the aforementioned aspects, eight different pipeline runs are con-
ducted on the three datasets previously presented in Figure 3.8. The experimental
results for dataset 1 are presented in Table 4.15. As the results for datasets 2 and
3 show similar results, they have been moved to subsection A.2.3.
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Table 4.15: Results from training NeRF on dataset 1. The transformation matri-
ces are approximated with COLMAP or estimated from GPS-readings. "BN" is an
abbreviation of Block-NeRF and the resulting metric score is averaged across the
4 NeRFs evaluations.

Description PSNR " SSIM " LPIPS # Time processing

COLMAP w/ optimizer 21.99 0.792 0.404 00:26:45

COLMAP w/o optimizer 24.59 0.862 0.272 00:26:45

COLMAP w/ optimizer, 4 BNs 22.58 0.794 0.252 00:26:45

COLMAP w/o optimizer, 4 BNs 27.26 0.899 0.198 00:26:45

GPS w/ optimizer 20.00 0.753 0.491 00:00:00

GPS w/o optimizer 17.04 0.738 0.550 00:00:00

GPS w/ optimizer, 4 BNs 20.12 0.741 0.397 00:00:00

GPS w/o optimizer, 4 BNs 19.37 0.737 0.511 00:00:00

Figure 4.8: Comparison of the different approaches used to train the NeRF on
real data. The data is from dataset 1, presented in Figure 3.8.

The results highlight interesting trade-offs between the applied approaches. No-
tably, the Block-NeRF runs with camera poses approximated by COLMAP without
further optimization, yielded the best metrics across all the experiments. Disre-
garding both Block-NeRF runs, the NeRF trained on images with camera poses
approximated by COLMAP without further optimization yielded the best quanti-
tative results. In contrast, the experiments leveraging GPS readings for camera
pose approximations with or without optimization were less successful across all
metrics, with the non-optimized GPS approach scoring the lowest across all three
metrics.
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4.6 Experiment 6: Novel Views Along Altered Trajectory

An important application of NeRFs is their ability to synthesize high-quality im-
ages from novel viewpoints. Although there are many applications for this, one
of those is training and evaluating AD systems. In this section, we will investigate
how a NeRF trained on self-captured synthetic and real data can be used to cre-
ate camera paths and render novel views not previously observed in the dataset.
Figure 4.9 shows four different camera paths created in Nerfstudio for trained
NeRFs.

Figure 4.9: Previously unseen trajectories being rendered by defining a new cam-
era path for the trained NeRF. Image 1 illustrates a trajectory deviating across a
traffic light zone, while image 2 shows a trajectory veering into the opposing
lane. Image 3, derived from dataset 3, portrays a trajectory directed towards a
road sign, and Image 4, derived from dataset 1, presents a trajectory swerving
over the curb. The NAPLab datasets are presented in Figure 3.8.
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Discussion

This chapter discusses and analyzes the results of the experiments, highlighting
their significance in the context of the research questions. Additionally, the limi-
tations of the thesis are discussed.

5.1 Experiment 1: Defining a Baseline

In order to define a baseline for capturing data for training NeRFs, five experi-
ments were selected and conducted: camera setup, capacity, number of frames,
image resolution, and vehicle speed. These experiments were chosen based on
heuristics and knowledge of what contributes to good NeRF results, such as well-
lit scenes and non-blurry images. While the chosen experiments clearly consider
important factors for capturing data for NeRFs, there may have been other exper-
iments that could have been included in defining the baseline. It is also important
to weigh the fact that the best-performing settings in one experiment may not
generalize to other setups. Overall, the process of defining a baseline is an itera-
tive one that requires careful consideration of various factors and a willingness to
continuously improve and refine the baseline.

5.1.1 Experiment 1.1: Camera Setup

The results of the experiment showed relatively little difference in the quantita-
tive metrics across the camera setups tested. However, the camera setup with two
cameras at -10� and 10� yaw produced the highest SSIM and lowest LPIPS scores,
indicating that it produced the most visually similar and perceptually pleasing im-
ages. A possible explanation for why this specific camera setup produces the best
results is the level of overlap between the captured images the respective camera
setup provides. Both cameras have a FOV of 90� and are mounted in the same
location, resulting in a 70� overlap between the images in the training data. This
overlap entails that when the model trains on an image from one of the cameras, it
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necessarily also trains on approximately three-quarters of the scene captured from
the other camera. Because the evaluation set is a subset of the training images, it
is fair to assume that the model should score high on the respective metrics.

The camera setups used in the experiment were arbitrary and may not reflect
how cameras are typically rigged on cars. Future research could explore more
realistic camera setups to improve the generalizability of the results. Additionally,
the camera setups used in the study were sparse, with only a few cameras at
specific angles. It is possible that other camera setups could yield even better
results.

5.1.2 Experiment 1.2: Capacity

As stated in the experiment’s section, the longest segment was selected for the
baseline despite achieving the lowest scores across the metrics. This choice was
made to ensure that the scene encompasses a diverse range of environments, in-
cluding straight roads, curves, intersections, and varying lighting conditions.

In the qualitative analysis of the capacity results, it is evident that the quality of the
renders degrades as the segment’s length increase. The most prominent deteriora-
tion is the increase in blur; however, the PSNR remains relatively constant across
the different experiments. A reason for this could be that PSNR has been shown to
poorly capture the effects of blur [39], as exemplified by Figure 5.1. This example
demonstrates the importance of evaluating the model across different metrics, as
both SSIM and LPIPS are good metrics for capturing blur.

5.1.3 Experiment 1.3: Number of Frames

To comprehend the outcomes of this experiment, it would be beneficial to look into
how the number of frames and the image resolution impact the training process.
As described in the implementation details in section A.1, the model is trained for
15’000 iterations where each iteration uses 4096 pixels. This results in ⇠ 61 mil-
lion pixels being sampled throughout a single training. With 225 training images
and an image resolution of 600⇥450,⇠ 61 million pixels would be sampled. That
means that by the end of the training, approximately all of the input pixels were
trained on. A dataset containing more than 225 training images and correspond-
ing camera poses would leave abundant pixels, and any fewer would lead to pixels
being trained on multiple times. This calculation entail that the results should be
relatively similar for all the conducted experiments with 1231, 615, 411, 307, and
247 images respectively. But, there is a significant drop in PSNR from experiments
1 to 4. The drop in PSNR indicates that another important factor is the variety in
the dataset.
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Figure 5.1: Comparison of the MSE score for an image that has been subjected
to various types of distortions. The MSE score directly affect the PSNR, as PSNR
builds upon MSE as described in subsection 2.7.1. Figure 3 from Ways of cheating
on popular objective metrics: blurring, noise, super-resolution and others [28].

5.1.4 Experiment 1.4: Image Resolution

Based on the metric scores, it might seem counterintuitive that the lowest reso-
lution of 200⇥ 150 performed best. However, a deeper look into the qualitative
results in Figure 4.2 reveals a different narrative. Despite lower resolutions yield-
ing higher scores on metrics, they seem to fail in capturing fine-grained details,
resulting in less visually pleasing images. On the other hand, higher-resolution
images allow the NeRF to capture and replicate more intricate details, leading to
superior visual outcomes, albeit with lower metric scores. This difference can be
attributed to the higher sensitivity of metrics to minor discrepancies and noise
in high-resolution images, potentially causing significant metric score reductions
despite only minimal perceptual differences.

Given these considerations, the chosen resolution of 400⇥ 300 for the following
experiments is a balanced choice, considering both the quantitative and qualita-
tive results. Furthermore, it aligns well with the chosen number of frames from
the Experiment 1.3, as the combined configuration will allow training to sample
about 84% of the input pixels.
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5.1.5 Experiment 1.5: Vehicle Speed

The reason why the runs with higher vehicle speeds achieve worse results might be
attributed to the motion blur and temporal artifacts that can occur when the vehi-
cle is moving fast. In CARLA these effects are added as part of the post-processing
of the captured camera image. At higher speeds, the motion of the vehicle can
cause blurring and distortion in the captured images, which can reduce the qual-
ity of the data and make it more difficult for the NeRF to learn the underlying
3D scene structure and appearance. In contrast, slower vehicle speeds can reduce
the amount of motion blur and temporal artifacts, resulting in clearer and more
detailed images.

Another side effect of driving slower is that it leads to an increased amount of
images captured. At 50% speed, the dataset consists of 1095 images, in contrast
to the 429 images captured at 200% speed. An increased dataset size proved to
be beneficial in Experiment 1.3, and could positively affect the results in this ex-
periment.

5.1.6 Experiment 1.6: Assessing the Combined Baseline

RQ 1: What are the critical factors that need to be considered when capturing
synthetic data for training NeRF models, and how do they impact the per-
formance of the resulting models?

From the experiments discussed above, it is evident that all the configurations
contribute to the quality of the data capture, which in turn contributed to the
quality of the image synthesis from the resulting NeRF. Nevertheless, it is chal-
lenging to quantify the extent to which each of the different configurations affects
the quality of the final baseline results.

Looking at the experiments separately, image resolution had the largest span be-
tween the quantitatively best and worst metrics. Nevertheless, the qualitative re-
sults indicated that the quantitative comparison did not convey a fair comparison
of the render-quality. Due to this, the capacity-experiment could be the experiment
with the most impact on the final result.

In conclusion, when capturing synthetic data for training NeRF models, it is im-
portant to consider the camera setup, segment length or scene size, dataset size,
image resolution, and vehicle speed. Each of these parameters presents unique
influences on the quality of the data captured, and in turn, the performance of
the resulting NeRF models.

5.2 Experiment 2: Simulated Noise Conditions

RQ 2: How does the initial camera pose accuracy and segment length impact
the final reconstruction? Can rough initial camera poses be optimized to
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achieve comparable results to those obtained from tools such as COLMAP?

This research question addresses the effects of imperfect camera poses, frequently
encountered in real-world scenarios due to GPS/GNSS inaccuracies, on the per-
formance of camera pose optimization. We examine this by adding Gaussian noise
to camera poses obtained from the CARLA pipeline, simulating real-world inaccu-
racies in these camera poses.

Despite Gaussian noise not perfectly replicating real-world noise distributions, its
application allows an indicative examination of camera pose optimization within
the Nerfacto-pipeline. It is noteworthy that while the quantitative distinction be-
tween the non-optimized and optimized camera pose results might appear marginal,
the qualitative contrasts depicted in Figure 4.3 deliver strong evidence of the cam-
era pose optimization’s effectiveness.

Particularly, the qualitative comparison highlights that the optimized camera poses
generate consistently higher quality renders, even under significant noise levels.
This is more noticeable within shorter segments, where the optimization seems
more efficient than in the larger baseline scene. This finding may be attributed
to the previously discussed limitations in capacity, given that the camera opti-
mization treats camera pose parameters as jointly optimized learnable parameters
along with the RGB values.

Interestingly, the only instance where non-optimized poses yield superior results
is when no noise is introduced. In such cases, the resulting render from non-
optimized camera poses appears considerably sharper than its optimized coun-
terpart, which appears comparatively more blurred. This outcome is likely unique
to datasets with near-perfect camera poses, such as the synthetic dataset used in
this experiment.

When examining the effectiveness of COLMAP pre-processing against the joint
optimization of initial camera poses along with the other learnable parameters, it
becomes evident that COLMAP tends to deliver superior performance. This obser-
vation holds particularly when the initial rough camera poses are influenced by a
rather minor noise adhering to a Gaussian distribution with a standard deviation
of 0.12. Under these conditions, all three evaluation metrics (PSNR, SSIM, LPIPS)
associated with the NeRF lag behind those achieved by COLMAP, as can be seen
from Table 4.9 and Table 4.10. Furthermore, when the noise’s standard deviation
is escalated to 0.52, which is fair to assume could occur during real-world data cap-
ture, the metrics degrade even more significant compared to what COLMAP can
deliver. While the processing time required by COLMAP might seem prohibitively
lengthy for large datasets, this concern can be addressed by splitting the data into
smaller sections. Thus, despite the initial time investment, COLMAP’s superior
performance merits consideration, particularly in scenarios with significant noise
in initial camera poses.
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5.3 Experiment 3: Comparing NeRF-models

RQ 3: How do different NeRF methods (Instant-ngp [3], Mip-NeRF [4], Nerfacto
[5]) perform on unbounded scenes in terms of reconstruction quality and
computational efficiency?

Upon examination of the different NeRF methods, namely Nerfacto, Instant-ngp,
Nerfacto-big, and Mip-NeRF, it is evident that their performance in terms of re-
construction quality and computational efficiency on unbounded scenes is rather
comparable, with the exception of Mip-NeRF.

Both Nerfacto and Instant-ngp demonstrate high performance on the evaluated
metrics, showcasing their proficient ability to effectively learn and represent the
unbounded scene. The largest deviation between the two models is their LPIPS
score, where Nerfacto outperforms Instant-ngp. Nerfacto-big is a differently con-
figured Nerfacto-model featuring, among other configurations presented in Ta-
ble A.2, an expanded hidden layer width which increases the model’s capacity.
Despite being trained for a significantly larger number of iterations it fails to ex-
ceed the performance of its less complex counterparts.

Mip-NeRF, which is designed for bounded scenes, predictably falls short in learn-
ing the unbounded scene. It yields the lowest scores across all metrics. The qual-
itative evaluation further support this, showing no perceivable scene structure in
its renderings, despite producing some correct color representations.

Given these findings, Nerfacto emerges as a strong candidate for subsequent ex-
periments. Furthermore, it should serve well as a backbone-model for applications
to build upon, thanks to its balance between reconstruction quality and computa-
tional efficiency.

5.4 Experiment 4: Large-Scale NeRF

RQ 4: What are the technical challenges and considerations for implementing a
functional approach for large-scale NeRF within the Nerfstudio API, and
how does it compare to approaches not optimized for large-scale in terms
of scalability, efficiency, and rendering quality?

Implementing a functional approach for large-scale NeRF within the Nerfstudio
API has been technically challenging, as elaborated upon in section 3.6. However,
the initial naive Block-NeRF approach has displayed encouraging performance
in both quantitative and qualitative aspects. The experimental results confirm
that compared to training single NeRFs on large scenes, the Block-NeRF approach
yields superior outcomes. The image synthesis produced by the Block-NeRF ap-
proach exhibits sharper details and an overall enhancement in the visual qual-
ity.

While the naive implementation of Block-NeRF does not inherently exhibit opti-
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mal scalability, it holds significant potential for improvement. In its current state,
each Block-NeRF is trained sequentially, creating a bottleneck that limits scala-
bility. However, the architecture provides an opportunity for horizontal scaling,
which could be achieved by parallelizing the unique training processes across
multiple Graphics Processing Units (GPUs). This adjustment would drastically im-
prove efficiency and reduce training time, thereby enhancing scalability.

Nevertheless, it is important to acknowledge that this process is computationally
intensive, and care should be taken to find a balance between the quality of the
results and the efficiency of the process. Future work could focus on optimizing
this balance to make large-scale NeRF more viable and efficient, while maintaining
the high-quality image synthesis that the Block-NeRF approach has demonstrated
thus far.

5.4.1 Experiment 4.1: Removing Artifacts

The introduction of an overlap � between the naive Block-NeRF’s data resolves
the problem of visible artifacts during the transition between Blocks. However,
as � increases, the dataset size for the respective Block-NeRFs increase, and the
collective render quality decreases. This finding is consistent with the results from
Experiment 1.2, which indicate that the scene size is inversely correlated with
render quality.

While the approach of incorporating overlap between the Block-NeRF’s data re-
solves the problem of visible artifacts during the transition between Blocks, it is
evident from Figure 4.6 that the final frame rendered by a Block-NeRF produces
renders of lower quality compared to the initial frame rendered by the same Block-
NeRF. If the second Block-NeRF’s dataset contains images captured closer to the
respective motive, indicating more detailed images, this difference is to be ex-
pected. However, the difference could potentially be mitigated by experimenting
with image-merging techniques, for example, by rendering the view from both
blocks and merging them with techniques like inverse distance weighing.

5.5 Experiment 5: Real Data

The naive Block-NeRF approach emerges as the clear frontrunner in the experi-
ments on real data, producing both the best quantitative and qualitative results.
This finding aligns with expectations considering the scale of the scene being
learned, which potentially surpasses the capacity of a single NeRF. Among all con-
ducted experiments, the Block-NeRF run, with camera poses approximated by
COLMAP without further optimization, demonstrated a distinct supremacy across
all metrics, affirming the advantage of COLMAP-based pose estimation over GPS-
derived alternatives.

In the subset of experiments excluding the naive Block-NeRF approach, the ap-
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proach utilizing COLMAP without subsequent optimization yielded the best re-
sults. Among the runs with camera poses estimated from GPS-readings, those in-
volving subsequent camera pose optimization produced superior metrics. These
findings further support the observation that camera poses that are near-perfect
tend to be disadvantaged by subsequent optimization, while imperfect camera
poses benefit from this process. This observation is further reinforced by the qual-
itative evaluation of the different runs, presented in Figure 4.8, where the output
from runs utilizing near-perfect camera poses tended to exhibit blurriness upon
subsequent optimization. In contrast, the use of subsequent optimization of im-
perfect camera poses enabled the NeRF to generate more precise and clear ren-
derings.

5.6 Experiment 6: Novel Views Along Altered Trajectory

One of the benefits of using NeRFs for training AD systems, is the ability to gener-
ate data along altered trajectories. While this can be achieved with a simulator, as
discussed in subsection 2.8.6, the application of NeRF becomes particularly useful
when a high-quality NeRF has been trained on real data. In addition to evaluating
the autonomous vehicle in a novel environment, the NeRF can be used to expand
the training dataset for the autonomous vehicle by creating an arbitrary number
of altered camera paths and synthesizing photo-realistic novel views of altered
trajectories. This can help improve the robustness and generalizability of the AD
system by exposing it to a wider range of scenarios and viewpoints.

Looking into the experimental results from Experiment 6, it is important to note
that the absence of ground truth images from the altered path inherently con-
strains the ability to conduct quantitative analysis beyond the initial evaluations.
The qualitative assessment is thus the primary mode of evaluation. From the ren-
derings depicted in Figure 4.9, we can clearly see the potential of this application.
Although the novel-rendered perspectives do not always match the quality and
coherence found in the original evaluation images, they are largely successful in
producing clear and structurally accurate visualizations. This affirms their poten-
tial and the effectiveness of the approach.

5.7 Shortcomings

Several areas of potential improvement can be recognized within this study. Firstly,
while the research has illuminated key aspects of data capture from vehicles,
the time constraints of the project did not allow us to validate these findings
through real-world testing. Synthetic data sets were leveraged extensively and
provided evidence that the combined configurations for the baseline were promis-
ing. However, the validity of these results has yet to be confirmed in real-world
capture.



Chapter 5: Discussion 63

Secondly, there exist limitations in the capture of real data, specifically in the
estimation of transformation matrices. The camera poses’ translational compo-
nents are derived from raw GNSS-readings, and the rotational components are
estimated through trigonometric comparisons of adjacent GNSS-readings. Such a
method is inherently susceptible to errors and inaccuracies. To improve the ac-
curacy and reliability of data capture, a better approach could be to utilize both
of the vehicle’s GNSS sensors and integrate the vehicle’s accelerometer data to
achieve precise roll and pitch estimations.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

The primary research goal of this thesis was to design and develop an end-to-end
pipeline for generating NeRFs, leveraging vehicle-captured video sequences and
corresponding camera poses with varying degrees of accuracy.

Initially, a data capture pipeline was created for CARLA, which provided synthetic
data from a controlled environment. Connecting this with the Nerfstudio pipeline
established the end-to-end pipeline and enabled the creation of a performance
baseline for further experiments. During the creation of the baseline, multiple
configurations and settings were evaluated, underscoring their significance on
the resulting image synthesis. Some of the configurations that proved important
were camera setup, segment length, dataset size, image resolution, and vehicle
speed.

Having obtained a baseline, further experiments were conducted, revealing im-
portant findings: NeRFs trained with jointly optimized camera poses consistently
achieved higher scores than non-optimized camera poses on the metrics PSNR,
SSIM and LPIPS, and proved particularly effective on shorter segments. However,
pre-processing an approximation of the camera poses with COLMAP outperformed
camera pose optimization, especially in high-noise situations, arguing for its con-
sideration despite an upfront processing-time investment. These two findings sup-
port the finding that camera poses that are near-perfect tend to be disadvantaged
by subsequent optimization, while imperfect camera poses benefit from this pro-
cess.

Progressing into the exploration of large-scale NeRF approaches, a naive prototype
was implemented. Despite being a prototype with rudimentary features, the high-
quality results were consistent across multiple scenes. The approach provided the
ability to represent large scenes while still retaining sharp details and high visual
quality.
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In order to expand the end-to-end pipeline to enable the input of real data, a
data capture pipeline with a custom data parser was created for the NAPLab car.
The extension to real data resulted in photo-realistic renderings, and many of the
findings from the experiments conducted in the controllable, virtual environment
held true. Optimizing the rough camera poses captured from the NAPLab vehi-
cle performed better than not optimizing them. However, COLMAP outperformed
joint camera optimization overall. Additionally, the naive large-scale NeRF imple-
mentation performed better than a single NeRF.

Both the synthetic and real data were used to conduct experiments on how well
the vehicle-captured data could provide a NeRF capable of rendering unseen tra-
jectories. Although the novel-rendered perspectives did not match the quality and
coherence found in the original evaluation images, they were largely successful in
producing clear and structurally accurate renderings. This affirms their potential
and the effectiveness of the approach.

6.2 Future Work

This section provides ideas related to this thesis that were not covered, but would
be interesting to explore in future work. Given that the large-scale approach pro-
vided the best results across all experiments when compared to single-NeRF ap-
proaches, it is a promising approach to pursue. Following are some techniques
and approaches that would provide interesting tracks for future work.

Wayve’s pipeline for large-scale NeRF, discussed in subsection 2.8.6, includes the
use of COLMAP for individual segments, reducing the complexity and time used to
approximate camera poses. Given this thesis’ findings of COLMAP’s performance
in contrast to Nerfstudio’s camera optimization, it seems worthwhile to explore
this approach and integrate it into the large-scale NeRF pipeline.

When capturing real data that span large areas, it is inevitable to capture a lot
of transient objects in the image data, such as moving cars and pedestrians. This
data contributes to blurry renderings and artifacts because the object’s position
changes from frame to frame. A solution to this problem is the employment of
object segmentation models and masking. By employing a segmentation model
and subsequent masking of transient objects, the data becomes more consistent
across frames and should produce higher-quality renderings.

Although the naive Block lookup-table works well when rendering the same path
the vehicle had when capturing the data, it does not necessarily adapt to the free
roaming of the 3D scene. In order to remedy this, a visibility prediction network
could be employed. This network’s responsibility would be to predict if a cer-
tain point would be "visible" from a specific Block-NeRF, in other words, predict if
a Block-NeRF’s render would provide additional information to the final render.
Combining this technique with image-merging techniques, such as merging mul-
tiple rendered images with inverse distance weighting, could provide a higher-
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quality and more coherent final render. This is because multiple Block-NeRFs
could contribute to rendering a point they’ve only partially "seen", resulting in a
more complete representation of the scene. Both of these techniques are explored
in Block-NeRF [2], as discussed in subsection 2.8.3.

The Nerfacto-model and most other state-of-the-art NeRF models leverage a space-
warping algorithm designed for front-facing or object-centric trajectories. The cap-
ture of data from a vehicle is not inherently object-centric, and changing the space-
warping algorithm could potentially have a great impact on the performance. F2-
NeRF [40] has proposed a new space-warping method designed to handle arbi-
trary trajectories, called perspective warping. Implementing F2-NeRF as the back-
bone model for large-scale NeRF would be an interesting track to pursue.

These related ideas present potential avenues for further research and improve-
ment, offering opportunities to refine and enhance the existing methodology and
outcomes of the study.
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Appendix A

Additional Material

A.1 Parameters for the training in Nerfstudio

This section provide the full configuration for the models trained in Nerfstudio.

Table A.1: An overview of the parameters in the default Nerfacto model. Rows
prefixed with DF describe the model’s corresponding Density Fields.

Description Default Value
Max number of iterations 15000
Number of rays per batch 4096
Optimizer Adam
How far along the ray to start sampling. 0.05
How far along the ray to stop sampling. 1000.0
Number of samples per ray for the nerf network. 48
Sample every n steps after the warmup 5
Scales n from 1 to proposal_update_every num steps 5000
Number of proposal network iterations. 2
Use the same proposal network. False
Number of samples per ray for each proposal network 256 & 96
Dimension of hidden layers 64
Maximum resolution of the hashmap for the base MLP 2048
Proposal loss multiplier. 1.0
Distortion loss multiplier. 0.002
Orientation loss multipier on computed noramls. 0.0001
Predicted normal loss multiplier. 0.001
Use proposal weight annealing. True
Use average appearance embedding or zeros for inference. True
Slope of the annealing function for the proposal weights 10.0
Max num iterations for the annealing function. 1000

Continued on next page
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Table A.1 – continued from previous page
Description Default Value

Use single jitter or not for the proposal networks. True
Predict normals or not. False
DF: Dimension of hidden layer 16
DF: Hashmap size 217

DF: Number of levels of the hashmap 5
DF: Maximum resolution of the hashmap (density field 1) 64
DF: Maximum resolution of the hashmap (density field 2) 256

Table A.2: An overview of the parameters in the Nerfacto-big model. Rows pre-
fixed with DF describe the model’s corresponding Density Fields.

Description Default Value
Max number of iterations 100000
Number of rays per batch 4096
Optimizer Rectified Adam
How far along the ray to start sampling. 0.05
How far along the ray to stop sampling. 1000.0
Number of samples per ray for the nerf network. 128
Sample every n steps after the warmup 5
Scales n from 1 to proposal_update_every num steps 5000
Number of proposal network iterations. 2
Use the same proposal network. False
Number of samples per ray for each proposal network 512 & 256
Dimension of hidden layers 128
Maximum resolution of the hashmap for the base MLP 3000
Proposal loss multiplier. 1.0
Distortion loss multiplier. 0.002
Orientation loss multipier on computed noramls. 0.0001
Predicted normal loss multiplier. 0.001
Use proposal weight annealing. True
Use average appearance embedding or zeros for inference. True
Slope of the annealing function for the proposal weights 10.0
Max num iterations for the annealing function. 1000
Use single jitter or not for the proposal networks. True
Predict normals or not. False
DF: Dimension of hidden layer 16
DF: Hashmap size 221

DF: Number of levels of the hashmap 5
DF: Maximum resolution of the hashmap (density field 1) 64
DF: Maximum resolution of the hashmap (density field 2) 256
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Table A.3: An overview of the parameters in the default Instant-ngp model

Description Value
Max number of iterations 15000
Number of rays per batch 4096
Optimizer Adam
Whether to create a scene collider to filter rays. False
Number of samples in field evaluation. 24
Resolution of the grid used for the field. 128
Contraction type. Unbounded Sphere
Cone angle 0.004
Minimum step size for rendering. 0.01
How far along ray to start sampling. 0.05
How far along ray to stop sampling. 1e3
Whether to use an appearance embedding. False
Whether to randomize the background color. True

Table A.4: An overview of the parameters in the default Mip-NeRF model

Description Value
Max number of iterations 300000
Number of coarse samples 128
Number of fine samples 128
Optimizer Rectified Adam
Whether to create a scene collider to filter rays. True
Near plane collider-plane. 2.0
Far plane collider-plane. 6.0
The loss coeficcient for the coarse MLP. 0.1
The loss coeficcient for the fine MLP. 1.0
Number of rays per chunk during eval 1024
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A.2 Results

This section presents the complete results of the experiments where some results
were condensed to convey the primary findings.

A.2.1 Simulated Noise Conditions

Table A.5: Results for Simulated Noise Condition experiment on both the baseline
and shorter segments. The shorter segments are 10% the size of the baseline
segment, approximately 50m in length.

Description PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #
Baseline segment

With camera optimizer Without camera optimizer

N (0, 0.0) 23.41 0.714 0.321 24.70 0.793 0.179

N (0, 0.12) 22.51 0.674 0.321 22.46 0.677 0.281

N (0, 0.22) 21.34 0.617 0.338 21.21 0.602 0.367

N (0, 0.32) 20.52 0.577 0.346 20.47 0.561 0.399

N (0, 0.52) 19.08 0.501 0.372 19.37 0.499 0.474

N (0, 1.02) 17.67 0.434 0.433 18.21 0.444 0.560

N (0, 3.02) 16.66 0.408 0.637 16.32 0.386 0.648

Shorter segment

With camera optimizer Without camera optimizer

N (0, 0.0) 24.83 0.825 0.102 25.68 0.862 0.077

N (0, 0.12) 23.03 0.753 0.115 23.32 0.755 0.147

N (0, 0.22) 20.67 0.614 0.149 21.38 0.629 0.209

N (0, 0.32) 20.50 0.596 0.155 21.10 0.612 0.233

N (0, 0.52) 19.06 0.483 0.197 20.07 0.513 0.299

N (0, 1.02) 18.09 0.407 0.338 18.29 0.418 0.405

N (0, 3.02) 15.71 0.345 0.613 15.08 0.363 0.699
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A.2.2 Block-NeRF

Table A.6: Results for each segment when the baseline-segment spanning the
entire block has been split into 4 Block-NeRFs.

Description PSNR " SSIM " LPIPS #
Segment 1 24.96 0.815 0.162

Segment 2 25.66 0.824 0.164

Segment 3 23.91 0.755 0.194

Segment 4 23.36 0.765 0.216

Table A.7: Results for each segment when the larger segment spanning approxi-
mately 1.2km has been split into 12 Block-NeRFs.

Description PSNR " SSIM " LPIPS #
Segment 1 25.05 0.827 0.139

Segment 2 25.70 0.831 0.156

Segment 3 24.92 0.830 0.150

Segment 4 22.73 0.713 0.207

Segment 5 25.47 0.838 0.132

Segment 6 25.67 0.842 0.147

Segment 7 25.66 0.821 0.164

Segment 8 25.07 0.777 0.154

Segment 9 24.80 0.815 0.154

Segment 10 23.69 0.754 0.186

Segment 11 23.94 0.757 0.179

Segment 12 24.58 0.808 0.144

Average metrics of 12 Block-NeRF 24.77 0.801 0.159

Average metrics of 1 Block-NeRF 22.52 0.654 0.424
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A.2.3 Real data

Table A.8: Data from dataset 2 with transformation matrix approximated with
COLMAP or GPS-readings. BNs an abbreviation of Block-NeRF and the resulting
metric score is averaged across the 4 NeRFs evaluations.

Description PSNR " SSIM " LPIPS # Time processing

COLMAP w/ optimizer 19.94 0.724 0.535 00:10:25

COLMAP w/o optimizer 20.99 0.757 0.468 00:10:25

COLMAP w/ optimizer, 4 BNs 20.37 0.760 0.428 00:10:25

COLMAP w/o optimizer, 4 BNs 20.45 0.761 0.425 00:10:25

GPS w/ optimizer 18.88 0.711 0.573 00:00:00

GPS w/o optimizer 15.29 0.693 0.649 00:00:00

GPS w/ optimizer, 4 BNs 18.41 0.690 0.560 00:00:00

GPS w/o optimizer, 4 BNs 14.58 0.667 0.656 00:00:00

Table A.9: Data from dataset 3 with transformation matrix approximated with
COLMAP or GPS-readings. BNs an abbreviation of Block-NeRF and the resulting
metric score is averaged across the 4 NeRFs evaluations.

Description PSNR " SSIM " LPIPS # Time processing

COLMAP w/ optimizer 19.84 0.682 0.542 00:08:45

COLMAP w/o optimizer 22.31 0.752 0.431 00:08:45

COLMAP w/ optimizer, 4 BNs 20.97 0.699 0.397 00:08:45

COLMAP w/o optimizer, 4 BNs 23.40 0.794 0.329 00:08:45

GPS w/ optimizer 18.17 0.653 0.598 00:00:00

GPS w/o optimizer 13.80 0.627 0.719 00:00:00

GPS w/ optimizer, 4 BNs 18.40 0.638 0.545 00:00:00

GPS w/o optimizer, 4 BNs 14.37 0.619 0.683 00:00:00
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