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Abstract

The thesis has two main goals.

First, we present an overview of differential cohomology, focusing on existing approaches to
the topic and important results. This starts with the differential characters of Cheeger-Simons
([CS85]), which are generalized by the differential function complexes of Hopkins-Singer ([HS05]).
The approach by Bunke-Nikolaus-Völkl ([BNV16]) using spectral sheaves is presented, and we
decompose the ∞-category of differential cohomology theories by using known results on stable
∞-categories with certain subcategory structures. We study the axioms for smooth extensions
and a corresponding uniqueness theorem proven by Bunke-Schick ([BS10]) before we investigate
how differential cohomology theories respect homotopy invariance and Landweber exact formal
group laws ([Bun+09]). Furthermore, we investigate explicit descriptions of differential cohomo-
logy theories, such as smooth Deligne cohomology for ordinary differential cohomology. After
developing a geometric suspension construction, we briefly explain how the structured bundles
of Simons-Sullivan ([SS08b]) define differential K-theory.

Secondly, we study an analog of differential cohomology for complex manifolds, namely Hodge-
filtered cohomology theories, where we work towards understanding (geometric) Hodge-filtered
K-theory. We study Deligne cohomology and the work of Hopkins-Quick ([HQ15]), and see
how they fit into the axioms of Hodge-filtered extensions by Haus-Quick ([Hau22], [HQ22]).
We investigate differences between differential- and Hodge-filtered cohomology, most notably by
discussing a conjecture that Hodge-filtered extensions respect Landweber-theories similarly to
differential cohomology, despite differences between the two. After a discussion on multiplicative
K-theory in the sense of Karoubi ([Kar90]), we prove that multiplicative K-theory is a geometric
model of Hodge-filtered K-theory in the sense of Haus-Quick.
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Sammendrag

Oppgaven har to hovedmål.

Først presenterer vi en oppsumering av fagfeltet differensiell kohomologi, med hovedfokus på eks-
isterende tilnærminger og viktige resultater. Vi starter med differensialkarakterene til Cheeger og
Simons ([CS85]), som kan generaliseres til differensialfunksjonskomplekser etter Hopkins-Singer
([HS05]). Vi presenterer tilnærmingen til Bunke, Nikolaus og Völkl ([BNV16]) gjennom spek-
tralknipper, og vi dekomponerer uendeligkategorien av differensielle kohomologiteorier gjennom
kjente metoder for stabile uendeligkategorier som utnytter spesifikke underkategoristrukturer.
Vi studerer aksiomene til glatte utvidelser og unikhetsteoremet for disse, som bevist av Bunke og
Schick ([BS10]), før vi undersøker hvordan disse respekterer homotopiinvarians og landweberek-
sakte formelle gruppelover. Videre betrakter vi eksplisitte beskrivelser av spesifikke differensielle
kohomologiteorier, slik som glatt delignekohomologi for ordinær differensiell kohomologi. Etter
vi studerer en geometrisk suspensjonskonstruksjon, forklarer vi kort hvordan arbeidet til Simons
og Sullivan ([SS08b]) på strukturerte bunter brukes til å definere differensiell K-theori.

Deretter studerer vi en analog til differensielle kohomologiteorier for komplekse mangfoldigheter,
nemlig hodgefiltrerte kohomologiteorier, hvor hovedfokuset etterhvert flyttes til å forstå (geomet-
risk) hodgefiltrert K-teori. Motivert av delignekohomologi og arbeidet til Hopkins og Quick
([HQ15]), studerer vi aksiomene for hodgefiltrerte utvidelser som presentert av Haus og Quick
([Hau22], [HQ22]). Vi studerer forskjeller mellom differensiell- og hodgefiltrert kohomologiteori,
og vi diskuterer en formodning om at hodgefiltrerte utvidelser respekterer landweberteorier på
samme måte som differensiell kohomologi, tross subtile forskjeller mellom de to. Fokuset rettes
mot hodgefiltrert K-teori, og etter en diskusjon av Karoubis ”multipliativ K-teori”, beviser vi
at multiplikativ K-teori er en geometrisk modell for hodgefiltrert K-teori, basert på aksiomene
til Haus og Quick.
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Introduction

In the field of algebraic topology, one broadly aims to study and classify topological spaces and
their properties. Many important tools are homotopy invariants, such as homology, cohomology,
and homotopy groups. Established theorems from differential geometry, such as the Gauss-
Bonnet theorem and the de Rham theorem, assert that constructions that are not homotopy
invariant, such as closed differential forms, curvatures, and integrals, can be used to construct
homotopy invariants, such as de Rham cohomology, or the Euler characteristic. Despite their
power, much valuable information is lost when considering homotopy invariants of smooth man-
ifolds, as they rarely respect the geometric notions of lengths, angles, and curvatures.

However, results such as the de Rham theorem may be used as motivation to study more refined
constructions. By specializing the discussion of homotopy invariants to cohomology, the more
”refined” constructions we study are called differential cohomology. Some informal questions that
subsume the entire thesis, will therefore be the following:

The underlying questions:

1. How, if at all, can we refine cohomology on smooth manifolds to include ”geometric in-
formation”?

2. Which axioms define these ”differential” cohomology theories, and how unique are they?
3. How much homotopy invariance is ”traded away” for ”geometric information”?
4. Which explicit constructions make up geometric models for these theories?

The first goal of the thesis is to answer these questions based on already existing papers. We
briefly start with the approach of Cheeger-Simons [CS85], based on the de Rham theorem, and
see how they ”blend” the ”geometric” and ”homotopic” information into a hexagon diagram. That
is, given a smooth manifold M , we have a construction Ĥ∗(M ;Z) that fits into a diagram,
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0 0

Hk−1(M ;R/Z) Hk(M ;Z)

Hk−1
dR (M) Ĥk(M ;Z) Hk

dR(M)

Ωk−1(M)/Ωk−1
0 (M) Ωk0(M)

0 0.

Bock

j cc

curv

d

ι

The groups Ĥ∗(M ;Z) are the ordinary differential cohomology groups of a smooth manifold M ,
and the above illustrates the interplay between the homotopy invariant picture (found in the
top half of the diagram) and the ”geometric” (e.g. non-homotopy invariant) picture (found in
the bottom half).

The differential characters of Cheeger-Simons can be vastly generalized through differential
function complexes, and we may use this generalization to construct differential E-cohomology
for any spectrum E, which is based on the work of Hopkins-Singer [HS05].

Based on the maps in and out of Ĥ∗(M ;Z), there is an axiomatic way to study differential
cohomology theories, and this axiomatic framework allows for a uniqueness theorem, under
certain technical assumptions. This is the work of [BS10], and in the axiomatic framework, it is
possible to classify ”how much homotopy invariance is traded away for geometric information”,
resulting in a homotopy formula. We can even find explicit constructions that fit the axioms.
For example, smooth Deligne cohomology defines ordinary differential cohomology and therefore
defines differential cohomology groups isomorphic to the groups of differential characters.

The naive idea of adding geometric information to topological information is especially clear
when considering differential K-theory as defined by Simons-Sullivan [SS08b], where the vector
bundles are replaced by ”structured bundles”, which are vector bundles with an appended (class
of) connection(s).

We can also consider an extremely general approach by [BNV16] based on defining an ∞-
category Sh(Man;Spt), which becomes the ∞-category of differential cohomology theories.
This ∞-category can be decomposed through the theory of stable recollements. This allows us
to retrieve a hexagon diagram as above, although it is too general to satisfy the axioms.

Furthermore, differential cohomology inherits classic algebraic constructions. For example, given
a formal group law that is Landweber exact, (R, g), we can construct a cohomology theory by
R∗(X) = MU∗(X) ⊗MU∗ R. The axiomatic picture of differential cohomology can be used to
show that we can consider differential complex cobordism M̂U

∗ to obtain a differential R-theory
as R̂∗(M) = ˆMU∗(M)⊗MU∗ R.
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Differential cohomology theories are only defined for smooth manifolds. Although complex mani-
folds are smooth manifolds, differential cohomology is not made to respect the complex structure
of complex manifolds. Motivated by Deligne cohomology, which was originally formulated for
complex manifolds, we move on to study Hodge-filtered cohomology theories. The general con-
struction showing the existence of Hodge-filtered cohomology theories for an arbitrary spectrum
E is the Hopkins-Quick construction ([HQ15]). An axiomatic picture slightly different to differ-
ential cohomology was established by Haus-Quick in [Hau22] and [HQ22]. However, there does
not exist a uniqueness theorem for Hodge-filtered extensions (yet).

After discussing the basic properties and results for Hodge-filtered cohomology theories in light
of the preceding discussion of differential cohomology, we conjecture that despite subtle, prob-
lematic differences in their definitions, we expect Landweber exact formal group laws to produce
Hodge-filtered cohomology theories similarly to differential cohomology. We did not manage to
prove this, which resulted in Conjecture 4.6.2.

The novelty in the thesis is mainly found in Chapter 5, where we specialize the discussion to
Hodge-filtered K-theory. We discuss potential approaches to Hodge-filtered K-theory and find
a geometric model for Hodge-filtered K-theory by showing that multiplicative K-theory in the
sense of Karoubi [Kar90] can be modified to satisfy the axioms of a Hodge-filtered K-theory.

Theorem 1 (Geometric Hodge-filtered K-theory, Theorem 5.2.3).

With certain maps specified in Section 5.2, Multiplicative K-theory is a Hodge-filtered K-theory
with twist p = 0.

Our construction is motivated by a geometric suspension construction, bypassing the problem
that ΣM does not need to be a smooth manifold, even though M is. This lets us specify the
maps and check the axioms only in cohomological degree 0, as this approach induces maps to
higher degrees by being describing higher groups as certain kernels.

Hodge-filtered cohomology theories depend on a prespecified twist p. The generality of multi-
plicative K-theory lets us define a p-shift, which induces the corresponding result for general
p.

Corollary 2 (Geometric Hodge-filtered K-theory, Corollary 5.2.6.1).

The p-shifted multiplicative K-theory in the sense of Definition 5.2.5 is a Hodge-filtered K-
theory.

More intuitively speaking, the two last results combine to say that multiplicative K-theory
defines a (geometric model for) Hodge-filtered K-theory.

These last results are also original to the thesis, as far as we are aware, although the idea is not
new to this thesis, as the possible connection between multiplicativeK-theory and Hodge-filtered
K-theory is briefly mentioned in [HQ22].





Overview of the thesis

Chapter 1 discusses the necessary preliminaries to reading this thesis, and we briefly discuss
connection theory, complex geometry, stable homotopy theory, simplicial sets, and∞-categories
(quasi-categories).

Chapter 2 is dedicated to understanding the main approaches to differential cohomology. After
investigating how the de Rham theorem can be used to ”blend” differential forms with singu-
lar cocycles, we consider ordinary differential cohomology through differential characters, and
develop their hexagon diagram. These can be generalized vastly, ending in the definition of
differential E-cohomology for any spectrum E. Furthermore, we study differential cohomology
through spectral sheaves on manifolds and use theory on recollements for stable ∞-categories
to reprove the hexagon diagram in a general framework.

Chapter 3 builds on the axiomatic framework summarizing (most of) the approaches in Chapter
2, and aims at investigating central results in the field. We discuss the uniqueness of smooth
extensions under technical assumptions, and quantify the failure of homotopy invariance for dif-
ferential cohomology theories, resulting in a homotopy formula. Explicit descriptions of ordinary
differential cohomology and differential K-theory are discussed after investigating a geometric
suspension construction, and we briefly discuss a Landweber-type result.

Chapter 4 marks the transition from smooth manifolds to complex manifolds, and we consider
an axiomatic framework for Hodge-filtered cohomology theories based on Deligne cohomology,
Hopkins-Quick theories and differential cohomology theories. All of these can be used to produce
constructions satisfying the axioms of Hodge-filtered extensions. We briefly discuss results from
differential cohomology, ending in a homotopy formula and a conjecture on a Landweber-type
result for Hodge-filtered cohomology theories.

Chapter 5 specializes the discussion to Hodge-filtered K-theory, establishing that multiplicative
K-theory works as a geometric model for Hodge-filtered K-theory.
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Overview of the thesis xix

How to read this thesis

As readers might be aware, this thesis is quite long. This is simply because we intended the
thesis to not be too short. We believe the field of differential cohomology is quite dispersed in the
sense that there are many articles, approaches, results, and beautiful concepts, but few papers,
books, or theses that aim to gather the work done in the field. This makes it especially hard for
unguided students to get an overview.

A treatment of differential cohomology through the eyes of homotopical tools can be found in
[ADH23]. They also cover topics we have not mentioned in this thesis, and in this thesis, we
mention many topics not covered in [ADH23]. A thorough overview of any mathematical field
requires many ways of viewing the field as a whole, and what we present here can be thought
of as complementary to [ADH23] or similar treatments of differential cohomology. Alternatively,
this thesis can be thought of as ”a companion to exploring differential cohomology”, where we
aim to introduce sufficient motivation and alternative approaches, develop sound intuition, and
elaborate on the main results in the field. Presenting a coherent story of differential cohomology
has been the main goal of the thesis since the start, as the extension to Hodge-filtered cohomology
and Hodge-filtered K-theory came later.

Experienced readers may skip much material found in the thesis. For example, a reader aware
of the main approaches to differential cohomology may skip Chapter 2 to study the axiomatic
picture and its consequences in Chapter 3, or the extensions to Hodge-filtered cohomology the-
ories (Chapter 4) and Hodge-filtered K-theory (Chapter 5). To guide such readers, we present
a summary of what we consider the most important parts of the thesis. This is simply one of
many ”short tables” one can make.

For differential cohomology:

1. Section 2.2 (Motivation and initial approach),
2. Definition 2.3.1 and Theorem 2.3.8 (Differential characters and their hexagon),
3. Section 2.5 (Interpretations of ordinary differential cohomology),
4. Definition 2.7.5 (Filtered differential function complexes),
5. Definition 2.8.4 (Differential E-cohomology groups),
6. Theorem 2.7.6 (Differential function complexes generalize differential characters),
7. Definition 2.11.5 (The ∞-category of differential cohomology theories),
8. Theorem 2.13.7 (Rediscovering the hexagon through stable recollements),
9. Definition 3.1.1 (Axioms of a smooth extension),

10. Theorem 3.2.9 (On uniqueness of smooth extensions),
11. Theorem 3.3.1 (The homotopy formula),
12. Remark 3.4.23 (Deligne cohomology as a homotopy pullback),
13. Theorem 3.4.24 (Deligne cohomology is ordinary differential cohomology),
14. Proposition 3.5.1 (The geometric suspension),
15. Definitions 3.6.4 and 3.6.6 (Structured bundles and differential K-theory).
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For Hodge-filtered cohomology:

1. Definition 4.1.1 (The Deligne complex and Deligne cohomology),
2. Definition 4.2.2 (Hopkins-Quick construction of Hodge-filtered cohomology theories),
3. Definition 4.3.1 (Axioms of Hodge-filtered extensions),
4. Section 4.4 (Deligne cohomology, Hopkins-Quick theories, and differential cohomology pro-

duce Hodge-filtered cohomology theories),
5. Definitions 5.1.1 and 5.1.4 (Multiplicative bundles and multiplicative K-theory),
6. Theorem 5.2.3 (Multiplicative K-theory is a Hodge-filtered K-theory for p = 0),
7. Definition 5.2.5 (p-shifted multiplicative K-theory),
8. Corollary 5.2.6.1 (p-shifted multiplicative K-theory defines a Hodge-filtered K-theory).

To further explore the mathematical world and connect this thesis to ideas and results outside
the scope of the thesis, we have used an exploratory type of remark called a Queequeg.
Queequeg 0.0.1. The term ”Queequeg” was first (as far as we are aware) coined for mathematical
terms by the author in [Ang21], from which we quote:

”If the remarks are exploratory digressions that take us way outside the scope of the
thesis, we will call them Queequegs. This word comes from the brilliant book “Moby
Dick” by Herman Melville, where Queequeg shows up as an easy-going son of a tribal
chief leaving his island society to explore and experience the world, just out of pure
curiosity. Therefore, when we encounter a Queequeg, readers should be aware that
these are remarks meant to open doors to further exploration, deeper connections,
and perhaps even to point readers to topics way beyond the author’s knowledge.”

Additionally, we include a section on ”other topics” in each chapter. These serve many purposes.
They are meant to refer readers to important papers and concepts we have not discussed, to
gather answers to questions the author asked throughout the process of writing this thesis,
and to elaborate briefly on unexplored ideas. For example, natural questions such as ”do we
have a Künneth theorem for ordinary differential cohomology?”, or ”do we have a way to refine
cohomology operations?” certainly deserve an answer, or at least a reference to where the answer
can be found.

Furthermore, some questions, such as ”can the filtration on filtered differential complexes from
Section 2.6 be used to construct a spectral sequence for ordinary differential cohomology?”, were
not addressed in the preexisting literature (as far as we know). These questions do not belong
in the main matter of the thesis, but addressing them and providing a brief discussion may be
the starting point of future research.

All mistakes in the thesis can be blamed on the author, and all diagrams presented are made by
the author.



Chapter 1

Preliminaries and Important
Results

Although the ultimate goal would be to write this thesis in a way accessible to ambitious third-
year students of topology, this has not been a priority. This thesis tries to collect ideas and survey
the scattered world of differential and Hodge-filtered cohomology. Addressing all the necessary
concepts, results, and detailed proofs would be a herculean task, and hence we merely focus on
conveying the ideas found in each section, outsourcing much to the reader and the papers/books
on display.

As one might expect, this thesis builds on a large set of preliminaries. We will throughout
assume, both fairly and unfairly, that a reader has a general overview of main concepts in
algebraic topology and homotopy theory. The same can be said for differential forms, smooth
manifolds, and homological algebra. Knowledge about generalized cohomology theories is a must,
and readers should know complex K-theory.

Much of the work in this thesis is based on either stable homotopy theory, some basic theory on
quasi-categories (∞-categories), and/or sheaf theory and -cohomology. The necessary theory on
sheaf cohomology will be introduced where needed. Some pages require knowledge of chromatic
homotopy theory, but we place warnings throughout where necessary. For these sections, we do
not require much preliminary knowledge about complex cobordism other than knowing it is an
important generalized cohomology theory. Even though it will be of relevance in Chapter 2, we
will not discuss sheaves of ∞-categories. We refer to [Lur09] and [Lur17], for the general theory,
and we mostly refer to [BNV16] and [ADH23] for the material we present on the topic.

The above list of preliminaries is not at all exhaustive. We recommend reading this thesis with
a textbook, a search engine, or a topologist nearby.

Assuming many preliminaries from potential readers might be ambitious, but this thesis is
written in the spirit that ”the thesis should be accessible (and interesting) to the author, a year

1
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ago”. However, connection theory and complex geometry are topics the author had not formally
learned before embarking on the thesis work, and hence we will allow some basic definitions and
results. To fill the gap slightly, we include a section on stable homotopy theory, and a section
on simplicial sets.

Note that these sections are meant only to showcase the relevant ideas, definitions, and main
results. We thus omit almost all proofs and refer extensively to the relevant sources.

1.1 Connections and Chern-Weil theory

There are many ways to give a short introduction to differential geometry and connection theory.
We will try to keep it simple, but we will skip many foundational concepts, to focus mostly on
what we need for this thesis. This subsection is inspired by [Tu17]. Unless otherwise mentioned,
M is a smooth manifold, and Man denotes the category of smooth manifolds. We will later
require manifolds to be complex, but this assumption will be stated, or be clear from context.

Classically, differential geometry can be viewed as a generalization of calculus in several variables
to smooth manifolds. If we try to understand something as simple as a directional derivative
on a general smooth manifold, problems arise already when we move from smooth functions to
vector fields. For example, given a direction Xp ∈ TpM and a smooth function f on M , we can
form the directional derivative of f in direction Xp as

∇Xpf = Xpf.

However, if we try to replace f with a vector field Y ∈ X(M), we have a problem. In Rn, we
may pick a canonical basis x1, . . . xn and write the vector field as Y =

∑
ai∂i, where ∂i = ∂/∂xi.

The directional derivative of Y in direction Xp is then given by

∇Rn

Xp
Y =

∑
(Xpa

i)∂i |p .

However, the canonical choice of basis of Rn is vital to this formula. For an arbitrary smooth
manifold M , the tangent space TpM does not necessarily have such a canonical choice of basis.
Furthermore, if we have a basis on TpM , we should be able to globalize it to a spanning frame
on M , that is, a set of vector fields X1, . . . , Xn ∈ X(M) such that X1

p , . . . , X
n
p forms a basis for

TpM at each p ∈M . This leads to the following definition.

Definition 1.1.1. (Affine connections).

An affine connection on a manifold M is an R-bilinear map

∇ : X(M)× X(M)→ X(M).

A pair (X,Y ) of vector fields is mapped to ∇XY , which we can read as ”the directional derivative
of Y with respect to (the directions given by) X”. We require ∇XY to be C∞(M)-linear in X,
and to satisfy the Leibniz rule with respect to C∞(M) in Y .
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Note that an affine connection on M can equivalently be specified as a linear map

X(M)→ EndR(X(M)).

We can also construct a Lie bracket of connections, [∇X ,∇Y ], by ∇X∇Y −∇Y∇X . This again
defines a new connection. As we have a Lie bracket at the level of vector fields, given by
[X,Y ]p(−) = Xp(Y (−)) − Yp(X(−)), we may measure how much ∇(−) strays from respecting
the Lie bracket. This is measured by its curvature.

Definition 1.1.2. (Curvature of an affine connection).

For an affine connection ∇, its curvature R∇ is given by

X(M)× X(M)→ EndR(X(M))

(X,Y ) 7→ R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

By recalling that vector fields are sections of the tangent bundle onM , that is, X(M) = Γ(TM),
we can generalize the above definitions to vector bundles. However, the second vector field does
not indicate any direction, as it is merely the ”function” to be differentiated. We therefore replace
the second X(M) with sections of the bundle in question.

Definition 1.1.3. (Connection on a smooth vector bundle).

A connection on a C∞ vector bundle E →M is a map

∇ : X(M)× Γ(E)→ Γ(E)

such that ∇Xs is R-linear in the section s and C∞-linear in the vector field X, and we require
∇X to satisfy the Leibniz rule with respect to C∞(M) in s. We say a section s is flat if ∇Xs = 0
for all X ∈ X(M).

By local trivializations, we can always define a connection locally. After showing convex lin-
ear combinations of connections produce connections, these local connections can be stitched
together by using a partition of unity to obtain the following result.

Theorem 1.1.4. (Smooth vector bundles always admit a connection).

All smooth vector bundles E over M admit a connection.

As convex linear combinations of connections produce connections, we can, given two connec-
tions ∇ and ∇′, consider γ(t) = t∇ + (1 − t)∇′ for t ∈ [0, 1]. This is a path in the space
Conn(E) of connections on E connecting ∇ and ∇′, implying that the space Conn(E) is con-
tractible. We call Conn(E) a space as it is possible to show that it forms an affine space over
Ω1(M ;End(E)) ([Tu17]). The contractability of Conn(E) hints to the possibility of defining
topological invariants based on the geometry found in connections. This is the purpose of the
Chern-Weil homomorphism, which we will soon define.

For a given connection ∇, we can define its curvature as before.
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Definition 1.1.5. (Curvature of a connection).

If ∇ is a connection on a smooth vector bundle E →M , its curvature R∇ is given by

X(M)× X(M)→ End(Γ(E))

(X,Y ) 7→ R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

We often omit the superscript ∇ if the choice of connection is clear from context.

As connections and curvatures ”eat” vector fields on M , they should intuitively be related to
differential forms. Indeed, by working locally with respect to a local frame e1, . . . en, we describe
∇X by

∇Xej =
∑

ωij(X)ei.

The 1-forms ωij (defined locally) are called the connection forms of∇. Similarly, for the curvature,

R∇(X,Y )ej =
∑

Ωij(X,Y )ei.

The 2-forms Ωij are called the curvature forms of ∇.

Theorem 1.1.6. (The second structural equation).

These forms are related by
Ωij = dωij +

∑
k

ωik ∧ ωkj .

This is called the second structural equation, because there exists a similar equation for the
torsion of an affine connection, referred to as the first structural equation. This can be found in
[Tu17].

A connection ∇ on a bundle E0⊕E1 →M induces connections ∇i on Ei. Similarly, connections
∇i on bundles Ei →M for i = 0, 1 define a connection on E0⊕E1 →M as connection forms can
be defined in terms of matrices [ωij ]. Furthermore, we can define a product connection ∇0 ⊗∇1

on E0 ⊗ E1 →M by

(∇0 ⊗∇1)X(s⊗ t) = ∇0,X(s)⊗ t+ s⊗∇1,X(t).

We will need to consider forms that take values in some vector space V , and not just in R (or
C). Since the vector space of smooth k-forms is given by Ωk(M) = Γ(∧kT ∗M), and we have

HomR(∧kTM, V ) ∼= (∧kTM)∗ ⊗ V ∼= (∧kTM∗)⊗ V,

we define
Ωk(M ;V ) = Γ((∧kT ∗M)⊗ V ).
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A product of a V -valued form with aW -valued form can become a Z-valued form for appropriate
vector spaces V,W and Z if we have a bilinear map µ : V ×W → Z. In the special case where
V = g is a Lie algebra, we may use the Lie bracket g× g→ g as the bilinear map µ.

Similarly, by considering a vector bundle E over M , we can define

Ωk(M ;E) = Γ((∧kT ∗M)⊗ E)

to be the E-valued k-forms on M . An immediate example of bundle-valued forms are the
curvature forms, which can be thought of as sections of the bundle (∧2T ∗M)⊗ End(E).

The curvature forms locally depend on a choice of frame e = (e1, . . . , en), consisting of vector
fields ei on an open U ofM . Assume a is a change of basis matrix for such a frame, which can be
thought of as a smooth function a : U → GL(n,R), and assume we have fixed a connection ∇. If
we consider the new frame given by ē = ea, the curvature forms Ω = [Ωij ] change as Ω̄ = a−1Ωa.

Considering so-called AdGL(n,R)-invariant polynomials on gl(n,R), which are polynomials
P (X) on gl(n,R) such that

P (A−1XA) = P (X)

for all A ∈ GL(n,R), we see that P (Ω̄p) = P (a−1
p Ωpap) = P (Ωp). Hence, when we let p vary, we

can omit any choice of local frame.

Theorem 1.1.7. (Chern-Weil).

Assume E → M is a smooth vector bundle of rank n, P an AdGL(n,R)-invariant and homo-
geneous polynomial of degree k on gl(n,R), and ∇ a connection on E. Then

1. the 2k-form P (Ω) on M is closed, and
2. the cohomology class [P (Ω)] ∈ H2k(M) is independent of the connection.

The map ϕ : Inv(gl(n,R))→ H∗(M) given by P 7→ [P (Ω)] is called the Chern-Weil homomorph-
ism.

By defining P by certain formulas of traces, determinants, and Pfaffians, we can obtain the
Pontryagin classes, Chern classes and Euler classes, respectively. We refer to [Tu17] for the
explicit construction of these P ’s.

Working with GL(n,R) is a special case of a more general phenomenon. Recall that any local
frame e = (e1, . . . , en) as above can be thought of as a local section of the frame bundle of E,
Fr(E). The frame bundle Fr(E) → M consists of all ordered bases, or frames, for the fibers of
E →M , and it is a principal GL(n,R)-bundle over M .

Connections of principal G-bundles in general, however, are more complicated than for vector
bundles. Before we delve into this, we need to remark that the connection theory on vector
bundles could have been (equivalently) formulated through a less explicit approach, using hori-
zontal distributions. The idea is that for a bundle π : E →M , we may consider the differential
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of π at a point p of E to obtain (π∗)p : TpE → Tπ(p)M . By the local trivializations, this map is
surjective. We may therefore consider a short exact sequence

0→ Vp → TpE → Tπ(p)M → 0.

V, as defined point-wise above, is often called the vertical subbundle of TE.

A splitting TM → TE is equivalent to a subbundleH such that V⊕H = TE. Such anH is called
a horizontal distribution, and we say it is linear if, for each p ∈ E, we have ((Sλ)∗)p(Hp) = Hλp,
where Sλ : E → E denotes scalar multiplication by λ. A choice of horizontal distribution on E
can be shown to be equivalent to a choice of connection on E. We refer to [Tu17] for the details.

If we now move to principal G-bundles and consider a principal G-bundle π : P → M , we
can approach connections on P as above. Let Vp denote ker(π∗)p, and assume that we have
a horizontal decomposition TpP ∼= Vp ⊕ Hp of TP . To try to define a connection through its
connection form, we can use the canonical projection vp : TpP → Vp, but to obtain a form, we
need to understand Vp a bit better.

A central lemma in principal bundle theory asserts that Vp ∼= g, which can be shown by studying
the differential of a map jp : G→ P at the identity e ∈ G. The map jp is defined by jp(g) = p ·g,
and ((jp)∗)e can be shown to induce an isomorphism onto Vp.

We can therefore define a g-valued 1-form ωp : TpP → Vp → g. This form is smooth, satisfies
G-equivariance in the sense that r∗gω = (Ad g−1)ω for any g ∈ G, and preserves fundamental
vector fields in the sense that for any vector field X ∈ g, we have ωp(X#) = X for all p. The
adjoints representation Ad g : g→ g used above is defined for a g ∈ G by the differential ((cg)∗)e,
where cg : G → G is the conjugation cg(x) = gxg−1. The fundamental vector field X# of X is
defined through j by setting X# = ((jp)∗)e(X). Therefore, the last statement means that the
composition

g Vp TpP Vp g
((jp)∗)e v

ωp

((jp)∗)
−1
e

maps X ∈ g to X.

This gives the following definition.

Definition 1.1.8. (Connections on principal G-bundles).

A connection on a principal G-bundle π : P → M (also called an Ehresmann connection) is
defined as a smooth g-valued 1-form on P that satisfies

• r∗gω = (Ad g−1)ω for all g ∈ G (it is G-equivariant), and
• ωp(X#

p ) = X for all X ∈ g (it preserves fundamental vector fields).
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Defining the curvature of such a connection can be done by following Formula 1.1.6, giving the
following definition of the curvature.

Definition 1.1.9. (Curvature of an Ehresmann connection).

Given a connection ω on a principal G-bundle P →M ,its curvature is the g-valued 2-form

Ω = dω +
1

2
[ω, ω].

Similarly to the case of vector bundles, we obtain a Chern-Weil homomorphism.

Theorem 1.1.10. (Chern-Weil for principal G-bundles).

If π : P → M is a principal G-bundle with connection ω, Ω its curvature form, and if f is an
Ad(G)-invariant polynomial of degree k on g, then the following hold:

1. The 2k-form f(Ω) on P is basic in the sense that there exists a 2k-form Λ on M with
f(Ω) = π∗Λ,

2. Λ is a closed form, and
3. the cohomology class [Λ] is independent of the connection.

1.2 Complex geometry

After considering differential cohomology in Chapters 2 and 3, which focuses on smooth man-
ifolds, we move on to Hodge-filtered cohomology theories in Chapters 4 and 5, which involves
complex manifolds.

We will not need a lot of theory on complex manifolds, and we focus on the main definitions and
examples. Even though we will be talking about Hodge-filtered cohomology theories, we will not
need much Hodge theory. We refer interested readers to [Voi02] and [Huy05] for a discussion of
Hodge theory. This subsection is mainly based on [Huy05].

Simply speaking, a complex manifold differs from a smooth manifold in the sense that we promote
the smooth atlas in a smooth manifold to be a holomorphic atlas. More concretely, we assume
the atlas {(Ui, ϕi)} is of the form ϕi : Ui

'→ ϕi(Ui) ⊂ Cn, and we require the transition functions
ϕij = ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) to be holomorphic. Two holomorphic atlases
{(Ui, ϕi)} and {(U ′

j , ϕ
′
j)} are equivalent if all combinations ϕi ◦ϕ

′−1
j : ϕ′

j(Ui ∩U ′
j)→ ϕi(Ui ∩U ′

j)
are holomorphic.

A complex n-manifold M is a smooth 2n-manifold with an equivalence class of holomorphic
atlases. It will be important to note that all complex manifolds are smooth. The category of
complex manifolds is denoted ManC.



8 Angelsen: Differential and Hodge-filtered Cohomology

Holomorphic functions onM are defined as for the smooth case, but replacing the word ”smooth”
with ”holomorphic”. Usually, such a simple change works to construct new definitions, but one
should be aware that this sometimes changes the theory substantially! Maps f : M → C are
said to be holomorphic if for all charts (Ui, ϕi) in the equivalence class defining M , the map
f ◦ϕ−1

i : ϕi(Ui)→ C is holomorphic. Replacing C with a complex manifold N defined by charts
(U ′, ϕ′), we instead require the maps ϕ′ ◦ f ◦ϕ−1 : ϕ(f−1(U ′)∩U)→ ϕ′(U ′) to be holomorphic.

Naturally, the isomorphisms in ManC are the holomorphic homeomorphisms with holomorphic
inverses. We denote by O the sheaf of holomorphic functions. That is, for any open subset U of
M , we write OM (U) = Γ(U,OM ) = {f : U → C | f holomorphic}.

Remark 1.2.1. It turns out that we only need to require maps to be holomorphic homeomorph-
isms in order to be isomorphisms inManC, as the inverse will automatically be holomorphic by
results from complex analysis ([Huy05]).

Indeed, one could ask how complex geometry differs from smooth geometry. Some of the rigidity
of complex analysis is inherited to complex geometry. For example, it is possible to show that
O(M) = C for any compact complex manifold M . That is, any global holomorphic function on
M is constant.

Furthermore, local arguments (e.g through partitions of unity) do not always work that well.
This is due to the identity theorem ([Huy05]) stating that if we have holomorphic functions
f, g : U → C, where U is a connected open subset of C, such that f(z) = g(z) for all z in some
non-empty open subset of U , we have f = g. Any smooth vector bundle admits a connection,
but the same does not hold for holomorphic connections on holomorphic vector bundles. An
obstruction to the existence of a holomorphic connection is found in the Atiyah classes ([Huy05]).

Submanifolds of complex manifolds are also defined as in the smooth case. If M is a smooth
2n-manifold and N ⊆ M a smooth 2k-submanifold, N is a complex submanifold if there is a
holomorphic atlas {(Ui, ϕi)} of M such that ϕi : Ui ∩N

'→ ϕi(Ui) ∩ Ck.

There are many examples of complex manifolds. Any open subset of Cn is a complex manifold.
However, where open disks of Rn are diffeomorphic to Rn, bounded open disks of Cn are not
biholomorphic to Cn. Despite this, since the definition of a manifold is a local definition, Cn
is a complex manifold as well. Complex projective space CPn, defined as (Cn+1\{0})/C∗, is
also a complex manifold. Any complex manifold isomorphic to a closed submanifold of complex
projective space is called projective. These make up an important class of manifolds.

Other examples include complex tori, which can be constructed as Cn/Z2n (more generally
Cn/Γ for a lattice Γ ⊂ Cn), complex Lie groups such as GL(n,C) and SL(n,C) (where we
require (g, h) 7→ g · h−1 to be holomorphic), and hypersurfaces f−1(0) defined by holomorphic
functions f : Cn → C such that 0 ∈ C is a regular value. Furthermore, we can construct complex
Grassmannians as, Grk(Cn) = {V ⊆ Cn | dimV = k as a subspace of the vector space Cn}.
This is a complex manifold of dimension k(n− k), as established in [Huy05].

To study the geometry of complex manifolds, we first need to understand bundles.
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Definition 1.2.2. (Holomorphic vector bundles).

A holomorphic vector bundle of rank r on a complex manifold M is a complex manifold E and a
holomorphic map π : E →M such that each fiber π−1(x) is a complex vector space of dimension
r for each x ∈ M . We require the existence of an open covering M =

⋃
Ui, and biholomorphic

maps ψi : π−1(Ui)→ Ui×Cr. commuting with the projection onto Ui. The induced map on the
fiber π−1(x)→ {x} × Cr needs to be C-linear.

Maps of holomorphic bundles are bundle maps that are required to be holomorphic. Note that
complex vector bundles and holomorphic vector bundles are not the same. Complex vector
bundles are simply fiber bundles where the fibers are required to be vector spaces over C. These
do not involve any notion of holomorphicity.

We can still consider pullbacks of holomorphic bundles along holomorphic maps, as before.

To consider differential forms on complex manifolds, we must understand how the tangent
bundles of complex manifolds work. We consider them locally. If U ⊆ Cn is an open subset,
x ∈ U , and z1 = x1 + y1, . . . , zn = xn + iyn are the standard coordinates of Cn, the tangent
vectors

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn
,

form a canonical basis of TxU . The map I : TxU → TxU defined by

∂

∂xi
7→ ∂

∂yi
and ∂

∂yi
7→ − ∂

∂xi
,

has the property I2 = − Id. This way of mimicking the complex unit i turns out to be essential.

Definition 1.2.3. (Almost complex structures).

An almost complex structure I on a smooth manifold M is a vector bundle endomorphism
I : TM → TM such that I2 = − Id. A smooth manifold with an almost complex structure is
called an almost complex manifold.

By a local argument with the explicit maps defined above, any complex manifold is indeed an
almost complex manifold.

It turns out that most of the definitions depend only on the almost complex structure. Assume
therefore that M is an almost complex manifold with almost complex structure given by I. To
study complex differential forms, we naively try to complexify its tangent bundle by considering
TCM = TM ⊗ C. This leads to the following result.

Proposition 1.2.4. (Decomposition of the complexified tangent bundle).

The complexified tangent bundle of M decomposes as

TCM = T 1,0M ⊕ T 0,1M,
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where T 1,0M (resp. T 0,1M) is the eigenspace of I with eigenvalue i (resp. −i). We call T 1,0M
the holomorphic tangent bundle and T 0,1M the antiholomorphic tangent bundle on M .

This motivates the following definition.

Definition 1.2.5. (Complex differential forms).

For an almost complex manifold M , we have complex vector bundles
k∧
C
M =

k∧
(TCM)∗ and

p,q∧
C
M =

p∧
(T 0,1M)∗ ⊗C

q∧
(T 1,0M)∗.

Their (sheaves of) sections are denoted AkC and Ap,q, respectively, and are called complex dif-
ferential forms of degree k, or of type (p, q), respectively.

By the above decomposition, we have

AkC =
⊕
p+q=k

Ap,q.

It looks like AkC is the total complex of an underlying double complex A∗,∗. By defining suitable
differentials, this happens.

Definition 1.2.6. (The differentials ∂ and ∂̄).

If d : AkC → A
k+1
C denotes the C-linear extension of the exterior differential, then we may define

differentials ∂ and ∂̄ by

∂ := πp+1,q ◦ d = Ap,q →
⊕

p+q=k+1

Ap,q → Ap+1,q,

∂̄ := πp,q+1 ◦ d = Ap,q →
⊕

p+q=k+1

Ap,q → Ap,q+1.

The pullback of complex forms along holomorphic maps is well-defined and commutes with the
differentials.

For U ⊆ Cn, the bases of T 1,0U and T 0,1U can be defined to be

∂

∂zi
=

1

2
(
∂

∂xi
− i ∂

∂yi
) and ∂

∂z̄i
=

1

2
(
∂

∂xi
+ i

∂

∂yi
),

respectively.

If dzi and dz̄i denote the dual bases of the above, we can write differential forms in Ap,q(M)
locally as a sum of expressions

fdzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .
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A holomorphic form is exactly such a form where f is a holomorphic function.

If we consider holomorphic forms, we can restrict the index q notably. By the Cauchy-Riemann
equations, a function f : U → C is holomorphic if and only if ∂

∂z̄i
f = 0 for all i. Hence, by a

purely local argument, we can see that the holomorphic p-forms on M are the forms ω ∈ Ap,0
such that ∂̄ω = 0. The holomorphic p-forms on M are denoted by Ωp(M)hol.

We use Ω∗ for the smooth de Rham complex when considered on a smooth manifold, and A∗

for the complex case (without the subscript C). If we use A∗, Ω∗ denotes the holomorphic de
Rham complex, without the subscript hol. This should be clear from context, and we will warn
readers where necessary in order to avoid confusion.

On a complex manifold, the differentials ∂ and ∂̄ are related to d through dω = ∂ω + ∂̄ω. On
an almost complex manifold in general, this is equivalent to the statement that π0,2 ◦ d = 0
on A2,0(M). However, as there exist almost complex manifolds where these do not hold (such
as the 6-sphere, see [Huy05]), this is a non-trivial criterion. Any almost complex structure that
satisfies one of the above is called an integrable almost complex structure.

Theorem 1.2.7. (The Newlander-Nirenberg theorem).

Any integrable almost complex structure is induced by a complex structure.

If we have an almost complex structure with ∂̄2 = 0, the almost complex structure is integrable.

By allowing for more structure (e.g. a Riemannian metric) on a complex manifold M (with
canonically induced almost complex structure I), we run into interesting classes of manifolds.

Definition 1.2.8. (Hermitian structures and fundamental forms).

Assume g is a Riemannian metric on M . g is called an hermitian structure on M if for each
x ∈M , the inner product gx on TxM is compatible with the almost complex structure Ix in the
sense that for all v, w ∈ TxM , gx(v, w) = gx(Ix(v), Ix(w)).

We may obtain a canonical (1, 1)-form by defining ω = g(I(−),−). This is called the fundamental
form of the hermitian structure. A complex manifold with an hermitian structure is called an
hermitian manifold.

Locally, the fundamental form can be written as ω = i
2

∑n
i,j=1 hijdz

i ∧ z̄j , for some hij that
defines a positive definite hermitian matrix when evaluated at any point x.

This leads to the notion of a Kähler manifold.

Definition 1.2.9. (Kähler structures).

A Kähler structure on a complex manifold M is an hermitian structure g such that the induced
fundamental form ω is closed. We also call g a Kähler metric, and ω is often referred to as the
Kähler form. A complex manifold with a Kähler structure is called a Kähler manifold.
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By restricting a Kähler metric g on a Kähler manifoldM to a complex submanifold N , we obtain
a Kähler structure on N , as well.
Remark 1.2.10. It is possible to show that Kähler manifolds also possess canonical symplectic
structures. We won’t delve into this, although we remark that Kähler manifolds have rick geo-
metries. Details can be found in [Huy05].

As mentioned, we will not focus on the theoretical aspects of complex geometry here. We should
have covered a bunch of interesting operators and decompositions in order to present a thorough
treatment of complex geometry, but we omit this and refer to [Huy05], as we will soon have
covered everything we need for this thesis. We give some examples.

Simple examples of Kähler manifolds include the unit disc of Cn, Cn itself, any complex torus
Cn/Γ for a lattice Γ ⊂ Cn, and any complex curve. We refer to [Huy05] for constructions of
their Kähler metrics. The complex projective spaces are also Kähler manifolds, as they can be
endowed with Kähler metrics called the Fubini-Study metrics. Hence, any projective manifold
is Kähler, as these are isomorphic to submanifolds of suitable complex projective spaces. A
topological obstruction to the converse, whether or not a Kähler manifold is projective, is found
in [Huy05] under the section on the Kodaira embedding theorem.

Kähler manifolds are surprisingly topological as well. For example, compact Kähler manifolds
are formal, in the sense that for a compact Kähler manifold M , (A∗(M), d) is a formal dif-
ferential graded algebra. It is equivalent (as a differential graded algebra) to its cohomology
(H∗(A∗(M), d), 0).

1.3 Stable homotopy theory

To account for the homotopical concepts of this thesis, we need stable homotopy theory. We
briefly mention some important results and refer to [BR20] for proofs and details.

The idea of stability in topology can best be seen through the Freudenthal suspension theorem.

Theorem 1.3.1. (Freudenthal suspension theorem).

For a natural number k and a k-connected topological space X with a non-degenerate basepoint,
the map

πn(X) = [Sn, X]
Σ→ [ΣSn,ΣX] ∼= πn+1(X),

[f ] 7→ [Σf ],

is an isomorphism for n < 2k + 1 and a surjection if 2k + 1 (i.e. it is a (2k + 1)-equivalence).

As the suspension raises the connectivity of the space by 1, the homotopy groups of ΣnX will
stabilize when we take the limit n→∞. This allows us to define the stable homotopy groups.
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Definition 1.3.2. (Stable homotopy groups of X).

Given a pointed CW-complex X, the n’th stable homotopy group of X is

πSn (X) = colimk πn+k(Σ
kX) = π2n+2(Σ

n+2X).

This stable behavior does not only arise at the level of homotopy groups. The same result
happens for the suspension functor itself. Recall that the suspension Σ = S1 ∧ − has a right
adjoint, given by forming the loop space Ω. If X is a k-connected space, then the unit ηX :
X → ΩΣX of this adjunction is a (2k + 1)-equivalence, and the unit εX : ΣΩX → X is a
2k-equivalence. Hence, the stability above essentially amounts to inverting the suspension Σ. If
we set QX = hocolimnΩ

nΣnX, the stable homotopy groups of X are the same as the homotopy
groups of QX.

There have been many attempts at defining a ”stable homotopy category” over the years. Many
have failed. We won’t delve into the attempts on this as our main motivation for studying stable
homotopy theory is to study cohomology theories. However, as we will see, this actually results
in constructing the stable homotopy category.

A fundamental result on cohomology theories is the Brown representability theorem, from which
the following is a special case.

Theorem 1.3.3. (Brown representability).

If Ẽ∗ is a reduced, generalized cohomology theory, we can find a sequence of connected, pointed
CW-complexes En, unique up to homotopy equivalence, such that for each connected, pointed
CW-complex X,

Ẽn(X) ∼= [X,En].

For any such X, we have

[X,En] ∼= Ẽn(X) ∼= Ẽn+1(ΣX) ∼= [ΣX,En+1] ∼= [X,ΩEn+1].

The above chain of isomorphisms is natural in X. By setting X = En, we see that the identity
map in [En, En] corresponds to a map En → ΩEn+1. This can be done for each n. The maps
sEn : En → ΩEn+1 (or by adjunction ΣEn → En+1) are called structure maps, and they are weak
homotopy equivalences (as can be seen by setting X = Sk for each k). A map f in [X,En] is
simply mapped to sEn ◦ f in [X,ΩEn+1] under the isomorphisms above.

Definition 1.3.4. (Sequential spectra).

A sequential spectrum E is a sequence of (pointed) spaces En with structure maps sEn : ΣEn →
En+1. We say E is an Ω-spectrum if the adjoint structure maps En → ΩEn+1 are weak homotopy
equivalences.

By CW-approximation, we can always assume the spaces En are CW -complexes.
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Maps of sequential spectra E,F are defined to be sequences of maps En → Fn that commute
with the structure maps.

Brown representability ensures that sequential spectra represent (reduced) cohomology theories.
The converse also holds. By defining Ẽn(−) as [−, En], we obtain a reduced cohomology theory.

Intuitively, we already know some spectra. The sphere spectrum S is defined by Sn = Sn. If we
are given a pointed topological space K, we can form its suspension spectrum, Σ∞K given by
(Σ∞K)n = ΣnK.

For an abelian group G, we can combine Eilenberg-MacLane spaces to form the Eilenberg-
MacLane spectrum HG, where HGn = K(G,n) is the n’th Eilenberg-MacLane space of G.
The structure maps are induced as earlier, by the fact that Eilenberg-MacLane spaces represent
ordinary cohomology with coefficients in G.

Complex K-theory also has a spectrum, which often is called KU . We will, for simplicity, often
just write K. Due to Bott periodicity, the form of Kn only depends on whether n is even or odd.
We can consider the unitary group U(n) as a subgroup of U(n+ 1). By forming the colimit, we
obtain the infinite unitary group U = colimn U(n). The K-theory spectrum is given by U if n is
odd, and BU × Z if n is even.

We want to study sequential spectra up to homotopy. That is, we need to take the homotopy
category of the category of sequential spectra. In a model-categorical fashion, we define the
cylinder spectrum of a given spectrum E to be Cyl(E)n = En× [0, 1]/ ∼, where ∼ relates (x0, t)
for all t ∈ [0, 1], and x0 denotes the basepoint of En.

Definition 1.3.5. (Homotopies of maps of sequential spectra).

Let E and F be sequential spectra. If we let i0, i1 : E → Cyl(E) denote the maps including
each En to the cylinder at t = 0 and t = 1, respectively, we say that maps f, g : E → F are
homotopic if there exists a map h : Cyl(E)→ F such that

E Cyl(E) E

F

i0

f
h

i1

g

commutes.

Definition 1.3.6. (The stable homotopy category).

The stable homotopy category is the homotopy category of sequential spectra with respect to
the notion of homotopies defined above. That is, the objects are sequential spectra, and the
morphisms are homotopy classes of maps of sequential spectra. We will refer to objects of the
stable homotopy category as spectra, and the category is denoted SHC.
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As expected from a homotopy category, it is indeed triangulated. Strictly speaking, a thorough
understanding of the stable homotopy category requires more machinery. We refer to [BR20], as
our goals are merely to present the fundamentals.

It turns out that the suspension-loop adjunction is promoted to a Quillen equivalence when
passing to sequential spectra. We have not covered the stable model structure that allows for
this, nor do we plan to, but the important thing to note is that in the stable homotopy category,
the loop and suspension functors are inverse equivalences. Hence, we have achieved stability.

However, we are not done. Some cohomology theories are multiplicative, but by now, we have
not turned the stable homotopy category into a symmetric monoidal category. That is, we have
no useful product of spectra that can define ring objects in the stable homotopy category. The
solution is to consider other models of spectra than sequential spectra, i.e. other stable model
categories C such that hoC is equivalent to the stable homotopy category.

Luckily, the following theorem by Schwede ensures us that working with other models gives us
a coherent theory.
Theorem 1.3.7. (Rigidity of spectra).

If C is a stable model category such that its homotopy category is equivalent to the stable homotopy
category, then C is Quillen equivalent to sequential spectra.

For our purposes, we will only use the symmetric spectra SpΣ. A symmetric spectrum is a
sequence En of pointed topological spaces with structure maps sEn : S1 ∧ En → En+1, where
En has a continuous action from the symmetric group Σn that fixes the basepoint, and the
composition of structure maps

Sk ∧ En → Sk−1 ∧ En+1 → . . .→ En+k

is compatible with the action of Σk × Σn on the domain and target. The action on Sk is given
by viewing Sk as the one-point compactification of Rk, and letting Σk act by permuting its
coordinates. Given symmetric spectra E and F , a map of symmetric spectra is a collection of
Σn-invariant maps En → Fn commuting with the structure maps.

The reason this gives us a symmetric product of spectra is quite complicated. It is based on re-
writing the above definition into appropriate functors, which can be Day-convoluted into forming
an abstract definition of the smash product of symmetric spectra, with the sphere spectrum S
as the monoidal unit. Explaining this properly would require much more machinery than what
this thesis aims to cover, and we thus refer to [BR20] for the details.

We end by defining the homotopy groups of a spectrum and how to consider (co-)homology
theories on spectra.
Definition 1.3.8. (Homotopy groups of spectra).

Given a spectrum E, we define its homotopy groups to be

πn(E) = colimk πn+k(Ek).
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A map f : E → F is a π∗-isomorphism if πn(f) is an isomorphism for all n ∈ Z.

Note that the homotopy groups of the sphere spectrum coincides with the stable homotopy
groups of the spheres. Similarly to how a spectrum E defines a cohomology theory Ẽn(−) by
[−, En], we can define a reduced homology theory (on spectra) by

En(F ) = πn(E ∧ F ).

For a spaceX, we this can be done by considering the homotopy groups of the spectrum E∧Σ∞X
given by (E ∧ Σ∞X)k = Ek ∧X.

This short survey is not at all enough to display the depth, beauty, and power of stable homotopy
theory. Luckily, this was not our goal. We advise readers to consult [BR20] if more homotopy
theory is needed.

1.4 Simplicial sets and quasi-categories

Although we will assume basic knowledge about simplicial sets and quasi-categories, we allow
for a short summary to establish important results, such as the Dold-Kan correspondence. For
this short treatise, we follow [GJ99] and [Lan21].

Recall that a simplicial set is a contravariant functor X : ∆op → Set, where ∆ denotes the full
subcategory of the category of posets with objects [n] for all n ≥ 0. Here [n] = {0, 1, . . . , n}
denotes the linearly ordered set 0 ≤ 1 ≤ . . . ≤ n. Maps of simplicial sets are natural transform-
ations.

We certainly know some examples already. Let ∆n be the simplicial set represented by [n]. We
may also, for a space X, consider the singular simplicial set sing(X) defined by mapping [n]
to singn(X) = Hom(∆n

Top, X). For simplicial sets X,Y , we can define the function complex
Hom(X,Y ) by Hom(X,Y )n = Hom(X ×∆n, Y ).

The geometric realization | − | : sSet → Top can be defined as the unique colimit-preserving
functor that sends ∆n to the topological n-simplex ∆n

Top. It can explicitly be constructed for a
simplicial set X as

|X| = (
∐
n

Xn ×∆n
Top)/ ∼,

where the relation ∼ relates (f∗(x), t) to (x, f∗(t)) for f : [m]→ [n], x ∈ Xn and t ∈ ∆m
Top. The

geometric realization preserves colimits as it is a left-adjoint. Its right adjoint is the singular
complex functor described above.

A simplicial abelian group is a simplicial object in Ab, which means it is contravariant functor
∆op → Ab. By replacing Ab with any other category C, we can define simplicial objects of C,
and a corresponding theory of simplicial objects. The geometric realizations of abstract simplicial
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objects can be defined, but they are complicated and requires us to develop ends and coends.
We refer to [GJ99].

If A is a simplicial abelian group, we can define its normalized chain complex NA by letting
NAn =

⋂n−1
i=0 ker(di) ⊆ An, where di are the face maps induced by the maps δi : [n − 1] → [n]

that does not hit i ∈ [n]. We define the differential NAn → NAn−1 to be (−1)ndn, which makes
NA into a complex by the simplicial identities. This lands in Ch≥0(Ab). In fact, if we start with
a C ∈ Ch≥0(Ab), it is possible to construct a simplicial abelian group Γ(C) (see [GJ99]).

Theorem 1.4.1. (The Dold-Kan correspondence).

The functors N : sAb←→ Ch≥0(Ab) : Γ define inverse equivalences of categories.

For our purposes, the explicit construction of Γ is not needed, as we only need the correspondence.

There are many interesting types of simplicial sets. Some of the most important are defined by
certain extension properties.

Definition 1.4.2. (S-horns).

For a subset S ⊂ [n], we define the S-horn ΛnS ⊆ ∆n to consist of the k-simplices f : [k] → [n]
that are not surjective on the complement of S. That is, we can find an i ∈ [n]\S such that the
image of f does not contain i. We call Λn{j} (often just written Λnj ) a left (resp. right) outer horn
if j = 0 (resp. j = n). If 1 ≤ j ≤ n− 1, we call Λnj an inner horn.

Definition 1.4.3. (Kan complexes).

A simplicial set X is a Kan complex if it has the extension property with respect to all horn
inclusions Λnj → ∆n, for 0 ≤ j ≤ n. That is, the lifting problem

Λnj X

∆n

given by the solid part of the diagram has a solution (given by the dashed arrow).

The singular complex functor defines a Kan complex as we can use the adjunction with geometric
realization to retract ∆n

top to a horn. Any simplical abelian group can be shown to form a Kan
complex (this is non-trivial, and is shown in [GJ99])! The latter will be used later, as some
statements can be shown to hold only for Kan complexes.

Definition 1.4.4. (Homotopies in simplicial sets).

If f, g : X → Y are maps of simplicial sets, we say f is homotopic to g with homotopy h if we
can form a commutative diagram
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X ×∆0 X ×∆1 X ×∆0

Y.
f

Id×d1

h
g

Id×d0

If X is a Kan complex with a designated basepoint (0-simplex) x0, we may form its simplicial
homotopy groups π∆n (X,x0) to be homotopy classes of maps [(∆n, ∂∆n), (X,x0)]. The boundary
∂∆n is defined as the subsimplicial set of ∆n where the k-simplices are non-surjective maps
[k]→ [n].

For a simplicial abelian group A, we have πn(A) = Hi(N(A)).

The theory of simplicial sets may look a lot like the theory of categories, where we can view the
objects of a category as 0-simplices and morphisms as 1-simplices. This can be made formal by
the nerve functor. If C is a category, define its nerve to be the simplicial set N(C) : ∆op → Set
given by [n] 7→ Fun([n], C).

We immediately note that∆n is the nerve of [n]. A more exciting example comes from considering
a group G as a groupoid with one object. The nerve N(G) is a simplicial set whose geometric
realization is BG, the classifying space of G. One can show that the nerve of a category C is a
Kan complex if and only if C is a groupoid ([Lan21]), and hence the classifying simplicial set
N(G) is a Kan complex.

It is possible to ”unnerve” a simplicial set by forming its homotopy category. Let us make this
precise.

If X is a simplicial set, we construct its homotopy category hX as follows: Let the objects of
hX be given by X0 and morphisms generated by X1 in the sense that a 1-simplex ∆1 → X can
be thought of as a morphism from d1(f) to d0(f). We say that the 1-simplex s0(x) for an object
x is the identity on x, and for any 2-simplex ∆2 → X with boundary given by a triple (f, g, h),
we require that h = g ∗ f , where the right-hand side denotes the formal composition of g and
f . To make this coherent, we say that 1-simplices f and g (that go from x to y) are equivalent,
denoted f ∼ g, if we can find a 2-simplex σ : ∆2 → X such that

σ |∆0,1= f, σ |∆1,2= Idy, σ |∆0,2= g.

This relation is not an equivalence relation. We require that if f ∼ f ′, then f ∗ g ∼ f ′ ∗ g and
g′ ∗ f ∼ g′ ∗ f ′.

The above construction defines the homotopy category of a simplicial set, which yields a functor
h : sSet→ Cat. Note that hN(C) ∼= C. However, we do not have Nh(X) ∼= X. We should not
have this either, as forgetting the higher simplices does not vouch for a reconstruction of the
simplicial set in its entire complexity. However, the nerve functor N is right adjoint to h.

By the left and right (outer) horn liftings in Kan complexes, any morphism in the homotopy
category of a Kan complex is invertible, making the Kan complexes ”the groupoids” of simplicial
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sets. By not requiring the lifting of outer horns, we form special simplicial sets that we call quasi-
categories, as they behave more like categories, although with ”higher” information contained in
their higher n-simplices.

Definition 1.4.5. (Quasi-categories).

A simplicial set X is a quasi-category if it has the extension property with respect to all inner
horn inclusions Λnj → ∆n. We call quasi-categories ∞-categories, and we say that a morphism
in an∞-category is an equivalence if its image in the homotopy category is an isomorphism. An
∞-category is an ∞-groupoid if every morphism is an equivalence.

The above leads us to the general ”philosophy” of ∞-categories. An (n, k)-category can be
thought of as a category where we need to specify n ”levels” of morphisms between morphisms.
That is, the 0-morphisms are the objects, 1-morphisms are the morphisms between the objects
(0-morphisms), and inductively, the m-morphisms are the morphisms between the (m − 1)-
morphisms, up to m = n. The k states that all of morphisms of ”level” greater than k are
invertible (equivalences). Groupoids are (1, 0)-categories as we only specify the objects and the
morphisms, but all morphisms between objects are invertible. Ordinary categories are (1, 1)-
categories, often just called 1-categories. Letting n be ∞, we obtain (∞, k)-categories. In this
fashion, ∞-groupoids are (∞, 0)-categories, and quasi-categories are (∞, 1)-categories.

As (briefly) argued above, Kan complexes are∞-groupoids. The converse also holds, but it is not
as simple to prove. One can also consider the maximal subgroupoid C' of an ∞-category C by
picking out the isomorphisms in its homotopy category and forming the pullback (of simplicial
sets)

C' C

N(hC') N(hC).

The nerve can be enhanced to a ”homotopy coherent nerve”. If we let J be a finite, non-empty,
linearly ordered sets containing elements i, j, we can form Pi,j to be

Pi,j = {I ⊆ J : i, j ∈ I and i ≤ k ≤ j for all k ∈ I}.

Using these, we may form a simplicially enriched category C[∆J ], whose objects are elements of
J and morphisms i→ j are given by ∅ if j < i, and N(Pi,j) for i ≤ j. It is possible to show that
N(P0,n) is isomorphic as a simplicial set to (∆1)n−1, and that Pi,j ∼= P0,j−i. This implies that
N(Pi,j) is isomorphic to (∆1)j−i−1. These can be shown to be contractible, in the sense that
their identity maps are homotopic to a constant map.

We form the homotopy-coherent nerve of a simplicially enriched category C by mapping [n] to
N(C)n = Hom(C[∆n], C). The 0-simplices of N(C) is given by the objects of C and the 1-simplices
are given by the 1-simplices of C. This is not new. Essentially, what’s new compared to the ”old”
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nerve functor, is that 2-simplices informally consists of two composable morphisms X → Y
and Y → Z for objects X,Y, Z associated to 0, 1 and 2, respectively. There is also a morphism
X → Z and a homotopy between this morphism and the composition X → Y → Z. This nerve
construction is ”coherent” with the relation of composing maps (up to homotopy). One can show
that if C is enriched over Kan complexes, its homotopy-coherent nerve is an ∞-category.

We can define the ∞-category of spaces, denoted Spc, by considering the simplicially enriched
category that has CW-complexes as objects and hom-simplicial sets given by considering the
singular simplicial set on mapping spaces. The homotopy-coherent nerve of this simplicial cat-
egory is an ∞-category, as it is enriched in Kan complexes, and it is called the ∞-category of
spaces.

It is possible to show that for simplicial sets X,Y , if Y is an ∞-category (resp. a Kan complex),
the hom-simplicial set Hom(X,Y ) becomes an∞-category (resp. a Kan complex). This allows us
to form a∞-category of functors between two given∞-categories. Furthermore, this implies that
Kan complexes themselves are enriched over Kan complexes, and hence defines an ∞-category
through the homotopy-coherent nerve. This gives an equivalent definition of the ∞-category of
spaces.

Given two ∞-categories C and D, we can form Hom(C,D), which we think of as the functors
between the objects C and D in a suitable ∞-category of ∞-categories. However, if we want to
consider C to be some higher notion of a category, we need to have a mapping space mapC(x, y)
for objects (0-simplices) x, y ∈ C. Often, when thinking of quasi-categories as higher categories,
we write Fun(C,D) for the Hom-simplicial set. We define mapC(x, y) by the pullback

mapC(x, y) Fun(∆1, C)

∗ C × C

(dom,codom)

(x,y)

This is not just an ∞-category, it is an ∞-groupoid, which aligns quite well with the philosophy
of ∞-categories, as (∞, k)-categories should be enriched over (∞, k − 1)-categories.

Although we could have formulated the theory of adjunctions through bicartesian fibrations,
we only need to know that the 1-categorical ways of thinking about adjoints still hold. We may
consider f : C → D to be left adjoint to g : D → C if and only if we get an equivalence of mapping
spaces similar to the 1-categorical theory. This is again equivalent to considering suitable unit
and counit functors satisfying familiar triangle identities.

By constructing a suitable model structure on the category of simplicial sets, called the Joyal
model structure, one can show that all simplicial sets are weakly equivalent to quasi-categories
by the generalized Whitehead theorem. The notion of weak equivalence used above is the notion
a Joyal equivalence, where we say f : X → Y is a Joyal equivalence if it is an inner fibration
(that is, it satisfies the right lifting property with respect to inner horn inclusions), and it has
the right lifting property with respect to the map ∆0 → J , where J is the nerve of the category
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with two objects x and x′ and a unique isomorphism x→ x′. J is called the walking equivalence.

An important construction we will need is the stable ∞-category of spectra, for which an in-
depth treatment can be found in [Lur17]. Recall that a pointed ∞-category C is an ∞-category
C with a 0-object, and that a 0-object is an object 0 (that will be unique up to equivalence) such
that mapC(0, X) and mapC(X, 0) are contractible for all X. We may define a (co-)fiber sequence
to be a pullback (pushout)

X Y

0 Z,

f

g

often just written

X → Y → Z.

To account for stability, we need fiber and cofiber sequences to be the same. This leads to the
definition of a stable ∞-category.

Definition 1.4.6. (Stable ∞-categories).

A stable ∞-category is a pointed ∞-category C such that all morphisms have a fiber and a
cofiber, and a sequence X → Y → Z is a fiber sequence if and only if it is a cofiber sequence.

Homotopy categories of stable ∞-categories are triangulated, with triangles induced by the
fiber/cofiber sequences.

To move toward spectrum objects and the stable homotopy category of spectra, we define the
loop functor as a pullback and the suspension functor as a pushout, by

ΩX 0 X 0

0 X 0 ΣX.

PB PO

The most powerful way of defining spectrum objects are through reduced and excisive functors,
but this does not easily translate to sequential spectra. However, we can approach these more
intuitively through prespectrum objects. If C is an∞-category, a prespectrum object is a functor
E : N(Z× Z)→ C such that E(i, j) = 0 when i 6= j. The full subcategory of Fun(N(Z× Z), C)
spanned by the prespectrum objects of C is denoted PSp(C). Evaluation at (n, n) gives a functor
PSp(C) → C called the n’th space functor. We denote En = E(n, n). This essentially gives a
diagram
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0 0 0

. . . En En+1 . . . .

0 0 0

The above does not involve any requirement about the commuting squares being pullbacks or
pushouts. We can include the pushout defining the suspension functor in this diagram to obtain

0 0 0

· · · ΣEn−1 En ΣEn En+1 ΣEn+1 · · ·

0 0 0

The same can be done for the loop functor. We obtain structure maps ΣEn → En+1 and
En → ΩEn+1.

If C is a pointed ∞-category, we say that a prespectrum object in C is a spectrum object if the
structure map En → ΩEn+1 is an equivalence for all n. The full subcategory of spectrum objects
in C is denoted Sp(C). This is also called the stabilization, Stab(C), of C, as it is possible to show
it defines a stable ∞-category.

Definition 1.4.7. (Stable ∞-category of spectra).

The stable ∞-category of spectra, denoted Spt, is defined as the spectrum objects of the ∞-
category of spaces. That is,

Spt = Sp(Spc).

An essential feature of Spt is that
hSpt = SHC.

1.5 Homotopy pullbacks

We should also address homotopy pullbacks at some point in the preliminaries. Although a
general theory of homotopy limits and colimits may be formulated, we will be brief and cover
the case of homotopy pullbacks. Based on [BR20, Appendix A.7], we give a short definition of
homotopy pullbacks for an arbitrary model category C. There is a classical example concerning
simple topological spaces showing that the theory of limits and colimits do not respect homotopy
equivalences. motivating the need for homotopy limits and colimits.
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Consider the two diagrams

Dn Sn−1 Dn

∗ Sn−1 ∗.

The pushout of the top diagram yields the n-sphere Sn as a pushout, and pushout of the bottom
diagram yields the point. Although the vertical maps are homotopy equivalences, the pushouts
Sn and ∗ are not homotopy equivalent. As explained in [DS95], any ”seasoned” topologist will
argue that the top diagram yields the correct homotopy type, as the maps in the diagram are
cofibrations. This idea can be formalized, and it gives the correct notion of a homotopy pushout.
We work dually, and give the definition of a homotopy pullback.

Let I be the diagram category I = (2→ 1← 3), and let C be any model category.

Lemma 1.5.1. (Injective model structure).

There is a model structure on the category CI of I-diagrams in C, called the injective model
structure, such that a morphism f : X → Y in CI is a weak equivalence (resp. cofibration) if
and only if fi : Xi → Yi is a weak equivalence (resp. cofibration) in C for all i ∈ I.

A similar model category can be found for more general index categories I, given a reasonable
simplicity requirement on I. We refer to [BR20, Appendix A.7] and the references therein.

Definition 1.5.2. (Homotopy pullback).

For an object X ∈ CI , we define the homotopy pullback holimX of X to be the limit of a fibrant
replacement of X in the model structure mentioned above.

Remark 1.5.3. The above definition defines a homotopy limit if we simply allow for more general
index categories I. With our choice of I, the homotopy limit is called a homotopy pullback.
There is a comparison morphism limX → holimX, although this is not a weak equivalence in
general.
Remark 1.5.4. The homotopy pullbacks respect weak equivalences in the sense that if we are
given X,Y ∈ CI and a vertex-wise weak equivalence F : X → Y of diagrams, there exists a weak
equivalence holimX → holimY .
Remark 1.5.5. Theorem A.7.17. in [BR20] gives a way of checking whether or not a diagram is
fibrant in CI .

For our purposes, we will consider homotopy pullbacks mainly as an underlying technicality
ensuring the constructions we mention are coherent and respect weak equivalences. We will
therefore rarely delve into the model categorical technicalities regarding the homotopy pullbacks
we consider. For more theory on homotopy pullbacks, we refer to [BR20, Appendix A.7.], [DS95],
and [Mat76]. For homotopy pullbacks in ∞-categories, the canonical refrence is [Lur17].





Chapter 2

Approaching Differential
Cohomology

2.1 Historical motivation: Geometry interacts with Topology

The conceptual motivation for differential cohomology is quite simple. Topology, with its stretch-
able notions of homotopies and homotopy invariant constructions, often neglects geometrical
notions, such as curvature, angles, length, and so on. For not-so-structured compactly generated
spaces1, it is fine to trade away geometric information for homotopic information, but if we re-
strict ourselves to more structured spaces, such as smooth manifolds, valuable information may
be lost in the homotopical processes.

A running example will be the 2-sphere of radius r. Considered as a geometric object, focusing
on lengths and curvature, it is well-known that its principal curvatures are both given by κ1 =
κ2 = 1/r. This yields Gaussian curvature κ = κ1κ2 = 1/r2. If we deform the sphere to an
ellipsoid, we obtain the same object up to homotopy, but the curvature has changed. The shape
now has a flatter region and a more curved region depending on the ”direction of stretching”.

This example tells us that if we allow the topological mantra of working up to homotopy equi-
valence, we may change the geometry of the surface in question. If we want to study homotopy
invariants, such as cohomology theories, we can try to amend the above problem by including
differential information, such as curvature forms and connections. A natural slogan to keep in
mind may therefore be:

”Don’t be a fool and neglect geometry,
respect smooth manifolds by using differential cohomology!”

1The category of compactly generated (weak Hausdorff) spaces is the subcategory of topological spaces we use in
homotopy theory, as the additional structure defines an adjunction between −×Y and (−)(Y ) and a homeomorphism
Z(X×Y ) ∼= (ZY )X of mapping spaces (with the compact-open topology).

25
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Before embarking on this journey, we need to clarify why we expect there to be clear connections
between geometry and topology. We do this in two ways, first through established theorems from
differential geometry, and then using de Rham cohomology.

Several classic theorems from differential geometry yield clear connections to homotopy invariant
constructions. In the following, we could have illustrated the point using other theorems, such
as Hopfs Umlaufsatz ([Tu17]), but we will use the Gauss-Bonnet theorem.

We again consider the 2-sphere of radius r. If we integrate the Gaussian curvature κ of the
2-sphere S2, called M for simplicity, we obtain∫

M
κdS =

∫
M

1

r2
dS =

1

r2

∫
M

1dS =
1

r2
(surface area ofM) =

1

r2
4πr2 = 4π.

The integral of the Gaussian curvature, or more intuitively the ”sum of the geometrical data of
curvature”, is independent of the radius of the sphere! In other words, stretching the sphere by
perturbing the radius does not change the integral. It turns out that this is true for other types
of stretching as well.

Theorem 2.1.1. (Gauss-Bonnet theorem for a surface, [Tu17]).

If M is a compact, oriented, Riemannian 2-manifold2 with Gaussian curvature K,∫
M
K vol = 2πχ(M).

As the Euler characteristic of the 2-sphere is 2, this is essentially what we found. What’s re-
markable is that this old theorem incorporates geometric, metric-dependent information on the
left-hand side and homotopy invariant information on the right-hand side.

To be able to refine the idea of mixing geometry and topology, we turn to differential forms. We
refer to [Tu17] or any other textbook on differential geometry for the results below.

Differential forms, which are quite geometric and combinatorial in nature, are key players in
the de Rham theory of cohomology. Given a smooth manifold M , one can form the de Rham
complex Ω∗(M) consisting of vector spaces of differential forms in each degree, with coboundary
given by exterior differentiation. The functoriality of Ω∗ is given by pullbacks of forms.

Taking the homology of this cochain complex yields de Rham cohomology, or ordinary cohomo-
logy with real coefficients, which can be explicitly expressed as closed forms modulo exact forms
in each degree. As the name suggests, this is a cohomology theory, and hence homotopy invari-
ant, even though it is built up from differential forms in each degree. This is summarized in the
following theorem, and we refer to any textbook containing de Rham cohomology (e.g. [BT82])
for a proof.

2It is possible to generalize the Gauss-Bonnet theorem quite a bit, but we won’t dive into this. This can be found
in [Tu17].
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Theorem 2.1.2. (The explicit homotopy invariance of de Rham cohomology).

Let M and N be smooth manifolds with smooth maps f, g :M → N and let Ψ :M × [0, 1]→ N
be a smooth homotopy.

There is a chain homotopy between the induced morphisms at the level of de Rham complexes,
which ensures the homotopy invariance of de Rham cohomology. The chain homotopy can be
explicitly given by the homotopy operator ψ : Ω∗(N)→ Ω∗−1(M) sending

ψ : ω 7→

(
m 7→

∫
[0,1]

ι∂t (Ψ
∗ω)m dt

)
.

The integration of forms does not only aid in constructing an explicit formula for this homotopy
operator. It also yields an intuitive connection to singular cohomology.

To see this, recall that the universal coefficient theorem implies that singular cohomology with
real coefficients, Hp(M ;R), can be expressed as a dual of singular homology. More precisely,

Hp(M ;R) ∼= Hom(Hp(M ;Z),R)
⊕

Ext1(Hp−1(M ;Z),R)
∼= Hom(Hp(M ;Z),R),

where the Ext vanishes as R is a divisible group, and hence injective, by the Baer Criterion.

If we now want to move from Hp
dR(M) to Hp(M ;R), we can take the approach of creating

a functional on the integral homology groups of M . If we take a differential form ω, we may
consider

∫
− ω, and intuitively think of cycles in homology as relevant subspaces ofM to integrate

ω over.

More formally, a p-form may be integrated over a p-cycle by considering a p-cycle σ : ∆p → M
as a p-dimensional subspace c = σ(∆p) of M . We can include c into M . Integrating the p-form
over σ is done by pulling back ω from M to c through the inclusion.

Remark 2.1.3. Even though our manifolds may not be orientable, we will still use Stokes’ the-
orem. Cycles, if considered as above, are orientable. The applications of Stokes’ theorem on
non-orientable manifolds will be only in the context of integrating forms on cycles.

We end this section by stating the de Rham theorem, which is vital to this thesis.

Theorem 2.1.4. (The de Rham theorem, [BT82]).

Integrating forms on cycles yields a natural isomorphism between de Rham cohomology H∗
dR(M)

and singular cohomology H∗(M ;R).
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2.2 Refined motivation: de Rham as unification

Even though de Rham cohomology is homotopy invariant, it contains geometrical information,
although not explicitly at the level of cohomology. The de Rham theorem (2.1.4) lets us view two
identical stories of cohomology through the eyes of differential forms and singular cochains. If we
want to understand the blending of the geometrical and topological information, it can be useful
to view both of these in parallel, and then modify the part coming from de Rham cohomology
to contain more geometrical information. We follow the description given in [ADH23] for this
section.

Fix a smooth manifold M and consider the following sequences, connected by the de Rham
isomorphism,

. . . Hk−1(M ;R) Hk−1(M ;R/Z) Hk(M ;Z) Hk(M ;R) . . .

. . . Hk−1
dR (M) Ωk−1(M)/ im(d) Ωkcl(M) Hk

dR(M) . . . .

∼=

Bock

∼=

d

The top sequence is induced by a short exact sequence of coefficients, while the bottom sequence
is made by doing the appropriate inclusions and maps we have available for differential forms.

A key point is that the top sequence is homotopy invariant, and hence resembles the homotopy
theoretic part, while the lower sequence resembles the more geometric component, as the functor
Ωkcl is not even homotopy invariant.

Why is it not homotopy invariant? By restricting to closed forms, the differentials in question
will be zero, and hence, at the level of complexes, we may see that homotopic maps must be
equal. That is, a chain homotopy dψn + ψn+1d = f − g between homotopic maps f and g yield
f = g when restricting to closed forms. Therefore, for Ω∗

cl to be homotopy invariant, we need
Ωicl(M) ∼= Ωicl(N) for homotopy equivalent M and N . This is rarely the case, as illustrated by
0 ∼= Ω2(pt) 6∼= Ω2(R2) 3 dx ∧ dy 6= 0.

One may therefore use this diagram as motivation for a naive blending of geometry and topology.
To ”blend” geometry and topology using de Rham cohomology, we are after invariants Ĥk(M ;Z)
that fit into the following type of commuting hexagon diagram,

Hk−1(M ;R/Z) Hk(M ;Z)

Hk−1
dR (M) Ĥk(M ;Z) Hk

dR(M).

Ωk−1(M)/ im(d) Ωkcl(M)

Bock

d

When referring to a hexagon, we mean a diagram of the above type, often with similar entries.
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Even though this should be sufficient motivation for seeking Ĥ, the diagram we put up is slightly
too naive to describe Ĥ, at least if we want the diagonal maps to form short exact sequences.
In addition, this diagram does not yet tell us how we can differentially refine other cohomology
theories, such as complex K-theory.

To briefly motivate what we will do in the next section, we give a short argument for what
happens when k = 1.

Recall that H1(M ;Z) = π0 Hom(M,K(Z, 1)) = π0 Hom(M,R/Z), where R/Z now denotes the
circle. A compatible Ĥ1 should be related to H1 through some map in the hexagon diagram,
and it should hopefully contain some geometric information as well. Luckily, we have a result
connecting Hom(M,R/Z) to the more geometric analog of smooth maps, C∞(M,R/Z).

Proposition 2.2.1. (Representing continuous maps by smooth maps, [BT82, Theorem 17.8]).

Any continuous map between smooth manifolds is homotopic to a smooth map.

To rephrase, we haveH1(M ;Z) = π0 Hom(M,R/Z) ∼= π0C
∞(M,R/Z). Returning to the hexagon,

this aligns quite well with the fact that we have Ω0(M) = C∞(M,R). Post-composing with the
quotient map R→ R/Z yields a (non-injective) map

ι : Ω0(M) = C∞(M,R)→ C∞(M,R/Z)

and we have a surjection

π0 : C
∞(M,R/Z) � H1(M ;Z) = π0C

∞(M,R/Z).

These maps may work as the diagonal

Ω0(M)/ im(d)→ C∞(M,R/Z) � H1(M ;Z)

in the hexagon diagram. For our first (naive) attempt at differential cohomology, we just use
Ĥ1(M ;Z) = C∞(M,R/Z). To obtain the rest of the maps, as well as the exactness of the
diagonals, we would need quite a lot of further work. Details can be found in [ADH23].

The key point is that C∞(M,R/Z) may work as a valid model for the first ordinary differential
cohomology group. Unfortunately, the entries in the bottom sequence fail to yield short exact
sequences on the diagonals of the hexagon. A solution is the differential characters of [CS85],
which generalizes the role C∞(M,R/Z) plays for k = 1 to arbitrary k.

2.3 The Differential Characters of Cheeger-Simons

We follow [BB14] for our introduction of differential characters. This section is mainly included
for completion, as differential characters are quite explicit and useful when wanting to show that
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a relevant construction is ordinary differential cohomology. They also motivate the generalization
done by [HS05], which we will see in Section 2.6.

We restrict the discussion to smooth simplices, chains, and cycles. We will emphasize this tempor-
arily by letting Csmk (M ;Z) denote the abelian group of smooth k-chains in M and consequently,
let Zsmk (M ;Z) denote the smooth k-cycles in M . If we do not work with smooth manifolds, or
the sub-/superscript is forgotten or omitted, it should be clear from context whether we consider
smooth cycles or not.

The defining idea is that a class in Ĥk(M ;Z) should contain information about the (smooth)
cycles of M , as well as information about differential forms on M . Note that by the degeneracy
of the hexagon diagram for k = 0, we might as well set Ĥ0(M ;Z) = H0(M ;Z).

Definition 2.3.1. (Differential characters, [CS85]).

A differential character on M of degree k is a homomorphism h : Zsmk−1(M ;Z) → R/Z with the
property that there exist a differential form ω ∈ Ωk(M) such that for all c ∈ Csmk (M ;Z),

h(∂c) = exp(2πi
∫
c
ω).

The abelian group of differential characters of degree k is written Ĥk(M ;Z), indicating that it
is a model for ordinary differential cohomology. We will see that this is indeed true.
Remark 2.3.2. In the above definition, the differential characters contain information about k-
forms and smooth k-chains, with a homomorphism on (k − 1)-cycles blending them together.
The differential characters of degree k is a subgroup of HomAb(Z

sm
k−1(M ;Z),R/Z).

Remark 2.3.3. In the original paper of [CS85], these are called differential characters of degree
(k − 1). The index convention adopted later was to call these the differential characters of
degree k, as this ensures information about k-forms and k-chains to be found in the differential
characters of degree k, as explained above.
Remark 2.3.4. One should indeed be aware that we write the group operation additively, even
though the operation on R/Z is multiplication, i.e. (h+h′)(c) = h(c)h′(c). This is because there
is an additional multiplicative structure on the group of differential characters that make up its
ring structure. Note that this means that the identity is 0(c) = 1, which has caused confusion.

Definition 2.3.5. (Curvature of a differential character).

The k-form connected to h in Definition 2.3.1 is called the curvature of h, which we write
ω = curv(h). In this language, a differential character h is called flat if curv(h) = 0.

The curvature form ω can be shown to be unique. It is closed (which one can see by evaluating
on boundaries), and it has integral periods.
Remark 2.3.6. Strictly speaking, we should think of a differential character as a pair (h, ω) as
above, but due to the uniqueness of ω given h, we only consider a differential character to be an
h that satisfies Definition 2.3.1.



Chapter 2: Approaching Differential Cohomology 31

In addition to the map picking out the curvature form, we can construct a map picking out a
cohomology class, called the characteristic class of h. Let h ∈ HomAb(Z

sm
k−1(M ;Z),R/Z) be a

differential character. Since Zsmk−1(M ;Z) is free, it is projective, and we can find a (not necessarily
unique) real lift of h, called h̃ : Zsmk−1(M ;Z)→ R such that post-composing h̃ with the projection
R � R/Z yields h, i.e. h(c) = exp(2πih̃(c)).

Definition 2.3.7. (Characteristic class of a differential character).

We follow [BB14] and define

µh̃ : Csmk (M ;Z)→ Z, c 7→ −h̃(∂c) +
∫
c
curv(h).

We put cc(h) = [µh̃] ∈ Hk(M ;Z). This is the characteristic class of h. A differential character h
is called topologically trivial if cc(h) = 0.

We check that µh̃ is a cocycle given a fixed real lift h̃ and that it takes integral values. This
follows as the crux is to remember that curv(h) is closed and then that

exp(2πi
∫
c
curv(h)) = h(∂c) = exp(2πih̃(∂c)).

Since the fraction h(∂c)/h(∂c) is 1, we may use both equalities above to obtain µh̃(c) ∈ Z.

It can also be shown that the cocycle is independent of which choice of lift h̃ we pick, implying
cc is well-defined. The map cc can also be shown to be surjective onto Hk(M ;Z). We refer to
[BB14].

Furthermore, any representative of the cohomology class cc(h) is of the form µh
′ for some real

lift h′ of h. Let α be a representative cocycle of the class. Then since we constructed cc(h) as µh̃

for some fixed real lift h̃, we know that there exists a cochain s such that α = µh̃ − δs. Setting
h′ = h̃+ s yields

µh
′
:=

∫
−
curv(h)− δ(h̃+ s) =

∫
−
curv(h)− δh̃− δs = µh̃ − δs = α.

Next we define the map ι : Ωk−1(M)/ im(d)→ Ĥk(M ;Z) by

η 7→ exp(2πi
∫
−
η) =: h(−),

which is a differential character by Stokes’ theorem, ensuring

h(∂c) = exp(2πi
∫
∂c
η) = exp(2πi

∫
c
dη).
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We immediately obtain curv(ι(η)) = dη, which proves the commutativity of the lower triangle
in the hexagon diagram. By picking a canonical real lift ι̃(η) =

∫
− η, this map can be shown

to induce exactness in the upwardsgoing diagonal of Ĥk(M ;Z). Be aware that cc ◦ι = 0 easily
follows from Stokes’ theorem.

To further work towards short exact diagonals, we must change the domain of ι. We can see
that the kernel of ι must be the (k − 1)-forms of integral periods, as if c is an arbitrary chain,
exp(2πi

∫
c η) = 1 = 0(c) forces

∫
c η ∈ Z.

The last map to define is the map j : Hk−1(M ;R/Z)→ Ĥk(M ;Z). We use the pairing between
homology and cohomology to define j. If u ∈ Hk−1(M ;R/Z) is any cohomology class, define

ju : [z] 7→ 〈u, [z]〉 ∈ R/Z.

This is indeed a differential character, as

ju(∂c) = 〈u, [∂c]〉 = 〈δu, [c]〉 = 〈0, [c]〉 = 0(c) = 1 = exp(0).

We immediately see that curv(j(u)) = 0. By further work, we do in fact have a downward-going
diagonal short exact sequence as well. The map j is often referred to as the inclusion of flat
characters, as these are the ones with curvature 0. The fact that the R/Z-theory accounts for
the ”flat part” of differential cohomology, is a more general result than indicated here, as we’ll
briefly see in Section 3.3.

With the maps defined above, it is possible to obtain a new, refined version of the hexagon
diagram. We refer to [ADH23], [BB14], and [SS08a] for the missing details.

Theorem 2.3.8. (The hexagon diagram of differential characters).

We have a commutative diagram

0 0

Hk−1(M ;R/Z) Hk(M ;Z)

Hk−1
dR (M) Ĥk(M ;Z) Hk

dR(M)

Ωk−1(M)/Ωk−1
0 (M) Ωk0(M)

0 0

j cc

curv

d

ι

with exact diagonals.
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2.4 A first definition of (ordinary) differential cohomology

The above maps and their relations define ordinary differential cohomology.

Definition 2.4.1. (Ordinary differential cohomology theory, [SS08a]).

An (ordinary) differential cohomology theory is a contravariant functor

H̃∗(−;Z) :Man→ grAb

with four natural transformations;

• inclusion of flat classes, j̃ : H∗−1(−;R/Z)→ H̃∗(−;Z),
• topological trivializations, ι̃ : Ω∗−1(−)/Ω∗−1

0 (−)→ H̃∗(−;Z),
• curvatures, ˜curv : H̃∗(−;Z)→ Ω∗

0(−),
• and characteristic classes, c̃c : H̃∗(−;Z)→ H∗(−;Z).

These are required to fit together in a hexagon diagram with exact diagonals, as in Theorem
2.3.8.

Theorem 2.4.2. (Ordinary differential cohomology is unique, [SS08a, Theorem 1.1]).

Ordinary differential cohomology exists (as shown by differential characters) and is unique up
to unique isomorphism.

Remark 2.4.3. The unique isomorphism mentioned above can be constructed explicitly. See
everything that leads up to Definition 24 in [BB14].

Remark 2.4.4. [SS08a] argues for the above theorem by using an axiomatic approach through
so-called character functors. They also show that in such an axiomatic framework, the map cc
is redundant, as it can be derived uniquely by the other maps and the existence of the hexagon.

As we will see in Section 3.2, generalized differential cohomology theories are not as strongly
unique. Uniqueness up to an explicitly constructed unique isomorphism is true in most cases.

2.5 Ring structure and examples

Before examining a more general approach by Hopkins-Singer, we take a slight detour to interpret
and compute examples of some differential cohomology groups, and see a curious consequence
of the ring structure. We refer to [BB14] for missing details.

Example 2.5.1. (Differential characters when k = 0).

Due to the degeneracy of the hexagon diagram, we take Ĥ0(M ;Z) = H0(M ;Z).
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Example 2.5.2. (Differential characters when k = 1).

We have Ĥ1(M ;Z) = C∞(M ;R/Z) as Zsm0 (M ;Z) → R/Z yields a map M → R/Z, and the
relation to its curvature shows that it must be smooth.
Example 2.5.3. (Differential characters when k = 2).

Recall that H2(M ;Z) ∼= [M,K(Z, 2)]. As we have the fibration S1 → S2n−1 → CPn−1, the limit
CP∞ is homotopy equivalent to K(Z, 2) by checking its homotopy groups through the long exact
sequence in homotopy. As CP∞ is BU(1), the classifying space of principal U(1)-bundles, we do
indeed obtain that

H2(M ;Z) ∼= [M,K(Z, 2)] ∼= [M,CP∞] ∼= [M,BU(1)] ∼= Bun(U(1)).

Therefore, we hope that Ĥ2(M ;Z) describes principal U(1)-bundles with some geometric in-
formation, such as principal U(1)-connections. This is indeed the case. The group consists of
principal U(1)-bundles with connection, (E,∇). For such a bundle, we can assign to a smooth
1-cycle z an element h(z) ∈ U(1) by utilizing some sort of holonomy map (see [BB14]). In fact,
all differential characters of degree 2 arise this way. The interesting thing is that the curvature
of such a differential character, curv(h) is −1

2πiR
∇, where R∇ is the curvature of the connection.

The characteristic class of h, cc(h), is the first Chern class of the bundle.
Queequeg 2.5.4. (Differential characters for higher k).

The reader interested in higher analogs of differential geometry may be interested in connections
in principal G-k-bundles. Just as Ĥ2(M ;Z) classifies U(1)-1-bundles with connections, Ĥk can
be thought of as classifying principal U(1)-(k − 1)-bundles with connection, where the index
(k − 1) indicates that we are thinking of U(1) as a (k − 1)-group. This can be made specific by
understanding the Deligne complex as a model for ordinary differential cohomology (which we
do in Section 3.4) and by studying higher parallel transport. We will not meet the latter idea,
nor spend a substantial amount of time on differential characters. See [BB14] and the references
therein for more details.

There is a ring structure on differential characters. One can explicitly define an exterior product

× : Ĥk(X)× Ĥ l(X ′)→ Ĥk+l(X ×X ′)

and refine this to a (graded commutative) interior product

∗ : Ĥk(X)× Ĥ l(X)→ Ĥk+l(X)

by ∆∗
X(h× h′) where ∆X is the diagonal on X.

We will not construct this product for differential characters, as it becomes quite involved, but
the rather hairy formulas can be found in [BB14]. The product can be shown to satisfy some
wanted properties. For example, we have

curv(h ∗ h′) = curv(h) ∧ curv(h′) and cc(h ∗ h′) = cc(h) ∪ cc(h′).
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Remark 2.5.5. Using their axiomatic character diagram framework, [CS85] shows that this
product is unique.

Remark 2.5.6. There is a framework in which the internal product becomes more intuitive, as
it uses the wedge product of forms, the cup product of cocycles, and an explicit formula for
blending them. We return to it in the next section.

The reason we mention the ring structure, apart from completeness, is the curious construction
it yields in low degrees. This is Example 34 in [BB14].

Construction 2.5.7. (Constructing a principal U(1)-bundle from smooth functions).

Consider two differential characters h1 and h2 of degree k = 1 onM . These correspond to smooth
functions h̄i : M → U(1). The internal product h1 ∗ h2 of these should by our interpretation of
Ĥ2(M ;Z) be a principal U(1)-bundle with connection on M .

To find this bundle, consider the differential character i ∈ Ĥ1(U(1);Z) that corresponds to the
smooth function given by the identity on U(1). Since we have h̄j = idU(1) ◦h̄j , we have h̄j = h̄j

∗
i.

Set h̄ = (h̄1, h̄2) : M → U(1) × U(1) and let ∆ : U(1) → U(1) × U(1) =: T 2 be the diagonal
map, which goes from U(1) to the 2-torus.

We compute

h1 ∗ h2 = ∆∗(h1 × h2) = ∆∗(h̄1
∗
i× h̄2

∗
i)

= ∆∗(h̄1 × ¯h2)∗(i× i) = h̄∗(i× i).

This construction may seem a bit ad hoc, but the takeaway is beautiful. Note that i × i lives
in Ĥ2(T 2;Z), which means that this is a principal U(1)-bundle with connection on T 2. Our
product h1 ∗ h2, which is a principal U(1)-bundle with connection on M ”generated” by the
smooth functions h̄i, is in fact a pullback along h̄ of a universal principal U(1)-bundle with
connection on T 2.

The universal bundle (and the connection) can be explicitly constructed, as done in [BB14].
There are deeper reasons for being interested in this bundle, see for example [BB14, P.37.].

As we have seen, differential characters are technical in nature, but they yield an explicit de-
scription of differential cohomology. However, it is not yet clear how to generalize differential
characters to arbitrary cohomology theories.

2.6 Generalization through homotopy pullbacks

In their important paper ([HS05]), Hopkins-Singer find a way to generalize the differential char-
acters of [CS85], both to obtain another view of ordinary differential cohomology, and as a



36 Angelsen: Differential and Hodge-filtered Cohomology

framework of differentially refining other generalized cohomology theories. Instead of the re-
quirement involving maps and the hexagon diagram, they ask for a theory to sit in the corner
of the rightmost square of the hexagon.

To be more precise, Hopkins and Singer define a new complex Ĉ(q)∗(M) by a homotopy pullback

Ĉ(q)∗(M) Ω∗≥q(M)

C∗(M ;Z) C∗(M ;R),

j

i

where Ω∗≥q(M) is the complex Ω∗, but with Ωn(M) = 0 if n < q.
Remark 2.6.1. As a generalization inspired by Deligne cohomology, the filtration of forms is
included. One could do a similar construction without the filtration on forms, but that would
just amount to constructing Ĉ∗ := Ĉ(0)∗(M). If q ≤ q′, we do indeed have Ĉ(q)(M) ⊇ Ĉ(q′)(M)
by the inclusion of the geometric data.

In the category of cochain complexes, a homotopy pullback need not be unique. It is however
unique up to quasi-isomorphism. Using known results on the topic, such as [BR20, Lemma
A.7.21], we can find an explicit model for the complex in question. The above diagram is a
homotopy pullback if and only if

Ĉ(q)∗(M ;Z) C∗(M ;Z)× Ω∗≥q(M)

0 C∗(M ;R)

is a fiber sequence, where C∗(M ;Z)× Ω∗≥q(M)→ C∗(M ;R) is the map −i+ j.

There is a canonical way to construct such homotopy fibers. By shifting Ĉ(q)∗(M), we can define

Ĉ(q)∗(M)[1] = cone((−i, j)) = cone(C∗(M ;Z)× Ω∗≥q(M)→ C∗(M ;R)).

Definition 2.6.2. (The filtered differential complex).

More explicitly, we call the complex

Ĉ(q)n(M) = Cn(M ;Z)× Ωn≥q(M)× Cn−1(M ;R)

the filtered differential complex, where Ωn≥q(M) is either 0 or Ωn(M) if n < q or n ≥ q,
respectively.

The differential d is given by

d(c, ω, h) = (δc, dω, ω − c− δh).
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Remark 2.6.3. To ensure ω − c − δh makes sense, we use the de Rham map. This may be an
abuse of notation, but the true home of these cocycles should be clear from the context. We
should not forget, however, that ω considered as a singular cocycle means

∫
− ω.

By the long exact sequence in cohomology, we obtain a Mayer-Vietoris sequence

· · · Ĥ(q)n(M) Hn(M ;Z)×Hn(Ω∗≥q) Hn(M ;R)

Ĥ(q)n+1(M) Hn+1(M ;Z)×Hn+1(Ω∗≥q) · · · ,
I

where Ω∗≥q is short for the complex Ω∗≥q(M).

If n > q, the de Rham isomorphism implies that we can identify Ĥ(q)n(M) with Hn(M ;Z). In
the case where n < q, we have Hn(Ω∗≥q) = 0, which allows us to use the 5-lemma to argue that
Ĥ(q)n(M) is Hn−1(M ;R/Z).

What about n = q? The group Ĥ(q)q(M) consists of equivalence classes of cocycles (c, ω, h)
where c is a singular cocycle, ω is a closed form and h satisfies δh = ω − c.
Remark 2.6.4. One should note that the above requirement for δh heuristically works as the
embodiment of our goal to ”blend” geometry (the ω’s) with topology (the c’s).

Theorem 2.6.5. (Filtered differential complexes generalize differential characters).

We have an isomorphism
Ĥ(q)q(M) ∼= Ĥq(M),

where the Ĥ on the right hand side denotes the group of differential characters of [CS85].

Proof. We sketch the proof. The cocycle (c, ω, h) can be made into a differential character by
mapping (c, ω, h) 7→ χ = exp(2πih), which lives in HomAb(Z

sm
q−1(M ;Z),R/Z). This is a differen-

tial character since if we are given an arbitrary smooth q-cycle z, we have

χ(∂z) = exp(2πih(∂z)) = exp(2πi(δh)(z)) = exp(2πi(ω(z)− c(z))) = exp(2πi(
∫
z
ω)).

Above, we used the fact that c is integer-valued. It is immediate that χ has curvature ω, which
is unique, indicating that we can construct an inverse map. The cocycle c is determined by the
requirement in cohomology that δh = ω− c. The inverse map is given by (χ, ω) 7→ (ω−δh, ω, h),
where h can be chosen to be a real lift of χ, similarly to what we did in the previous section.
These can be shown to be group homomorphisms that are natural in M . See [BB14].

Remark 2.6.6. There are short exact sequences that ensure Ĥ(q)q fits into the hexagon diagram.
We could also have proven that Ĥ(q)q simply satisfies the axioms of an ordinary cohomology
theory. This would have sufficed to prove uniqueness, by Theorem 2.4.2.
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Remark 2.6.7. One should note that [HS05] uses the index convention of [CS85] for differential
characters.

The product of differential characters becomes prettier in this framework, as we’ll briefly mention.
For two cocycles (c, ω, h) and (c′, ω′, h′), one can make the product component-wise for the first
two components using the cup product c∪ c′ and the wedge product ω ∧ ω′. The problem arises
when considering the product of h and h′, as the de Rham map does not necessarily map ∧ to
∪.

Luckily, as [CS85] points out, Kevaire presented a way make the difference ω ∧ω′−ω ∪ω′ exact
in a canonical way. The term ω ∧ ω′ should by abuse of notation be interpreted as the cocycle
associated to the differential form ω ∧ ω′. We can choose a natural chain homotopy B, unique
up to homotopy, between ∪ and ∧ to obtain

ω ∪ ω′ − ω ∧ ω′ = δB(ω, ω′) +B(dω, ω′) + (−1)degωB(ω, dω′).

Proposition 2.6.8. (The generalized product).

The product of (c, ω, h) and (c′, ω′, h′) is given by

(c ∪ c′, ω ∧ ω′, h ∪ ω′ + (−1)deg cc ∪ h′ +B(ω, ω′)).

We refer to [CS85] and the references therein on how to construct B, and we continue to follow
[HS05] to further generalize their construction to arbitrary cohomology theories.

2.7 The Differential Function Complexes of Hopkins-Singer

We worked with triples (c, ω, h) in order to generalize the differential characters. By Brown’s
representability theorem, we can represent cocycles in a cohomology theory by maps into a
suitable set of spaces, which lead to the notion of sequential spectra. We have not yet come to
link differential cohomology to spectra, but we may still include the idea of having a function
representing the cocycle c. This observation leads to a refined notion of differential cocycles.

Throughout this section, fix an integer n. We also need to fix a topological space X and a cocycle
ι ∈ Zn(X;R). Neither X nor ι needs to be smooth. We will in Section 2.8 define a canonical
class of choices for such a cocycle, called a fundamental cocycles.

Definition 2.7.1. (Differential functions).

We say a differential function t : M → (X, ι) is a triple (c, ω, h) as before, where ω ∈ Ωn(M)
and h ∈ Cn−1(M), but now we require

c :M → X such that δh = ω − c∗ι.
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Example 2.7.2. (Putting a connection on a U(1)-bundle).

If we choose X = K(Z, 2) = CP∞ = BU(1) and let L be the universal line bundle on CP∞. Pick
ιZ to be the integral two-cocycle representing the first Chern-class of L. A cocycle c ∈ Z2(M),
which can be viewed as a map c :M → K(Z, 2), induces a line bundle c∗L on M . Refining c to
a differential function is equivalent to putting a connection on c∗L, where the U(1)-bundle with
connection is the one corresponding to the class of

(c∗ιZ, ω, h) ∈ Z(2)2(M).

To make a more versatile object, we construct a simplicial complex based on these differential
functions.

Definition 2.7.3. (Differential function complex).

The differential function complex (X; ι)M is the simplicial set where the k-simplices are the
differential functions

M ×∆k → (X; ι)

To align this approach with the filtered differential complex of Definition 2.6.2, we can force a
filtration of Ω∗(∆k) by

filtsΩ∗(∆k) = (Ω0(∆k)→ · · · → Ωs(∆k)).

If we want to define this filtration on Ω∗(M ×∆k), we simply let

filtsΩ∗(M ×∆k) = Ω∗(M)⊗ filtsΩ∗(∆k).

This filtration can be used to construct a filtration of the simplicial complex (X; ι)M . A key
observation is that the exterior derivative induces a shift in the filtration, d : filts → filts+1.

Definition 2.7.4. (Weight filtration on the differential function complex).

We say that a k-simplex (c, ω, h) ∈ (X; ι)Mk has weight filtration ≤ s if

ω ∈ filtsΩ∗(M ×∆k)cl.

Definition 2.7.5. (Filtered differential function complex).

The simplicial set whose k-simplices are (c, ω, h) ∈ (X; ι)Mk that has weight filtration ≤ s is
denoted by filts(X; ι)M , and is called the filtered differential function complex, or often just the
differential function complex.
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We introduce a convention to generalize to the case where we have cocycles of various degrees.
If V is a graded vector space, we define the following:

C∗(X;V)n = ⊕i+j=nCi(X;Vj)
Ω∗(M ;V)n = ⊕i+j=nΩi(M ;Vj)
Z∗(X;V)n = ⊕i+j=nZi(X;Vj)
Hn(X;V) = ⊕i+j=nH i(X;Vj).

If the subscript j is lowered, as in Ωi(X;Vj), we use the convention that this has degree (i− j)
obtained by setting Vj = V−j .

Using the well-known yoga of simplicial objects, the Dold-Kan correspondence, and a whole lot
of lemmas, one can show the following results. We refer to Appendices A and D in [HS05] for
the details.

Theorem 2.7.6. (The differential function complexes generalize Differential Characters).

LetX = K(Z, n) and let ι correspond to the inclusion Z ⊂ R under the isomorphismHn(K(Z, n);R) ∼=
HomAb(Z,R).

The simplicial set filts(X; ι)M is a simplicial abelian group homotopy equivalent to the simplicial
abelian group associated to the chain complex

Ĉ(n− s)0(M)→ · · · → Ĉ(n− s)n−1(M)→ Ẑ(n− s)n(M)

through the Dold-Kan correspondence.

The homotopy groups of the simplicial set is given by

πi filts(X; ι)M = Ĥ(n− s)n−i(M).

For general X and ι, the differential function complex fits into a homotopy pullback as

filts(X; ι)M filtsΩ∗(M ×∆∗;V∗)ncl

sing(XM ) Z∗(M ×∆∗;V∗).

Remark 2.7.7. As the Dold-Kan correspondence maps into simplicial abelian groups, and sim-
plicial abelian groups are Kan complexes, the differential function complexes are in fact Kan
complexes.

By Appendices A, D, and page 36 of [HS05], it is possible to show the following. We omit
the proof, although we include the result for completion, hoping to inspire readers to do (and
publish) computations of these groups for interesting manifolds M .
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Proposition 2.7.8. (Explicit homotopy groups for differential function complexes).

We have the following homotopy groups.

πmZ(M ×∆∗;V∗)n ∼= Hn−m(M ;V∗).
πm filtsΩ∗(M ×∆∗;V∗)ncl ∼= Hn−m

dR (M ;V∗) m < s.

πm filtsΩ∗(M ×∆∗;V∗)ncl ∼= Ω∗(M ;V∗)n−mcl m = s.

πm filtsΩ∗(M ×∆∗;V∗)ncl ∼= 0 m > s.

πk filts(X; ι)M ∼= πk(X; ι)M k < s.

πk filts(X; ι)M ∼= Hn−k−1(M ;V∗)/πk+1(X; ι)M k > s.

For k = s, we define An−s(M ;X, ι) by

An−s(M ;X, ι) Ω∗(M ;V∗)n−scl

πs(X; ι)M Hn−s(M ;V∗).

πs filts(X; ι)M sits in a short exact sequence

Hn−s−1(M ;V∗)/πs+1(X; ι)M → πs filts(X; ι)M → An−s(M ;X, ι).

A natural question to ask is how the simplicial set(X; ι)M depends on X, ι, and M , and which
functorial or homotopy preserving properties filts has.

Assume we are given a smooth map g : M → N of smooth manifolds. By considering the
mapping (c, ω, h) 7→ (c ◦ g, g∗ω, g∗h), we obtain a map

g∗ : filts(X; ι)N → filts(X; ι)M .

Assume we have a continuous map f : X → Y . Since the cocycle depends on the underlying
space, this requires a change in ι. By letting ιY ∈ Zn(Y ;V∗), we obtain

f̂ = filts(f) : filts(X; f∗ιY )
M → filts(Y ; ιY )

M

by mapping (c, ω, h) 7→ (c ◦ f, ω, h).
Remark 2.7.9. Note that filts is functorial in the manifold M , but not in the space X due to
the cocycle ι. This could be expected, as X in some sense represents the differential cohomology
theory.

This construction has important properties.
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Proposition 2.7.10. ((weak) homotopy equivalences are preserved by filts).

If f : X → Y is a (weak) homotopy equivalence, then

f̂ = filts(f) : filts(X; f∗ιY )
M → filts(Y ; ιY )

M

is a (weak) homotopy equivalence.

Proof. If f is a homotopy equivalence, we can consider the following diagram,

singXM Z∗(M ×∆∗;V∗)n filtsΩ∗(M ×∆∗;V∗)ncl

singYM Z∗(M ×∆∗;V∗)n filtsΩ∗(M ×∆∗;V∗)ncl.

Note that the two rightmost vertical maps are identity maps and that the leftmost vertical
map is a homotopy equivalence since sing preserves homotopy equivalences. For weak homotopy
equivalences, one must use bifibrant approximation and the generalized Whitehead theorem to
show that these can be promoted to homotopy equivalences. Taking the homotopy pullback
preserves vertex-wise (weak) equivalences, yielding the wanted result.

Different choices of the cocycle ιmay yield different differential function complexes. Nevertheless,
the resulting differential function complex only depends on the cohomology class of ι.

Proposition 2.7.11. (Invariance under cohomologous changes of ι).

If ι1, ι2 ∈ Z∗(X;V∗)n and b ∈ C∗(X;V∗)n−1 satisfies δb = ι1 − ι2, the map

(X; ι1)
M → (X; ι2)

M ,

(c, ω, h) 7→ (c, ω, h+ c∗b),

is an isomorphism.

Proof. The inverse is made by replacing b by −b.

Assume we have a map of graded vector spaces t : V∗ → W∗ and a cocycle ι ∈ Zn(X;V∗) as
before. Then we get an induced cocycle t ◦ ι ∈ Zn(X;W∗) and a map (X; ι)M → (X; t ◦ ι)M .
Assume we are given a map f : X → Y , cocycles ιX ∈ Zn(X;V∗) and ιY ∈ Zn(Y ;W∗), and a
cochain b ∈ Cn−1(X;W∗) with δb = t ◦ ιX − f∗ιY . Then we get a map (X; ιX)

M → (Y ; ιY )
M by

mapping
(c, ω, h) 7→ (f ◦ c, t ◦ ω, t ◦ h+ c∗b).

The conclusion from these investigations is the following, which combines the above results.
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Theorem 2.7.12. (On filts(X; ι)M and its homotopy type).

Assume we fix a smooth manifold M . The homotopy type of filts(X; ι)M only depends on the
cohomology class of ι and the homotopy type of X.

2.8 Differential E-cohomology and fundamental cocycles

We have not yet had any definition of differential E-cohomology groups for a spectrum E,
although we recovered the definition of ordinary differential cohomology in Theorem 2.7.6 in
terms of the homotopy groups of a differential function complex.

Assume now that we are given a spectrum E with structure maps

sEn : ΣEn → En+1.

We seek a construction filts(E; ι)Mn , where (E; ι)n denotes (En, ιn). For that we need a suitable
choice of cocycle ιn. We define the singular (co)chain complex of E in the spirit of stability.

Definition 2.8.1. (The singular (co)chain complex of a spectrum).

The singular chain complex of E is defined as the complex

C∗(E) = colimnC∗+nEn,

where the defining maps C∗+nEn → C∗+n+1En+1 are given by the horizontal composition

C∗+n(En) C∗+n+1(ΣEn) C∗+n+1(En+1)

C∗+n+1(En × S1).

−×ZS1

(sn)∗

(qn)∗

Here qn is the map collapsing the wedge sum En ∨ S1, inducing En × S1 → ΣEn, and ZS1 is a
fundamental cycle of S1. The differential is induced by the limit.

We define the singular cochain complex of E with coefficients in an abelian group A to be

C∗(E;A) = Hom(C∗(E), A) = limC∗+n(En, A).

The induced map Hom(−× ZS1 , A) defines the slant product /ZS1 .

Remark 2.8.2. The slant product can be linked to integration by [HS05, Section 3.5].
Remark 2.8.3. The (co)homology of the spectrum E can be defined as the homology of the
(co)chain complex of E. Due to the stable nature of these complexes, we may have nonzero
(co)homology groups even at negative indices.
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A cocycle ι ∈ Zp(E;V∗) is, by the above definition, a list of cocycles ιn ∈ Zp+n(En;V∗) compat-
ible by ιn = ((sEn )

∗ιn+1)/ZS1 . Assume that we have fixed such a cocycle ι ∈ Zp(E;V∗) for any
fixed p, which we continue to omit from notation. The natural thing to do is to have p = 0, but
for generality, it is possible to have the cocycle shifted.

Definition 2.8.4. (Differential E-cohomology groups).

The differential E-cohomology groups of a smooth manifold M are given by

E(n− s)n(M ; ι) = π0 filts(E; ι)Mn = π0 filts(En; ιn)M .

If er only write Ên(M), we mean Ên(M) = π0 filt0(E, ι)Mn = E(n)n(M).

Remark 2.8.5. Be aware that even though we write E(n− s)n(M ; ι), ι is a cocycle on E, not on
M , as previous notation may hint to.
Example 2.8.6. As shown in [HS05, Appendix D], if E is the Eilenberg-MacLane spectrum HZ,
we obtain

HZ(k)n(M) ∼= Ĥ(k)n(M),

if we use the fundamental cocycle, which we will now define.

There is a canonical choice of cohomology class to choose cocycle representatives from, which
we call the fundamental cocycles. The fundamental observation is that of Dold ([Dol72]).

Proposition 2.8.7. (Chern-Dold isomorphism).

If we are given a compact space X, then we have an isomorphism

E∗(X)⊗ R ∼= H∗(X;π∗E ⊗ R).

This can be viewed as coming from a generalized Chern character, called the Chern-Dold char-
acter. The Chern-Dold character is induced by the ”realification” of the spectrum E, where
realification is the real analogue of rationalization coming from a smashing localization of spec-
tra obtained by smashing with HR instead of HQ. The Chern-Dold character specializes to the
Chern character if E is complex K-theory.

By this observation, we are motivated to choose a cocycle of H∗(E;π∗E ⊗ R), and we seek to
choose a cocycle of degree 0 for simplicity.

Note that

H0(E;π∗E ⊗ R) = H0(C∗(E;π∗E ⊗ R))
= H0(limC∗+n(En;π∗+nE ⊗ R))
= limHn(En;π∗+nE ⊗ R).

The ”realification” map π∗E → π∗E ⊗R given by a 7→ a⊗ 1 lives in Hom(π∗E, π∗E ⊗R), which
corresponds to H0(E, π∗E ⊗ R) under a graded Hurewicz isomorphism. The map therefore
represents a cohomology class [ιE ].
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Definition 2.8.8. (A fundamental cocycle).

Let E be a spectrum. A fundamental cocycle on E is a cocycle

ιE ∈ Z0(E;π∗E ⊗ R)

that represents the cohomology class defined above.

If the cocycle is not specified, as in Example 2.8.6, we mean the differential cohomology the-
ory associated to fundamental cocycles. As shown earlier, this is well-defined, as cohomologous
cocycles yield isomorphic differential cohomology theories.
Remark 2.8.9. (A fundamental cocycle specializes to other cocycles, [HS05, Remark 4.58]).

Given a cocycle ι ∈ Z∗(E;V∗)0, we can find a map t : π∗E⊗R→ V∗ and a cochain b ∈ C−1(E;V∗)
such that δb = ι− t ◦ ιE .
Remark 2.8.10. (Explicit Chern-Dold character).

The Chern-Dold character
chd : E∗(X)→ H∗(X;π∗E ⊗ R)

can be given by sending x ∈ En(X) to the cohomology class f∗ιn, where f : X → En represents
x, and ιn is the projection of

ιE ∈ H0(E;π∗E ⊗ R) = lim
n
Hn(En;π∗+nE ⊗ R)

down to Hn(En;π∗+nE ⊗ R).

2.9 The Differential Function Spectra of Hopkins-Singer

It is natural to wonder if the differential function complexes form a spectrum. In this section,
we will briefly outline the main idea of differential function spectra, which is included for com-
pleteness. Many lengthy proofs can be found in [HS05].

One can define a spectrum object filts(E; ι)M , where we set

(filts(E; ι)M )n = filts+n(E; ι)Mn = filts+n(En; ιn)M .

Remark 2.9.1. By the definition of differential E-cohomology, the higher homotopy groups of
such a spectrum is

πt filts(En, ιn)M = π0 filts−t(En−t; ιn−t)M = E(n− t− s+ t)n−t(M ; ι) = E(n− s)n−t(M ; ι).

Remark 2.9.2. By the Dold-Kan correspondence, the simplicial abelian group filts(En, ιn)M
yields a cochain complex, and hence cohomology groups.
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To ”spectrify” this constriction, we must acknowledge that the statement ”we have a homotopy
equivalence filts+n(En, ιn)M → Ω filts+n+1(En+1, ιn+1)

M ” is slightly ambiguous, as the object
filts+n+1(En+1, ιn+1)

M is a simplicial abelian group, not a topological space. One can indeed
argue that filts+n+1(En+1, ιn+1)

M is a space, as it is a simplicial group, hence a Kan complex,
and therefore corresponds homotopically to a CW-complex (or an ∞-groupoid). This is not the
point. The problem is that we have not specified a simplicial version of Ω.

Definition 2.9.3. (Simplicial loop space, Ωsimp).

For a simplicial set X∗, dthe simplicial loop space ΩsimpX∗ is the simplicial set where the k-
simplicies are maps h : ∆k

∗ × ∆1
∗ → X∗ of simplicial sets where we collapse ∆1

∗ into a loop by
requiring h(x, 1) = h(x, 0) = pt.

Remark 2.9.4. Note that this is the function complex from the simplicial circle to X.

To begin, one can show there is a canonical map

|ΩsimpX∗| → Ω|X∗|.

If X∗ is a Kan complex, this can be shown to be a homotopy equivalence. In particular, this will
be a homotopy equivalence for differential function complexes.

The existence of a simplicial homotopy equivalence

filts+n(En, ιn)M → Ωsimp filts+n+1(En+1, ιn+1)
M ,

is equivalent to the existence of a homotopy equivalence

| filts+n(En, ιn)M | → |Ωsimp filts+n+1(En+1, ιn+1)
M | → Ω| filts+n+1(En+1, ιn+1)

M |.

The construction of such a homotopy equivalence, as found in [HS05], is quite technical. The
idea is to define and equivalent model for the loop space ΩEMn+1, which is a space EM×R

n+1,c of
”compactly supported functions”, and its corresponding differential function complex. Then it is
possible to produce a zigzag of homotopy equivalences

filts+n(En, ιn)M ← filts+n+1(En+1, ιn+1)
M×R
c → Ωsimp filts+n+1(En+1, ιn+1)

M .

We omit any further details. Interested readers are refered to [HS05].

Similarly to the case of differential function complexes, we have the following proposition.

Proposition 2.9.5. (The induced differential function spectrum preserves (weak) homotopy
equivalences).

Assume f : E → F is a (weak) homotopy equivalence, that ι ∈ Zp(F ;R) is a cocycle, and that
M is a smooth manifold. Then the map

f̂ : filts(E; f∗ι)M → filts(F ; ι)M

is a (weak) homotopy equivalence.
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2.10 Differential K-theory through Hopkins-Singer theory

With the general approach to differential cohomology groups, it would be a shame not to include
a brief section on differential K-theory. We will meet differential K-theory and explicit models
again in Section 3.6, but for now, we use the Hopkins-Singer definition to define its differential
cohomology groups.

Differential K-theory is not only motivated by the above work, where it serves as a simple
example of a differential cohomology theory. It is in fact quite important in Type II string
theory, where differential K-theory was discovered to be closely linked to RR-fields and anomaly
cancellation onD-branes inM -theory ([FW99]). Due to the bundle-theoretic nature ofK-theory,
and the close link between differential forms and field strengths in physics, it is not surprising
that differential K-theory should be of relevance in physics, but the beauty resides in how much
power and relevance the abstractions of mathematics have.

To construct differential K-theory, choose any model for the classifying space of K-theory. For
notational simplification, we choose the space of Fredholm operators on some Hilbert space, F .
These operators are bounded linear operators whose kernel and cokernel are finite-dimensional.
F classifies K-theory by constructing every virtual vector bundle as an index bundle. With F ,
we only need a cocycle to construct K̂. Let V∗ be given by R in even degrees and 0 in odd
degrees, and let us consider

ι = (ιn)n ∈ Z0(F ;V∗)

to be a set of representative cocycles for the universal Chern character classes. That is, any
vector bundle V is classified by a map f : M → F , and we pick ι such that f∗ιn represents
chn(V ) ∈ H2n(M ;R). Even though these usually live in a world with integral coefficients, they
can be viewed as cycles and cohomology classes with R-coefficients through the inclusion Z ↪→ R.

To find a cocycle in the iterated loop space ΩiF , consider the evaluation map

Si × ΩiF → F

and consider the cocycle obtained by pulling back ι. This is a cocycle in Z0(Si × F ;V∗) =⊕
Z2n(Si ×F ;R). By taking the slant product with the fundamental class of Si, which can be

thought of as integrating along Si, we obtain a cocycle ι−i = (ι−i2n−i)n ∈ Z2n−i(ΩiF ;R). This
explicit description is the same as picking a fundamental cocycle.

Definition 2.10.1. (Differential K-theory).

Given a smooth manifold M , the differential K-group K̂0(M) is

K̂0(M) = π0 filt0(F ; ι)M .

For the higher K-groups, K̂−i(M) is given by

K̂−i(M) = π0 filt0(ΩiF ; ι−i)M .
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Before we move on, we make a few important remarks.
Remark 2.10.2. The K-theory spectrum is given by choosing E2n = F and E2n−1 = ΩF , and
Bott periodicity ensures that the maps Ek → ΩEk+1 are all homotopy equivalences. By the
construction of the cocycles of ΩiF as above, the differential cohomology groups induced by the
induced differential function spectrum equivalently define differential K-theory.
Remark 2.10.3. We have not yet mentioned any results on uniqueness for differential E-cohomology
for general E. This is postponed to Section 3.2. However, with some technical additional assump-
tion about the existence of an integration map or multiplicativity of K̂, differential K-theory is
unique up to a unique isomorphism.
Remark 2.10.4. An element of K̂−i(M) is a triple (c, ω, h) where c :M → ΩiF , ω is a sequence
(ωn)n of (2n− i)-forms and h is a sequence (hn)n (2n− i− 1)-cochains such that

δh = ω − c∗ι−i.

Due to Bott periodicity, providing a homotopy equivalence Ω2F ' F respecting the cocycles ιn,
we obtain the following proposition by passing the equivalence on through differential function
complexes.

Theorem 2.10.5. (Differential Bott periodicity).

There is an isomorphism of differential K-groups,

K̂−n(M) ∼= K̂−n−2(M).

Proof. All levels in the construction from the space ΩnF to π0 filt0(ΩnF ; ι−n)M preserves the
equivalence Ω2F ' F , as seen by Theorem 2.7.12.

Remark 2.10.6. The awkward choice of indexing as K̂−i is due to the fact that we slanted away
i dimensions when constructing the cocycles on ΩiF . By Differential Bott periodicity, we can
reindex, preserving the parity, to define

K̂n(M) = K̂n−2N (M)

where N is chosen large enough to ensure n− 2N ≤ 0.

The only important part when specifying K-groups is whether or not the index is even or odd,
meaning we may be sloppy in our indexing, as long as the parity is clear.

As we’ll briefly see in Section 3.6, there is an explicit model for differential K-theory, where the
only subtle change is replacing vector bundles with a ”differential” notion of structured bundles.
We come back to this model, results on uniqueness, and other things in later sections.

The Hopkins-Singer constructions arose from generalizing the differential characters of [CS85]
in several steps, ending at differential function spectra. With K-theory as an example to define
differential cohomology groups, we move on from their work to a more abstract approach to
differential cohomology.
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2.11 Sheaf Theoretic Differential Cohomology

The idea of exploring differential cohomology through sheaves is not new, as we will see when
we meet Deligne cohomology in Section 3.4. From the work of [HS05] in Section 2.9, we have
seen that we can differential cohomology groups through differential function spectra. Due to
the locality of differential forms, it is natural to be thinking about a sheaf theoretic version of
differential cohomology.

The results in the next sections can be found in the work of [BNV16], but we will follow the
exposition given by [ADH23]. In the latter reference, much of the theory is written out for some
arbitrary presentable ∞-category C. We will work with the stable ∞-category of spectra, Spt.
Recall that Spt is given by the stabilization of the ∞-category of spaces, Spc. As long as we
have certain technical requirements concerning compact generation, stability, and presentability,
we can replace Spt with our favorite∞-category C. Recall that Spt is both compactly generated
and presentable. For details on the underlying topos theoretic problems and results, we refer to
Appendix A in [ADH23].

Definition 2.11.1. (Presheaves and sheaves on manifolds).

We let
PSh(Man;Spt) := Fun(Manop,Spt)

denote presheaves of spectra on manifolds, and let

Sh(Man;Spt) ⊂ PSh(Man,Spt)

denote the full subcategory of spectra-valued sheaves on manifolds.

A Spt-valued presheaf E is a sheaf if and only if for each manifold M , restricting E to the site
Open(M) of open submanifolds of M yields a sheaf on M considered as a topological space.

Remark 2.11.2. The requirement of being a sheaf when restricted to Open(M) for each manifold
M is equivalent to being a sheaf on the siteMan, whereMan is endowed with the Grothendieck
topology of open covers.

As in the classical theory of sheaves, the inclusion Sh(Man;Spt) ↪→ PSh(Man;Spt) admits a
left adjoint, given the familiar name sheafification.

Definition 2.11.3. (Sheafification).

The left adjoint to the inclusion is denoted SMan : PSh(Man;Spt) → Sh(Man;Spt), and is
called sheafification.

Remark 2.11.4. Since Spt is found in the second argument of Fun, PSh(Man;Spt) becomes
an ∞-category as well, if we view Man as a slightly degenerate ∞-category by the nerve con-
struction. Sheafification can be shown to be a Bousfield localization, as its right adjoint is fully
faithful. See for example Proposition 5.1.23. in [Lan21] for further details.
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Definition 2.11.5. (The ∞-category of differential cohomology theories).

The ∞-category Sh(Man;Spt) of sheaves of spectra onMan is called the ∞-category of differ-
ential cohomology theories.

Definition 2.11.6. (The stalk of E at x ∈M).

Let M ∈ Man, fix a point x ∈ M , and let E ∈ Sh(Man;Spt). The stalk of E at x ∈ M is
defined as the filtered colimit

x∗(E) := colim
U∈Openx(M)op

E(U).

For any positive real number r, consider the ball BRn(r) of radius r around the origin 0n ∈ Rn,
and define

0∗n(E) = colim
k∈Z≥1

E(BRn(1/k)).

Proposition 2.11.7. (Equivalent conditions for equivalences in Sh(Man;Spt)).

The following are equivalent:

1. A morphism f : E → E′ in Sh(Man;Spt) is an equivalence,
2. for each integer n ≥ 0, the map f(Rn) : E(Rn)→ E′(Rn) is an equivalence in Spt,
3. for each integer n ≥ 0, the map 0∗n(f) is an equivalence in Spt,
4. for each M ∈Man and x ∈M , x∗(f) is an equivalence in Spt.

Definition 2.11.8. (Global sections and constant sheaves).

Define the global sections functor Γ∗ : PSh(Man;Spt) → Spt by Γ∗(E) = E(∗), and set
Γ∗ : Spt→ Sh(Man;Spt) to denote the constant sheaf functor.

It is possible to show that Γ∗ is left adjoint to Γ∗, when the latter is restricted to sheaves. The
global sections functor, Γ∗, also admits a right adjoint.

Proposition 2.11.9. (Right adjoint to Γ∗, [ADH23, Section 4.]).

Define the functor Γ! : Spt→ PSh(Man;Spt) by

Γ!(X)(M) :=
∏
m∈M

X.

This functor is fully faithful, right adjoint to Γ∗, and it factors through Sh(Man;Spt). The
adjunction Γ∗ a Γ! also holds when restricted to sheaves.

We are now in a situation where we have an adjoint triple
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Spt Sh(Man;Spt).
Γ!

Γ∗

Γ∗

We state the following well-known property for such adjoint triples, which also holds for 1-
categories.

Proposition 2.11.10. (Fully faithful maps in adjoint triples).

In such an adjoint triple, the upper map Γ∗ is fully faithful if and only if the lower map Γ! is
fully faithful.

This is the essence of why we need Γ!. It does not play an important role in differential cohomo-
logy other than ensuring useful properties, such as showing Γ∗ is fully faithful or that Γ∗ is a
left adjoint and hence preserves colimits.

We also obtain this useful corollary.

Corollary 2.11.10.1. (Sheafification does not change global sections).

Given E ∈ PSh(Man;Spt), the map E 7→ SManE induces an equivalence on global sections.

Proof. For all X ∈ Spt, we can show that the morphism

mapSpt(Γ∗ SManE,X)→ mapSpt(Γ∗E,X)

is an equivalence. This follows from the Γ∗ − Γ!-adjunction and the fact that Γ! factors through
Sh(Man;Spt), since the above is equivalent to

mapPSh(Man;Spt)(SManE,Γ!X)→ mapPSh(Man;Spt)(E,Γ
!X).

Now, since Γ!X already is a sheaf, the universal property of sheafification tells us that this is an
equivalence.

To study Sh(Man;Spt) as differential cohomology, it will be important to understand the
homotopy invariant part of Sh(Man;Spt).

Definition 2.11.11. (Homotopy invariant presheaves).

We say an F ∈ PSh(Man;Spt) is homotopy invariant if for all manifolds M , the projection
prM :M × R→M induces an equivalence

pr∗M : F (M) ' F (M × R).

We denote by PShR(Man;Spt) ⊆ PSh(Man;Spt) and ShR(Man;Spt) ⊆ Sh(Man;Spt) the
homotopy invariant presheaves and sheaves of spectra on manifolds.
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Proposition 2.11.12. (Homotopy invariance captures homotopy invariance).

A (pre)sheaf F is homotopy invariant in the sense of the above definition if and only if for each
homotopy equivalence M → N of manifolds, the map F (N)→ F (M) is an equivalence in Spt.

Proof. If F preserves homotopy equivalences, then we certainly have homotopy invariance, as
M 'M ×R. If F is homotopy invariant in the above sense, then for maps f :M ←→ N : g that
are homotopic to the identity when composed, we obtain the following diagrams witnessing the
homotopy.

M N F (M)

M × R M =⇒ F (M × R) F (M)

M F (M)

f◦g
idM×{0}

g

f

H

(f◦g)∗

H∗

(idM )∗
idM×{1}

idM

Since the vertical inclusions are sections of prM , i.e. prM ◦(idM × {x}) = idM , we obtain that
(idM × {x})∗ must also be an equivalence by the two-out-of-three-property after applying F
and our assumption. This implies H∗ is an equivalence, and consequently that (f ◦ g)∗ is an
equivalence. By a similar argument for N instead of M , we conclude that both (f ◦ g)∗ and
(g ◦ f)∗ are equivalences.

These homotopy invariant sheaves have the nice property that global sections describes equival-
ences.

Proposition 2.11.13. (Global sections and homotopy invariant sheaves).

A morphism f in ShR(Man;Spt) is an equivalence if and only if Γ∗(f) is an equivalence in
Spt.

Proof. This follows from Proposition 2.11.7 and the contractibility of Rn.

The subcategories ShR(Man;Spt) ⊆ Sh(Man;Spt) and PShR(Man;Spt) ⊆ PSh(Man;Spt)
are presentable (see [Lur17]), implying the existence of both left and right adjoints to these
inclusions by the Adjoint Functor Theorem ([Lan21]).

Definition 2.11.14. (R-localization and left/right homotopification).

Denote by LR : PSh(Man;Spt)→ PShR(Man;Spt) and Lhi : Sh(Man;Spt)→ ShR(Man;Spt)
the left adjoints to the inclusions of homotopy invariant sheaves, PShR(Man;Spt) ⊆ PSh(Man;Spt)
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and ShR(Man;Spt) ⊆ Sh(Man;Spt), respectively. The functor

Rhi : Sh(Man;Spt)→ ShR(Man;Spt)

is the right adjoint to the latter inclusion.

These functors are called R-localization and left/right homotopification in the case of presheaves
and sheaves, respectively.

As we seek to avoid too many technical results regarding these functors and their properties, we
will rush through some important results and their consequences to understand the sheaf theor-
etic picture better. All results can be found in Sections 4 and 5 of [ADH23] and the references
therein.

Proposition 2.11.15. (The constant sheaf, global sections and ShR(Man;Spt)).

The constant sheaf functor Γ∗ : Spt→ Sh(Man;Spt) factors through ShR(Man;Spt). Moreover,
when restricting the global sections functor to ShR(Man;Spt), Γ∗ : ShR(Man;Spt) → Spt is
an equivalence with Γ∗ as its inverse.

Remark 2.11.16. From the equivalence ShR(Man;Spt) ' Spt, we can think of ShR(Man;Spt)
as the correct homotopical part of sheaf theoretic differential cohomology.

We are now in the following scenario,

Sh(Man;Spt) ShR(Man;Spt) Spt.

Lhi

Rhi

⊥
⊥

Γ∗

'

Γ∗

Remark 2.11.17. We can write

mapSpt(Γ∗LhiE,X) ∼= mapShR(Man;Spt)(LhiE,Γ
∗X) ∼= mapSh(Man;Spt)(E,Γ

∗X)

for any E ∈ Sh(Man;Spt) and X ∈ Spt to see that Γ∗Lhi is left adjoint to Γ∗, when Γ∗ is
viewed as a Sh(Man;Spt) functor through the inclusion ShR(Man;Spt) ↪→ Sh(Man;Spt).

This motivates the following definition.

Definition 2.11.18. (The extreme left adjoint Γ!).

Define the functor
Γ! := Γ∗Lhi : Sh(Man;Spt)→ Spt,

which is left adjoint to the constant sheaf functor, Γ∗.
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Remark 2.11.19. We have Lhi ' Γ∗Γ! and by a similar computation, Rhi ' Γ∗Γ∗.

If we view the Γ’s as functors between Sh(Man;Spt) and Spt, we are now in the following
scenario, where all maps are written over their right adjoints,

Sh(Man;Spt) Spt.
Γ∗

Γ!

Γ∗

Γ!

Queequeg 2.11.20. (Towards Cohesive ∞-topoi). Interested readers may take a look at [Sch13]
and the one-paragraph summary found in subsection 2.14 for the importance of this adjoint
quadruple when defining differential cohomology theories in cohesive ∞-topoi.

The functors LR and Γ! can in fact be given explicit formulae. Do note that an explicit formula
for Γ! will induce an explicit formula for Lhi as well.

Proposition 2.11.21. (Morel-Suslin-Voevodsky construction, explicit formula for LR, [ADH23,
Proposition 5.1.2.]).

The functor
LR : PSh(Man;Spt)→ PShR(Man;Spt)

is explicitly given by
LR(F )(M) = |F (M ×∆∗)|,

where | − | denotes the geometric realization of the abstract simplicial object F (M ×∆∗) in Spt.

Using the above result by Morel-Suslin-Voevodsky, originally formulated in a very general man-
ner, it is possible to show how sheafification interacts with LR. We gather all the results in
[ADH23] regarding this interaction into a single proposition and omit the details.

Proposition 2.11.22. (Sheafification and R-localization).

1. For F ∈ PShR(Man;Spt), the counit Γ∗Γ∗ SMan F → SMan F is an equivalence.
2. In particular, SMan F is homotopy invariant, i.e. SMan F ∈ ShR(Man;Spt).
3. The composition SMan LR : Sh(Man;Spt)→ Sh(Man;Spt) factors through ShR(Man;Spt).
4. The above composition is left-adjoint to the inclusion ShR(Man;Spt) ⊆ Sh(Man;Spt).
5. In particular, Lhi ' SMan LR.

The last part of the above proposition yields the following explicit formula.
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Proposition 2.11.23. (Explicit formula for Γ!).

The functor Γ! : Sh(Man;Spt) → Spt, which is left adjoint to the constant sheaf functor Γ∗,
can be explicitly given by

Γ!(E) ' |E(∆∗)|.

Proof. Since Lhi ' SMan LR, an explicit formula for Γ! is given by Γ∗ SMan LR. It is therefore
enough to show that

Γ∗ SMan LR(E) ' |E(∆∗)|.

Due to Corollary 2.11.10.1, we know Γ∗ SMan LR(E) ' Γ∗LR(E). From the explicit formula of
LR (Proposition 2.11.21) we obtain

Γ!(E) ' Γ∗ SMan LR(E) ' Γ∗LR(E) ' LR(E)(∗) ' |E(∗ ×∆∗)|.

Corollary 2.11.23.1. (Explicit formula for Lhi).

Since Lhi ' Γ∗Γ!, left homotopification Lhi : Sh(Man;Spt) → ShR(Man;Spt) is given by the
constant sheaf E 7→ Γ∗|E(∆∗)|.

If we take a step back and breathe out after this adjoint bonanza, we can summarize the above
by saying we have an ∞-category of differential cohomology theories, Sh(Man;Spt), with a
concrete subcategory ShR(Man;Spt) ' Spt explaining the homotopical part of differential
cohomology. In a more diagrammatic manner, we have

Sh(Man;Spt) ShR(Man;Spt) Spt.

Lhi

Rhi

⊥
⊥

Γ∗

'

Γ∗

2.12 Stable Recollements

Can we use the subcategory ShR(Man;Spt) and the maps above to say something about the
”non-homotopical” part of Sh(Man;Spt)? The theory of stable recollements will luckily help us
to answer this question.

The theory of stable recollements can be formulated quite abstractly, and there are many tech-
nicalities related to this theory. As we want to apply it to the scenario described above, we will
more or less run through the most relevant results and definitions. For more general or in-depth
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treatments, consult [Lur17, Appendix A.8.] or [BG16] for more (∞-)categorical technicalities,
and [ADH23] or [BNV16] for its consequences for differential cohomology.

As motivation for recollements, we consider the following simple scenario. Let X be a topological
space and let U be an open subset of X. Denote by Y the complement of U in X, i.e. Y = X\U .
We have inclusions i : Y ↪→ X and j : U ↪→ X. If we are given a sheaf (of sets) on X, say F ,
we can pull F back to sheaves on U and Y by forming FU = j∗F and FY = i∗F , respectively.
A natural question one can ask is if we can reattach FU to FY to build F . This is precisely the
idea of recollements3.

The pullbacks i∗ and j∗ have well-known right adjoints given by forming the direct images,
yielding functors i∗ and j∗, respectively. Consider for example the unit of the last adjunction,
i.e. the natural transformation. ηj : IdSh(X) → j∗j

∗. This can be used to ”relate FY to FU ”,
which will be needed as a tool to glue them together to obtain F . The way we relate FY to FU
is by applying i∗ to the unit to obtain a morphism

u = i∗ηjF : FY → (i∗j∗)FU .

Amazingly enough, this is enough data to recover F from FU and FY , as it is possible to show
that the diagram

F i∗FY

j∗FU i∗i
∗j∗FU

ηiF

ηjF i∗(u)

ηij∗FU

is a pullback diagram.
Remark 2.12.1. As we will see, this is not just a sheafwise phenomenon. It is in fact possible
to reconstruct the category of sheaves on X from the categories of sheaves on the subspaces, as
long as we have the gluing functor i∗j∗.

The main takeaway is that we have inclusions of U and Y into X, which yield covariant and
fully faithful maps on sheaf categories through direct images. The direct images i∗, j∗ admit left
adjoints, i∗, j∗, which are both left exact, i.e. they preserve limits, and these maps relate the
sheaf categories of U and Y through a gluing map.

The above can be summarized (a bit more generally) in the following definition.

Definition 2.12.2. (Recollements).

If C is an ∞-category with finite limits, and C0, C1 are full subcategories of C. We say C is a
recollement of C0 and C1 if:

3The french word recollements encapsulates this quite well, as it translates to reattachments.
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1. C0 and C1 are stable under equivalence (C 3 X ' Y ∈ Ci =⇒ X ∈ Ci).
2. The inclusion functors Ci ↪→ C admits left adjoints Li.
3. The functors Li are left exact.
4. The functor L1 carries C0 to the terminal object of C.
5. A morphism α in C is an equivalence if and only if the morphisms Li(α) in Ci are equival-

ences.

Remark 2.12.3. [Lur17] and others often say the localization L0 is complementary to the local-
ization L1.
Remark 2.12.4. Due to the notation in our motivational example and our future use case, we
will not use Li to denote these left adjoint functors anywhere else than in this definition. When
the adjoints are present, it will be clear from context. We will continue to use the notation Ci
from [Lur17] and the notation i∗, i∗, j∗, j∗ from [ADH23].
Remark 2.12.5. Note that the definition of a recollement is not symmetric. If C is the recollement
of C0 and C1 as above, C is not necessarily the recollement of C1 and C0.
Remark 2.12.6. As the section title may indicate, we will be interested in the theory of recolle-
ments for stable ∞-categories, as this is much nicer than the general theory. Many definitions
and results still hold either way, but readers should be cautious whether a statement is given in
the stable case or not.
Example 2.12.7. (Sheaves revisited, [Lur17, A.8.4]).

If we are given a topological space X with a closed embedding i : Y → X and an open embedding
j : U → X, we can construct Sh(X), Sh(U) and Sh(Y ) to be sheaves of sets on the respective
spaces. Consider C = N(Sh(X)) to be the ∞-category given by taking the nerve of Sh(X).

If we set C0 ⊆ C and C1 ⊆ C to be the induced image of the direct image functors i∗ and j∗,
respectively, it can be shown that C is a recollement of C0 and C1 as long as we assume Y ∩U = ∅.
In particular, if Y = X\U as in our initial example, N(Sh(X)) is a recollement of N(Sh(Y ))
and N(Sh(U)).
Remark 2.12.8. A similar example can be made for schemes and quasicoherent sheaves. See
[ADH23, Example 6.1.6.].

After seeing the example of sheaves above, we long back to sheaf theoretic differential cohomo-
logy. However, it is not obvious how to relate this decomposition of sheaves to the setting of
differential cohomology. Luckily, the following result in [Lur17] solves our problems.

Theorem 2.12.9. (Relating adjoints to recollements, [Lur17, A.8.20.]).

Let C be a stable ∞-category and let C0 ⊆ C be a full subcategory closed under equivalence. Then
the inclusion functor C0 ↪→ C admits left and right adjoints if and only if there exists a full
subcategory C1 ⊆ C such that C is a recollement of C0 and C1.

Moreover, we can identify C1 with the full subcategory spanned by the right orthogonal objects to
C0. That is, C1 = C⊥0 ⊆ C, where C⊥0 is spanned by those objects Y such that the mapping space
mapC(X,Y ) is contractible for each X ∈ C0.
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We often call C1 the right Hom-complement of C0.

Since Sh(Man;Spt) is a stable ∞-category and ShR(Man;Spt) is a full subcategory closed
under equivalences and the functors Lhi and Rhi are left and right adjoints to the inclusion,
we can find a full subcategory ShR(Man;Spt)⊥ such that Sh(Man;Spt) is a recollement of
ShR(Man;Spt) and ShR(Man;Spt)⊥. We return to differential cohomology in the next section.

In a decomposition, such as the one we intuitively obtain from a recollement, questions about
equivalences and important properties can often be checked ”locally”. We informally summarize
some results from [Lur17] in the following remark, explaining the relevance of recollements to
”local” questions.

Remark 2.12.10. (Proto-theorems on local conditions, [Lur17, A.8.14. and A.8.17.]).

Let C and C′ be ∞-categories that can be exhibited as the recollements of C0, C1 and C′0, C′1,
respectively. With the appropriate assumptions, a functor F : C → C′ is an equivalence if it
restricts to equivalences C0 ' C′0 and C1 ' C′1. Similarily, with some additional assumptions, C
can be shown to be a stable ∞-category if the ∞-category C0 and C1 are stable.

As mentioned, we want to study the complement to C0 = ShR(Man;Spt), given by the right
orthogonal objects, C⊥0 to obtain an explicit decomposition of differential cohomology. Before
we do this, we must state the main results concerning stable recollements. We omit most proofs
and refer to [ADH23, Section 6.], [Lur17, Appendix A.8.] and the references therein for details.

Theorem 2.12.11. (Fracture squares from recollements).

If i∗ : C0 ↪→ C and j∗ : C1 ↪→ C exhibit C as the recollement of C0 and C1, we have a pullback
square of ∞-categories,

C Fun([1], C0)

C1 C0.

j∗ target

i∗j∗

The top horizontal arrow is given by mapping X ∈ C to the morphism in C defined by applying i∗
to the unit X → j∗j

∗(X). Furthermore, by using the units of the adjunctions, we have a pullback
square of endofunctors on C, called the fracture square of the recollement. The fracture square
is the pullback square

IdC j∗j
∗

i∗i
∗ i∗i

∗j∗j
∗.
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By further investigation of the maps i∗, i∗, j∗ and j∗, it is possible to show that they have further
adjoints, and that they fit in suitable fibre sequences, given suitable assumptions on C0 and C.
First we recall the following well-known facts, which also holds for 1-categories.

Proposition 2.12.12. (Units and counits for fully faithful adjoints).

If L : C → D is left adjoint to R : D → C, then:

1. R is fully faithful if and only if the counit ε : L ◦R→ Id is a natural isomorphism.
2. L is fully faithful if and only if the unit η : Id→ R ◦ L is a natural isomorphism.

Theorem 2.12.13. (Further adjoints and fiber sequences in recollements).

1. If C0 has an initial object, then j∗ : C → C1 admits a fully faithful left adjoint j! : C1 → C.
2. j∗ : C1 → C is fully faithful, and the counit j∗j∗ → IdC1 is an equivalence.
3. If in addition C has a zero object, i∗ : C0 → C admits a right adjoint i! : C → C0.
4. The right adjoint i! satisfies

i∗i
! ' fib(η : IdC → j∗j

∗)

as an endofunctor on C and sits in a fiber sequence

i! → i∗ → i∗j∗j
∗

when pulled back to an endofunctor on C0.
5. If C is stable, then C0 and C1 are stable, and we have a fiber sequence with the counit and
unit, respectively,

j!j
∗ → IdC → i∗i

∗.

Remark 2.12.14. In the stable case, we therefore obtain

C0 C C1.i∗

i∗

i!

j∗

j∗

j!

As in Theorem 2.12.9, the structure in the left-hand side of this diagram is equivalent to the
existence of a C1 such that C is the recollement of C0 and C1. The right hand side of the diagram,
i.e. the adjoints related to C1, follows in the stable case from C1 being a component in the
recollement of C.
Queequeg 2.12.15. (Stable recollements, local duality, and chromatic homotopy theory).

Strictly speaking, we obtain ”another C1” in the sense that we could have formed C1 through
taking left Hom-complements. However, this will be equivalent, unifying the two to obtain the
scenario presented above. This can be found outlined in [ADH23]. The interesting thing is that
each Hom-complement contribute with one adjoint each. With our notation, the right Hom-
complement contributes with the left adjoint, and the left Hom-complement contributes to the
right adjoint, as can be seen from [ADH23].
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In [BHV18a], [BHV18b] and the references therein, this is closely related to the notion of a local
duality context (which we have not defined). In a stable recollement-inducing manner, these local
duality contexts yield diagrams as below. In the leftmost diagram C is a stable ∞-category and
T is a localizing subcategory of C generated by compact objects of C. In the rightmost diagram,
we have an example where C is the E(n)-local spectra and T is the the monochromatic layer at
height n.

T ⊥ C = SptE(n) SptE(n−1)

C =⇒ SptE(n)

T T ⊥⊥ T =Mn Mn SptK(n)

(−)⊥ (−)⊥(−)⊥

' '

(−)⊥

These local duality contexts induce two equivalent stable recollements of C in terms of (T , T ⊥)
and (T ⊥, T ⊥⊥). The fracture square obtained from the latter stable recollement in the case
of E(n)-local spectra realizes E(n)-localization as a suitable pullback of E(n − 1)-localization
and K(n)-localization. More informally, this means we ”reattach” information about chromatic
height (≤ n− 1) to information about chromatic height n in order to obtain information about
chromatic height (≤ n), as found in E(n−1),K(n), and E(n), respectively. This fracture square
is a classic result in chromatic homotopy theory, as illustrated in [Lur10].

With this digressive illustration of the power of stable recollements, we return to understand the
fiber sequences in the above theorem.

From now on, assume that we work in the stable case, i.e. the case where i∗ : C0 ↪→ C and
j∗ : C1 ↪→ C exhibit a stable ∞-category C as a recollement of C0 and C1.

The preceding theorem contained several fiber sequences, without any clear instruction on how
they are related. It turns out the fracture square can be extended, but we first need to define
the norm map related to the right hand side of the above diagram.

Definition 2.12.16. (Norm map in a fully faithful adjoint triple).

Consider an adjoint triple

C C1,j∗

j∗

j!

where the extreme adjoints are fully faithful.
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As j∗ is fully faithful, the counit j∗j∗ → IdC1 is an equivalence. We can compute

map(j!, j∗) ' map(IdC1 , j∗j∗) ' map(IdC1 , IdC1).

It is now possible to pick a map between the extreme adjoints j! → j∗, that corresponds to the
identity IdC1 → IdC1 . This is the natural transformation called the norm of the adjoint triple,
Nm.

The above construction yields enough data to staple the fiber sequences together to an extended
fracture square.

Theorem 2.12.17. (An extended fracture square).

The norm fits in the fibre sequence

j!j
∗ j∗j

∗ i∗i
∗j∗j

∗.
Nm j∗

Moreover, all the previously defined fiber sequences fit in an extended fracture square,

j!j
∗ j!j

∗

i∗i
! IdC j∗j

∗

i∗i
! i∗i

∗ i∗i
∗j∗j

∗,

Id

Id

where all sequences in the rows and columns are fiber sequences.

With the extended fracture square, we wrap up this brief section on (stable) recollements, and
return to study the scenario

Sh(Man;Spt) ShR(Man;Spt) Spt.

Lhi

Rhi

⊥
⊥

Γ∗

'

Γ∗
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2.13 Decomposing Differential Cohomology and rediscovering
the Hexagon

In the above setup we have an inclusion C0 = ShR(Man;Spt) ↪→ Sh(Man;Spt) = C, admitting
a left and a right adjoint. These adjoints are the homotopification functors Lhi and Rhi, which
we have explicit formulas for. From Theorem 2.12.9, we know that the subcategory C1 = C⊥0 ↪→ C
of right ortogonal objects to C0 will contribute to exhibiting C as a recollement of C0 and C1.
Intuitively, C1 makes up the ”geometric part” of differential cohomology, or at least contain
information about differential forms.
Remark 2.13.1. (Warning: Homotopy invariant geometry).

Although we want differential cohomology to intuitively split into a geometric and a homotopical
part, we must acknowledge that there is ”geometric info” in ShR(Man;Spt) ' Spt as well.

Consider for example the sheaf Ω∗ ∈ Sh(Man;D(R)) of differential forms, and recall that for
each manifold M we may use Ω∗(M) to make an Eilenberg-MacLane spectrum H(Ω∗(M)).
By blanking out the manifold, we obtain a sheaf of spectra. The sheaf of spectra given by
HΩ∗ ∈ Sh(Man;Spt) is homotopy invariant, which means that it lies in ShR(Man;Spt), and
hence on the ”wrong side” of the decomposition, if it meant to resemble ”geometric information”.

However, as we will see, the sheaf of spectra given by filtered forms, HΩ∗≥q for q ≥ 1, will lie in
the ”geometric” part of the recollement, i.e. in C1. This is rather counter-intuitive, as HΩ∗≥q(M)
lies in Spt ' ShR(Man;Spt) when evaluated at a manifold.

To understand the wanted recollement, we define C1.

Definition 2.13.2. (Pure sheaves as ShR(Man;Spt)⊥).

The sheaves E ∈ Sh(Man;Spt) that are right ortogonal to ShR(Man;Spt) are called pure
sheaves. Denote the full subcategory of pure sheaves by

Shpu(Man;Spt) := ShR(Man;Spt)⊥ ⊂ Sh(Man;Spt).

We have the following simple condition for being a pure sheaf.

Proposition 2.13.3. (Pure sheaves as the kernel of global sections).

A sheaf E is pure if and only if Γ∗E = E(∗) ' 0

Proof. A sheaf E is pure if and only if mapSh(Man;Spt)(F,E) = 0 for all F ∈ ShR(Man;Spt).
Since Spt is equivalent to ShR(Man;Spt) through Γ∗, we may consider this as a question in
Spt. Since F ' Γ∗(X) for some X ∈ Spt, we compute

mapSh(Man;Spt)(Γ
∗(X), E) ' mapSpt(X,Γ∗(E)).
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This is contractible for all X if and only if Γ∗(E) is the terminal object in Spt, i.e. Γ∗(E) ' 0,
which proves the statement.

Example 2.13.4. (Purity of HΩ∗ and HΩ∗≥q).

From the above condition for being a pure sheaf, we immediately obtain that HΩ∗ is not pure
due to the copy of R coming from the 0-forms, but HΩ∗≥q is pure as long as q ≥ 1.

As Shpu(Man;Spt) plays the role of C1 in the recollement, we know there should be adjoints
and a fracture square involved. To compare notation, we are applying the theory of stable
recollements where we set i∗ = Lhi and i! = Rhi and i∗, j∗ are the inclusions of homotopy
invariant and pure sheaves, respectively. We then know there are fiber sequences consisting of
units and counits

i∗i
! → IdC → j∗j

∗

and
j!j

∗ → IdC → i∗i
∗.

By comparing notation and considering all functors to be endofunctors on Sh(Man;Spt), we
only lack the following constructions.

Definition 2.13.5. (Differential cycles and curvature).

Let the functor Cyc : Sh(Man;Spt)→ Sh(Man;Spt) and the natural transformation

curv : IdSh(Man;Spt) → Cyc

be given by the cofiber sequence

Rhi → IdSh(Man;Spt) → Cyc .

The first map is the counit Rhi ' Γ∗Γ∗ → IdSh(Man;Spt).

Definition 2.13.6. (Differential deformations).

Let the functor
Def : Sh(Man;Spt)→ Sh(Man;Spt)

be given by the fiber sequence

Def→ IdSh(Man;Spt) → Lhi.

The last map is the unit IdSh(Man;Spt) → Γ∗Γ! ' Lhi.

For a given sheaf Ê ∈ Sh(Man;Spt), the above functors are called the sheaves of differ-
ential cycles and differential deformations associated to Ê, respectively. Cyc factors through
Shpu(Man;Spt) and has Def : Shpu(Man;Spt)→ Sh(Man;Spt) as its left adjoint.

These functors sit in an adjoint triple
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Sh(Man;Spt) Shpu(Man;Spt),Cyc

incl

Def

which implies that Def is fully faithful. In the notation used earlier, j! = Def and j∗ = Cyc.

We now have everything we need to compute the fracture square, as we have

ShR(Man;Spt) Sh(Man;Spt) Shpu(Man;Spt).incl

Lhi

Rhi

Cyc

incl

Def

For reasons that will be clear soon, we write d : Def→ Cyc for the composition

d : Def→ IdSh(Man;Spt) → Cyc,

where the last map is the curvature, curv. This takes the place of the norm map in the fracture
square.

By comparing notation to Theorem 2.12.17, we get the fracture square for differential cohomo-
logy.

Corollary 2.13.6.1. (An extended fracture square in differential cohomology).

We have a commutative diagram of endofunctors on Sh(Man;Spt),

Def Def

Rhi IdSh(Man;Spt) Cyc

Rhi Lhi LhiCyc,

Id

d

Id

where the lower right square is a pullback square. All sequences found in the rows and columns
are fiber sequences.

By rearranging this diagram, we should be able to recover a general hexagon diagram, as we
have divided IdSh(Man;Spt) into two parts. These are intuitively the ”geometric part” given by
C1 = Shpu(Man;Spt) and the corresponding functors, and the ”homotopical part” given by
C0 = ShR(Man;Spt) and the corresponding functors.
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Theorem 2.13.7. (A general hexagon diagram in differential cohomology).

For any Ê ∈ Sh(Man;Spt), we have a differential cohomology hexagon,

Rhi(Ê) Lhi(Ê)

ΩLhiCyc(Ê) Ê LhiCyc(Ê),

Def(Ê) Cyc(Ê)

curv

d

where the diagonals are fiber sequences, the outer sequences are looped fiber sequences and the
left- and right squares are pullback squares.

Proof. We use the diagram in Corollary 2.13.6.1. Note that the upper rightmost and lower
leftmost squares of the extended fracture square are redundant, as they have two copies of the
same endofunctor and maps defined to commute. By removing the outer maps and swapping
the place of Def and Rhi, we obtain

Rhi

Def IdSh(Man;Spt) Cyc

Lhi LhiCyc,

d

�

where the dotted lines are the maps d : Def→ Cyc and Rhi → Lhi we just omitted. The square
is a pullback square, and hence also a pushout square due to stability, as indicated by the box.

Since Cyc and Def were defined from the cofiber sequence

Rhi → IdSh(Man;Spt) → Cyc

and the fiber sequence
Def→ IdSh(Man;Spt) → Lhi,

we obtain a similar diagram, but extended.

That is, we have a diagram
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Rhi 0

Def IdSh(Man;Spt) Cyc

0 Lhi LhiCyc .

�

� �

Since pullback squares compose to an outer pullback square, we obtain the following.

ΩLhiCyc Rhi 0

Def IdSh(Man;Spt) Cyc

0 Lhi LhiCyc .

� �

� �

The only thing left is to rearrange this to the diagram in the theorem statement. This is simply
done by forgetting the outer 0’s, swapping Rhi and Def in the upper leftmost square, and add
the last maps to be the compositions through IdSh(Man;Spt).

Remark 2.13.8. Note that the only essential part of the hexagon is the original fracture square,
as the rest of the diagram can be computed by forming certain fiber sequences and pullbacks.
Remark 2.13.9. The hexagon becomes even more explicit by remembering that Lhi ' Γ∗Γ! and
Rhi ' Γ∗Γ∗ or that we have explicit formulae for the homotopification functors.
Remark 2.13.10. Recall that we stated that most of the theorems would hold if we replaced Spt
with a sufficiently nice ∞-category C. There even exists a differential cohomology-type hexagon
diagram when we work with Sh(Man; C). This can be found in [ADH23].
Remark 2.13.11. For ordinary differential cohomology, it is shown in [BNV16] that we recover
the classical hexagon diagram of Section 2.2 from sheaf theoretic differential cohomology.

We are finally ready to define what a differential refinement of a spectrum should be, following
[BNV16]. Recall that we have Lhi ' Γ∗Γ! since Γ! : Sh(Man;Spt)→ Spt was defined as Γ∗Lhi.

Definition 2.13.12. (A differential refinement of a spectrum).

A differential refinement of a spectrum E ∈ Spt is a pair (Ê, ϕ), where Ê ∈ Sh(Man;Spt) and
ϕ : Γ!(Ê)→ E is an equivalence.

Remark 2.13.13. By replacing Spt with a sufficiently nice ∞-category C, a similar definition
defines differential refinements of the objects of C.
Remark 2.13.14. Intuitively, the refinement of E is an Ê ∈ Sh(Man;Spt) such that Ê aligns
with E-cohomology through ϕ.
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Remark 2.13.15. (Recipe for computing a differential refinement, [ADH23]).

Finding a differential refinement of E is equivalent to the procedure of choosing a pure sheaf
P ∈ Shpu(Man;Spt) and a map E → Γ!(P ), and then defining Ê as the pullback

Ê P

Γ∗(E) Γ∗Γ!(P ).

The recipe for constructing a differential refinement can thus be summarized as:

1. Choose a pure sheaf P .
2. Compute Γ!P using Formula 2.11.23.
3. Find a map in Spt, f : E → Γ!P .
4. Define Ê as the pullback above.

It is possible to show that in the case above, Def(Ê) ' Def(P ), Cyc(Ê) ' P and the global
sections of Ê sit in a fiber sequence

Γ∗(Ê)→ E → Γ!(P ).

If we have a map of spectra, f : E → E′ and we have a differential refinement of E′, it is possible
to pull back the differential refinement to E as well, just by considering the pullback

Ê Ê′

Γ∗(E) Γ∗(E′).

Applying Γ! to this pullback will induce the needed equivalence to argue Ê is a differential
refinement of E.

This construction preserves the differential deformations and the differential cycles. The global
sections of the pulled-back refinement are found as a pullback

Γ∗(Ê) Γ∗(Ê′)

Ê Ê′.
f
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For a differential cohomology theory Ê ∈ Sh(Man;Spt), its differential cohomology groups can
be defined as

Êk(M) = π−kÊ(M).

Important examples can be found in both [BNV16] and [ADH23], but there are are some ex-
amples worth mentioning.

Example 2.13.16. (E-cohomology as differential cohomology).

By choosing pure sheaf P̂ = 0 and spectrum E, the defining pullback collapses to define Ê = Γ∗E.
The hexagon becomes degenerate, we obtain E-cohomology, and we are merely reformulating
the fact that Γ∗ : Spt→ ShR(Man;Spt) is an equivalence.

Example 2.13.17. (Differential characters as sheaf theoretic differential cohomology).

By choosing pure sheaf P̂ = HΩ∗≥k for k ≥ 1, and spectrum E = HZ, the defining pullback
yields ordinary differential cohomology ĤZ(k). The differential cohomology groups are defined
as

Ĥk(M) = π−kĤZ(k)(M).

The above example generalizes to Hopkins-Singer theories.

2.14 Other topics:

A spectral sequence for ordinary differential cohomology

Recall that in Section 2.6, we defined a complex Ĉ(q)(M) as a homotopy pullback to generalize
differential characters. More explicitly, we constructed the complex

Ĉ(q)n(M) = Cn(M ;Z)× Ωn≥q(M)× Cn−1(M ;R).

The differential d is given by

d(c, ω, h) = (δc, dω, ω − c− δh).

If q ≤ q′, we have Ĉ(q)(M) ⊇ Ĉ(q′)(M) by the inclusion of the geometric data. We’ll use this
to obtain a spectral sequence.

Recall from [McC00] that for a filtered graded module (A, d, F ∗) with F ∗ a decreasing filtration
A = F 0A ⊃ F 1A ⊃ · · · , we may define a spectral sequence {E∗,∗

r , dr} with |dr| = (r, 1 − r)
such that Ep,q1 = Hp+q(F pA/F p+1A). If the filtration is bounded in the sense that for each
n, we can find values s = s(n) and t = t(n) such that An = F tAn ⊃ F t+1An ⊃ · · · ⊃
F s−1An ⊃ F sAn ⊃ 0, the spectral sequence converges to the cohomology H∗(A, d) in the
sense that Ep,q∞ ∼= F pHp+q(A, d)/F p+1Hp+q(A, d).
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Proposition 2.14.1. (A spectral sequence for Ĥ(s)∗(M)).

Fix a smooth manifold M . For any s, we have a spectral sequence

Ep,q1 (s)(M) = Hp+q(Ĉ(s+ p)∗(M))/Ĉ(s+ p+ 1)∗(M)).

that converges to Ĥ(s)∗(M) in the sense that

Ep,q∞ (s)(M) ∼= F pĤ(s)p+q(M)/F p+1Ĥ(s)p+q(M).

Proof. To construct such a spectral sequence, consider A = Ĉ∗(M) and F pĈ∗(M) = Ĉ(p)∗(M).
This is a decreasing filtration of Ĉ∗(M). The differential d on Ĉ∗(M) respects the filtration in
the sense that d : Ĉ(p)∗(M) → Ĉ(p)∗+1(M) does not change the level p of the filtration. This
induces a filtration on the cohomology. We set

Ep,q1 = Hp+q(F pĈ∗(M)/F p+1Ĉ∗(M)) = Hp+q(Ĉ(p)∗(M)/Ĉ(p+ 1)∗(M)).

Since we assume M is finite dimensional, the filtration is bounded. This spectral sequence will
therefore converge to Ĥ(0)∗(M) in the sense that

Ep,q∞
∼= F pHp+q(Ĉ∗(M))/F p+1Hp+q(Ĉ∗(M)) ∼= F pĤ(0)p+q(M)/F p+1Ĥ(0)p+q(M).

By shifting the procedure and setting A = Ĉ(s)∗(M) and F pĈ(s)∗(M) = Ĉ(s + p)∗(M), the
spectral sequence

Ep,q1 = Hp+q(F pĈ(s)∗(M))/F p+1Ĉ(s)∗(M)) = Hp+q(Ĉ(s+ p)∗(M))/Ĉ(s+ p+ 1)∗(M)).

converges to Ĥ(s)∗(M) in the sense that Ep,q∞ ∼= F pĤ(s)p+q(M)/F p+1Ĥ(s)p+q(M).

Although we have the existence and convergence of this spectral sequence, we have not yet had
the time to compute anything with it. A future focus would be to find a simpler form of the
E1-page, or perhaps passing on to find a simpler form of the E2-page. We’ll briefly mention an
Atiyah-Hirzebruch spectral sequence in Section 3.8, but apart from this, we are not aware of any
discussion of ”refined” spectral sequences in the literature.

Application: Differential Cohomology and Dirac Quantization

In physics, forces change the paths of physical objects by giving them new ”paths of least
resistance” to move along. In mathematics, the notion of straight line on a manifold, or path of
least resistance, is the one of a geodesic. We refer to [Tu17] for the needed differential geometry.
The underlying mechanic that can be modified to change geodesics, is curvature, which intuitively
means that forces and curvature do the same thing. The idea of having curvature explain fields
of forces and their strengths is at the heart of mathematical physics, where differential geometry
is used as a powerful language to describe reality.
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A simple example on how differential geometry explicitly interacts with physics, is the formula-
tion of Maxwell’s equations through forms. Maxwell’s equations are equivalent to some 2-form
F := B−dt∧E ∈ Ω2(M) being closed under d, and yielding a predefined form under d∗, where ∗
denotes the Hodge star operator. Note that if we want to do electromagnetism on a contractible
manifold (like R4), we may always assume F = dA for some suitable ”potential” A.

In [Fre02], two interesting consequences of this philosophy is discussed which are related to
differential cohomology.

First of all, any gauge theory can be associated a group of charges. This group of charges
is postulated in [Fre02] to be a differential cohomology group for some suitable differential
cohomology theory. We have not formally defined any of the words above, but we think of
them informally as connections A on suitable principal G-bundles and their transformations,
e.g. transformations A 7→ A+ dh, which preserves physics by implying F = dA = d(A+ dh).

Secondly, ordinary differential cohomology seems to be a suitable arena for (Dirac) quantization.
The idea of Dirac quantization is captured by ordinary differential cohomology, as ordinary
differential cohomology marries differential forms with integral cohomology.

Equivariant Differential Cohomology

As with any construction in algebraic topology, it would be interesting to study how an equivari-
ant version of differential cohomology would work. In the preprint [Ort09], a model for equivari-
ant differential K-theory is suggested, and a procedure for obtaining equivariant differential
cohomology theories in general are given, when restricting to actions of finite groups. The main
idea is to use the pullback procedure of Hopkins-Singer as in Section 2.6 to define K̂∗

G, but
with equivariant models for cohomology and differential forms. This returns K̂∗ as K̂∗

{e}. The
construction also respects free actions in the sense that K̂∗

G(M) = K̂∗(M/G), it yields Bott
periodicity, and it returns known connections to the representation ring of G in the sense that
K̂∗
G(M) = K̂∗(M)⊗R(G) when G acts trivially. Interested readers are refered to [Ort09] and the

references therein for more on equivariant differential cohomology. Some topics on equivariant
differential cohomology and equivariant de Rham cohomology can also be found in [ADH23].

Differential Cohomology in a Cohesive (∞, 1)-topos

In [Sch13], differential cohomology in the general context of a Cohesive ∞-topos is formulated.
The essence is that most of the structure of differential cohomology (or in the words of [Sch13],
a cohesive ∞-topos), depends mainly on the existence of four adjoints, as in Section 2.11. This
allows for a quite formal treatment of higher structures in geometry and physics, such as higher
bundles, higher parallel transport, higher Chern-Weil theory and higher Chern-Simons theory.



Chapter 3

On Main Results and Models in
Differential Cohomology

Throughout the previous chapter, we studied several approaches to both ordinary and generalized
differential cohomology.

With plenty of historical motivation, the story started with the observation that the de Rham
theorem could be used to naively blend geometric and homotopical information. This idea was
refined through the story of differential characters of [CS85]. As these are not directly easy
to generalize further to differential E-cohomology, another approach was needed. The work of
[HS05] gave not only an alternative approach to differential characters, but also several gener-
alizations. Through the main idea of differential function complexes, differential E-cohomology
groups could be made for any spectrum E. The construction depended on a fixed integer p ≥ 0
and some prespecified cocycle, but by using fundamental cocycles, we have a canonical choice of
cocycle with p = 0. As expected from a construction trying to explain anything cohomology, the
differential function complexes could be pieced together to form a differential function spectra.
Not only do spectra show up as above, as a version of differential cohomology through spectral
sheaves on manifolds by [BNV16] could be made! Using stable recollements, we managed to de-
compose differential cohomology through a fracture square to rediscover the Hexagon diagram
we started with.

This completes the circle, in some sense, but there are still many questions that require answers.
The most pressing questions are the following:

• What is a differential cohomology theory, axiomatically?
• How do Hopkins-Singer theories and sheaf theoretic differential cohomology relate to this

axiomatic framework?
• How unique are these axiomatic theories, and what can we say about homotopy invariance?
• If differential characters define ordinary differential cohomology, do we have other explicit

models, e.g. for complex K-theory?

71
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The goal of this chapter is to answer these questions, although not in their entirety, and give an
overview of the papers these answers originated from.

3.1 Axioms of Differential Cohomology and Integration

In the case of ordinary differential cohomology, the axioms and uniqueness up to a unique
natural transformation, were established by [SS08a]. In a similar manner, axioms for a generalized
differential cohomology theory, or for a smooth extension of the generalized cohomology theory
in question, can be defined. The main reference for this section is [BS10], where axioms and
uniqueness results for smooth extensions are developed. We advise readers to think of Hopkins-
Singer theory (Section 2.7) and differential characters (Section 2.3) rather than sheaf theoretic
differential cohomology. This is due to Remarks 3.1.3 and 3.1.6.

Before we state the axioms of a smooth extension, we must fix a graded (abelian) group of
coefficients. We fix a cohomology theory E throughout the section.

Inspired by the Chern-Dold character and the isomorphism of Proposition 2.8.7, we denote by
E∗ = E∗(∗) = π∗E the coefficient group of E, and define V∗ = E∗ ⊗Z R to be the graded real
vector space of coefficients.
Definition 3.1.1. (A smooth extension).

A smooth extension of E is a contravariant functor Ê : Man → grAb with three transforma-
tions, natural in the manifold M ,

• R : Ê∗(M)→ Ω∗
cl(M ;V∗),

• I : Ê∗(M)→ E∗(M),
• a : Ω∗−1(M ;V∗)/ im(d)→ Ê∗(M).

These are related by three requirements. Firstly, we require R ◦ a = d. Secondly, the diagram

Ê∗(M) Ω∗
cl(M ;V∗)

E∗(M) H∗(M ;V∗),

I

R

chd

where chd is the Chern-Dold character, should commute. Thirdly, we have an exact sequence

E∗−1(M) Ω∗−1(M ;V∗)/ im(d) Ê∗(M) E∗(M) 0.a I

For x ∈ Ê∗(M), R(x) is called the curvature of x, I(x) is called the underlying cohomology class
or the characteristic class of x, while a is often referred to as the action of forms on Ê∗(M).
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Remark 3.1.2. There is a variant of the above definition where smooth extensions are only defined
on the category of compact manifolds. This is not important for the sake of the axiomatic
definition, but for the uniqueness theorem of Section 3.2, it enables us to employ alternative
assumptions.
Remark 3.1.3. (Hopkins-Singer theory as a smooth extension).

The Hopkins-Singer construction produces a differential cohomology theory as we obtain a dia-
gram

Ê∗(M) Ω∗
cl(M ;V∗)

E∗(M) H∗(M ;V∗),

I

R

chd

which defines the maps R and I (see e.g. [HS05, Page 48.]). The map a, as well as the rest of
the axioms, can be shown by defining a to be the map induced by the pullback,

Ω∗−1(M ;V∗)/ im(d)

Ê∗(M) Ω∗
cl(M ;V∗)

E∗(M) H∗(M ;V∗).

d

0

a

R

I

chd

Remark 3.1.4. Note that in the above, we only used E(q)n with n = q. This has been a trend
since Theorem 2.7.6, and indeed, this was how we defined differential K-theory in Section 2.10.
For differential cohomology, most of the interesting information lives in the groups with matching
indices, i.e. E(n)n.
Remark 3.1.5. We should note that we only have three maps, although the hexagon certainly
has four. This could naively be thought of as a similar degeneracy as in the definition of ordinary
differential cohomology by [SS08a], but this can only be taken as inspiration. The difference is
that in [SS08a], it is shown that the map cc, which corresponds to I, is induced by specifying
the three other maps in the hexagon. As we will briefly touch upon, in the axiomatic picture,
the ”missing map in the hexagon” is trivially there, as the fourth entry is the flat theory. i.e.
the kernel of R. It is highly nontrivial to show that the flat theory often corresponds to the
R/Z-theory, as classically found in the hexagon.
Remark 3.1.6. (Problems with sheaf theoretic differential cohomology).

Although it is natural to think the sheaf theoretic differential cohomology of Section 2.11 will
fit into the axioms, there are some cases in which it does not. The maps we want to define from
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the generalized hexagon diagram of Theorem 2.13.7 work as decoys, making sheaf theoretic
differential cohomology a promising approach in its generality, but too general to satisfy the
axioms. In [BNV16], the Hopkins-Singer definition of differential E-cohomology can be retrieved
for the correct choices of spectrum and pure sheaf, and it spits out the associated hexagon
diagram from Theorem 2.13.7. However, this depends on computations showing Def(Ê) and
Cyc(Ê) being suitable spaces of differential forms. In general, there is no need for Def(Ê) or
Cyc(Ê) to be related to differential forms, nor even real vector spaces.

This can be shown by using an extreme right adjoint of Rhi. Recall that Rhi ' Γ∗Γ∗. We compute

map(Rhi(−),−) ∼= map(Γ∗Γ∗(−),−) ∼= map(Γ∗(−),Γ∗(−)) ∼= map(−,Γ!Γ∗(−)).

That is, we define G = Γ!Γ∗ : ShR(Man;Spt) → Sh(Man;Spt). We use the letter G as this
is called the Godement functor, as it resembles the Godement construction from sheaf theory.
Recall that the functor Γ! : Spt→ Sh(Man;Spt) was defined (manifold-wise) by

Γ!(X)(M) :=
∏
m∈M

X,

where the product is taken over the underlying set of the smooth manifold M . The diagram of
adjoins between Sh(Man;Spt) and ShR(Man;Spt) can therefore be extended to

Sh(Man;Spt) ShR(Man;Spt).
Rhi

⊥

Lhi

⊥

⊥
G

Viewing ShR(Man;Spt) as Spt through Γ∗, we obtain G(E)(−) '
∏
(−)

E for an E ∈ Spt.

By considering the differential cohomology theory given by

Ê(−) = G(H(Z/2Z))(−) '
∏
(−)

H(Z/2Z),

we obtain a non-example. As shown in [BNV16], this yields a differential cohomology theory in
which its differential deformations has non-trivial torsion in the sense that

Def(Ê) 6' 0, but rationally, Def(Ê) ∧HQ ' 0.

Although sheaf theoretic differential cohomology is a bit too general to fit the axioms, it yields
an interesting approach showcasing which properties arise from the explicit details or underlying
structures.
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We return to the axiomatic approach, were maps of smooth extensions are defined as expected.

Definition 3.1.7. (Natural transformations of smooth extensions).

If (Ê, R, I, a) and (Ê′, R′, I ′, a′) are smooth extensions, a natural transformation of smooth
extensions is a natural transformation Φ : Ê∗ → Ê′∗ such that the diagram

Ê∗(M)

Ω∗−1(M ;V∗)/ im(d) E∗(M) Ω∗
cl(M ;V∗),

Ê′∗(M)

I

R

Φ

a

a′ I′

R′

commutes for all M .

We also want a multiplicative structure, if we assume the underlying cohomology theory E to
be multiplicative.

Definition 3.1.8. (Multiplicative smooth extensions).

A smooth extension (Ê, R, I, a) is multiplicative if Ê takes values in graded commutative rings,
R and I are both multiplicative, and the identity

x ∪ a(ω) = a(R(x) ∧ ω), x ∈ Ê∗(M) ω ∈ Ω∗(M ;V∗)/ im(d)

holds.

Remark 3.1.9. The above is well-defined. If we choose a representative of the same equivalence
class as ω, say ω + dα for some α, we have

x ∪ a(ω + dα) = a(R(x) ∧ ω +R(x) ∧ dα)
= a(R(x) ∧ ω + d(R(x) ∧ α))
= a(R(x) ∧ ω) = x ∪ a(ω).

The last structure we need to define is a smooth extension with integration. Although it may not
be too intuitive yet, the integration is quite vital to ensure uniqueness under certain assumptions,
as we will see in the next section. Nevertheless, we should expect to have an integration map
for smooth extensions, as we have notions of integration both for differential forms and E-
cohomology. We start with the fiber integration of differential forms.

Consider a trivial bundle π : E = M × Rl → M . If we are given a k-form ω on E, we may
construct a (k − l)-form on M , called the pushforward of ω along π, or the integral of ω along
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the fiber (or along π), denoted π∗ω or
∫
E/M ω. The form ω can be written as a sum of forms on

the form (π∗α̃)∧f(x, t1, . . . , tl)dti1∧. . .∧dtir for some r < l, or (π∗α)∧f(x, t1, . . . , tl)dt1∧. . .∧dtl.
Here, the α’s are suitable forms on M , t1, . . . tl are the coordinates of Rl and f is a function that
has compact support on each fiber, that is, compact support for each fixed x ∈ M . We define
the map π∗ω by

f(x, t1, . . . , tl)(π
∗α) ∧ dti1 ∧ . . . ∧ dtir 7−→ 0,

f(x, t1, . . . , tl)(π
∗α) ∧ dt1 ∧ . . . ∧ dtl 7−→ α

∫
Rl

f(x, t1, . . . , tl)dt1 . . . dtl.

For arbitrary vector bundles, we define π∗ locally as above. It is also possible to consider a
general integration of forms of fiber bundles with compact oriented fibers. This is done similarly,
although we will not cover it here. We will however briefly use the existence of fiber integration
on the trivial circle bundle M × S1. By using the atlas of S1 as a smooth 1-manifold, we may
intuitively consider the case to follow from the above discussion.

To construct some integration map for E-cohomology, consider the projection p :M × S1 →M
and the inclusion i :M → S1 ×M . We have a short exact sequence given by

0 ker(i∗) E∗(S1 ×M) E∗(M) 0,
i∗

p∗

where the splitting comes from the fact that p ◦ i = Id, inducing i∗ ◦ p∗ = (p ◦ i)∗ = Id. This
induces a splitting

E∗(S1 ×M) ∼= ker(i∗)⊕ im(p∗).

Recall now that the pointed suspension ΣM+ of M , considered as a space, can be realized as
S1 ∧M . Let q be the quotient map q : S1 ×M → S1 ×M/(S1 ∨M) ' S1 ∧M ' ΣM+. The
map q can be shown to induce an isomorphism Ẽ∗+1(ΣM+) ∼= ker(i∗).

Then we can define the integration map as the composition∫
: E∗+1(S1 ×M)→ ker(i∗) ∼= Ẽ∗+1(ΣM+)→ E∗(M),

where we have utilized the canonical projection, the inverse of q∗, and the suspension isomorph-
ism, respectively.
Remark 3.1.10. Note that we constructed an integration for E-cohomology only in the case
of the trivial S1-bundle. We could have done this for more general bundles (see [BT82]), with
extra assumptions and enough work on Thom spaces, Thom maps, and the Pontryagin-Thom
construction. As we will only need the S1-case, we limit ourselves to the ad hoc derivation above.

With the integration of forms and integration in E-cohomology, we can combine these two to a
notion of integration for smooth extensions. We define IS1Ê∗(M) = Ê∗(S1 ×M).
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Definition 3.1.11. (Smooth extensions with integration).

A smooth extension with integration is a smooth extension (Ê, R, I, a) of E with a natural
transformation ∫

: IS1Ê∗+1 → Ê∗.

Let p : S1 ×M →M be the canonical projection onto M and t : S1 → S1 be given by complex
conjugation, z 7→ z̄, where S1 is considered to live in C. The integration should satisfy

∫
◦p∗ = 0

and
∫
◦(t× Id)∗ = −

∫
, and we should have a commutative diagram

IS1Ω∗(M ;V∗)/ im(d) IS1Ê∗+1(M) IS1E∗+1(M) IS1Ω∗+1
cl (M ;V∗)

Ω∗−1(M ;V∗)/ im(d) Ê∗(M) E∗(M) Ω∗
cl(M ;V∗).

a

∫
I

R

∫ ∫ ∫
a I

R

Definition 3.1.12. (Natural transformations of extensions with integration).

A natural transformation between smooth extensions (Ê, R, I, a,
∫
) and (Ê′, R′, I ′, a′,

∫ ′
) of E

with integration is a natural transformation Φ : Ê∗ → Ê′∗ of smooth extensions with the
additional requirement that for all manifolds M , the diagram

IS1Ê∗+1(M) IS1Ê′∗+1
(M)

Ê∗(M) Ê′∗(M)

Φ

∫ ∫ ′

Φ

commutes.

Remark 3.1.13. Under an additional (weak) assumption, a multiplicative extension will have a
canonical choice of integration. See Corollary 4.3. in [BS10]. This will be important when proving
uniqueness in Theorem 3.2.9.
Remark 3.1.14. The above remark ensures that multiplicative extensions (in most cases) have
an integration. In geometric descriptions, the tendency is that there is a trade-off between how
simply the integration and the product can be described. For example, in ordinary differential
cohomology, the fiber integration of differential characters can be ”easily” constructed as we have
explicit components making up a differential character, but the product is a bit involved. In the
sheaf theoretic approach of Deligne cohomology (Section 3.4), the product is quite simple (as
can be seen in [Bry93]), but the integration is terribly complicated.
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3.2 Results on uniqueness

In order to have a result regarding uniqueness, we first need a natural transformation of smooth
extensions. Assume that (Ê, R, I, a) and (Ê′, R′, I ′, a′) are smooth extensions (possibly with
integration). Then we need a natural transformation Φ between these extensions. The main
problem in [BS10] is exactly how to ensure that such a natural transformation always exists
between two arbitrary smooth extensions of the same cohomology theory E.

In the case that E can be represented by a sequence of smooth manifolds, e.g. if Ek is a smooth
manifold that represents Ek, this problem becomes tangible. In this case, Êk(Ek) and Ê′k(Ek)
are both defined, which turns out to be quite handy.

How do we use this to construct ΦkM : Êk(M) → Ê′k(M)? Assume that v̂ ∈ Êk(M). We want
to define ΦkM (v̂) ∈ Ê′k(M). To do this, let’s investigate the universal case.

In the case of the representing manifold Ek, we may consider Ek(Ek). This has a canonical choice
of cohomology class. Let u ∈ Ek(Ek) be the class that corresponds to the identity Ek → Ek. From
the axioms of a smooth extension, we know I : Êk(Ek) → Ek(Ek) and I : Ê′k(Ek) → Ek(Ek)

are surjections. Therefore, we may find lifts û ∈ Êk(Ek) and û′ ∈ Ê′k(Ek) through I and I ′,
respectively.

If we now consider v̂ ∈ Êk(M), we can consider v = I(v̂) ∈ Ek(M). Naively, we could employ
a similar argument as above and say there exists a lift v̂′ of v through I ′ and map v̂ 7→ v̂′, but
this does not work. There are too many choices to be made and additional requirements for
compatibility with both R,R′, a and a′. On the other hand, there exists a map f : M → Ek
such that f∗u = v. At the level of Êk(M), we may not have f∗û = v̂, but we know that
v̂ − f∗û ∈ ker(I) = im(a). Hence, there exists an α ∈ Ωk−1(M ;V∗)/ im(d) such that

a(α) = v̂ − f∗û ⇐⇒ v̂ = a(α) + f∗û.

We can therefore make the following definition.

Definition 3.2.1. (ΦkM when the Ek is represented by a smooth manifold).

In the case where each Ek is represented by a smooth manifold Ek, we can for each element
v̂ ∈ Êk(M) write v̂ = a(α) + f∗û for some α ∈ Ωk−1(M ;V∗)/ im(d) and f : M → Ek. Then
ΦkM : Êk(M)→ Ê′k(M) is given by

ΦkM (v̂) = a′(α) + f∗(û′).

Remark 3.2.2. We have not established that anything in this definition is well-defined. We have
simply constructed a map (not yet natural nor additive), given some choices. To check that
the map is independent of the choices made, we would need extra work that turns out to be a
special case of the work in [BS10]. A proof simply involves checking every single choice and is
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thus omitted. The most interesting part is the explicit dependency on differential cohomology
classes of Ek, which ultimately depends on Ek being a smooth manifold, a problem we will soon
return to.

The above definition (if well-defined) is enough to ensure a natural transformation Φ : Ê∗ → Ê′∗.

Proposition 3.2.3. (Naturality of Φ).

If ϕ :M → N is a map of smooth manifolds,

Êk(N) Êk(M)

Ê′k(N) Ê′k(M)

Êk(ϕ)

Φk
N Φk

M

Ê′k(ϕ)

commutes for all k.

Proof. For suitable α and f , we have ΦkM (v̂) = a′(α) + f∗(û′) and v̂ = a(α) + f∗û. The latter
yields ϕ∗v̂ = ϕ∗a(α)+ϕ∗f∗û = a(ϕ∗α)+ϕ∗f∗û, which simply implies that ΦkN (ϕ∗v̂) = a′(ϕ∗α)+

ϕ∗f∗û′ = ϕ∗a′(α) + ϕ∗f∗û′ = ϕ∗ΦkM (v̂).

The map Φ is not additive in general, which is needed to preserve the group structure of the
differential cohomology groups.

The deviance from additivity can be measured by a natural transformation B : Êk× Êk → Ê′k,
through the formula

Φk(v̂ + ŵ) = Φk(v̂) + Φk(ŵ) +B(v̂, ŵ).

It is possible (see [BS10]) to show that the following requirement on the cohomology theory E
ensures the vanishing of B for even k. Although it includes close to all important examples, it
would be interesting to see how the assumption could be weakened.

Definition 3.2.4. (Rationally even cohomology theories).

The cohomology theory E is rationally even if En ⊗Z Q = 0 for odd n, where En = En(∗).

Example 3.2.5. Ordinary cohomology theories are all rationally even. The same also holds for
important generalized cohomology theories such as K-theory (real, complex, ...), complex cobor-
dism, the Morava K-theories, the Johnson-Wilson theories, and many others.

Before we continue, we must acknowledge the main problem. In everything we did above, we
assumed that the representing space Ek of Ek was a smooth manifold. This is rarely true,
especially if we want the representing manifold to be finite-dimensional.
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The main technicality in [BS10] is to amend this problem, and the idea is simple. If Ek is not a
smooth manifold, can we approximate Ek in a suitable way by a sequence of smooth manifolds
Ek,i?

Indeed, we may find a sufficiently nice sequence of smooth manifolds Ek,i (even compact, de-
pending on the assumption) such that

colimi[M,Ek,i] = [M,Ek].

This intuitively ensures that the work above remains valid, although we would need to make
everything respect the approximating sequence {Ek,i}i of Ek.

Although we refer interested readers to [BS10] for the details, the above idea does not work
unless we have one of two assumptions. The assumption merely depends on whether or not we
are able to define the smooth extensions on the entire category of smooth manifolds, or just on
the subcategory of compact manifolds, as mentioned in Remark 3.1.2.
Assumption 3.2.6. We assume one of the following:

1. If the smooth extensions are only defined on the category of compact manifolds, we assume
that the groups En = En(∗) are finitely generated for all n ∈ Z.

2. If the smooth extensions are defined on the category of all smooth manifolds, we assume
that the groups En = En(∗) are countably generated for all n ∈ Z.

Remark 3.2.7. If the smooth extensions are only defined on compact manifolds, the approxim-
ating objects Ek,i must be compact manifolds in order to employ the ideas of our previous work,
while if the smooth extensions are defined on all smooth manifolds, we merely need the existence
of these approximating objects. Note that the first assumption is stronger than the second.
Remark 3.2.8. The above assumptions can be changed if our only interest is to construct an
approximating sequence {Ek,i}i of Ek and construct Φk. The assumptions can then be weakened
to saying ”finitely/countably generated for all n ≤ k”, as long as we add the requirement Ek−1 = 0
for the first assumption. Our goal is the uniqueness theorem, and hence we assume one of the
above.

As we have only explained the main idea of the construction, we are in no position to prove the
uniqueness theorem. We will simply just state the theorem and explain why the assumptions
are needed. Interested readers should take a look at the proof in [BS10], as well as the technical
details leading up to the proof.

Theorem 3.2.9. (Uniqueness of smooth extensions).

Let E be a rationally even generalized cohomology theory. Assume one of the assumptions in
3.2.6 hold, and let (Ê, R, I, a,

∫
) and (Ê′, R′, I ′, a′,

∫ ′
) be smooth extensions of E with integration,

defined on the appropriate category of manifolds (from 3.2.6). Then there exists a unique natural
isomorphism

Φ : Ê → Ê′

of smooth extensions with integration.
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Remark 3.2.10. (Unraveling the assumptions of the uniqueness theorem).

The assumptions in this theorem are quite important, and due to their explicit impact on Φ, it
is not easy to see how one could weaken the assumptions. It would be interesting to see which
construction could extend the uniqueness theorem beyond the above assumptions.

As explained throughout the first half of this section, there is an explicit way to define the
map Φ (see Definition 3.2.1) if the representing spaces Ek for Ek are smooth manifolds. If the
representing spaces are not smooth manifolds, we need more assumptions.

If the smooth extensions are defined on all smooth manifolds, Assumption 2. of 3.2.6 is sufficient
to ensure there exists an approximating sequence {Ek,i}i of Ek with the right properties to fix
the above definition. If the smooth extensions are defined only on the compact manifolds, we
need a slightly stronger assumption, namely Assumption 1. from 3.2.6 to ensure the same. In
this case, the approximating objects are compact manifolds.

The naturality of Φ is obtained similarly to Proposition 3.2.3, by doing the proof in an arbitrary
degree i of the approximating sequence {Ek,i}i of Ek. To ensure the additivity of Φ in even
degrees (i.e. the additivity of Φ2k), the assumption that E is rationally even is needed. This
ensures that the deviance of additivity vanishes in even degrees.

The requirement that the smooth extensions should have an integration, is perhaps the most
mysterious one. It is simply necessary to shift the index of the above arguments by 1 and extend
the results from even degrees to odd degrees. Similarly to how the deviance B to additivity in
even degrees vanished due to the cohomology theory being rationally even, the terms that may
cause problems will also vanish.

Remark 3.2.11. The importance of integration in the uniqueness theorem is not only to extend
the additive transformation to odd degrees. If we omit the integration and consider E to be
complex K-theory, we may construct infinitely many non-equivalent smooth extensions. This is
Theorem 6.2. of [BS10].

Multiplicative extensions often have a canonical choice of integration. Corollary 4.3. of [BS10]
ensures this, as long as we assume E−1 = E−1(∗) = E0(Σ∗) to be a torsion group. This is much
weaker than the assumptions of the uniqueness theorem, implying the following corollary.

Corollary 3.2.11.1. (Uniqueness of multiplicative smooth extensions).

Let E be a rationally even generalized cohomology theory. Assume one of the assumptions in 3.2.6,
and let (Ê, R, I, a) and (Ê′, R′, I ′, a′) be multiplicative smooth extensions of E, defined on the
appropriate category of manifolds (from 3.2.6). Then there exists a unique natural isomorphism

Φ : Ê → Ê′

of smooth extensions preserving the induced integration. Moreover, the transformation is multi-
plicative.
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Proof. Given Corollary 4.3. in [BS10], this easily follows from the uniqueness theorem. Theorem
4.6. in [BS10] proves the transformation is multiplicative.

Remark 3.2.12. We can obtain uniqueness up to a unique natural isomorphism for multiplicative
extensions, without bothering to define the integration.

The power of the uniqueness theorem is clear. If we manage to define geometric models that
satisfy the axioms of a smooth extension of a cohomology theory E, there are only a few as-
sumptions to check to obtain a unique natural isomorphism to all other smooth extensions.

3.3 On the failure of homotopy invariance

A defining property of generalized cohomology theories is their homotopy invariance. One of
the fundamental ideas we investigated when approaching differential cohomology was whether
or not geometric information could be blended into the homotopic nature of cohomology. As
established throughout several approaches in the previous chapter, we managed to do just that,
but we have not yet understood how homotopy invariant these constructions are. This is the
goal of this brief section.

We will assume that we have fixed a generalized cohomology theory E, and a smooth extension
(Ê, R, I, a) of E.

Assume that i0, i1 : M → M × [0, 1] are induced from the inclusions at the endpoints, and let
p : M × [0, 1] → M be the projection. If x̂ ∈ Ê∗+1(M × [0, 1]), we want to study the difference
i∗1x̂− i∗0x̂.

It is useful to note that the difference x̂− p∗i∗0x̂ lies in the kernel of I, and hence in im(a). We
may therefore write x̂ = p∗i∗0x̂ + a(ω) for some ω ∈ Ω∗(M × [0, 1];V∗). Intuitively, we want to
integrate out [0, 1] by fiber integration, and to do that, we can push the form ω through i∗0 and
i∗1. We obtain

i∗1(ω)− i∗0(ω) =
∫
M×[0,1]/M

dω =

∫
M×[0,1]/M

R(a(ω)) =

∫
M×[0,1]/M

R(x̂− p∗i∗0x̂)

=

∫
M×[0,1]/M

R(x̂)−
∫
M×[0,1]/M

R(p∗i∗0x̂)) =

∫
M×[0,1]/M

R(x̂)− p∗R(i∗0x̂))

=

∫
M×[0,1]/M

R(x̂).

By noting that i∗1(p∗z)− i∗0(p∗z) vanishes as p ◦ i = Id, we simply obtain

i∗1x̂− i∗0x̂ = i∗1(a(ω))− i∗0(a(ω)) = a(i∗1(ω)− i∗0(ω)) = a(

∫
M×[0,1]/M

R(x̂)).
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The above computations just proved the following, which is Lemma 5.1. in [BS10].

Theorem 3.3.1. (The homotopy formula).

If x̂, i0 and i1 are as above, we have

i∗1x̂− i∗0x̂ = a(

∫
M×[0,1]/M

R(x̂)),

where the integral denotes fiber integration of forms.

Remark 3.3.2. The homotopy formula can be proved in the context of spectral sheaves (Section
2.11) by a heavy diagram chase. This can be found in [BNV16].
Remark 3.3.3. An interesting takeaway is that, as initially motivated, the geometric information
found in the curvature R decides whether or not we have homotopy invariance!

A theory that will certainly be homotopy invariant, is the flat theory.

Definition 3.3.4. (The flat theory).

Define the flat theory of E to be the subfubctor of Ê∗ defined by

Ê∗
flat(M) = ker(R : Ê∗(M)→ Ω∗

cl(M ;V∗)).

Intuitively, from the original hexagon (see e.g. Section 2.2), the flat theory takes the place of
cohomology with coefficients in R/Z. This can be made precise.

Recall that for a spectrum E, we can define the spectrum of E with coefficients in an abelian
group G by considering EG = E ∧MG, where MG denotes the Moore spectrum of G. We say
the flat theory is topological if there exists a map Φflat : Ê

∗
flat → ER/Z∗−1. By an appropriate

application of the five lemma to the following diagram,

E∗−1(M) ER∗−1(M) ER/Z∗−1(M) E∗(M) ER∗(M)

E∗−1(M) H∗−1(M ;V∗) Ê∗
flat(M) E∗(M) H∗(M ;V∗),

∼= Φflat ∼=

the map Φflat is an isomorphism, if it exists. Criteria for the existence of such a map can
be formulated through similar assumptions as for the uniqueness theorem (3.2.9), as one may
construct such a map via the unique isomorphism of smooth extensions from Ê to the Hopkins-
Singer theory ÊHS , which has the R/Z-theory as the flat part. Similar arguments can be made
without mentioning the Hopkins-Singer construction, but at the cost of restricting to compact
manifolds. The details and results of the above can be found in [BS10], but it is worth mentioning
that the intuition saying that the flat theory replaces the R/Z-theory is valid.

With this, we end this brief section and move on to the last, perhaps most daunting question;
do we have any geometric descriptions of smooth extensions?
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3.4 Smooth Deligne Cohomology as Ordinary Differential Co-
homology

An important way of viewing ordinary differential cohomology is through smooth Deligne co-
homology. As it will be important for our later discussions on Hodge-filtered cohomology in
Chapter 4, we will spend some time understanding it thoroughly. Smooth Deligne cohomology
is best formulated through sheaf cohomology. We therefore begin with an interlude on sheaf co-
homology. If not otherwise specified, all sheaves are simply considered as sheaves on a topological
space X, U ⊆ X will always be an arbitrary open set of X.

We will first recall standard facts and introduce interesting examples, before we state the classical
homological algebra of sheaves and the properties of sheaf cohomology. Our treatise will follow
[Bry93]. For details on sheaf cohomology, see [Ive86], and for details on homological algebra,
consult [Rot09].

First, recall that the category of sheaves on a space X is abelian. The kernel and cokernel of a
map ϕ : A→ B of sheaves is defined as the (pre)sheaves ker(ϕ) and cok(ϕ) sending an open U
to ker(ϕ(U)) and cok(ϕ(U)). If these fail to be sheaves, which may be the case for both cok and
im, sheafification will yield the appropriate objects in the category of sheaves.

The exactness of a sequence
A→ B → C

of sheaves is defined through exactness at the stalks of the sheaves,

Ax → Bx → Cx,

for all x ∈ X.

This leads us to an interesting example. For reasons that will be clear later, let Z(1) denote the
(cyclic) subgroup (2πi) · Z of C. If G is a Lie group, we let GX be the sheaf of locally constant
smooth G-valued functions on X (assuming X is smooth).
Example 3.4.1. If X is smooth, there is a short exact sequence of sheaves of abelian groups

0→ Z(1)→ CX → C∗
X → 0.

The first sheaf is the subsheaf of CX consisting of those functions that take values in Z(1). The
latter map is induced by the exponential map. The only nontrivial part is to show that the last
map is surjective. This can be done at the level of stalks. For an x ∈ X, pick fx ∈ C∗

X . Since
we work stalkwise, there exists a contractible open neighborhood U around x and a smooth
function f : U → C∗ such that fx is the germ at x of f . Due to the contractability of U , it is
possible to (locally) define a complex logarithm. Hence, we may find a smooth g : U → C such
that exp(g) = f . By considering a germ gx of g at x, we obtain exp(gx) = fx, proving the claim.

When working with sheaves, we have an important (covariant) functor, namely the global sec-
tions functor Γ. For a sheaf F of abelian groups, we define Γ(X,−) : Sh(X) → Ab sending F
to Γ(X,F) = F(X).
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Remark 3.4.2. Recall from Section 2.11 that we worked with a functor Γ∗ : F 7→ F(∗) on spectral
presheaves on manifolds. This was also called global sections, but in the notation above, it is
the functor Γ(∗,−). Although it should be possible to compare these two definitions through the
map X → ∗, we warn about the ambiguity when we talk about global sections. The intention
should always be clear from context and notation. In this section, we mean Γ(X,−).

A key feature of Γ(X,−) is that it is left exact, i.e. it preserves everything except the surjectivity
of a short exact sequence. A counterexample to right exactness can be found by perturbing
Example 3.4.1. It is well known to complex analysts that it is not possible to define a global
complex logarithm, so by omitting the ”locally constant” part of the example, surjectivity fails.

Any mathematician fluent in the yoga of homological algebra sees opportunity in the failure
of right exactness. It is well known that the category of sheaves has enough injectives (see for
example Lemma 1.1.13. in [Bry93]). Hence, constructing a right derived functor of Γ(X,−) could
be a possible candidate for sheaf cohomology.

This requires a definition of injective resolutions, which again involves a notion of acyclicity. A
simple approach to constructing acyclicity could be first to consider a complex K∗ of sheaves
and construct so-called cohomology sheaves Hn(K∗) defined by U 7→ Hn(K∗(U)), where the
latter is defined by sheafification of the quotient presheaf ker(dn)/ im(dn−1).

We recall the definition of an injective resolution of sheaves.

Definition 3.4.3. (Injective resolution of sheaves).

Let F be a sheaf. A resolution of F is a complex K∗ and a map i : F → K0 of sheaves such
that i is a monomorphism with image ker(d0), and for n ≥ 1, we have ker(dn) = im(dn−1).

If each sheaf Kq in K∗ is injective, we call this an injective resolution.

Remark 3.4.4. The last requirement in the definition of a resolution is equivalent to the vanishing
of the cohomology sheaves for degree n ≥ 0, while the zero’th cohomology sheaf will be F itself.
Remark 3.4.5. Since the category of sheaves has enough injectives, we can always construct
an injective resolution of a sheaf F . Injectivity of the resolution is important to ensure our
construction of sheaf cohomology is homotopy invariant.

This gives a definition of sheaf cohomology.

Definition 3.4.6. (Sheaf cohomology).

If F is a sheaf of abelian groups on a space X, then the sheaf cohomology groups Hn(X;F)
are defined as follows. Pick an injective resolution I∗ of F . This yields a complex Γ(X, I∗), and
Hn(X;F) is the n’th cohomology group of this complex.

Remark 3.4.7. This is well-defined and independent of the choice of resolution. For n = 0,
H0(X;F) = Γ(X,F).
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This formulation of sheaf cohomology is powerful in the sense that we obtain all the tools from
homological algebra for free, such as a long exact sequence in sheaf cohomology. However, it
is often hard to compute sheaf cohomology groups using this approach, unless we have extra
results. For this purpose, one would develop Čech cohomology, which approximates the sheaf
cohomology of a space X by constructing a resolution based on open covers of X. Due to the
injectivity of the resolutions used in sheaf cohomology, natural maps from Čech cohomology to
sheaf cohomology are obtained, which can be shown to be an isomorphism in many cases.

For our purposes, we do not need Čech cohomology, but we need to develop hypercohomology.
The idea of hypercohomology is to take the sheaf cohomology of not just one sheaf, but of a
complex of sheaves. For example, it would be interesting to take the sheaf cohomology of the de
Rham complex. The de Rham complex is a suitable complex to consider, as it is bounded below.
We say a complex K∗ of sheaves is bounded below if there exists a k ∈ Z such that Kp = 0 for
all p ≤ k. Intuitively, by doing the approach through the injective resolution approach above, we
should be able to obtain a double complex constructed through level-wise injective resolutions.

Lemma 3.4.8. (Injective resolutions of complexes).

Assume (K∗, dK) is a (bounded below) complex of sheaves on a space X. Then there exists a
double complex (I∗,∗, δ, d) with Ip,∗ = 0 for p < 0 and a map of complexes u : K∗ → I0,∗ such
that the complex I∗,q is an injective resolution of Kq. Furthermore, morphisms of the Kq’s can
be extended uniquely (up to homotopy) to construct double complexes (i.e. the morphisms can be
extended to the injective resolutions).

Proof. For a proof, consult either [Bry93] or [Rot09].

Remark 3.4.9. It is possible to show that the resolutions respect both the kernel and the image
of the differential dK in the sense that d(I∗,q−1) is an injective resolution of dK(Kq−1). A similar
statement can be shown for the kernel of dK .

If K∗ is a (bounded below) complex of sheaves on X, we can consider the double complex
Γ(X, I∗,∗) as before. Intuitively, the n’th cohomology of this double complex should be what we
call the n’th hypercohomology group of K∗.

To formalize what we mean by the n’th cohomology of a double complex, recall that we may
form the total complex. Depending on the conventions specified for the differentials when defining
double complexes, it may be a bit technical to define the total complex. However, following the
conventions of [Rot09], it is quite simple. For a double complex I∗,∗ (not necessarily injective),
define (Tot I∗,∗)n =

⊕
p+q=n I

p,q, and consider Dn : (Tot I∗,∗)n → (Tot I∗,∗)n+1 to be the
differential given by the sum of the vertical and horizontal differentials,∑

p+q=n

(dp,q + δp,q).

This defines a complex (given the correct conventions on how the differentials d and δ should
compose), and lets us complete the definition of hypercohomology.
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Definition 3.4.10. (Hypercohomology).

Given a (bounded below) complex K∗ of sheaves on a space X, the n’th hypercohomology group
Hn(X;K∗) is the n’th cohomology group of the complex

Hn(X;K∗) = Hn(TotΓ(X, I∗,∗))∗,

where I∗,∗ is an injective resolution as above. This is well-defined, and a morphism K∗ → L∗ of
complexes of sheaves induce group homomorphisms Hn(X;K∗)→ Hn(X;L∗).

Remark 3.4.11. By simply constructing a complex of 0’s with a sheaf F in degree 0, we may
recover the sheaf cohomology of F through hypercohomology.
Remark 3.4.12. For computational purposes, it is possible to develop Čech hypercohomology.

Through certain double complex spectral sequence arguments, it is possible to conclude with
the following result, yielding a simple way of understanding hypercohomology, if we work with
a complex of acyclic sheaves.

Proposition 3.4.13. (Hypercohomology using acyclic sheaves).

Let K∗ be a (bounded below) complex of sheaves on a space X, and assume each sheaf Kp is
acyclic in the sense that its higher sheaf cohomology vanishes, i.e. Hq(X;Kp) = 0 for q > 0.

Then the hypercohomology groups Hn(X;K∗) is isomorphic to the cohomology groups of the
complex

. . .→ Γ(X;Kp−1)→ Γ(X;Kp)→ Γ(X;Kp+1)→ . . . .

We refer to [Bry93] for the proof, which is quite short, if the reader is familiar with hyperco-
homology spectral sequences (also found in [Bry93]).

Recalling our original motivation of differential cohomology, we hope that the de Rham sheaves
Ω∗ on a smooth manifold M satisfy the assumptions of Proposition 3.4.13. Note that this would
immediately show the hypercohomology of the de Rham complex on M and the de Rham
cohomology of M are isomorphic.

There is a well-known chain of implications regarding injective and acyclic sheaves. The following
results can be shown for more general cases, such as for paracompact spaces. We will formulate
the theory for smooth manifolds.

We define a sheaf F on M to be soft if for all closed subsets Z of M , the induced restriction
Γ(M ;F)→ Γ(Z;F) is surjective. We say F is flabby a similar condition holds for all open subsets
U of M . These classes of sheaves are related through the following result, which summarizes
Theorem 1.4.6. in [Bry93] and important facts from its proof.

Theorem 3.4.14. (Injective, flabby, soft, and acyclic sheaves).

On a smooth manifold M , injective sheaves are flabby, flabby sheaves are soft, and soft sheaves
are acyclic.
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In light of the above theorem, the power of the following is clear.

Theorem 3.4.15. (de Rham sheaves are soft).

On a smooth manifold M , the de Rham sheaves Ωn are soft.

This is Theorem 1.4.15. in [Bry93], and it follows partially from the fact that all smooth manifolds
are Hausdorff and admit a partition of unity subordinate to any open cover. This lets us use
Proposition 3.4.13.

Theorem 3.4.16. (de Rham cohomology as hypercohomology).

The hypercohomology groups Hn(M ; Ω∗) are isomorphic to the de Rham cohomology groups
Hn
dR(M).

This connection can be rephrased, without using hypercohomology.

Proposition 3.4.17. (de Rham sheaves as a resolution of R).

For a smooth manifold M , the complex of de Rham sheaves, Ω∗, is an acyclic resolution of the
constant sheaf R.

Proof. Since each de Rham sheaf is soft, and hence acyclic, we only need to check if we obtain a
resolution. This is verified at the level of stalks. Pick an x ∈M . Working on a smooth manifold,
which is locally Euclidean, we may find a sequence of contractible neighborhoods Ui around x
such that

Ωnx = colim
i

Ωn(Ui).

By the Poincaré-lemma, the complex

R→ Ω0(Ui)→ Ω1(Ui)→ . . .

is acyclic for each i. Since the colimit respects exactness, we obtain the wanted resolution at the
level of stalks at an arbitrary x, proving the claim.

Theorem 3.4.18. (de Rham cohomology as sheaf cohomology).

On a smooth manifold M , the de Rham cohomology groups Hn
dR(M) are isomorphic to the sheaf

cohomology groups Hn(M ;R), where R is the constant sheaf.

It is now clear that the complex of sheaves

R→ Ω0 → Ω1 → Ω2 → . . .

is important in our cause, as it has geometric entries (in terms of differential forms), and it yields
de Rham cohomology in a variety of different ways.
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An idea of Deligne was to perturb this complex to amend an annoying problem; The interesting
part of the Chern classes is not integer-valued, as we need to normalize it with an appropriate
constant (2πi)p, where 2p is the degree of the Chern class in question. The Chern classes (without
normalization) lie in cohomology groups with coefficients in Z(p) := (2πi)p · Z ⊆ C. To change
the above complex of sheaves so it is compliant with the change Z 7→ Z(p), we complexify the
de Rham sheaves. Write ΩnC for the sheaf Ωn(M)C := Ωn(M)⊗C. Note also that the sheaf Z(p)
can be viewed as a subsheaf of Ω0

C taking values in Z(p) ⊂ C.

Definition 3.4.19. (The smooth Deligne complex and smooth Deligne cohomology).

Given a smooth manifold M and a p ≥ 0, the smooth Deligne complex Z(p)D is the complex

Z(p)→ Ω0
C → Ω1

C → . . .→ Ωp−1
C

of sheaves.

The smooth Deligne cohomology groups Hn
D(M ;Z(p)) is defined as the hypercohomology groups

of the smooth Deligne complex Z(p)D.

Note that the complex is truncated as it ends at Ωp−1
C . It is clear that the sheaves ΩnC are soft.

This simplifies the explicit construction of smooth Deligne cohomology.

We can define a similar complex by for any subring B ⊆ C, such as Z,Q, and R. The connections
to de Rham cohomology can be made more explicit if we choose B = R and consider B(p) = R(p).
However, we restrict ourselves to B = Z.
Example 3.4.20. ZD(0) is just Z(0) = Z. Hn

D(M ;Z(0)) is therefore just the sheaf cohomology
Hn(M ;Z).
Example 3.4.21. ZD(1) is the complex Z(1)→ CM , as in Example 3.4.1. This complex is quasi-
isomorphic to the complex induced from the sheaf C∗

M [−1]. This is simply because the short
exact sequence of Example 3.4.1 induces a square

Z(1) CM

0 C∗
M .

exp

The vertical maps make up a quasi-isomorphism of complexes. This means that

Hn
D(M ;Z(p)) ∼= Hn−1(M ;C∗

M ).

For general p, it is possible to understand the smooth Deligne cohomology groups H∗
D(M ;Z(p)).

Let ΩnC,0(M) be the subgroup of ΩnC(M) containing the closed n-forms with cohomology classes
in the image of Hn(M ;Z(p))→ Hn(M ;C). Note the similarity to Section 2.3.
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Theorem 3.4.22. (Smooth Deligne cohomology groups).

For a smooth manifold M , the smooth Deligne cohomology groups H∗
D(M ;Z(p)) can be found as

follows:

1. If n > p, we have Hn
D(M ;Z(p)) ∼= Hn(M ;Z(p)), the sheaf cohomology of M with respect

to the constant sheaf Z(p).
2. If n = p, Hp

D(M ;Z(p)) is found in a short exact sequence

0 Ωp−1
C (M)/Ωp−1

C,0 (M) Hp
D(M ;Z(p)) Hp(M ;Z(p)) 0,

where the latter map is induced by projecting the smooth Deligne complex down on its first
entry.

3. If n < p, Hn
D(M ;Z(p)) is found in a short exact sequence

0 Hn−1(M ;C)/Hn−1(M ;Z(p)) Hn
D(M ;Z(p)) Tors(Hn(M ;Z(p))) 0,

where Tors denotes the torsion subgroup of Hn(M ;Z(p)).

Proof. The smooth Deligne complex Z(p)D sits in a short exact sequence

0 Ω∗≤p−1
C [−1] Z(p)D Z(p) 0,

where the notation Ω∗≤p−1
C is inspired by Hopkins-Singer (Section 2.7) and refers to the complex

Ω0
C Ω1

C . . . Ωp−1
C .

Simply considering the cohomology of the complex Ω∗≤p−1
C lets us find

Hn(M ; Ω∗≤p−1
C ) = 0 if n ≥ p,

Hn(M ; Ω∗≤p−1
C ) = Ωp−1

C (M)/dΩp−2
C (M) if n = p− 1,

Hn(M ; Ω∗≤p−1
C ) = Hn

dR(M)⊗ C if n ≤ p− 2.

The short exact sequence for the smooth Deligne complex yields a long exact sequence

. . . Hn−1(M ;Z(p)) Hn−1(M ; Ω∗≤p−1
C ) Hn

D(M ;Z(p))

Hn(M ;Z(p)) Hn(M ; Ω∗≤p−1
C ) . . . .
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Note the shift in the cohomology of Ω∗≤p−1
C , stemming from the shift in the short exact sequence

above.

If n > p, the isomorphism Hn
D(M ;Z(p)) ∼= Hn(M ;Z(p)) is evident from the long exact sequence.

If n = p, the above sequence becomes

. . . Hp−1(M ;Z(p)) Ωp−1
C (M)/dΩp−2

C (M) Hp
D(M ;Z(p))

Hp(M ;Z(p)) 0 . . . .

The map Hp−1(M ;Z(p))→ Ωp−1
C (M)/dΩp−2

C (M) is constructed as the composition

Hp−1(M ;Z(p))→ Hp−1(M,C) ∼= Hp−1(Ω∗
C(M))→ Hp−1(M ; Ω∗≤p−1

C ) ∼= Ωp−1
C (M)/dΩp−2

C (M).

Its image is exactly Ωp−1
C,0 (M)/dΩp−2

C (M) by the definition of of ΩC,0, which indicates that the
cokernel is

Ωp−1
C (M)/dΩp−2

C (M)

Ωp−1
C,0 (M)/dΩp−2

C (M)
∼= Ωp−1

C (M)/Ωp−1
C,0 (M).

Hence we obtain a short exact sequence as wanted.

Finally, if n < p, we simply have Hn−1(M ; Ω∗≤p−1
C ) ∼= Hn−1(M ;C), yielding

. . . Hn−1(M ;Z(p)) Hn−1(M ;C) Hn
D(M ;Z(p))

Hn(M ;Z(p)) Hn(M ; Ω∗≤p−1
C ) . . . .

fn

Let in denote the map in : Hn(M ;Z(p)) → Hn(M ;C) → Hn(M ; Ω∗≤p−1
C ). Since the situation

n = p−1 does not necessarily yield Hn(M ; Ω∗≤p−1
C ) ∼= Hn(M ;C), the best we can say is that the

kernel of in must be the kernel of jn : Hn(M ;Z(p)) → Hn(M ;C) as Hn(M ;C) ∼= Hn
dR(M) →

Hn(M ; Ω∗≤p−1
C ) is injective (simply by inclusion at the level of complexes for degrees n < p).

Hence, the above sequence may be rewritten as

0 Hn−1(M ;C)/Hn−1(M ;Z(p)) Hn
D(M ;Z(p)) im(fn) ∼= ker(jn) 0,

since im(fn) ∼= ker(in) by exactness, where fn is the map found in the long exact sequence
above. This yields the wanted result, as ker(in) is exactly the torsion subgroup ker(in) ∼=
Tors(Hn(M ;Z(p))).
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An interesting observation for the case n = p is that the cohomology classes in Hp(M ;Z(p))
can be lifted to Hp

D(M ;Z(p)). If we lifted a class that vanishes in Hp(M ;Z(p)), its lift will lie
in the image of Ωp−1

C (M)/Ωp−1
C,0 (M) → Hp

D(M ;Z(p)). Hence, vanishing cohomology classes will
have underlying geometric information describing it, as found in Ωp−1

C (M)/Ωp−1
C,0 (M). This aligns

with the mantra of differential cohomology as a tool to refine topological invariants, as it detects
information that the cohomology groups neglect. The above idea will be central in our discussion
of secondary characteristic classes and multiplicative K-theory in Chapter 5.
Remark 3.4.23. (Deligne cohomology, differential cohomology and homotopy pullbacks).

The connection to differential cohomology can be more explicit. Since the important matter is
to consider smooth Deligne cohomology, and not the smooth Deligne complex itself, we may
work towards finding an equivalent formulation in the derived category of complexes of sheaves.
That is, we seek to find a quasi-isomorphic complex to the smooth Deligne complex.

Essentially, the smooth Deligne complex consists of a combination of Z(p) and some Ω∗
C[−1].

Consider the map Z(p) ⊕ Ω∗≥p
C → Ω∗

C and its (shifted) cone as follows, where we are keeping
track of the maps/complexes vertically and the degrees horizontally.

0 1 2 . . . p p+ 1

cone(h)[−1] Z(p) Ω0
C Ω1

C . . . Ωp−1
C 0 . . .

Z(p)⊕ Ω∗≥p
C Z(p) 0 0 . . . ΩpC Ωp+1

C . . .

Ω∗
C Ω0

C Ω1
C Ω2

C . . . ΩpC Ωp+1
C . . .

h

The shifted cone above is the smooth Deligne complex.

In the derived category, cone(Z(p)⊕ Ω∗≥p
C → Ω∗

C) sits in a triangle

cone(Z(p)⊕ Ω∗≥p
C → Ω∗

C)[−1] Z(p)⊕ Ω∗≥p
C Ω∗

C cone(Z(p)⊕ Ω∗≥p
C → Ω∗

C).

That is, the smooth Deligne complex is a weak kernel of the map Z(p)⊕Ω∗≥p
C → Ω∗

C (as long as
we specify the signs correctly). This is quasi-isomorphic to a homotopy pullback of the diagram

Ω∗≥p
C

Z(p) Ω∗
C.
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This aligns perfectly with the Hopkins-Singer approach and the Theorems 2.4.2 and 3.2.9 on the
uniqueness of ordinary differential cohomology.

The above is a vital observation when further developing Hodge-filtered cohomology theories
(see [HQ15]) in Chapter 4.

The above motivates the following theorem, which was known long before the Hopkins-Singer
approach or the uniqueness theorems were developed in [HS05], [SS08a], and [BS10], respectively.
See for example [Esn88] for a proof.

Theorem 3.4.24. (Smooth Deligne cohomology is ordinary differential cohomology).

The group of differential characters Ĥp(M) by Cheeger-Simons (2.3) is isomorphic to the smooth
Deligne cohomology group Hp

D(M ;Z(p)).

Remark 3.4.25. Surprisingly enough, we would have obtained a quasi-isomorphic complex if we
used cok(h)[−1] instead of cone(h)[−1] above.
Remark 3.4.26. There exists a product on smooth Deligne cohomology much simpler than the
product on differential characters. We refer to [ADH23], [Bry93], or [Esn88] for its construction.

3.5 Interlude: The Geometric Suspension Construction

Other explicit models for differential cohomology such as the differential K-theory of [SS08b]
(Section 3.6), are usually just defined in degree 0. For a cohomology theory E, we can define En
from E0 by considering the suspension En = E0 ◦ Σn. In differential cohomology, this does not
work. The suspension ΣM of a smooth manifold M is rarely a smooth manifold, which means
that Ên = Ê0 ◦ Σn rarely is defined. However, as briefly touched upon in Section 2.4, we can
obtain such a shift in the cohomological degree by considering the map i : X → X × S1 and
the kernel of i∗ = E0(i). Again, this is proved (see for example [BNV16]) merely for topological
spaces without addressing how it works with more structured spaces, such as smooth manifolds.

What we present here is based on the abstract machinery we met in Section 2.11, explaining
that there is a solution that agrees with the above for topological spaces. Following Section 3.1,
define IS1 by IS1Ê(M) = Ê(M × S1) for a spectral sheaf Ê ∈ Sh(Man;Spt) and a smooth
manifold M . Define now IΣÊ by the fiber sequence

IΣÊ → IS1Ê → Ê,

where the last map is induced by i : IdMan → IdMan×S1. By a result of [BNV16], we have the
following.

Proposition 3.5.1. (Geometric Suspension).

Given an Ê ∈ Sh(Man;Spt), the canonical map Ê → ΣIΣÊ is an equivalence if and only if Ê
is homotopy invariant.
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Essentially, this lets us define Ên(M) = ker(i∗ : E0(M × Sn) → E0(M)), as this induces the
correct shift in degree. This is not new from [BNV16], as it has been used at least since [Kar90].

If we now consider Ê to be a ”trivial” differential refinement in the sense of Example 2.13.16 that
returns E-cohomology, we see that En can be defined from E0 as above for smooth manifolds.
This agrees with the definition En = E0 ◦ Σn as topological spaces.

This way of considering the consequences of taking the suspension without actually forming the
suspension of the manifold or topological space, will be referred to as the geometric suspension or
the geometric suspension construction. For our purposes, it will be used in defining a geometric
model of Hodge-filtered K-theory in Chapter 5.

3.6 The Differential K-theory of Simons-Sullivan

It is not only just ordinary differential cohomology that has been described explicitly. The
structured bundles of Simons-Sullivan [SS08b] turn out to define differential K-theory. We will
briefly cover the main definitions.

Recall that complex K-theory on a smooth manifold X is defined by considering the monoid
of (isomorphism classes of) complex vector bundles on M and then applying the Grothendieck
construction to obtain an abelian group. Naively, the same idea should hold for differential K-
theory, but perhaps by considering bundles with connection to ”force” geometric information into
the picture. However, considering just tuples (E,∇) where E is a complex vector bundle om M
and ∇ is a connection on E, is slightly too naive.

A vital idea to the construction is to establish an equivalence relation on the set of connections
on E. This would have been simple if we had already covered the Chern-Simons forms and
secondary characteristic classes, but these are postponed until our discussion on multiplicative
K-theory. The idea is to describe the underlying geometric information of the Chern characters
of connections. This will be made precise in Section 5.1. The idea of trivializing characteristic
classes was developed in [CS74].

If not otherwise mentioned, E is a complex vector bundle on M , ∇ is a connection on E, and
R ∈ Ω2(M ;End(E)) is its curvature. Recall that the Chern character may be defined through
the Chern-Weil homomorphism as

ch(∇) =
∑
j=0

1

(2πi)j
1

j!
tr(R ∧ . . . ∧R),

where we wedge the R’s together j times. The above defines a closed form of even degree taking
complex values.

Consider γ(t) = ∇t to be a smooth curve of connections on E for t ∈ [0, 1]. Let π :M×[0, 1]→M
be the projection, and set Ē = π∗E to be the pullback bundle. The coordinate of [0, 1] will always
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be referred to as t. Consider the slice map, ψt :M →M× [0, 1], defined by m 7→ ψt(m) = (m, t).
From the path γ of connections, we may form a connection ∇̄ on Ē. For a section s of E, set
∇̄∂/∂t(π∗(s)) = 0. For a tangent vector X to the slice at coordinate t, set ∇̄X = ∇tπ∗(X).

Definition 3.6.1. (Defining the form cs(γ)).

Given the setup above, we may define a form cs(γ) as

cs(γ) =
∫ 1

0
ψ∗
t (i∂/∂t ch(∇̄)).

An important property, as originally motivated from [CS74], is that d cs(γ) = ch(∇1)− ch(∇0).
In [SS08b], the proof becomes quite simple after formulating an equivalent expression for cs(γ)
to obtain a form more similar to ch(∇). We refer to [SS08b] for the details.

It is also possible to show that if γ is a closed path of connections, cs(γ) integrates to 0 on every
cycle of M . From this, one can deduce that if γ and γ′ are two paths connecting two connections
∇0 and ∇1,

cs(γ)− cs(γ′) ∈ im(d).

As two connections always may be joined by a smooth path, we can define the following form,
CS.

Definition 3.6.2. (The form CS).

For connections ∇0 and ∇1, and a path γ connecting them, set

CS(∇0,∇1) = cs(γ) mod im(d).

This construction induces an equivalence relation.

Definition 3.6.3. (Equivalence relation on connections).

We say ∇0 ∼ ∇1 if CS(∇0,∇1) = 0. This defines an equivalence relation by [SS08b].

Definition 3.6.4. (Structured bundles).

We call a pair E = (E, [∇]) a structured bundle on M if E is a complex vector bundle on M
and [∇] is an equivalence class of connections on E.

A structured bundle is called flat if some ∇ ∈ [∇] is flat in the sense that R∇ = 0.

A map ψ : N →M of base spaces induces connections ψ∗∇0 and ψ∗∇1 on the pullback bundle
ψ∗E overN , and the CS-form respects this in the sense that CS(ψ∗∇0, ψ∗∇1) = ψ∗(CS(∇0,∇1)).

We say that structured bundles E and E ′ are isomorphic if there exists a bundle isomorphism
τ : E → E′ covering the identity on M such that τ∗([∇E′

]) = [∇E ].
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The construction of structured bundles is functorial, but we have not yet understood its target
category.

Proposition 3.6.5. (⊕ and ⊗ of structured bundles).

Let E = (E, [∇E ]) and E ′ = (E′, [∇E′
]) be structured bundles on a smooth manifold M . The

following operations yield well-defined operations on structured bundles,

E ⊕ E ′ = (E ⊕ E′, [∇E ⊕∇E′
]), and

E ⊗ E ′ = (E ⊗ E′, [∇E ⊗∇E′
]),

where ⊕ and ⊗ of connections are defined as before. That is, for a tangent vector X to M and
sections sE and sE′ of E and E′, respectively, we set

(∇E ⊕∇E′
)X(sE , sE′) = (∇EXsE ,∇E

′
X sE′), and

(∇E ⊗∇E′
)X(sE ⊗ sE′) = ∇EX(sE)⊗ sE′ + sE ⊗∇E

′
X sE′ .

Proof. Note that we have

ch
(
∇E ⊕∇E′

)
= ch

(
∇E
)
+ ch

(
∇E′

)
, and

ch
(
∇E ⊗∇E′

)
= ch

(
∇E
)
∧ ch

(
∇E′

)
.

Using the above and Formula 1.2 in [SS08b], direct computations yield that for connections
∇E0 ,∇E1 on E and ∇E′

0 ,∇E
′

1 on E′, we have

CS
(
∇E0 ⊕∇E

′
0 ,∇E1 ⊕∇E

′
1

)
= CS

(
∇E0 ,∇E1

)
+ CS

(
∇E′

0 ,∇E
′

1

)
, and

CS
(
∇E0 ⊗∇E

′
0 ,∇E1 ⊗∇E

′
1

)
= ch

(
∇E0
)
∧ CS

(
∇E′

0 ,∇E
′

1

)
+ ch

(
∇E′

1

)
∧ CS

(
∇E0 ,∇E1

)
.

This means that if ∇E0 ∼ ∇E1 and ∇E′
0 ∼ ∇E

′
1 , the right-hand sides vanish, implying the opera-

tions are well-defined.

From the above, we can define the functor Struct from the category of smooth manifolds to
commutative semi-rings. By using K, the Grothendieck construction, which sends abelian semi-
groups to abelian groups, we can form differential K-theory. Recall that the Grothendieck group
of a monoid S is constructed by considering S × S with the relation that (s1, s2) ∼ (s′1, s

′
2) if

there exists a k ∈ S such that s1 + s′2 + k = s2 + s′1 + k.

Definition 3.6.6. (Differential K0-theory).

For a smooth manifoldM , we define K̂0(M) := K(Struct(M)). Equivalently, K̂0 may be defined
as the free abelian group on (isomorphism classes of) structured bundles where we identify (E⊕E ′)
with E + E ′.
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Remark 3.6.7. To see the description of K̂0 as ”formal differences” of structured bundles, note
that the above is equivalent to considering pairs (E , E ′) of structured bundles modulo all pairs
(E , E). Hence, (0, E) is the additive inverse of (E , 0), letting us write (E , E ′) as E − E ′.
Remark 3.6.8. From differential Bott periodicity, we know that we only need to define K̂0 and
K̂1. The first is already defined, and the second can be defined by the geometric suspension.

Readers interested in the details regarding structured bundles, and technicalities related to
constructing the map a, are referred to [SS08b]. The map I is given by sending a structured
bundle to the K-theory class of the bundle, and the map R is given by the Chern character of
the connection.

As K-theory gives a rationally even spectrum, the structured bundles of Simons-Sullivan define
differential K-theory up to a unique isomorphism. This displays how explicitly the geometry is
forced into the picture, as we can think of the structured bundles as bundles with a (class of)
connection(s).

3.7 Differential Complex Cobordism and Landweber Theories

In this section, we will briefly investigate differential complex cobordism and the differential
version of its role in chromatic homotopy theory.
Warning 3.7.1. Much of the motivation and main ideas of this section require some knowledge
of chromatic homotopy theory. We refer to [Lur10].

Recall that complex cobordism MU plays a universal role in chromatic homotopy theory. If
we consider the product of complex line bundles, µ : CP∞ × CP∞ → CP∞, at the level of
classifying spaces, we can produce a formal group law over Eeven(∗), where E is required to
be a complex-orientable cohomology theory. The map i : S2 ∼= CP 1 → CP∞ induces a map
i∗ : Ẽ2(CP∞) → Ẽ2(CP 1) ∼= Ẽ0(S0) ∼= E0(∗). If the identity element of E0(∗) is in the image
of i∗, we say that E is a complex-oriented cohomology theory (after we have chosen a preimage
of 1, called the complex orientation of E). A motivating example is ordinary cohomology with
coefficients in Z2, which yields the classical result that all spaces are Z2-oriented. E being a
complex-orientabed cohomology theory essentially ensures that the Atiyah-Hirzebruch spectra
sequence for E,

Ep,q2 = Hp(X,Eq(∗)) =⇒ Ep+q(X)

degenerates at the E2-page for any topological space X. Computations yield isomorphisms
E∗(CP∞) ∼= E∗(∗)[[t]] and E∗(CP∞×CP∞) ∼= E∗(∗)[[x, y]], where the generators are of degree
2. Furthermore, if E is rationally even (which holds for any cohomology theory we have a unique
differential refinement of), the Atiyah-Hirzebruch spectral sequence can be used to show E is
complex-orientable.

The formal group laws are produced by considering µ∗t ∈ E∗(∗)[[x, y]]. This defines E-Chern
classes (also called Conner-Floyd Chern classes) of line bundles by letting f : X → CP∞
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represent a line bundle L and considering cE1 (L) := f∗t ∈ E2(X). These formal group laws aim
to express how Conner-Floyd classes of a product of line bundles behave. For example, given
line bundles L and L′ over X, ordinary Chern classes satisfy

c1(L⊗ L′) = c1(L) + c1(L
′) = f(c1(L), c1(L

′)).

In the language of formal group laws, this is to say that ordinary cohomology can be assigned
the additive group law f(x, y) = x + y. Complex K-theory does not satisfy this, as the Bott
element introduces a shift, yielding the multiplicative group law f(x, y) = x+ y + xy.

There exists a universal ring L and a universal formal group law f over L. The ring L is called
the Lazard ring, and it is universal in the sense that any other ring R and a formal group law g
over R can be classified by a ring homomorphism L→ R. Quillens theorem on MU shows that
the coefficient ring of MU is precisely the Lazard ring L, which can be shown to be Z[c1, c2, . . .],
where ci is of degree 2i. The map L→ R induces an L =MU∗ =MU∗(∗)-module structure on
R, and we can form a functor R∗(−) =MU∗(−)⊗MU∗ R. A natural question is to ask whether
or not the above functor is a cohomology theory. An important theorem in chromatic homotopy
theory, Landwebers exact functor theorem, quantifies this into an algebraic criterion, as the main
problem is the exactness of the new sequence due to R-torsion. A formal group law (R, g) that
yields a cohomology theory ∗R(−) as above is called a Landweber exact formal group law. We
also say R is Landweber flat.

If we take R to be the integers with the multiplicative formal group law, Landwebers theorem
returns complexK-theory as the cohomology theory. This was originally called the Conner-Floyd
theorem. In light of our overarching topic, it is reasonable to ask how these Landweber theories
adapt to differential cohomology.

First, note that in [Bun+09], an explicit geometric model for differential complex cobordism is
developed. We will not cover its construction here, as we merely need the existence of differen-
tial complex cobordism to understand differential Landweber exact cohomology theories. The
geometric model of complex cobordism is essential to the work of [HQ22] and [Hau22].

To develop one of the main results in [Bun+09], the following lemma of Landweber [Lan76] is
useful. We state it for the discussion of Conjecture 4.6.2 in Section 4.6.

Lemma 3.7.2. (Landweber flatness).

Assume M is a finitely presented MU∗-module which is also a comodule over MU∗MU . If (R, g)
is a Landweber exact formal group law, then TorMU∗

i (M,R) = 0 for i ≥ 1.

From the above statement yielding vanishing R-torsion, the following result can be shown.

Theorem 3.7.3. (Differential Landweber Theories).

Let (R, g) be a Landweber exact formal group law, and let R∗(−) = MU∗(−) ⊗MU∗ R denote
the Landweber theory associated to R as defined on the category of finite CW -complexes. Then
R̂∗(−) = ˆMU∗(−)⊗MU∗ R is a multiplicative smooth extension of R∗.
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Remark 3.7.4. The above Landweber theory was defined on finite CW -complexes, and although
it can be extended to arbitrary CW -complexes by an inductive limit, we merely need to consider
finite CW -complexes as these are the homotopy types of all smooth (and complex) manifolds.
Remark 3.7.5. Due to the uniqueness of differential K-theory, we may see that the Conner-
Floyd-type differentialK-theory obtained by the above theorem is canonically isomorphic to both
Hopkins-SingerK-theory and the differentialK-theory of structured bundles by Simons-Sullivan.
We have not investigated how the geometric description of differential complex cobordism (from
[Bun+09]) is transferred to K-theory.
Remark 3.7.6. The vanishing condition in Lemma 3.7.2 is easily applicable to differential co-
homology, as the last axiom in Section 3.1 can be reformulated to a short exact sequence, yielding
an explicit long exact sequence of Tor-terms when tensored with a ring R. The case for Hodge-
filtered theories is not as simple, due to a slight change in the sequence axiom, as we will see in
Section 4.6.

3.8 Other topics:

Differential index theory

The well-celebrated Atiyah-Singer index theorem of [AS63] connects the analysis and the to-
pology of certain differential operators. The first proof of the index theorem was based on
K-theoretic arguments, and hence it should be possible to construct a differential analog of the
index theorem using differential K-theory. This is done in [FL10], and is based on further study
of the flat theory, which is found in [Lot94].

Classification Sheaves for Principal G-Bundles with Connection

Principal G-bundles over a space X can be classified in terms of homotopy classes of maps
X → BG, where BG denotes the classifying space of G. BG can be constructed as the geometric
realization of the simplicial space given by [n] 7→ (BG)n = G×n with the group operation and
the unit map inducing the face and degeneracy maps, respectively. Finding a classifying space
B∇G for principal G-bundles with connection was first done in [FH13].

The paper builds on the observation that Hom(Man(−,M),Ωn(−)) ∼= Ωn(M) by the Yoneda
lemma, or more generally that we may pass from smooth manifolds to simplicial presheaves
on manifolds. For a fixed Lie group G, the simplicial presheaf B∇G maps a smooth manifold
M to the simplicial set associated to the groupoid G(M) of principal G-connections. That is,
the groupoid G(M) consists of objects (π,∇), where π : P → M is a principal G-bundle and
∇ ∈ Ω1(P ; g) denotes a G-connection. The morphisms are principal G-bundle maps covering the
base M respecting the connections. This is a groupoid as all principal G-bundle maps covering
the base are isomorphisms. Given a groupoid G = (G0,G1), its associated simplicial set has 0-
simplices G0, 1-simplices G1 and n-simplicies the collection of compositions of n arrows in G1.
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The two face maps we can apply to a 1-simplex are the source and target morphisms. We can
always associate the identity morphism (a 1-simplex) to any 0-simplex, yielding the degeneracy
map on 0-simplices. One can show that B∇G is a sheaf, not only a presheaf.

With more work, one can define a simplicial presheaf E∇G and a map of simplicial presheaves
E∇G → B∇G such that E∇G → B∇G takes the role as a universal principal G-bundle with
connection. The universal G-connection on E∇G is also defined in [FH13].

Furthermore, the above is used to show that the characteristic classes coming from Chern-Weil
theory are the only ”natural” differential forms it is possible to construct from a G-connection.

The question of extending the above results to the holomorphic case, with holomorphic principal
G-bundles and holomorphic connections was discussed in [And21]. Note however that admitting
a holomorphic connection is more strict than simply admitting a connection (which always exists
in the case of smooth manifolds). Obstructions to admitting a holomorphic connection can be
found in Atiyah classes (see [Huy05]). However, as argued in [And21], there are reasons to expect
a universal holomorphic connection on the holomorphic analogue of E∇G.

In [ADH23] one can find a survey on differential characteristic classes. It is based on using the
classifying sheaf B∇G to reformulate the results of Cheeger-Simons on trivializations of the
Chern-Weil classes. As the original construction of [CS85] used n-classifying spaces, this can be
thought of as a unified approach to the content of [CS85].

Differentially Refined Cohomology Operations and Massey Products

Cohomology operations are important tools in algebraic topology, and they have plenty of ap-
plications. We refer to [MT08] for a thorough treatment of the topic. Classically, they are defined
as natural transformations Hn(−;G)→ Hm(−;H), which can be represented as natural trans-
formations [−,K(G,n)] → [−,K(H,m)]. By the Yondea lemma, the set of such cohomology
operations is in bijection to Hm(K(G,n);H). We only consider the transformations in Set,
and not in Ab, as many interesting examples fail to yield group homomorphisms. Examples of
such operations include any square operation (in the case G = H and m = 2n), the Steenrod
squares (for G = H = Z/2Z,m = n + i, i ≥ 0) and the Steenrod reduced p’th powers (for
G = H = Z/pZ,m = n+ 2i(p− 1), i ≥ 0).

We know from Section 2.5 that the higher differential cohomology groups are related to the
classification of higher principal U(1)-bundles with connection. The relevant higher analog for
bundles with connection can be expressed through stacks, and works as one of the main tool
used to define and characterize differential cohomology operations in [GS18b].

For differential cohomology, we need the refined Steenrod squares to live in the middle of a
hexagon diagram, and their image under the mod 2-reduced characteristic class map Ĥn(M ;Z)→
Hn(M ;Z)→ Hn(M ;Z/2Z) should be related to the ordinary Steenrod operations. More form-
ally, we should at least have integral lifts to be able to define differential Steenrod squares.



Chapter 3: On Main Results and Models in Differential Cohomology 101

Integral lifts are possible to construct for odd Steenrod squares Sq2i+1, but not for the even
case. If ρ2 denotes the mod 2-reduction map and β denotes the Bockstein map associated to
the long exact sequence coming from the short exact sequence 0 → Z ·2→ Z ρ2→ Z/2Z → 0, the
existence of an integral lift of Sq2i implies that β(Sq2i) = 0. However, it has been shown that
ρ2β(Sq

2i) = Sq2i+1. This tells us that no integral lift of even Steenrod squares exist, but they
do for odd Steenrod squares, as β(Sq2i) is an integral lift of Sq2i+1.

The results on differential Steenrod squares follow the same pattern. Even Steenrod squares
cannot be differentially refined, but the odd ones can. We may even express the refined odd
squares through the ordinary even squares, as above. The unique way to differentially refine odd
Steenrod squares Sq2i+1 to Ŝq2i+1 is through the composition

Ĥn(−;Z) Hn(−;Z) Hn(−;Z/2Z)

Hn+2i(−;Z/2Z) Hn+2i(−;U(1)) Ĥn+2i+1(−;Z),

I ρ2

Sq2i

Γ2 j

where Γ2 is induced by the representation of Z/2Z in U(1) as roots of unity and j is the inclusion
of flat characters from Section 2.3.

The differential Steenrod squares satisfy some of the classical relations. They do satisfy Adem
relations as before, but due to the non-existence of even differential Steenrod squares, we do not
have an identity square (which is normally Sq0). This is just one of the problems obstructing the
existence of a differential Steenrod algebra. We refer to [GS18b] for details, applications, and a
thorough discussion.

Although the Steenrod squaring Hn(−;Z/2Z)→ H2n(−;Z/2Z) cannot always be differentially
refined, other types of interesting product constructions in cohomology have differential analogs,
such as Massey products. For a discussion of differential Massey products, see [GS18a].

A Künneth theorem for Ordinary Differential Cohomology

In [GS18b], a differential Künneth theorem was developed.

Proposition 3.8.1. (Differential Künneth theorem).

Let M and N be compact, smooth manifolds. Then there exists a short exact sequence,

0 Ĥn(M ;Z)⊕
⊕n

i=1H
i(N ;Z)⊗Hn−i−1(M ;R/Z) Ĥn(M ×N ;Z)

Tor(Ĥn(M ;Z),H1(N ;Z))⊕
⊕n

i=1 Tor(Hn−i−1(M ;R/Z),H i+1(N ;Z)) 0,

that splits (although not naturally).
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The proof and its theoretical applications can be found in [GS18b]. It would be of interest to
compute differential cohomology groups of certain simple product spaces.

One could also ask whether there exists a universal coefficient-type theorem for differential
cohomology. It is not clear to us how we would even define differential cohomology with (general)
coefficients, as the axioms fix V∗ = E∗(∗) ⊗Z R. One could perhaps try to change the axioms
for ordinary differential cohomology (Section 3.1 or Section 2.4) to include coefficients, but as
integer coefficients are integral to the main philosophy and motivation of ordinary differential
cohomology, it is not clear what could be obtained from such a change. We are not aware of any
papers that work with other coefficients.

Differentially Refined Atiyah-Hirzebruch Spectral Sequence

The Atiyah-Hirzebruch spectral sequence we briefly mentioned in Section 3.7 is a powerful tool
for computing generalized cohomology groups ([McC00]). A differential analog was developed in
[GS17], where it is stated as the following proposition.

Theorem 3.8.2. (Atiyah-Hirzebruch Spectral Sequence for Differential E-cohomology).

Let Ê∗ be a differential cohomology theory and let M be a compact, smooth manifold. Then there
is a convergent spectral sequence with

Ep,q2 = Hp(M ; Êq) =⇒ Êp+q(M),

where Hp denotes the p’th sheaf cohomology of the sheaf Êq.

Certain examples in [GS17] for differential K-theory and differential Morava K-theory use the
differential Steenrod squared discussed earlier to obtain expressions of certain differentials in the
spectral sequence.

Application: Differential K-theory and RR-fields in String Theory

It is not just ordinary differential cohomology that has applications in physics. Important quant-
ities in string theory, such as so-called D-brane charges and RR-fields, can be classified by cer-
tain associated K-groups. This is discussed and developed in [MW00]. As shown in [FH00], the
geometric nature of mathematical physics implies the proper homes of RR-fields are certain
differential K-groups.



Chapter 4

Hodge-filtered Cohomology
Theories

In this section, we make the move from differential cohomology to Hodge-filtered cohomology
theories. As we will see, the conceptual change is not large, as most of the work was done in the
earlier chapters. However, there are some subtle changes that impact the theory. We start by
discussing the original Deligne cohomology, before we move on to the construction of Hopkins-
Quick (see [HQ15]). The axiomatics of Hodge-filtered cohomology theories was formulated in
[Hau22] and [HQ22], and we briefly connect differential cohomology theories, Hopkins-Quick
theories and Deligne cohomology to this framework, closely following the explanations found
in [HQ22]. Furthermore, we delve into questions that arise naturally from the similarities to
differential cohomology.

Compared to the previous chapters, each section will be shorter, as much of the intuition we
built in Chapters 2 and 3 can still be used.

4.1 Motivation: Returning to Deligne Cohomology

Originally, Deligne cohomology was used to study questions related to algebraic, arithmetic, and
complex geometry, as mentioned in [HQ15], and it is related to number theoretic concepts, such
as the Beilinson conjectures [RSS88]. For our purposes, we briefly follow [Bry93] on Deligne co-
homology for complex manifolds. An in-depth treatment of Hodge theory and complex algebraic
geometry can be found in [Voi02].

From now on, when we write Ω∗, we refer to the holomorphic de Rham complex. The complex
de Rham complex is denoted by A∗.

Instead of using the smooth de Rham complex as a foundation for the Deligne complex on

103
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a complex manifold M , we use the holomorphic de Rham complex, denoted Ω∗(M), where
Ωn(M) ⊆ An,0(M) is given by the (n, 0)-forms that are in the kernel of ∂̄ : An,0(M)→ An,1(M).
Note that by Proposition 2.6.11. of [Huy05], this is equivalent to the (n, 0)-forms that locally
have holomorphic coordinate functions.

Definition 4.1.1. (Deligne complex and Deligne cohomology).

Let M be a complex manifold and let p ≥ 0. Define the Deligne complex Z(p)D as the complex

Z(p)→ Ω0 → Ω1 → . . .→ Ωp−1

of sheaves.

The Deligne cohomology groups Hn
D(M ;Z(p)) are defined as the hypercohomology groups of the

Deligne complex Z(p)D.

Remark 4.1.2. We again ask readers to be aware that we use the same notation for both Deligne
cohomology and smooth Deligne cohomology, although the complexes are different, working with
truncated holomorphic and smooth de Rham complexes, respectively.
Example 4.1.3. Similarly to Example 3.4.21, the Deligne complex Z(1)D is quasi-isomorphic to
O∗[−1], where O∗ denotes the sheaf of non-vanishing holomorphic functions. Hence

Hn
D(M ;Z(1)) = Hn−1(M ;O∗).

A priori, the holomorphic de Rham sheaves Ω∗ can be slightly complicated due to the restrictivity
of being holomorphic. However, from the Dolbeault theorem (Corollary 2.6.20. in [Huy05]), the
complexes of sheaves Ωp and Ap,∗ are quasi-isomorphic, and Ap,∗ is an acyclic resolution of Ωp
(see [Voi02]).

By the classical decompositions of complex structures, we may decompose the spaces of forms
on M as

Ωn(M) =
⊕
p+q=n

Ωp,q(M) and An(M) =
⊕
p+q=n

Ap,q(M).

If we want to extend the filtration Ω∗≥p on holomorphic forms to A∗, we may consider a total
complex-type filtration, called the Hodge filtration.

Definition 4.1.4. (The Hodge filtration).

For a complex manifold M , we define the Hodge-filtration F p on An(M) to be the filtration

F pAn(M) =
⊕
i≥p
Ai,n−i(M).

Remark 4.1.5. This is constructed so that Ω∗≥p ⊆ F pA∗.
Remark 4.1.6. It turns out that both the sheaves F pAn and An

F p are acyclic, yielding simple
computations of hypercohomology.
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There are some interesting cohomology classes related to Deligne cohomology, when restricting
to compact Kähler manifolds. These are the Hodge classes. We refer to both [Bry93] and [Voi02]
for details on these topics.

Definition 4.1.7. (Hodge cohomology classes).

For a compact Kähler manifoldM , the Hodge group, Hdgp(M), is the subgroup of H2p
D (M ;Z(p))

of classes with image in F pH2p(M ;C) :=
⊕

i≥pH
i,2p−i(M ;C) ⊆ H2p(M ;C) under map induced

by Z(p) ↪→ C.

Deligne showed the following interesting connection between these classes and Deligne cohomo-
logy.

Theorem 4.1.8. (The fundamental short exact sequence).

There is a short exact sequence

0→ Jp → H2p
D (M ;Z(p))→ Hdgp(M)→ 0,

where Jp is Griffiths intermediate Jacobian. That is, Jp is defined as

Jp = H2p−1(M ;C)/(F pH2p−1(M ;C) +H2p−1(M ;Z(p)).

To see the relevance of Hodge classes, we do not need to venture further than p = 1. The Hodge
classes classify the first Chern classes over compact Kähler manifolds in the sense that for a
compact Kähler manifold M , the image of the first Chern class c1 : PicM → H2(M ;Z(1))
corresponds to Hdg2(M). Here, PicM is the (Picard) group of holomorphic line bundles over
M up to isomorphism. This is Theorem 11.30 in [Voi02].

Much motivation for studying Deligne cohomology, Hodge-filtered cohomology theories, and
Hodge classes has been omitted here. For our purposes, we simply consider Hodge-filtered co-
homology to be an interesting analog to differential cohomology for complex manifolds, but we
refer to [HQ15] for more of the original motivation.
Remark 4.1.9. Note the subtle difference compared to differential cohomology. This theorem
shows that there is interesting info to be obtained for non-matching indices, such asH2p

D (M ;Z(p)),
whereas for differential cohomology, Proposition 2.7.8 and Theorem 2.7.6 hint that the most in-
teresting cases are for matching indices, i.e. E(p)p.

Since we know from Section 3.4 that smooth Deligne cohomology is ordinary differential cohomo-
logy, it is natural to ask what Deligne cohomology models. More concretely, given a cohomology
theory E, can we make a complex geometric version of differential cohomology such that Deligne
cohomology will be an ordinary theory? Using the Hodge-filtration instead of the Ω∗≥p-filtration
of Hopkins-Singer in Section 2.7, Hopkins-Quick [HQ15] defined Hodge-filtered cohomology the-
ories, a complex geometric analog of differential cohomology.
Remark 4.1.10. Just as in the smooth case (Remark 3.4.23), the Deligne complex is quasi-
isomorphic to a homotopy pullback of the diagram



106 Angelsen: Differential and Hodge-filtered Cohomology

Ω∗≥p

Z(p) Ω∗.

4.2 Hodge-filtered Cohomology Theories of Hopkins–Quick

Hopkins–Quick defined Hodge-filtered cohomology theories motivated by the Hopkins-Singer
approach (2.7) to differential cohomology and from the fact that the Deligne cohomology arises
from an appropriate homotopy pullback.

Let E be a rationally even spectrum and let V∗ = π∗E ⊗ C (as compared to π∗E ⊗ R in the
smooth case). By considering the complexification instead of the realification when defining the
fundamental cocycle of Section 2.8, we obtain a map E → HV∗, where H is the Eilenberg-
MacLane functor.

Remark 4.2.1. In the following section, we use spectra and presheaves. Compared to the ∞-
categorical context of Section 2.11, we now fix a 1-categorical1 model of spectra (e.g. symmetric
spectra) and consider sheaves on complex manifolds with values in spectra.

In the spirit of Deligne cohomology, we fix an integer p and make sense of a diagram of the form

E

F pA∗ A∗,

using the Hodge-filtration. One problem is that this nonsensical diagram mixes a spectrum E
with sheaves A∗. The solution is to consider everything to live in the category SpΣ(sPre∗) of
symmetric spectrum objects in pointed simplicial presheaves on complex manifolds. We will not
delve into the yoga of symmetric sequences in the category of pointed simplicial presheaves, as
it is quite technical and thoroughly explained in [HQ15].

A symmetric spectrum E can be viewed to live in SpΣ(sPre∗) by considering the trivial simplicial
presheaf coming from the representable presheaf of E.

By defining An(V∗) = An(−;V∗) by the convention

An(−;V∗) =
⊕
j

An+j(−)⊗C Vj ,

1The extension to stable ∞-categories could be of interest, as it could be interesting to investigate how it yields
similar results to Section 2.11.
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we can construct a map V∗ → A0(V∗) → A∗(V∗) of presheaves by considering V∗ as a constant
presheaf. Applying the Eilenberg-MacLane functor H will turn these into objects of SpΣ(sPre∗)
(see [HQ15]). Picking out the fundamental cocycle will therefore yield a map

ψEp : E → HV∗ → HA0(V∗)→ HA∗(V∗)

in SpΣ(sPre∗). The inclusion F pA∗(V∗)→ A∗(V∗) induces a morphism HF pA∗(V∗)→ HA∗(V∗)
in SpΣ(sPre∗) as well. These maps yield enough to define the Hodge-filtered symmetric spectrum
object ED(p) from E, and its corresponding Hodge-filtered E-cohomology.

Definition 4.2.2. (Hodge-filtered E-spectrum objects and cohomology).

For a fixed integer p, let ED(p) be given by the homotopy pullback of

ED(p) E

HF pA∗(V∗) HA∗(V∗),

with the maps outlined above.

For a complex manifold M , set

EnD(p)(M) = Homho SpΣ(sPre∗)(Σ
∞
+ FM ,ΣnED(p)),

where FM = HomMan(−,M) is the representable presheaf of M .

Remark 4.2.3. Behind the scenes, the definition involves choices of maps E → H(V∗), but as
remarked in [HQ15, Remark 4.10.], the assumptions on E being rationally even implies that the
space of such choices is simply connected.
Remark 4.2.4. It is possible to show that there exists a functorial construction of the Eilenberg-
MacLane functor H and that HA∗(V∗) represents the hypercohomology H∗(−;A∗(V∗)). Similar
statements hold for HF pA∗(V∗) and H(A

∗

F p (V∗)). We refer to [HQ15] for the technicalities on
regarding the Eilenberg-MacLane functor H.
Remark 4.2.5. Although quite abstract, the Eilenberg-MacLane spaces of (filtered) forms can
be made concrete, as done in [HQ22]. For a fixed n, the simplicial presheaf K(A∗(V∗), n) is
weakly equivalent to the simplicial presheafAn(−×∆∗;V∗). For filtered forms,K(F pA∗(V∗), n) is
weakly equivalent to F pAn(−×∆∗;V∗)cl. To compute the homotopy pullbacks, explicit (fibrant)
Ω-spectrum constructions are found in [HQ22, Section 2.13.].

Note however that this requires a way to multiply complex manifolds with possibly non-complex
manifolds. This is addressed in [HQ22] as a motivation for defining Hodge-filtered cohomology
theories on a suitable category ManF of manifolds with (manifold-wise) filtrations on A∗. We
will discuss this briefly.
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4.3 The Axioms of Hodge-filtered Cohomology of Haus-Quick

Based on the axioms for differential cohomology of Section 3.1 and the Hopkins-Quick theories of
[HQ15], Haus-Quick developed axioms for Hodge-filtered cohomology theories for the PhD-thesis
of Haus, see [Hau22] and [HQ22]. As discussed thoroughly in [Hau22], Hodge-filtered cohomology
theories are not yet shown to be unique, due to the rigidity of complex geometry. For example,
analogs of Proposition 2.2.1 for holomorphic functions are still open problems. This section is
dedicated to the axioms of Hodge-filtered cohomology, as our work on Hodge-filtered K-theory
in Chapter 5 amounts to finding an explicit construction satisfying these axioms.

Definition 4.3.1. (Axioms of Hodge-filtered Cohomology).

Let V∗ be an evenly graded vector space (e.g. V∗ = π∗E ⊗ C) and let E∗ be a rationally even
cohomology theory. For p ∈ Z, let

c(p) : E∗ → H∗(−;A∗(V∗))

be a map of cohomology theories (e.g. induced by the Chern-Dold character).

A Hodge-filtered cohomology theory over (E∗, c(p)) is a contravariant functor,

E∗
D(p) :ManC → grAb,

with three natural transformations (natural in M),

• R : E∗
D(p)(M)→ H∗(M ;F pA∗(V∗)),

• I : E∗
D(p)(M)→ E∗(M),

• a : H∗−1(M ; A
∗

F p (V∗))→ E∗
D(p)(M).

These should be related by three requirements. Firstly, we should have R ◦ a = d, where d is the
connecting homomorphism in the long exact sequence induced by the short exact sequence

F pA∗(V∗)→ A∗(V∗)→
A∗

F p
(V∗)

of sheaves. Secondly, the diagram

E∗
D(p)(M) E∗(M)

H∗(M ;F pA∗(V∗)) H∗(M ;A∗(V∗))

I

R c(p)

should commute. Lastly, we need a (horizontal) long exact sequence
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Hn−1(M ;A∗(V∗))

. . . En−1(M) Hn−1(M ; A
∗

F p (V∗)) EnD(p)(M)

En(M) Hn(M ; A
∗

F p (V∗)) . . . .

¯c(p)

c(p)

a

I

The map ¯c(p) is the composition shown in the (dashed) commuting triangle.

Remark 4.3.2. (Differences between differential cohomology and Hodge-filtered cohomology).

There are some differences we must address, compared to the axioms of differential cohomology.
Most notably, the integer p in Definition 4.3.1 is not present in the axiomatic definition of
differential cohomology. This is a fundamental difference, which may be a symptom of the goal
that Hodge-filtered theories should encapsulate interesting information in non-matching degrees,
such as in Theorem 4.1.8 and Remark 4.1.9. In addition, the codomain of R and the domain
of a in Definition 4.3.1 are cohomology groups, compared to certain groups of differential forms
in Definition 3.1.1. The long exact sequence is more explicit in the above definition than for
differential cohomology, which can be useful. However, sometimes a ”shorter” exact sequence
behaves better, e.g. when working with tensor products and Landweber theories (Sections 3.7
and 4.6). The assumption of E being rationally even is a prerequisite for defining Hodge-filtered
cohomology theories, as compared to an additional assumption contributing towards uniqueness
of differential cohomology.

Definition 4.3.3. (Multiplicative Hodge-filtered cohomology).

Let E be a multiplicative cohomology theory. We say that

E∗
D(∗) =

⊕
p,n

EnD(p)

is a multiplicative Hodge-filtered theory if for each p, E∗
D(p) is a Hodge-filtered cohomology

theory, and we have with an exterior multiplication

µ : EnD(p)(M)⊗ En′
D (p′)(M ′)→ En+n

′

D (p+ p′)(M ×M ′).

This exterior multiplication induces an interior product · through the diagonal map. As before,
we require that the maps I and R are multiplicative with respect to ·, and that a satisfies

a(ω) · x = a(ω ∧R(x))

for each ω ∈ Hn(M ; A
∗

F p (V∗)) and x ∈ E∗
D(∗)(M).

Remark 4.3.4. Definition 4.3.1 does not depend much on working in ManC. Following [HQ22],
we can rephrase Hodge-filtered theories for the categoryManF instead ofManC, whereManF
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denotes the category of pairs (M,F ∗), where M is a smooth manifold and F ∗ is a descending
filtration ofA∗(M). Note that we have canonical inclusionsMan→ManF andManC →ManF
given by including smooth manifolds with the trivial filtration and complex manifolds with the
Hodge-filtration, respectively.

If we let M,M ′ ∈ManF , we may consider the smooth product manifold M ×M ′. To obtain an
object M ×M ′ in ManF , consider the filtration

F pA∗(M ×M ′) =
⊕

p1+p2=p

F p1A∗(M)⊗ F p2A∗(M ′).

The closure is taken in A∗(M ×M ′), which is viewed as a topological space with the smooth
compact-open topology. Explicitly, a form in F pA∗(M ×M ′) is a finite sum of forms ω, locally
written ω = f · ωM ⊗ ωM ′ for a smooth function f on M × M ′ and forms ωM , ωM ′ on M
and M ′, respectively. For p1 + p2 = p, ω is in F p1+p2A∗(M ×M ′) when ωM ∈ F p1A∗(M) and
ωM ′ ∈ F p2A∗(M ′).

As remarked in [HQ22], this is not the categorical product inManF , but in the full subcategory
where ∆ :M →M ×M is a morphism.
Remark 4.3.5. As the sheaves F pA∗ and A∗

F p are acyclic, their hypercohomology groups become
quite simple. In [Hau22], these are computed, to obtain

Hn(M ;F pA∗(V∗)) ∼=
F pAn(M ;V∗)cl
dF pAn−1(M ;V∗)

and

Hn(M ;
A∗

F p
(V∗)) ∼=

d−1(F pAn+1(M ;V∗)n

(F pAn(M ;V∗) + dAn−1(M ;V∗)
.

In the axioms of a Hodge-filtered cohomology theory, the statement R ◦ a = d means that the
composition R ◦ a should be equal to the connecting homomorphism

d : Hn−1(M ;
A∗

F p
(V∗))→ Hn(M ;F pA∗(V∗)).

By the explicit forms of these groups, it can be shown that the connecting homomorphism is
induced by the exterior derivative d : d−1(F pAn(M ;V∗))n−1 → F pAn(M ;V∗)cl.

4.4 Returning to Differential Cohomology and Hopkins-Quick

Since the axioms often extract the essence from the examples, we should ask ourselves how they
hold up to the previously studied approaches to Hodge-filtered cohomology. We ask;

1. are the Hopkins-Quick theories Hodge-filtered?
2. is Deligne cohomology an ordinary Hodge-filtered cohomology?
3. can differential cohomology theories construct Hodge-filtered cohomology theories?
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This section aims to illustrate a positive answer to these questions. We refer to [Hau22, Chapter
3.] for the proofs. We will mainly restrict ourselves to understanding what the maps R, I, and a
look like, restricting the number of pages in this section dramatically.

For Deligne Cohomology

The first important thing to note is that all the maps R, I, and a can be induced from similar
maps at the level of sheaves.

To obtain a map ZD(p)→ Ω∗≥p, construct R to be the map of complexes of sheaves given by

ZD(p) Z(p) Ω0 · · · Ωp−1 0 · · ·

Ω∗≥p 0 0 · · · Ωp Ωp+1 · · · .

d d

d

d

The map a can be defined as the inclusion Ω∗

Ω∗≥p [−1]→ ZD(p), and by setting I : ZD(p)→ Z be
(−1)pπ, where we let π be the natural projection (of complexes of sheaves), we have specified
all maps needed to show Deligne cohomology is an ordinary Hodge-filtered cohomology. The
remaining details are found in [Hau22].

For Hopkins-Quick theories

Similarly to Deligne cohomology, the maps for Hopkins-Quick theories can be induced from
similar maps in SpΣ(sPre∗). From the definition of ED(p) as a homotopy pullback, we have
canonical maps I : ED(p) → E and R : ED(p) → HF pA∗(V∗), which induce the corresponding
maps I and R in cohomology.

The process of finding a is a bit more involved. Consider the composed diagram

ED(p) E

HF pA∗(V∗) HA∗(V∗)

0 H(A
∗

F p (V∗)).

The bottom square is a homotopy pushout square. We have stacked a homotopy pullback square
in a stable model category (and hence a homotopy pushout square) on top of a homotopy
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pushout square that we pushed through H. Since the Eilenberg-MacLane functor H is a Quillen
equivalence of stable model categories (see [HQ15] and [Hau22]), the pushout is preserved. By
composing the top horizontal map with the map E → 0, we may form the homotopy pushout
defining ΣED(p), yielding

ED(p) E 0

0 H(A
∗

F p (V∗))

ΣED(p).

a

The map a : H(A
∗

F p (V∗))→ ΣED(p) is exactly the one inducing the wanted map.
Remark 4.4.1. Note how this motivates the role of a as the connecting homomorphism in the
long exact sequence of Definition 4.3.1.

Complexified Differential Cohomology from Differential Cohomology

When constructing Hodge-filtered cohomology theories from differential cohomology, a natural
first step is to try to complexify the differential cohomology theory.

Recall the axioms of a differential cohomology theory in the sense of Section 3.1 and [BS10]. In
this definition, Ω∗ refers to the smooth de Rham complex, and not the holomorphic de Rham
complex.

Definition 4.4.2. (A smooth extension, again).

A smooth extension of E is a contravariant functor Ê :Man→ grAb with three transformations
natural in the manifold M ,

• R : Ê∗(M)→ Ω∗
cl(M ;V∗),

• I : Ê∗(M)→ E∗(M),
• a : Ω∗−1(M ;V∗)/ im(d)→ Ê∗(M).

These are related by three requirements. Firstly, we have R ◦ a = d. Secondly, the diagram

Ê∗(M) Ω∗
cl(M ;V)

E∗(M) H∗(M ;V∗),

I

R

chd
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where chd is the Chern-Dold character, should commute. Thirdly, we have an exact sequence

E∗−1(M) Ω∗−1(M ;V∗)/ im(d) Ê∗(M) E∗(M) 0.a I

Following [Hau22], let V∗,C := V∗ ⊗R C and define the complexified differential cohomology ÊnC
as

ÊnC(M) = {(x̂, φ) ∈ Ên(M)×Ωn−1(M ;V∗,C) | (x̂+a(ω), φ) = (x̂, φ+ω), ∀ω ∈ Ωn−1(M ;V∗)}.

Note that we identify Ωn−1(M ;V∗) with a subspace of Ωn−1(M ;V∗,C) through the natural map
of coefficients.

With this definition, we obtain canonical maps and a simple phrasing of complexified axioms.
We set

RC(x̂, φ) = R(x̂) + dφ, IC(x̂, φ) = I(x̂), aC(ω) = (0, ω).

These maps satisfy the same axioms as before, but with appropriate subscripts. An important
remark made by [Hau22] is that the uniqueness theorem applies without change to complex
differential cohomology theories as we have merely changed the coefficients in the axioms, and
not promoted any smooth structure to a complex or holomorphic structure.

Hodge-filtered Cohomology from Complex Differential Cohomology

Assume now that we are given an integer p and a (rationally even) complex differential cohomo-
logy theory. Let M be a complex manifold. Since M has the underlying structure of a smooth
manifold, we consider Ê∗(M) and try to force in a (p) by constructing a Hodge-type filtration on
Ê∗. We use the filtration on A(M ;V∗) and the curvature map R to define F pÊ∗(M) ⊆ Ê∗(M)
as

F pÊ∗(M) = R−1(F pA∗(M ;V∗)).

To ensure that the maps R, I and a stay well-defined, we set

Ê∗
D(p)(M) := F pÊ∗(M)/a(F pA∗−1(M ;V∗) + dA∗−2(M ;V∗)).

With the above definition, the maps R, I and a induce the maps needed for Ê∗
D(p) to be a Hodge-

filtered cohomology theory. It is non-trivial, as the axioms of Definition 4.3.1 do not follow
automatically, and the construction relies on explicit computations of the hyper-cohomology
groups Hn(M ;F pA∗(V∗)) and Hn(M ; A

∗

F p (V∗)). The proof and remaining details can be found
in [Hau22].
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4.5 On Hodge-filtered homotopy invariance (in ManF)

Since we had the homotopy formula from Theorem 3.3.1, we expect something similar for Hodge-
filtered cohomology theories. However, to be able to consider products of complex and smooth
manifolds more easily, we will state the result in ManF (see Remark 4.3.4). As we are working
with smooth manifolds, we can consider fiber integration in ManF as before. With this setup,
the homotopy formula still holds.

The proof is similar, but with some slight changes, to the one of Theorem 3.3.1, and is stated
as Lemma 5.9 of [HQ22].

Theorem 4.5.1. (The homotopy formula for Hodge-filtered cohomology theories).

Let M ∈ManF and x ∈ E∗+1
D (p)(M ×R). Denote by i0, i1 :M →M ×R the inclusions at real

coordinates 0 and 1, respectively, and let p :M × R→M denote the projection. Then we have

i∗1x− i∗0x = a(

∫
M×R/M

R(x)),

where the integral denotes fiber integration of forms.

4.6 A dream of Hodge-filtered Landweber theories

Warning 4.6.1. Much of the motivation and main ideas of this section requires some knowledge
of chromatic homotopy theory. We refer to [Lur10].

This section is dedicated to discussing a Hodge-filtered version of Theorem 3.7.3. There is no
evident reason why the transition from differential cohomology to Hodge-filtered cohomology
theories should obstruct the existence of Hodge-filtered Landweber theories. We can construct a
differential extension of Landweber theories, and these can be used to construct a Hodge-filtered
cohomology theory by Section 4.4.

To be more formal, we state the following conjecture, that we have not yet been able to prove.

Conjecture 4.6.2. (Hodge-filtered Landweber theories).

Let (S, g) be a Landweber exact formal group law. For a fixed p, let S∗
D(p) be the functor

S∗
D(p)(−) =MU∗

D(p)(−)⊗MU∗ S. This is a multiplicative Hodge-filtered cohomology theory over
(S, cS(p)).

We’ll try to explain some thoughts on our most serious attempt at a proof. To show such a
theorem, we start with the fact that MU∗

D(p)(−) exists by the Hopkins-Quick construction, and
there exists a geometric model from [Hau22] and [HQ22] that is isomorphic to the Hopkins-
Quick construction of MU∗

D(p)(−). To obtain a long exact sequence for S∗
D(p), we start with the
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long exact sequence of MU∗
D(p). However, compared to the proof of Theorem 3.7.3 as found in

[Bun+09], it is not clear how long exact sequences act when tensored with a ring. An idea could
be to split it up into short exact sequences and tensor these with S, but is is not clear how to
staple them together to a long exact sequence again, nor if (or how) the vanishing condition of
Lemma 3.7.2 can be used. Questions related to derived functors and long exact sequences may
be highly non-trivial, and even invoke problems from higher homological algebra. However, we
believe there is a way to bypass working with the long exact sequence. The exactness of

Hn−1(M ;A∗(V∗))

· · · En−1(M) Hn−1(M ; A
∗

F p (V∗)) EnD(p)(M)

En(M) Hn(M ; A
∗

F p (V∗)) · · ·

¯c(p)

c(p)

a

I

should be equivalent to the combined exactness of

En−1(M) Hn−1(M ; A
∗

F p (V∗)) EnD(p)(M) F pEn(M) 0
¯c(p) a I′

for all n, where
F pEn(M) = c(p)−1(Hn(M ;F pA∗(V∗)))

denotes the pullback

F pEn(M) En(M)

Hn(M ;F pA∗(V∗)) Hn(M ;A∗(V∗)).

c(p)

inc

This statement is heavily inspired by ideas and remarks from [Hau22].

To prove Conjecture 4.6.2, we would start with a Landweber exact formal group law (S, g), which
means that S∗(−) = MU∗(−)⊗MU∗ S is a cohomology theory, and set V∗ = π∗MU ⊗MU∗ C ∼=
L⊗MU∗ C, where L denotes the Lazard ring (Section 3.7). As S is by assumption an L-module,
we only need to check ifMU∗

D(p)(−) is an L-module to form S∗
D(p)(−) =MU∗

D(p)(−)⊗LS. This
can probably be done similarily to the proof of Theorem 3.7.3, which is found in [Bun+09]. Since
MUn(∗) = 0 for odd n, a way of showing this could be by showingMU evenD (p)(∗) ∼=MU∗(∗) ∼= L,
where MU evenD (p)(∗) denotes graded abelian group MU∗

D(p)(∗), but with MUnD(p)(∗) set to 0
for n odd. This is sufficient, as for any complex manifold M , MU∗

D(p)(M) is a module over
MU∗

D(p)(∗). By restricting the action to MU evenD (p)(∗), we see that MU∗
D(p)(M) becomes a
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module over MU evenD (p)(∗) ∼=MU even(∗) ∼=MU∗(∗) ∼= L. This can be proved for even n ≥ 2 by
using the long exact sequence for MU∗

D(p)(M) and letting M be a point. However, for n = 0,
one would need to study the maps in the sequence a bit further to see how MU0

D(p)(∗) relates
to MU0(∗) and the cohomology groups involved.

As we assume MU∗
D(p)(−) is an Hodge-filtered cohomology theory over MU∗, there are maps

c(p), a, R, and I. After checking that the domains and codomains these maps are L-modules,
we can define c(p)S , aS , IS and RS by appying − ⊗L S. One would also need to show that
H∗(−;A∗(V∗)) ⊗L S can be rewritten to the form H∗(−;A∗(VS∗ )) for some suitable VS∗ , which
is necessary to have the correct domains and codomains.

The most involved problem to check is if we obtain a long exact sequence. In light of the above
discussion, we hope to rephrase the long exact sequence for MU∗

D(p)(−) to

MUn−1(M) Hn−1(M ; A
∗

F p (V∗)) MUnD(M) F pMUn(M) 0
¯c(p) a I′

for each n. This can equivalently be written as the short exact sequence

0 Hn−1(M ; A
∗

F p (V∗))/ ¯c(p)(MUn−1(M)) MUnD(M) F pMUn(M) 0.a I′

Next, we apply − ⊗L S and identify MU∗
D(p)(−) ⊗L S with S∗

D(p)(−) and use that − ⊗L S
respects quotients to obtain

. . . TorL1 (F pMUn(M), S) Hn−1(M ; A
∗

F p (V∗))⊗L S/ ¯c(p)(MUn−1(M))⊗L S

SnD(M) F pMUn(M)⊗L S 0.

There are now several things to check. First, it is not clear if F pMUn(M) satisfies Lemma
3.7.2 or if TorL1 (F pMUn(M), S) = 0 by another argument. Secondly, we would need to identify
F pMUn(M) ⊗L S with F pSn(M), and Hn−1(M ; A

∗

F p (V∗)) ⊗L S/ ¯c(p)(MUn−1(M)) ⊗L S with
Hn−1(M ; A

∗

F p (VS∗ ))/ ¯cS(p)(S
n−1(M)), if this even makes sense to.

However, we have not had the time to check all of these details. Therefore, we do not (yet) know
if Conjecture 4.6.2 holds, although we expect it to.

We have not checked if a similar result can be induced from differential cohomology. This may
be simpler to do, although it does not prove Conjecture 4.6.2 due to the lack of a uniqueness
theorem for Hodge-filtered cohomology theories.
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4.7 Other topics:

Generalized fundamental short exact sequences

For Deligne cohomology, which is an ordinary Hodge-filtered cohomology theory, we have a
fundamental short exact sequence with Hodge classes, as in Theorem 4.1.8. Given a cohomology
theory E∗, and a Hodge-filtered Hopkins-Quick theory E∗

D(p) over E, it is possible to find a
similar short exact sequence when working over compact Kähler manifolds, involving E∗

D(p), E-
Hodge classes and an E-Jacobian. Readers with background from complex algebraic geometry
may consider this as motivation to study Hodge-filtered cohomology theories. Although our
motivation has been to study an extension of differential cohomology for complex manifolds
(or even for objects of ManF ), we find it mandatory to mention this, as it is much of the
motivation for the work found in [HQ15]. It would be interesting to delve into which properties
Hodge-filtered K-theory has, when viewed through the lens of complex algebraic geometry.

Currential Hodge-filtered Cohomology

An interesting observation from [Hau22] and [HQ22] is that the theory of currents can be used
to define Hodge-filtered cohomology theories. Recall that the support of a differential form ω
on M , supp(ω), is defined the smallest closed subset where ω vanishes on the complement.
That is, one can define supp(ω) =

⋂
open U s.t. ω|U=0(M\U). Considering An(M) with the smooth

compact-open topology, we can consider the space of compactly supported forms. That is, we
write Anc (M) = {ω ∈ An(M) | supp(ω) compact }. The dual (in the sense of functional analysis)
is defined to be the space of currents onM , Dn(M). It can be topologized by the weak∗-topology.
As explained in [Hau22], the complex A∗(M) is quasi-isomorphic to D∗(M), giving the same
theory, although this is not the case for currential versions of differential cohomology.

Potential uses in physics

Although it has not yet been investigated, we believe that Hodge-filtered cohomology theories
can be used in physics as well. Since certain types of complex manifolds, such as Calabi-Yau
manifolds, are essential to theoretical physics, it would be interesting to see how Hodge-filtered
cohomology theories can play the role as an intricate complex variant of differential cohomology.
We are not aware of any papers that discuss this, but we hope there will be some in the future.





Chapter 5

Towards (Geometric) Hodge-filtered
K-Theory

In this chapter, we specialize to Hodge-filtered K-theory. Initially, we hope that Hodge-filtered
cohomology theories are unique. If this is not true in general, we hope at least that Hodge-filtered
K-theory is uniquely characterized by the axioms (Definition 4.3). Thoughts on how to work
towards partial results for this is discussed in [Hau22, Section 3.5.].

Although we do not have a uniqueness theorem for Hodge-filtered K-theory, we investigate
several approaches to Hodge-filtered K-theory. Most notably, we find a geometric model for
Hodge-filtered K-theory by establishing an interesting new relation between multiplicative K-
theory in the sense of [Kar90] and Hodge-filtered K-theory in Theorem 5.2.3 and Corollary
5.2.6.1. Multiplicative K-theory in the sense of [Kar90] and secondary characteristic classes in
the sense of [CS74] are therefore briefly discussed in Section 5.1.

Note that this chapter does not contain a section on ”other topics”, as it is simply a chapter of
many open problems and few answers. We will however provide a section on open problems and
questions we have not yet been able to answer.

5.1 Multiplicative K-theory

The most promising approach to a geometric model for Hodge-filtered K-theory seems to be
through multiplicative K-theory in the sense of [Kar90]. The idea is not new to this thesis, as
it is briefly mentioned in [HQ22], and folklore says it has been an unexplored path since the
work of [HQ15]. However, we have not found any source that proves, or even discusses, the
relation between multiplicative K-theory and Hodge-filtered K-theory. We dedicate the next
two subsections to establishing the relation formally, starting with understanding multiplicative
K-theory and secondary characteristic classes.

119
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5.1.1 The Secondary Characteristic Classes of Chern-Simons

Recall that characteristic classes can be constructed through the Chern-Weil homomorphism.
Although the Chern-Weil construction is independent of the choice of connection, the geometric
information should be hidden somewhere. The main idea of [CS74] is to pull the Chern-Weil
forms back to a bundle where it becomes exact, and study its trivializations. This does not only
allow for secondary (underlying) characteristic classes, it also refines certain classical applications
to include more structure.

The Chern-Simons forms

Consider a principal G-bundle π : P → M and a connection ∇ with curvature Ω. The Chern-
Weil morphism maps P ∈ Inv(g) to a cohomology class [Λ] on M that satisfies the relation
P (Ω) = π∗Λ. The 2k-form P (Ω) need not be exact. However, we can pull P (Ω) back through
π : P →M to obtain a diagram

π∗P P

P M.

π

π

The bundle π∗P → P has a canonical global section by using the diagonal on P , and is therefore
trivial ([Tu17]). The trivial bundle π∗P therefore has a trivial classifying map, which in turn
implies that its characteristic classes are all trivial, yielding exact characteristic forms.

Essentially, the form π∗P (Ω) on π∗P ∼= P × G is P (Ω), which can be trivialized by some form
TP (∇) such that dTP (∇) = P (Ω). Details are found in [CS74]. The expression TP (∇) could
be read as ”trivialization of P depending on the connection ∇”.

If we set ϕt = tΩ + 1
2(t

2 − t)[∇,∇], where [., .] denotes the Lie bracket of connections, the
(2k − 1)-form TP (∇) can be defined as

TP (∇) = k

∫ 1

0
P (∇∧ ϕk−1

t )dt.

This trivializes P (Ω) uniquely (up to an exact term) by [CS74]. We will not delve into the above
formula, the construction, or any of the details related to this, as it is quite technical in nature
and not too relevant for our purposes.

It should however be noted that what we briefly mentioned in Section 3.6 was similar to a
trivialization of the Chern character in the sense of [CS74]. We refer to [SS08b] and [CS74] for
the missing details. The idea of seeking ”the underlying geometric information” aligns quite well
with our goal of finding a geometric model for Hodge-filtered K-theory.
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Ordinary characteristic classes (e.g. Stiefel-Whitney classes) can often be thought of as obstruc-
tions to geometric-topological problems, such as if a n-manifold M can be embedded into Rn+k
for some k < n.

In a similar manner, the trivializing forms above can be used to obstruct conformal immersions of
3-manifolds. We’ll make it slightly more concrete. Smooth manifolds always admit Riemannian
metrics, as these can be stapled together from local metrics due to partitions of unity. Two
Riemannian metrics h and g on a smooth manifold M are conformally equivalent if we can
find a function λ : M → R such that h = λ2g. If g is a Riemannian metric on M and h is a
Riemannian metric on Rk, a conformal immersion of M is a smooth immersion i :M → Rk such
that i∗h is conformally equivalent to g.

Using secondary characteristic classes, [CS74] constructs a conformal invariant Φ(M) which
obstructs conformal immersions of M into R4. They consider the case where M = RP 3 and
show that Φ(RP 3) = 1

2 . Hence, RP 3 cannot be conformally immersed into R4, which is quite
surprising as it can (at least) be smoothly immersed into R4.

Not only does this align quite well with the philosophy of differential and Hodge-filtered cohomo-
logy, as we are able to use underlying geometric information, but a central result of [CS74] is to
show that these Chern-Simons forms are differential characters in the sense of [CS85]. This was
one of the main motivations why differential characters were made, as there was a clear need of
a framework to capture the ”underlying geometric information”.

5.1.2 Multiplicative K-theory

In the world of secondary characteristic classes, the Chern-Simons forms were alone for a long
time. As the main (geometric) way of constructing charactersitic classes is through the Chern-
Weil homomorphism, it is not too easy to construct new secondary characteristic classes. As a
solution, Karoubi constructed a general framework for secondary characteristic classes, namely
Multiplicative K-theory.

Multiplicative K-theory in the sense of Karoubi ([Kar90]) is naturally defined on ManF . Even
though it can be phrased quite generally, allowing for flexibility in choice of a Lie group G, a
series of ”invariant polynomials” and a (descending) filtration, we will merely restrict ourselves
to stable Multiplicative K-theory. That is, we follow [Kar90, Section 5.], where G is set to be
GL(k) for k = R or C. The series of invariant polynomials is given by the Chern characters.

This leaves us with the following definition. Unless otherwise stated, assume thatM is inManF ,
and let F i = F iA∗(M).

Definition 5.1.1. (Multiplicative vector bundles).

A multiplicative vector bundle on M is a triple (E,∇, ω), where E is a smooth vector bundle on
M , ∇ is a connection on E and ω is a sum ω = ω1+ω2+ . . . of differential forms of odd degrees
(ωi ∈ A2i−1(M)) such that chi(∇)− dωi ∈ F i.
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Amorphism (E,∇, ω)→ (E′,∇′, ω′) of multiplicative bundles overM consists of an isomorphism
ϕ : E → E′ such that for all i,

ω′
i − ωi =

∫ 1

t=0
chi((1− t)∇+ tϕ∗∇′) mod (F i + dF i−1).

Remark 5.1.2. Although phrased differently in [Kar90], the essence is as above, as we only require
smoothness and a filtration on forms. Hence, working in ManF is suitable.

To form a category of multiplicative vector bundles over M , MBun(M), we need to make sure
composition provides new morphisms of multiplicative bundles. Assume we are given maps of
multiplicative bundles

(E0,∇0, ω0)
ϕ→ (E1,∇1, ω1)

ψ→ (E2,∇2, ω2).

First, note that we have E0 ∼= E1 ∼= E2. Hence, we will be sloppy denoting the pullbacks of
connections. Let

θ1r(∇,∇′) =

∫ 1

t=0
chr((1− t)∇+ tϕ∗∇′)

as above. To ensure that ω2
r − ω1

r = θ1r(∇0, (ψϕ)∗∇2) mod (F r + dF r−1) for all r, consider

θ2r(∇0,∇1,∇2) =

∫∫
∆2

chr(t0∇0 + t1ϕ∗∇1 + t2(ψϕ)∗∇3).

By Stokes’ theorem,

dθ2r(∇0,∇1,∇2) = θ1r(∇0,∇1) + θ1r(∇1,∇2)− θ1r(∇0,∇2),

which means

θ1r(∇0,∇2) = ω2
r − ω0

r − dθ2r(∇0,∇1,∇2) = ω2
r − ω0

r mod (F r + dF r−1).

Hence, MBun(M) forms a category.

Remark 5.1.3. It is almost mandatory to remark, as done in [Kar90], how beautiful it is that we
just used Stokes’ theorem to show that something is a category. That is quite rare.

We may also form a Whitney-type sum of multiplicative bundles, namely

(E,∇, ω) + (E′,∇′, ω′) = (E ⊕ E′,∇⊕∇′, ω + ω′).

The definition of multiplicative vector bundles naturally gives us a definition of multiplicative
K-theory.
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Definition 5.1.4. (Multiplicative K-theory).

For a smooth manifold M , let MK(M) denote the abelian group obtained by forming the
Grothendieck group of the commutative monoid of (isomorphism classes of) multiplicative vector
bundles on M . That is, MK(M) = K(MBun(M)/iso).

Remark 5.1.5. Note that by the classical properties of the Grothendieck construction (and
Lemma 5.2 of [Kar90]), a class [(E,∇, ω)] is a formal difference [E,∇, ω]− [T, d, 0], for a trivial
bundle T of dimension dimE. This is often suppressed to writing [E,∇, ω].
Remark 5.1.6. By [Kar90],MK is homotopy invariant in the sense thatMK(M) ∼=MK(M×I).
Karouibi also defines an algebraic notion of homotopies in which multiplicative bundles are
homotopic if and only if they are isomorphic.
Remark 5.1.7. MK does not only define an abelian group, but also a commutative ring. By
using the tensor product of bundles, we define

[(E,∇, ω)]⊗ [(E′,∇′, ω′)] := [(E ⊗E′,∇⊗∇′, ω ∧ dω′ + (ch(∇)− dω)∧ω′ +ω ∧ (ch(∇′)− dω′)].

Karoubi also defines a set of Adams-type operations on MK, enhancing it to a λ-ring as well.

To define the higher multiplicative K-groups, we are motivated by the geometric suspension and
consider the kernel of the map induced by M →M × S1. This was discussed in Section 3.5.

Definition 5.1.8. (Higher Multiplicative K-groups).

For a smooth manifold M , the higher multiplicative K-groups are given by

MKn(M) = ker (MK(Sn ×M)→MK(M)) .

These sit in a long exact sequence involving hypercohomology and complex K-theory.

Theorem 5.1.9. (Long exact sequence for multiplicative K-groups, [Kar90, Theorem 5.3 and
Discussion 5.10.])

The higher multiplicative K-groups sit in a long exact sequence

. . . Kn−1(M)
⊕

iH
n−1+2i(M ; A

∗

F i ) MKn(M)

Kn(M)
⊕

iH
n+2i(M ; A

∗

F i ) . . . .

I

Essentially, the above sequence lets us see how multiplicative K-theory can work as a framework
for secondary characteristic classes. For n = 0, this essentially yields [Kar90, Theorem C.2.],
which relates the above to the long exact sequence in cohomology.
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Theorem 5.1.10. (Long exact sequence of MK and cohomology, [Kar90, Theorem C.2.]).

Mapping (E,∇, ω) 7→ chi(∇)−dωi for each i induces a map MK(M)→
⊕

iH
2i(M ;F iA∗) such

that the diagram

K1(M)
⊕

iH
2i−1(M ; A

∗

F i ) MK(M) K0(M)
⊕

iH
2i(M ; A

∗

F i )

⊕
iH

2i−1(M ;A∗)
⊕

iH
2i−1(M ; A

∗

F i )
⊕

iH
2i(M ;F iA∗)

⊕
iH

2i(M ;A∗)
⊕

iH
2i(M ; A

∗

F i ),

commutes. The maps from K-theory to cohomology are given by the Chern character.

As secondary characteristic classes are often constructed by moving the characteristic class to a
trivial bundle (as done in [CS74]), they can be thought of as the classes of MK(M) that map to
0 in K0(M), picking out the ”underlying” geometric information that K0 doesn’t see. The kernel
of MK(M) → K0(M) lives in MK(M), and by the above exactness, this corresponds to the
image of

⊕
iH

2i−1(M ; A
∗

F i ). More explicitly, any class of MK(M) causing a 0 in K0(M) should
come from

⊕
iH

2i−1(M ; A
∗

F i )/ im(K1(M)), which is referred to as the secondary characteristic
classes in [Kar90]. Karoubi refers to the classes in

im

(
MK(M)→

⊕
i

H2i(M ;F iA∗)

)
⊆
⊕
i

H2i(M ;F iA∗)

as the primary classes.

The above philosophy was used to construct new secondary characteristic classes in [Kar94].

5.2 Geometric Hodge-filtered K-theory

Note that by setting V∗ = K∗(∗)⊗Z C, we can rewrite the long exact sequence in multiplicative
K-theory.

Theorem 5.2.1. (Long exact sequence for multiplicative K-theory, revisited).

The higher multiplicative K-groups sit in a long exact sequence

· · · Kn−1(M) Hn−1(M ; A
∗

F 0 (V∗)) MKn(M)

Kn(M) Hn(M ; A
∗

F 0 (V∗)) · · · .
I

This hints clearly that MKn(M) should be a Hodge-filtered K-theory with p = 0.



Chapter 5: Towards (Geometric) Hodge-filtered K-Theory 125

As the idea is to connect multiplicative K-theory to Hodge-filtered K-theory, we will cherry-
pick the relevant constructions and theorems of [Kar90]. To align multiplicative K-theory with
the axiomatics of Hodge-filtered cohomology, we slightly modify the constructions later, e.g. to
account for the integer p floating around.

5.2.1 Axioms of K∗
D(0) and Multiplicative K-theory

First of all, we start by assuming p = 0. As mentioned by [HQ15], we should not expect KD(0) to
return K-theory when working with Hopkins-Quick theories. In light of a potential uniqueness
theorem, we conjecture that KD(0) actually becomes multiplicative K-theory. However, this
statement requires us to show that MK∗ gives a Hodge-filtered K-theory.

Definition 5.2.2. (The maps c(0), R, I and a for MKn).

We define c(0) for all degrees as below. R, I and a are first defined in degree 0, before we extend
them to all degrees. The maps are defined as

c(0) : K0(M) −→H∗(M ;A(V∗)),
[E] 7−→[ch(E)],

R :MK(M) −→H0(M ;F 0A(V∗)),
[E,∇, ω] 7−→[(ch(∇)− dω)],

I :MK(M) −→K0(M),

[E,∇, ω] 7−→[E],

a : H−1(M ;
A∗

F p
(V∗)) −→MK(M),

ω 7−→[T, d,−ω].

To extend R, I, and a to degree n, let i : M → M × Sn be the inclusion. The maps Rn, In, an
in degree n are induced by considering the kernels, as in the diagrams

K0(M) MK(M) H0(M ;F 0A∗(V∗))

K0(M × Sn) MK(M × Sn) H0(M × Sn;F 0A∗(V∗))

Kn(M) MKn(M) Hn(M ;F 0A∗(V∗))

RI

i∗K

RI

i∗H

RnIn

and
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Hn−1(M ; A
∗

F 0 (V∗)) H−1(M × Sn; A∗

F 0 (V∗)) H−1(M ; A
∗

F 0 (V∗))

MKn(M) MK(M × Sn) MK(M).

an

i∗
H′

a a

The maps will be denoted by a, I and R, without referring to the degree.

The kernels of of i∗H and i∗H′ are the cohomology groups above by the geometric suspension
(Proposition 3.5.1) as the cohomology groups are homotopy invariant and are represented by
certain spectrum objects (see Remark 4.2.4 and [HQ15, Proposition 2.12.]). Due to the setup
above, the axioms for higher degrees will be induced from the case n = 0.

We start by checking if R ◦ a = d. We have

H−1(M ; A
∗

F 0 (V∗)) MK(M) H0(M ;F 0A(V∗)),

[ω] [T, d,−ω] [(ch(d) + dω)] = [dω],

a R

a R

which by Remark 4.3.5 is what we want. Above, we have used that [ch(d)] = [ch(T )] = [0], as T
is a trivial bundle. Secondly, consider the following diagram,

[E,∇, ω] [E]

MK(M) K0(M)

H0(M ;F 0A(V∗)) H0(M ;A(V∗)) [ch(E)]

[(ch(∇)− dω)] [ch(∇)].

I

R

c(0)

R

I

c(0)

inc

ch indep. of connection
since [dω]=0

This diagram commutes as characteristic classes are independent of choice of connection. Lastly,
the long exact sequence is exact as this is precisely Theorem 5.1.9 (with commuting triangle
implied from Theorem 5.1.10).

We summarize this as a theorem.
Theorem 5.2.3. (Multiplicative K-theory is a Hodge-filtered K(0)-theory).

With the maps c(0), a, R, and I defined above, Multiplicative K-theory is a Hodge-filtered K(0)-
theory in the sense of Definition 4.3.1 with p = 0.
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5.2.2 Extending the result to MK∗(p)

To extend Theorem 5.2.3 from p = 0 to arbitrary p, we can simply introduce a shift in the
filtration.

Definition 5.2.4. (p-shifted filtration).

If F is a filtration, we can define the p-shifted filtration of F , denoted F (p), by

F (p)i = F p+i.

As remarked earlier, multiplicative K-theory does not depend on any specific filtration. We
may therefore include a p into the above theorem by considering multiplicative K-theory with
respect to the filtration F (p) instead of F . If we fix a descending filtration F of A∗ (e.g. the
Hodge-filtration), we may define p-shifted multiplicative K-theory.

Definition 5.2.5. (p-shifted multiplicative K-theory).

We define MK(p)(M) to be the multiplicative K-groups with respect to the filtration F (p).

That is, we consider (p-shifted) multiplicative bundles onM , consisting of triples (E,∇, ω), where
E is a smooth vector bundle on M , ∇ is a connection on E, and ω is a sum ω = ω1+ω2+ . . . of
differential forms of odd degrees (ωi ∈ A2i−1(M)) such that chi(∇)−dωi ∈ F (p)i. If (E,∇, ω) and
(E′,∇′, ω′) are two multiplicative vector bundles, a morphism (E,∇, ω) → (E′,∇′, ω′) consists
if an isomorphism ϕ : E → E′ such that for all i,

ω′
i − ωi =

∫ 1

t=0
chi((1− t)∇+ tϕ∗∇′) mod (F (p)i + dF (p)i−1).

MK(p)(M) is defined to be the Grothendieck group of isomorphism classes of (p-shifted) mul-
tiplicative bundles on M .

Remark 5.2.6. Going from MK to MK(p) does not change anything about the construction of
MKn or the results we know about multiplicative K-theory, as the work done in [Kar90] simply
works with ”a filtration”. The p comes from defining MK with respect to a fixed filtration, and
then considering MK(p) to arise from a p-shift of the fixed filtration.

The maps R, I, and a are defined similarly, and we set c(p) = c(0), as there is no shift needed
in the Chern character.

Corollary 5.2.6.1. (Geometric Hodge-filtered K-theory).

p-shifted multiplicative K-theory in the sense of Definition 5.2.5 is a Hodge-filtered K(p)-theory.

More simply stated:

Multiplicative K-theory is a Hodge-filtered K-theory.
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5.3 Open questions and further thoughts on Hodge-filtered K-
theory

Uniqueness of Hodge-filtered K-theory

In this chapter, we have found a geometric model for Hodge-filtered K-theory. However, we
can only say multiplicative K-theory is a Hodge-filtered K-theory, and not that it is Hodge-
filtered K-theory, due to the lack of a uniqueness theorem. Having a geometric model is still
a triumph, but it would be stronger if it was a geometric way of viewing the Hodge-filtered
K-theory. In general, it does not seem possible to transfer the proof of Theorem 3.2.9 to Hodge-
filtered cohomology theories, although there may still be some hope to prove the uniqueness of
Hodge-filtered K-theory through this method. All the thoughts presented on the uniqueness of
Hodge-filtered theories in this thesis are also found in [Hau22, Section 3.5]. A natural next project
would be to study uniqueness further. More concretely, it would be interesting to see how the
explicitly constructed isomorphism between geometric Hodge-filtered complex cobordism and
Hopkins-Quick complex cobordism in [Hau22] translates to K-theory.

Hodge-filtered K-theory from differential K-theory

As in Section 4.4, we know that we may obtain a Hodge-filtered K-theory from differential
K-theory.

Following [Hau22], we let V∗,C := V∗ ⊗R C and define the complexified differential K-theory K̂n
C

as

K̂n
C(M) = {(x̂, φ) ∈ K̂n(M)×Ωn−1(M ;V∗,C) | (x̂+a(ω), φ) = (x̂, φ+ω), ∀ω ∈ Ωn−1(M ;V∗)},

where Ω∗ denotes the smooth de Rham complex, and not the holomorphic de Rham complex. We
identify Ωn−1(M ;V∗) with a subspace of Ωn−1(M ;V∗,C) through the natural map of coefficients.

As in Section 4.4, we set

RC(x̂, φ) = R(x̂) + dφ, IC(x̂, φ) = I(x̂), aC(ω) = (0, ω).

Assume now that we are given an integer p, and let M be a complex manifold. Since M has the
underlying structure of a smooth manifold, define F pK̂∗(M) ⊆ K̂∗(M) as

F pK̂∗(M) = R−1(F pA∗(M ;V∗)).

To ensure that the maps R, I and a stay well-defined, we set

K̂∗
D(p)(M) := F pK̂∗(M)/a(F pA∗−1(M ;V∗) + dA∗−2(M ;V∗)).
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With the above definition, the maps R, I and a of complexified differential K-theory induce the
maps needed for K̂∗

D(p) to be a Hodge-filtered K-theory.

It would be interesting to understand exactly how this structure works. For example, can we
obtain a Bott periodicity theorem from the differential Bott periodicity of Theorem 2.10.5? It is
not clear to us how we do this, due to the complexified differential K-theory

K̂n
C(M) = {(x̂, φ) ∈ K̂n(M)×Ωn−1(M ;V∗,C) | (x̂+a(ω), φ) = (x̂, φ+ω), ∀ω ∈ Ωn−1(M ;V∗)}

having an n in Ωn−1(M ;V∗,C) as well. The simple replacement n 7→ n+2 does not immediately
yield Bott periodicity.

Additionally, we have not yet written out what this construction does to the structured bundles
of [SS08b] (Section 3.6). We believe that we retrieve multiplicative K-theory from the above pro-
cedure, although this is not something we have investigated. This would support the uniqueness
of Hodge-filtered cohomology theories, at least for the case of complex K-theory.

It could be interesting to see how the constructions of [SS08b] relate to holomorphic bundles and
complex structures, in a wide sense. We suspect that the paper [BC70] could be of interest when
investigating this questions, as it is related to the work found in [CS74] (and hence [SS08b]) for
the holomorphic case.

On Bott periodicity

We indeed suspect to have a Bott periodicity theorem for Hodge-filtered K-theory as well.
However, we have not been able to prove this. Our most serious attempt at this was to prove Bott
periodicity for Hopkins-Quick theories, where we attempted to prove that Ω2KD(p) ' KD(p) in
ho SpΣ(sPre∗). During the proofreading of this thesis, we found vital flaws to the proof, as we
had been too naive when switching back and forth between SpΣ(sPre∗) and ho SpΣ(sPre∗).

We have not found any sources that mention Bott periodicity for multiplicative K-theory, but
this does not bother us too much, as it is indeed difficult to prove such a theorem directly
for a geometric model. If we manage to prove a (model dependent) Bott periodicity theorem,
we suspect it to be through differential K-theory, as discussed above, or by using the abstract
machinery of Hopkins-Quick theories.

Hodge-filtered Conner-Floyd K-theory

In the light of Section 4.6, we hope that we can realize a Hodge-filtered Conner-Floyd-type K-
theory as K∗

D(p)(−) ∼=MU∗
D(p)(−)⊗LK∗(∗). This would possibly let us translate many results

from [Hau22] and [HQ22] to the case of Hodge-filtered K-theory. Hopefully, we are able to prove
Conjecture 4.6.2 in the future.
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Universal computations of Hodge-filtered K-groups

The long exact sequence of the axioms (Definition 4.3.1) opens for doing computations that will
hold true for all Hodge-filtered K-theories, independently of a result on uniqueness. Unfortu-
nately, we have not had the time to attempt these computations, but we suspect it to be possible
to compute some groups for simple complex manifolds, such as S2.

Mayer-Vietoris sequence for Hopkins-Quick K-theory

In addition to the long exact sequence aligning with the axioms of Definition 4.3.1, Hopkins-
Quick establishes a Mayer-Vietoris sequence for their Hodge-filtered cohomology theories in
[HQ15]. We state the result for complex K-theory.

Theorem 5.3.1. (Mayer-Vietoris sequence of Hopkins-Quick K-theory).

For a complex manifold M , its Hodge-filtered K-groups (in the sense of Hopkins-Quick) sits in
a long exact sequence

· · · Hn−1(M ;A∗(V∗)) Kn
D(p)(M) Kn(M)⊕Hn(M ; A

∗

F p (V∗))

Hn(M ;A∗(V∗)) Kn+1
D (p)(M) · · ·

Proof. The idea is to use a Puppe-type sequence coming from KD(p) as a homotopy pullback
and determine the hypercohomology groups. Details are in [HQ15].

If universal computations for Hodge-filteredK-theory as explained above is too difficult, it would
be interesting to use this Mayer-Vietoris sequence to compute simple Hopkins-Quick K-groups.

Other

There are many interesting topics we could study related to Hodge-filtered K-theory, many of
which we have not pursued in this thesis. However, we choose to mention some of them, as they
certainly deserve a mention, if only to show potential topics of study in the future.

K-theoretic Abel-Jacobi maps

As mentioned in Section 4.7, much of the original motivation in [HQ15] was to construct gen-
eralized Abel-Jacobi maps and generalized fundamental short exact sequences. As these were
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constructed for all differential cohomology theories E, it could be interesting to see what happens
when we specialize to Hodge-filtered K-theory.

Spectral sequences for Hodge-filtered cohomology theories

In [GS17], the differentially refined Atiyah-Hirzebruch spectral sequence was constructed. The
construction is mostly based on constructing a suitable exact couple. We have not studied the
paper enough to say what would go wrong by passing to Hodge-filtered cohomology theories,
but it could be of great interest to try to translate the proof and find a Hodge-filtered Atiyah-
Hirzebruch spectral sequence.

Equivariant Hodge-filtered K-theory

It would be interesting to construct equivariant Hodge-filtered K-theory. A possible approach
would be to ask how the axioms need to change to comply with the group action of a group
G. This must be done in a way that retrieves the ordinary axioms when faced with the trivial
group. Due to the simple nature of MultiplicativeK-theory, we suspect there to be an equivariant
version of multiplicative K-theory that satisfies the (not yet developed) axioms of equivariant
Hodge-filtered K-theory.

5.4 Summary and Last Thoughts

In this thesis, we have covered much material, but have we been able to answer our initial
question? We asked how it is to refine cohomology on smooth manifolds to include ”geometric
information”, if possible at all.

Simply speaking, we started with the de Rham theorem and discovered that it should be possible
to find a construction Ĥk(−;Z) fitting into the middle of the hexagon diagram. Even though
our idea was slightly too naive, the differential characters gave us as a solution, and there were
even interesting interpretations of the differential character groups that showed how geometric
info was ”added”.

We generalized differential characters further, eventually enabling the construction of differential
E-cohomology for some spectrum E. This answered our initial question, not only for ordinary
cohomology, but also for E-cohomology. We can refine cohomology to include geometric inform-
ation.

We also studied differential cohomology through spectral sheaves. Even though we ”just” con-
sidered the ∞-category of spectral sheaves on manifolds, we ended up seeing that homotopy in-
variant sheaves corresponded to spectra, and that it was possible to decompose the ∞-category
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into homotopy invariant sheaves and pure sheaves through stable recollements. This gave an-
other approach to differential cohomology, although a bit too general to fit into the axiomatic
framework.

The axiomatic framework was used to answer our final questions regarding uniqueness and how
to quantify the homotopy invariance of a differential cohomology theory through a homotopy
formula. Furthermore, we saw that smooth Deligne cohomology was ordinary differential co-
homology, that structured bundles could be used to define differential K-theory, and that given
a Landweber exact formal group law (S, g), the cohomology theory S∗(−) =MU∗(−)⊗LS could
be refined to a model for differential S-theory, by using differential complex cobordism to form
Ŝ∗(−) = ˆMU∗(−)⊗L S.

At this point, we had to make a choice. Do we continue study differential cohomology, or should
we be inspired by Deligne cohomology to study an analog of differential cohomology for complex
manifolds. As all of our initial questions were answered, we moved to Hodge-filtered cohomology
theories. The existence of Hodge-filtered E-theory for a spectrum E was constructed similarly
to differential cohomology, although using much heavier machinery.

Even though an axiomatic framework exists, we met a wall quite quickly. Many of the ideas we
had met through our discussion of differential cohomology, are not yet transferred to Hodge-
filtered cohomology, apart from the homotopy formula and the fact that Deligne cohomology
models ordinary Hodge-filtered cohomology. For example, Hodge-filtered cohomology theories do
not yet have a uniqueness theorem. We discussed the differences between differential cohomology
and Hodge-filtered cohomology. The subtle differences prevented us from proving that given
a Landweber exact formal group law (S, g), the cohomology theory S∗(−) = MU∗(−) ⊗L S
produces a Hodge-filtered S-theory, by using Hodge-filtered complex cobordism as above. This
discussion resulted in a conjecture.

As ordinary Hodge-filtered cohomology is already modeled by Deligne cohomology, we spe-
cialized the discussion to Hodge-filtered K-theory and managed to find a geometric model for
Hodge-filtered K-theory through multiplicative K-theory. Furthermore, we discussed several
other approaches and open problems related to Hodge-filtered cohomology and K-theory.

If our primary goal was to study Hodge-filtered K-theory, this thesis is definitely way too long.
However, as the intention was to showcase and collect important and interesting ideas from
differential cohomology, we should rather criticize the content of the thesis. Summarizing a
research field is an herculean task, and we have omitted much material. In retrospect, it would
be natural to include more information of differential- and Hodge-filtered complex cobordism, or
more of the motivation for Hodge-filtered cohomology theories stemming from complex algebraic
geometry.

We hope that this thesis contributes to the fields of differential- and Hodge-filtered cohomology
not just by finding a geometric model of Hodge-filtered K-theory, but also by providing an
alternative text to the (few) existing sources providing an overview of the fields, and perhaps by
addressing interesting questions.
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This thesis was written with the philosophy that it should be accessible and interesting to the
author a year ago. Luckily, it is not possible to evaluate if we reached this goal, although we
believe the author (a year ago) would greatly appreciate the work done here. Hopefully, this
thesis will help students of differential- and Hodge-filtered cohomology reach a bit further in the
future.

We end with a (surprisingly relevant) poem taken from [Ang21].

A small poem

Now my thesis has started to merge
And the timing is right on the verge
But I have delivered
You can say I have shivered
Because the number of pages diverge

- The author.





Bibliography

[ADH23] Araminta Amabel, Arun Debray and Peter J. Haine. Differential Cohomology: Cat-
egories, Characteristic Classes, and Connections. 2023.

[And21] Anders Alexander Andersen. ‘Simplicial Sheaves and Classification Problems’. Mas-
ter thesis. NTNU, 2021. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/2778394.

[Ang21] Elias Klakken Angelsen. ‘The K-theory and Morita equivalence classes of noncom-
mutative tori’. Bachelor thesis. NTNU, 2021. URL: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2980271.

[AS63] M. F. Atiyah and I. M. Singer. ‘The index of elliptic operators on compact mani-
folds’. In: Bulletin of the American Mathematical Society 69.3 (1963), pp. 422–433.

[BB14] Christian Bär and Christian Becker. Differential Characters. Springer, 2014.
[BR20] David Barnes and Constanze Roitzheim. Foundations of Stable Homotopy Theory.

Cambridge University Press, 2020.
[BHV18a] Tobias Barthel, Drew Heard and Gabriel Valenzuela. ‘Local duality for structured

ring spectra’. In: Journal of Pure and Applied Algebra 222.2 (2018), pp. 433–463.
[BHV18b] Tobias Barthel, Drew Heard and Gabriel Valenzuela. ‘Local duality in algebra and

topology’. In: Advances in Mathematics 335 (2018), pp. 563–663.
[BG16] Clark Barwick and Saul Glasman.A note on stable recollements. preprint, arXiv:1607.02064

[math.CT]. 2016.
[BC70] Raoul Bott and Shiing S. Chern. ‘Some Formulas Related to Complex Transgres-

sion’. In: Essays on Topology and Related Topics: Memoires dédiés à Georges de
Rham. Ed. by André Haefliger and Raghavan Narasimhan. Springer, 1970, pp. 48–
57.

[BT82] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. Vol. 82.
Graduate Texts in Mathematics. Springer, 1982.

[Bry93] Jean-Luc Brylinski. ‘Complexes of Sheaves and their Hypercohomology’. In: Loop
Spaces, Characteristic Classes and Geometric Quantization. Ed. by Jean-Luc Bryl-
inski. Progress in Mathematics. Birkhäuser, 1993, pp. 1–61.

135



136 Angelsen: Differential and Hodge-filtered Cohomology

[BNV16] Ulrich Bunke, Thomas Nikolaus and Michael Völkl. ‘Differential cohomology theories
as sheaves of spectra’. In: Journal of Homotopy and Related Structures 11.1 (2016),
pp. 1–66.

[BS10] Ulrich Bunke and Thomas Schick. ‘Uniqueness of smooth extensions of generalized
cohomology theories’. In: Journal of Topology 3.1 (2010), pp. 110–156.

[Bun+09] Ulrich Bunke, Thomas Schick, Ingo Schröder and Moritz Wiethaup. ‘Landweber ex-
act formal group laws and smooth cohomology theories’. In: Algebraic & Geometric
Topology 9.3 (2009), p. 1751.

[CS85] Jeff Cheeger and James Simons. ‘Differential characters and geometric invariants’.
In: Geometry and Topology. Vol. 1167. Springer Berlin Heidelberg, 1985, pp. 50–80.

[CS74] Shiing-Shen Chern and James Simons. ‘Characteristic Forms and Geometric Invari-
ants’. In: The Annals of Mathematics 99.1 (1974), p. 48.

[Dol72] Albrecht Dold. ‘Relations between ordinary and extraordinary homology’. In: Al-
gebraic Topology: A Student’s Guide. Ed. by J. F. Adams. London Mathematical
Society Lecture Note Series. Cambridge: Cambridge University Press, 1972, pp. 166–
177.

[DS95] W. G. Dwyer and J. Spalinski. ‘Chapter 2 - Homotopy Theories and Model Cat-
egories’. In: Handbook of Algebraic Topology. Ed. by I. M. James. North-Holland,
1st Jan. 1995, pp. 73–126.

[Esn88] Hélène Esnault. ‘Characteristic classes of flat bundles’. In: Topology 27.3 (1988),
pp. 323–352.

[Fre02] Daniel Freed. ‘Dirac charge quantization and generalized differential cohomology’.
In: Surveys in Differential Geometry (2002). Publisher: International Press of Bo-
ston, pp. 129–194.

[FH00] Daniel Freed and Michael Hopkins. ‘On Ramond-Ramond fields and K-theory’. In:
Journal of High Energy Physics 2000.5 (2000).

[FH13] Daniel Freed and Michael Hopkins. ‘Chern–Weil forms and abstract homotopy the-
ory’. In: Bulletin of the American Mathematical Society 50.3 (2013), pp. 431–468.

[FL10] Daniel Freed and John Lott. ‘An index theorem in differential K–theory’. In: Geo-
metry & Topology 14.2 (5th Mar. 2010). Publisher: Mathematical Sciences Publish-
ers, pp. 903–966.

[FW99] Daniel Freed and Edward Witten. ‘Anomalies in String Theory with D-Branes’. In:
3.4 (1999), pp. 819–852.

[GJ99] Paul Gregory Goerss and J. F. Jardine. Simplicial Homotopy Theory. Springer Sci-
ence & Business Media, 1999.

[GS17] Daniel Grady and Hisham Sati. ‘Spectral sequences in smooth generalized cohomo-
logy’. In: Algebraic & Geometric Topology 17.4 (2017). Publisher: Mathematical
Sciences Publishers, pp. 2357–2412.

[GS18a] Daniel Grady and Hisham Sati. ‘Massey products in differential cohomology via
stacks’. In: Journal of Homotopy and Related Structures 13.1 (2018), pp. 169–223.



Bibliography 137

[GS18b] Daniel Grady and Hisham Sati. ‘Primary operations in differential cohomology’. In:
Advances in Mathematics 335 (2018), pp. 519–562.

[Hau22] Knut Bjarte Haus. ‘Geometric Hodge filtered complex cobordism’. Doctoral thesis.
NTNU, 2022.

[HQ22] Knut Bjarte Haus and Gereon Quick. Geometric Hodge filtered complex cobordism.
preprint, arXiv:2210.13259 [math]. 24th Oct. 2022.

[HQ15] M. J. Hopkins and Gereon Quick. ‘Hodge filtered complex bordism’. In: Journal of
Topology 8 (2015), pp. 147–183.

[HS05] M. J. Hopkins and I. M. Singer. ‘Quadratic functions in geometry, topology, and
M-theory’. In: Journal of Differential Geometry 70.3 (2005). Publisher: Lehigh Uni-
versity, pp. 329–452.

[Huy05] Daniel Huybrechts. Complex Geometry: An Introduction. Springer Science & Busi-
ness Media, 2005.

[Ive86] Birger Iversen. Cohomology of Sheaves. Universitext. Springer, 1986.
[Kar90] Max Karoubi. ‘Théorie générale des classes caractéristiques secondaires’. In: K-

Theory 4.1 (1990), pp. 55–87.
[Kar94] Max Karoubi. ‘Classes Caractéristiques de Fibrés Feuilletés, Holomorphes ou Al-

gébriques’. In: K-Theory 8 (1994), pp. 153–211.
[Lan21] Markus Land. Introduction to Infinity-Categories. Compact Textbooks in Mathem-

atics. Springer International Publishing, 2021.
[Lan76] Peter S. Landweber. ‘Homological Properties of Comodules Over MU*(MU) and

BP*(BP)’. In: American Journal of Mathematics 98.3 (1976). Publisher: Johns Hop-
kins University Press, pp. 591–610.

[Lot94] John Lott. ‘$\mathbf{R/Z}$ index theory’. In: Communications in Analysis and
Geometry 2.2 (1994). Publisher: International Press of Boston, pp. 279–311.

[Lur09] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.
[Lur10] Jacob Lurie. Chromatic Homotopy Theory (252x). preprint. 2010. URL: https://

people.math.harvard.edu/~lurie/252x.html.
[Lur17] Jacob Lurie. ‘Higher Algebra’. preprint. 2017. URL: https://people.math.harvard.

edu/~lurie/papers/HA.pdf.
[Mat76] Michael Mather. ‘Pull-Backs in Homotopy Theory’. In: Canadian Journal of Math-

ematics 28.2 (Apr. 1976). Publisher: Cambridge University Press, pp. 225–263.
[McC00] John McCleary. A User’s Guide to Spectral Sequences. 2nd ed. Cambridge Studies

in Advanced Mathematics. Cambridge University Press, 2000.
[MW00] Gregory Moore and Edward Witten. ‘Self-duality, Ramond-Ramond fields, and K-

theory’. In: Journal of High Energy Physics 2000.5 (2000), p. 032.
[MT08] Robert E. Mosher and Martin C. Tangora. Cohomology Operations and Applications

in Homotopy Theory. Courier Corporation, 2008. 226 pp.



138 Angelsen: Differential and Hodge-filtered Cohomology

[Ort09] Michael L. Ortiz.Differential Equivariant K-Theory. preprint, arXiv:0905.0476 [math].
2009.

[RSS88] M. Rapoport, Norbert Schappacher and Peter Schneider. Beilinson’s Conjectures on
Special Values of L-functions. Academic Press, 1988. 408 pp.

[Rot09] Joseph J. Rotman. An Introduction to Homological Algebra. Springer, 2009.
[Sch13] Urs Schreiber.Differential cohomology in a cohesive infinity-topos. preprint, arXiv:1310.7930

[hep-th, physics:math-ph]. 2013.
[SS08a] James Simons and Dennis Sullivan. ‘Axiomatic characterization of ordinary differ-

ential cohomology’. In: Journal of Topology 1.1 (2008), pp. 45–56.
[SS08b] James Simons and Dennis Sullivan. Structured vector bundles define differential K-

theory. preprint, arXiv:0810.4935 [math]. 2008.
[Tu17] Loring W. Tu. Differential Geometry | Connections, Curvature and Characteristic

Classes. Springer, 2017.
[Voi02] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I: Volume 1. Cam-

bridge University Press, 2002.




