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Abstract
Financial markets are complex, and stock data is noisy. After the introduction of the
efficient market hypothesis, which states that the market reacts immediately to all
available information, additional data sources have been used to predict the move-
ment of stock prices. Financial news articles could be one of these. Several studies
have explored the relationship between textual data and stock price movements on
a day-to-day basis, this thesis explores the relationship on an intraday basis.

We explore the relationship between news articles published on the NASDAQ
website and the directional movement of the stock price on the stocks mentioned in
the articles. The goal of this thesis is not to beat the market, but rather to explore
whether news articles can be shown to affect the stock price in a time frame of
20 minutes after its publication. Textual features are extracted from news articles
and used alongside short-term historical stock price movements. These features are
combined in a feed-forward neural network, random forests, XGBoost, and logistic
regression to predict the holding period return (HPR) 20 minutes after an article
has been published. The results are then compared with the same models, excluding
textual features, to see whether the textual data matter or not.

The feature extraction from text is done by using BERT-based language models.
We differentiate between the headline and the content of the articles and extract the
same sort of features from both. The features extracted include sentiment classifica-
tion, achieved by employing FinBERT, which is a BERT model specifically trained
for analyzing sentiment in financial text. Additionally, we conduct text classification
using a fine-tuned DistilBERT model. The DistilBERT model is tuned to classify
whether the HPR 20 minutes after the publication of a news article went up or not.
The results of the pure text classification are also discussed to see whether the text
can help explain the stock market.

DistilBERT achieves a validation set accuracy of 76.23% by considering an up
prediction as true when DistilBERT correctly predicts an up movement on either
headlines or content. It is important to note that this accuracy is a theoretical result
and assumes that a classifier utilizing the model’s correct up predictions could achieve
an accuracy of 76.23%. In the context of our DistilBERT models, the validation set
represents out-of-sample predictions.

The results of our analysis are in alignment with the results of previous work.
When used alongside historical stock prices, evidence suggests that textual data do
not help predict HPR in a time frame of 20 minutes. However, pure text classification
indicates that textual data can help explain the stock market. Our findings then
suggest that intraday stock data is too noisy when predicting short-term stock price
movements, but textual data could be an explanatory variable.
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Sammendrag
Finansmarkeder er komplekse, og aksjedata inneholder mye støy. Etter introduksjo-
nen av hypotesen om effisiente markeder, som sier at markedet reagerer umiddelbart
på all tilgjengelig informasjon, har det blitt brukt flere datakilder enn rene aksjedata
for å predikere aksjeprisbevegelser. En av disse datakildene er finansielle nyheter.
Ettersom flere studier har utforsket forholdet mellom tekstdata og aksjeprisbevegel-
ser på dagsbasis, søker vi å utforske forholdet på intradagsbasis.

Vi undersøker forholdet mellom artikler publisert på NASDAQ-nettstedet og be-
vegelsen til aksjeprisen på aksjene som nevnes i artiklene. Målet med denne avhand-
lingen er ikke å slå markedet, men heller å undersøke om nyhetsartikler kan påvirke
aksjeprisen i et tidsvindu på 20 minutter etter publisering. Tekstvariabler genereres
fra nyhetsartiklene, som brukes sammen med kortsiktige historiske aksjeprisbeve-
gelser. Dette samles i et feed-forward nevralt nettverk, random forest, XGBoost og
logistisk regresjon for å predikere avkastningen 20 minutter etter at en artikkel har
blitt publisert. Resultatene sammenlignes deretter med de samme modellene uten
tekstvariabler for å se om nyhetsartiklene har betydning eller ikke.

Tekstvariablene lages ved å bruke BERT-baserte språkmodeller. Vi skiller mellom
overskrift og innhold i artiklene og lager de samme type variablene fra begge deler.
Tekstvariablene som brukes er sentiment klassifikasjon hentet ved hjelp av FinBERT,
en BERT-modell spesialtrent for å analysere sentimentet i finansiell tekst. I tillegg
gjennomfører vi også en finjustert DistilBERT modell. Denne modellen er justert til
å klassifisere om avkastningen til en aksje 20 minutter etter at en nyhetsartikkel ble
publisert har gått opp eller ikke. Resultatene fra den rene tekstklassifikasjonen er
også diskutert for å se om tekst kan hjelpe til å forklare aksjemarkedet.

DistilBERT oppnår en nøyaktighet på 76,23 % på valideringssettet når vi anser
en opp-prediksjon som sann når DistilBERT har gjort en riktig opp-prediksjon på
enten overskrift eller innhold. Det er viktig å merke seg at denne nøyaktigheten er
et teoretisk resultat, og indikerer at en klassifikator som benytter modellenes riktige
opp-prediksjoner kunne oppnådd en nøyaktighet på 76,23 %. I konteksten av våre
DistilBERT modeller representerer valideringssettet usett data.

Resultatene fra analysen stemmer overens med resultater fra tidligere arbeid. Når
tekstdata brukes sammen med historiske aksjepriser tyder evidens på at tekstdataen
ikke hjelper med å predikere avkastning i et tidsvindu på 20 minutter. Den rene
tekstklassifiseringen indikerer derimot at tekstdata kan bidra til å forklare deler av
aksjemarkedet. Våre funn antyder dermed at aksjedata på intradagsbasis inneholder
for mye støy, når det gjelder å predikere kortsiktige aksjeprisbevegelser, men at tekst
kan være en forklaringsvariabel.
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1 Introduction
Stock data is inherently noisy data. It is noisy on a daily basis and even more on
an intraday basis. Fama (1965) formulated the efficient market hypothesis (EMH),
which states that the market reacts immediately to all available information. If this
holds, it must imply that the noise in stock return data is explained in variables.
By finding these variables, we can expand our understanding of the stock market.
Techniques such as fundamental and technical analysis have come a long way but
are still not perfect.

News articles have been identified as a potentially valuable variable in explaining
stock market movements. Each day, many news articles are published in various
sources, such as Twitter, Reddit, and other web-based news sources. These sources
of textual data contain valuable information that can influence stock market move-
ments. Previous studies have found various amounts of correlations between news
articles and stock movements, but the relationship remains complex and is not yet
fully understood.

In recent years, natural language processing (NLP) has made massive gains with
language models, such as Bi-directional Encoder Representations from Transformers
(BERT) and GPT, built on the transformer architecture introduced by Vaswani et al.
(2017). These models have achieved unprecedented results on many NLP tasks and
have made researchers think about how the techniques can be applied in finance.
News articles could be a valuable variable in clearing up some of the noise in stock
data.

There is little doubt that solving the puzzle of intraday returns and news articles
could create massive financial gains. It is, however, also an interesting correlation
to find to better understand the market. If it is so that news articles drive stock
movements, malicious actors could drive the market in whatever direction they desire
based on what articles they write. This also raises the question of whether the market
shapes news or whether that news shapes the market. It also sparks a discussion
around the performative characteristics of economical models as mentioned by Callon
(2007). We touch on this subject, but it is a bit beyond the scope of this thesis.

Willding et al. (2018) have published a report on the impact of digital platforms
and journalistic content. In this report, they discuss how the migration of news to
digital channels has caused a shift from mass communication to more personalized
and customized news consumption. They state that the capacity to personalize and
customize news consumption has been made possible by the growth of online news
access. This suggests that, with the Internet, the news is not being published for a
wide audience but is more tailored toward specific audiences. Adding the argument
that malicious actors could drive the market in whatever direction they desire by

1



1 Introduction

tailoring news for specific audiences, it is more important than ever to understand
how news articles and stock price movements relate to each other.

In their report, Willding et al. (2018) further suggests that artificial intelligence
(AI) is being used to generate summaries and headlines for news articles. This
indicates that the headlines in modern news may be outputs from language models,
and the content is the part that is human written. How AI-generated headlines
influence stock prices is interesting on its own and it is also important to understand
how these headlines influence the short-term movement of stock prices.

Adding to the argument on how malicious actors could influence the market is an
analysis of the impact of behavioral finance of fake news on financial markets by Fong
(2021). The results of this article suggest that stock prices overreact to fake news
and underreact to real news. They also suggest that fake news in a security amplifies
underreactions to subsequent real news for the security. These suggestions are based
on the importance of understanding the relationship between news and stock price
movements.

With the rise of novel NLP techniques and models, such as transformers, this day
and age is an interesting time to study the relationship between stock movements
and news articles. Transformer-based models could be the missing link to a better
understanding of what drives stock movements.

The field where economics/finance and data science intersect is an interesting field
of study and a field with a lot left unknown. Traditional economists have been
reluctant to take new methods to heart, especially new models that are difficult to
understand and interpret. For instance, traditional econometrics is largely based on
linear regressions. That being said, regression works in many contexts, but not in
all. This is where newer and more advanced machine learning (ML) methods and
neural networks (NNs) come into play, and this is what we find motivating in this
area of research.

A large part of our motivation for writing this thesis includes the desire to con-
tribute to the literature in the field. We have noticed that meaningful research is
somewhat lacking and the research that has been conducted seems to hold back on
some of their results.

1.1 Research Questions
This thesis explores the potential of NLP in finance. Specifically, we explore how
NLP can enhance the understanding of intraday stock price patterns. To investigate
the relationship between stock prices and financial news, we have formulated the
following research questions:

RQ 1: Does textual data help predict the direction of stock returns on intraday
data?

RQ 2: Can a machine learning model that includes textual features predict the
direction of a stock price movement 20 minutes after the news has been
published?

2



1.2 Thesis Structure

RQ 3: Does textual data clear up some of the noise in stock data?

The difference between the first and third research questions is that the third is
more of a conceptual question. From the EMH, we know that stock prices, in theory,
should reflect all available information, and the third question is tailored to spark a
discussion of whether news data actually help clear up some of the noise.

We emphasize that the goal of our thesis is not to beat the market, but rather
to understand what drives it. The research questions are designed to investigate
whether news articles actually contain information that can explain short-term price
movements of stocks.

1.2 Thesis Structure
In the next chapter, Chapter 2, we present the theoretical background required to
understand both the significance of this thesis and previous work in the field. This
includes a description of stocks and how stock exchanges work, and an introduction
to NLP, with a focus on the models used. Furthermore, we introduce how the
evaluation of different classifiers is conducted before we describe the NNs and other
ML classifiers used in this thesis.

Chapter 3 presents the previous work in the field. This includes previous work
regarding both interday and intraday predictions, with and without textual features.
We note that this chapter is rather short as there is a lack of meaningful work in the
field.

In Chapter 4 we start by describing our different data sets and the preprocessing
that was required to perform analyses on them. We then perform an exploratory
data analysis with respect to our target variable and the feature variables. Rounding
up the chapter, we present our research design.

To extract features from our texts, we use two BERT-based models, FinBERT and
DistilBERT. These models, with related methodology, are presented in Chapter 5.
We also evaluate how our fine-tuned DistilBERT model performs on training and
validation data, as well as fine-tuning a model on a single stock.

In Chapters 6 and 7 we present the methodology and experimental results related
to the predictions. This is because each model has its own methodology. At the
end of each of those chapters, we also discuss our findings. We start by explaining
how NNs have been used in Chapter 6. Here we run multiple tests with different
network typologies and evaluate them. Chapter 7 describes how other ML classifiers
have been used. We describe how the hyperparameters were set up and also evaluate
different prediction thresholds.

Chapter 8 contains the discussion of the overall results of our experiments. This
discussion includes the significance of our findings and a comparison of our different
results. The chapter ends with a discussion around real-world applications and ethical
considerations.

Finally, Chapter 9 concludes our thesis. We answer our three research questions
and make some suggestions for further work.
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1 Introduction

1.3 Contributions
The goal of this thesis is to expand our understanding of the stock market. The field
of using news articles to predict intraday directional movements on stock prices is
largely new. As a consequence of this, we found it difficult to locate suitable existing
frameworks to build our research on. We hope that this thesis contributes to the
field by building a foundation and framework that can be further researched.

Another contribution of this thesis, which we have not found in previous work, is
the fact that we have investigated if we can predict a significant rise in stock price.
We have defined this significance as greater than 0.001. This increases the possibility
of using the models for trading, as it also considers transaction costs.

Unlike much of the previous work in the field, this thesis presents all relevant
metrics from our models. The hope is that, by doing this, future researchers can
learn from what we have done. In this way, this thesis can serve as a basis for further
research.

The codebase used in this thesis is also a contribution to future researchers. If
they use similar news and stock data sets, they can, with some small tweaks, ex-
plore similar relationships. Expanding the prediction time frame and incorporating
additional stocks mentioned in the news data set is a straightforward process.
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2 Theoretical Background
This chapter introduces the theoretical background required to understand the foun-
dation of this thesis. The presented theory includes basic theory about the stock
market, an introduction to NLP, what a classification problem is, and how to mea-
sure the performance of classification models. In the later sections of this chapter,
we introduce and describe NNs and other ML methods.

2.1 Financial Markets
This section explains the relevant theory concerning the financial market with regard
to stocks. The theory includes how to perform trades, the NASDAQ stock exchange,
and some economic theories regarding stock price movements. Analysis strategies
and some considerations concerning investors’ risk are also introduced. Information
on the stock market is fundamental to understanding how NLP can be applied to
further understand the stock market.

Stocks and the holding period return “Common stocks, also known as equity
securities or equities, represent ownership shares in a corporation” (Bodie et al.,
2021). There are several ways to earn money when investing in stocks, but the key
aspect is to have a positive return on investment. The return is the amount of profit
on a share over a period of time. We define this as holding-period return (HPR) and
calculate it as

HPR = Ending price of a share− Beginning price + Cash dividend
Beginning price . (2.1)

We note that there is no cash dividend to be considered in the data we use in this
thesis.

Another aspect of stocks is volatility. Volatility is considered the standard devia-
tion of the HPR. It models how much the predicted HPR will deviate from the actual
return. However, volatility is not considered in this thesis.

Purchase and short sales of stocks In traditional stock trading, an investor will
first buy a stock and then later sell it. With a short sale, this order is reversed, and
the stock is first sold, then bought. The investor first borrows a share of stock from
a broker and sells it with the promise of buying the stock back to the broker at a
later time. If the stock then goes down in price, the investor gains a profit. It is
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important to note that short-selling stocks have no limit on how much money the
investor can lose. Table 2.1 shows the profit calculation of purchases and short sales.
We also note that not all investors have the possibility to short-sell.

Table 2.1: Overview of profit from the purchase and short sale of stocks. IP is the initial
price, EP is the ending price and D is the dividend.

Purchase Short Sale
Time Action Cash Flow Action Cash Flow
0 Buy share − IP Sell share + IP
1 Sell share EP + D Buy share −(EP + D)
Profit (EP + D)− IP IP− (EP + D)

Volume in stock markets As well as the open, close, high, and low price of a stock,
volume is also relevant. This is the number of stocks traded over a given period of
time.

NASDAQ Stock Exchange This is a particular stock exchange located in New
York (US). NASDAQ computes a composite index of more than 3,000 companies
traded on the NASDAQ market/exchange. It started as an over-the-counter dealer
market, but over time, it has become a primarily electronic market (Bodie et al.,
2021). The exchange has opening hours Monday through Friday from 9:30 am to
4:00 pm Eastern Standard Time (GMT−05:00)1. In UTC this is 14:30–21:002.

The NASDAQ Stock Exchange has extended hours of trading. The pre-trading
session is from 4:00 am to 9:30 am. The post-trade session is from 4:00 pm to 8:00
pm. We note that the New York Stock Exchange has the same trading hours.

Trading costs There are costs to consider when trading. These costs are transaction
costs and represent the broker’s commission. There are two different types of brokers
that traders can choose from, namely full-service brokers and discount brokers. A
full-service broker typically relies on a research staff that prepares, analyzes, and
forecasts general economic conditions, as well as industry and company trends. They
often provide specific buy or sell recommendations based on their analysis. These
brokers can also make trades on behalf of the investor (Bodie et al., 2021).

On the other hand, discount brokers provide “no frills” services. They carry out
buy and sell orders, offer margin loans, and facilitate short sales. Compared to full-
service brokers, discount brokers demand a lower commission (Bodie et al., 2021).
The discount broker asks for a fee when placing orders, and we can consider this to
be the transaction cost when trading.

1GMT−04:00 during daylight savings time.
213:30–20:00 during daylight savings time.
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Random walks and efficient markets Stock prices seem to follow a random walk.
A random walk means that something is unpredictable. Changes in stock price can
be surprising and, therefore, also hard to predict using statistical models. However,
even though the argument that stock prices follow random walks is strong, they
also respond swiftly to new information. Another theory to consider is the EMH. It
states that markets are efficient and that stock prices reflect all available information
relating to the stock. If the EMH and the random walk theory both hold, then
predicting future stock price movements using historical price movements should be
impossible (Bodie et al., 2021).

Technical and fundamental analysis A technical analysis is when investors use
historical prices and other technical indicators to predict movements in future stock
prices. Investors look for patterns in historical data to predict how the stock price
will move in the future. The fundamental analysis is when investors use more avail-
able information. This information can include the prospects for the earnings and
dividends of firms, the expectations for the future, and interest rates. Sources of
this kind of information can be stock market announcements, tweets, and news arti-
cles. Fundamental analysis represents an attempt to determine the present value of
all payments that a stockholder will receive from each share of stock (Bodie et al.,
2021).

Considering investor’s appetite for risk Investors handle risk differently when
investing. Some investors seek risk, and others are risk-averse. Their risk appetite
can be explained as a utility function as

U = E(r)− 1
2Aσ2, (2.2)

where A is a positive integer referencing the investor’s risk aversion and a higher
value means a higher risk aversion. U is the utility score from the equation and the
investor seeks to maximize this number. σ2 is the variance of returns and E(r) is
the expected return on the investment (Bodie et al., 2021). It is most common that
investors are risk averse.

2.2 Natural Language Processing
This section explains the NLP methods applied to textual data, as well as explaining
how NLP is valuable when trying to understand the market. In general, NLP is
a branch of computer science in which a computer is used to model and analyze
human-written text. Human-written text is a form of noisy data and is available
almost everywhere. Examples of programs that use NLP are e-mail spam filters and
chatbots. Before a computer can understand the textual data, the data must be
transformed into numbers.
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2.2.1 NLP in Finance
Since financial news articles contain a lot of information about the market, financial
news should also influence the market. News can affect stock prices through a variety
of means (Basilone, 2021). What makes NLP interesting in the field of finance boils
down to the EMH. As mentioned earlier in this chapter, the EMH states that the
market reacts immediately to all available information. In addition to reacting imme-
diately to all available information, the market also reflects all available information
(Bodie et al., 2021). Since financial news is a source of information concerning stocks,
it should in theory help explain the market.

2.2.2 Word Embeddings and Tokenizers
The process of transforming human-written text into numbers is called embedding.
Generally speaking, the goal of word embedding is mapping words in unlabeled text
data to a continuously valued low-dimension space to capture internal semantic and
syntactic information (Li and T. Yang, 2018). The essence of word embeddings is to
represent words as vectors of numbers.

The NLP techniques used in this thesis include specific tools for embedding and
tokenization. Tokenization is the process of splitting sentences into words. The words
can then be embedded using an embedding algorithm. The BERT tokenizer performs
the embedding and tokenization of the text before it is input into the model. We
describe the BERT tokenizer in Section 2.4.6.

2.2.3 Text Classification
Text classification is a fundamental task in NLP, aimed at automatically assigning
categories or labels to textual data. It is comparable to classification tasks where
the input is numbers. The premise for classification is that, given a categorical
target variable, a model learns patterns that exist between instances composed of
independent variables and their relationship to the target (Bengfort, 2018). Within
the domain of NLP, some classification tasks are more common than others. One of
the most common tasks is sentiment analysis.

Sentiment analysis Sentiment analysis or opinion mining refers to the application
of natural language processing, computational linguistics, and text analytics to iden-
tify and extract subjective information from source materials. Generally speaking,
sentiment analysis aims to determine the attitude of a speaker or a writer with re-
spect to some topic or the overall contextual polarity of a document (Hovy, 2015).
It is a form of specified text classification. A model trained to perform a sentiment
analysis can return a sentiment score, for example, a continuous number from −1
(negative) to 1 (positive). It can also return a sentiment class or label. This label can
be extracted from the sentiment score and be placed in 2, 3, or 5 different categories.
These categories symbolize the sentiment whether it is negative, somewhat negative,
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neutral, somewhat positive, or positive. In the three-class method, we consider pos-
itive, neutral, and negative sentiments. In a financial context, the sentiment may
be used to predict investors’ behavior and from this help with predicting directional
stock price movement.

2.3 Evaluation of Classifiers
Within ML, classification problems are problems in which the model predicts a cat-
egorical variable based on input variables. When evaluating different classification
algorithms, some common metrics are calculated from a confusion matrix. The ex-
amples in this section are based on Tharwat (2020).

Confusion matrix The confusion matrix, also called Contingency Table, was intro-
duced by Pearson (1904). The matrix displays how many observations the model
predicts in a class plotted against the actual class of the observations. Figure 2.1
displays both a 2 · 2 and a 3 · 3 matrix.

True Positive
(TP)

False Positive
(FP)

True Negative
(TN)

False Negative
(FN)

True/Actual Class
Positive (P) Negative (N)
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False (F)

P=TP+FN N=FP+TN
(a) 2 · 2 confusion matrix. There are two true classes P

and N . The output of the predicted class is true or
false.
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A B C
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A

(b) 3 · 3 confusion matrix. There
are three true classes A, B and
C.

Figure 2.1: An illustrative example of a 2 · 2 and a 3 · 3 confusion matrix. The green
diagonal represents correct predictions and the orange squares represents
the incorrect predictions.

The false negative (FN) displayed in Figure 2.1a is also known as Type II error,
and the false positive is also called false alarm or Type I error.

2.3.1 Classification Metrics
To compare the performance of different models, classification metrics are used. The
formulas presented here target the 2 · 2 confusion matrix, but they can also be ap-
plied to multiclass problems with some tweaks to the formulas. The most common
performance metrics are described here.
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Accuracy (Acc) and error rate (ERR) Accuracy is one of the most commonly
used measures for classification performance. It is defined as the ratio between the
correctly classified samples to the total number of samples (Sokolova et al., 2006).
ERR is the complement of accuracy. It is also known as misclassification rate. The
metric represents the number of misclassified samples and is defined as 1−Acc. The
formula for accuracy is

Acc = TP + TN

TP + TN + FP + FN
. (2.3)

Accuracy is a measure of how many correct predictions a model makes, and it does
not take into consideration imbalanced datasets or differentiate between classes.

True positive rate and false positive rate True positive rate (TPR), also called
Sensitivity, hit rate, or recall, represents the number of correctly classified positive
samples of the total number of positive samples. TPR can be viewed as the accuracy
for a given class. TPR and false positive rate (FPR) are calculated as

TPR = Recall = TP

TP + FN
= TP

P
, (2.4)

FPR = FP

FP + TN
= FP

N
. (2.5)

The FPR represents the observations misclassified as positive.

Positive prediction value (PPV) PPV, also called precision, is the number of
correctly classified positive samples to the total number of predicted positive samples.
As in TPR, the precision is calculated for each class as

PPV = Precision = TP

FP + TP
. (2.6)

F -measure This metric represents the harmonic mean of precision (PPV) and recall
(TPR). The value ranges from zero to one, where a higher number indicates better
performance. The metric is often called the F1 score. The F1 score is extracted from
the Fβ score. The β weights precision and recall differently, where a lower β places
more weight on precision and less on recall, while a higher β places more weight on
recall and less precision. The Fβ score is calculated as

Fβ = (1 + β2) · PPV · TPR

β2 · PPV + TPR
. (2.7)

The F1 score is the Fβ score with a β = 1.
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ROC Curve and AUC The final metric that we include here is the ROC (Receiver
Operating Characteristic) curve. An illustration of the ROC curve and AUC is
displayed in Figure 2.2. Starting from the lower left, the ROC curve plots the pairs
{TPR, FPR} as the cutoff value decreases from 1 to 0. Better curves are reflected
by curves that are closer to the top-left corner. The orange diagonal represents
the average performance of a guessing classifier that has no information about the
predictors or the outcome variable. This guessing classifier guesses that a proportion
α of the records is 1’s and therefore assigns each record an equal probability P (Y =
1) = α. A common metric to summarize a ROC curve is area under the curve (AUC),
which ranges from 1 to 0.5, where 1 is perfect discrimination between classes and 0.5
is no better than random guessing (Shmueli et al., 2020).
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Figure 2.2: Illustration of a ROC curve. The AUC here is 0.98

2.3.2 Cross-Validation

Cross-validation (CV) is a technique in which we use some of the data in the full
dataset to tune hyperparameters. There are multiple ways to do this, you could
have a separate validation set to tune the hyperparameters, or you could use k-fold
cross-validation. This method divides the set of observations into k-folds (groups).
Then, one of the folds is used as the validation set, and the method is adapted to
the remaining (k − 1) folds (James et al., 2021).

Grid search This is a cross-validation form in which we cycle through all combi-
nations of parameters. The general algorithm is shown in Algorithm 1. We loop
through and calculate the score for each combination of hyperparameters.
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Algorithm 1 Grid Search Cross-Validation
1: procedure GridSearchCV(data, hyperparameter_grid, k)
2: best_params ← None
3: best_score ← −∞
4: for params in hyperparameter_grid do
5: scores ← []
6: for fold in k-fold cross-validation(data, k) do
7: train, val ← split(data, fold)
8: model ← train_model(train, params)
9: score ← evaluate(model, val)

10: append(scores, score)
11: end for
12: avg_score ← mean(scores)
13: if avg_score > best_score then
14: best_params ← params
15: best_score ← avg_score
16: end if
17: end for
18: return best_params
19: end procedure

2.3.3 McNemar’s Test

McNemar’s test, introduced by McNemar (1947), is a test to determine if there is a
significant difference between the proportions of two related binomial distributions.
The following description is based onKavzoglu (2017). The test is also a well-known
test to analyze the statistical significance of differences in classifier performance (Di-
etterich, 1998). The test is a Chi-square (χ2) test for goodness of fit comparing the
distribution of counts expected under the null hypothesis with the observed counts
(Kavzoglu and Colkesen, 2013). The test is applied to a 2 · 2 confusion matrix. The
matrix includes the number of samples correctly and incorrectly identified by both
methods and the number of samples correctly classified by only one method.

The test statistic with continuity correction is estimated from the following equa-
tion with 1 degree of freedom as

χ2 = (|nij − nji| − 1)2

nij + nji

, (2.8)

where nij indicates the number of observations misclassified by method i but classified
correctly by method j, and nij indicates the number of observations misclassified by
method j but not by method i. This value is then compared to the desired significance
level in the χ2 table.

12



2.4 Neural Networks

2.4 Neural Networks
Since stock data is inherently noisy data, we need to use a model that has the ability
to handle noisy data. Artificial neural networks (ANN) are machines designed to
perform specific tasks by imitating how the human brain works, and build a neural
network made up of hundreds or even thousands of artificial neurons or processing
units (Montesinos López et al., 2022). The power of the human brain is superior
to many information-processing systems since it can perform highly complex, non-
linear, and parallel processing by organizing its structural constituents (neurons)
to perform tasks such as accurate predictions, pattern recognition, perception, and
motor control (Montesinos López et al., 2022). In this section, the basics of how a
feed-forward neural network (FNN) works are described. This includes activation
and loss functions, as well as some limitations of NNs.

2.4.1 Activation Functions
The goal of activation functions is to capture non-linear relationships in data. In NNs,
they are used between layers to capture these non-linear relationships. Activation
functions have different shapes and are used to capture different relationships. It is
the shape of the activation function that decides what non-linear relationship it will
capture. Some of the most commonly used activation functions are briefly explained
in this subsection.

The Sigmoid

There are several sigmoid activation functions. In this thesis, we focus on the logistic
sigmoid and the hyperbolic tangent function. The common denominator of sigmoid
functions is that they are monotonically increasing functions that asymptotically
increase at some finite value as infinity approaches (LeCun et al., 2012).

The logistic sigmoid This is the standard logistic function. It is a function formu-
lated as

g(z) = ez

1 + ez
= 1

1 + e−z
. (2.9)

The standard logistic function is one of the most common sigmoid activation func-
tions. It converts a value, z into a value between 0 and 1. This return can be
interpreted as a probability, and it is a commonly used function in the output layer
of a NN to perform a binary classification problem. In some cases, it is also used as
an activation function between layers in regular FNNs.

The hyperbolic tangent A different variant of the logistic sigmoid function is the
hyperbolic tangent function, tanh, formulated as
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g(z) = ez − e−z

ez + e−z
. (2.10)

The tanh returns a number between −1 and 1, not 0 and 1 as the logistic function
returns. Symmetric activation functions, such as the tanh, are preferred for the
same reason that the inputs should be normalized. They produce outputs that are
on average close to zero, in contrast to the logistic function whose outputs are always
positive, and so they must have a mean that is positive (LeCun et al., 2012).

Other Activation Functions

There exist other activation functions that do not undergo the sigmoid family. Some
of these functions are introduced here.

ReLU (Rectified Linear Unit) This activation function is an alternative to the
functions in the sigmoid family. The function is stated as

g(z) = (z)+ =

0 if z < 0
z otherwise

, (2.11)

meaning that the function returns 0 if the input z is less than or equal to 0. If the z
is greater than 0 the output is equal to the input.

Leaky ReLU A variant of ReLU is the leaky ReLU. It has a small slope, for instance,
0.01, where z < 0 to return a small negative number if the input is lower than 0.
The leaky ReLU is stated as

g(z) = (z)+ =

0.1z if z < 0
z otherwise

. (2.12)

Leaky ReLU can be applied if the user is struggling with the dying ReLU problem.
The dying ReLU problem exists when the input into the ReLU is always lower than
0. If this is the case, using a regular ReLU will only return 0 throughout the network.
Having a slight slope when z < 0 may help solve the dying ReLU problem by allowing
the ReLU to return small negative numbers as well.

Softmax The last activation function discussed here is the softmax function. It
was introduced by Bridle (1989), and is (for b = e−β) defined as

σ(z)i = e−βzi∑K
j=1 e−βzj

for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK . (2.13)

The softmax can, as the logistic function, be used as the activation function in
the output layer in a NN. This function is used mainly when there is a multiclass
classification problem. It produces a probability for each class and the sum of these
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probabilities adds up to 1. When used for prediction, it predicts the class with the
highest probability of being true.

The different activation functions are displayed in Figure 2.3.
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Figure 2.3: Illustration of different activation functions. Note that the leaky ReLU is
equivalent to the normal ReLU when z > 0.

2.4.2 Loss Functions
A loss function is a function that compares the target and the predicted output
values. In NNs, it measures how well the model matches the training data. When
training, our goal is to minimize this loss between the predicted and target outputs.
In classification problems, we use loss functions that given an input, the NN produces
a vector of probabilities of the input belonging to pre-set categories, and then selects
the category with the highest probability. An important attribute of loss functions
is that they are differentiable.

Cross-entropy loss This is a loss function commonly used in classification problems.
A binary cross-entropy loss is defined as

−
∑

j

y(j) log σ(o)(j), (2.14)

where y is the true label as a one-hot encoding, o is the output of the last layer of
the network, ·(j) denotes the jth dimension of a given vector and σ(·) denotes the
probability estimate (Janocha and Czarnecki, 2017).

2.4.3 Optimizers and Learning Rate
When optimizing a neural network, backpropagation with gradient-based learning
is mostly used to update the parameters in each layer. Gradient-based learning is
also known as an optimizer. There are different optimizers that are used in deep
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learning. They are used to optimize network parameters during backpropagation
(UFLDL Tutorial, 2023).

Stochastic gradient descent The stochastic gradient descent (SGD) algorithm is
inspired by the gradient descent algorithm. Gradient descent uses the following
equation, in which it updates the parameters θ of the target J(θ) as

θ = θ − α∇θE [J(θ)] , (2.15)

where the expectation in the above equation is approximated by evaluating the cost
and gradient over the full training set.

SGD however, is simpler because it computes the gradient of the parameters using
fewer examples from the training set. The formula of SGD is given as

θ = θ − α∇θJ
(
θ; x(i), y(i)

)
, (2.16)

where x(i), y(i) is a pair of observations from the training set. θ is subtracted by
∇ multiplied by the learning rate α. α defines how large the steps each iteration
of the algorithm will take. If the learning rate is set too high there is a risk that
the algorithm diverges from the optimum. Setting the learning rate too low there
is a risk that the SGD does not reach the global minimum, but a local minimum.
The parameter has reached its optimal value when SGD has reached the global
minimum of the derivative function of the loss with subject to the parameter it
wants to optimize. Overall, this process has the goal of minimizing the total loss of
the entire network.

2.4.4 Feed-Forward Neural Network
This network takes an input vector of p variables X = (X1, X2, · · · , Xp), and then
builds a non-linear function f(X) to predict the response. This description is based
on James et al. (2021). Figure 2.4 displays a simple FNN with p = 3 predictors.

The predictors make up the input layer. All nodes in the input layer are connected
to all nodes in the hidden layer. The figure has K = 5 nodes in the first hidden layer,
note that this number can increase or decrease. The network has form as

f(X) = β0 +
k∑

k=1
βkhk(X)

= β0 +
k∑

k=1
βkg

wk0 +
p∑

j=1
wkjXj

 .

(2.17)

Here, it is built in two steps. First, the K activations Ak, k = 1, · · ·K, in the hidden
layer, are calculated as functions of the input features X1, · · · , Xp as
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Figure 2.4: Illustration of a feed-forward neural network with two hidden layers. The
hidden layers compute activations Aj

k = Hk(X) that are nonlinear transfor-
mations of linear combinations of the inputs X1, X2, · · · , Xp. The prediction
and true value combine in the loss function, which produces the loss score.
Then the optimizer adjusts the weights W0, W1, · · · , Wn.
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Ak = hk(X) = g

wk0 +
p∑

j=1
wkjXj

 , (2.18)

where g(z) is a nonlinear activation function specified in advance. Ak can be thought
of as a different transformation, hk(X), of the original features. The K activations
then feed into the output layer resulting in a linear regression model in the K = 5
activations, as shown in

f(X) = β0 +
k∑

k=1
βkAk. (2.19)

All parameters, β0, · · · , βK and w10, · · · , wKp, need to be estimated from the data.

2.4.5 Transformer Models
Transformer models are used to extract textual features from news articles. These
models are based on the NN encoder-decoder architecture. They are considered
state-of-the-art when used for NLP tasks, and they also give great performance for
sequential data in general. The architecture of the transformer model was first intro-
duced by Vaswani et al. (2017). The models are very effective when training, given
that the user has enough computing power. The effectivity comes from paralleliza-
tion. Parallelization means that it can effectively read a whole sentence at a time if
used for NLP. It also takes account of each word’s position in a sentence by using a
positional encoding mechanism. However, the most important aspect of the trans-
former model is attention. Attention is a mechanism that allows for the modeling
of dependencies without regard to their placement in the input or output sequences.
The transformer architecture is displayed in Figure 2.5.

Attention as a linguistic term As humans, we can understand what words other
words refer to, or attending. Consider the following two sentences:

1. The AI executed the swap because it was an effective hedge.

2. The AI executed the swap because it had been trained to do so.

In the first sentence, we understand that it is referring to the swap because it is an
effective hedge. In the second sentence, we understand that it is referring to the AI
that has been trained.3 This differentiation is easy for a human, but much harder
for a machine. Attention mechanisms attempt to solve this problem.

3Example retrieved from Lucidate: Attention is all you need explained on Youtube, https://www.
youtube.com/watch?v=sznZ78HquPc&t=605s
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Figure 2.5: Illustration of a transformer model architecture. It illustrates how textual
inputs are fed through several layers before output probabilities are calcu-
lated. The left unit is the encoder and the right is the decoder. BERT do
not use the decoder part of the network and the output from the encoder
is fed straight into the Linear and Softmax. Figure adapted from Vaswani
et al. (2017).
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Attention in more technical detail Attention is a function that can be described
as mapping a query and a set of key-value pairs to an output, where the query, keys,
values, and output are all vectors. The output is then calculated as a weighted sum of
the values, where the weight assigned to each value is calculated using a compatibility
function of the query with the corresponding key (Vaswani et al., 2017).

Furthermore, the transformer model uses multi-head attention. This form of atten-
tion uses multiple scaled dot-product attentions. Here, the input consists of queries
and keys of dimension dk, and values of dimension dv. Then the dot products of the
query with all keys are computed, and divided by

√
dk, and applied with a softmax

function. The output matrix is computed as

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V. (2.20)

This attention is then used in the multi-head attention as

MultiHead(Q, K, V ) = Concat(head1, · · · , headh)W O

where headi = Attention
(
QW Q

i , KW K
i , V W V

i

)
,

(2.21)

where the projections are parameter matrices W Q
i ∈ Rdmodel·dk , W K

i ∈ Rdmodel·dk ,
W V

i ∈ Rdmodel·dv and W O
i ∈ Rhdv ·dmodel .

The encoder maps an input sequence of symbol representations (x1, · · · , xm) to a
sequence of continuous representations z = (z1, · · · , zn). Given z, the decoder then
generates an output sequence (y1, · · · , yn) of symbols one element at a time. The
output of the transformer model is a softmax probability distribution for all classes,
where the predicted class is the one with the highest probability.

This framework has then given rise to multiple transformer-based models. Many of
these are pre-trained models, and as such only require one additional output layer to
fine-tune to a particular task. Transformer models have made BERT models possible.

2.4.6 BERT Models
BERT was developed and presented in “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding” by Devlin et al. (2019). This is a model
designed to pre-train deep bidirectional representations from unlabeled text by joint
conditioning on both left and right contexts in all layers. It is based on the encoder
section of the transformer architecture. The base BERT model uses a stack of 12
encoders, giving it a total of 110M parameters. BERT also has many related models
that build on it.

Pre-trained BERT models Before a BERT model can be fine-tuned, it must be
trained to understand the context of language. A pre-trained model is a model that
has gone through the first part of training. This first part is where the model learns
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the dependencies of language using Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). MLM is that random words in a sentence are masked.
The model then tries to predict what the masked words are. NSP makes the model
try to predict the next sentence. This is done so that the model can be used for
question answering and other natural language inference tasks. It gives the model
the ability to see a relationship between two sentences.

Fine-tuning BERT models After pre-training, a BERT model can be fine-tuned.
Fine-tuning is when we train the model for specific tasks. For example, text classi-
fication, sentiment analysis, or question answering. It trains the model to alter its
understanding of the language to perform more specific tasks.

FinBERT FinBERT is a common name used for BERT models fine-tuned to per-
form different tasks on financial data. There are several FinBERT models available
on the Huggingface Hub4. Since there are several possible options, the choice of Fin-
BERT fell on a version with well-documented performance for sentiment analysis.
This is the FinBERT-tone developed by Huang et al. (2020). The model is fine-
tuned to be a sentiment analysis model that predicts positive, negative, or neutral
sentiments on financial textual data.

DistilBERT Sanh et al. (2019) has developed as a smaller model than the BERT
model. This is called DistilBERT and is a distilled version of the regular BERT
model. DistilBERT has been created because the developers wanted to pre-train
a smaller general-purpose language representation model. Being smaller in size,
DistilBERT can be more easily fine-tuned with good performance in a wide range of
tasks such as the BERT model. The resulting DistilBERT model has reduced the
size of BERT by 40%, while retaining 97% of its language understanding capabilities.
The reduction in size has given the model the ability to train 60% faster than BERT.
For researchers with hardware limitations, having a model like DistilBERT that can
be easily fine-tuned and still perform well is valuable. In this thesis, we will fine-tune
the DistilBERT model to predict HPR 20 minutes after a news article was published.

The BERT tokenizer The BERT tokenizer applies a WordPiece embedding, devel-
oped by Google. It makes sure that every sentence starts with a special classification
token [CLS] and the sentences are separated using a [SEP] token. Huggingface states
that the WordPiece training algorithm is not open source. This explanation is largely
based on Hugginface’s explanation of the tokenizer5.

The WordPiece algorithm starts from a small vocabulary that includes the special
tokens presented above and the alphabet. It then identifies subwords by adding a
prefix, ## for BERT. Each word is initially split by adding this prefix to all characters

4https://huggingface.co/search/full-text?q=finbert (search date 2023/05/12)
5https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt (visited 2023/05/12)
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within the word. The word word is split as follows: (w ##o ##r ##d). The charac-
ters at the beginning of a word are all contained in the alphabet, and the characters
are present inside a word preceded by the WordPiece prefix, ##.

WordPiece then learns specific merge rules. It computes a score for each character
pair as

score = freq_of_pair
freq_of_first_element · freq_of_second_element . (2.22)

By dividing the frequency of the pair by the product of the frequencies of each of its
parts, the algorithm prioritizes the merging of pairs where the individual parts are
less frequent in the vocabulary.

2.4.7 Limitations of a Neural Network
Although previous work indicates that NNs have high performance, there are some
limitations and disadvantages when using them. These limitations consider inter-
pretability, computational power, and data structures.

The black-box problem One of the main limitations when using NNs is the black-
box problem. NNs are artificial intelligence (AI) that uses deep learning, an algorith-
mic system of deep neural networks, which on the whole remain opaque or hidden
from human comprehension. This situation is commonly referred to as the black-box
problem in AI. Without understanding how AI comes to its conclusions, it is an open
question as to what extent we can trust these systems (Eschenbach, 2021).

The black-box problem is common when using complex models, and it is a problem
with regard to interpretability. Complex models are similar to black boxes because
it is difficult to understand what happens inside the models. The variables are put
into the black box and the black box returns a prediction. The essence is that
black-box models are more difficult to interpret than more basic models, such as
regression models and decision trees. This is especially relevant if the NN is deep,
indicating that it has many hidden layers and many nodes in each layer. The deeper
the network, the harder it is to interpret the results.

Computational power and training data Another limitation of NNs is that they
require a lot of data and computational power for training. Even training a NN for
a simple task often requires large amounts of training data (Aggarwal, 2018). The
number of parameters that must be optimized during training increases with the size
of the network. A larger network will require more computational power to train
effectively. This may be a problem if the model underfits. Underfitting occurs when
the model is incapable of capturing the variability of the data (Jabbar and Khan,
2015).

A way of solving an underfitting model is to increase the complexity of the network
or adjust the input features. There are techniques such as normalizing or standard-
ization that can be applied to help the NN find patterns more easily. If the input
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features cannot be adjusted, then the network needs to be more complex. For a NN
this means a larger, deeper, and wider network. The problem then is that the larger
network requires even more computational power to train effectively.

Overfitting and how to overcome it If we work too hard to find the very best
fit to the training data, there is a risk that we will fit the noise in the data by
memorizing various peculiarities of the training data rather than finding a general
predictive rule. This phenomenon is usually called overfitting (Dietterich, 1995).
When training NNs, there are several tools available to help with overfitting. One
way is to track the network during training with a logger to see the development of
training and validation metrics. The point where the validation metrics have stopped
improving and are getting worse, and the training metrics continue improving, is a
sign that the network has started overfitting. If checkpoints are saved, then the
network can be loaded from the optimal point in training and be used on testing
data.

Overfitting can also be controlled by using early stopping, which is a tool that
stops training when the metric being monitored has not improved significantly for
a set number of training epochs. The network can also be made less complex or
dropout layers can be used. Dropout is a form of regularization that deactivates a
random set percentage of neurons in each layer. By using dropout, the network can
still be complex to ensure that it does not underfit, and the dropout helps regulate
overfitting.

2.5 Other Classifiers

Other classifiers are applied to further explore the relationship between movements
in HPR and textual data. What is defined as other classifiers are ML models that do
not use deep learning. The non-deep learning models used in this thesis are described
in this section.

2.5.1 Logistic Regression

This is a variant of a regression model. It applies a technique that models the
posterior probability of the classes K through linear functions of x. At the same
time, it ensures that the probabilities of K sum up to one, and remains in [0, 1]. This
description is largely based on Hastie et al. (2009). Logistic regression is formulated
as
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log Pr(G = 1|X = x)
Pr(G = K|X = x) = β10 + βT

1 x

log Pr(G = 2|X = x)
Pr(G = K|X = x) = β20 + βT

2 x

...

log Pr(G = K − 1|X = x)
Pr(G = K|X = x) = β(K−1)0 + βT

K−1x.

(2.23)

The model is specified in terms of K − 1 log odds or logit transformations. The
regression is fit with maximum likelihood, using the conditional likelihood of G given
X. The log-likelihood for N observations is

ℓ(θ) =
N∑

i=1
log pgi

(xi; θ), (2.24)

where pk(xi; θ) = Pr(G = k|X = xi; θ).
The two-class problem is described in a bit more detail here, as the algorithms

are considerably simplified. Let p1(x; θ) = p(x; θ), and p2(x; θ) = 1 − p(x; θ). The
log-likelihood is then written as

ℓ =
N∑

i=1

{
yi log p(xi; β) + (1− yi) log(1− p(xi; β)

}

=
N∑

i=1

{
yiβ

T xi − log
(
1 + eβT xi

)}
.

(2.25)

Here β = {β10, β1}, and we assume that the vector of inputs xi includes the constant
term 1 to accommodate the intercept. We then maximize the log-likelihood by setting
the derivatives to zero.

2.5.2 Decision Trees
Decision trees create the foundation for a family of ML methods referred to as tree-
based methods. This is a family of regression and classification methods. The models
stratify or segment the predictor space into a number of simple regions. To make
a prediction for a given observation, we typically use the mean or mode response
value for the training observations in the region to which it belongs. The set of
splitting rules can be summarized in a tree, also known as a decision tree. This
is great for interpretability, but it cannot usually compete with more sophisticated
supervised learning methods. For this reason, we also introduce random forest and
XGBoost, which often have better predictive power, at the expense of some loss in
interpretation. The following sections are largely based on Hastie et al. (2009) and
James et al. (2021).
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Fitting a regression tree We have a data set consisting of inputs p and a response,
for each of the observations N . The algorithm needs to automatically decide on
the splitting variables and split points, as well as on what typology (shape) the tree
should have. We have a partition into M regions R1, R2, . . . , RM , and we model the
response as a constant cm in each region

f(x) =
M∑

m=1
cmI (x ∈ Rm) . (2.26)

In the regression tree, we minimize the sum of squares ∑(yi−f(xi))2. We see that
the best ĉm is the average of yi in region Rm

ĉm = ave(yi|xi ∈ Rm). (2.27)

Finding the best binary partition in terms of the minimum sum of squares is usually
computationally infeasible, and we use a greedy algorithm. Starting with all the
data, we use a splitting variable (j) and a splitting point (s) and define the pair of
half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (2.28)

Then we look for the splitting variable (j) and (s) that solves

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 . (2.29)

For all choices of j and s, the inner minimization is solved by

ĉ1 = ave (yi|xi ∈ R1(j, s)) and ĉ2 = ave (yi|xi ∈ R2(j, s)) . (2.30)

For each splitting variable, the determination of the split point s can be done quickly
and hence by scanning through all of the inputs, the determination of the best pair
j, s is feasible. Having found the best split, we repeat this split in all the resulting
regions.

To avoid overfitting, we also need to set a tree size as a tuning parameter. The
optimal tree size should be chosen adaptively from the data. The preferred strategy
is to grow a large tree T0, stopping the splitting process when a minimum node size is
reached. We then prune this tree using cost-complexity pruning. This pruning works
by defining a subtree T ⊂ T0 as any tree that can be obtained by pruning T0, that
is, collapsing any number of its internal nodes. We index the terminal nodes by m,
with node m representing region Rm. Let |T | denote the number of terminal nodes
in T . Letting
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Nm = |{xi ∈ Rm}|,

ĉm = 1
Nm

∑
xi∈Rm

yi,

Qm(T ) = 1
Nm

∑
xi∈Rm

(yi − ĉm)2 ,

(2.31)

we define the cost complexity criterion

Cα(T ) =
|T |∑

m=1
NmQm(T ) + α|T |. (2.32)

The goal is to find, for each α, the subtree Tα ⊆ T0 to minimize Cα(T ). The tuning
parameter α ≥ 0 governs the trade-off between the size of the tree and its goodness
of fit to the data. α can be adaptively chosen.

For each α there is a unique smallest subtree Tα that minimizes Cα(T ). To find
this subtree, we can use weakest link pruning. This works by successively collapsing
the internal node that produces the smallest per-node increase in ∑m NmQm(T ), and
continues until we produce the single node tree. This gives a finite sequence of sub-
trees, and this sequence must contain Tα. We then estimate α by cross-validation,and
we choose the value α̂ that minimizes the sum of squares, resulting in Tα̂.

Converting the regression tree to a classification tree Where we in the regression
tree used the impurity measure Qm(T ), we need to use another measure. In a node
m, representing a region Rm with Nm observations, let

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k), (2.33)

the proportion of class k observations in node m. The observations in node m gets
classified to class k(m) = arg maxk p̂mk, the majority class in node m. We then have
different measures for the node impurity Qm(T ):

Misclassification error: 1
Nm

∑
i∈Rm

I (yi ̸= k(m)) = 1− p̂mk(m) (2.34)

Gini index:
∑
k ̸=k′

p̂mkp̂mk′ =
K∑

k=1
p̂mk (1− p̂mk) (2.35)

Cross-entropy or deviance: −
K∑

k=1
p̂mk log p̂mk. (2.36)

For two classes, if p is the proportion in the second class, these three measures are
1−max(p, 1− p), 2p(1− p) and −p log p− (1− p) log(1− p), respectively. All of the
measures are similar, but cross-entropy and Gini index are differentiable, and hence
are more amendable to numerical optimization.
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2.5.3 Random Forests
Random forests are built on the decision tree. The forest is constructed by creating
a selection of decision trees and combining the prediction of these trees to make a
prediction. A central idea for random forests is bagging.

Bagging (Bootstrap aggregation) This builds on the concept of bootstrapping.
A given set of n independent observations Z1, · · · , Zn, each with variance σ2, the
variance of the mean Z of the observations is given by σ/n. This shows that averaging
a set of observations reduces variance. A natural way to reduce variance and increase
the accuracy on the test set is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions. We can then obtain a low-variance learning model given by

f̂avg(x) = 1
B

B∑
b=1

f̂ b(x). (2.37)

This method is not practical, as we usually don’t have multiple training sets.
A solution to this is to bootstrap, meaning that we take repeated samples from the
training data set. With this approach, we generate B different bootstrapped training
sets. We then train our method on the bth bootstrapped training set in order to get
f̂ ∗b(x), and finally average all the prediction to obtain

f̂bag(x) = 1
B

B∑
b=1

f̂ ∗b(x). (2.38)

Fitting the random forests. The random forest provides an improvement over
bagged trees by way of a small tweak that decorrelates the trees. As we do with
bagging, we build a number of decision trees on bootstrapped training samples. The
difference is that each time a split is considered, a random sample of m predictors
is chosen as split candidates from the full set of p predictors. The split is allowed to
use only one of those m predictors. At each split, a fresh sample of m predictors is
taken, and usually, we choose m ≈ √p. This means that at each split in the trees of
a random forest, the model is not allowed to consider the majority of the available
predictors. The main difference between a random forest and a bagged tree is the
choice of predictor subset m.

2.5.4 XGBoost
eXtreme Gradient Boosting (XGBoost), introduced by Chen and Guestrin (2016),
is another method that builds on the foundation of decision trees. The model uses
clever penalization and regularization methods. It is based on a gradient boosting
algorithm and decision tree ensembles. The description here is largely based on
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the description provided by Chen and Guestrin (2016) in their Github repository.6
We include this model since it “achieves state-of-the-art results on many machine
learning challenges” (Chen and Guestrin, 2016).

Decision Tree Ensembles This is one of the foundations of XGBoost. We can
formulate the model as

ŷi =
K∑

k=1
fk(xi), fk ∈ F , (2.39)

where K is the number of trees, fk is a function in the functional space F , and F is
the set of all possible decision tree ensembles. The objective function to be optimized
is given by

obj(θ) =
n∑
i

l(yi, ŷi) +
K∑

k=1
ω(fk), (2.40)

where ω (fk) is the complexity of the tree fk defined in detail later.

Boosting trees We can now consider how the model trains. We start by defining
an objective function that we optimize. For this model, we consider the objective
function

obj =
n∑

i=1
l(yi, ŷ

(t)
i ) +

t∑
i=1

ω(fi). (2.41)

After defining the objective function we need to find the parameters of the tree.
Additive training is a way to find these parameters. We need to learn the functions

fi, where each one is containing the structure of the tree and the leaf scores. Learning
tree structure is much harder than traditional optimization problems where you can
simply take the gradient. It is intractable to learn all the trees at once. Instead, we
use an additive strategy: fixing what we have learned and adding one new tree at a
time. We can write the prediction value at step t as ŷ

(t)
i . Then we have the following

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi).

(2.42)

6https://github.com/dmlc/xgboost/blob/21d95f3d8f23873a76f8afaad0fee5fa3e00eafe/
doc/index.rst
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With this, we can find which tree we want at each step. This can be solved by adding
the tree that optimizes our objective

obj(t) =
n∑

i=1
l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

ω(fi)

=
n∑

i=1
l
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ ω(ft) + constant.

(2.43)

If we consider using logistic loss, it is not so easy to get a nice form. In the general
case, we then take the Taylor expansion of the loss function up to the second order :

obj(t) =
n∑

i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gift(xi) + 1

2hif
2
t (xi)

]
+ ω(ft) + constant, (2.44)

where the gi and hi are defined as

gi = ∂
ŷ

(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
.

(2.45)

After we remove all the constants, the specific objective at step t becomes

n∑
i=1

[
gift(xi) + 1

2hif
2
t (xi)

]
+ ω(ft). (2.46)

This is then our goal of optimization for the new tree. One important advantage
of this definition is that the value of the objective function only depends on gi and
hi.

Model Complexity After the training step we introduce the regularization term.
We define the complexity of the tree ω(f). In order to do so, we first refine the
definition of the tree f(x) as

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, · · · , T}. (2.47)

Here w is the vector of scores on leaves, q is a function assigning each data point to
the corresponding leaf, and T is the number of leaves. We then define the complexity
as

ω(f) = γT + 1
2λ

T∑
j=1

w2
j . (2.48)
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The structure score After re-formulating the tree model, we can write the objective
value with the t-th tree as

obj(t) ≈
n∑

i=1

[
giwq(xi) + 1

2hiw
2
q(xi)

]
+ γT + 1

2λ
T∑

j=1
w2

j

=
T∑

j=1

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j

+ γT,

(2.49)

where Ij = {i|q(xi) = j} is the set of indices of data points assigned to the j-th leaf.
We note that in the second line we have changed the index to the summation because
all the data points on the same leaf get the same score. We could further compress
the expression by defining Gj = ∑

i∈Ij
gi and Hj = ∑

i∈Ij
hi:

obj(t) =
T∑

j=1

[
Gjwj + 1

2(Hj + λ)w2
j

]
+ γT. (2.50)

In this equation, wj are independent with respect to each other, the form Gjwj +
1
2(Hj + λ)w2

j is quadratic and the best wj for a given structure q(x) and the best
objective reduction we can get is

w∗
j = − Gj

Hj + λ

obj∗ = −1
2

T∑
j=1

G2
j

Hj + λ
+ γT.

(2.51)

The last equation measures how good a tree structure q(x) is.

Learn the tree structure. When we have a way to measure how good a tree is, we
would like to enumerate all possible trees and pick the best one. This is intractable
in practice, so we try to optimize one level of the tree at a time. Specifically, we try
to split a leaf into two leaves, and the score it gains is:

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ. (2.52)

This formula can be decomposed as 1) the score on the new left leaf 2) the score on
the new right leaf 3) the score on the original leaf 4) regularization on the additional
leaf. We notice that if the gain is smaller than γ, we would do better to not add that
branch. This is pruning the tree.
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3 Previous Work
This chapter introduces relevant previous work for this thesis. As stated in Sec-
tion 2.2.1, NLP has theoretical value with respect to the predictions of the price
of the stock. There are also multiple research articles investigating the relationship
between financial news articles and stock price responses. We differentiate between
interday and intraday data, where interday is day-to-day data and intraday is data
within one day.

It was difficult to find relevant studies on intraday directional stock price predic-
tions. Considering interday studies with applications of NLP, several studies are
trying to predict volatility and not directional returns on shares. This chapter intro-
duces previous work on predicting interday returns with and without the application
of NLP. Studies on intraday stock price predictions with and without NLP are intro-
duced later. At the end of the chapter, we present some of our thoughts considering
previous work on predicting intraday returns.

3.1 Predicting Interday Returns
There is a lot of work done when it comes to predicting interday returns using deep
learning. A search on Google Scholar for “deep learning for stock market forecasting”
between the years 2000 and 2022 returns 16,400 results. This may be because inter-
day data on stocks are widely available. In recent times, modern machine learning
algorithms have been applied to predict stock prices. This section introduces studies
that have approaches similar to ours on an interday basis. It must be considered that
several studies are using NLP to model volatility instead of stock returns. These are
interesting because the correlation between financial news and the direction of stock
price movements may be similar to the correlation between financial news and stock
volatility. It seems that volatility is more important on an interday basis.

Patel et al. (2015) addresses the problem of predicting directional movements of
stock prices on the Indian stock market by comparing an artificial neural network
(ANN), support vector machine (SVM), random forest and naive Bayes using two
different input approaches. They study how different data preprocessing can influence
predictions. The dataset used consists of 10 years of historical data from 2003 to
2012. Both the ANN and random forest yield good results when predicting the stock
market. The ANN achieves an accuracy of 86.69% and the random forest achieves an
accuracy of 89.98%. These results are from the best-performing data preprocessing.
This suggests that the use of both the ANN and the random forest gives good results
when forecasting the stock market.

31



3 Previous Work

Moghaddam et al. (2016) studies the ability of ANNs to forecast the daily NAS-
DAQ stock exchange rate. They tried several FNNs and used short-term historical
prices alongside a feature representing the day of the week. The data used is the
daily exchange rates of NASDAQ from January 28, 2015, to June 18, 2015. Results
suggest that the use of FNNs gives good results when forecasting the NASDAQ daily
exchange rates with an R2 of over 0.94.

Song et al. (2018) has published an article in which they compared a backpropa-
gation NN to several other machine learning models and regression models on stocks
in China. Here, they compared the backpropagation NN to models such as a radial
basis function NN, a general regression NN, a support vector regressor, and a least
squares support vector regressor. We note that they create a separate classifier for
three different stocks in the Chinese market. The results show that backpropagation
NN outperformed the other methods consistently and robustly, with an MSE of 0.009
on the Bank of China stock.

3.1.1 Applying NLP to Interday Returns.
Liu et al. (2017) uses sentiment analysis to improve the prediction of stock volatility
using a recurrent neural network (RNN). It is important to note that this article
defines volatility as the percentage change in the return from the previous day, in
contrast to volatility, which typically is the standard deviation of the returns. It uses
a dictionary-based weighted approach to sentiment analysis. The paper proposes an
emotion model (EMM) following the assumptions that: (1) Increased bullishness of
stock posts is associated with higher stock prices. (2) An increase in post-volume
suggests more substantial volatility. The pure RNN model achieves an accuracy of
0.616, whereas the RNN+EMM model achieves an accuracy of 0.655. On the basis
of this, the paper concludes that the sentiment analysis, combined with RNN gives a
significantly better result. The model presented in the paper uses a relatively small
sample size. For day traders, a shorter volatility time span can be more useful. This
paper does however not address other performance metrics than accuracy, so it is
hard to assess whether these results are, in fact, relevant.

Seng and H.-F. Yang (2017) analyzes the association between stock price volatility
and financial news. They use a dictionary-based approach where they build their own
dictionaries by reading and labeling data. The results show that financial reports,
financial news, and added information influenced the volatility of the stock market.
In the end, they find a statistically significant association between financial news and
stock market volatility.

Deveikyte et al. (2020) focuses on predicting the return and volatility of the next
day market. The article finds statistically significant correlations between sentiment
and market volatility. They only investigate one single index. Furthermore, they use
latent Dirichlet allocation and topic modeling, which further enhances the predictive
power. In addition, this paper uses a relatively small sample size.

In a long short-term memory (LSTM)-based sentiment analysis for the forecast of
the stock price in the Chinese stock market, Ko and Chang (2021) used a combination
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of a transformer model BERT to extract sentiment from news related to stocks and a
PTT online stock forum in Taiwan. Sentiment was accompanied by the open, high,
low, close, and volume for the related stock used as input variables in an LSTM to
forecast the stock price at close the following day. They used several input vectors
that included and excluded sentiment variables. Their results show an improvement
in accuracy in the RMSE model by 12.05% when sentiment variables were included.

Chandola et al. (2022) investigates if a hybrid model can forecast the directional
movement of stocks. The input of the hybrid model is news headlines from the
Reuters website alongside a financial time series with closing prices from the related
stocks. The chosen stocks are PepsiCo, Apple, APEI, NRG and AT&T. The hybrid
model consists of an LSTM network where they use a word2vec embedder to vectorize
the news headlines and then run the news data through the LSTM to extract the
relevant textual information. The stock data are run through an ANN. The two
outputs are then combined and run through a final artificial NN to make the final
predictions. Overall, they average an accuracy of 52 % on validation data. They
propose using a convolutional neural network to extract semantic information instead
of LSTM for future work.

3.2 Predicting Intraday Returns
As witnessed in the previous subsection, much has been done regarding interday
returns and applying NLP. When it comes to intraday predictions, it is hard to find
much relevant literature. This could be because it is more difficult or expensive to
retrieve these data.

Predicting intraday returns seems to be a difficult task. Some of the earlier work,
for example, Ghosh et al. (2022) predicts intraday directional movements. It uses
LSTM and random forests. They report that a daily return of LSTM, before trans-
action costs, is 0.64%. They use the opening and closing price for a given day as
variables to construct HPR.

Ferreira and Medeiros (2021) conducts some experiments to model and forecast
intraday market returns in SPY,1 with some positive results. They investigated
how the VIX2 index can be used. An LSTM network appears to be the strongest
candidate for prediction in this article, and random forests also give promising results.
The paper focuses on the return, not the direction.

3.2.1 Applying NLP to Intraday Returns.
One of the first to examine the correlation between stock price movements and news
data was Gidófalvi (2001). This article examines the prices of 127 stocks using 10-

1SPDR S&P 500 ETF. An exchange-traded trust fund designed to track the S&P 500 stock market
index.

2CBOE Volatility Index. A measure of the stock market’s expectation of volatility based on S&P
500 index options.

33



3 Previous Work

minute intervals and incorporates news articles with timestamps. The data cover
the time period from November 14, 1999, to February 11, 2000. It establishes a
prediction window of 20 minutes before and after the publication of news articles.
His results show that news articles can predict the direction of a stock up to 20
minutes after the article has been published. The work also states that there is a
strong correlation between news articles and the behavior of stock prices from 20
minutes before and up to 20 minutes after a news article has been published.

Cheng (2010) utilizes text mining of financial news to forecast the change in in-
traday stock prices. By extracting textual features from Money DJ stocks’ financial
news and stock price changes from the Taiwan Stock Exchange Corporation from
January 1, 2007, to October 31, 2009, Cheng (2010) concludes that news events will
definitely affect the short-term stock price. The empirical results show that the pro-
posed model can accurately predict the directional movements of stocks in 15-minute
intervals from 15 and up to 60 minutes after publication. It should be mentioned
that the results of this study are almost too good to be true, and the most important
aspect we consider is the short time frame studied.

Alostad and Davulcu (2015) investigates how the direction of stock prices can be
predicted based on breaking news on Twitter. Here, an up movement is defined as
a movement larger than 0, which can be problematic when considering transaction
costs. This issue is not addressed. The article mostly uses n-grams to extract the
textual features and construct a separate classifier for each stock ticker. They report
a high accuracy of around 70%, but they do not mention other performance metrics
or how balanced the dataset is.

Khadjeh Nassirtoussi et al. (2015) attempts a related task, where they attempt to
predict currency instead of stocks. They do display other performance metrics, with
the best models achieving precision in the domain of 70–85%. They use a 2 hour
prediction window and use term frequency - inverse document frequency (TF-IDF)
to extract textual features.

3.2.2 Thoughts Regarding the Previous Work
A particular point to note is that most of these articles only use accuracy as their
performance metric. A model can have good accuracy, but it can be unusable if
precision and recall are close to 0. There is no point in having a model with 70%
accuracy if it only predicts not-up. It must also be considered that several of these
studies never describe the distribution of their dataset. If the dataset is unbalanced,
measuring performance using only accuracy may not be the best alternative. There-
fore, even the most promising results must be taken with a grain of salt, since the
results presented do not show the entire picture.

We find it curious that there is so little previous work in the field to be found and we
have thought of two possible reasons for this. First, it might not be possible to predict
intraday directional returns, and researchers have not wanted to publish negative
results. Second, if someone were to find an algorithm that accurately predicts up
movements, they would probably not want it to become available to the public.
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They have monetary incentives to keep the algorithm for themselves.
We note that some of the previous work mentioned in this chapter is not peer-

reviewed. This is a potential weak point in the literature, as articles are not nec-
essarily checked by someone with expertise in the field. Specifically, the articles we
are uncertain of are Deveikyte et al. (2020), Ferreira and Medeiros (2021), Gidófalvi
(2001), and Song et al. (2018). We also note here that we are a bit critical of the
articles that are peer-reviewed, as it seems strange that more performance metrics
are not mentioned.
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4 Data and Research Design
In this chapter, we describe the data used in the analysis and present our research
design. First, we give a description of the raw data sets used before preprocessing.
Then we give an overview of what kind of preprocessing was required on the two
different data sets. The second part of this chapter provides an exploratory data
analysis concerning our target variable and our feature variables. Lastly, in this
chapter, we present our research design.

4.1 Description of Data Sets
This section contains a description of both data sets used in our thesis. This descrip-
tion is a short introduction to what the data looked like before preprocessing.

NASDAQ news data set1 The first data set contains approximately 1.4 million
news articles. The data set contains the headlines of articles, the content, and the
publication date. Most of the data is also labeled with stock tickers. We have chosen
to filter out and only consider the 20 most mentioned stocks. These stocks make up
10% of the total data set. This might not seem much, but if we consider the 1,000
most mentioned stocks, that number only increases to 40%. Figure 4.1 displays the
number of observations for the 1,000 most mentioned stocks, and how much of the
total data set they make up. The number of companies contained in the data set is
14,740.

Refinitiv stock data set2 This data set provides minute-level intraday stock prices.
We have decided to gather data only for the 20 most mentioned stocks in the NAS-
DAQ news dataset (NND). The data is retrieved from Refinitiv DataScope Select,
a service providing this kind of stock data. When trying to retrieve the data for
META3, the database did not return anything. As we had some trouble accessing
the stock database, another stock was not retrieved, and we only consider 19 stocks
in this thesis.

To collect the stocks from the database, a RIC4 must be provided. This code
contains information about what financial instrument it is and on what exchange

1https://blockchain-research-center.com/blockchain-explorer/
2https://select.datascope.refinitiv.com/DataScope/
3Meta Platforms, Inc., previously Facebook, Inc. We also attempted to retrieve the FB ticker, but

with no luck
4Refinitiv Identification Code
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Figure 4.1: Distribution of mentioned stocks in NND, with the total number of mentions
and the percentage of the total. The stocks are ordered based on the number
of observations.

the instrument is traded on. We have decided to first collect the prices from the
NASDAQ Stock Exchange. If the stock is missing from the NASDAQ Stock Ex-
change, we gather the price from the New York Stock Exchange. This is because
the two exchanges are located in the same city, and thus we assume that they have
approximately the same prices.

4.2 Preprocessing
This section describes and argues what preprocessing has been done on the data sets.
Our raw data sets required various amounts of preprocessing to be able to perform
any meaningful analysis on them. A more detailed description of the preprocessing
is found in Appendix B.

NASDAQ news data set To be able to perform a textual analysis on the NND,
preprocessing was necessary before the data could be run through a model. The
preprocessing involves exploding the data so that each article only has one ticker
associated with it. By doing this, the same article is represented in several rows, but
only with one ticker in each row. A more technical description of this preprocessing
is given in Appendix B.

Refinitiv stock data set The Refinitiv stock dataset (RSD) did not need much
preprocessing. Since we have the stock price for each minute, it is required that a
trade was made at every minute during the day. This is not the case in the data set,
and missing timestamps have been added. We decided that the missing timestamps
should take the value of the previous valid time. This is called forward-filling. For
example, if AAPL had an observation for timestamp 2015-09-29 19:09:00, but not
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for the next two minutes, we assume that the actual price for those two minutes was
equal to the last trade.

The final data set Finally the NND and the RSD is merged on date. To be able
to get the price for the time frames of [−30, −25, −20, −15, −10, −5, 20] minutes
before/after the article was published, we simply added/subtracted the minutes from
the actual time in the data set to get the time before/after the article was published.
These times represent the lagged stock prices and the price 20 minutes after a news
article was published. With this data we constructed a variable for the HPR, as
defined in Equation (2.1). We then have data for the returns of all the time frames.
The close price for minute 0 that is the reference when calculating HPR before and
after the publication time of a news article. We note that perhaps the most rele-
vant reference should have been close at minute −1. After exploring the descriptive
statistics presented later in this chapter, we see that this single minute should not
make a difference.

The data set now consists of 169,769 observations due to the removal of duplicates
and N/A values. Since the stock exchanges we retrieved data from are only open for a
specified time frame, we choose to filter out the times when the exchange was closed.
This implies that we kept observations between 14:30 and 21:00 UTC during UTC−5
and between 13:30 and 20:00 UTC during UTC−4. Furthermore, since we use data
30 minutes before and 30 minutes after an article, we remove another 30 minutes at
the start and end of the usual opening hours. In addition, we remove observations
for Saturday and Sunday. The resulting data set consists of 55,952 observations.

Train-Test Split

When developing the data set we have decided to split it into training, validation,
and test sets. The data set used for training consists of the first 70% of observations,
the validation set consists of the next 20% and the test set consists of the last 10%.
Additional descriptive statistics for each of the data sets are shown in Table 4.1.

Table 4.1: Descriptives of the different data sets
Metric Training Validation Test
First observation 2009-10-16 2017-09-28 2018-12-04
Last observation 2017-09-28 2018-12-04 2019-08-27
No. observations 39,166 11,190 5,596

39



4 Data and Research Design

4.3 Exploratory Data Analysis and Description of
Variables

To further describe the data set, we have conducted some exploratory data analysis.
This analysis is based on the final data set after preprocessing, and only on the
training and validation sets, to prevent data leakage.

4.3.1 Target Variable
The target variable chosen in this thesis is the HPR 20 minutes after an article was
published. Since we predict stock price movements in intraday stock data, HPR is a
way to standardize the price movements. This is important because different stocks
have different values. By using HPR we take into account this difference in value.
When trying to forecast the HPR of a stock 20 minutes after the publication of an
article, we transform the problem into a binary classification task. The objective is
to determine whether the stock’s HPR experienced a significant increase or not. In
this context, we define significant as the stock rising by more than 0.001 to account
for transaction costs. Although this approach limits the potential for gains through
short selling, it is more appropriate considering not all investors have access to short
selling and the extremely short time frame involved. The resulting distribution of
the target variable in the total data set is shown in Table 4.2. As the table displays,
not-up movements represent 71.8% of the training set and 67.3% of the validation
set. A model that only predicts not-up would then achieve high accuracy, and we
know that metrics such as F1 , precision, and recall are going to be better metrics.

Table 4.2: Distribution of the target variable across training and validation data sets.
Target class Training Validation Sum

0 28,127 (71.8%) 7,532 (67.3%) 35,659
1 11,039 (28.2%) 3 658 (32.7%) 14,697

Sum 39,166 11,190 50,356

In Figure 4.2 we display how the returns are distributed for all the observations
throughout the data set. We have also created a line at the cutoff point at 0.001.
The mean (µ) for the variable is 0.000019 and the standard deviation (σ) is 0.002833.
From Figure 4.2 we also observe that the amount of up movements seems to be spaced
about the same throughout time.

4.3.2 Features
The features used for our final model are HPR in five-minute intervals starting from
30 minutes before an article was published to the time it was published. Textual
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Figure 4.2: Return for the target variable. The red line is 0.001.

features in the form of a classification output from different BERT models are also
part of the features.

We also included a variable for volume. Since different stocks have different vol-
umes associated with them, we normalize the effect. To do this, we use minmax
normalization defined as

x′ = min(x)
max(x)−min(x) . (4.1)

4.3.3 Descriptive Statistics
To further describe the data set, we have conducted some exploratory data analysis.
This analysis is based on the training and validation data sets, after preprocessing.
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Figure 4.3: Number of observations per hour of the day. Note that the observations in
each column are the amount of observations from the time stated to the
next timestamp. The time is UTC.

Figures 4.3 and 4.4 display how the observations are distributed throughout the
hours of the day and days of the week. We observe a peak around 16, with fewer
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Figure 4.4: Number of observations per day of the week.

observations in the opening and closing parts of the exchange’s opening hours. The
observations seem to be equally spaced throughout the week.

Table 4.3 displays how many observations we have for the different stocks. We
notice that AAPL is clearly the most mentioned stock. This might give our models
a bias toward predicting the movements of AAPL. We also observe that Google
is represented by two different tickers, both GOOG and GOOGL. We could have
combined the two into one ticker since it is the same company, but considering that
the prices for the two tickers are different, we did not do that.

Table 4.3: Number of observations per stock ticker.
Stock Ticker # Observations

AAPL 9,782
AMZN 4,821
MSFT 4,740
BAC 3,307
INTC 2,976
JPM 2,750
NFLX 2,593
T 2,500
WMT 2,294
DIS 2,259
TSLA 2,238
GOOG 2,157
F 2,024
BA 1,996
XOM 1,977
VZ 1,948
GM 1,931
GOOGL 1,867
WFC 1,792

In addition, in Figure 4.5 we display how the HPR from −30 minutes up to the
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publication time is distributed, with Figure 4.6 showing the mean and standard
deviation. We see a clear trend that the returns get smaller as the time frames
become shorter.

−1

0

1

·10−2

HP
R

return -30 return -25

−1

0

1

·10−2

HP
R

return -20 return -15

0 1 2 3 4 5
·104

−1

0

1

·10−2

obs. no.

HP
R

return -10

0 1 2 3 4 5
·104obs. no,

return -5

Figure 4.5: Distribution of returns for each feature variable. The graphs display the HPR
from 30 minutes before a news article was published to 5 minutes before.

As displayed in Figure 4.6, it is evident that the mean returns exhibit a decline as
the publication of the article approaches. The same applies to the standard deviation.
This is natural as stocks tend to fluctuate less in a shorter time frame. A decrease
in the standard deviation as we approach time 0 explains why a single minute’s
deviation when calculating the HPR for each time step is unproblematic.

4.4 Research Design
Our research design consists of using both the NND and the RSD. First, we preprocess
both data sets, as discussed in Section 4.2. In this section, we outline how the data
sets are combined to obtain our predictors.
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Figure 4.6: Mean (µ) and standard deviation (σ) for each return feature. Note that the
scales is different for each measure.

NASDAQ News data set A flow chart showing how textual features are retrieved
is displayed in Figure 4.7. We deploy a FinBERT sentiment classification and a Dis-
tilBERT directional classification on the data set. To be able to classify the direction
using DistilBERT, we need to fine-tune it. This fine-tuning uses a 30% random sam-
ple from the training data set. After fine-tuning, we run the tuned classification
model. We then extracted three sentiments,5 and two directional features6 from
the textual data. The same procedure is applied to both news headlines and news
content.

Additional methodology on FinBert and DistilBERT and FinBERT descriptive
statistics are shown in Chapter 5, Table 5.2 (p. 49).

Refinitiv Stock data set A flow chart showing the features from the RSD is dis-
played in Figure 4.8. We calculate different HPR for different lags and calculate the
sum of volumes in the previous half hour. The HPR for 20 minutes after a timestamp
is fed into the textual data to fine-tune DistilBERT.

4.4.1 Benchmark Model

In this thesis, the research questions refer to how the use of textual data will help
predict stock returns on intraday data. To see how well the model that includes tex-
tual features performs, we must also set a benchmark model. We create benchmark
models for each model used. The benchmark model is an application of the same
model, but without textual features.

By using a benchmark, we are able to explore if the textual data bring value to our
models. We can compare the models including and excluding text using McNemar’s
test, and assess whether our models are significantly better than the benchmarks.

5positive (1), neutral (0) and negative (−1)
6up (1) and not-up (−1)
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Figure 4.7: Research design for textual data. This procedure is done for both the article
headlines and content. The calculation of HPR comes from the stock data
set. The possible values for textual features is the bottom five nodes.

Stock data

Fine-tune
DistilBERT to

HPR 20

Calculate
HPR 20

from stocks Calculate HPR
−30→ −5

Normalize
volume

Stock features

HPR
-30

HPR
-25

HPR
-20

HPR
-15

HPR
-10

HPR
-5

Volume
-5

Text data
flowchart

Stock data
flowchart

Figure 4.8: Research design for stock data. The stock features are the bottom nodes.
The volume is not included in all models.
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4.4.2 Performance Metrics
After the models are trained and the predictions on unseen test data have been
completed, the results must be evaluated. Our model is set to solve a classification
problem and we use the relevant classification metrics as mentioned in Section 2.3.1
when measuring the performance of the model. We are mostly going to focus on
precision as our primary target for performance measurement. The reason behind
this choice is that we need our model to accurately predict up movements. If the
model is going to be implemented in an investment strategy, we need it to be correct
when it tells us to buy. This is mostly relevant if the model has a performance that
is good enough for a real-world application. To evaluate performance based on how
well textual features help explain the stock market, several other metrics are also
relevant.

To further investigate the connection between news articles and the stock market,
we use the ROC curve and AUC to assess model performance. This is used along-
side precision to see how well the model performs compared to a random model.
These metrics together will give us enough information to state how well our model
performs.
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In this chapter, we present how we extracted features from text. Feature extraction
refers to the way in which we convert text into numerical representations. We did
this by using a selected FinBERT and fine-tuning a DistilBERT model on the NND.
The output of these models becomes the textual features. These textual features,
combined with stock data, create the feature variables for our ML classifiers presented
in Chapters 6 and 7.

We begin by motivating which BERT models to use for sentiment and text clas-
sification tasks and describing their limitations. Following, we present the features
extracted from FinBERT and how we fine-tuned DistilBERT. Since DistilBERT will
perform a text classification based on HPR 20 minutes after the publication of an
article, we also evaluate its results on the validation set.

We end the chapter by evaluating the results of DistilBERT on a single stock.
This is performed to see if DistilBERT performs better when fine-tuned on one stock
compared to all stocks in the NND.

5.1 Methodology for Feature Extraction
This section tackles the methodology used to extract features from the text. Firstly,
we discuss what BERT model to use and the limitations of BERT-based models.
Then, we describe how FinBERT was used and how we fine-tuned a DistilBERT
model.

5.1.1 Deciding Which BERT Models to Use
Since we have decided to use the BERT-based transformers model, we must also
choose which BERT models to use. We introduce FinBERT and DistilBERT in
Chapter 2, and those are the two models that we use to extract sentiment and
classify text.

Model for extracting sentiment There are several ways to extract sentiment from
text. Everything from simpler approaches, such as using dictionary-based models,
to transformer neural networks utilizing attention. For this thesis, we need the
sentiment feature to be as precise as possible. Therefore, we should use a model
that we know is highly performing on similar data. Since the NND does not contain
sentiment labels and the size is too large for any manual labeling to be carried out,
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we concluded that the best model that can be applied is a pre-trained model. At the
Huggingface hub1 there are a vast amount of pre-trained BERT models available.

We decided to use FinBERT-tone by Huang et al. (2020). This model is a variant
of BERT that is fine-tuned on 10,000 manually annotated sentences from analyst
reports and achieves superior performance in financial tone analysis tasks. It excels at
identifying positive or negative sentiment in sentences that other algorithms mislabel
as neutral, probably because it uses contextual information in financial text (Huang
et al., 2020). This suggests that we utilize a model that has been proven to yield
good performance, which is precisely what we are looking for.

Model for text classification For text classification, we are using the DistilBERT
model. The model we are using is the distilbert-base-uncased which is a distilled
BERT model that is not case sensitive. As explained in Section 2.4.6, it is smaller
and yields almost the same performance as the basic BERT. The reason why we
chose to use DistilBERT instead of BERT is due to hardware limitations, as it made
it possible to train longer.

5.1.2 Limitations of BERT-Based Models
Since BERT is the base model from which both FinBERT and DistilBERT are de-
rived, they share the same limitations as BERT. The primary limitation is that BERT
has a maximum length of 512 tokens, where one token is one word. This is not an
issue when using the model on article headlines, but article content can be longer.
The average length of the content of the article is 606.23 tokens (words). In this
thesis, we decided to truncate the inputs to 512 tokens. This signifies that any words
appearing after 512 will be excluded. Truncation is not the optimal solution, but
we hope that 512 tokens will be sufficient for the model. Extending this limit would
require the input to be split into sections of 512 tokens, and then the result would
be an average of classifications from the different sections. The models already are
quite computationally intensive, and this expansion would make it so that running
them would take a lot more time.

The time it took to run the models on the hardware described in Appendix A.1 is
shown in Table 5.1. The reason why DistilBERT runs faster is because the model is
smaller. Keep in mind that this is only the time it took to classify all the observations,
not the training. The DistilBERT content model took about 10 hours to train on
our hardware.

5.1.3 Application of FinBERT
FinBERT requires that the text in the news articles is tokenized and embedded.
This process is simplified by using a pre-trained tokenizer. FinBERT uses a pre-

1https://huggingface.co/docs/hub/index
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Table 5.1: Timings from running BERT-models. The time is displayed in MM.
FinBERT DistilBERT

Headlines Content Headlines Content
11 49 06 19

trained BertTokenizer. The BertTokenizer is used as it is from HuggingFace.2
Table 5.2 shows the distribution of the sentiment features extracted by FinBERT in
the training and validation set.

Table 5.2: Descriptive statistics from FinBERT sentiment classification. We display the
statistics for training and validation sets on both headlines (H) and content
(C).

Training Validation
Predicted class H C H C
Negative (−1) 5 193 4 458 1 700 1 298

Neutral (0) 26 294 21 680 6 496 5 175
Positive (1) 7 679 13 028 2 994 4 717

After performing a sentiment analysis with FinBERT, and analyzing how sentiment
matches price movements, we considered the possibility that sentiment in the title and
content may not be sufficient. We wanted to use sentiments based on the assumption
that positive sentiment will indicate an up movement in HPR and the opposite will
indicate not-up movement. On the basis of the investigation of our sentiment analysis,
we concluded that our hypothesis did not hold. Therefore, we decided to fine-tune
a DistilBERT model to predict the HPR values using only text data. In this way,
we obtain a model tuned for our specific task of predicting stock movement using
HPR. Adding another dimension of textual features may also help to understand
how textual data influence HPR movements in the short term.

5.1.4 Fine-Tuning of DistilBERT
When fine-tuning DistilBERT we create a subset of the training data we use in our
prediction models. To construct this subset, we draw 30% of the training data as a
random sample. As fine-tuning takes a lot of time, we use a random sample to give
the model a representative sample across the whole training set. Furthermore, 20%
of the random sample is reserved for validation. The hope is that this random sample
can be generalized across the entire data set. When the subset is created, we tokenize
the text and encode it using DistilBertTokenizerFast3, a faster tokenizer built

2https://huggingface.co/docs/transformers/model_doc/bert
3https://huggingface.co/docs/transformers/model_doc/distilbert
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for the DistilBERT model. When the data is tokenized we can train the model.
During training, the DistilBERT model will then fine-tune its parameters to predict
the target variable, which is HPR 20 minutes after a news article has been published.
Considering that we are using both article headlines and article content, we must
fine-tune a model for both of these features.

A detailed description of the fine-tuned models and training loss is found in Ap-
pendix C.1. Evaluation metrics for fine-tuned models during training are shown in
Table C.1. Although these results are not particularly impressive, the goal is that a
model can make use of them when predicting HPR. Our hope is that these features
will give better predictions when used alongside stock data. In the next section, we
evaluate the DistilBERT model.

We note that a 30% sample might not be enough data to fine-tune the best possible
model. Due to our limitations in computing power, it would not be feasible to use
the whole training set. In this way, we will not get problems with overfitting.

5.2 Evaluation of DistilBERT
To understand how well DistilBERT performs the text classification task, we evaluate
its performance on the validation set. The evaluation gives us insight into how well
textual data can explain stock price movements in isolation from stock-related data.
The metrics presented are based on the training and validation sets. We use the
validation set to evaluate the DistilBERT model, to prevent data leakage.

Table 5.3: Evaluation metrics from fine-tuned DistilBERT on training and validation
sets. These values are the evaluation metrics for class 1, up movements.

Training Validation Both
Metric Headlines Content Headlines Content Headlines Content
Accuracy 0.7235 0.7268 0.6049 0.6047 0.6971 0.6997
Precision 0.4146 0.4299 0.2239 0.1706 0.3671 0.3654
Recall 0.5116 0.5185 0.3411 0.3100 0.4755 0.4809
F1 0.4580 0.4701 0.2703 0.2201 0.4144 0.4153

As shown in Table 5.3, the performance achieved on the training data can be
considered satisfactory. Of all the up predictions our model generates, it is correct
above 40% of the time (precision), and it hits around 50% of the total number of
up movements (recall). We note that DistilBERT performs worse when evaluating
the results on the validation set. The reason why these predictions are interesting
is because a ML classifier or a NN could learn which of the predictions to use in
different scenarios, or a combination of them, combined with stock data.

A metric that could be more useful to look at is the number of times the model
trained on headlines or the model trained on content hits up predictions. These
metrics are shown in Table 5.4.
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Table 5.4: Number of correct up predictions (precision) from DistilBERT.
Data set Headlines Content
Training 0.5116 0.5185
Validation 0.3411 0.3100
Both 0.4755 0.4809

Considering that this only applies to the correct up predictions (precision), we
can look at the accuracy of DistilBERT predictions, where we want to know how
many correct predictions the model makes as a whole. These metrics are shown in
Table 5.5.

Table 5.5: Number of correct predictions (accuracy) from DistilBERT.
Data set Headlines Content Either
Training 0.7235 0.7268 0.8791
Validation 0.6049 0.6047 0.7623
Both 0.6971 0.6997 0.8531

One of our fears when conducting these experiments was that both models would
predict the same directional movement. As shown in Tables 5.4 and 5.5, this is not
the case. The either column shows how the models perform if a correct up prediction
from one of the models is considered an up prediction from both. The accuracy is
higher than for the individual models, and from this, we see that the models make
different predictions. Considering the target variable distribution in Table 4.2, the
accuracy in the either column is better than just prediction not-up.

5.2.1 Considerations Regarding Threshold Values

Prediction thresholds were not considered when performing the feature extraction.
Models based on BERT output a label paired with a confidence score for each class
when making predictions. Compared to a softmax probability distribution with class
probabilities that add up to 1, the confidence score works differently. It is only a
score that specifies how confident the BERT model is that the text input matches
the predicted label. By default, it returns the label with the highest confidence score.

The fact that we did not assess different thresholds for our DistilBERT model is a
potential shortcoming with respect to our predictions. This might have consequences
for the later models that use the DistilBERT predictions.
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5.3 A Single-Stock DistilBERT Model
In this section, we attempt to train a model on only the AAPL stock. This data set
consists of 9,782 observations. The results of the fine-tuning are shown in Table 5.6.
From this initial test, it seems like a model trained on only one stock has roughly
the same performance as the one trained on the whole data set. We note that these
metrics are not from the test set.

Table 5.6: Evaluation metrics from fine-tuned DistilBERT on AAPL during training.
Metric Headlines Content
Loss 3.006 3.038
Accuracy 0.6715 0.5912
F1 0.2197 0.3171
Precision 0.3393 0.3023
Recall 0.1624 0.3333

Based on these results, we see that the text affects a stock in the same way,
regardless of what stock it is. Building on this, we assume that building a separate
classifier for each stock would not bring relevant gains to our predictions.
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a Neural Network

This chapter describes the methodology and experimental results of NNs. We begin
by motivating what kind of network architecture we chose for our experiments. Then
we run our experiments with FNN using multiple different topographies, including
and excluding textual features, and present the results. The results of the best-
performing typography are then evaluated using the ROC curve. Finally, we discuss
our results before giving a brief summary of our findings.

6.1 Methodology for Neural Networks
In this section, we describe the methodology used for our neural networks. The
methodology includes how we chose our network architecture and how we use the
model to explore our research questions.

Deciding on NN Architecture NNs comes in different forms and the different forms
are suitable for different tasks. Since our goal is to explore how news articles can help
explain the stock market, we have processed our data set to have features of HPR at
several time steps before the publication of an article. This data structure works well
when using FNNs. Since the FNN architecture is one of the least computationally
heavy architectures to train, we decided to use an FNN as our NN.

A hybrid model where textual features are extracted using LSTM, and used along-
side stock data in an FNN has been done by Chandola et al. (2022). Although they
did not achieve an accuracy higher than 52%, they also suggested using a different
model to extract semantic features. In this case, we are using two BERT models to
extract the semantic data. Having textual features extracted from the BERT models
alongside stock data in an FNN is an approach that builds on the work of Chandola
et al. (2022).

Building the FNN Since there are no simple, or algorithmic, ways to find the
optimal NN, we conduct experiments. In these experiments, we test different network
sizes to see which ones give the best fit to our data. We also test different activation
functions to see if they give different results. The results of the experiments are
presented in Section 6.2.
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Excluding textual features To see if textual data add value when predicting HPR
20 minutes after the publication of an article, we train two separate FNNs. An FNN
including text and one excluding textual features. We can then compare the results,
including and excluding textual features, to see if there are any differences. Hopefully,
the textual data adds value to the predictions. If the predictions are better when
including text, the results will indicate that the data contained in the news articles
are explaining the stock market.

Evaluation metrics To evaluate the results of the experiments, we use the eval-
uation metrics introduced in Section 2.3.1. The ROC curve is used to investigate
whether models that include and exclude textual features are better than random
guessing. We also present precision, recall, F1 and accuracy for both models. These
metrics will give us a full picture of the performance of our NNs.

6.2 Experiments Running FNN
In this section, we present some of our attempts to train an FNN. We present the
architectures used and the results we got.

The goal of these experiments is for a network to be able to understand which
features to use in its predictions. We attempted to run a network with four hidden
layers and [128-64-32-4] nodes in each layer. We let the model run for 5 hours (340
epochs) to obtain the results shown in the first column of Table 6.1.1 Graphs of the
evaluation metrics obtained during training are displayed in Figure C.3. It should
be mentioned that the metrics presented stayed the same for most of the training
period. Although an accuracy of 66% might seem good, we notice that the recall
for up predictions is very low. We only hit about 4% of the total number of up
predictions. The precision of our network is not particularly impressive either, of all
our up predictions, only 30% are actually true.

Table 6.1: Results of running multiple different topographies on the network. The first
network ran for 340 epochs and ReLU activation, the second for 50 and leaky
ReLU, and the third for 395 epochs and tanh activation.

Typography
Metric [128-64-32-4] [540-1080-720-64] [5000-3000-1500-150-5]
Accuracy 0.6663 0.6702 0.6702
Recall 0.0371 0.0383 0.0383
Precision 0.2956 0.2975 0.2975
F1 0.0659 0.0679 0.0679

1Note that the first model was run on a slightly different data set, that did not properly filter out
the times when the exchange was closed.
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Since the performance of the first network shown in Table 6.1 is poor, we decided to
add more complexity to the network. The reason behind this is that the current FNN
is underfitting. It is unable to find any patterns in our data. One way to improve
an underfitting network is to add complexity. We decided to increase the number of
nodes in the layers of the network. The more complex network also consisted of four
hidden layers with a configuration of [540-1080-720-64] nodes in the layers. In this
network, we also tried using leaky ReLU activation functions instead of regular ReLU
since we thought we might have encountered the dying ReLU problem explained in
Section 2.4. This network ran for 50 epochs with a learning rate of 0.01. It gave the
results of the second column shown in Table 6.1. We observe that the performance
metrics are approximately the same as the metrics for the smaller network.

Finally, we tried an even larger network, with [5000-3000-1500-150-5] nodes in the
hidden layers. This model ran for 16 hours with a learning rate of 0.001 and tanh
activation functions. The results of this network are shown in the last column of
Table 6.1.

Looking at the performance metrics, adding complexity did not improve the net-
work. The increase in complexity from [540-1080-720-64] to [5000-3000-1500-150-5]
did not produce better performance. This can indicate that there is no substantial
pattern to find in the data.

6.2.1 Adding Volume
We attempted to add normalized volume to the largest network, and the results
improved slightly. The results are shown in Table 6.2. On observing the results, it
is apparent that the precision of this network is marginally higher than that of the
network without volume. Due to limitations in computing time, we were unable to
run this network as long as the largest one did.

Table 6.2: results of adding volume to the largest network, running for 2h (54 epochs)
Metric With volume Without volume
Accuracy 0.6639 0.6702
Recall 0.0389 0.0383
Precision 0.3139 0.2975
F1 0.0693 0.0679

6.2.2 Dropping Textual Data
We ran a test on the [5000-3000-1500-150-5] network, where we removed all textual
features. This resulted in an accuracy of 0.6865, but it did not predict any up move-
ments. Although the accuracy is better than any of the models shown in Table 6.1,
it would not make a good trading model because it would never tell you to buy, even
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though you would lose less money by using that model. The model was trained for
2.5 hours (62 epochs).

Table 6.3: Comparison table between the best performing FNN [5000-3000-1500-150-5]
with and without textual data.

Metric Text No Text
Accuracy 0.6702 0.6787
Recall 0.0383 0.0000
Precision 0.2975 0.0000
F1 0.0679 0.0000

6.2.3 Assessing the ROC curve
We show the ROC curves for our FNN with and without textual features displayed in
Figure 6.1. The analysis reveals that the model with text does not present a notice-
able advantage over random guessing. This is disappointing, but not unsurprising
given our performance metrics. We see an interesting characteristic with the model
without text. It is slightly better than random guessing at high threshold values and
slightly worse than random guessing at low threshold values, as observed when we
move up to the right in the figures. This is interesting considering that the model
achieves a precision and recall of 0.

It is probably due to the low recall for both models that the AUC is close to 50%.
Since AUC is a metric that plots TPR and FPR, the overall low recall indicates that
both models are unable to find patterns for up predictions. This is true for the model
that includes textual features at all prediction thresholds.
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Figure 6.1: ROC curves of FNN with and without text. The AUC is 0.50 in both cases.
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6.3 Discussion
This section explores the results of our FNN and problematizes them. Model training
is also problematized, since increasing the model size did not add much value. After
problematizing the FNNs training, we discuss the results that include and exclude
textual features.

Exploring the experimental results The results of testing different network ty-
pographies are shown in Table 6.1. Although there is no difference between the
deepest [5000-3000-1500-150-5] and the second deepest [540-1080-720-64] network,
we proceeded with the deepest network. Since the FNN did not train, we also added
trading volume as a feature to increase the number of stock-related features. The
addition of volume to the deepest network gave a small increase in precision of 1.5%,
shown in Table 6.2, but the performance of the FNN is still poor. It seems that
the FNN was unable to find patterns in the data. If the model found a pattern in
the data, we should have observed loss values closer to 0. Figure C.4 displays the
development of the best-performing model during training.

Out-of-sample predictions are shown Table 6.3 and they are very interesting. The
network without textual features has a precision of 0 and a recall of 0. This implies
that the model does not predict any up movements in HPR at all.

Comparing models with and without textual features Since the model without
textual features did not predict any up movements in HPR at all, we must discuss this
fact. Table 6.3 shows a recall, precision, and F1 score of 0 on the network excluding
text. When including textual features, it is able to make a few up predictions.
Considering research question 1, the performance difference with and without text
shows that textual data helps to predict the direction of stock returns on intraday
data when using an FNN. This will indicate that the textual data contained in the
news articles are explaining the stock market. What we find somewhat concerning
is that the performance of the model without textual data is very poor.

Even though the model that excludes textual features has poor performance, it
should not be overlooked that the model that includes textual features has better
performance when evaluating precision. However, when adding more intricate per-
formance metrics, we see that there is little to no difference between the models that
include and exclude textual features. The ROC curve in Figure 6.1 displays an AUC
of 0.50 for both models. This is considered to be the same performance as a model
that performs random guesses when performing classifications.

The random walk theory states that stock price movements are random and that
there are no patterns in their movements. Taking into account this theory, our results
indicate that it is true. An FNN is capable of finding patterns in noisy data, but
it seems that intraday stock data in the time frame used in this thesis is too noisy.
However, we still problematize the performance of the FNN to see if we could have
done things differently.
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Assessing model performance Since the FNN in general performed poorly, both
including and excluding text, need to understand why. This is difficult because there
is not much previous work published on the subject of intraday HPR predictions.
Previous work on the subject of interday HPR prediction shows better results, but
most of these articles only mention the accuracy of their models. For example, Liu et
al. (2017) measures an accuracy of 61.6% on an RNN model excluding text features.
Comparing the results of Liu et al. (2017) to our FNN which achieved an accuracy
of 67.87% excluding textual features and zero up predictions made. The comparison
of results shows how only using accuracy as a metric can be misleading as well.

The scarcity of previous work on the subject of predicting intraday stock price
movements using an FNN with applications of NLP, makes it difficult to assess the
performance of our FNN. In the future, researchers using FNNs to perform a similar
task may use our model as a benchmark to beat and then explore if other variables
may add value to the predictions.

Assessing model training It is a fact that our FNNs did not train well. The chart
in Figure C.3 displays the training process, and it looked like this when training every
model. We must then try to understand why the model parameters did not converge
toward their optimal value. The first place to start is the data set. Our data set uses
the HPR in five-minute intervals from t − 30 minutes to t − 5 minutes. Volume is
minmax-normalized to shrink the effect of outliers. The structure of our data should
be in a way that an FNN should understand. There may be some issues with all
of our lagged HPR variables being very close to zero. This is perhaps the biggest
obstacle for the model. Having most features close to zero may make it difficult for
the model to find the optimal weights and biases for our data.

Another possibility is the activation functions applied in the network. In the first
network, we used the ReLU activation. This implies that if a lot of the features are
negative numbers, we encounter the dying ReLU problem. This happens because
the ReLU returns 0 if the input is 0 or less. To adjust for this, we used leaky ReLU
functions with a negative slope of 0.1. The leaky ReLU will return small negative
numbers when a negative number is an input in the function. The use of leaky ReLU
made no difference.

Since our features are already very close to zero, returning a number even closer to
zero may not make any difference at all. Since the leaky ReLU did not help, we tried
tanh in the final, deepest, network. However, using tanh did not help our network
train better. We also dropped the learning rate when training the different models
and we also applied learning rate schedulers in our experiments. Adding learning
rate schedulers did not improve the training process.

Since the loss values during training do not improve and are stuck around 0.5, it
is not a very good model. This will in the end suggest that the network is either
not complex enough or that the stock data is too noisy for the model to find any
pattern. If there is no pattern to be found, then the model will not train no matter
how complex it is.
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Investigating other threshold values We have observed from the ROC curves that
our FNN seems to perform equally well regardless of the threshold value for the model
with text, while the model without text shows tendencies to be susceptible to changes
in threshold values. This implies that our results of the FNN must be taken with a
grain of salt.

6.4 Summary Results of FNN
The results of the FNN indicate that the inclusion of text data improves the predictive
capacity of the model, even though the overall results are suboptimal. Of particular
interest is the difference between models with and without text. In particular, the
model with text achieves a precision of 30%, while the model without textual features
has a precision of 0%. Although the accuracy evaluations may seem similar, the
precision metric reveals that the model with text is superior in our context.

The results demonstrate that textual data help predict the direction of stock re-
turns on intraday data using an FNN with a threshold value of 0.5. The ROC curves
and the AUC indicate that the model with text performs consistently across different
threshold values, whereas the model without text performs better at lower thresh-
old values, and subsequently worse at higher values. These findings suggest that the
inclusion of text data could add value to the prediction and should not be overlooked.

Given that the AUC of both ROC curves displayed in Figure 6.1 is 0.5, we conclude
that it is best to discontinue the use of FNN and explore alternative classifiers in
Chapter 7. This chapter will introduce and evaluate alternative classifiers that could
potentially yield better results. It will also discuss the advantages and disadvantages
of each classifier and suggest which might be the best fit for the data.
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7 Integrating Text and Stock Data
using Other Classifiers

The results of FNNs described in Chapter 6 indicate that textual features do not
help explain the short-term movements of HPR. The FNN which includes textual
characteristics made some correct up predictions. This resulted in higher precision
and a very small increase in recall. Since the FNN was unable to find patterns in the
data, we decided to explore traditional ML methods. We investigate how the data
from the news articles can help further understand the stock market by using the
following models: XGBoost (XGB) and random forests (RF) and logistic regression
(LR).

This chapter presents how we tuned the hyperparameters for the different ML
models and the results they achieved. We also explore different prediction thresholds
to see if the results change significantly when reducing the threshold. The results are
presented and compared with and without text. The significance between models
including and excluding text, as well as models using different prediction thresholds,
are measured using McNemar’s test statistic.

The effect of news articles on the stock market is further explored by looking at
the LR coefficients. An interpretation of the coefficients can help to understand how
the characteristics of the different features affect the log odds of an up prediction of
HPR.

7.1 Hyperparameter Setup
To perform hyperparameter tuning, we are using three-fold cross-validation, as in-
troduced in Section 2.3.2. The scoring is precision, as that is the metric we are most
interested in. We use cross-validation on the training set and use the validation set
to set a threshold.

General methodology for selecting hyperparameters To get the optimal hyper-
parameters we use a general algorithm as described in detail in Appendix D. The
basics are that we try with some initial values and then try with more values that
are close to the best from the previous step. We use precision as an initial scoring
parameter but also monitor recall when we choose parameters. This happens because
a model naturally gets higher precision with lower recall.

The hyperparameters for the different models are shown in Tables D.1 to D.3 in
Appendix D (p. 101). Where nothing is defined, default values from scikit-learn
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(Pedregosa et al., 2011) are used. We note that a more extensive hyperparameter
search could have been conducted, but the results of our testing indicate that there
are limited gains to be had by doing this.

7.1.1 Evaluating Prediction Thresholds
With the findings from the ROC curves presented in Section 6.2.3 in mind, we eval-
uate our other classifiers using different prediction thresholds. In this subsection, we
investigate what thresholds are best on the validation set. We also try to run some
different thresholds for our classification models.

ROC curve analysis and AUC scores We start by analyzing the ROC curves and
AUC scores for our models with and without text. These curves provide valuable
insights into the overall performance of the classifiers. The ROC curves are displayed
in Figure 7.1. We notice from the plots that the model without textual features has
a higher AUC. This is strange, as results from Chapter 6 suggest that a model with
textual features performs better than a model without it, because it actually made
up predictions. This discrepancy suggests that the threshold for our FNN may not
be optimal.

The dashed orange line, displayed in Figure 7.1, indicates that, with the exception
of logistic regression, all models are anticipated to outperform random guessing. We
notice that the tree-based models with text exhibit two “bumps”: the first in the
FPR domain 0.1–0.4, and the second in the FPR domain 0.4–1.0. These results
indicate that the models perform better at lower prediction thresholds and worse at
higher prediction thresholds. Where the blue line intersects the orange dashed line,
the models are no better than random guessing. This is another indication that our
models are susceptible to significant variation based on threshold values.

Experiments with different thresholds Experiments using thresholds of 0.3, 0.4
and 0.5 are shown in Table 7.1. The table shows a clear trend that having lower
prediction thresholds improves the models. It also makes the text variables more
and more redundant as the threshold descends.

The difference in models including and excluding text features is significant when
looking at McNemar’s test. The only exception from this is XGB at a threshold
value of 0.3 where there are no significant differences between the models.

Overall, the models appear to have the best performance when using the threshold
of 0.3, considering all evaluation metrics. If precision is considered, there is no
significant change in the metric when using different thresholds. The significant
change in performance comes from the recall. It is much higher when there is a lower
prediction threshold. This implies that our model is uncertain of the predictions and
that we must introduce the threshold as a bias to improve the model performance.
The added bias helps the model gain a higher recall.
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Figure 7.1: Combined ROC curve for all classifiers. The plots in the right column is the
model without text. The orange dashed line represents an AUC = 0.50, a
random guess.
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An interesting result is that the logistic regression never predicts up movements,
no matter how much bias is introduced. This suggests a better performing model
including text, but this is not the case when the AUC is taken into consideration.

Table 7.1: Results of testing thresholds with other classifiers. McNemar’s test statistics
are displayed at the bottom of the table.

Threshold 0.3 Threshold 0.4 Threshold 0.5

Metric XGB RF LR XGB RF LR XGB RF LR

Accuracy 0.5571 0.5553 0.5569 0.6127 0.6468 0.6661 0.6559 0.6658 0.6661
Recall 0.3470 0.3677 0.3464 0.2479 0.1080 0.0341 0.0895 0.0414 0.0341
Precision 0.3211 0.3261 0.3207 0.3499 0.3357 0.3005 0.3493 0.3203 0.3005
F1 0.3335 0.3456 0.3331 0.2902 0.1634 0.0613 0.1425 0.0733 0.0613

Removing the textual component from the models

Accuracy 0.5666 0.5930 0.6806 0.6735 0.6767 0.6806 0.6806 0.6806 0.6801
Recall 0.5339 0.4281 0.0000 0.0655 0.0576 0.0000 0.0000 0.0000 0.0000
Precision 0.3747 0.3787 0.0000 0.4270 0.4518 0.0000 0.0000 0.0000 0.0000
F1 0.4403 0.4019 0.0000 0.1135 0.1022 0.0000 0.0000 0.0000 0.0000

McNemar’s test statistic for model with and without text

χ2 1.0169 18.2608 247.3994 86.6674 44.2311 31.5270 40.9803 29.1082 31.5270
p-value 0.31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In addition, we investigate whether there is a significant difference between the
models that include and exclude text at the different thresholds. Table 7.2 shows
that there is a significant difference at a 5% level between the models at different
thresholds. These results indicate that the best models are at the prediction thresh-
old of 0.3. The models are also becoming significantly better when the prediction
threshold decreases.

Table 7.2: Comparison of models with and without text at different thresholds using
McNemar’s test statistic and corresponding p-value

0.3 vs 0.4 0.3 vs 0.5 0.4 vs 0.5

Model χ2 p-value χ2 p-value χ2 p-value

XGB with text 261.9170 0.0 384.3971 0.0 141.4794 0.0
XGB without text 309.5726 0.0 315.0687 0.0 11.2044 0.0

RF with text 387.9018 0.0 404.0136 0.0 28.8373 0.0
RF without text 236.3153 0.0 249.1540 0.0 14.6574 0.0

LR with text 395.8082 0.0 395.8082 0.0 ∞ 0.0
LR without text 1325.8782 0.0 1325.8782 0.0 ∞ 0.0
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7.2 Results of Other Classifiers

In this section, we present the performance metrics for each of the different models.
Models without textual features are based on the same hyperparameter tuning as
models with textual features. In this way, we see how the textual information affects
the model with those hyperparameters exactly, not necessarily how it affects the
method as a whole.

Table 7.3: Results of out-of-sample predictions using the best threshold 0f 0.3 from
validation. The McNemar’s test statistics is displayed at the bottom of the
table.

Metric XGB RF LR

Accuracy 0.5507 0.5483 0.5507
Recall 0.3551 0.3707 0.3551
Precision 0.3286 0.3312 0.3286
F1 0.3414 0.3498 0.3414
Removing Text
Accuracy 0.5571 0.5787 0.3279
Recall 0.5399 0.4388 1.0000
Precision 0.3773 0.3774 0.3279
F1 0.4442 0.4058 0.4938
McNemar’s test statistic
χ2 0.9129 23.0672 860.0953
p-value 0.33 0.0 0.0

The results shown in Table 7.3 show how well the models perform out-of-sample.
Models seem to perform better without textual features than with textual features.
It is interesting to notice the shift in the predictions for logistic regression without
textual features from the validation set to the test set. With the test set, logistic
regression hit all up predictions with a precision of 33%. Considering the drop in
accuracy, it implies that the model sacrifices correct not-up predictions to hit more
up predictions.

Based on the findings shown in Table 7.3 we observe that XGBoost without text
appears to be the best performing method, with a slightly higher F1 score than the
RF model. However, XGB does not have significant differences between the model
with and without text. XGB and logistic regression seem to yield the exact same
performance including textual features using a prediction threshold of 0.3.
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7.3 Evaluation of the Different Models
In this section, we evaluate the different models with each other using McNemar’s
test. As mentioned, McNemar’s test is a test to identify if the performance between
two models is significantly different. If the p-value is lower than our significance level
α, we discard our null hypothesis that two models have equal performance. Consid-
ering the values shown in Table 7.4, we note that there are significant differences at
a 5% level of significance between all models. The models compared here are the
models with textual data.

Table 7.4: Comparison of the different models with textual features with a threshold of
0.3 using McNemar’s test using the p-value.

XGB RF LR
XGB - 0.02 0.00

RF 0.02 - 0.02
LR 0.00 0.02 -

7.3.1 Logistic Regression Coefficients
Since we have included logistic regression, we have the opportunity to explore the
feature coefficients. These coefficients are shown in Table 7.5.

Table 7.5: Coefficients from the logistic regression including and excluding text. The
numbers are rounded to four decimals. The coefficients are the changes in
log odds for an up movement

Feature With Text Without Text
return_-30 0.0 0.0
return_-25 0.0 0.0
return_-20 0.0 0.0
return_-15 0.0 0.0
return_-10 0.0 0.0
return_-5 0.0 0.0
distilbert_class_content 0.4975 n/a
distilbert_class_title 0.4658 n/a
finbert_sentiment_label_title 0.0 n/a
finbert_sentiment_label_content 0.0 n/a
Volume_minmax 0.0 0.0

The coefficients show that the only variables that the logistic regression model
relies on are the values of the fine-tuned DistilBERT model. From this, we see that
when included, the logistic regression only values the textual features. The most
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important feature is the distilbert_class_content which gives an increase in log
odds of 0.4975 for an up movement and the same decrease in log odds for a not-up
movement. Both features drive a small increase in log odds, but they are also the
only features that matter. The features extracted from DistilBERT are only the
values −1 and 1, which conveys that the log odds either increase or decrease with
regard to the results of DistilBERT. This signifies that the log odds for up movement
in HPR can only increase by a maximum of 0.9633 if DistilBERT predicted both
headlines and content as 1. Overall, this is a very small increase in log odds.

Compared with LR excluding textual features, we see that it does not find a pattern
in the data. All the coefficients are 0.0 when excluding textual features. This suggests
that the stock data do not explain the changes in stock prices. Therefore, the model
only performs random guesses. The coefficient values indicate that the movement
in HPR intraday is impossible to predict without including more information than
previous stock price movements.

It would have been interesting to view the significance levels of the coefficients
however, scikit-learn has no great integrations for viewing significance levels. The
performance of the logistic regression is poor and it does not add additional value to
explore the significance levels. The results of the logistic regression ROC curve show
that it is not better than a random model. Based on the ROC curve, it is highly
plausible that the text feature coefficients are not significant at all. Therefore, the
logistic regression coefficients will not be discussed further.

7.4 Discussion
When evaluating our other classifiers, we have investigated different threshold values.
This investigation shows that a threshold of 0.3 is the best for predicting up move-
ments. The fact that the threshold must be set so low is interesting. We observe
that recall increases when the threshold is decreased, but precision remains constant.
These results indicate that the added bias with regard to the prediction threshold
increases the number of false positives. The ROC curves in Figure 7.1 displays that
FPR increases when recall increases. When considering the ROC curves, the FPR
increases at a higher rate than TPR when the slope of the curve is lower than 1. As
the slope becomes less steep when the prediction threshold decreases, it suggests a
higher increase in FPR compared to TPR. This could imply that a more conservative
model, with lower precision and recall, is better, but it is hard to quantify when we
do not know by how much stock price falls if the model predicts not-up.

Testing significance By using McNemar’s test, we have investigated where there
are significant differences between models. We have observed that there are signif-
icant differences between the different thresholds for all models with and without
text. This tells us that the thresholds are different from each other. We have also
concluded that there are significant differences between the models with and without
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text across all thresholds, except for XGB. Finally, we found that there are significant
differences between the three different models at threshold 0.3.

Comparing models with and without text We notice some strange behavior for
the logistic regression in the test set. It went from a recall and precision of 0 to a
recall of 1 and a precision of 0.33. This could imply that the model is not suited to
the task at hand and struggles to be generalized. The two other classifiers, XGBoost
and RF, perform as expected on the test set considering the metrics on validation
data. Looking at the coefficients for logistic regression, we find that the only thing
that matters is the results of Distilbert. The model sets all other coefficients to 0.

Since the models excluding textual features became significantly better than the
models including them at a lower prediction threshold, it indicates that the data
contained in the news articles are irrelevant in our time frame. By decreasing the
prediction threshold, we add a bias telling the models what it should consider an up
prediction. Since the predictions improve significantly when the prediction threshold
is decreased, the probabilities of up movements are mostly quite low. Therefore, it
can be argued that the models become more certain of some of their predictions when
including textual features. This is because the models predict higher probabilities
for some of the observations, including textual features. However, the predictions are
best at lower prediction thresholds. Perhaps textual data do not help us understand
the stock market when using a 20-minute time frame. It should be considered that a
20-minute time frame is too short for investors to respond properly to a news article.

7.5 Summary results of Other Classifiers
This chapter has presented the results of other ML classifiers. Unlike the FNN we
have investigated using different threshold values for up predictions. The findings of
the prediction threshold experiments have shown that a lower threshold seems to be
better at predicting up movements in HPR. Although the models improved at lower
prediction thresholds, the effect of textual features decreased. This indicates that the
news articles are irrelevant when we decrease the prediction threshold. The results
of traditional ML models indicate that the data contained in the news articles do
not explain the movements of the stock price in a time frame of 20 minutes.
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8 Overall Discussion
In this chapter, we discuss the results of our experiments conducted in Chapters 6
and 7. Furthermore, we discuss the results of our feature extraction in Chapter 5. We
explore the sentiment extraction of FinBERT and compare the results of DistilBERT
on the test set with other models.

In addition, we review the comparative effectiveness of various classifiers. Finally,
we explore the practical applications and broader implications of our findings, incor-
porating ethical considerations to round off this chapter.

8.1 Results of BERT-Based Models
We have used two different BERT-based models to extract textual features to use in
future predictions. Chapter 5 describes how the models were used and fine-tuned.
This section discusses how they performed.

The textual features were the key aspects that allowed us to study the importance
of text when making predictions on stock data. We have used FinBERT to extract
the sentiment and a fine-tuned DistilBERT to perform a text classification. The
text classification was fine-tuned to predict HPR 20 minutes after a news article was
published. Given that these variables serve as representations of news articles, it is
crucial to address their significance as well. Their significance is addressed in light
of the EMH.

8.1.1 FinBERT
By themselves, the results of FinBERT are not that interesting. This is because the
sentiment is only used as an input feature in later models. Our first thoughts were
that sentiment alone could be a good enough representation of the news articles to
combine with stock data for a classifier to make predictions.

When performing the sentiment analysis, we expected that a positive sentiment
would drive an up movement of the related stock. For us, it makes sense that an
article that has positive sentiment contains positive news about the stock and there-
fore investors will respond by buying the mentioned stock. This will increase the
demand for the stock and, therefore, the corresponding price will increase, making
HPR positive. Overall, the FinBERT results did not meet our expectations.

Although our expectations differed from our results, the results of FinBERT may
still be sensible. Stock prices are inherently noisy, and the expectation that a positive
sentiment of an article will make the price of the related stock increase is incorrect.
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This is because a stock price reflects much more information than a news article’s
sentiment. Considering the EMH, using sentiment as a singular textual feature is
not enough when EMH states that stock prices reflect all available information. The
EMH is also the reason why the sentiment should still be included. A sentiment
from a news article referencing a stock is information about the stock, and it should
therefore add value to a model trying to predict stock price movements.

A compelling aspect of NLP in general is that human written text could be related
to the author’s opinion. Therefore, the sentiment of an article may be the authors’
view on the related stock. It should be considered that the author’s view of a stock
may differ from how the market views and values the stock.

It should also be considered that FinBERT has predicted sentiments that are not
true. Although Huang et al. (2020) proves that this FinBERT model has promising
results, we have not had any true labels to test the performance of FinBERT on
our data. It is used as is, and our only means of evaluation is by looking at the
performance on labeled data. Huang et al. (2020) proves that it has a good perfor-
mance, but we have to understand that these results may not be generalized to our
data. We note that FinBERT is fine-tuned on 10,000 manually annotated sentences
from analyst reports and that these sentiments might not be the same as sentiments
in financial news. It is therefore up to later prediction models to see whether the
sentiment from FinBERT matters for the predictions or not.

8.1.2 Fine-Tuned DistilBERT
To extract more textual features, we also fine-tuned a DistilBERT model. This
model was tuned to predict HPR 20 minutes after the news article was published.
The results of DistilBERT were interesting. To assess the performance of the models,
we measured the accuracy, precision, recall, and F1 score. On the validation set, it
measured an accuracy of 60% on both headlines and content, which is somewhat good
considering that it is only fine-tuned on a smaller random sample of the training data.
The precision is only slightly higher than 30%. However, this model is only supposed
to extract more textual features for later models to use.

Keeping our results in mind, DistilBERT does not perform well enough to be
usable on its own. However, the goal of this thesis is not to beat the market, but
rather explore whether textual data can explain the stock market. As shown in
Table 5.5, DistilBERT is able to find different patterns in headlines and content. By
considering an up prediction to be true if the model made a correct up prediction on
either headlines or content, we achieve an accuracy of 76.23% on the validation set.
In this context, DistilBERT is able to capture some patterns in the textual data, and
it captures different patterns when considering headlines and content in isolation.
Keeping the EMH in mind, this information should help capture the fundamental
value of a stock.

DistilBERT could perhaps add value if used for fundamental analysis. Since fi-
nancial news could contain information concerning the fundamental value of a stock,
having a model with the ability to extract the effects of these values on individual
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stocks will be of great value to investors. It should also be considered that financial
news may contain technical indicators. DistilBERT should be able to find patterns
from technical indicators contained in the articles as well. It is a possibility that
DistilBERT is able to capture some of this information, but the time frame is too
small. This topic will be explored in greater detail in Section 8.3.

In our data set, we have 19 different stocks. Considering that there may be a
difference in how articles regarding different stocks are written, we constructed a
model only considering the AAPL stock. This was to assess whether the difference
in writing regarding different stocks has confused our model. The performance dur-
ing training is, however, almost identical to the model considering all the stocks in
our data set. A possible reason for this is the fact that AAPL is the clearly most
mentioned stock in our data set.

A source of error when using news articles to predict HPR is that the author’s
opinion of the stock may influence the article’s view of the stock. This is due to
the same reason as why the author’s view may impact the sentiment of the article.
Considering that our data set is news articles and not stock exchange announcements,
the author’s view is more important when applying NLP methods on news articles.
This is because the author’s view may be a source of noise that can confuse the
model.

8.2 Comparing the Different Results
In this thesis, we have used many different models to understand the effect of text
data on predicting intraday returns. Table 8.1 shows the results of all the methods
we have used. The results of the fine-tuned DistilBERT on the test set are also
included. This is because DistilBERT gave interesting results on validation data. By
testing the DistilBERT using the test set, we can compare it to the other models
using stock data and textual features.

Table 8.1: Combined results of all methods for models including textual features. This
also includes the metrics for our two fine-tunes DistilBERT models on the
test set, previously only metrics for the validation set were presented.

Metric Title Content FNN XGB RF LR
Accuracy 0.5972 0.6199 0.6639 0.5507 0.5421 0.5507
Recall 0.2108 0.1685 0.0389 0.3551 0.3750 0.3551
Precision 0.3122 0.3241 0.3139 0.3286 0.3319 0.3286
F1 0.2517 0.2217 0.0693 0.3414 0.3521 0.3414

Comparing DistilBERT with the FNN, we see that DistilBERT converges the loss
function during training. This is displayed in Figures C.1 and C.2, and indicates
that the DistilBERT is able to find patterns in the text data.
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When precision is considered in isolation, the best-performing model is a random
forest classifier. This is somewhat interesting since we expected the FNN to perform
the best due to its ability to perform well on noisy data. We also see that the rest of
the non-deep learning methods are outperforming the FNN. There is the possibility
that we have not managed to build a well functioning NN, but we must consider the
fact that non-deep learning methods are still robust and high performing as well.

Considerations concerning threshold values When experimenting with XGBoost,
random forests, and logistic regression, we tried different prediction thresholds. The
results of the threshold experimentation indicate that the models perform better
when we add some bias toward predicting up movements in HPR. The ROC curves
confirm this indication with the exception of logistic regression. The best overall
models are found when using the threshold of 0.3, but in a financial context, it can
be argued that a threshold of 0.4 may give a better model considering that precision
is a more important metric. The model with the highest precision is the random
forest without text at threshold 0.4.

8.3 Textual Data for Market Comprehension
As textual data did not help to explain the stock market when used in conjunction
with stock data, it should be considered how well text-based models perform in
isolation from stock data. When comparing DistilBERT with other models that
include stock data, we see that it outperforms our FNN. This could indicate that the
BERT-based models are finding patterns that become clouded when used alongside
stock data.

As financial news is a great source of information for investors, it must contain
relevant information. We used FinBERT to extract the sentiment. A sentiment value
should be a relevant feature since, in theory, it should influence how the reader values
the stock. In our project, the time frame is either too small to see an effect of the
sentiment, or the effect of the sentiment is too small. Our hypothesis that a positive
sentiment should drive an increase in HPR was wrong, at least for the 20-minute
time frame.

An issue may arise if news articles contain information on many different factors
that drive stock prices. DistilBERT was made to give one classification based on
the entire content of the article. This implies that DistilBERT must compress all
the information contained in a news article into one single value. It could be argued
that DistilBERT also captures the sentiment when performing a text classification
on HPR, but not as well as FinBERT.

Considering these arguments, perhaps different models could be fine-tuned to ex-
tract different aspects from the news article. Splitting the DistilBERT model into
several smaller models with more specific tasks could be a viable strategy. This sug-
gests that several other specific features will be extracted from the text. DistilBERT
could have been confused by the various different information contained in the news
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articles and therefore could not make more precise predictions. Extracting more
specific textual features may help to further understand the stock market.

For deep learning models, the more information, the better. As the EMH states
that a stock price reflects all available information on the stock, it suggests that we
need more information. Having more information should, in theory, help explain how
the stock market works. The questions are only about how the information can be
extracted and what information should be extracted.

8.4 Real-World Applications and Implications
This section considers the criteria our model would have to match if it should be
used for trading. The real-world application is more hypothetical, but it adds some
consideration regarding relevant performance metrics in a model that only predicts
up and not-up movements in HPR. The section dives further into the implications
regarding our models and project in general. In the end, we discuss some ethical
considerations if a similar model was successful.

8.4.1 Considerations for Real-World Application
Our models are not accurate enough to be applied in real-world scenarios. There
are certain factors that must be considered if a model like ours is to be applied. For
starters, we must consider the precision of the model. This is because we care more
about how accurate the model is in predicting up movements. We would in theory
need a precision of a minimum of 50% for the model to be usable.

If the precision was above 50% for up predictions, we would have a statistically
higher chance of a true up prediction and a positive return than not. However, the
model does not quantify the possible loss when the model is wrong. This must be
taken into account if we are going to use the model in an investment strategy.

Alongside the possible loss, we must also consider the investors’ appetite for risk.
Risk-averse investors may need an even higher precision before they feel that their
utility score1 starts to increase, unless the expected return is large enough relative to
the risk. When intraday trading we see from the charts regarding HPR in Chapter 4
that HPR after 20 minutes mostly have small movements. This is explained by
a standard deviation of 0.002833. The expected return is 0.000019, which is the
average HPR on investments placed right after the publication of an article and sold
20 minutes after publishing. If we then adjust the HPR to take into account the
transaction costs of 0.001, we can calculate the utility score for investors.

Consider three investors, one risk-neutral (A = 0), one risk-seeking (A = −4), and
one risk-averse (A = 4). A is the value referencing the investors’ appetite for risk. If
we input the expected return and standard deviation in the utility function, we can
calculate the utility score for these investors.

1See Equation (2.2), p. 7.
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Table 8.2: Calculation of utility scores using HPR 20 minutes after the publication of
an article, adjusted for transaction costs, with regard to different investors’
appetites for risk.

Investor Utility Score
Risk-averse −0.0066
Risk-neutral −0.0098
Risk-seeking 0.0047

Considering the utility scores of the various investors, shown in Table 8.2, we see a
positive utility score for the risk-seeking investor. This suggests that only risk-seeking
investors should invest in intraday stocks.

Discussion considering the selected time frame It is possible that the time frame
of 20 minutes after publishing is a bit narrow and that more investors may have
had time to react if we considered a longer time frame. We saw that with some
prototyping with a larger time frame, we managed to have a better performing model.
We have also observed some indications that having a wider time frame after the
publishing time may yield better results. However, to use a model like ours in a
wider time frame, we must also be stricter regarding model performance. When
the time frame expands, the potential loss is greater. Taking this into account, the
model must yield even greater performance if risk-averse investors were to rely on its
performance alone.

Following up on the results of Gidófalvi (2001) we see that news articles can predict
the direction of a stock up to 20 minutes after the article has been published. He
also states a strong correlation between news articles and the behavior of stock prices
from 20 minutes prior to 20 minutes after the publication of a news article.

If we consider our results compared to theirs, the answer might not be as clear.
Even if he found a correlation in 2001, a lot has changed since then. The biggest
change, by far, is the Internet. It must be considered that news articles could have a
stronger correlation with stock price behavior in 1999–2000 compared to 2009–2020.
This might be related to the faster flow of information in 2009–2020 and the much
larger number of news articles published. Today, investors have to consider more
information than investors did around the year 2000. Considering that some news
may also be fake news, investors must also be more critical of their news sources. It is
important to take these arguments into consideration when determining the optimal
prediction time frame.

8.4.2 Psychological and Ethical Considerations
In this thesis, we have attempted to create a model that is able to predict intraday
stock returns. This is theoretically a very interesting topic and would be a very
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interesting model. However, we consider this quote from Dr. Ian Malcomn in the 1993
movie Jurassic Park: “Your scientists were so preoccupied with whether they could,
they didn’t stop to think if they should”. Only because something is possible does
not insinuate that it should be done. One must really think about the consequences
of what such an achievement would imply.

If our model were successful and made publicly available, it could disrupt the
market. The question will then consider how long the model would work. If everyone
uses the model, it could be that the model stops working since the world it was trained
to model no longer works in the same way. In this way, the model creates its downfall.

Another important consideration is that such a model could create an economic
bubble. If everyone follows the model, it could lead to an increase in herd mentality.
The model could make it so that investors believe that the market is in a better state
than it actually is.

The performative characteristics of economical models Callon (2007) states that
economic models do not model reality but rather form it. The article states that the
black-scholes formula for option valuation performed rather poorly when it was intro-
duced, but got better with time. Based on this, it could be the case that a successful
prediction model could become the most commonly used model for valuation, and
itself form reality.

Although it is important to consider the potential ethical implications of developing
a model to predict intraday stock returns, the scope of this thesis is limited to the
technical aspects of developing the model. The ethical and psychological implications
of such a model are vast and complex and require thorough investigation beyond the
scope of this thesis. For example, the use of such a model could potentially lead
to unfair advantages for those who have access to it, widening the gap between the
wealthy and the less fortunate. It could also encourage a short-term perspective on
investments, which could have negative consequences for the long-term stability of
the stock market.

Furthermore, the psychological effects of relying on a model to make investment
decisions could lead to emotional detachment from the stock market. A detachment
that can result in a lack of accountability and responsibility. These are all important
considerations that warrant further investigation and analysis beyond the technical
development of the model itself.

8.4.3 Summary of Real-World Applications and Implications
Investors have different appetites for risk. The calculation of utility scores sug-
gests that intraday investing should be avoided in general unless the investor is risk-
seeking. The expected return is negative when adjusting for transaction costs, and
this strengthens the suggestion. In this regard, we can suggest that a well-functioning
model should help investors achieve a higher return on their investments. The model
should locate investments with the highest probability of achieving returns above the
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transaction cost. It must be noted that this model would have to quantify both the
potential return and loss adjusted for the transaction costs.

Regarding the time frame, we discussed the results of Gidófalvi (2001). The time
frame of 20 minutes may be a bit narrow since information flows faster in the years
2009–2020 compared to the years 1999–2000. Investors may need more time to fully
process the amount of information, and 20 minutes is not a sufficient amount of time
to complete this processing and placing an investment.

As discussed in this section, this kind of market modeling and prediction has some
potential drawbacks. Most important is the discussion of whether a model could
model the market accurately. We note that unlike a valuation formula, such as the
black-scholes formula, the model we outline in this thesis is a prediction model. It
is a prediction model with the possibility of changing the market. We argue that
building a model that changes the market is a hard, if not impossible, task. A
prediction model that changes the market it predicts cannot continue to accurately
predict the market.
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9 Conclusion
In this thesis, we have investigated the effect of news articles on the stock market
on an intraday basis. We used a data set with news articles about stocks on the
NASDAQ Stock Exchange. From the thousands of stocks in NND we considered
the 19 most mentioned stocks and built a data set with intraday price movements
in 5-minute intervals from −30 minutes to −5 minutes in relation to the time of
publication of the news article. From the news articles, we performed a sentiment
analysis and a text classification to extract textual features. These data were used
to predict HPR 20 minutes after a news article was published.

Research Question 1

Our first research question to answer was: “Does textual data help predict the di-
rection of stock returns on intraday data?”. The answer to this question can help
us understand whether textual data have an effect and how much textual data can
affect movements in intraday stock prices. We observe that textual data in some way
can help predict directional movements on an intraday basis. This is mainly due to
the results of our DistilBERT models. On headlines, DistilBERT achieved a preci-
sion of 31.22% and a recall of 32.41%. On content, it achieved a precision of 21.08%
and a recall of 16.85%. This is the precision and recall for class 1, up movements,
on the test set. If the models are combined and we consider an up prediction to be
true if either headlines or content is predicted to be up up, DistilBERT achieves an
accuracy of 76.23%. Note that this result is from the validation set, but it is still an
out-of-sample result for the DistilBERT model. This suggests that textual data help
predict the direction of stock returns on intraday data and thus that textual data
help explain the stock market.

Research Question 2

To measure how accurately a model using textual features can predict movements,
we answer the second research question: “Can a machine learning model including
textual features predict the direction of a stock price movement 20 minutes after the
news has been published?”. This helps to understand if our model performs well
enough to be implemented in a trading strategy. On the basis of our findings, it is
hard to answer yes to this question. We still believe that textual data could be part
of the puzzle to predict intraday returns, but there are still many missing variables.

From our findings, we observe that tree-based models seem to yield the best results
in predicting intraday stock returns using NLP, with a precision of approximately
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33% and a recall of approximately 36%. If we compare our results with previous
work in the field, the accuracy is comparable, but we go further and also present how
accurately we can predict a significant up movement.

Research Question 3

Lastly, we ask “Does textual data clear up some of the noise in stock data?”. The
last research question is to facilitate a more philosophical discussion. As mentioned
in the answer to research question 1, we believe that it does clear up some noise.
From a theoretical point of view, textual data should clear up some noise, and based
on our findings, we believe this to be true.

Concerning this final research question, we also point out some of the concerns
presented in Section 8.4.2. Although the text does clear up some of the noise, it
does not indicate that it could or should do it forever. It could be the case of a
self-fulfilling prophecy. Further research in this field should consider whether the
field of intraday stock prediction is a feasible field of study.

A Final Consideration

Before continuing to suggestions for future work, we state one final point: If one’s
goal is to earn money, we would recommend not buying intraday stocks, unless you
are risk-seeking. On the basis of our findings, textual data do not seem to clean up
enough noise in intraday data. If you wish to earn money, either you must know
something that the others do not, or you should look at longer time frames for
investing.

9.1 Future Work
This thesis has started work in the field of predicting the directional movements of
stocks on an intraday basis. In our thesis, we have discovered more aspects of the
field, and we are now going to make some suggestions for further work in the field.
As mentioned in Section 8.4.2, future researchers should consider how smart it is to
develop long-term prediction models for the market.

Increasing the number of stocks We noticed that many news articles were pub-
lished outside the opening hours of the NASDAQ Stock Exchange and the New York
Stock Exchange. One possibility to gain more data would be to include data from
multiple different stock exchanges, such that one could capture as many news articles
as possible.

Investigating the selected time frame We have observed some promising results
in terms of a longer time frame. This is likely due to the fact that a stock will
fluctuate more in a larger time frame. Another project we have noticed, which has
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not yet1 been published, investigates in what time frames the correlation between
news articles and stock price movements is strongest. They find that this correlation
is strongest in larger time frames of up towards two hours.

Another possibility in terms of time frame is to investigate whether a stock price
has increased significantly during a larger time period. Our models only look at a
snapshot exactly 20 minutes after an article was published. This works for a small
time frame but might not be as suited when the time frame is expanded. If we
look at a time frame of 60 minutes, it might be that the stock price had increased
significantly at minute 42, but went down in the last minutes, resulting in the model
not predicting up.

Increasing the number of textual features DistilBERT has to extract a lot of
information from each article and only return a single value to represent all this
information. Perhaps, using similar models to extract specific information from news
articles is an option. The models should be better when having a more specific task
rather than truncating an entire article into one feature. We propose using techniques
such as topic modeling or latent Dirilecht allocation to capture more information from
the texts.

Use other transformers models or neural networks It could be possible to con-
struct the data set in another way so that sequence-based neural networks could
work and perform better than our FNN. One could also investigate other transform-
ers models such as other BERT models or GPT models.

Inclusion of other financial features We have not investigated the inclusion of
other financial features than the HPR and volume. These features could be better
combined with textual features to create superior models.

1At the time of writing
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A Tools
This appendix describes what hard- and software was used to achieve our results.
We describe the specifications of CPU, GPU and RAM, as well as version number of
related software.

A.1 Hardware
The following table displays what hardware was used to achieve our main results:

Component Type
CPU AMD Ryzen 3600 6-Core 3.6GHz
GPU ASUS NVIDIA GeForce GTX 1660 SUPER 6GB GDDR6
RAM 16GB DDR4 2666Mhz

We note that we did run one model on a slightly different setup, where we used
a NVIDIA Quadro GPU. That GPU ran a slightly different CUDA version. After
some testing, we assume that this did not make a difference in predicitons.
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A.2 Software
The software used to make the predictions is as follows:

Software Version
python 3.10.9
pandas1 1.5.3
numpy 1.24.22

PyTorch 1.13.1
PyTorch Lightning 1.9.43

torchmetrics 0.11.34

scikit-learn5 1.2.1
xgboost6 1.7.4
transformers 4.26.17

1https://pandas.pydata.org/pandas-docs/version/1.5/index.html
2https://numpy.org/doc/1.24/index.html
3https://lightning.ai/docs/pytorch/1.9.4/
4https://torchmetrics.readthedocs.io/en/stable/
5https://scikit-learn.org/stable/
6https://xgboost.readthedocs.io/en/stable/python/python_api.html
7https://huggingface.co/docs/transformers/v4.26.1/en/index
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B Preprocessing Details
This appendix describes how the preprocessing was done in greater detail. It also
explains some of the challanges we faced when constructing our final dataset. Parts
of this appendix is repeating what is mentioned in Sections 4.1 and 4.2.

In Appendix B.1 we illustrate how the text from a news article is represented in
the NND.

NASDAQ News Dataset
The NND was a 6GB .json-file containing approximatly 1.4 million news arti-
cles from various sources regarding stocks on the NASDAQ stock exchange. The
size of the dataset meant that it did not fit into our RAM, so we used chunks.
For each chunk we removed columns article_link, author_link, author_name,
related_articles and appears_in. This was to reduce the size of the dataset.

After dropping the columns we had to tackle the different symbols (tickers) in
the dataset. This is the part where we filter out the tickers we don’t want. Some
articles had multiple tickers associated with it, and our solution here was to explode
the dataset, meaning that we only have one ticker on each row. This meant that
the same news article can appear in multiple rows. Since we knew that Facebook
changed ticker from FB to META we changed all occurrences of FB to META in the
dataset, this did not matter as we were unable to acquire the stock data for META.

Another nuisance with the NND was the fact that some of the columns contained
dictionaries. This meant that we had to extract the information from the dictionary,
and then rename the new columns. The columns [$oid, $date] became [id, date].

Finally after this process we merged the different chunks into a new dataframe
before formatting the dates to have a datetime format to be able to merge with the
RSD. We also set each publishing time to the closest whole minute so we can match
as many publishing times as possible with the intraday stock data in the RSD.

We note that the column for symbols (ticker) were missing in the last chunks of
the dataset. The dataset had no detailed explanation as to why this was the case,
so the meaning of the columns had to be interpreted from content and heading.

Refinitiv Stock Dataset
The RSD came more complete than the NND. It was retrieved from Refinitiv Datas-
cope Select. Since we are looking at minutely data, we assume that the last price
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from t− 1 is equal to the opening price of t. The preprocessing of the RSD is mainly
finding out how to handle missing values.

Our solution was to brute-force it by forward-filling all missing values to be the
same as the previous valid value. This meant that we also forward-filled when the
exchange was closed. It works for 19 stocks, but if the stock number increases, the
dataset increases with almost triple.

Merging the Datasets
After cleaning the NND and RSD we merge the datasets on common time. We
set a list of desired lags, and then merge on those lags as well. In our thesis, the
selected timestamps were [−30,−25,−20,−15,−10,−5, 20]. The merging was done
by removing/adding the specified number of minutes to the whole RSD and then
merging. During the merging, we also remove duplicates and N/A values. Table B.1
displays how many observations remain at the different steps in the merging process.

Table B.1: Removed observations at each point in the merging process.
Merging step Remaining observations Change
Cleaning news data 490,140 -
Merging with stock data 490,140 -
Dropping duplicates 489,466 −674
Dropping N/A 169,769 −319, 697
Removing closed times 55,952 −263, 745

After merging, we generated the returns for all timesteps with regards to time
zero. Finally we had to filter out the times where the exhanges was not open, as well
as 30min at the start and 30min at the end of opening hours. This was done to take
into account the fact that we use those timestamps in our lags.

Troubles regarding timezones. One key aspect to consider when working with
daily data is time and timezones. We have to make sure that the data from NND
and RSD is in fact merged on the exact same time. When we got the data we assume
that it was on UTC, since the time column in both dataset had a trailing Z. This
made it so that we could merge on time without too much hazzle. The trouble began
when we had to consider daylight savings time. We do not want to have data for when
the stock exchange were not open, so we had to figure out when than was. Luckily
the data provided by refinitiv had a column named GMT Offset. This column was
either -4 or -5. This is where another problem arises. Does that offset take into
consideration daylight savings time? After some research it seems like GMT does in
fact not have summertime, and is the same as UTC. It is nevertheless a weakness
of the refinitiv database, and it should have given an UTC offset rather than GMT
offset.
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The processing of removing the time where the exchange was closed then had
the extra step of filtering out different UTC timestamps depending on the value of
the column GMT Offset. This seems like a straightforward task, but requires some
nontrivial logic where we first create one dataframe for GMT -4 and another for
GMT -5, where we then filter based on three OR statements to not only filter on
whole hours, but also minutes.

B.1 Example News Article
Below, we present one news article without changing the formatting. As we can see,
the text seems to be scraped from the website, as there are some strange line breaks.
The length of this article is 804 words (tokens). This is slightly above average.

Date

2014-10-15 14:30:00+00:00

Ticker

MSFT, AAPL. Note that this is the tickers associated with the article in our final data
set. In the raw NND, it might have more tickers associated with it.

Article Title

Should Microsoft Investors Worry About The Surface Pro 3?

Article Content
Note that some of the lines is too long to display on the page. We have not made
any corrections to this.

Reportedly, the Surface Pro 3 is struggling, but its success
isn’t essential to Microsoft. Source: MicrosoftA recent

Digitimes

article

raised eyebrows in regards to
Microsoft

’s beleaguered Surface tablet. According to upstream supply chain
sources, the Surface tablet line has created US losses of about
$1.7 billion. However, the biggest takeaway was related to its
heavily marketed Surface Pro 3:With the factors above, the sources believe sales of the
Surface Pro 3 are unlikely to surpass one million units, adding
that Microsoft is also not very aggressive about development of
a next-generation Surface and is likely to terminate the
product line.Microsoft quickly pushed back on the rumor with a
blog post

from Brian Hall, the General Manager of Surface. Under the ending
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subhead, "Businesses can buy with confidence. We are here to
stay," Mr. Hall quotes Microsoft CEO Satya Nadella’s strong
support for the device: "Microsoft is putting its full and
sustained support behind the ongoing Surface program as one of a
number of great hardware choices for businesses large and small."
It is apparent that Microsoft is committed to the Surface line,
but should they be?Microsoft’s Surface struggles

After two years - and three iterations -- with no
meaningful results from the product, the question for investors
is should Microsoft abandon the product. And on the surface (pun
shamelessly intended), it seems like the Surface abandoning crowd
has a point. If the numbers provided by Digitimes are correct
(Microsoft doesn’t release specific product results, so
third-party results are the only source of estimates), then
Microsoft can enrich shareholders simply by exiting the business
(after the costs of winding down the business are expensed).Recently, CEO Satya Nadella appeared to distance himself from
the Surface line by calling Microsoft’s hardware a "supporting"
business. Analysts and observers have closely followed Nadella’s
comments about the Surface, partly because the tablet line was
former-CEO Steve Ballmer’s idea and mostly because poor sales
results for the Surface RT were widely considered the
"final straw," leading to Ballmer’s exit.

Nadella hedged on Ballmer’s characterization of a "devices and
services" company instead choosing to refer to Microsoft as a
"mobile first, cloud first" company.Devices are flashy, but not essential to Microsoft

Lost in the discussion of whether or not Microsoft should keep
the Surface tablet lies a rather important fact: Microsoft isn’t
dependent upon devices for revenue or earnings. Unlike fellow
device-makers
Samsung

and
Apple

, Microsoft isn’t dependent upon gadgets. Last fiscal year,
Microsoft’s "Devices and Consumer Hardware" segment only provided
13.4% of total revenue. For perspective, Apple’s iPhone along
provides over 50% of its revenue.So while the news covers the struggles its devices face -
Windows Phone’s distant third place in worldwide smartphone
operating systems, Xbox One’s losing battle against
Sony

’s PlayStation 4, and the aforementioned Surface’s woes -
shareholders continue to benefit from Microsoft’s strong overall
performance.As a matter of fact, since the beginning of 2012, Microsoft’s
stock holds up extremely well against Apple although their
devices since then have had two widely differing paths:MSFT

data by
YChartsAs you can see, Apple’s provided a negligibly better return
since then by capital appreciation of nearly 68% versus 65% for
Microsoft. However, when compared to the greater market (as
indicated by the S&P 500), both are doing well for
shareholders. So as you can see, although devices are flashy and
interesting to discuss, Microsoft doesn’t need to be a device
leader to enrich shareholders.Final thoughts
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Microsoft continues to struggle with its devices, but that’s not
what investors should focus on. In its "Commercial Other"
division, the company reported $7.5 billion in sales last fiscal
year -- that’s where Microsoft books its cloud-based revenue. And
although currently that’s only 9% of revenue, it grew 33.3% on a
year-over-year basis. Satya Nadella wisely described Microsoft as
a "cloud first" company, investors would be wise to pay more
attention to Microsoft’s moves in the cloud than in devices.Apple Watch revealed: The real winner is
inside

Apple recently revealed the product of its secret-development
"dream team" -- Apple Watch. The secret is out, and some early
viewers are claiming its everyday impact could trump the iPod,
iPhone,
and

the iPad. In fact, ABI Research predicts 485 million
of this type of device will be sold per year. But one small
company makes Apple’s gadget possible. And its stock
price has nearly unlimited room to run for early in-the-know
investors. To be one of them, and see where the real money is
to be made, just
click here

!The article
Should Microsoft Investors Worry About The
Surface Pro 3?

originally appeared on Fool.com.Copyright Â© 1995 - 2014 The Motley Fool, LLC. All rights
reserved. The Motley Fool has a

disclosure policy

.The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of Nasdaq, Inc.

93



This page intentionally left blank.



C Evaluation Graphs From Training
Networks

This appendix shows how different networks were tuned. We first describe the fine-
tuning of DistilBERT before we describe the varios NNs.

C.1 Fine-Tuning of DistilBERT
The tuning in Figure C.1 is trained on 30 epochs on article headlines. The loss seems
to be converging to about 0.05. The tuning on content is trained on 50 epochs.
Figure C.2 displays the metrics from tuning. As we can see, it takes quite a few
more steps for the train loss to converge downward. We observe that the graphs for
training on content and headlines have approximately the same shape, but the model
trained on content takes more steps to achieve the results. This is natural, as it has
more data to fit to. The evaluation metrics from training is displayed in Table C.1.

Both figures also show the development of the features from the validation set.

Table C.1: Evaluation metrics from fine-tuned DistilBERT during training. Note that
these metrics are micro-average values across both classes.

Metric Headlines Content
Loss 3.1525 2.8256
Accuracy 0.6620 0.6672
F1 0.3016 0.3017
Precision 0.3301 0.3474
Recall 0.2776 0.2666
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Figure C.1: Evaluation metric graphs from finetuning DistilBERT on headlines. The red
line in loss graph is y = 0.05.
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Figure C.2: Evaluation metric graphs from finetuning DistilBERT on content. The red
line in loss graph is y = 0.05
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C.2 Graphs and Results of Testing Multiple NNs
Here we present some of the other typologies we have tried for the FNN models. As
we can see, almost all of them performed the same. The data was retrieved from
tensorboard logs.

Firstly, in Figure C.3, we see that the training loss does not converge. The model
seems to be unable to detect a pattern. This loss graph is consistent across most
of our networks. Figure C.4 displays the evaluation graphs from training a network
with a small learning rate of 1× 10−6. We observe an interesting pattern where the
training and evaluation loss have a fan shape. This is a sign that the model is not
training properly. Lastly, in Figure C.5, we see the evaluation graphs of a network
trained using an adaptive learning rate. As with the model shown in Figure C.3, this
model seems to be unable to detect a pattern.
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Figure C.3: Results of running a FNN for 340 epochs.
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Figure C.4: Evaluation metric graphs of running a [5000-3000-1500-150-5] NN with
1× 10−6 learning rate.

99



C Evaluation Graphs From Training Networks

0 0.2 0.4 0.6 0.8 1
·106

0.52

0.53

0.53

Step

Tr
ai

n/
lo

ss
/e

po
ch

0 0.2 0.4 0.6 0.8 1
·106

0.5

1

1.5

Step

Tr
ai

n/
lo

ss
/s

te
p

0 0.2 0.4 0.6 0.8 1
·106

0.7

0.75

Step

Ev
al

/l
os

s/
ep

oc
h

0 1 2
·105

0

0.5

1

1.5

2

Step

Ev
al

/l
os

s/
st

ep

0 1 2
·105

0

0.5

1

Step

Ev
al

/p
re

c

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1
·10−2

Step

LR
_S

ch
ed

ul
er

Figure C.5: Evaluation metric graphs of running a [5000-3000-1500-150-5] NN with
CosineAnnealingLR lr_scheduler
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D Hyperparameters
In this appendix we show the different hyperparameters used for training. The
precision is the precision score that variation of parameters achieved in our grid
search cross validataion. Default values are used when nothing is specified. We also
display the general algorithm for achieving these parameters.

Table D.1: XGBoost hyperparameters.
Parameter Value
max_depth 3
n_estimators 200
gamma 10
lambda 4
objective logistic
Precision 0.6016

Table D.2: Random forests hyperparame-
ters.

Parameter Value
max_depth 3
n_estimators 200
criterion entropy
Precision 0.6472

Table D.3: Logistic regression hyperpa-
rameters.

Parameter Value
penalty l1
solver saga
C 0.001
Precision 0.6983
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General algorithm for choosing hyperparameters
When choosing the hyperparameters we used the same general approach.

1. Set some initial values

2. Record the precision

3. Investigate values close to the ones selected

4. Investigate the recall on validation dataset to see if the recall are reasonably
high. This is where we exercise discretion to make sure that the model is usable.
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