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Abstract

Distributed acoustic sensing (DAS) is a system that uses fiber-optic cables as
sensors to retrieve seismic information from the area around the cables. In this
project, we analyze a DAS data set obtained by Centre for Geophysical Fore-
casting (CGF) at NTNU, Norway. The data set contains data collected over
ten minutes along the railway tracks between Marienborg station and Støren,
south of Trondheim, Norway. Our goal is to model probabilities of events around
the railway tracks in a Bayesian framework, which can be used to detect pos-
sibly dangerous situations fast. The first part of the analysis is about obtaining
structures in the data set for detecting events easier. We analyze differentiated
time series and the autocorrelation function at lag one for small time subsets for
the differentiated series. In that way, we restrict the amount of data to process
without losing information about the signals across all positions and times.

For the modelling part, we assume Markov properties in space to account for
dependence. This is used to construct hidden Markov models (HMMs) in spatial
direction. We present four models, each representing versions of the general
hidden Markov model, where the first three work as building blocks towards
the fourth model, which is the most important in this project. For the first
two models, we assume independence in time, while the third model introduces
dependence between two adjacent layers in time. For the main model, we use the
information from the data at previous times to obtain probabilities of events in
the current time layer.

We find that the models manage to detect events well, and their results are re-
latively similar. Determining the hyperparameters in the models is important
because the results are sensitive to the values of the hyperparameters. The de-
tected events from the models correspond well to the observations from CGF.
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Sammendrag

”Distributed acoustic sensing” (DAS) er et system som bruker fiber-optiske ka-
bler som sensorer for å innhente seismisk informasjon fra omr̊adet rundt kablene.
I dette prosjektet analyserer vi et DAS-datasett fra Centre for Geophysical Fore-
casting (CGF) ved NTNU i Norge. Datasettet inneholder data samlet inn over
ti minutter langs jernbanelinja mellom Marienborg stasjon og Støren, sør for
Trondheim i Norge. Målet med prosjektet er å modellere sannsynligheter for
hendelser rundt jernbanelinja med en Bayesiansk tilnærming. Dette kan brukes
til å oppdage potensielt farlige situasjoner raskt. Den første delen av analysen
handler om å identifisere strukturer i datasettet, for å gjøre det enklere å oppdage
hendelser. Vi analyserer differensierte tidsrekker, og autokorrelasjonsfunksjonen
mellom nabopunkter i mindre tidssett, innenfor tidsrekkene. P̊a den m̊aten be-
grenser vi mengden data vi behandler, uten å miste informasjon om signalene
ved alle posisjoner og tider.

I modellene vi lager, antar vi Markov-egenskaper i rom for å modellere avhen-
gighet. Dette brukes til å konstruere skjulte markovkjeder i romlig retning. Vi
presenterer fire modeller, hvorav de tre første er byggesteiner for den fjerde mod-
ellen, som er den viktigste i dette prosjektet. For de to første modellene antar
vi uavhengighet i tid, mens i den tredje modellen introduserer vi avhengighet
mellom to og to lag i tid. I hovedmodellen bruker vi informasjon fra dataene ved
tidligere tidspunkt for å beregne sannsynligheter for hendelser i n̊atid.

Resultatene tilsier at modellene klarer å oppdage hendelsene godt, og resultatene
er relativt like for alle modellene. Hvordan vi velger hyperparametere i modellene
er viktig, fordi resultatene er sensitive til deres verdier. Hendelsene modellene
oppdager samsvarer godt med observasjoner gjort av CGF.
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1 Introduction

Distributed acoustic sensing (DAS) is a system that uses fiber optic cables to
record seismic activity. It is part of a class of techniques called distributed fiber
optic sensing (DFOS) (Zhan 2020), which share the use of fibers in the cables as
the sensors instead of external devices. One of the main advantages of the DFOS
techniques is the high density of the sensors because they do not need external
sensors placed around the system (Kislov and Gravirov 2022). In addition, the
collection of data can happen over great distances almost instantaneously, since
it is based on the phase of backscattered light in the fibers, which means that the
information is transferred with the speed of light. DAS devices can be connected
to different kinds of fibers, including dark (unused) fibers, which makes the system
relatively inexpensive, because the DAS device is the only new part necessary for
data collection (Zhan 2020).

According to Zhan (2020), oil companies were the first to develop the DAS system
to explore seismic activity. However, the technology has later been used in several
domains such as underwater positioning and earthquake monitoring (Shang et al.
2022). A case study from Taweesintananon et al. (2021) demonstrates how the
DAS technology can be applied to optical cables in the Trondheimsfjord, Norway,
for constructing seismic images. In parts of the study, they compare the data
obtained by the DAS system to data collected by another seismic system. Despite
the greater amount of background noise in the DAS data, they conclude that
the data qualities from the two systems are approximately the same. Since the
DAS system can record over large distances almost instantaneously, it has some
advantages in this situation.

Along the railway tracks in the area south of Trondheim, there are dark fibers.
Personnel from Centre for Geophysical Forecasting (CGF) attached a DAS device
to such fibers at Marienborg station in Trondheim and recorded the seismic activ-
ity along the approximately 51 km long distance to Støren, south of Trondheim.
The goal with this project is to create statistical models to detect events in the
DAS data set from this experiment. We call this data set the Trondheim data.
The Trondheim data include preprocessed DAS data, but we understood that do-
ing analysis on the preprocessed data was not appropriate due to random noise
and sensitive data. Since the Trondheim data includes points in time and space,
we look at differenced data in each time series at every spatial position. There we
seem to have a more defined structure, and more potential for finding interesting
results in the data set. Then we consider autocorrelations in time between the
differenced time points in small time sets, and define Bayesian models including
dependence in space and time. Initially, first- and second-order hidden Markov
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models in space are fitted, before dependence in time is introduced. These models
are the building blocks for developing the main model, where we use dependence
in time and space, and use the information at earlier times when calculating
probabilities for current events.

There are several ways to approach the analysis of a DAS data set. One possibility
involves using all the available data to analyze specific situations that are already
known. This approach may include data points at a later time than the occurrence
of the event, and they can be used to learn how events look in the data set.
However, in this project, we take a different approach by using previous and
current observations to detect events as they happen. Therefore, the algorithms
must be efficient, to detect events rapidly. A final goal could be to create a
system where new data is loaded directly into the algorithm, which calculates
the probability of a data point being an event, such as cars or animals crossing
or trees falling on the railway tracks.

There have been some previous studies on event detection using DAS data, but
with the utilization of machine learning techniques (Shiloh et al. 2019). According
to Shiloh et al. (2019), developing efficient algorithms for detecting and classify-
ing events in the areas around fiber optic cables is extremely important. They
argue that DAS systems are attractive for this purpose due to their high density
of sensors and rapid data update rate over tens of kilometres. As more DAS sys-
tems are deployed continuously, detection algorithms with DAS data must keep
pace with the evolution. Shiloh et al. (2019) propose a method using generative
adversarial networks (GAN) for detecting and classifying events. They conclude
with a proof that the concept of using deep learning methodologies is possible
for these purposes.

This project is an extension of Urheim (2022) from the course TMA4500 - In-
dustrial Mathematics, Specialization Project. Urheim (2022) analyze the auto-
correlation functions at lag one for small time sets, and make different models,
including a Bayesian model where they assume the points to be independent of
each other. However, this approach is a simplification, since events such as trains
moving or cars crossing the railway tracks occur over multiple points in time and
space. The exploratory analysis and the Bayesian model in Urheim (2022) are
important foundations for this project, as they accomplish a lot of important
time-consuming results.

This thesis is structured as follows. In Section 2 we explain the physical theory
behind the DAS system and the preprocessing steps necessary to analyze the
data. Section 3 presents the Trondheim data and the transformations we apply
before doing the analysis. Further, in Section 4 we go through the theory behind
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the statistical methods we use in this project, before we present four different
models that we apply to the Trondheim data in Section 5. The algorithms that
follow the four models are described in Section 6. After this, in Section 7, we
present the results from applying the four models to the Trondheim data, focus-
ing on the main model. In addition, we discuss the results and the affection of
hyperparameters to the results. Finally, we conclude the project and give ex-
amples of how this analysis and the Trondheim data can be investigated further
in Section 8.

2 The DAS system

In this section, we present the physical theory of how the DAS system works.
Additionally, we explain the necessary preprocessing steps, to analyze the data.
CGF applied the theory presented in this section to the data set before we received
it.

2.1 Physical theory

In the DAS system, laser beams are sent through the fibers, with some of the light
reflecting due to Rayleigh backscattering (Taweesintananon et al. 2021) because of
strain in the fibers. Strain in the fibers is a result of seismic activity. The system
constantly sends out laser beams at a high rate and measures the phase change
between the backscattered light at the previous sweep and the backscattered light
at the current sweep, at equally spaced positions along the fiber. In that way,
the DAS system can measure changes in the fibers over time, over large distances
almost simultaneously (Liu et al. 2017).

Figure 1 shows the three main parts of how a DAS system is typically constructed.
The system is described in SEAFOM (2018). The first part is the distributed
sensor, which is the sensor in the system. In this case, the distributed sensor is the
dark fiber in the cables running along the railway tracks. Attached to the sensor
is the second part, which is the interrogation unit (IU). The IU sends out light
and records the phase change between the light sent out and the backscattered
light, at every position. It also converts this phase change into fiber strain,
which is the physical unit in the Trondheim data. We denote the fiber strain
ϵ. The preprocessing steps of calculating the fiber strain from the phase change
are described in Section 2.2. The last main part of the system consists of three
smaller parts, with different tasks. The processor processes and stores the data in
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Figure 1: These are the three parts that constitute the DAS system. The illus-
tration is taken from Urheim (2022).

the data archive, and the user interface has an interface where a user can interact
with the system.

Haukanes (2021) describes in detail how the IU handles the backscattered light
before it is preprocessed. The description includes calculations that use paramet-
ers specified in the DAS setup, called signal parameters. The IU sends out light
with a propagation delay between spatial points of ∆τ seconds, corresponding to
a spatial sampling interval of

dx =
c

2 · refractiveIndex · fiberOverLength
∆τ, (1)

where c ≃ 3, 0 · 108m/s is the speed of light in vacuum, and refractiveIndex
and fiberOverLength contain some information about the properties of the fiber.
The light beams are sent out every dt seconds. The backscattered light is used
to calculate the phase change between the current phase and the phase of the
backscattered light of the previous light beam, dt seconds earlier, for each spatial
sample separated by dx meters. The phase change at index i, located at i · dx is
denoted Φ̇i, which has unit [rad/s]. Since the amount of data rapidly becomes
large, the IU saves data at every fourth spatial sample, and these are referred
to as channels. Figure 2 shows the spatial and temporal sampling points, and
explains some of the signal parameters mentioned in this section.

Further, a spatial moving average is applied to the phase change over nAvgTau
samples, which corresponds to nAvgTau · dx in meters. The resulting averaged
phase change centered in i · dx is denoted Φ̇avg(i). The reason for applying a

spatial moving average to Φ̇i is to avoid an effect which is called Rayleigh fading,
further described in Sklar (1997).

Finally, the IU calculates the differential phase

ϕ̇i = Φ̇avg(i+nDiffTau) − Φ̇avg(i), (2)

4



Figure 2: The signal parameters and an explanation of the data collection. The
x-axis run along the fiber, and there are N samples in space. The IU collects
data at each channel (marked with red dots) which is every fourth dx, and every
index in time, separated by dt, with a total of T points. In this system, the gauge
length is nDiffTau · dx, where nDiffTau = nAvgTau = 8. Each series of red dots
constitutes the time series at the specific channels. The illustration is inspired
by a corresponding illustration in SEAFOM (2018).
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between two averaged phase changes separated by nDiffTau spatial samples.
Here, nDiffTau is a specified constant that describes the number of spatial samples
we differentiate over. The reason for taking the difference between two points
is that the phase in one point alone is unsuited for seismic analysis (Dean et
al. 2016). The physical distance between the two spatial samples, separated by
nDiffTau, is called the gauge length (GL), and this is an important parameter for
a DAS experiment (Dean et al. 2016). Too high gauge length leads to poor res-
olution of the signals, while too low gauge length results in a bad signal-to-noise
ratio. The formula for the gauge length used in this experiment is

GL =
c ·∆τ

2 · refractiveIndex
· nDiffTau. (3)

The differential phases ϕ̇i at each position i are the values stored in the data set
before the preprocessing steps described in Section 2.2, are applied.

2.2 Preprocessing

The preprocessing steps convert the differential phase ϕ̇i at spatial position i into
fiber strain ϵi, which is the physical quantity we want to analyze. The procedure
for this conversion is described by Haukanes (2021). In most cases, there are
three necessary steps for converting the differential phase into fiber strain.

The first step is to scale the differential phase, to get the unit [rad/m/s]. We call
this experiment-specific scaling factor dataScale. After the scaling, the phase
is wrapped in a range between [−spatialUnwrRange/2, spatialUnwrRange/2).
Therefore, the next step is to unwrap the phases which go more than one time
around the unit circle, see (Li et al. 2018; Padilla et al. 2023) for a detailed
explanation. Finally, the data is integrated over time to get the unit [rad/m].
The resulting quantity is the phase change over one gauge length centered in i,
denoted ϕi. After this, we want to transform the radians into a physical measure.

Haukanes (2021) and Taweesintananon et al. (2021) describe that the resulting
phase change over one gauge length in units [rad/m] has a linear relationship with
the strain in the fiber ϵ. The unit for the strain is [ε], which is the standardized
measurement for DAS performance parameters (SEAFOM 2018). The linear
relation between the phase change ϕi and the fiber strain ϵi is

ϵi =
ϕi

sensitivity
, (4)
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(a) Map of the area from Google Maps
(2023). Marienborg station is pinned
by the black and white symbol between
Trondheim and Sluppen.

(b) Map of the railway system from
Bane NOR (2023). Støren is located
at the large blue pin on the bottom of
the map.

Figure 3: Map of the area (a) and the railway system (b) between Marienborg
station and Støren. The railway tracks run along the road E6 in this area.

where the constant sensitivity depends on some properties of the fiber and the
wavelength of the laser beams.

3 The Trondheim data

The following section presents the Trondheim data, and we go through the trans-
formations we apply to obtain more structure in the data. The Trondheim data
was collected on September 1st, 2021, by CGF using a DAS device on a dark
fiber running along railway tracks from Marienborg station to Støren. A map of
this geographical area, together with the railway system are displayed in Figure
3.
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Constant Value
dt 5 · 10−4s
∆τ 10−8s
refractiveIndex 1.47
fiberOverLength 1
nAvgTau 8
nDiffTau 8
DataScale 1.43 · 10−6s2/m
spatialUnwrRange 6152.14
sensitivity 9362208.90 rad/m/ε

Table 1: Signal parameters in the experiment where the Trondheim data is col-
lected. Some of them do not have units.

3.1 The data set

Table 1 shows the values for the signal parameters in (1) and (3), in addition to
dt, spatialUnwrRange, dataScale and sensitivity for this experiment. Thus, the
spatial sampling interval in (1) becomes

dx =
3 · 108

2 · 1.47 · 1
· 10−8 ≃ 1.02m. (5)

We can see from (1) and (3), with fiberOverLength = 1, that GL = dx · nDiffTau.
Thus, the gauge length in (3) becomes

GL =
3 · 108 · 10−8

2 · 1.47
· 8 ≃ 8.17m. (6)

The Trondheim data is stored in files that each span ten seconds in the time
direction and cover a distance of approximately 51km along the railway tracks
in the spatial direction. The DAS device records data every dt = 0.0005 second,
resulting in 20,000 data points in the time direction per file. As mentioned above,
the spatial sampling interval dx is equal to 1.02m. In the spatial direction, data
is collected every fourth spatial sample, which is every 4 · 1.02m = 4.08m. These
spatial sample locations where data is collected are referred to as channels. With
a data range over 51km, there are a total of 12500 channels with time series.
As a result, each file contains 20, 000 × 12, 500 data points, and we have access
to 61 files covering the time interval between 13:30:03 and 13:40:13. Due to
the considerable amount of data, we limit the analysis to data points recorded
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Figure 4: The area around Selsbakk station from Google Maps (2022). The
railway tracks are the thin grey lines with evenly spaced marks.

between 13:34:53 and 13:36:53, with one exception in the data exploration in
Section 3.2.

The most essential location in the Trondheim data is Selsbakk station, located
approximately 4000m along the railway tracks. The area is displayed in Figure
4, consisting of the station, and a bridge over a road. Here, personnel from CGF
have noted the times of cars crossing under the railway tracks, in addition to
experimenting with personnel jumping up and down on the station. With that
as help, we can learn what these types of events look like in the data set and
understand how we can classify data points as events.

Figure 5 shows the fiber strain between 3000 and 5500 meters along the railway
tracks and between 13:34:53 and 13:36:53. The highest and the lowest strain
values in absolute value are truncated to display some of the events better. In
the heatmap, we can see large vertical lines in red and blue. At around 4000m,
where personnel from CGF have taken notes, these large vertical lines do not
relate to anything they have reported. This indicates that the values in the data
set differ a lot, and most of these signals are not interesting for our analysis, as
they are not related to any events. At approximately 4000 meters, we can also see
small diagonal lines and, if examined closely, small horizontal lines for the first
20 seconds. In addition, even more indistinct horizontal lines can be observed at
approximately 50 seconds after 13:34:54 at Selsbakk station. These observations
match the experiments and notes by the personnel from CGF on people jumping
and cars crossing.
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Figure 5: Fiber strain ϵ between 3000 and 5500 meters, and for two minutes
after 13:34:53, displayed as a heatmap. The values of ϵ are truncated between
[−90 · 10−9ε, −5 · 10−9ε] and [5 · 10−9ε, 90 · 10−9ε]. We have included every
hundredth time point, as they are sufficient for showing the structures in the
data set.
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As the recording of data has a high sensitivity (Taweesintananon et al. 2021), the
Trondheim data contains a considerable amount of noise (Isken et al. 2022), which
is evident from Figure 5. Therefore, a standard procedure is to apply filtering
to the data set (Ma et al. 2022; Taweesintananon et al. 2021), and remove high
and low frequencies, since much of the noise is assumed to exist due to these
frequencies. Initially, we attempted to filter out frequencies lower than 5 Hz and
higher than 90 Hz by using a Butterworth filter (Butterworth 1930). However,
this removed many interesting signals in addition to the noise. A lot of the
observed unwanted noise are removed by the data transformation described in
Section 3.2 instead, which we consider sufficient.

3.2 Data transformation

Now, we discuss the transformations we apply to the Trondheim data. They
follow the same procedure conducted in Urheim (2022). They aim to remove the
unwanted signals and noise described in Section 3.1 from the Trondheim data, and
to obtain clear structures in the data. In the following, we presume that the reader
has some prior knowledge about time series, especially the mean, autocovariance
and autocorrelation functions, stationarity, and how we can transform a time
series from non-stationary to stationary by applying differences. We refer to
Shumway and Stoffer (2017) for the complete background theory. We perform
the transformations by applying theory from the field of time series, since the
Trondheim data contains time series at each spatial sampling location.

We denote the time series in the Trondheim data {ϵt; t = 1, 2, . . . , T}, where
ϵt is the strain in the fiber, and t is the time index. Figure 6 shows four time
series {ϵt; t = 1, 2, . . . , T} from different channels in the Trondheim data. We
see that they are not stationary as their means are not constant. Stationarity
is important because it indicates that the process behaves with some regularity
over time, which we desire when doing analysis. In this study, we want to detect
events that affect the fiber strain ϵ in the Trondheim data, and therefore, having
regularity in the data can make it easier to sort out the real events from noise.

Transforming a non-stationary time series into a stationary one can be achieved
using differences. Thus, we want to apply differences to {ϵt; t = 1, 2, . . . , T} at
every channel to see if we get stationary time series. Differences of order k are
denoted

∆ϵt = ∆(1)ϵt = ϵt − ϵt−1, (7)

∆(k)ϵt = ∆(k−1)ϵt −∆(k−1)ϵt−1. (8)
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Figure 6: Four time series with fiber strain {ϵt, t = 1, 2, . . . , T} at four different
locations for ten minutes after 13:30:03. Note the different vertical scale in the
four plots.
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Figure 7 shows what happens to the time series in Figure 6, after applying first-
order differences from (7). At several positions and times, we observe spikes in
the differenced time series, and for the series at 4052.5m, the events reported by
CGF match the spikes. We can see that the time series appear to be stationary
everywhere there are no such spikes. By inspecting Figure 7, we observe that
the mean seems to be constant and approximately equal to 0 at every point in
time, which is expected since we look at a differenced series. In addition, we see
that the autocovariance function only seems to depend on two time points t and
t + h through the difference h at the times where there are no spikes, because
the time series behave similarly during periods of length h. Since we make these
observations at different locations, we assume that the first-order differenced time
series {∆ϵt; t = 1, 2, . . . , T} in the Trondheim data are stationary wherever no
events take place. This implies regularity over time. Everywhere there are events,
we make no assumptions about the time series.

Figure 8 displays first-order differenced time series for the fiber strain between
3000 and 5500 meters in a heatmap. Some of the structures from Figure 5, like the
small horizontal lines at 4000 meters are noticeable. In addition, there seem to be
fewer dominant signals overshadowing other signals than we observed in Figure
5. This observation matches the expectation from the first-order differenced time
series in Figure 7. In addition we see a large vertical line at 5100 meters. However,
several reported signals from CGF at Selsbakk station are still hard to detect.

3.2.1 Autocorrelation at lag one

We have obtained stationary time series where there are no events from first-
order differences at every channel. Now, we desire to have some quantity that
catches the structures in the data which we can analyze. The differenced series
include more time points than we consider necessary, and processing them is hard
computationally. By simply excluding many of them, we can remove interesting
signals in the data set. Hence, we want a quantity summarizing the information
in smaller time sets. Therefore, we divide the series into small time sets. We
believe that an event is happening over some time, and therefore we decide that
the small time sets contain a quarter of a second of data. Since the time difference
between two consecutive samples is dt = 0.0005s, each time set contains 500
points. The mean of a time set for the differenced series is not interesting to
investigate because when we sum over differenced data points, every point cancels
out except for the first and the final. We tried the standard deviations of each time
set, observing some structures, but the signals are weak. We refer to Appendix
A for a heatmap of the standard deviations of the time sets. Another potential
measure that summarizes the information in the time sets is the autocorrelation
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Figure 7: Four time series with first-order differenced fiber strain {∆ϵt, t =
1, 2, . . . , T} at four different locations for ten minutes after 13:30:03. Note the
different vertical scale in the four plots.
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Figure 8: First-order differenced fiber strain ∆ϵt between 3000 and 5500 meters,
and for two minutes after 13:34:53, displayed as a heatmap.
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function (ACF) at different lags h, for each time set. The ACF at lag h describes
how ϵt+h can be predicted linearly from ϵt, and it is bounded between −1 and
1. High or low values for the ACF mean high positive or negative correlation,
respectively, between ϵt and ϵt+h. Since there is one ACF value for each time
set, the number of temporal points is reduced to 40 per ten seconds, which is 480
points in time for two minutes. We believe this is sufficient for obtaining a grid
of points that is not too coarse and is suitable for event detection.

Figure 9 shows the ACF values at the first 15 lags for four different time sets at
the same position as the first plots in Figures 6 and 7, which is at Selsbakk station.
Personnel from CGF have jumped up and down at Selsbakk station in the time
interval we have used in the second plot in Figure 9. In this second plot, we can
see what happens to the structure of the ACF during a jump, and it deviates from
the other, showing high correlation between points several lags apart. The three
other plots show times when personnel from CGF have not reported anything.
Figure 10 shows the autocorrelations at h = 1, 2, 3 at Selsbakk station. We only
include h = 1, 2, 3 as we assume that the time points closest to each other are
the most related, since we have no previous knowledge about seasonal patterns
in the time series. For h = 1, the ACF fluctuates around approximately −0.5
where nothing is assumed to happen, indicating that the points closest to each
other have a slight negative correlation. For h = 2 and h = 3, the ACF fluctuates
around 0, suggesting a minimal correlation between time points more than one
step away from each other, where nothing is happening.

Figure 10 indicates that the ACF values at different lags give the same informa-
tion from the Trondheim data, since the spike patterns are similar for all three.
ACF values at lag one for the same area as in Figures 5 and 8 are displayed
as a heatmap in Figure 11. We refer to Appendix B for heatmaps of ACF at
lag two and three for the same area, confirming the suspicion that they give the
same information. Therefore, we continue with the lag one values, as Figure 10
shows that the spikes are more distinct and easier to recognize than for the other
lag values. We easily notice the events in the heatmap in Figure 11, and they
propagate over multiple points in space and time. At Selsbakk station at approx-
imately 4000 meters, we can see the horizontal lines which are jumps performed
by the personnel from CGF. In addition, we see the diagonal patterns at Selsbakk
station, which are cars driving under the railway tracks. Furthermore, there is
one large vertical line at 5100 meters, which might come from a construction
site, or another source that can create signals constant in time. We also notice
some other sources that create periodic signals in time at around 3150 and 4550
meters. Finally, we notice smaller signals in Figure 11, which might be small
events or noise due to small movements in the ground. It is also easy to notice
that a lot of the noise in Figure 5 have been significantly reduced with the ACF
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Figure 9: ACF at lag 1, . . . , 15 for four different time sets at Selsbakk station.

17



Figure 10: ACF at lag one, two and three for the time sets in two minutes at
Selsbakk station.
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Figure 11: Heatmap of the autocorrelations at lag one between 3000 and 5500
meters, and between 13:34:53 and 13:36:53.

values at lag one, which is one of the things we wanted to achieve with the data
transformation.

As we mentioned above, the ACF measures how well ϵt+h can be predicted based
only on the value of ϵt through a linear relationship ϵt+h = aϵt + b. If ϵt+h can
be predicted perfectly through this linear relationship, then the ACF at lag h is
positive or negative one, depending on the sign of a. The ACF values are, by
definition, bounded between −1 and 1 due to Cauchy-Schwarz inequality. For
the modelling in Section 5, we scale and shift the ACF-values at lag one to be in
the interval [0, 1], because we want to use a probability distribution that takes
values in [0, 1]. These values are denoted yi for spatial index i. Each yi has R
points in time, one for each time set, where each set contains information from
500 data points in time. We denote the collection of all yi in spatial direction
y = {y1, . . . , yi, . . . , yN}. Now that we have a quantity that reduces the size of
the data set and seems to preserve most of the relevant information in the original
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data set, in addition to removing a lot of noise and unwanted signals, it is easier
to analyze the information in the data set. Thus, yi is used for modelling the
DAS data set throughout the project.

4 Statistical theory

Here, we present some statistical theory we use when modelling the transformed
data from Section 3.2. First, we present the Bayesian approach to statistics,
which is the framework for the models we make in this project. Next, we explain
the theory of how we estimate the parameters in this project using empirical
Bayes estimators. Then, we show the general hidden Markov model structure,
which is the base for our models. Further, we describe the forward-backward
algorithm, which is a powerful tool for computing specific joint distributions over
large amounts of data. Finally, we discuss some theory on clique graphs in general
graphs.

4.1 Bayesian statistics

In this section, we describe the Bayesian approach to statistics, which is the
foundation for the methods in this project. A detailed introduction to Bayesian
statistics can be found in Casella and Berger (2002).

The fundamental difference between frequentist and Bayesian statistics is how a
parameter θ, describing the nature of the data, is interpreted. In the frequent-
ist approach, θ is believed to be a fixed quantity, which is unknown. Then, a
sample y = {y1, . . . , yN} of size N is drawn from a population described by θ, to
get knowledge of the unknown parameter. On the other hand, in the Bayesian
approach, the parameter θ is considered a stochastic variable that follows a prob-
ability distribution. This distribution is called the prior distribution, and is
independent of the data. Therefore it should be decided before the data is ob-
served. We denote the prior distribution p(θ). The goal is to update the prior
distribution with information gained from observing the data. This information
is contained in the likelihood of the data, p(y|θ). The updated distribution for
the parameter is called the posterior distribution, and it is computed using Bayes’
theorem (Joyce 2021),

p(θ|y) = p(y|θ) · p(θ)
p(y)

=
p(θ,y)

p(y)
, (9)
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where p(y) is the marginal distribution of y. This marginal distribution depends
on whether θ is continuous or discrete. In the continuous case, θ must be integ-
rated out of the joint distribution p(θ,y),

p(y) =

∫
p(y|θ) · p(θ)dθ, (10)

while for the discrete case, the integral is replaced with a sum,

p(y) =
∑
θ

p(y|θ) · p(θ). (11)

In the case where θ ∈ {0, 1}, Bayes’ theorem in (9) becomes

p(θ = 1|y) = p(y|θ = 1) · p(θ = 1)

p(y|θ = 1) · p(θ = 1) + p(y|θ = 0) · p(θ = 0)
, (12)

p(θ = 0|y) = p(y|θ = 0) · p(θ = 0)

p(y|θ = 1) · p(θ = 1) + p(y|θ = 0) · p(θ = 0)
. (13)

In this setting, we may use the Bernoulli distribution as prior for θ, which is on
the form

p(θ) = γθ · (1− γ)1−θ, (14)

where γ ∈ (0, 1) is an assumed known value. An example of a likelihood is when
each element in the sample follows a beta-distribution,

p(yi|θ = l) = Beta(yi;αl, βl) =
1

B(αl, βl)
yαl−1
i (1− yi)

βl−1, 0 ≤ yi ≤ 1, (15)

where l ∈ {0, 1}, αl, βl > 0 and B(αl, βl) is the beta function, see Chaudhry et
al. (1997). The Bernoulli distribution is a conjugate prior for the beta likelihood
(Diaconis and Ylvisaker 1979), and we use them for modelling in this project.
We give an example, using the Bernoulli prior distribution with γ = 0.1, and
a random beta likelihood. Figure 12 displays the random beta likelihood and
the resulting posterior distributions as functions of yi to see how p(θ|yi) changes
with yi, even though in reality it is a function of θ, for the model in (12) and
(13). This example has a scalar parameter θ, but we can generalize the concept
to situations where θ is a vector.
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Figure 12: An example of the Bayesian model in (12) and (13). The likelihood
consists of two beta distributions, and the prior is Bernoulli distributed with
p(θ = 1) = γ = 0.1.

4.2 Empirical Bayes methods

Empirical Bayes methods have several things in common with ordinary Bayesian
methods but are fundamentally different in one part. We present an example to
illustrate the difference. In Section 4.1, we assumed that the prior distribution
p(θ) was Bernoulli distributed from (14). Further, we can create a hierarchical
model by assuming that the parameter γ in (14) follows a beta distribution from
(15) with hyperparameters α and β, that is

γ ∼ Beta(γ;α, β). (16)

An ordinary Bayesian model determines the values for α and β before observing
the data, while the empirical Bayesian approach will not specify α and β before-
hand (Casella 1985). Instead, the hyperparameters are estimated from the data.
The hyperparameters α and β can be saved in a vector, which we call τ , and
τ can include hyperparameters of the likelihood of the data, p(yi|θ) and of the
prior distribution, p(θ).

The information about the hyperparameters is contained in the marginal likeli-
hood for the data, denoted L(τ |y), and it is defined as

L(τ |y) = p(y|τ). (17)
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We can maximize this function with respect to τ , and this procedure is called
hierarchical maximum likelihood (Farrell and Ludwig 2009). In this way, we can
obtain the maximum likelihood estimates of the hyperparameters in the model.

4.3 Hidden Markov models

In this section, we present some theory on hidden Markov models. For a more de-
tailed introduction to the theory, we refer to Rabiner (1989). A hidden Markov
model (HMM) is a statistical model used to describe a process with different
states, associated with probabilities of moving between the states. These prob-
abilities are called transition probabilities, and they are defined through a Markov
chain, see Pinsky and Karlin (2011). The states themselves can not be observed
directly, but are related to observations, thereby the name hidden Markov model.
We let Θ = {θ1:N} = {θ1, . . . , θN} denote the parameters, which are nodes that
can be in the different states, and we let y = {y1:N} = {y1, . . . , yN} denote the
observations related to Θ. For convenience, we let the set of states for θi include
two states. In a two-state, (k + 1)-th order HMM, the Markov property tells
that the probability of being in the current state, given all the predecessor states
are equal to the probability of being in the current state, given the k + 1 closest
predecessor states,

p(θi|θ1, . . . , θi−1) = p(θi|θi−k−1, . . . , θi−1), (18)

where 0 ≤ k < i − 1. Note that θi can be a vector in a second dimension,
θi = {θ1i , . . . θRi }. The transition probabilities following the Markov property in
(18) are the fundamental parts in the joint prior distribution ofΘ. For a (k+1)-th
order HMM, it is given by

p(Θ) = p(θ1:k+1) · p(θk+2|θ1:k+1) · p(θk+3|θ2:k+2) · . . . · p(θN |θN−k−1:N−1), (19)

where p(θ1:k+1) is the probability distribution of the initial states θ1:k+1 =
{θ1, . . . , θk+1}.

The transition probabilities can be expressed as an invariant transition matrix for
all i = 1, . . . , N , denoted P, with rows and columns specifying the probabilities
of transitioning between the states. The size of the transition matrix depends
on k and the size of the vectors θi. As mentioned, associated with each θi is an
observation yi, while the true state of θi is unknown. Each observation yi condi-
tioned on the associated θi is independent of the other states and observations,
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Figure 13: Figure describing the first-order HMM structure. It is inspired by
Rios-Munoz et al. (2020).

which means that the likelihood of the data can be factorized as

p(y|Θ) =

N∏
i=1

p(yi|θi). (20)

A first-order model is illustrated in Figure 13, and we can see that the HMM is
an undirected graph. The parameters θi and their associated observations yi are
the nodes, and the edges between them show the dependence. The indirectness
of the graph means that the edges are bidirectional between nodes (Heckmann
et al. 2015). We see that each observation is conditionally independent of every
other parameter and observation, given its corresponding parameter, as there are
no edges between yi and the other nodes, conditioned on θi.

The joint posterior distribution can be calculated using Bayes theorem in (9)
(Joyce 2021), and the law of total probability (Walpole et al. 2016),

p(Θ|y) = p(y|Θ) · p(Θ)

p(y)
,

=
p(y|Θ) · p(Θ)∑
Θ̃ p(y|Θ̃) · p(Θ̃)

.

(21)

Replacing p(Θ) and p(y|Θ) with their respective representations in (19) and (20),
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we get that

p(Θ|y) =
p(θ1:k+1) · . . . · p(θN |θN−k−1:N−1) ·

∏N
i=1 p(yi|θi)∑

Θ̃ p(θ̃1:k+1) · . . . · p(θ̃N |θ̃N−k−1:N−1) ·
∏N

i=1 p(yi|θ̃i)
. (22)

Ideally, we would want to obtain the joint posterior distribution in (22), before
marginalizing it over the subset of parameters obtained by excluding θi, denoted
θ−i, to get p(θi|y). This is the probability of the state of θi, given all yis. However,
this requires that we sum over θ−i in the posterior distribution, which is N − 1
variables. With these variables being binary, we get a sum over 2N−1 terms for
each time series, which is too computationally intensive whenN is large. We must
also compute the sum over Θ̃ in (22), which is a sum over 2N terms. Therefore,
we need a more efficient method for finding the marginal posterior distribution of
θi|y. A method for doing this is called the forward-backward algorithm, described
in Section 4.4.

4.4 Forward-backward algorithm

We introduce a general form of the forward-backward algorithm for (k + 1)-th
order HMMs, inspired by an algorithm for the first-order HMM from Devijver
(1985) and by an algorithm for the second-order HMM from Sung-Hyun et al.
(2018). In addition, we discuss how this algorithm can be used to estimate hy-
perparameters in an HMM, with empirical Bayes estimators, described in Section
4.2. In the end, in Sections 4.4.1 and 4.4.2, we also give a proof of this general
algorithm. We base the theory in this section on the HMM described in Section
4.3, and continue with the same notation.

An HMM is shown in Figure 13, where we consider the parameters θi and the
observations yi to be vectors. Assume that we want to compute the marginal
posterior distributions of θi|y. In principle, we can solve them by calculating the
joint posterior distribution in (22) before marginalizing over θ−i. However, as
discussed in Section 4.3, we need a more computationally efficient way of solving
them.

To efficiently compute the marginal posterior distributions p(θi|y), we first calcu-
late the posterior distributions p(θi−k:i|y), using the forward-backward algorithm
(Devijver 1985). After that, we can marginalize over θi−k:i−1 to obtain p(θi|y),
which is not hard to do computationally. The idea behind the forward-backward
algorithm is to make a decomposition of the joint distribution p(θi−k:i,y) and
calculate each part of the decomposition recursively before multiplying them to-
gether, as this is much less computationally demanding than calculating the joint
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posterior in (22) directly and marginalizing over every θ−i. The decomposition
is on the form

p(θi−k:i,y) = p(θi−k:i, y1:i) · p(yi+1:N |θi−k:i, y1:i), (23)

where y1:i can be removed in the second part due to the aforementioned condi-
tional independence of yi given θi. Thus, we get

p(θi−k:i,y) = p(θi−k:i, y1:i) · p(yi+1:N |θi−k:i). (24)

In other words, the decomposition is made of two parts, where the first is a
joint distribution of θi−k:i and every observation up to i, and the second part
is a conditional distribution of the rest of the observations, given θi−k:i. We
call p(θi−k:i, y1:i) the forward probabilities and p(yi+1:N |θi−k:i) the backward
probabilities. Multiplying them together yields p(θi−k:i,y), and the posterior
distribution of θi−k:i given y can now be computed from (24) through Bayes’
theorem,

p(θi−k:i|y) =
p(θi−k:i,y)∑

θ̃i−k:i
p(θ̃i−k:i,y)

, (25)

where
∑

θ̃i−k:i
p(θ̃i−k:i,y) requires a sum over relatively few terms. The recursive

formulas for computing the forward and the backward probabilities, together with
a proof, are given in Sections 4.4.1 and 4.4.2, respectively.

Once we have obtained the posterior distributions in (25), we can sum out the
other parameters, such that we obtain a marginal posterior distribution for each
θi, given all the observations y,

p(θi|y) =
∑

θi−k:i−1

p(θi−k:i|y). (26)

Some difficulties come with computing the forward and backward probabilities.
We see that the forward probabilities, p(θi−k:i, y1:i) and the backward probabil-
ities, p(yi+1:N |θi−k:i) are joint distributions over multiple variables, and can be
hard to obtain computationally due to rounding errors. There are several meth-
ods to avoid this problem. Rabiner (1989) suggests a method where the forward
and backward probabilities are normalized in every recursive step. Hence, the
only sizes we deal with are marginal probabilities, bounded in [0, 1]. However,
this method includes a lot of extra calculations, and is hard to derive analyt-
ically for higher-order HMMs. Therefore we avoid the problem by computing
everything on the log scale.
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As discussed in Section 4.2, we also want to estimate the hyperparameters in a
model with an empirical Bayes estimator. For an HMM, the hyperparameters
are the parameters in the likelihood of the data, and the transition probabilities.
We can achieve this by using information obtained from the forward-backward
algorithm. For this purpose, we need the last forward probabilities from the
recursive algorithm, described in Sections 4.4.1 and 4.4.2. We can see from (24)
that, with N replacing i,

p(θi−k:i, y1:i) = p(θN−k:N ,y). (27)

Since the model depends on the hyperparameters, we can marginalize over θN−k:N

to obtain p(y), which is the marginal likelihood for the data L(τ |y) from (17),
where τ is a vector containing the hyperparameters. L(τ |y) can be computed,
given values for the hyperparameters in τ . In mathematical notation, the mar-
ginal likelihood for y is

L(τ |y) = p(y) =
∑

θN−k:N

p(θN−k:N ,y). (28)

As we stated at the beginning of this section, we have provided a general form of
the forward-backward algorithm. In Section 5, we present four different models
from the general framework from Section 4.3. Each model has its specific set of
hyperparameters τ , specified in Section 5. However, there are some limitations to
the first three of the models, and they are presented as a motivation for the main
model described in Section 5.4. Further, in Section 6, we provide the algorithms
for the models, which are special cases from the general algorithm described in
this section.

4.4.1 The general forward recursion formula

The proof in this section holds for calculating the forward probabilities in a
general HMM. We denote the forward probabilities fi−k:i = p(θi−k:i, y1:i), and
they are calculated recursively by the formula

fi−k:i = p(yi|θi) ·
∑

θi−k−1

p(θi|θi−k−1:i−1) · fi−k−1:i−1, (29)

starting with

f1:k+1 = p(y1:k+1|θ1:k+1) · p(θ1:k+1) = p(θ1:k+1, y1:k+1), (30)
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using the likelihood of the data and the transition probabilities. We prove this
formula by induction. For any index i ∈ {k + 2, . . . , N},

fi−k−1:i−1 = p(θi−k−1:i−1, y1:i−1).

Given fi−k−1:i−1 and using the multiplication rule of probability, conditional
independence of yi given θi, and the law of total probability, we have that

fi−k:i = p(yi|θi) ·
∑

θi−k−1

p(θi|θi−k−1:i−1) · fi−k−1:i−1,

= p(yi|θi) ·
∑

θi−k−1

p(θi|θi−k−1:i−1) · p(θi−k−1:i−1, y1:i−1),

= p(yi|θi) ·
∑

θi−k−1

p(θi−k−1:i, y1:i−1),

= p(yi|θi) · p(θi−k:i, y1:i−1),

= p(θi−k:i, y1:i).

Hence, this recursive formula holds for i = k + 2, . . . , N .

4.4.2 The general backward recursion formula

The proof in this section holds for calculating the backward probabilities in a
general HMM. In a similar way as for the forward probabilities, the backward
probabilities are calculated recursively. We denote the backward probabilities
bi−k:i = p(yi+1:N |θi−k:i), and they are calculated by the formula

bi−k:i =
∑
θi+1

p(yi+1|θi+1) · p(θi+1|θi−k:i) · bi−k+1:i+1, (31)

starting with
bN−k:N = 1, (32)

using the likelihood of the data and the transition probabilities. We also prove
this formula by induction. For any index i ∈ {N, . . . , k + 2},

bi−k:i = p(yi+1:N |θi−k:i). (33)
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Figure 14: Figure describing the graph for an HMM with cliques marked in
colored rectangles between pairs of adjacent nodes. Each node is a vector con-
taining two elements, meaning each clique contains four elements.

Given bi−k:i, and using the multiplication rule of probability, conditional inde-
pendence of yi given θi, and the law of total probability, we have that

bi−k−1:i−1 =
∑
θi

p(yi|θi) · p(θi|θi−k−1:i−1) · bi−k:i,

=
∑
θi

p(yi|θi) · p(θi|θi−k−1:i−1) · p(yi+1:N |θi−k:i),

=
∑
θi

p(θi, yi:N |θi−k−1:i−1),

= p(yi:N |θi−k−1:i−1).

Hence, this recursive formula holds for i = N, . . . , k + 2.

4.5 Clique graphs

In Section 4.3, we discussed the system in Figure 13, which is an undirected
graph, where the θi’s and yi’s are the nodes, and the lines represent the edges
between them. We continue with the notation introduced in Sections 4.3 and
4.4. Now we consider the system in Figure 14, which provides an example of a
graph for the first-order HMM from Figure 13, however without the observations
y. A clique c is a subset of the nodes, with an edge between every pair of nodes
(Wang and Guo 2008). Figure 14 displays three cliques for a first-order HMM as
rectangles in different colors. In Figure 14, we consider each node θi as a vector
containing two elements. Consequently, we have defined the cliques to be each
2× 2 square between consecutive nodes and elements within the nodes, which in
this example is {θi−1:i}. As we can see, two adjacent cliques share a common
node. The common nodes are called the separators, defined as the intersection
between two cliques.

The cliques and the separators in Figure 14 can be represented as a clique graph,
which is a convenient way of representing the graph to do inference (Barber
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Figure 15: Figure describing a clique graph, where the squares represent the
cliques, and the circles represent the separators. The edges between them show
the dependence. The figure is inspired by Barber (2012).

2012). We simply let {i−1, i} denote a clique, and we let {i} denote a separator,
for index i. A clique graph can be displayed graphically, where the cliques are
represented as squares, and the separators are represented as circles. A clique
graph representation of an HMM with cliques defined between two consecutive
nodes is displayed in Figure 15.

Doing inference in a clique graph requires the joint distribution over the graph.
For the 2× 2 cliques in our example, the joint distribution of interest is p(Θ) =
p(θ1:N ). Barber (2012) prove that this distribution can be expressed as

p(Θ) =
p(θ1:2) · . . . · p(θN−1:N )

p(θ2) · . . . · p(θN−1)
,

=

∏N
i=2 p(θi−1:i)∏N−1
i=2 p(θi)

,

(34)

where the nominator consists of the probability distributions of the cliques, while
the denominator consists of the distributions of the separators. We prove (34)
using conditional probability. To do this, we consider the joint prior distribution
of Θ defined through the first-order Markov chain in (19) with k = 0. Using (19)
with the distribution for the first clique defined as p(θ1:2), this has the form

p(Θ) = p(θ1:2) ·
N∏
i=2

p(θi+1|θi). (35)

For the first two consecutive cliques and the separator between them, we have
that

p(θ1:2) · p(θ3|θ2) = p(θ1:2) ·
p(θ2:3)

p(θ2)
, (36)

and further

p(θ1:2) · p(θ3|θ2) · p(θ4|θ3) = p(θ1:2) ·
p(θ2:3) · p(θ3:4)
p(θ2) · p(θ3)

. (37)
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Following (35), we see that the pattern in (37) continues for i > 3, due to condi-
tional probability, which means that (35) can be written on the form in (34).

Thus, when we define the cliques, we simultaneously define the joint prior distri-
bution for Θ. The representation for the prior distribution in (34) is useful when
we want to model dependence between elements in cliques.

5 Models applied to the Trondheim data

In this section, we introduce four models that we apply to the Trondheim data,
and they are all special cases of the general HMM described in Section 4.3. For
each model, we define a Markov chain in the spatial direction, and in the last two,
we include temporal dependence. We let the superscript r denote the temporal
index, such that θ1:R = {θr}Rr=1. Thus, the binary parameter θri describes the
presence or absence of an event in spatial index i and time index r, and the
parameters are correlated in a (k + 1)-th order Markov chain in space. Since
θri is binary, we have a two-state Markov chain. This Markov chain defines
the prior distribution for Θr = {θr1, . . . , θrN}. In addition, the observations yri
depend on their respective parameters and are conditionally independent of the
other observations and parameters, as illustrated in Figure 13. We use the prior
distribution in (19), specified by the order k + 1 of the Markov chain, and the
likelihood function in (20), to calculate the posterior distribution of θi given the
observed data y. Notation introduced in Section 4 still applies to this section.

The first three models, presented in Sections 5.1, 5.2 and 5.3 respectively, are
simpler than the fourth model in Section 5.4, and they are stepping stones to-
wards the fourth model. However, comparing how the models perform on the
Trondheim data is interesting. In the following, we explain the Markov chains
and the resulting prior distributions, the likelihood of the data, and how the hy-
perparameters are estimated, while Section 6 presents the algorithms following
the model specifications.

5.1 First-order HMM in space

In the first model, we consider a first-order HMM in space, which means that
k = 0 in (19), and the parameter θi consists of one point in time, denoted θri .
We assume that the parameters are independent in time direction. The current
state of θri depends only on the closest neighbors, θri−1 and θri+1. Therefore, the
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Figure 16: A system with N points in spatial direction. The conditional prob-
abilities in (38) are described through the blue and the red dots, where the blue
dot represents θri , which is conditioned on the red dot that represents θri−1.

prior distribution for Θr becomes

p(Θr) = p(θr1) · p(θr2|θr1) · . . . · p(θrN |θrN−1), (38)

where p(θri |θri−1) represents transition probabilities between states in a Markov
chain. These are the probabilities of transitioning from one state to another.
Figure 16 shows the dependence in the Markov chain, where the blue dot is
conditioned on the red dot. The transition probabilities p(θri |θri−1) are invariant
in space and can be represented by a 2 × 2 transition matrix, which is on the
form

P1 =

[
η0 1− η0

1− ζ0 ζ0

]
,

where η0 = p(θri = 0|θri−1 = 0) and ζ0 = p(θri = 1|θri−1 = 1). The transition prob-
abilities in the first row represent the probabilities of transitioning from θri−1 = 0,
while the transition probabilities in the second row represent the probabilities of
transitioning from θri−1 = 1. To ensure that the Markov chain is stationary, we
define the prior probability for the first parameter in space, p(θr1), as the limit of
the transition probabilities (Pinsky and Karlin 2011). It is known from Pinsky
and Karlin (2011) that the limiting transition matrix of a two-state Markov chain
on this form is

lim
m→∞

Pm
1 =


1− ζ0

1− η0 + 1− ζ0

1− η0
1− η0 + 1− ζ0

1− ζ0
1− η0 + 1− ζ0

1− η0
1− η0 + 1− ζ0

 .

Hence, we get that

p(θr1 = 1) =
1− η0

1− η0 + 1− ζ0
,

p(θr1 = 0) =
1− ζ0

1− η0 + 1− ζ0
.
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In addition to the joint prior distribution for the parameters, we need the likeli-
hood of the data, which is on the form

p(yr|Θr) = p(yr1, . . . , y
r
N |θr1, . . . , θrN ) =

N∏
i=1

p(yri |θri ), (39)

due to the assumption of conditional independence. We assume that the likeli-
hood of the data points, p(yri |θri ) follows a beta distribution from (15), depending
on whether θri = 0 or θri = 1,

p(yri |θri = 0) = Beta(yri ;α0, β0), (40)

p(yri |θri = 1) = Beta(yri ;α1, β1). (41)

The reason for this assumption is that the beta distribution takes values between
0 and 1, which yri also does after scaling the ACF at lag one. In addition, the beta
distribution is flexible, and its parameters can be estimated to fit the data well.
Finally, we can calculate the posterior distribution p(θri |yr), using the forward-
backward algorithm from Section 4.4. The model-specific algorithm is described
in Section 6.1. This is performed independently for each time layer θri , 1 ≤ r ≤ R.

For the empirical Bayes parameter estimation for this model, the hyperparamet-
ers consist of the parameters in the likelihood function, (α0:1, β0:1), as well as η0
and ζ0 in the transition matrix P1. Therefore, we denote the set of hyperpara-
meters for this model

τ1 = (α0:1, β0:1, η0, ζ0). (42)

We follow the procedure in Section 4.4 to compute the marginal likelihood func-
tion in (17). The model-specific algorithm is described in Section 6.1. The mar-
ginal likelihood is then maximized with respect to τ1 using numerical methods
to obtain the maximum likelihood estimates for the hyperparameters in τ1.

5.2 Second-order HMM in space

A second-order HMM in space has k = 1 in (19), and the parameters consist
of only one point in time. The parameters θri depends on the two neighboring
parameters on each side, θri−2, θ

r
i−1, θ

r
i+1, θ

r
i+2, and we assume independence in

time. Hence, the joint prior distribution is

p(Θr) = p(θr1:2) · p(θr3|θr1:2) · . . . · p(θrN |θrN−2:N−1), (43)

33



Figure 17: A system with N points in spatial direction. The conditional prob-
abilities in (43) are described through the blue and the red dots, where the blue
dot represents θri , which is conditioned on the red dots that represent θri−2:i−1.

where p(θri |θri−2:i−1) are transition probabilities between θri−1 and θri , where the
transition depends on θri−2. We assume that these transition probabilities are
invariant in space. Figure 17 illustrates the dependence in the Markov chain,
where the blue dot is conditioned on the two red dots. From (43), we get that
the transition probabilities between θi−2:i−1 and θi−1:i can be represented by a
4× 4 transition matrix

P2 =


η1 0 1− η1 0
η2 0 1− η2 0
0 1− ζ1 0 ζ1
0 1− ζ2 0 ζ2

 ,

where

η1 = p(θri = 0|θri−2 = 0, θri−1 = 0),

η2 = p(θri = 0|θri−2 = 1, θri−1 = 0),

ζ1 = p(θri = 1|θri−2 = 0, θri−1 = 1),

ζ2 = p(θri = 1|θri−2 = 1, θri−1 = 1).

We want the Markov chain in (43) to be stationary, and therefore we compute
p(θr1:2) as the limit limm→∞ Pm

2 . We compute this limit by applying matrix
multiplication to P2 with itself until we have something that seems to have con-
verged.

As for the first-order HMM, the likelihood of the data has the same form as in
(39) since we are assuming conditional independence of the observations given
the parameters. We still assume that the likelihood follows the beta distributions
in (40) and (41).

We follow the forward-backward algorithm described in Section 6.2 to compute
the posterior distributions p(θri |yr) for each time layer independently. Compared
to the first-order HMM, we expect that this model gives smoother structures in
space as we model the correlation between more points. However, correlation in
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Figure 18: A system with N points in spatial direction and two layers in time
direction. The Markov chain is described through the blue and the red dots,
where the blue dots represent θr:r+1

i , conditioned on the red dots that represent
θr:r+1
i−1 .

time has not been considered yet, which is the goal of the models in Sections 5.3
and 5.4.

The hyperparameters for this second-order HMM are the parameters in the like-
lihood function, (α0:1, β0:1), as well as the elements in the transition matrix P2,
namely η1:2 and ζ1:2. We denote the set of hyperparameters

τ2 = (α0:1, β0:1, η1:2, ζ1:2). (44)

We follow the procedure from Section 6.2 for computing the marginal likelihood
function in (17). Then, the marginal likelihood function is maximized numer-
ically with respect to τ2, to obtain the maximum likelihood estimates for the
hyperparameters in τ2.

5.3 First-order HMM in space and dependence in time

To account for dependence in the time direction, we can define the prior through
the general Markov chain in (19) with k = 0 and with θi being a vector with
two elements in time, denoted θr:r+1

i . Thus, we get a first-order Markov chain
in space, over two layers in time simultaneously. Figure 18 illustrates how this
Markov chain looks on an N × 2 grid, where the blue dots are conditioned on
the red dots. We assume pairs of time layers are independent of the other time
layers. Hence, we can express the joint prior distribution as

p(Θr:r+1) = p(θr:r+1
1 ) · p(θr:r+1

2 |θr:r+1
1 ) · . . . · p(θr:r+1

N |θr:r+1
N−1 ), (45)

where p(θr:r+1
i |θr:r+1

i−1 ) represents transition probabilities from the two red dots
to the two blue dots in Figure 18. As for the first two models, the transition
probabilities are assumed invariant in space. Since there are four binary variables,
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this leads to 24 transition probabilities. Therefore, they can be stored in a 4× 4
transition matrix P3, where the rows must sum to one,

P3 =


η1 ζ1 γ1 1− η1 − ζ1 − γ1
η2 ζ2 γ2 1− η2 − ζ2 − γ2
η3 ζ3 γ3 1− η3 − ζ3 − γ3
η4 ζ4 γ4 1− η4 − ζ4 − γ4

 .

P3 is organized such that all the elements in one row are conditioned on the same
values for θr:r+1

i−1 , i.e.

ηj = p(θri = 0, θr+1
i = 0|θr:r+1

i−1 ),

ζj = p(θri = 1, θr+1
i = 0|θr:r+1

i−1 ),

γj = p(θri = 0, θr+1
i = 1|θr:r+1

i−1 ),

1− ηj − ζj − γj = p(θri = 1, θr+1
i = 1|θr:r+1

i−1 ),

for j = 1, . . . , 4. To keep the Markov chain stationary, we define the four initial
probabilities p(θr:r+1

1 ) from limm→∞ Pm
3 , and they are obtained similarly as in

the second model in Section 5.2. Similar to the two previous models, we assume
the likelihood of the data follows the form in (39) and the beta distributions in
(40) and (41).

By following the forward-backward algorithm in Section 6.3, we obtain the joint
posterior distribution p(θr+1

i |yr:r+1) for each pair of adjacent time layers inde-
pendently. This is the distribution of a single point conditioned on all the data
within two layers in time. We proceed with this for every two layers in time, ob-
taining posterior distributions of each point, given two time layers of observations.
Note that we can include more layers in time in the posterior distributions by
making models with more time points included in θi. We have not tried this, due
to the increased computational complexity. We expect that the model described
in this section shows smoother structures in time compared to the previous two
models.

The hyperparameters for this model are the parameters in the likelihood function,
(α0:1, β0:1), and the elements in the transition matrix P3, namely (η1:4, ζ1:4, γ1:4).
Thus, we denote the set of hyperparameters

τ3 = (α0:1, β0:1, η1:4, ζ1:4, γ1:4). (46)

We compute the marginal likelihood function in (17), using the algorithm de-
scribed in Section 6.3. Thus, we obtain the maximum likelihood estimates for
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the hyperparameters in τ3 by maximizing the marginal likelihood numerically
with respect to τ3.

The limitation of the first three models presented is that they do not include the
information from earlier time points when calculating the probabilities at later
time points. For this model, the dependence between points in time is considered
only between pairs of adjacent layers. To include the information from earlier
times, we need a different approach, motivating the main model in this project.

5.4 Main model

For the main model in this project, we want to incorporate information from
previous points in time when computing probabilities of events in the current time
layer. Ideally, we want to calculate p(θRi |y1:R), which is the posterior distribution
of an event at spatial point i in the last time layer R, given all the previous and
current observations. In principle, this can be obtained by computing the joint
posterior distribution p(Θ1:R|y1:R) using Bayes’ theorem, before marginalizing
over the set of every parameter except θRi , denoted θ1:R−i . However, this can not
be performed computationally, as we discussed in Section 4.3. Therefore, we
need a more clever way of solving p(θRi |y1:R). First, we present a way to do this
conceptually in Section 5.4.1, before explaining how the conceptual solution is
approximated in Section 5.4.2.

5.4.1 Concept of the model

In the previous three models, we have defined the prior distribution of Θ through
a Markov chain in space, where each θi in Θ = {θ1, . . . , θN} is either a scalar
or a vector with two elements adjacent in time. In addition, we have used the
assumption of conditional independence of yi|θi in (20) to compute the posterior
probabilities p(θi|y), using the forward-backward algorithm. This is performed
for each layer, or pair of layers, in time independently, without carrying on in-
formation at earlier time points.

For the main model, we still use the assumption of conditional independence
for the likelihood in (20), which allows us to perform the necessary calculations.
However, the joint prior distribution is defined a bit differently. Conceptually, we
assume Markov structure in time, and define conditional probabilities between
two layers, p(Θr+1|Θr). These are assumed to be invariant in time, so that we
can carry on the information from previous time steps. In addition, we can define
a joint prior distribution for the first layer in time, p(Θ1), to calculate the joint
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prior distribution for the first two layers in time, p(Θ1:2). Applying Bayes’ rule,
we get that

p(Θ1:2|y1) =
p(Θ1:2) · p(y1|Θ1:2)

p(y1)
=

p(Θ1:2) · p(y1|Θ1)

p(y1)
. (47)

In principle, we can marginalize this expression over Θ1 to obtain p(Θ2|y1). For
the next time step, we can use the conditional probabilities we have defined in
time, p(Θr+1|Θr), and the posterior distribution p(Θ2|y1). Thus, we get

p(Θ2:3|y1) = p(Θ2|y1) · p(Θ3|Θ2), (48)

because y1 is conditionally independent of Θ3 given Θ2. Now, we can use the
resulting distribution in (48) as a prior distribution for the next pair of layers in
time. Thus, the next Bayesian update becomes

p(Θ2:3|y1:2) =
p(Θ2:3|y1) · p(y2|Θ2)

p(y2|y1)
, (49)

before we marginalize over Θ2 to get the posterior distribution p(Θ3|y1:2). This
procedure continues for every time layer.

Note that we are not using the joint likelihood p(y1:2|Θ1:2) in (47) because then
the update in time would require that we condition on each yr twice, which we,
of course, should not do. However, since we want to use the information in the
current time step to model the posterior distribution, we can also use the joint
likelihood p(yr:r+1|Θr:r+1) in every time step, to obtain

p(Θr:r+1|y1:r+1) =
p(Θr:r+1|y1:r−1) · p(yr:r+1|Θr:r+1)

p(yr:r+1|y1:r−1)
, (50)

and we can marginalize to get p(θr+1
i |y1:r+1). This distribution can be used to

present the results in every time layer. Thus, for the final layer, we can obtain
p(θRi |y1:R), which is the probability of an event, given all the observations.

While this is the concept behind the model, we have a computational prob-
lem when marginalizing the distributions presented in this section. If we define
p(Θr+1|Θr) and p(Θ1) such that p(Θ1:2) has a Markov structure, (47) will also
have a Markov structure. However, when we marginalize to obtain p(Θ2|y1), we
break the Markov structure. To compute the posterior probabilities in a compu-
tationally feasible way, we want to use the forward-backward algorithm, which
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requires a Markov structure. Therefore, we replace p(Θ2|y1) with an approxim-
ation, denoted p̃(Θ2|y1), that has a Markov structure. Further, we compute

p̃(Θ2:3|y1) = p̃(Θ2|y1) · p(Θ3|Θ2), (51)

which is an equivalent step to (48), using p̃(Θ2|y1). The distribution in (51)
can be used in the forward-backward algorithm because it has a Markov struc-
ture. After using p̃(Θ2:3|y1) in the Bayesian update in (49), when we marginalize
over Θ2 in p̃(Θ2:3|y1:2), the Markov structure is broken again. Thus, we have
to replace p̃(Θ3|y1:2) with a new approximation, denoted ˜̃p(Θ3|y1:2), which has
a Markov structure. Repeating this procedure in time, we make new approx-
imations in every time step. To simplify the notation, after r approximations
we denote the resulting approximated distribution that has a Markov structure,
p∗(Θr|y1:r−1). Section 5.4.2 explains the details regarding these approximations.

5.4.2 Solution for the model

In this section, we first define the conditional probabilities in time, p(Θr+1|Θr).
Then, we discuss how we obtain the joint prior distribution for the first two layers
in time, p(Θ1:2). Further, we explain how p̃(Θ2|y1), which is an approximation
to the posterior distribution p(Θ2|y1), is defined. Then, we discuss how the
conditional probabilities in time, p(Θr+1|Θr), are used together with p̃(Θ2|y1),
to proceed in time. At last, we present the hyperparameters in this model.

We define conditional probabilities in time with a first-order Markov structure
and by the result in (34), this can be expressed as

p(Θr+1|Θr) =
p(θr+1

1:2 |Θr) · . . . · p(θr+1
N−1:N |Θr)

p(θr+1
2 |Θr) · . . . · p(θr+1

N−1|Θr)
. (52)

Additionally, we set the restriction

p(θr+1
i−1:i|Θ

r) = p(θr+1
i−1:i|θ

r
i−1:i), (53)

which gives the conditional probabilities in time displayed in Figure 19, where
the blue dots are conditioned on the red dots. The restriction in (53) leads to 16
different conditional probabilities, and we assume they are invariant in space and
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Figure 19: A system with N points in spatial direction and three layers in time
direction. The conditional probabilities in time are described through the blue
and the red dots, where the blue dots represent θr+1

i−1:i, which are conditioned on
the red dots that represent θri−1:i.

time. Therefore, p(θr+1
i−1:i|θri−1:i) can be expressed in a 4× 4 transition matrix,

P4 =


η1 ζ1 γ1 1− η1 − ζ1 − γ1
η2 ζ2 γ2 1− η2 − ζ2 − γ2
η3 ζ3 γ3 1− η3 − ζ3 − γ3
η4 ζ4 γ4 1− η4 − ζ4 − γ4

 .

P4 is organized such that every element in row j are conditioned on the same
values for θri−1 and θri ,

ηj = p(θr+1
i−1 = 0, θr+1

i = 0|θri−1:i),

ζj = p(θr+1
i−1 = 1, θr+1

i = 0|θri−1:i),

γj = p(θr+1
i−1 = 0, θr+1

i = 1|θri−1:i),

1− ηj − ζj − γj = p(θr+1
i−1 = 1, θr+1

i = 1|θri−1:i),

for j = 1, . . . , 4.

To obtain p(Θ1:2), we need p(Θ1). We imagine analyzing data many time layers
later than the initial layer, indicating that the initial layer in time is not im-
portant for the results. For simplicity, p(θ1i−1:i) are computed from the limiting
probabilities of the conditional probabilities in time, limm→∞ Pm

4 , and they are
used to define p(Θ1) through a first-order Markov chain.

Now, we can obtain the joint prior distribution for 2 × 2 cliques in the first two
time layers because of the Markov structure for the conditional probabilities in
time,

p(θ1:2i−1:i) = p(θ2i−1:i|θ1i−1:i) · p(θ1i−1:i). (54)

This joint prior distribution allows us to calculate transition probabilities in space,
p(θ1:2i |θ1:2i−1), which has Markov properties in space. They are needed to perform
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the forward-backward algorithm on the Markov chain in the spatial direction.
Hence, the Markov structure for the first two time layers is the same as for the
model in Section 5.3. Using (54), the joint prior distribution of Θ1 and Θ2 can
be expressed as (34),

p(Θ1:2) =

∏N
i=2 p(θ

1:2
i−1:i)∏N−1

i=2 p(θ1:2i )
. (55)

Again, we assume the likelihood of the data has the form in (20) and follow
the beta distributions in (40) and (41). Using this and the prior distribution
in (55), we follow the model-specific forward-backward algorithm described in
Section 6.4 to obtain the posterior distribution for each clique in the first two time
layers, p(θ1:2i−1:i|y1). Further, we marginalize over θ1i−1:i to obtain the posterior
distribution p(θ2i−1:i|y1) for the second layer. This distribution can in principle
be obtained by marginalizing p(Θ2|y1). However, as p(Θ2|y1) does not have a
Markov structure, it can not be computed by p(θ2i−1:i|y1). Therefore, we replace
it with an approximation p̃(Θ2|y1), which has a Markov structure defined such
that p̃(θ2i−1:i|y1) = p(θ2i−1:i|y1). We believe this is a good approximation, because
the local structures in p(Θ2|y1) are preserved in p̃(Θ2|y1). Then, we multiply
the conditional probabilities in time, p(θr+1

i−1:i|θri−1:i) with p̃(θ2i−1:i|y1), to compute
the joint prior distribution

p̃(θ2:3i−1:i|y1) = p(θ3i−1:i|θ2i−1:i) · p̃(θ2i−1:i|y1), (56)

for the cliques in the second and third time layers. For the next iteration, we
use the forward-backward algorithm on (56). Thus, we obtain p̃(θ2:3i−1:i|y1:2).
Then, we marginalize over θ2i−1:i to obtain p̃(θ3i−1:i|y1:2). As in the first time
step, p̃(θ3i−1:i|y1:2) can not be used to compute p̃(Θ3|y1:2), because the Markov
structure is broken again. Therefore, we replace p̃(Θ3|y1:2) with an approx-
imation ˜̃p(Θ3|y1:2), with a Markov structure defined such that ˜̃p(θ3i−1:i|y1:2) =
p̃(θ3i−1:i|y1:2). This procedure is repeated iteratively in time, displayed in Figures
19 and 20.

To summarize, we define approximations to the distributions in Section 5.4.1
that has Markov structures in space, for each pair of adjacent layers in time.
The approximations are constructed such that the local dependencies in the joint
distributions are preserved. The Markov structures are crucial to perform the
forward-backward algorithm.

After r iterations in time, we replace a lot of tildes with p∗ to simplify the nota-
tion. Thus, we obtain p∗(θr+1

i−1:i|y1:r), which is an approximation to p(θr+1
i−1:i|y1:r)

for the reasons described above. Additionally, as we explained in Section 5.4.1,
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Figure 20: A system with N points in spatial direction and four layers in time
direction. The conditional distributions in time are described through the blue
and the red dots, where the blue dots represent θr+2

i−1:i, which are conditioned on

the red dots that represent θr+1
i−1:i.

we compute p∗(θr+1
i |y1:r+1) for each layer and present them as the results in

Section 7.5.

This model is expected to be the most accurate, due to the dependence in space
from the Markov chain, and in time obtained by defining conditional probabilities
in time and using the previous information to model the current situation.

The hyperparameters for this model include the elements in the transition matrix
P4, which are (η1:4, ζ1:4, γ1:4), and the parameters in the likelihood function,
(α0:1, β0:1). Therefore, we denote the set of hyperparameters for this model

τ4 = (α0:1, β0:1, η1:4, ζ1:4, γ1:4). (57)

The marginal likelihood in (17) is computed by the algorithm described in Section
6.4. To obtain the maximum likelihood estimates for the hyperparameters in τ4,
we maximize the marginal likelihood numerically with respect to τ4.

6 Algorithms

Now, we present the specific forward-backward algorithms for each of the four
models described in Section 5. In addition, we provide the algorithms for the
empirical Bayes parameter estimation specific to each model. Throughout this
section, we adopt the same notation as in Section 5.
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6.1 First-order HMM in space

For the HMM with k = 0 in (19), and θi representing a single parameter in time,
we want to find the posterior probabilities p(θri |yr) for each time layer r. For
this purpose, we have defined the prior distribution of Θr through the first-order
Markov chain in (38), and we use the forward-backward algorithm described in
Section 4.4. The forward probabilities are fri = p(θri , y

r
1:i) and the backward

probabilities are br
i = p(yri+1:N |θri ). To compute these probabilities, we refer to

the general formulas in Sections 4.4.1 and 4.4.2, using the forward and backward
probabilities defined above.

We multiply the forward probabilities p(θri , y
r
1:i) and the backward probabilities

p(yri+1:N |θri ), to obtain the joint distributions p(θri ,y
r) as in (24). The posterior

distributions are then computed by

p(θri |yr) =
p(θri ,y

r)∑
θ̃r
i
p(θ̃ri ,y

r)
, (58)

where we sum over two terms only in the denominator. We perform this procedure
for every layer r = 1, . . . R in time.

To estimate the hyperparameters in τ1 in (42), we use (28) with the last forward
probability in space to calculate the marginal likelihood function, which can be
expressed as

L(τ1|yr) = p(yr) =
∑
θr
N

p(θrN ,yr). (59)

By calculating (59) for each layer r from 1 to R, and multiplying them together,
we obtain

L(τ1|y1:R) =

R∏
r=1

L(τ1|yr), (60)

which is the marginal likelihood including all layers in time. Then, the marginal
likelihood is maximized numerically with respect to τ1 to obtain the maximum
likelihood estimates for the hyperparameters in τ1.

6.2 Second-order HMM in space

Now, we consider the second-order HMM in space. In this case, the prior distri-
bution for time layer r, p(Θr) is defined through the second-order Markov chain
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in (43). We use the forward-backward algorithm as before, and for k = 1 in
(19) and θi consisting of a single parameter in time, the forward probabilities are
fri−1:i = p(θri−1:i, y

r
1:i) and the backward probabilities are br

i−1:i = p(yri+1:N |θri−1:i).
Again, for computing these probabilities recursively, we refer to the formulas in
Sections 4.4.1 and 4.4.2.

By multiplying the forward probabilities p(θri−1:i, y
r
1:i) and the backward probab-

ilities p(yri+1:N |θri−1:i), we obtain the joint distributions p(θri−1:i,y
r). Further, we

calculate the joint posterior distribution p(θri−1:i|yr), using Bayes theorem.

To compute the marginal posterior distributions for each θri , we marginalize over
one parameter θi−1,

p(θri |yr) =
∑
θr
i−1

p(θri−1:i|yr). (61)

Note that for the initial points in spatial direction for each layer in time, we must
sum over θr2 in p(θr1:2|yr), to obtain the marginal posterior distribution p(θr1|yr).

To estimate the hyperparameters in τ2 from (44) for this model, we utilize the
last forward probabilities in space to calculate the marginal likelihood from (28).
The marginal likelihood becomes

L(τ2|yr) = p(yr) =
∑

θr
N−1:N

p(θrN−1:N ,yr). (62)

As for the first model, we calculate the marginal likelihood for each layer in time
before multiplying them together,

L(τ2|y1:R) =

R∏
r=1

L(τ2|yr). (63)

Finally, (63) is maximized numerically with respect to τ2 to obtain the maximum
likelihood estimates for the hyperparameters in τ2.

6.3 First-order HMM in space and dependence in time

In the model with a first-order Markov chain in space, k = 0 in (19), for vec-
tors containing two points in time, θi = θr:r+1

i , our goal is to compute the
posterior distributions p(θr+1

i |yr:r+1). The forward probabilities are fr:r+1
i =

p(θr:r+1
i , yr:r+1

1:i ) and the backward probabilities are br:r+1
i = p(yr:r+1

i+1:N |θr:r+1
i ).
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Thus, the model-specific decomposition from (24) is

p(θr:r+1
i ,yr:r+1) = p(θr:r+1

i , yr:r+1
1:i ) · p(yr:r+1

i+1:N |θr:r+1
i ). (64)

To compute the forward and backward probabilities, we refer to the general
recursive formulas in Sections 4.4.1 and 4.4.2, using the forward and backward
probabilities specified above.

After obtaining the forward and backward probabilities, we multiply them to-
gether to get p(θr:r+1

i ,yr:r+1) in (64). Further, we apply Bayes’ theorem to com-
pute the posterior distribution p(θr:r+1

i |yr:r+1). Then, we marginalize over θri to
get the marginal posterior distribution, conditioned on two layers of observations
in time

p(θr+1
i |yr:r+1) =

∑
θr
i

p(θr:r+1
i |yr:r+1). (65)

We repeat this process for every pair of adjacent layers in time.

For estimation of the hyperparameters in τ3 from (46), we calculate the marginal
likelihood for the data in (28), using the last forward probability in space, for each
pair of adjacent layers yr:r+1. For this model, we express the marginal likelihood
as

L(τ3|yr:r+1) = p(yr:r+1) =
∑

θr:r+1
N

p(θr:r+1
N ,yr:r+1). (66)

To obtain the marginal likelihood for all the layers in time, we multiply every
second marginal likelihood L(τ3|yr:r+1) for r = 1, 3, . . . R, since each likelihood
contains two layers in time and the same layers should not be used twice. Thus
we obtain

L(τ3|y1:R) = L(τ3|y1:2) · L(τ3|y3:4) · . . . · L(τ3|yR−1:R). (67)

L(τ3|y1:R) is then maximized numerically with respect to τ3 to get the maximum
likelihood estimates for the hyperparameters in τ3.

6.4 Main model

The main model in this project is described in Section 5.4. We define conditional
probabilities for cliques in time to include the information from previous time
points. Then, we use the conditional probabilities in time to compute transition
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probabilities in space, which we need in the forward-backward algorithm. Using
the notation from Section 5.4, for time layer r,

p∗(θr:r+1
i |θr:r+1

i−1 ,y1:r−1) =
p(θr+1

i−1:i|θri−1:i) · p∗(θri−1:i|y1:r−1)

p∗(θr:r+1
i−1 |y1:r−1)

. (68)

The Markov structure in space for two layers in time is the same as the one in
Section 6.3. However, as we want to use the conditional probabilities in time to
incorporate the previous information further in time, shown in (56), we need the
forward-backward algorithm to return a joint distribution over two parameters
in space. If we use the algorithm from Section 6.3, and include information from
previous time steps, we obtain p∗(θr+1

i |y1:r), which can not be used in (56).
Therefore, we consider the algorithm for a second-order HMM with k = 1 in (19)
and θi = θr:r+1

i for this model. Additionally, as discussed in Section 5.4, we need
to compute two posterior distributions for the main model. The first posterior
distribution is used as prior in the next time layer, while the second posterior
distribution is used to present the results. Therefore, we require two separate
algorithms for solving each case, respectively.

For the first case, the forward probabilities are fr:r+1
i−1:i = p∗(θr:r+1

i−1:i , y
r
1:i|y1:r−1) and

the backward probabilities are br:r+1
i−1:i = p∗(yri+1:N |θr:r+1

i−1:i , |y1:r−1). The resulting
decomposition in (24) for the first case is

p∗(θr:r+1
i−1:i ,y

r|y1:r−1) = p∗(θr:r+1
i−1:i , y

r
1:i|y1:r−1) · p∗(yri+1:N |θr:r+1

i−1:i , |y
1:r−1). (69)

The forward and backward probabilities are computed with the general for-
mulas described in Sections 4.4.1 and 4.4.2 with fr:r+1

i−1:i and br:r+1
i−1:i specified

above, using the likelihood for one layer in time, p(yri |θri ), instead of two lay-
ers, p(yr:r+1

i |θr:r+1
i ).

Once we have obtained (69), we apply Bayes’ rule and marginalize over θri−1:i

to get p∗(θr+1
i−1:i|y1:r). We use this posterior distribution together with the con-

ditional probabilities in time, p(θr+2
i−1:i|θ

r+1
i−1:i) to obtain the prior distribution for

each clique in the next two layers,

p∗(θr+1:r+2
i−1:i |y1:r) = p∗(θr+1

i−1:i|y
1:r) · p(θr+2

i−1:i|θ
r+1
i−1:i). (70)

This process is repeated iteratively in time, using (68) to calculate new transition
probabilities in space from (70) for the next time layers, which we utilize in the
forward and backward recursions.
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For the second case, we define the decomposition of the joint distribution of a
clique, θr:r+1

i−1:i and every observation in two time layers, yr:r+1 as

p∗(θr:r+1
i−1:i ,y

r:r+1|y1:r−1),

=p∗(θr:r+1
i−1:i , y

r:r+1
1:i |y1:r−1) · p∗(yr:r+1

i+1:N |θr:r+1
i−1:i ,y

1:r−1).
(71)

For this case, the forward proabilities are fr:r+1
i−1:i = p∗(θr:r+1

i−1:i , y
r:r+1
1:i |y1:r−1), and

the backward probabilities are br:r+1
i−1:i = p∗(yr:r+1

i+1:N |θr:r+1
i−1:i ,y

1:r−1).

Using the general formula to compute the forward and backward probabilities, we
obtain the joint distribution p∗(θr:r+1

i−1:i ,y
r:r+1|y1:r−1) from (71). Then, we apply

Bayes’ rule and marginalize over θri−1:i and θr+1
i−1 to get the marginal posterior

distribution p∗(θr+1
i |y1:r+1), which we use as result in Section 7.5.

To estimate the hyperparameters in τ4 from (57), we calculate the marginal
likelihood in (28), with the last forward probability in space, using the algorithm
from the first case in this section. The last forward probability in space is obtained
for every layer in time while we follow the iterations in time from Section 5.4.2.
Thus, we obtain p∗(θr:r+1

N−1:N ,yr|y1:r−1) for each time layer r. Then, for each layer
except the last two, we obtain the marginal likelihood

L(τ4|yr) = p∗(yr|y1:r−1) =
∑

θr:r+1
N−1:N

p∗(θr:r+1
N−1:N ,yr|y1:r−1), (72)

which contains a sum of 16 variables. For the last two layers in time, we use the
last forward probabilities in space from the algorithm in the second case in this
section to obtain

L(τ4|yR−1:R) = p∗(yR−1:R|y1:R−2) =
∑

θR−1:R
N−1:N

p∗(θR−1:R
N−1:N ,yR−1:R|y1:R−2). (73)

Multiplying (72) for every layer in time and (73), we obtain

L(τ4|y1:R) = L(τ4|y1) · L(τ4|y2) · . . . · L(τ4|yR−1:R),

= p∗(y1) · p∗(y2|y1) · . . . · p∗(yR−1:R|y1:R−2).
(74)

Once we have obtained the marginal likelihood, L(τ4|y1:R), we maximize it nu-
merically with respect to τ4 to obtain the maximum likelihood estimates for the
hyperparameters in τ4.
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7 Results and discussion

In this section, we present the results from the four models, which are the pos-
terior probabilities for an event based on the observations and the model spe-
cifications. We begin by explaining how the hyperparameters in the models are
estimated before we go through the results for each model. For the main model,
we also investigate how different choices of values for the hyperparameters af-
fect the results. Throughout this section, we adopt the notation introduced in
Sections 5 and 6.

7.1 Parameter estimation

To compare the performance of the different models, we estimate the hyper-
parameters in τ at the same locations within the same time frame for all the
models. This area is between 16000 and 17000 meters along the railway tracks
and between 13:34:43 and 13:36:53 in time, and it is a different area than where
we present the results. We choose this area because it contains several events,
but most of it consists of non-events, such that it is a representative sample of
the entire data set. The area is displayed in Figure 21.

As previously stated, the hyperparameters in an HMM are estimated by max-
imizing the marginal likelihood function L(τ |y1:R) with respect to τ , where τ
consists of the elements in the transition matrix P and the parameters in the
likelihood of the data, namely α0:1 and β0:1. The probabilities in the transition
matrix P are model specific, but we denote them ηj , ζj , and γj , depending on
the model. Thus we get that

τ = (α0:1, β0:1, ηj , ζj , γj). (75)

Once the hyperparameters are estimated, we use them in the models to obtain the
results presented in this section. To calculate the maximum likelihood estimates
numerically, we use the library scipy.optimize with a trust-region algorithm
for constrained optimization (Virtanen et al. 2020) on the marginal likelihood
function, with specified bounds and constraints for the hyperparameters.

7.2 First-order HMM in space

Using the procedure to obtain the marginal likelihood L(τ1|y1:R) described in
Section 6.1, and maximizing this with respect to τ1, we obtain the maximum like-
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Figure 21: Heatmap of the autocorrelation at lag one in the area where we
estimate the parameters.
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lihood estimates for the hyperparameters in this model. These hyperparameters
are the transition probabilities in P1, which is the transition matrix described
in Section 5.1, and the parameters in the likelihood function p(yr1|θri = l) =
Beta(yi;αl, βl), which are αl and βl for l ∈ {0, 1}. The transition probabilities in
P1 are bounded in (0,1), while αl, βl > 0. The estimated transition probabilities
for the area in Figure 21 are

P1 =

[
0.992 0.008
0.079 0.921

]
,

which means that

p(θri = 0|θri−1 = 0) = 0.992,

p(θri = 1|θri−1 = 1) = 0.921.
(76)

Thus, the probability of staying in the same state when moving between spatial
nodes is significantly higher than the probability of transitioning to the other
state. Additionally, transitioning to state 0, given the current node is in state
1, has a higher probability than the opposite transition. This suggests that non-
events are more likely to occur. We obtain the initial probabilities in space from
the limit of the transition matrix, limm→∞ Pm

1 , and they become

p(θr1 = 0) = 0.904,

p(θr1 = 1) = 0.096,
(77)

which reflects the probability of an event in the estimation area. The estimated
parameters of the likelihood function, α0:1 and β0:1 are

α0 = 143.382,

β0 = 417.061,

α1 = 1.611,

β1 = 1.139,

(78)

where α0, β0 represent the likelihood where θri = 0, while α1, β1 represent the
likelihood where θri = 1. The likelihood as a function of yri is displayed in Figure
22. We can see that p(yri |θri = 0) takes most values between 0.2 and 0.3, implying
the model is confident that the observed values fall within this range when there
are no events. On the other hand, p(yri |θri = 1) suggests that when there are
events, yri can take a wide range of values, with a higher likelihood for larger
values.
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Figure 22: Beta likelihood displayed as a function of yri , with the hyperparameters
α0:1 = (143.382, 1.611) and β0:1 = (417.061, 1.139) estimated with an empirical
Bayes estimator for a first-order HMM in space.

Following the procedure described in Sections 5.1 and 6.1, we obtain the posterior
probabilities for an event p(θri = 1|yr) for this model, for every point in every
layer in time. They are displayed as a heatmap in Figure 23 at the area around
Selsbakk station. The posterior probabilities capture the structures from Figure
11, which are the results we expected. We also notice that some of the signals
in Figure 11 which resemble noise, have high probabilities of being events in this
model. The structures we observe are discussed in Section 3.2.1.

When studying the heatmaps, it is important to remember that probabilities
at earlier times are not dependent on probabilities at later times in any of the
models. Even though this model does not account for dependence in time, this
thesis aims to find the probabilities of events in the current time layer. Looking
at the posterior probabilities in the last time layer is an easy way to interpret the
model’s output for the newest data. Hence, we display the posterior probabilities
for the final time layer between 3000 and 5500m in Figure 24. As we expected
from the likelihood in Figure 22 and the estimated transition probabilities in
(76), the model assigns most probabilities close to 0 and 1, which means that the
model is confident in determining whether there is an event in each point. The
structures we see in Figure 24 are the large vertical line at 5100 meters, one of
the periodic dots at around 4550 meters, and one of the diagonal lines that is a
moving car at 4000 meters, discussed in Section 3.2.1.
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Figure 23: Heatmap of the posterior probabilities p(θri = 1|yr) for the first-order
HMM in space.

Figure 24: Posterior probabilities for the last time layer R, p(θRi = 1|yR) for the
first-order HMM in space.
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7.3 Second-order HMM in space

For the second-order HMM, we follow the procedure described in Section 6.2 to
obtain the marginal likelihood L(τ2|y1:R), before we maximize it with respect to
τ2. The hyperparameters have the same bounds as we described in Section 7.2.
We get that the estimated values for the transition probabilities are

P2 =


0.988 0 0.012 0
0.759 0 0.241 0
0 0.596 0 0.404
0 0.050 0 0.950

 ,

where each row sums to one. This means that

p(θri = 0|θri−2 = 0, θri−1 = 0) = 0.988,

p(θri = 0|θri−2 = 1, θri−1 = 0) = 0.759,

p(θri = 1|θri−2 = 0, θri−1 = 1) = 0.404,

p(θri = 1|θri−2 = 1, θri−1 = 1) = 0.950.

(79)

The estimated transition probabilities in (79) show that when two consecutive
parameters in space have the same value, there is a high probability that the
following parameter also has the same value. However, when two consecutive
parameters have different values, the probability of the next parameter being 0 is
higher than the probability of it being 1. The fact that p(θi = 1|θi−2 = 0, θi−1 =
1) is smaller than p(θi = 0|θi−2 = 0, θi−1 = 1), means that the model allows for a
reasonable probability of events in individual points. This is not desirable for our
purpose since we believe signals from an event propagate over multiple points in
space and time, as we saw in Figure 11.

The initial probabilities are limm→∞ Pm
2 , which gives p(θr1:2) for each layer in

time r. The resulting values are

p(θr1 = 0, θr2 = 0) = 0.861,

p(θr1 = 1, θr2 = 0) = 0.015,

p(θr1 = 0, θr2 = 1) = 0.014,

p(θr1 = 1, θr2 = 1) = 0.110.

(80)

The estimated parameters for the beta likelihood function for this model are
approximately equal to the ones for the first-order model in Section 7.2, however
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Figure 25: Posterior probabilities for the last time layer R, p(θRi = 1|yR) for the
second-order HMM in space.

with slightly higher values for α0 and β0,

α0 = 147.433,

β0 = 428.806,

α1 = 1.638,

β1 = 1.127.

(81)

Therefore, we refer to Figure 22 for an illustration, and the discussion regarding
the likelihood function is similar to the one we presented in Section 7.2. The
slightly higher values for α0 and β0 might suggest that this model is more con-
fident of the values for yri where there are no events.

Using the estimated hyperparameter values, we follow the procedure described in
Sections 5.2 and 6.2 to obtain the posterior probability of an event, p(θri = 1|yr),
for the second-order HMM. The results are similar to those we obtained from the
first-order model. Therefore we omit to present a heatmap.

As for the first-order model, we expect the majority of the probabilities to be
close to 0 or 1 due to the parameter values in the likelihood function and the high
probabilities of staying in the same state. In Figure 25, we show p(θRi |yR) for
the last time layer between 3000 and 5500m. The plot confirms our expectation
that most posterior probabilities are close to 0 or 1. Compared to the first
model, they look similar, but some spikes at 3900 and 4100m have increased.
In addition, the second-order model seems to capture some small structures,
particularly noticeable between 3100 and 3300m.
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7.4 First-order HMM in space and dependence in time

Again, to estimate the parameters for this model, we calculate the marginal likeli-
hood L(τ3|y1:R) by following the procedure from Section 6.3. Then, we maximize
this function numerically with respect to τ3, to get the maximum likelihood estim-
ates for the hyperparameters α0:1, β0:1, η1:4, ζ1:4 and γ1:4. For the optimization
process, α0:1, β0:1 > 0 and (η1:4, ζ1:4, γ1:4) ∈ (0, 1). Additionally, ηj , ζj and γj
must satisfy the constraint ηj + ζj + γj < 1, for j = 1, . . . , 4. For the transition
matrix P3 described in Section 5.3, the estimated parameters are

P3 =


0.985 0.002 0.002 0.011
0.185 0.646 0.001 0.168
0.182 0.001 0.685 0.132
0.091 0.011 0.012 0.886

 ,

which means that

p(θri = 0, θr+1
i = 0|θri−1, θ

r+1
i−1 ) = (0.985, 0.185, 0.182, 0.091),

p(θri = 1, θr+1
i = 0|θri−1, θ

r+1
i−1 ) = (0.002, 0.646, 0.001, 0.011),

p(θri = 0, θr+1
i = 1|θri−1, θ

r+1
i−1 ) = (0.002, 0.001, 0.685, 0.012),

p(θri = 1, θr+1
i = 1|θri−1, θ

r+1
i−1 ) = (0.011, 0.168, 0.132, 0.886),

(82)

for each layer r in time. The highest probabilities are that θr:r+1
i is (0, 0) or (1, 1)

given that θr:r+1
i−1 is (0, 0) or (1, 1), respectively. This means that the states for the

next parameters in space are most likely the same as the previous. Considering
p(θri , θ

r+1
i |θri−1 = 1, θr+1

i−1 = 0) and p(θri , θ
r+1
i |θri−1 = 0, θr+1

i−1 = 1), the states for
the next two points in space are most likely going to be the same as the previous,
and with a slightly higher probability of being (0, 0) than (1, 1).

We have that limm→∞ Pm
3 gives the initial probabilities p(θr:r+1

1 ). The resulting
values are

p(θr1 = 0, θr+1
1 = 0) = 0.872,

p(θr1 = 1, θr+1
1 = 0) = 0.009,

p(θr1 = 0, θr+1
1 = 1) = 0.010,

p(θr1 = 1, θr+1
1 = 1) = 0.109,

(83)

for each layers r : r + 1 in time. The parameters of the beta likelihood function
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Figure 26: Posterior probabilities for the last time layer R, p(θRi = 1|yR−1:R) for
the first-order HMM in space with two layers in time.

p(yri |θri ) are estimated to be

α0 = 147.100,

β0 = 427.955,

α1 = 1.638,

β1 = 1.129,

(84)

and they are approximately the same as the estimated values for the second-
order HMM from Section 7.3. Therefore, the discussion is the same as the one
we presented in Sections 7.2 and 7.3.

We follow the procedure for calculating the posterior probability of θr+1
i given

two adjacent layers of observations in time yr:r+1, described in Sections 5.3 and
6.3, using the estimated hyperparameters for this model. Since it is hard to
distinguish between heatmaps for the first three models, we also omit to include
a heatmap for this model.

Figure 26 illustrates the posterior probabilities for the last layer in time, namely
p(θRi |yR−1:R). We observe that the two spikes at approximately 3900 and 4100m
are larger than for the previous models. This observation suggests that there
might be events in the previous time step at these positions, which this model
manage to perceive due to the temporal dependence between the two layers.
The small structures we noticed in Figure 25 between 3100 and 3300m are not
observed in Figure 26.
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7.5 Main model

By using the procedure described at the end of Section 6.4, we get the formula for
the marginal likelihood function L(τ4|y1:R). This is maximized numerically with
respect to τ4, to obtain the maximum likelihood estimates for α0:1, β0:1, η1:4,
ζ1:4 and γ1:4. As for the maximization process for the third model, we have the
bounds α0:1, β0:1 > 0 and (η1:4, ζ1:4, γ1:4) ∈ (0, 1), in addition to the constraints
that ηj + ζj + γj < 1, for j = 1, . . . , 4. The estimated parameters in P4 from
Section 5.4 are

P4 =


0.995 0.001 0.002 0.002
0.032 0.914 0.001 0.053
0.127 0.013 0.847 0.013
0.025 0.012 0.011 0.952

 ,

which means that

p(θr+1
i−1 = 0, θr+1

i = 0|θri−1, θ
r
i ) = (0.995, 0.032, 0.127, 0.025),

p(θr+1
i−1 = 1, θr+1

i = 0|θri−1, θ
r
i ) = (0.001, 0.914, 0.013, 0.012),

p(θr+1
i−1 = 0, θr+1

i = 1|θri−1, θ
r
i ) = (0.002, 0.001, 0.847, 0.011),

p(θr+1
i−1 = 1, θr+1

i = 1|θri−1, θ
r
i ) = (0.002, 0.053, 0.013, 0.952),

(85)

for each pair of layers r : r + 1 in time. The estimated conditional probabilities
in time in P4 indicate a high probability of staying in the same state when
transitioning in time. The conditional probabilities in time are used to calculate
the transition probabilities in space with (68), and the transition probabilities in
space depend on the time layer, as we use previous information for calculating
the prior in each layer, described in Section 5.4. We notice that the estimated
probabilities of staying in the same states in time are higher than the probabilities
of staying in the same states in space, from Section 7.4. Therefore, we expect
longer chains of similar posterior probabilities in time. Furthermore, the initial
probabilities in time, p(θ1i−1:i), are computed by limm→∞ Pm

4 . The resulting
values are

p(θ1i−1 = 0, θ1i = 0) = 0.903,

p(θ1i−1 = 1, θ1i = 0) = 0.019,

p(θ1i−1 = 0, θ1i = 1) = 0.014,

p(θ1i−1 = 1, θ1i = 1) = 0.064.

(86)

We see that the probability of two adjacent points in space being (0, 0) is the
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highest for the first time layer. The maximum likelihood estimates of the para-
meters of the beta likelihood p(yri |θri ) are

α0 = 149.435,

β0 = 434.973,

α1 = 1.637,

β1 = 1.136.

(87)

The values are similar to those obtained for the first three models. Therefore,
the discussion is similar to the one we conducted in Sections 7.2 and 7.3, and we
omit to include another similar plot.

After we have obtained the estimates for the hyperparameters, we follow the
procedure described in Sections 5.4 and 6.4 to obtain the posterior probabilities
p∗(θr+1

i = 1|y1:r+1) for each spatial point i, and time layer r. They are displayed
as a heatmap in Figure 27. Note that the information at earlier times is incorpor-
ated in this distribution. It is hard to distinguish between the heatmap in Figure
27 and the one for the first model in Figure 23, but if they are examined closely,
the heatmap in Figure 27 shows slightly more temporal dependencies. The dif-
ferences between Figures 23 and 27 are easier to notice when compared on larger
screens. The similarity between Figures 23 and 27 suggests that the parameter
values in the likelihood have the most effect on the posterior probabilities. This
is explored further in Section 7.6.

We want to focus on what happens in the current time layer, conditioned on
the previous ones. Therefore we display the posterior probabilities for the last
time layer, p∗(θRi |y1:R) in Figure 28. We can see that the posterior probabilities
around 4000 meters oscillate more than for the third model, which suggests that
the model conserves more of the information from previous observations when
computing the posterior probabilities in the last layer. The other structures from
the third model in Section 7.4 are present in Figure 28.

7.6 Parameter values for the main model

So far, we have presented results using hyperparameters of the HMMs estimated
with an empirical Bayes estimator. However, the estimation procedure for the
hyperparameters is based only on the values for yri , and not on other information
concerning events. The resulting likelihood from the estimation seems to be cer-
tain about the values of yri when θri = 0. Potentially, this overshadows the other
hyperparameters, namely the conditional probabilities that decide the depend-
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Figure 27: Heatmap of the posterior probabilities p∗(θr+1
i = 1|y1:r+1) for the

main model. Note that points in time layer r are not dependent on yr+2:R.

Figure 28: Posterior probabilities for the last time layer, p∗(θRi = 1|y1:R) for the
main model.
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ence structures in time and space. Therefore, in this section, we experiment with
different values of the hyperparameters for the main model and discuss whether
estimating them gives the best description of the reality, based on our knowledge
of events along the railway tracks. First, we discuss the hyperparameters in the
likelihood function in Section 7.6.1, before we discuss the hyperparameters that
are the conditional distributions in time for the cliques in Section 7.6.2. In the
end, we present some further discussion in Section 7.6.3

For comparing different values of the hyperparameters, we look at an area with
both weak and strong signals for the ACF at lag one, displayed in Figure 29.
The region between 29000 and 31000m contains weak signals that resemble cars
crossing the railway tracks or people walking next to it, and the area between
31000 and 34000m exhibits signals that resemble noise. Between 34000 and
40000m we see stronger signals that might be trains in motion or vehicles crossing
the tracks. In addition, we see a straight vertical line at 36800m representing
signals that are constant in time at the same position. While the signals between
31000 and 34000m do not look like particular events, we do not know whether
they are events. The only information we have about them is the values in the
data set. Therefore we must choose if such signals should be classified as events
or not, when fitting the model.

7.6.1 Parameters in the likelihood

Since the estimated parameters α0 and β0 of the likelihood p(yri |θri = 0) in (87)
are large, the model is certain that the weak signals between 31000 and 34000
meters are events, as we can see in Figure 30a. However, by selecting a beta
likelihood with α0 = 5 and β0 = 12, the model allows more values for yri when
θri = 0, but the likelihood when θri = 0 still takes many values between 0.2 and
0.3. This likelihood as a function of yri is shown in Figure 31. Using the obtained
estimates for the conditional probabilities in time, the probabilities of most of the
points between 31000 and 34000m being events become small, as the dependence
structure in space and time becomes more significant. We observe this in Figure
30b.

On the other hand, examining the region between 29000 and 31000m, we observe
structures in Figure 30a that are not present in Figure 30b. These structures
resemble cars crossing the railway tracks or people walking next to them. Thus,
if we decide to fit the model such that the probabilities of events for signals that
seem to be noise are low, we also risk classifying other weak signals that might
be events as non-events.
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Figure 29: Heatmap of the autocorrelation at lag one between 29000 and 40000
meters.

61



(a) Estimated parameter values.

(b) Decided parameter values.

Figure 30: Heatmaps of the posterior probabilities p∗(θr+1
i = 1|y1:r+1) for the

main model with estimated parameter values (a), and decided parameter values
(b).
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Figure 31: Likelihood displayed as a function of yri , with the hyperparameters
α0 = 5 and β0 = 12 decided for the main model, and α1 = 1.637 and β1 = 1.136
estimated in Section 7.5.

Another difference between Figures 30a and 30b is the effect on the posterior
probabilities for the certain events between 34000 and 40000 meters. When we
decide that the noisy data between 31000 and 34000 meters have a low probability
of being events, we see that many of the posterior probabilities that lie further
away from certain events become small. The reason for this is that the values for
yri have a larger variation further away from certain events, and the dependence
structures in time and space have a bigger impact on the posterior probabilities
when we choose small values for α0 and β0. An advantage with this is that it is
easier to sort out certain events with the most distinct structures in Figure 30b.

Based on the discussion above, determining appropriate parameters for the likeli-
hood is a difficult task. We do not know what approach to take when deciding the
parameters, and having more knowledge about the nature of the signals in Figure
29 would help us decide what parameter values to use when fitting a model.

7.6.2 Conditional probabilities in time

We expected that the structures for the posterior probabilities in the main model
would be relatively smooth in time and space. This does not seem true for the
estimated parameter values in Figure 27 and 30a. Yet, we have not discussed
the impact of the conditional probabilities in time, which are η1:4, ζ1:4, and γ1:4.
By fitting a model using very high probabilities for adjacent points in time being
in the same state, and using α0 = 5, β0 = 12 to avoid overshadowing from the
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Figure 32: Heatmap of the posterior probabilities p∗(θr+1
i = 1|y1:r+1) for the

main model, using conditional probabilities in time that are high for adjacent
points being in the same state.

likelihood, we obtain the result in Figure 32. As we can see, the dependence
structure in time makes long chains of points classified as events, supporting
the importance that the spatial and temporal structures do not override the
information from the data, contained in the likelihood. The results indicate
that we must be careful when deciding the hyperparameters so that neither the
dependence structure nor the likelihood of the data dominates the other.

7.6.3 Further discussion

It is important to remember that the information in the heatmaps can be mis-
leading, as the events in time layer r are not dependent on the future time points
r + j. We present the heatmaps because they are intuitive, and events are eas-
ily detected. However, we need to emphasize that the approach we take in this
project, is to use data to find the posterior probabilities for events in the present
time, conditioned on current and previous observations. Therefore, we believe
plots of the last layer, as presented in e.g. Figure 28 are the easiest way to
display the posterior probabilities, without getting distracted by previous events.

Even though the different values for the hyperparameters have a large effect on
the results, every fitted model detects the major events, which are probably the
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most significant in terms of seismic activity. However, we can not be certain,
as the weak signals between 29000 and 31000 meters in Figure 21 resemble cars
crossing or people walking next to the tracks.

Expanding the models to higher-order Markov chains could potentially remove
more short sequences of points classified as events, since using a first-order Markov
chain in space only limit the single points. However, the second model in this pro-
ject uses a second-order Markov assumption, but the results are not significantly
different than for the first-order model. In addition, there are computational
limitations when applying higher-order HMMs to a large data set such as the
Trondheim data, and therefore, this is a difficult task.

8 Concluding remarks

This thesis aims to model probabilities of events by fitting Bayesian models to a
DAS data set. The focus is on the main model, which incorporates information at
earlier times when computing probabilities of events in the current time points.
We observe that all four models detect similar events. Trying different values for
the hyperparameters in the main model shows that the results are sensitive to the
hyperparameters, which we must choose carefully. However, this is a challenging
task because the information about events is mostly unavailable everywhere the
data is collected. Having more knowledge concerning the nature behind the
signals in the data set will make it easier to choose hyperparameters that fit the
reality better. The results in this thesis can be a valuable resource for computing
probabilities of events as new data is collected along the railway tracks, to detect
possibly dangerous situations rapidly.

An interesting extension of this project can include developing the Bayesian mod-
els from detecting events, to also be able to classify them. As we mentioned in
Section 1, there have been some previous studies on event detection and classi-
fication in DAS data using machine learning techniques. This can be explored in
the framework of Bayesian modelling. As discussed above, in this project we take
the approach to use the information at previous times to compute probabilities
of events in the current time. However, for the extension discussed here, it would
make more sense to use all the available data, including data future to the specific
events, to gain information about them.

For an alternative analysis of the Trondheim data, a possibility is to try different
measures for modelling. In this thesis, we use the autocorrelation function at lag
one for small time sets in differentiated data, but there might be other measures
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that capture different information from the data set. Zhong et al. (2022) invest-
igate characteristics in background noise in DAS data and propose an algorithm
for attenuating the background noise. The results in Zhong et al. (2022) can
be interesting to investigate on the Trondheim data, to better understand the
properties of the background noise.
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Appendix

A Standard deviations in time sets

Figure 33 shows a heatmap of the standard deviations for each time set at the area
between 3000 and 5500 meters. We see some weak horizontal lines at Selsbakk
station around 4000 meters that match the observations from CGF. In addition,
we see a vertical line at 5100 meters. However, some of the observations from
CGF at Selsbakk station are hard to see for the standard deviations of the time
sets.

B ACF at lag 2 and 3

The ACF values at lag two for the area around Selsbakk station, between 3000
and 5500 meters south of Marienborg are displayed as a heatmap in Figure 34,
and the ACF values at lag three for the same area are displayed as a heatmap in
Figure 35. We see that the signals in these plots are similar to the lag one values
in Figure 11, however most of the signals take values around zero, as discussed
in Section 3.2.1.
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Figure 33: Heatmap of the standard deviations between 3000 and 5500 meters,
and between 13:34:53 and 13:36:53.
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Figure 34: Heatmap of the autocorrelations at lag 2 between 3000 and 5500
meters, and between 13:34:53 and 13:36:53.
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Figure 35: Heatmap of the autocorrelations at lag 3 between 3000 and 5500
meters, and between 13:34:53 and 13:36:53.
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