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Abstract

This thesis investigates the potential enhancement of predictive accuracy in Auto-
mated Valuation Models (AVMs) by employing diverse model selections in stacked
generalization. The aim is to reduce inaccuracies in AVMs through the use of this
advanced technique, which prior research has shown to be beneficial. Building on
these findings, the study integrates multiple valuation techniques, including the
Comparable Sales Method (CSM), Least Absolute Deviation (LAD), and XGBoost
(XGB), to capture diverse patterns and insights. These techniques were combined
in various ways to form three stacked models, which were then evaluated for their
predictive performance through a comparative analysis between the three individual
models and the three stacked models.

Our models were tested on a dataset consisting of 164,652 apartment transactions
from Oslo, sold between 2007 and 2022, generating out-of-sample predictions using
25% of the data. The findings suggest that the stacked model involving XGB and
CSM emerged as the most accurate of all models examined in the study, achieving a
median absolute percentage error (MdAPE) of 5.35%. However, the study also re-
veals that most of the accuracy of the stacked models is derived from the XGB model.
This best-performing individual model closely follows the stacked models, achiev-
ing an MdAPE of 5.47%. Despite these results, our stacked models face significant
challenges related to computational complexity and interpretability, suggesting that
further XGB model development might be more efficient.

Further tests were conducted to understand how different valuation techniques and
stacked models perform with varying data sizes. The findings highlight the limit-
ations faced by individual models when dealing with smaller datasets and reveal a
decrease in the effectiveness of the stacked models as the size of the training data
is reduced, suggesting stacked generalization might not improve prediction perform-
ance for smaller datasets. In a separate evaluation, our models were tested using
an out-of-time test set on the full data, demonstrating that our initial methodology
can be generalized.

The study concludes that using stacked generalization to combine distinct modeling
techniques can improve the predictive performance of our models, but these im-
provements are relatively small and require a certain amount of data. Overall, this
thesis offers valuable insights into the application of stacked generalization in real
estate valuation and provides interesting findings in a relatively unexplored field.
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Sammendrag

Denne oppgaven undersøker den potensielle forbedringen av prediktiv nøyaktighet
til automatiserte verdsettelsesmodeller (AVM-er) ved å bruke metodisk forskjellige
modeller i ”stacked generalization”. Målet er å redusere unøyaktigheter i AVM-er
ved å bruke denne avanserte teknikken, som tidligere forskning har vist å være for-
delaktig. Basert p̊a disse funnene, anvender denne studien flere verdsettelsesteknik-
ker, inkludert salgssammenligningsmetoden, ”Least Absolute Deviation” (LAD) og
”XGBoost” (XGB), for å fange forskjellige mønstre og innsikt. Disse teknikkene
ble kombinert p̊a ulike måter for å danne tre stablede modeller, som deretter ble
evaluert for deres prediktive ytelse gjennom en komparativ analyse mellom de tre
individuelle modellene og de tre stablede modellene.

Modellene v̊are ble testet p̊a et datasett best̊aende av 164 652 leiligheter solgt i
Oslo mellom 2007 og 2022, hvor det ble generert prediksjoner ”out-of-sample” ved å
bruke 25% av datasettet. Funnene tyder p̊a at den stablede modellen som involverer
XGB og salgssammenligningsmetoden gir den mest nøyaktige prediksjonen av alle
modellene som ble undersøkt i studien, og oppn̊adde en median absolutt prosent-
feil (MdAPE) p̊a 5,35%. Studien viser ogs̊a at mesteparten av nøyaktigheten til
de stablede modellene er hentet fra XGB-modellen. Denne individuelle modellen
med best ytelse følger tett de stablede modellene, og oppn̊ar en MdAPE p̊a 5,47%.
Til tross for disse resultatene, st̊ar v̊are stablede modeller overfor betydelige ut-
fordringer knyttet til beregningsmessig kompleksitet og tolkbarhet, noe som tyder
p̊a at videreutvikling av XGB-modellen kan være mer effektivt.

Ytterligere tester ble utført for å forst̊a hvordan ulike verdsettelsesteknikker og
stablede modeller presterer med varierende datastørrelser. Funnene belyser begrens-
ningene som individuelle modeller møter ved arbeid med mindre datasett og avslører
en svekkelse i effektiviteten til de stablede modellene n̊ar størrelsen p̊a trenings-
dataene reduseres. Dette antyder at ”stacked generalization” kanskje ikke fører til
forbedret prediksjonsevne for mindre datasett. I en egen undersøkelse ble modellene
v̊are testet ved hjelp av et ”out-of-time” testsett p̊a de fullstendige dataene, som
viste at v̊ar første metodikk kan generaliseres.

Studien konkluderer med at bruk av ”stacked generalization” for å kombinere met-
odisk forskjellige modeller kan forbedre den prediktive ytelsen til v̊are modeller,
men disse forbedringene er relativt sm̊a og krever en viss mengde data. Samlet
sett gir denne oppgaven verdifull innsikt i anvendelsen av ”stacked generalization”
i eiendomsvurdering og gir interessante funn i et relativt lite utforsket felt.
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1 Introduction

In the continuously evolving landscape of the real estate industry, technological ad-
vancements have set in motion significant shifts in valuation techniques. Traditional
methodologies, which heavily relied on human appraisers, have increasingly given
way to more modern, automated methods. This change can largely be attributed to
the rise of Automated Valuation Models (AVMs), which offer a more cost-effective,
time-saving, and notably accurate means of valuing residential properties in com-
parison to traditional methods. However, despite the clear advantages they present,
concerns have been raised as they may not provide an accurate representation of the
local market conditions or consider the unique features of each property (Mooya,
2017; Tretton, 2007). This article examines these concerns and explores how stacked
generalization, a technique used to combine multiple models, can improve the pre-
diction performance of AVMs in the housing market.

The main idea underlying stacked generalization is to dynamically weight the input
from base models based on their respective performances on a validation set (Smyth
& Wolpert, 1997). Each base model captures different patterns or insights from the
data, and the meta-model learns the optimal combination of these base model pre-
dictions to generate the final prediction output. By leveraging the diversity among
the base models, the meta-model effectively adjusts the ensemble of predictions,
potentially resulting in improved performance compared to using any single base
model alone (Breiman, 1996). This approach can yield a more robust and reliable
prediction model, benefiting stakeholders like real estate professionals, investors,
and homebuyers. It can also help refine valuation techniques in the real estate in-
dustry and promote informed decision-making in the housing market. Therefore, our
primary research question is whether the use of stacked generalization with diverse
model selection leads to better prediction performance.

Previous research has investigated the use of stacked generalization to improve pre-
diction performance in real estate valuation (Birkeland et al., 2021; Kansara et al.,
2018; Nnadozie et al., 2022; Truong et al., 2020). These studies have demonstrated
that models using stacked generalization not only enhance the stability of predic-
tions, but also outperform other models in terms of predictive accuracy. As the lit-
erature up to this point has mainly focused on integrating various machine learning
methods, our study aims to extend the literature by investigating the implementa-
tion of stacked generalization with methodically diverse modeling techniques. Spe-
cifically, we integrate a traditional appraisal method, the Comparable Sales Method
(CSM), which, to our knowledge, has not been used in this context before. In ad-
dition, we include a hedonic regression in Least Absolute Deviation (LAD), and
a machine learning technique in XGBoost (XGB). The selection of diverse models
aims to leverage the diversity among the base models and ensures that a wide range
of approaches is considered, which may lead to further improvement in performance.
Furthermore, by incorporating the CSM into a stacked generalization framework, we
are exploring a new direction in real estate valuation. This approach could provide
valuable insights into the potential benefits and challenges present in this procedure.

The dataset used in this study consists of 164,652 apartment transactions in Oslo,
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spanning from May 2007 to December 2022. Our models were trained on 75% of
the data, and tested out-of-sample on the remaining 25%. To answer the research
question, we developed AVMs for the three individual models. We then fed their
predictions into an XGB meta-model as part of the stacked generalization process.
This enabled the development of three additional stacked models: (XGB + CSM),
(XGB + LAD), and (XGB + CSM + LAD). All six models were then compared
against each other using a range of different evaluation metrics. Additional insights
were gained by examining both the feature importance of each model, and the
discrepancy between the predicted and the actual values. Lastly, we conducted a
series of tests designed to simulate the performance of our models out-of-sample
across a variety of smaller training sets, each representing a wide range of potential
scenarios.

Our findings revealed that the application of stacked generalization with method-
ically diverse models led to a marginal improvement in prediction performance.
Notably, the XGB, when used as a standalone model, already produced robust res-
ults when tested on an extensive dataset from Oslo’s housing market. Our analysis
also indicated that the stacked models derive most of their accuracy from the XGB
base model, suggesting a strong reliance on this particular algorithm. However, the
practicality of this remains a concern due to the computational expense of stacked
generalization. Despite this, integrating XGB with the CSM through stacked gen-
eralization resulted in a minor but significant improvement across all performance
metrics, with median absolute percentage error (MdAPE) reducing from 5.47% to
5.35%. When experimenting with smaller datasets, we found that stacked general-
ization might be less effective as the dataset decreases in size. The stacked model,
composed of XGB and CSM, retained its position as the best-performing model until
the training data was reduced to approximately 12,000 observations. Beyond this
threshold, the individual XGB emerged as the best-performing model and showed
its dominance.

The limited enhancements observed with stacked models in this study, along with
their time-consuming implementation, raise questions about the practicality of us-
ing stacked generalization in real-world applications. Nonetheless, as this field is
relatively unexplored, further research is required to substantiate these findings.

To provide a comprehensive understanding of our work, we will explore the following
key sections in our study: In Section 2, we offer a comprehensive review of related
literature, establishing the theoretical foundation for our research. Section 3 explores
the dataset and details the cleaning process and rationale for variable selection.
Section 4 illustrates the development of our AVMs, including the application of
the stacked generalization approach and details about the individual models, along
with the SHAP framework used to get feature importances, and an overview of the
evaluation metrics used in the study. In Section 5, we then evaluate and discuss the
models’ performance under various conditions, while Section 6 concludes the study
with final remarks and suggestions for future research.
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2 Literature Review

The following section introduces the relevant literature for the study. This includes
the use of stacked generalization in previous work, followed by a deep dive on each
individual model used in this study. Alternative models are also discussed, justifying
the model choices.

2.1 Stacked Generalization

Stacked generalization is an ensemble learning technique that combines the pre-
dictions of multiple base models to make a final predictive model with improved
accuracy and robustness. It was pioneered by Wolpert (1992) as a way to address
the limitations of single-model approaches for classification tasks, and later refined
by Breiman (1996) who used it for regressions. He also found that stacking models
that are not overly similar yielded better results. The seminal work of Smyth and
Wolpert (1997) shed light on the applicability of stacked generalization to unsuper-
vised learning tasks. Their findings provided evidence that stacked generalization
could also be effectively employed in unsupervised learning settings, and expanded
the horizons of stacked generalization beyond supervised learning. This unlocked
new possibilities for its utilization in various unsupervised learning tasks, thereby
contributing to the advancement of the field of machine learning.

In the context of real estate valuation, there have been several studies that have
implemented stacking. Graczyk et al. (2010) conducted a research study that in-
vestigated the effectiveness of six different algorithms, including two neural network
algorithms, two decision trees, linear regression, and support vector machine, when
used as base models in ensemble learning applied to real estate appraisal. Three
meta-learners, namely Additive Regression, Bagging, and Stacking, were employed
to create ensembles, and their performance was compared in terms of prediction
accuracy. The findings revealed that bagging was the most stable technique, while
stacking yielded the lowest prediction errors in most cases. In a study conducted by
Truong et al. (2020), the prediction of house prices in Beijing was investigated us-
ing three distinct machine learning models, specifically Random Forest (RF), XGB,
and LightGBM. Subsequently, stacked generalization was employed to compare the
predictive performance of the individual models against the stacked model. The
findings revealed that RF outperformed the stacked model on the training set and
was the best-performing model among the three individual models. However, it was
noted that RF exhibited a tendency towards overfitting, whereas the stacked model
demonstrated superior performance on out-of-sample data, indicating its potential
for enhanced generalization performance. Birkeland et al. (2021) proposed an AVM
for the residential real estate market in Oslo, utilizing a stacked ensemble approach
that combined multiple base models including Bagging Predictor (BP), RF, Extra
Trees (ET), and XGB, with another XGB model serving as the meta-model. The
stacked ensemble model demonstrated superior performance compared to the indi-
vidual models when evaluated on out-of-sample data, as evidenced by low MdAPE
and a high percentage of predictions within 20% of the true values. However, the
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authors acknowledged that the stacked generalization approach is computationally
expensive and may pose challenges in interpreting the output due to potential hid-
den factors that could influence the model’s predictions. Further insights can be
gained by incorporating Linear Regression (Kansara et al., 2018) and ElasticNet
Regression (Nnadozie et al., 2022), in addition to a subset of the previously men-
tioned base models. In both studies, XGB emerged as the most effective individual
model, with the stacked model demonstrating superior performance.

2.2 Comparable Sales Method and Its Variations

CSM is a widely used valuation approach by real estate professionals to determine
the value of a property. This method involves analyzing recent sales of comparable
properties located in the same area as the subject property, and adjusting the sales
prices based on differences in various relevant factors such as size, location, age, and
other relevant features. This approach leads to an estimation of the value of the sub-
ject property. In its simplest form, commonly referred to as an expert algorithm, it
imitates the appraisal process undertaken by professional appraisers. The algorithm
finds comparables that match the target property in its characteristics, and com-
putes the average value of their transaction price to estimate a prediction for the
target property. Examples of using such approach in recent literature include Larraz
et al. (2021); Stang et al. (2022); Trawiński et al. (2017), albeit with results that
were surpassed by more complex models. However, Stang et al. (2022) showed that
their Expert Function (EXF) was better suited to estimate the price in some of the
districts in Germany, especially those with fewer observations.

An alternative approach is to use a K-Nearest Neighbors (KNN) algorithm to cal-
culate distances between the sample and target property to find a number of similar
properties (K). Antipov and Pokryshevskaya (2012) and Valier (2020) got more
promising results using this approach rather than the simpler expert algorithm, al-
though the tree-based machine learning algorithms still yielded better results. Build-
ing upon this approach, Oust et al. (2020) proposed a variation by incorporating a
K-means algorithm as a function of longitude, latitude and price per square meter
on the training set to generate more homogeneous artificial districts. Subsequently,
K-Nearest Neighbors was applied to the test set to classify dwellings based on the
newly constructed districts, employing the Haversine formula to measure distance.
The utilization of this innovative approach resulted in hedonic regressions that were
enhanced spatially, effectively serving as a CSM. Birkeland et al. (2021) utilized
a similar method with the Haversine formula, known as the comparable pricing
method, to train ensemble learning sub-models of an AVM for estimating the value
of different types of dwellings. The method involves selecting geographically nearest
transactions of the same type of dwelling as the target property, with a ranking vari-
able based on proximity, enabling the ensemble methods to recognize recent sales of
similar properties located in close proximity.
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2.3 Hedonic Regression Models

One of the earliest and most widely used AVMs is the Hedonic Pricing Model (HPM)
based on Multiple Regression Analysis (MRA) proposed by Rosen (1974). This
model is often used as a benchmark for testing other models. Recent studies, such
as the one conducted by Doumpos et al. (2021), have shown that even simple lin-
ear models can be effective tools for building accurate AVM systems, as long as
they account for spatial effects. The study found that their locally weighted linear
regression models, including Ordinary Least Squares (OLS), Least Absolute Shrink-
age and Selection Operator (LASSO), and LAD, performed well in capturing spatial
price variation compared to global and unweighted local approaches. These models
were also found to be easy to implement in a large-scale context and required only
a small sample of data for model fitting.

However, Kilpatrick (2011) highlighted the limitations of hedonic models, noting
that these models rely on certain assumptions, such as independent and identically
distributed data, strict exogeneity, no multicollinearity, spherical errors, and nor-
mality, which, if violated, can lead to biased or unreliable results. He suggested
it was imperative to explore alternative methodologies in real estate that possess
robust statistical characterization, while avoiding the strict assumptions of hedonic
models.

LAD was first introduced by Koenker and Basset (1978) as an alternative to the
more commonly used linear regression models. The study conducted by Yoo (2001)
found that the LAD model generates more robust and accurate estimates of hedonic
regression models compared to the conventional least squares method. This was
demonstrated by applying the LAD method to a dataset of residential property
sales in Seoul, South Korea. These findings demonstrate the advantages of using
the LAD method for HPM analysis and its potential to provide more reasonable
results and robustness of such models.

2.4 Boosting Techniques

Boosting is an ensemble technique first introduced by Schapire (1990). It involves
training decision trees sequentially, where each subsequent tree is fitted to improve
the errors made by the preceding trees. Later, this technique was developed further
and the AdaBoost method was introduced by Freund and Schapire (1995), which
was widely adopted in various machine learning applications. Gradient Boosting
Machine (GBM) was developed by Friedman (2001) as a generalization of Ada-
Boost to achieve higher accuracy, handle complex interactions between variables,
and optimize any differentiable loss function. However, this algorithm can be com-
putationally expensive and can also lead to overfitting. To address these issues,
Chen and Guestrin (2016) implemented the eXtreme Gradient Boosting (XGB) al-
gorithm. The model is a powerful and computationally efficient implementation of
the gradient boosting model. It is designed to address overfitting issues by imposing
regularization on the model structure, which limits its complexity and generalizes
better for out-of-sample data.
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The XGB model has since been popular in AVMs and is well documented in previous
literature. Kumkar et al. (2018) conducted a comparative analysis of four tree-based
ensemble methods, including XGB, to evaluate their efficiency in the appraisal of
property values in Mumbai, India. The results of the study demonstrate that the
XGB model outperforms the other three models in terms of accuracy and predictive
power. Stang et al. (2022) found that due to its flexibility the XGB function achieved
the highest overall accuracy compared to the OLS regression, Generalized Additive
Model (GAM), and their EXF in their AVM for real estate properties in Germany.
Hjort et al. (2022) used a large dataset containing 126,719 observations where their
variant of the XGB model achieved the best results on 4 out of 5 of the performance
metrics compared to other models, where only their RF model performed better on
median error percentage. Although XGB has been shown to be a superior model in
some contexts, it has been reported to be outperformed by at least one other model
in various comparisons (Law et al., 2019; Sangani et al., 2017; Wang et al., 2020).
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3 Data

This study utilized data provided by the Norwegian proptech company Solgt.no.
The dataset includes detailed information of housing transactions listed on Finn.no,
the largest online marketplace for private properties in Norway. The transactions
are from the Norwegian capital, Oslo, and span from May 2007 to December 2022.
This section provides an overview of the key variables present in the dataset, as well
as the techniques used for filtering and cleaning the data to ensure accurate analysis
and interpretation.

3.1 Data Pre-Processing

The dataset was first examined to assess the distribution of housing types before
delving into specific variables. Out of the total 199,370 transactions, a significant
majority of 87.7% were identified as apartments, as shown in Table 1. This finding
aligns with data from Bydelsfakta (2023b), which indicates that apartments make
up 76% of all housing types in Oslo. It is worth noting that the higher proportion
of apartments in our dataset may be attributed to the fact that Solgt.no exclusively
deals with homes valued at less than NOK 13 million (Solgt.no, 2023).

Considering the known price disparities between housing types, focusing on one spe-
cific type of housing is considered advantageous when developing an AVM. Apart-
ments generally have a higher price per square meter compared to other types
of housing, even though standalone houses often command a higher total price
(Oslo kommune, 2023a). These disparities in price are known to vary across dis-
tricts, leading to an uneven distribution of housing types. By focusing exclusively
on apartments in our analysis, we aim to create a more homogeneous market and
reduce the number of unsatisfactory predictions. This deliberate decision allows us
to maintain a consistent and focused study.

In preparation for analysis, data cleaning was conducted as a necessary step. The
dataset’s transactions revealed missing values in certain variables and the possibility
of typographical errors in the source ads, requiring thorough attention during the
cleaning process. Consequently, the focus of the cleaning process was on addressing
these issues, with careful consideration given to minimizing data loss when removing
missing values, as such a loss could have significant implications for further analysis.

The approach taken in this study was partially influenced by the methodology of
Helgaker et al. (2022), who employed a strict cleaning process to eliminate unrealistic
observations from an earlier version of the same dataset. However, some modific-
ations were made to the process in order to retain a greater quantity of data. A
summary of the full cleaning process is provided in Table 1.

Initially, Helgaker et al. (2022) removed observations with sales prices exceeding
twice the list price or falling below half the list price. This step did not affect
our dataset, as it was either corrected before we received the data or handled by
keeping only apartments. Instead, we removed observations with sales prices below
500,000 to exclude potential housing types, such as garages, wrongly labeled as
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apartments. Subsequently, we retained observations with living areas between 9
and 300 square meters to further remove wrongly labeled apartments. For instance,
garages are often registered with a living area of 0 or 1 square meter in the data.
Apartments with living areas exceeding 300 square meters are rare and typically due
to typing errors. Moreover, we kept observations with build year newer than 1600
and observations with less than 10 bedrooms, despite not using any of these variables
in the final dataset. Doing so enhances the dataset’s quality, as inaccuracies in one
variable may indicate issues in other variables.

Next, we removed observations with faulty coordinates. This included instances
where latitude and longitude values were incorrectly interchanged, causing a mis-
placement of data points, as well as observations that were geographically distant
from our area of focus, Oslo. For example, due to these errors, some coordin-
ates corresponded to locations in Bergen and Lillestrøm. Subsequently, we retained
observations with floor number less than 21 and observations with fewer than four
bathrooms. Instead of the latter step, Helgaker et al. (2022) removed all observations
with zero bathrooms, which led to a considerable loss of data. Since ”bathrooms”
is not listed as a key attribute on Finn.no, many realtors do not include the number
of bathrooms in their housing advertisements. This can lead to observations in the
dataset appearing with ”0” as the number of bathrooms. Moreover, the number
of bathrooms is rarely used when valuing a property. Removing such observations
would risk a loss of valuable information. Hence, we kept those observations with
the intention of not using the bathrooms variable in the final dataset. Lastly, we
removed the two observations within the Marka district.

Table 1: Data pre-processing steps of the original dataset
Data pre-processing Observations

Apartment 174,815
Standalone house 10,331
Row house 7,898
Semi-detached house 6,066
Other 260

Original data 199,370
Keep only apartments 174,815
Keep observations with sales price more than 500,000 174,598
Keep observations with living area larger than 9 m2 and less than 300 m2 174,484
Keep observations with build year newer than 1600 174,198
Keep observations with less than 10 bedrooms 165,077
Remove observations with faulty coordinates 164,674
Keep observations with floor less than 21 164,671
Keep observations with less than 4 bathrooms 164,654
Remove observations within the district ”Marka” 164,652
Final data 164,652

3.2 Data Overview and Variable Selection

The following subsection includes a detailed explanation of the variables chosen
from the original dataset, along with the rationale for their selection. Additionally,
it describes how some of the existing variables were transformed or calculated into
new variables to suit the specific needs of the analysis. Table 2 shows the descriptive
statistics for all the variables in the final dataset.
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Table 2: Summary statistics for the final dataset
Variable Unit Mean St. Dev. Min Max Type
Price per square meter NOK (1000) 65.17 23.29 12.50 278.33 Numeric
Days since days (1000) 3.49 1.38 0.00 5.68 Numeric
Living area m2 66.31 25.04 10.00 299.00 Numeric
Latitude degrees 59.92 0.03 59.82 59.98 Numeric
Longitude degrees 10.78 0.06 10.63 10.95 Numeric
Latitude in radians radians 1.05 0.00 1.04 1.05 Numeric
Longitude in radians radians 0.19 0.00 0.19 0.19 Numeric

% N
Size categories

10-49m2 23.31 38,380 Binary
50-69m2 40.40 66,511 Binary
70-99m2 27.39 45,101 Binary
100-139m2 7.29 12,003 Binary
140-179m2 1.28 2,113 Binary
Above 180m2 0.33 544 Binary

District
Alna 5.88 9,678 Binary
Bjerke 4.37 7,188 Binary
Frogner 12.55 20,672 Binary
Gamle Oslo 11.96 19,691 Binary
Grorud 2.94 4,836 Binary
Grünerløkka 13.36 21,995 Binary
Nordre Aker 4.86 8,004 Binary
Nordstrand 4.78 7,868 Binary
Sagene 11.54 19,005 Binary
St. Hanshaugen 8.77 14,444 Binary
Stovner 2.58 4,257 Binary
Søndre Nordstrand 2.47 4,066 Binary
Ullern 3.83 6,305 Binary
Vestre Aker 3.68 6,063 Binary
Østensjø 6.43 10,580 Binary

Sales year
2007 0.01 16 Binary
2008 1.56 2,564 Binary
2009 2.30 3,795 Binary
2010 2.89 4,756 Binary
2011 4.81 7,921 Binary
2012 6.72 11,067 Binary
2013 7.17 11,812 Binary
2014 7.02 11,561 Binary
2015 7.84 12,907 Binary
2016 7.19 11,838 Binary
2017 7.49 12,338 Binary
2018 8.36 13,763 Binary
2019 9.27 15,257 Binary
2020 9.53 15,689 Binary
2021 10.16 16,731 Binary
2022 7.67 12,637 Binary

Sales month
January 6.11 10,066 Binary
February 7.28 11,983 Binary
March 9.54 15,704 Binary
April 8.44 13,891 Binary
May 10.80 17,784 Binary
June 11.20 18,446 Binary
July 4.35 7,158 Binary
August 10.04 16,537 Binary
September 10.75 17,700 Binary
October 9.48 15,612 Binary
November 8.08 13,300 Binary
December 3.99 6,571 Binary

Balcony 67.99 111,954 Binary
Garage 36.34 59,828 Binary
Quiet 59.78 98,432 Binary
View 34.99 57,618 Binary
Renovation object 6.64 10,938 Binary
Two bathrooms or more 4.47 7,365 Binary
New apartment 6.93 11,417 Binary
High floor and no elevator 5.05 8,321 Binary
First floor and inner city 8.18 13,465 Binary

Note: May 24th, 2007 serves as the starting point of the dataset. The variable ”days since” counts the days that
have elapsed since this date, and was normalized to a range of 0 to 1 thereafter. Price per square meter was log
transformed, and the radians for latitude and longitude were scaled to unit variance.

9



To optimize the accuracy of the value estimate for housing, the use of price per
square meter as the dependent variable was determined to be more appropriate
than the regular sales price variable. This decision was based on the understanding
that the size of a property significantly impacts its sales price. When developing
an AVM for Norwegian data, it is imperative to incorporate both the sales price
and the common debt into the calculation of the price per square meter. This
approach, initially proposed by Oust et al. (2020), is essential in accurately capturing
the total cost associated with acquiring a property, and thereby providing a more
comprehensive representation of the property’s market value. Furthermore, using
the natural log as presented in Equation (1) has several advantages over using the
actual price per square meter as the dependent variable. Firstly, it helps to normalize
the distribution of the dependent variable, which can improve the accuracy of the
model’s predictions. Additionally, the natural log transformation can help reduce
the influence of extreme values, which may distort the analysis.

ln(price per square meter) = ln(
sales pricei + common debti

living areai
) (1)

The regular variable exhibited a wide range of values, with the minimum and max-
imum prices recorded as NOK 12,500 and NOK 278,331, respectively. This sub-
stantial variability within the dataset underscores the presence of disparities and
justifies the need for a transformation.

To represent size, the dataset included both gross area and living area. Although
both variables were available, we made the decision to use living area as the primary
measure of size for property valuation purposes. This was based on the belief that
living area provides a better representation of the usable space for potential oc-
cupants, and thus, is more relevant to property value. As the study involves the
development of various models, it was necessary to make certain adjustments. While
the XGB model demonstrates strong performance in handling continuous variables,
both CSM and LAD have some limitations in this regard, as discussed in greater
detail in Section 4.2 and 4.3, respectively. In the context of hedonic regression
models, categorical variables are often preferred due to their linearity. Thus, for
the LAD and CSM, we adopt a categorical approach. Despite our CSM utilizing a
KNN algorithm and not being linear in form, our experimentation revealed that the
categorical approach yielded superior results.
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Figure 1: Districts of Oslo

When appraising a property, the location plays a crucial role in determining its
value. The original dataset encompasses several means of expressing location, such
as latitude and longitude coordinates, postcode, address, and district information.
Extracting information from the full address is a complex task, and since postcodes
have already been utilized as a baseline to derive the district variable, which is more
interpretable, we opted to exclude both address and postcode from our analysis.
Although the district variable may not be as precise as the coordinates, it was
necessary to employ it as an alternative in the LAD model to ensure linearity.
To enhance the accuracy of the district variable, another approach could involve
generating new districts based on the coordinates using K-Means (Oust et al., 2020).
However, as this would only be helpful for the LAD model, which is not the main
focus of our study, we proceeded with using the district variable for this model.

It is worth noting that there are 15 administrative districts in Oslo (Oslo kommune,
2023b), however, the original dataset also comprises information on ”Sentrum” and
”Marka”. As mentioned in Section 3.1, we excluded observations from Marka as
they fall outside the outer line in Figure 1. Sentrum refers to the city center and
lacks its own administration. Due to the small number of observations and this
characteristic, we reallocated them to St. Hanshaugen.

For the XGB and the CSM, we deemed it more appropriate to utilize the latitude and
longitude coordinates to generate more accurate predictions. In order to calculate
the distances in the CSM, we generated two new variables by utilizing Equation (2)
and (3) to transform the coordinates from degrees to radians. To avoid potential
numerical instabilities during the computation, we utilized StandardScaler from the
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machine learning library scikit-learn. This library provides a wide range of functions
for data pre-processing, model selection, evaluation, and other essential machine
learning tasks. The StandardScaler function standardizes the data by subtracting
the mean and scaling it to unit variance (Pedregosa et al., 2011), ensuring accurate
distance calculations and precise analysis results.

radlat =
latitude ∗ π

180
(2)

radlng =
longitude ∗ π

180
(3)

Despite being geographically constrained to Oslo, the dataset reveals a considerable
variation in prices across various districts. Figure 2 depicts the distribution of the
price per square meter based on latitude and longitude coordinates, indicating a
discernible trend that prices increase as the proximity to the city center intensifies.
The five districts Gamle Oslo, Grünerløkka, Sagene, St. Hanshaugen and Frogner
represent the ”inner city” (Oslo kommune, 2023b), where apartments are generally
smaller due to their central location (Bydelsfakta, 2023c). This leads to a relatively
higher price per square meter compared to that in other areas in Oslo. Additionally,
the graph demonstrates a modest increase in prices for the western regions of Oslo,
which can be attributed to the relatively greater affluence of the local population in
contrast to their counterparts who live in the eastern regions (Bydelsfakta, 2023d).
Specifically, Frogner and St. Hanshaugen have the highest average price per square
meter, while the lowest are observed in Stovner and Søndre Nordstrand, which align
with the statistics provided by Bydelsfakta (2023a).

Figure 2: Price per square meter based on latitude and longitude coordinates
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The original dataset contained a variable denoting sales date. To facilitate the
implementation of the hedonic model, we partition this variable into its year and
month components and apply one-hot encoding on the resulting data. For the other
models, we construct a new variable, referred to as ”days since”, which records
the number of days that have elapsed since the first transaction in the dataset. To
enhance computational efficiency and minimize the influence of the CSM, we employ
the MinMaxScaler function from the scikit-learn library, which rescales the data to
fall within the range of 0 to 1 (Pedregosa et al., 2011). This rescaling process does
not adversely affect the performance of the XGB model.

The following set of variables pertains to the facilities of dwellings. To provide
insights into the features of apartments, a collection of binary variables is incorpor-
ated. These variables are sourced from the Finn.no advertising interface and can
be selected to refine search results while browsing the platform. It is important to
note that their inclusion in an advertisement is optional, and different real estate
agents may have varying perspectives on which facilities to highlight as relevant.
It is plausible that some advertisements may lack certain facilities despite the un-
derlying apartment possessing the corresponding attribute. Therefore, a degree of
uncertainty is associated with the facility variables, and it is crucial to carefully
consider which facilities are relevant when explaining house prices. In total, there
are 22 facilities available for consideration. After assessing the quality and relevance
of each variable, we selected only the most significant facilities, resulting in a set of
four facility variables, including ”balcony”, ”garage”, ”view” and ”quiet”. Each of
these variables exhibits a distribution that appears reasonable and intriguing from
a predictive standpoint, as displayed in Table 2.

The dataset also included a binary variable indicating whether the examined apart-
ment is a renovation project or not. This variable was assigned a value of 1 if
certain keywords1 in the ad title suggested the apartment required renovation, and
0 otherwise. Typically, renovation projects require additional investments after the
initial purchase, which results in their value being lower than that of an equival-
ent apartment that does not require these extra costs. Although there may be
some uncertainty associated with this variable, it is common to include this type
of information in the ad title to attract certain types of homebuyers. Out of the
164,652 transactions remaining after the cleaning process in Table 1, 10,938 were for
renovation projects, which likely captures most apartments in need of renovation.

Ultimately, we proceeded to generate new variables for inclusion in our dataset. As
previously discussed in Section 3.1, we opted not to incorporate the ”bedrooms”,
”bathrooms” and ”build year” variables in our final dataset. This decision was
informed by several considerations. Specifically, we noted that the ”bedrooms”
variable exhibited a high degree of correlation with the ”living area” variable, as
shown in Figure 8. Consequently, we concluded that including this variable would
likely introduce redundant information into our analysis. Additionally, we observed
that a substantial proportion of observations in the ”bathrooms” variable exhib-
ited unrealistic values, with a large number of apartments reportedly having no
bathrooms. However, despite retaining these observations, we concluded that incor-

1The variable included word-recognizing for the keywords ”oppussing” and ”renovering” (which
translates to ”remodeling” and ”renovation”) in the ad title.
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porating this variable into our analysis would introduce more confusion than clarity.
As an alternative, we created a binary variable to derive meaningful insights from
the ”bathrooms” variable. The binary variable takes a value of 1 if an apartment
has two or more bathrooms, and 0 if it has one or zero bathrooms. This allows us
to eliminate the unreliable values from the original variable without removing the
observations from the dataset.

Regarding the ”build year” variable, we chose to differentiate between new and old
dwellings by establishing a binary variable. We assigned a value of 1 to apartments
built in 2010 or later, and 0 otherwise. This approach is motivated by the fact
that younger dwellings depreciates more rapidly than older dwellings (Grether &
Mieszkowski, 1974), acknowledging that beyond a certain age, the influence of age
on the property value becomes less evident.

Upon examination of the remaining unused variables in the dataset, we identified two
variables, namely the number of floors and the presence of an elevator. While not of
individual interest, they could be informative in combination with other variables.
To extract valuable insights from these variables, we generated two new binary
variables. The first binary variable was constructed such that it took a value of 1 if
the apartment was situated on the fifth floor or higher and lacked an elevator, and
0 otherwise. The second binary variable was assigned a value of 1 if the apartment
was located in any of the five districts in the ”inner city”, and was situated on the
first floor, otherwise 0. The rationale for the latter is that we hypothesized that
apartments located on the first floor in these districts would likely experience a
negative impact on their value due to increased foot traffic and limited privacy.
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4 Methodology

In the following section, a detailed explanation of the development process for our
AVMs is presented, encompassing both the stacked generalization approach and the
individual models used in the ensemble. Furthermore, this section describes the
evaluation metrics and techniques used to assess model performance. Our primary
goals were to optimize the performance of each individual model and to determine
whether incorporating stacked generalization could improve the predictive ability of
the selected models. In addition, gaining a deeper understanding of the underlying
mechanisms of each model was considered crucial to our investigation.

4.1 Stacked Generalization

The idea of stacked generalization is to exploit the strengths of a series of base models
by combining them with a meta-model. For the meta-model, we opted for another
XGB model, which has proven to be well suited for this purpose in previous literature
(Birkeland et al., 2021). This decision was based on the XGB model’s capability
to handle a large number of features and capture non-linear relationships between
input features and the target variable. The meta-model is trained on a new dataset
consisting of predictions from the individual base models that have undergone k=5
folds of cross-validation to prevent overfitting, as visualized in Figure 3. Further in
this subsection, we will go through the stacking process step-by-step.

Figure 3: The process of stacked generalization
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In order to prepare for the construction of predictive models, the dataset was initially
divided into a training set and a test set using random allocation, with a 75-25 split2.
This allocation ensured that the models had access to a substantial amount of data
for training, while also providing a sufficiently large sample size for evaluating their
performance. The training set comprised 123,489 observations, while the test set
contained 41,163 observations.

The second step is to train multiple prediction models individually. CSM and LAD
are models that have been widely used in the real estate industry, while XGB is a
more complex machine learning model that has shown promising results in predicting
property values in previous studies, outperforming other machine learning methods
(Hjort et al., 2022; Kumkar et al., 2018; Stang et al., 2022). By utilizing these
different models, we aim to capture a wide range of features and relationships within
the data, and to assess the relative strengths and weaknesses in each of the models.
To prevent overfitting in the stacked ensemble, we performed a 5-fold cross-validation
for each base model by dividing the original training set into training folds and a
validation fold. This allows us to train and evaluate the ensemble multiple times
on different subsets of the data, ensuring that the models are not overfitting to
a particular subset. With the use of the trained base models, we can generate
predictions for the properties in the dataset. These predictions are then combined
to create a new dataset, which is used as input features for training the meta-model.
Once the meta-model is trained, it is used to make predictions on a holdout dataset
(our test dataset).

In order to optimize the performance of our stacked generalization model, we em-
ployed a common approach of using grid search with cross-validation to identify
the optimal hyperparameter values, which will be described further in Section 4.2
and 4.4. Through careful selection of the hyperparameters and their corresponding
grids, we can achieve better model performance. Note that while we used XGBoost
as our meta-model, the hyperparameters used in the stacked generalization model
differ from those used in the individual XGB model to increase model diversity.
The hyperparameters used for the stacked generalization model can be found in
Appendix A.2.

Lastly, the stacked model, along with the individual models, is evaluated by us-
ing different metrics such as R2, RMSE, MAPE, MdAPE, PPE(10), PPE(20), and
PPE(50), which will be described further in Section 4.6. This allows for assessment
of the effectiveness of the stacked model in comparison to the individual models.

In our study, all individual and stacked models were implemented using the Python
programming language. We utilized the StackingRegressor function provided by
scikit-learn for the implementation of the stacked model. This function facilitated
the inclusion of individual models in the stacking ensemble and the selection of the
meta-estimator for generating the final prediction.

2To verify the generalizability of our 75-25 split, we later conducted out-of-time predictions, as
detailed in Appendix A.7.
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4.2 Comparable Sales Method

The KNN algorithm serves as the fundamental methodology in our CSM. This
approach involves identifying a set of K neighboring apartments that are most similar
to the data point in question and estimating the target value by averaging the
target values of these K nearest neighbors. To determine the optimal value for K,
we employed grid search, a hyperparameter tuning technique, testing values ranging
from 1 to 20 and utilizing mean absolute error (MAE) as the performance evaluation
metric. Our experiments revealed K=10 as the optimal value, as it yielded the lowest
MAE.

We selected KNN as the foundational methodology for its scalability, a marked
contrast to other CSM approaches that typically involve filtering and constrain the
study to a smaller dataset. By choosing KNN, we are able to utilize the entirety of
the data, potentially extracting valuable information from a larger sample.

Our KNN algorithm calculates the distance between each property using the Euc-
lidean distance formula, as defined by Equation (4), where x and y represent the
data points being compared, xi and yi denote the feature values of the data points
along each dimension, and n represents the number of dimensions. The Euclidean
distance metric allows us to measure the similarity between data points in a multi-
dimensional space, which is particularly useful in situations where the calculation
must take into account multiple features beyond just the spatial location.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (4)

After calculating the distances, the KNN algorithm identifies the K nearest neigh-
bors. These nearest neighbors are then used to estimate the target value of the
data point in question by averaging their target values. This approach assumes that
properties with similar feature values are likely to have similar target values, making
it a suitable technique for predicting house prices. A practical example of how our
CSM works is demonstrated in Appendix A.3.

As mentioned in Section 3.2, a variable named ”days since” was constructed to
represent the time of the sale date for the properties. However, during the testing
phase, it was observed that leaving this variable unscaled resulted in biased predic-
tions, as all the K comparables happened to be sold on the same day as the target
property. To address this issue, the variable was scaled within the range of 0 to 1,
reducing its weighting and expanding the range of days. This led to improved pre-
dictions, though there is a possibility they were overly accurate because they were
based on similar dates, which were both before and after the target property’s sale
date. To mitigate this concern, a custom metric incorporating both the Euclidean
distance and consideration of only using prior dates was developed, as shown in Ap-
pendix A.4. However, it is worth noting that this modification significantly increased
the computation time from 14 seconds to over 6 hours. As a result, implementing
stacked generalization, which requires multiple iterations, became impractical due
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to the prolonged computation time. Hence, the custom metric was not implemented,
and we acknowledge it as a weakness of our CSM.

4.3 Least Absolute Deviation

The aim of our hedonic regression model is to estimate the relationship between
the square meter price of an apartment (sqmPi) and a set of independent variables
(Xki), such as the size, location, and other facilities of the apartment. As discussed
in Section 3.2, we use the natural logarithm of the price per square meter as the
dependent variable. Thus, in our model, the natural logarithm of the square meter
price (ln(Pi)) is assumed to be a function of the independent variables. This trans-
formation allows for a more flexible model that can better capture the potentially
non-linear relationship between the square meter price and the independent vari-
ables, improving the accuracy of the model and the estimated coefficients. The
regression equation in our study can be represented by:

ln(sqmPi) = β0 +
K∑
k=1

βkXki + ϵi, (ϵ ∼ i.i.d.) (5)

By estimating the coefficients βk of the independent variables, the model can identify
the marginal impact of each variable on the square meter price, holding all other
variables constant. The intercept term β0 shows the value of the square meter price
when all independent variables are equal to zero. The error term ϵi captures the
random variation in the square meter price that is not explained by the independent
variables, and is assumed to be independently and identically distributed (i.i.d)
across observations. The aim is to estimate the coefficients βk that both provide the
best fit to the data and minimize the loss function.

In this study we use LAD instead of the more traditionally used OLS method, due
to the robustness of LAD in the face of outliers within the dataset, as noted by Yoo
(2001). The difference between OLS and LAD lies in the loss function where OLS
minimizes the squared prediction errors to find the feature coefficients βk, while LAD
seeks to minimize the absolute value of these errors. The LAD model in our study
is implemented using optimization algorithms that minimize the sum of absolute
differences between the predicted and actual values between all apartments in the
dataset (i=1,2,3. . . ), and can be represented by the following equation:

arg min
β0,β

n∑
i=1

|ln(sqmPi) − (β0 + βXi)| (6)

In this equation, the objective is to minimize the sum of absolute differences between
the natural logarithm of the observed values ln(sqmPi) and the combined effect of
the intercept term β0, as well as the product of the slope parameter β with the
independent variable Xi. The prediction of the dependent variable is computed by
summing the intercept term and the product of the vector of coefficients, β, with
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the vector of predictor values, Xi. The arg min notation indicates the search for
values of β0 and β that yield the minimum sum of absolute differences.

One inherent advantage of using hedonic regression models like LAD is that they do
not require any specific hyperparameter tuning. The optimization objective of the
LAD model is solely based on absolute differences, making it a simpler and less time-
consuming alternative compared to more complex machine learning models such as
XGB.

4.4 XGboost

XGB is an advanced machine learning algorithm known for its remarkable perform-
ance in numerous competitions (Nielsen, 2016). It operates by repeatedly incor-
porating decision trees into a model, where each subsequent tree aims to rectify
errors made by the previous trees. During the training process, the XGB model
optimizes a loss function that quantifies the disparity between predicted and actual
values (Chen & Guestrin, 2016). It then uses gradient descent to update the weights
of the decision trees and minimize the loss function by successively adjusting the
parameter values. To address the issue of overfitting, XGB employs regularization
techniques, such as L1 and L2 regularization. These techniques involve the addition
of penalty terms to the objective function during training, discouraging the model
from fitting the noise in the dataset and penalizing the complexity of the model.
Notably, the optimized implementation of XGB allows for efficient handling of large
datasets, making it a compelling option for machine learning tasks that entail sub-
stantial volumes of data. The objective function utilized in our study to train the
XGB model is defined as:

Obj(t) =
n∑

i=1

L(yi, ŷi
(t−1) + ft(xi)) +

t∑
i=1

Ω(fi) (7)

In this equation, the loss function denoted by L measures the difference between the
predicted prices and the actual prices, with the goal of minimizing the difference.
yi is the true price, while ŷi

(t−1) is the predicted price at the previous iteration.
The term ft(xi) represents the contribution of the new decision tree added to the
ensemble at iteration t, which aims to rectify errors made by the previous trees
and enhance the overall model performance. Ω(fi) represents the regularization
techniques applied to the tree to prevent overfitting by penalizing complex trees.
The MAE was chosen as the loss term for the objective function in our case. For
further technical details, we refer to Chen and Guestrin (2016).

Optimal tuning of hyperparameters is essential in complementing the objective func-
tion to enhance the performance of the XGB models. However, finding the right
balance between model complexity and accuracy is crucial, as overly complex models
can be computationally expensive. To identify the optimal hyperparameter values,
we employed grid search, the same brute-force approach as we used to find the op-
timal number of K in Section 4.2. However, this time there were a larger number
of parameters to search over. The algorithm trains and evaluates the model using
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each combination of hyperparameter values within the grid, ultimately returning the
best values for each parameter. In our study, we performed grid search in combina-
tion with 5-fold cross-validation, aiming to minimize the MAE as our performance
metric. Table 3 summarizes the tuned values and the predefined grids, with a brief
explanation of each parameter.

Table 3: Hyperparameter tuning for the XGBoost model
Hyperparameter Hyperparameter grid Tuned value Description
max depth [3, 5, 7, 9] 7 Maximum depth of each tree
min child weight [1, 3, 5, 7] 1 Minimum sum of instance weight in a child node.
gamma [0.01, 0.05, 0.1, 0.2, 0.3] 0.01 Minimum loss reduction for splitting a node.
subsample [0.6, 0.7, 0.8, 0.9, 1] 0.8 Fraction of samples used for training each tree.
colsample bytree [0.6, 0.7, 0.8, 0.9, 1] 0.6 Fraction of features used for training each tree.
learning rate [0.005, 0.01, 0.05, 0.1] 0.1 Step size for model weight updates.
n estimators [100, 200, 300, 400, 500] 500 Number of trees.
reg alpha [0.1, 0.5, 1, 2.5] 1 L1 regularization.
reg lambda [0.1, 0.5, 1, 2.5] 0.5 L2 regularization.

Note: The rest of the available parameters remained at their default values. For more information about
these parameters and their default values, we recommend referring to DMLC (2022), a thorough guide
provided by the developers of the xgboost package.

Despite the remarkable performance of the XGB model in previous studies, a crit-
ical consideration when optimizing XGB models is the trade-off between accuracy
and explainability. Comprehending how the model arrives at its predictions can
be challenging due to its complex decision-making process. Model interpretation
techniques, such as feature importance analysis (to be discussed in Section 4.5), can
provide insights into the complex interactions among the ensemble of decision trees
in the model, thereby enhancing its overall interpretability.

4.5 SHAP

In our pursuit of understanding the behavior of each individual model within a
stacked ensemble, a closer examination of the various features, both as standalone
models and in the ensemble, was necessary. SHapley Additive exPlanations (SHAP)
was first introduced by Shapley (1953), as an application to coalitional game theory,
and serves our purpose. More recently, Štrumbelj and Kononenko (2010) explained
how this concept could be implemented on machine learning algorithms. This has
led to SHAP becoming a useful framework to interpret the feature importances of
more complex models.

Mathematically, the general formula for SHAP values is given by Equation (8). In
this equation, ϕi(x) represents the SHAP value for the i-th feature, which provides
an attribution of the prediction for an instance to that particular feature. S is the
subset of all features N excluding the i-th feature, while |S| denotes the number of
elements (cardinality) of subset S. The weight assigned to each subset S is given
by the term |S|!(|N | − |S| − 1)! divided by |N |!, and the term f(xS ∪ {xi}) − f(xS)
represents the difference in the model’s output when the i-th feature is included or
excluded.
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ϕi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(xS ∪ {xi}) − f(xS)] (8)

The advantage of using SHAP as an explanation of features is that it can be used
on all types of models (Lundberg & Lee, 2017), which makes it a practical choice for
scenarios involving multiple models. However, it also has limitations, particularly
in terms of computation time for non-tree-based models. For instance, tree-based
models such as XGB offer more efficient ways of computing feature importance
in Python, such as Tree SHAP, which provides faster SHAP values compared to
the regular Kernel SHAP (Lundberg et al., 2019). Similarly, for linear models like
our LAD model, computations are generally faster due to the availability of Linear
SHAP, which handles linear models effectively. However, for models like our CSM
that employ a KNN algorithm, neither linear nor tree-based methods are applicable,
creating computational challenges. As a result, Kernel SHAP, which is computa-
tionally intensive, must be used, leading to prolonged computation times for exact
SHAP values. This issue also impacts the stacked models where the CSM is in-
cluded. To address these computational challenges, a common approach is to utilize
sampling techniques to reduce the size of the dataset. For instance, Yuan et al.
(2023) conducted multiple simulations using random extractions from a training set
and investigated the effect of different background sample sizes (ranging from 100
to 1,000 observations) on SHAP computations. They found that SHAP explana-
tions tend to fluctuate when smaller sample sizes are used, suggesting that larger
background datasets should be preferred. However, considering the tradeoff between
computation time and accuracy, we decided to use a randomly drawn background
sample size of 300 observations and a randomly drawn test sample of 100 observa-
tions to get the feature importances in this study. We conducted simulations with
the entire dataset for both LAD and XGB models and found no differences in the
rankings of variables. Hence, we assumed that our reduced random sample was a
good representation of the entire dataset, and this reduced version was used for
comparison across all models.

4.6 Evaluation Metrics

To measure the accuracy of models and compare their performance, it is important
to select appropriate evaluation metrics to gain valuable insights from the different
model outputs. In this subsection, we will discuss the metrics we used in detail and
their relevance in evaluating our models.

R-squared (R2) is a statistical measure used to evaluate the performance of regression
models. It represents the proportion of the variance in the dependent variable
that is explained by the independent variables in the model. R-squared values
range from 0 to 1, with 0 indicating no relationship between the variables and
1 indicating a perfect fit. A higher R-squared value means that the model more
accurately captures the variability of the dependent variable. The advantage of
including R-squared is that it is well-known and easy to interpret. However, it may
not accurately capture the relationship between the dependent and independent
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variables in nonlinear models (Kvalseth, 1985). Therefore, it is important to use
R-squared in conjunction with other metrics to gain a more complete understanding
of the model’s performance.

Root Mean Squared Error (RMSE) is a metric used to measure the difference
between the actual and predicted values in a regression model. To calculate RMSE,
the differences between each predicted and actual value are squared, and then the
mean is calculated to get the Mean Squared Error (MSE). Then, the square root of
the MSE is taken to obtain the RMSE value. In our case, the dependent variable is
log-transformed, meaning that the RMSE values will be in the log scale, implying
that our RMSE calculations are based on relative errors. While this can make the
results more challenging to interpret, it is usually an acceptable trade-off for better
inference (Hodson, 2022). Lower RMSE values indicate better model performance
in terms of predictive accuracy.

Mean Absolute Percentage Error (MAPE) and Median Absolute Percentage Error
(MdAPE) are metrics used to assess the accuracy of predictions in a regression model
by quantifying the percentage difference between actual and predicted values. While
MAPE is more commonly employed, MdAPE also holds value as it relies on median
values, which are less sensitive to outliers than mean values (Levenbach, 2015).
This means that MdAPE provides more robust estimates. In both cases, a lower
percentage value indicates increased prediction accuracy.

Percentage Prediction Error (PPE) evaluates the accuracy of predictions in a re-
gression model based on specific percentage thresholds. In our study, we included
PPE(10), PPE(20), and PPE(50), which measure the proportion of predictions that
fall within 10%, 20%, and 50% of the actual values, respectively. For each threshold,
the metric checks whether the prediction error for each data point is within the spe-
cified percentage range. Then, it calculates the proportion of data points that meet
this criterion. Since our actual and predicted values were log-transformed, we rever-
ted them to their original scale before performing the calculations to obtain a more
accurate representation of PPE values. A higher PPE value indicates better model
performance, as a higher percentage of predicted values fall within a certain range
of the actual values.
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5 Results and Discussion

In this section, we aim to provide a comprehensive analysis and discussion on the
performance of our AVMs. Starting in Section 5.1, we evaluate the models’ effect-
iveness by comparing the individual and stacked models. Next, we delve into the
feature importance of each model in Section 5.2, identifying the key variables util-
ized in their predictions. In Section 5.3, we then assess model performance at a
district level, investigating for any observable patterns. Finally in Section 5.4, we
conduct a series of tests designed to evaluate how our models adapt and perform
under different data sizes.

5.1 Model Performance

Table 4 shows the performance of the individual and stacked models. The XGB
model performs best on all performance metrics compared to the individual models.
The CSM ranks second, while the LAD model expectedly falls short in comparison.
When introducing stacked generalization, we can see that the models gets marginally
better than the individual XGB model. Stacking only XGB and LAD does not
seem to improve much, with nearly identical results on most of the metrics, and it
actually performs worse on PPE(50). The combination with XGB and CSM seems
to be the best model overall, outperforming all other models on almost all metrics.
The inclusion of LAD in addition to XGB and CSM performs slightly better on
PPE(20), but slightly worse elsewhere. This indicates that the LAD model fails to
bring any new valuable information that is not already covered by the CSM.

Table 4: Comparison of model performance
Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8576 0.1372 10.35% 7.86% 60.18% 87.35% 99.29%
LAD 0.8377 0.1465 11.16% 9.01% 54.68% 84.79% 99.69%
XGB 0.9342 0.0933 7.01% 5.47% 76.30% 96.13% 99.91%
(XGB + CSM) 0.9367 0.0915 6.87% 5.35% 77.23% 96.30% 99.91%
(XGB + LAD) 0.9346 0.0930 6.99% 5.47% 76.61% 96.14% 99.90%
(XGB + CSM + LAD) 0.9361 0.0919 6.90% 5.38% 77.03% 96.33% 99.91%

To better represent the prediction errors, histograms were generated for each model.
Figure 4 shows the relative error rate in percentage of the square meter price on the
x-axis and the probability density on the y-axis. The dashed lines mark the +- 20%
range. The results indicate that XGB outperforms CSM and LAD, exhibiting a more
narrow error distribution and a higher proportion of errors within the dashed lines,
implying a superior model. The three stacked models appear identical, exhibiting
a distribution pattern similar to that of XGB alone, suggesting that the stacked
models are predominantly reliant on the XGB algorithm.
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Figure 4: Histograms of relative errors in percent from each model

In summary, we can observe that the XGB model performs exceptionally well on
its own, raising the question of whether stacked generalization is worth the added
complexity and resources required for training and prediction. Although the number
of predictions falling within 50% of actual price does not improve with stacking, we
do see improvements within 20% and especially within 10%. Stacking XGB and CSM
improves by nearly 1%-point compared to the individual XGB model within the 10%
range. This improvement translates to correctly predicting 383 more apartments
within 10%, which may justify using stacked generalization.

Furthermore, while these findings shed light on the performance of the models, it is
essential to acknowledge potential limitations. One such limitation is the absence of
out-of-time predictions in our models, which hinders their evaluation in real-world
scenarios. We acknowledged this concern for the CSM in Section 4.2, offering a
possible solution for that specific model in Appendix A.4. However, to address this
limitation comprehensively across all our models, a simpler and more effective ap-
proach involves modifying the division of training and test sets. Thus, we conducted
a simulation to account for the temporal perspective and assess its impact on our
conclusions.

The results of this simulation demonstrated that our initial methodology could be
generalized, as the division of the dataset did not result in substantial differences in
the relative performance of the models. For a more comprehensive analysis of this
simulation, please refer to Appendix A.7.
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5.2 Feature Importance

In order to enhance our comprehension of each model, we have examined the outputs
produced by the SHAP method, as described in Section 4.5. Figure 5 portrays
the SHAP values derived from all models, offering a comprehensive overview of
each variable across the models. Beeswarm plots from each model can be found in
Appendix A.8. As the models utilize distinct features to represent time, location,
and size, we have aggregated the SHAP values to facilitate comparison. Specifically,
the time feature incorporates all categorical variables pertaining to year and month
for the LAD model, whereas CSM and XGB employ the ”days since” variable. The
location feature encompasses all categorical district variables in the LAD model,
while XGB employs latitude and longitude, and CSM employs latitude and longitude
represented in radians. Size is represented by the ”living area” variable for XGB,
whereas LAD and CSM include categorical size variables, as detailed in Section 3.2.
All other variables are common to all models.

Figure 5: Mean absolute SHAP values from all models

The analysis reveals that the time feature is the most influential variable across
all models, followed by location and size. While the XGB model exhibits greater
sensitivity to time and size, the stacked models are more responsive to location,
with size playing a less significant role in comparison to the individual XGB. Of
note, the CSM deviates substantially from the others in terms of variable weighting.
While it ranks the top three variables equally with the other models, it assigns lower
importance to these variables and instead prioritizes variables that other models do
not consider as important, particularly the facility variables, with ”quiet” ranking
fourth in CSM, but eleventh in other models. LAD, on the other hand, assigns
higher importance to ”renovation object” and rank it as fourth, while XGB and the
stacked models rank ”balcony” fourth. The variable ”high floor and no elevator”
is ranked the least important across all models, even though CSM allocates a little
more weight to this variable than the rest. Despite this, the variable is still significant
for the LAD model, as evidenced in Table 6, and is also included in the final decision
tree for the XGB model (Figure 10b).

25



5.3 Model Performance at District Level

Our investigation also involved the identification of any potential patterns in the
districts. Figure 6 shows the average absolute error rate in each district, with a
darker shade indicating a smaller prediction error. Our findings suggest that the
predictive models perform better in the eastern region of Oslo compared to the
western region. One possible explanation for this result is that apartments in the
eastern region are more homogeneous, mostly consisting of apartment complexes
with similar sizes and prices, while the western region possesses more variation
due to the generally higher income levels of the local population as discussed in
Section 3.2. Additionally, our results reveal that micro-location is a critical factor
when predicting prices, which may explain why the LAD model performed poorly.
Notably, the prediction errors observed in the XGB model and the three stacked
models are very similar, further substantiating the effectiveness of the XGB model.

Figure 6: Absolute error per district from each model

5.4 Model Performance under Different Data Sizes

To gain a deeper understanding of how the different valuation techniques as well
as the stacking perform under different data sizes, we conducted additional tests
to simulate such scenarios. Our objective was to evaluate the models’ ability to
generalize well to new data with fewer observations and determine their adaptability
to limited or scarce data. A model’s adaptability to smaller datasets is a reflection
of its robustness and flexibility, which are essential qualities given that real-world
scenarios often require dealing with data constraints. The nature of the test is
essentially a stress test for the models, evaluating their capabilities to adapt to less
than ideal circumstances.
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Previous research, such as the study conducted by Stang et al. (2022), has shown
that traditional methods may outperform the XGB model in areas with limited ob-
servations, suggesting that the XGB model may be more sensitive to having less
information compared to the CSM and the LAD model. Thus, we aimed to invest-
igate how our models would perform out-of-sample on a variety of smaller training
sets, which represent a wide range of potential scenarios. To achieve this, we sys-
tematically reduced the original training set of 123,489 observations to varying sizes,
all the way down to 123 (0.1%) observations. To minimize the influence of random-
ness, we maintained a constant test set size of 41,163 observations throughout the
experiment. Figure 7 illustrates how the MdAPE differentiates across the various
sizes of training data.

Figure 7: MdAPE for training data of varying sizes, ranging from 123 to 123,489
observations

The graph illustrates that even when the training set is halved (61,745 observations),
the stacked model combining XGB and CSM remains the best-performing model in
terms of MdAPE. However, it is evident at this point that the stacked model with
XGB and LAD now perform worse than the individual XGB. This further supports
the notion that LAD struggles to provide any significant valuable information in
stacked generalization.
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Moving forward, it can be observed that all three stacked models closely mimic
the performance of the individual XGB, with the combination of XGB and CSM
consistently outperforming the others by a slight margin until the training set is
reduced to 10% (12,349 observations). At this point, a shift occurs, and XGB
emerges as the best-performing model, maintaining its superiority as the data is
further reduced. These results indicate that stacked generalization fails to improve
prediction performance for datasets of this size and below.

LAD demonstrates strong stability compared to the other models and outperforms
CSM in terms of MdAPE when the training data is reduced to 10% and beyond.
However, there is no clear evidence that stacking with this model is beneficial for
very small datasets. It can be observed that while the other models gradually exhibit
higher MdAPE as the dataset size decreases, LAD manages to maintain a consistent
performance around 9% for an extended period, indicating a potential to outperform
XGB in the long run. However, when the training data is reduced to a mere 0.1%
(123 observations), LAD experiences a sharp increase in MdAPE, whereas XGB
continues to perform well with less impact. This indicates that XGB remains the
best individual model regardless of the data size.

A possible reason for XGB’s sustained precision could be its ability to leverage a
greater amount of information about each individual property compared to LAD,
specifically in terms of location and time of sale. On the other hand, CSM, while
also able to incorporate more information about location and time of sale than
LAD, becomes vulnerable when the dataset size is too small. This may be due
to its reliance on having a sufficient number of similar properties to the one being
evaluated.

We observed trends in the other evaluation metrics similar to those observed with
MdAPE. The stacked model that combines XGB and CSM demonstrated superior
performance across all metrics until the training data was reduced to 10%, emphas-
izing the strength of this model. However, there were a few exceptions worth noting.
At the 25% data size mark (30,872 observations), XGB slightly outperformed the
others on PPE(10), while the combination of all three models showed better per-
formance on PPE(20). When the training data was reduced to 10%, the point where
XGB first began outperforming the stacked models in terms of MdAPE, XGB also
demonstrated superior performance on MAPE and PPE(10). Despite this, the other
metrics continued to favor stacked generalization. When the training data was fur-
ther reduced to 5% (6,174 observations), and below, XGB dominated the results.
For comprehensive details on these results, please refer to Appendix A.9.

These findings confirm the results presented in Table 4, indicating that they hold
true until the training data is reduced to approximately 12,000 observations. Bey-
ond this point, the performance of the CSM is significantly penalized, resulting in
stacked generalization with XGB and CSM being ineffective for improving model
performance. The effectiveness of stacked generalization with XGB and LAD was
limited even with large datasets, and although the LAD model demonstrated sta-
bility across different dataset sizes, it failed to provide any meaningful insights in
smaller datasets.
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6 Conclusion and Further Work

This study develops and compares six distinct Automated Valuation Models (AVMs),
of which three are individual models and the remaining three are different combin-
ations of the initial models using stacked generalization. The objective of the study
was to determine whether employing stacked generalization could enhance predic-
tion accuracy when the ensemble incorporated methodologically diverse models.
Furthermore, we analyzed how each model within the stacked ensemble functioned
to identify the most suitable conditions for their use.

Consistent with previous literature, it has been confirmed that XGBoost (XGB)
stands out as the most effective individual model when tested on an extensive data-
set from the housing market in Oslo. This is evidenced by metrics such as the
median absolute percentage error (MdAPE), as low as 5.47%, and 96.13% of pre-
dictions falling within 20% of the actual price. Remarkably, when XGB is combined
with the Comparable Sales Method (CSM) using stacked generalization, prediction
performance across all evaluation metrics improves, including MdAPE decreasing
to 5.35% and the proportion of predictions within 20% of the actual price rising to
96.30%. The inclusion of Least Absolute Deviation (LAD) in addition to the others
in the stack further increases this proportion to 96.33%. However, this addition
somewhat negatively impacts performance on other metrics.

Additional tests, designed to simulate model performance under varying data sizes,
revealed that the stacked models’ effectiveness declined as the dataset size decreased.
The stacked model, composed of XGB and CSM, outperformed all other models
until the training data was reduced to approximately 12,000 observations. This
turning point marked the individual XGB model’s rise to the top, suggesting that
stacked generalization might not improve prediction performance for smaller data-
sets. Despite the LAD model demonstrating robustness with decreasing dataset size,
its incorporation within a stacked model did not yield any substantial improvement
in prediction performance.

During the development of our models, two aspects that arose as significant con-
cerns were the computational complexity of the stacked models and their level of
interpretability. Our findings indicate that the stacked models derive most of their
accuracy from the XGB base model, suggesting a strong reliance on this particular
algorithm. Nonetheless, we were unable to precisely determine the individual con-
tributions of each model within the stacked ensemble, which would have provided
valuable insights. In addition, the inclusion of CSM in the stacked models made
it challenging to obtain reliable results regarding the feature importance. Due to
computational complexity, we had to analyze a smaller version of the dataset re-
garding this context. Consequently, our analysis of feature importance might not
fully capture the true underlying patterns and relationships within the data.

In conclusion, our study has shown that using stacked generalization to combine
distinct modeling techniques can improve predictive performance, but these im-
provements are relatively small and require a certain amount of data. The limited
enhancements observed with stacked models, along with their time-consuming im-
plementation, raise questions about the practicality of using stacked generalization
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in real-world applications. Given the superior performance of the XGB as a stan-
dalone model, it may be more efficient and advantageous to focus on incorporating
relevant data and refining the features used within the XGB model. This approach
could yield more substantial gains in predictive accuracy while reducing the time
and resources needed for execution. Nonetheless, further investigation is required
to substantiate these results and delve into alternative strategies for optimizing pre-
dictive models, such as the inclusion of demographic and economic factors.

In light of the unsatisfactory results with stacked generalization on smaller datasets
present in this study, it might be beneficial to consider using a different meta-model
instead of XGB. During our research, we employed a grid search to optimize the
hyperparameters for both the individual XGB and the XGB meta-model. However,
the output for the meta-model revealed a less complex model, as shown in Table 3
and Table 5. This finding suggests that a simpler model, such as linear regression,
might be a more appropriate choice for this purpose. Consequently, the use of a
simpler meta-model could potentially make stacked generalization more effective,
especially when dealing with smaller datasets.

It may also be worth investigating whether the creation of district-specific AVMs
can lead to improved prediction performance. To use the dataset in our study as an
example, the dataset could be divided into 15 separate parts, each representing a
different district, and a unique AVM could be trained for each district. This would
allow for the exploration of whether micro-locality plays a significant role in pre-
dicting housing prices, and whether certain districts benefit more from their own
individual models due to greater homogeneity in the housing or other unique char-
acteristics. Additionally, this approach would allow for an examination of whether
different models perform better in certain districts compared to others, and whether
incorporating these district-specific models into AVMs can lead to improved over-
all performance and predictive power. Overall, the exploration of district-specific
AVMs is an exciting opportunity to deepen the understanding of factors that influ-
ence housing prices and to improve the accuracy of AVM predictions.

Another promising area for future research is to delve deeper into the CSM or
other largely unexplored models within a stacked generalization framework. Our
implementation of the CSM in this context showed promising results when tested
out-of-sample on datasets above a certain size, highlighting the potential of using
this model as one of the base models. However, current technological limitations
pose challenges to the interpretability of this model within a stacked generalization
framework due to long computation times. As technology evolves, the CSM could
become an increasingly suitable candidate for inclusion. Similarly, while Support
Vector Machines (SVM) have seen some use in the context of stacked generalization,
there is still a potential for broader exploration and application.

Addressing computational and interpretability challenges within this framework will
open the door to a wider range of models that can be incorporated into stacked
generalization, including deep learning models that could potentially lead to more
powerful and robust AVMs. These future developments could provide valuable in-
sights and contribute to our collective understanding of the framework, bringing
advancements in predictive performance in real estate valuation and other fields.
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Appendix

A.1 Additional Data Overview

Figure 8: Correlation matrix for the continuous variables in the original dataset.
The variable ”bedrooms” was not included in the final dataset due to its correlation
with ”living area”. While the continuous variables ”build year”, ”bathrooms”, and
”floor” were also excluded from the final dataset, they were utilized to generate
binary variables.
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A.2 Hyperparameters for the Meta-Model

The same set of values was used in the grid search for the meta-model as for the
individual XGB model, as described in Section 4.4. However, the resulting tuned
values were different, leading to a less complex meta-model compared to the indi-
vidual XGB model. This is likely because a stacked model tends to perform better
when there is more diversity (Breiman, 1996).

Table 5: Hyperparameter tuning for the meta-model

Hyperparameter Hyperparameter grid Tuned value
max depth [3, 5, 7, 9] 5
min child weight [1, 3, 5, 7] 3
gamma [0.01, 0.05, 0.1, 0.2, 0.3] 0.1
subsample [0.6, 0.7, 0.8, 0.9, 1] 0.7
colsample bytree [0.6, 0.7, 0.8, 0.9, 1] 1
learning rate [0.005, 0.01, 0.05, 0.1] 0.1
n estimators [100, 200, 300, 400, 500] 100
reg alpha [0.1, 0.5, 1, 2.5] 1
reg lambda [0.1, 0.5, 1, 2.5] 1
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A.3 Example of Comparables for a Random Property - CSM

This example illustrates the practical application of our model. The target property,
sold in June 2021 and located in Frogner, is an apartment featuring a living area of
62 m2, one bathroom, and a balcony. In Figure 9, the property under consideration is
represented by a red marker, while the blue markers indicate the ten properties most
similar to it. In addition to geographical location, other variables taken into account
in the calculation include the presence of a bathroom, a balcony, a construction date
before 2010, living area sizes ranging between 50 and 69 m2, and similar sale dates.

(a) Zoomed out (b) Zoomed in

Figure 9: Comparables for a random property in Frogner

The actual value of the price per square meter for this specific property is NOK
119,355. Our model predicts a value of NOK 103,065, indicating a PPE of 13,6%.
Thus, this prediction qualifies for inclusion in the presentations of PPE(20) and
PPE(50), but not PPE(10).
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A.4 Python Code for Custom Metric - CSM

We present below the code we developed to consider only the K nearest neighbors
that were sold prior to the target property for prediction. However, given its high
computational demand, especially when used in stacked generalization, we chose not
to include this code in our final analysis.

def custom_distance(x1, x2):

days_since_diff = x1[-1] - x2[-1]

if days_since_diff < 0:

return float('inf')

else:

return np.linalg.norm(x1[:-1] - x2[:-1])

The custom distance function in the code snippet factors in the ”days since” vari-
able, representing the time elapsed from the transaction date. Specifically, the ”days
since” variable is normalized such that the oldest transaction date has a value of 0,
the newest has a value of 1, and all other transaction dates have values in between
this range. The function compares the ”days since” values of the potential compar-
ables and the subject property to determine if they were sold before or after the
subject property. If the difference between the values in the ”days since” variable
is negative, it means that the property was sold after the subject property, and the
function returns a distance of infinity, effectively excluding that comparable property
from consideration. Conversely, if the ”days since” value for a comparable property
is positive, implying it was sold before the target property, the function computes
the Euclidean distance using ”np.linalg.norm(x1[:-1] - x2[:-1])”.

Please note that in our analysis, we used the regular Euclidean distance calculation
for the KNN algorithm, as described in Section 4.2. We only included the code
snippet to show the possibility of doing it a more proper way when splitting the
training and test sets randomly. However, we do not recommend this approach for
large datasets.
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A.5 Regression Summary - LAD

Table 6: Regression summary for the LAD model
ln(Price per square meter) Coefficients Std Err
Size

10-49m2 0.172*** (0.001)
70-99m2 -0.056*** (0.001)
100-139m2 -0.090*** (0.002)
140-179m2 -0.092*** (0.004)
Above 180m2 -0.099*** (0.007)

District
Alna -0.534*** (0.002)
Bjerke -0.383*** (0.002)
Gamle Oslo -0.229*** (0.002)
Grorud -0.584*** (0.003)
Grünerløkka -0.180*** (0.002)
Nordre Aker -0.154*** (0.002)
Nordstrand -0.347*** (0.002)
Sagene -0.132*** (0.002)
St. Hanshaugen -0.065*** (0.002)
Stovner -0.701*** (0.003)
Søndre Nordstrand -0.672*** (0.003)
Ullern -0.126*** (0.002)
Vestre Aker -0.229*** (0.003)
Østensjø -0.422*** (0.002)

Year
2007 -0.021 (0.042)
2008 -0.826*** (0.004)
2009 -0.815*** (0.003)
2010 -0.738*** (0.003)
2011 -0.649*** (0.002)
2012 -0.569*** (0.002)
2013 -0.534*** (0.002)
2014 -0.514*** (0.002)
2015 -0.402*** (0.002)
2016 -0.247*** (0.002)
2017 -0.187*** (0.002)
2018 -0.188*** (0.002)
2019 -0.154*** (0.002)
2020 -0.096*** (0.002)
2022 0.060*** (0.002)

Month
January -0.028*** (0.002)
February -0.017*** (0.002)
March -0.012*** (0.002)
April -0.007*** (0.002)
May -0.000 (0.002)
July 0.004* (0.002)
August 0.017*** (0.002)
September 0.007*** (0.002)
October 0.006*** (0.002)
November 0.004** (0.002)
December 0.010*** (0.002)

Balcony 0.023*** (0.001)
Garage 0.025*** (0.001)
Quiet 0.011*** (0.001)
View 0.018*** (0.001)
First floor and inner city -0.046*** (0.002)
High floor and no elevator -0.021*** (0.002)
New apartment 0.102*** (0.002)
Renovation object -0.117*** (0.002)
Two bathrooms or more 0.074*** (0.002)

const 11.493*** (0.002)
R-squared: 0.8367
Number of observations: 123,489

***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.

39



A.6 First and Last Decision Trees - XGB

We developed an XGBoost model with 500 available trees. The trees are grown se-
quentially, and is improving for each tree. The first tree is relatively small with few
branches, making it easy to interpret. However, the last tree becomes significantly
more complex with many branches. The variable names are set as f0, f1, ..., f12
for visualization purposes, and represents the variables (in this order): ”latitude”,
”longitude”, ”living area”, ”high floor and no elevator”, ”two bathrooms or more”,
”renovation object”, ”first floor and inner city”, ”new apartment”, ”balcony”, ”gar-
age”, ”quiet”, ”view” and ”days since”.

(a) First tree
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(b) Last tree

Figure 10: XGBoost decision trees
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A.7 Simulation with Out-of-Time Predictions

A potential drawback of our models is that they do not incorporate out-of-time pre-
dictions, which is necessary to evaluate the performance of the models in real-world
situations. We provided a possible solution for the CSM in Appendix A.4. How-
ever, to address this limitation across all our models, a simpler and more effective
approach involves modifying the division of the training and test sets. Therefore, we
conducted a simulation dealing with the time perspective to examine its potential
impact on our conclusions. In this simulation, we sorted the dataset by sales date
and selected the 2,000 most recent observations as the test set, while the training
set consisted of the remaining data (162,652 observations). The test data, span-
ning from mid-September to the end of December 2022, provided an opportunity
to assess our models’ performance with out-of-time predictions. The results of this
simulation are presented in Table 7.

Table 7: Comparison of model performance with out-of-time predictions
Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.7777 0.1330 10.02% 7.85% 59.95% 88.40% 99.80%
LAD 0.7112 0.1516 12.03% 9.67% 51.15% 81.15% 99.35%
XGB 0.8881 0.0944 7.48% 5.82% 74.50% 95.20% 99.85%
(XGB + CSM) 0.8918 0.0928 7.39% 5.81% 74.15% 95.20% 99.85%
(XGB + LAD) 0.8887 0.0941 7.49% 5.92% 73.35% 95.20% 99.90%
(XGB + CSM + LAD) 0.8920 0.0927 7.33% 5.78% 75.00% 95.05% 99.85%

As expected, the overall performance drops significantly when dealing with the time
perspective. However, we can see that the models’ relative performance remains
consistent to the models trained with the original 75/25 train-test-split approach, as
shown in Table 4. XGB remains the best-performing individual model, while LAD
continues to fall short. Furthermore, all stacked models still show improvements
compared to the individual XGB on a large portion of the evaluation metrics.

While the results are somewhat less distinct than before, our main conclusion re-
mains consistent. CSM continues to contribute more to improved prediction accur-
acy than LAD when applied to a large dataset using stacked generalization. How-
ever, one noticeable difference is that stacking all three models now yields slightly
better results compared to only stacking the XGB and CSM models, which contra-
dicts our previous findings. One advantage of XGB and CSM over LAD is their
ability to fine-tune sales timing more accurately. However, when this advantage is
diminished, the comparative advantage of these models over LAD is reduced, and
the inclusion of LAD in a stacking approach becomes more beneficial. We should
note that minor differences in outcomes might be due to using the same hyperpara-
meters from our previous analysis, without performing a grid search on the new
training set. Adjustments to these hyperparameters could potentially yield different
results.

However, these findings demonstrate that our initial methodology can be general-
ized, and the division of the dataset is not a critical factor in determining model
performance.
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A.8 Beeswarm Plots - SHAP

(a) CSM (b) LAD

(c) XGB (d) XGB + CSM

(e) XGB + LAD (f) XGB + CSM + LAD

Figure 11: SHAP beeswarm plots for all models
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A.9 Simulation with Different Data Sizes - All Tables

Table 8: Comparison of model performance with different sizes of training data (%
of original data)

(a) 61,745 observations (50%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8545 0.1387 10.52% 8.11% 59.05% 87.00% 99.36%
LAD 0.8377 0.1465 11.17% 9.01% 54.56% 84.79% 99.69%
XGB 0.9314 0.0953 7.15% 5.56% 75.55% 95.76% 99.91%
(XGB + CSM) 0.9331 0.0941 7.07% 5.50% 76.08% 95.94% 99.91%
(XGB + LAD) 0.9310 0.0955 7.18% 5.63% 75.50% 95.72% 99.91%
(XGB + CSM + LAD) 0.9323 0.0946 7.11% 5.55% 75.75% 95.87% 99.90%

(b) 43,221 observations (35%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8435 0.1438 10.93% 8.38% 57.55% 85.86% 99.19%
LAD 0.8377 0.1465 11.18% 9.02% 54.49% 84.77% 99.68%
XGB 0.9288 0.0970 7.28% 5.64% 74.97% 95.34% 99.90%
(XGB + CSM) 0.9302 0.0961 7.21% 5.62% 75.36% 95.63% 99.90%
(XGB + LAD) 0.9290 0.0969 7.29% 5.70% 74.83% 95.40% 99.91%
(XGB + CSM + LAD) 0.9300 0.0962 7.24% 5.63% 75.06% 95.52% 99.89%

(c) 30,872 observations (25%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8331 0.1485 11.30% 8.57% 56.35% 84.78% 99.03%
LAD 0.8376 0.1466 11.17% 9.03% 54.55% 84.77% 99.68%
XGB 0.9268 0.0984 7.37% 5.72% 74.53% 95.16% 99.87%
(XGB + CSM) 0.9274 0.0980 7.34% 5.70% 74.52% 95.16% 99.90%
(XGB + LAD) 0.9255 0.0992 7.44% 5.75% 73.76% 95.11% 99.89%
(XGB + CSM + LAD) 0.9269 0.0983 7.38% 5.76% 74.06% 95.23% 99.89%

(d) 24,698 observations (20%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8252 0.1520 11.57% 8.78% 55.35% 83.91% 98.93%
LAD 0.8373 0.1467 11.17% 9.01% 54.48% 84.78% 99.69%
XGB 0.9243 0.1000 7.47% 5.79% 73.76% 94.92% 99.88%
(XGB + CSM) 0.9254 0.0993 7.43% 5.74% 74.03% 95.12% 99.89%
(XGB + LAD) 0.9241 0.1002 7.51% 5.81% 73.58% 95.03% 99.89%
(XGB + CSM + LAD) 0.9251 0.0995 7.46% 5.85% 74.03% 94.98% 99.88%

(e) 18,523 observations (15%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.8153 0.1563 11.90% 9.03% 54.25% 83.16% 98.72%
LAD 0.8370 0.1468 11.18% 9.01% 54.49% 84.74% 99.69%
XGB 0.9216 0.1018 7.60% 5.87% 73.08% 94.52% 99.87%
(XGB + CSM) 0.9223 0.1013 7.58% 5.87% 73.12% 94.76% 99.87%
(XGB + LAD) 0.9215 0.1019 7.64% 5.91% 72.77% 94.59% 99.89%
(XGB + CSM + LAD) 0.9218 0.1017 7.62% 5.89% 73.05% 94.62% 99.88%

(f) 12,349 observations (10%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.7992 0.1630 12.50% 9.52% 52.03% 81.30% 98.57%
LAD 0.8366 0.1470 11.20% 9.02% 54.50% 84.76% 99.69%
XGB 0.9173 0.1046 7.83% 6.02% 71.95% 94.09% 99.85%
(XGB + CSM) 0.9172 0.1047 7.85% 6.11% 71.70% 94.22% 99.83%
(XGB + LAD) 0.9172 0.1046 7.86% 6.10% 71.37% 94.13% 99.86%
(XGB + CSM + LAD) 0.9176 0.1044 7.85% 6.08% 71.84% 94.13% 99.86%
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(g) 6,174 observations (5%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.7655 0.1761 13.63% 10.30% 48.78% 78.03% 98.00%
LAD 0.8357 0.1474 11.24% 9.06% 54.09% 84.59% 99.67%
XGB 0.9102 0.1089 8.15% 6.32% 70.14% 93.38% 99.83%
(XGB + CSM) 0.9082 0.1101 8.24% 6.37% 69.63% 93.12% 99.83%
(XGB + LAD) 0.9085 0.1100 8.26% 6.44% 69.38% 93.16% 99.86%
(XGB + CSM + LAD) 0.9087 0.1099 8.23% 6.37% 69.88% 93.08% 99.84%

(h) 3,087 observations (2.5%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.7201 0.1924 15.11% 11.32% 44.98% 74.06% 97.13%
LAD 0.8337 0.1483 11.32% 9.12% 54.04% 84.33% 99.63%
XGB 0.8982 0.1160 8.74% 6.74% 66.99% 91.91% 99.78%
(XGB + CSM) 0.8952 0.1177 8.88% 6.92% 66.11% 91.57% 99.77%
(XGB + LAD) 0.8946 0.1180 8.88% 6.91% 66.12% 91.50% 99.81%
(XGB + CSM + LAD) 0.8952 0.1177 8.84% 6.89% 66.52% 91.67% 99.79%

(i) 1,235 observations (1%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.6540 0.2139 17.10% 12.92% 40.17% 68.68% 95.70%
LAD 0.8225 0.1532 11.71% 9.40% 52.63% 83.23% 99.50%
XGB 0.8815 0.1252 9.50% 7.41% 62.91% 89.81% 99.74%
(XGB + CSM) 0.8730 0.1296 9.82% 7.66% 61.47% 88.96% 99.66%
(XGB + LAD) 0.8717 0.1302 9.92% 7.85% 60.67% 88.62% 99.71%
(XGB + CSM + LAD) 0.8710 0.1306 9.95% 7.87% 60.41% 88.78% 99.68%

(j) 617 observations (0.5%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.5858 0.2340 18.97% 14.27% 36.63% 64.55% 94.04%
LAD 0.8009 0.1623 12.53% 9.92% 50.34% 80.80% 99.11%
XGB 0.8607 0.1357 10.47% 8.25% 58.43% 87.18% 99.61%
(XGB + CSM) 0.8470 0.1422 11.00% 8.73% 55.78% 85.54% 99.51%
(XGB + LAD) 0.8475 0.1420 10.97% 8.62% 56.47% 85.43% 99.53%
(XGB + CSM + LAD) 0.8457 0.1428 11.03% 8.68% 55.99% 85.16% 99.49%

(k) 308 observations (0.25%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.4983 0.2576 21.41% 16.17% 32.87% 59.05% 91.98%
LAD 0.7954 0.1645 12.69% 10.17% 49.35% 80.28% 99.11%
XGB 0.8403 0.1453 11.29% 8.80% 55.29% 84.38% 99.40%
(XGB + CSM) 0.8162 0.1559 12.05% 9.37% 52.66% 82.26% 99.10%
(XGB + LAD) 0.8311 0.1494 11.52% 9.16% 53.61% 83.72% 99.41%
(XGB + CSM + LAD) 0.8295 0.1502 11.51% 9.09% 53.94% 83.90% 99.31%

(l) 123 observations (0.1%)

Models R2 RMSE MAPE MdAPE PPE(10) PPE(20) PPE(50)
CSM 0.4685 0.2651 21.86% 16.92% 31.13% 57.28% 92.12%
LAD 0.6413 0.2178 17.42% 13.60% 37.98% 67.29% 96.19%
XGB 0.8081 0.1593 12.26% 9.97% 50.14% 81.32% 99.34%
(XGB + CSM) 0.7546 0.1801 13.99% 11.33% 44.90% 75.70% 98.70%
(XGB + LAD) 0.7474 0.1827 14.13% 11.56% 44.02% 75.27% 98.88%
(XGB + CSM + LAD) 0.7475 0.1827 14.06% 11.42% 44.52% 75.30% 98.91%
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