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Abstract

An extension to the Besag-York-Mollié (BYM) is proposed, which can account for
spatial variation across multiple scales. The multi-level model is presented as
an alternative method for accurate small area estimation of demographic data,
when direct methods from traditional survey statistics are unfeasible. In addition,
the model is further developed and tested with the inclusion of covariates and
informative prior distributions for the contribution to total variance from each
level. Alongside the model itself, a range of computational techniques for fast
inference are presented. These allow for extensive testing and validation of highly
complex spatial models, and are implemented using the template model builder
(TMB) package in R.

Validation of the multi-level model was done through a simulation study
and a case study in India. This showed that the model is more robust than
alternative single-level models when applied to a range of scenarios with variation
on multiple spatial scales. It is especially useful when estimating on fine-scale
levels on data where most of the variation happens on coarse scales. The use of
informative priors for model parameters did not have a large impact on accuracy,
but was useful during parameter estimation to counteract overestimation of the
most dominant weight parameters. Estimates of the variables of interest on the
finest scale were most accurate in terms of a selection of error metrics when using
the multi-level model with covariates included. We were able to run this model
on a range of data sets with an average run time of approximately 10 minutes,
making it a viable model choice for accurate estimation large sets of variables on
multiple levels.
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Sammendrag

Det foreslås en utvidelse av Besag-York-Mollié (BYM)-modellen som kan ta
hensyn til romlig variasjon på flere nivåer. Multi-level modellen presenteres
som en alternativ metode for nøyaktig estimering av demografiske data på små
områder, der direkte metoder fra tradisjonelle survey-statistics er utilstrekkelige.
I tillegg blir modellen videreutviklet og testet med inkludering av kovariater og
informativ priorfordeling for bidraget til totalvariansen fra hvert nivå. Sammen
med selve modellen blir det presentert en rekke beregningsmetoder for rask
inferens. Disse muliggjør omfattende testing og validering av svært komplekse
romlige modeller og blir implementert ved hjelp av template model builder
(TMB)-pakken i R.

Valideringen av flernivåmodellen ble gjennomført gjennom en simuleringsstudie
og en casestudie i India. Dette viste at modellen er mer robust enn alternative
single-level modeller når den brukes i ulike scenarier med variasjon på flere
romlige skalaer. Den er spesielt nyttig når man estimerer på fin-skala nivåer for
data der mesteparten av variasjonen skjer på grove skalaer. Bruken av informativ
priorfordeling for modellparametere hadde ikke stor innvirkning på nøyaktigheten,
men var nyttig under parameterestimeringen for å motvirke overestimering av de
mest dominerende vektparametrene. Estimatene for variablene av interesse på
fineste skala var mest nøyaktige i forhold til et utvalg feilmål når flernivåmodellen
med inkluderte kovariater ble brukt. Vi klarte å kjøre denne modellen på en
rekke datasett med en gjennomsnittlig kjøretid på omtrent 10 minutter, noe som
gjør den til et levedyktig modellvalg for nøyaktig estimering av store mengder
variabler på flere nivåer.
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Chapter 1

Introduction

Most countries in the world are split into different sets of non-overlapping regions
such as states and counties. Every such set is called an administrative level, with
the coarsest one being the admin 1 level, and on the finer scales come the admin
2 level, admin 3 level and so on. The fine-scale levels are typically nested within
the coarser levels. Many low- and middle-income countries have deficient vital
registration systems, meaning that there is no complete registration of births
and deaths, which makes estimation of population dependent variables within
the regions difficult. Therefore, data is collected through surveys to get useful
estimates. A common problem with survey data from these countries is that the
data is too sparse to estimate metrics of interest on the fine-scale administrative
levels, when using traditional survey statistics methods such as direct estimates.
Such regions are called ’small areas’. In small areas, making accurate estimates of
for example the prevalence of demographic and health indicators has a high value,
as this can aid local policymakers with making more informed decisions. Local
policymakers exist on all administrative levels, making it desirable to produce
estimates on each level. Ideally, estimates on different levels are both accurate
and consistent with each other. Thus, in the field of small area estimation (SAE),
model-based methods must be developed to achieve accurate estimates on every
level, when traditional survey statistic methods are unfeasible.

A common approach is to apply spatial regression models that borrow
strength in space by assuming a correlation between variables in neighbouring
regions. These kinds of models are discussed in a range of recent research papers
such as Utazi et al. (2021), Fuglstad et al. (2021) and L. D. Mercer et al. (2015).
They can be used for estimates on a continuous scale, or discrete scale on different
levels. This thesis considers discrete models that can be applied to different

1



2 CHAPTER 1. INTRODUCTION

administrative levels in a country. The Besag-York-Mollié (BYM) model is an
example of a widely used discrete spatial regression model (Besag et al., 1991). It
assumes a combination of a random effect and a spatial smoothing effect between
regions on a single administrative level. The model can then be applied to make
estimates on each level separately.

The problem with these models is that they only consider spatial vari-
ation on one administrative level at a time, when in reality there is variation
across multiple spatial scales. Thus a natural extension of the BYM model is
to enable it to combine effects across multiple administrative levels in order to
obtain estimates at the finer levels, while also being able to produce improved
estimates on the coarse levels. This motivates the goal of this thesis, which
is to present a generalized spatial multi-level model for accurate small area
estimation, that can make better estimates than alternative methods and provide
useful insights through the model parameters. The model is validated through
application to simulated and real data on key demographic indicators that the
UN are monitoring in developing countries. If the new model performs well,
it can for example be crucial for identifying small-scale regions in low-income
countries where new resources and/or policies are necessary, in order to reach the
sustainable developments goals (SDGs) as defined by the UN (United Nations
General Assembly, 2015).

The new multi-level model is based on a weighted sum of single-level
BYM models. Variables are treated as Gaussian Markov random fields (GMRFs)
on each administrative level, where the distributions are modelled through a
combination of the Besag model (Besag, 1974) and a random i.i.d. effect. These
are simple model components that make the multi-level model easier to work with
and interpret. The model can also include covariates as separate components, and
informative prior distributions of the model parameters. Both of these additional
aspects of the model are experimented with in the thesis.

In addition to the development of a new model, a large emphasis is put
on different techniques that can be used to attain fast computations without
losing accuracy. When working with multi-level spatial effects on fine scales,
the computations become highly complex because of the number of latent
variables involved. Therefore, we look into how the Laplace approximation
can be used to calculate the maximum likelihood during model parameter
optimization. This also includes the use of automatic differentiation (AD)
for fast computation of exact derivatives, which are needed for the Laplace
approximation. Finally, our model choice leads to GMRFs with sparse precision
matrices. This means that we can drastically reduce the complexity of the matrix
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operations that are needed, such as Cholesky factorization, to further speed
up computations. The techniques are applied to construct and compare the
spatial models through implementation in the TMB library in R (Kristensen, 2023).

To demonstrate the predictive accuracy of the multi-level model and compare it
to alternative models, demographic data from India is used as an example in
a simulation study. Here, real data provided by the Demographic and Health
Surveys (DHS) Program is used to create realistic simulations. This is followed
by a case study where the data is used to test the model. The data comes from
a survey in India between 2019 and 2021. India is a country with considerable
geographical inequality, almost 18% of the world’s population, and three different
administrative levels. It consists of 41 states, 676 districts, and 2347 subdistricts,
of which approximately 10% were not visited in the DHS survey. This makes
India a very interesting and appropriate example to test the new model on.
The level of education and current employment status among adult females
are used as the main example metrics in this thesis. The two metrics are
treated as binary variables on the individual level, and spatial regression models
are used to estimate the prevalence of the metrics on the three administrative levels.

Prevalence refers to the proportion or percentage of individuals in a pop-
ulation who have a particular condition at a specific point in time or over a
specified period. In areas with large populations prevalence can be used to
approximate risk, which refers to the probability of an individual developing the
condition over a specified period of time. By knowing the approximate risk of
developing a specific condition (i.e. education or employment) one can determine
whether measures should be taken to increase or decrease this risk, which is why
it is useful to produce accurate estimates of prevalence and risk.

Prevalence mapping is a common use case for discrete spatial regression
models. Therefore, the performance of the multi-level model is compared to that
of common single-level models. Three alternative models are suggested. The
first one considers a spatial effect on the admin 1 level, the second considers a
spatial effect on the admin 2 level and the last one on the admin 3 level. Mean
squared error (MSE) and continuous ranked probability score (CRPS) are used
to rank the models. These error measurements are applied to the logit transform
of the prevalence, which is used during modelling. This transformation leads to
better statistical attributes, meaning that predictions become more accurate and
error measurements are easier to compare. The main interest lies in whether the
multi-level model outperforms the alternative models when applied to data from
India with some degree of spatial variation on all three administrative levels.
We also want to see if the inclusion of covariates and informative priors further
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increases predictive accuracy.

This thesis has contents that are partly or completely based on sections
from the project thesis by Giørtz (2022). This is due to the thesis being a
continuation of the work that was performed during the project from 2022, with
much of the necessary background knowledge being the same. Thus large parts of
Chapter 3 and Chapter 4 are relatively similar to corresponding sections from
the project, especially Section 3.7, Section 4.2 and Section 4.7 remain almost
unchanged.

The different data sources and preprocessing needed to apply the spatial
models is first presented in Chapter 2. In Chapter 3 of this thesis we go
through the background knowledge that goes into the models and computational
techniques that are used. The definitions of the new model and alternative
models are described in Chapter 4, along with formulations of the metrics
used for model evaluation. In this chapter we also present the details of the
model implementation through the use of the TMB library. Chapter 5 presents
a simulation study to evaluate the predictive accuracy of the models. There
we investigate how the models’ prevalence mappings differ from those of the
alternative models through visualizations and numerical results. The models are
applied to real data and compared through a case study on India in Chapter
6. The results and findings are then discussed in Chapter 7 along with some
concluding remarks.



Chapter 2

India: Geography and data
sources

2.1 Geography

India is chosen as the test case for the spatial models. It is a country that is
divided into three distinct administrative levels, where the borders on each level
are nested within the borders of the previous one. This is necessary to be able
to test models that consider variation on multiple administrative levels in a
simple and understandable way. India is also a developing country with a very
large population, meaning that accurate estimates of important demographic
data can have a big impact on future development in the country. The data
on India’s partition into subnational levels is provided by GADM – Global
Administrative Areas (2023). The three levels consist of 41 states, 676 districts
and 2347 subdistricts, and they are all shown Figure 2.1.

Spatial regression models capture correlation structures between neigh-
bouring regions. This means that any region without neighbours cause issues,
because they are independent of all other regions. All island territories without
any neighbours are removed in order to avoid this issue when working with
territories in India. This includes 2 states on the admin 1 level, 4 districts on the
admin 2 level and 39 subdistricts on the admin 3 level.

5



6 CHAPTER 2. INDIA: GEOGRAPHY AND DATA SOURCES

Figure 2.1: India’s division into sets of regions on administrative levels 1, 2 and 3.

2.2 DHS survey data

Variables of interest

The data that motivates the development of the new models and inspires the simu-
lation study comes from a DHS survey conducted in India between 2019 and 2021.
In the survey, 724115 women between the ages 15 and 49, and 101839 men between
the ages 15 and 54 were interviewed on a wide range of questions concerning, for
example, health, economic situation and education. The responses of interest in
this thesis are whether or not an individual has completed secondary education
and if they currently are employed. These responses are chosen because they are
good indicators of how far a country has come in the development phase, and there
is a sufficient amount of available data that can be used for meaningful estimates.
The main interest lies in estimating the prevalence of positive responses among
females between the ages 20 and 39, within the administrative regions on all levels.

There are two reasons as to why females between the ages 20 and 39 are
considered in this thesis. Firstly, they must be of an age where it is realistic to
have completed secondary education and be employed. Secondly, this ensures
that there is enough data to apply models on the admin 3 level. The DHS data
can then be used to both create realistic simulations to test models, and to
validate models through application to real data. Additionally, if we are able to
make accurate estimates using the data from India, it is likely that the models
can be used to make estimates of the variables of interest using similar datasets.
This is a major advantage of using DHS data, as the DHS program has already
conducted surveys in a wide range of countries of similar fashion as the survey in
India.
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Survey design
When working with analysis of survey data it is common to use design-based
methods which take into account key aspects of the survey design. The
main aspect that separates these methods from model-based methods is the
assumption that the data is from a fixed finite population. This means that
the responses from a specific household are deterministic, and any uncer-
tainty is rooted in the survey sampling itself. Thus it is crucial to take into
consideration which households were part of the survey and how they were selected.

According to the DHS report from India (Population Sciences - IIPS/India and
ICF, 2022), there are three key ways that complex survey data such as DHS
data differs from simple random samples. First, the population is divided into
subgroups called strata. The division into strata is based on the population of
different villages and the percentage of the population belonging to scheduled
castes and scheduled tribes in the country. Then it is decided how many samples
are drawn from each stratum. Although the population in the strata can be
uneven, the number of samples from each of them is usually very similar. This is
in order to ensure reliable estimates even in areas with small populations. Second,
a number of primary sampling units (PSUs) are chosen within each stratum, and
within each PSU there is a fixed number of households that are surveyed where
the household selection is i.i.d within the strata. In the DHS survey in India the
number was fixed at 22 households per PSU, and a total of 30456 PSUs were
included in the survey. Lastly, the samples are made without replacement. The
reasoning behind the survey design is that the precision per survey cost increases,
compared to when using completely random sampling.

The samples in the DHS survey from India are scaled based on selection
probability to account for the survey design. First the probability of choosing
the PSU i in stratum h is calculated, followed by the probability of choosing a
specific household in said PSU. Let ah denote the number of surveyed PSUs in
stratum h and let Mhi denote the number of households from PSU i in stratum h
as reported by the sampling frame. The survey analysts used the latest census
made in India which was in 2011 to decide Mhi. Sampling was then done based
on probability proportional to number of households. The probability of choosing
PSU i in stratum h is then

P
(1)
hi = ah

Mhi∑Nh

j=1 Mhj

, i = 1, 2 . . . Nh,

where Nh is the chosen number of PSUs in stratum h.
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Further, in each PSU the number of surveyed households is denoted ghi and the
total number of households in the PSU at time of surveying is denoted Lhi. Then
the probability of choosing a specific household is

P
(2)
hi = ghi

Lhi
.

The weight for an observation j among the surveyed households ghi is the product
of the inverses of these two probabilities

whij = (P (1)
hi P

(2)
hi )−1.

With these weights the stratified sampling estimator is

Yh =
∑

i

∑
j whiyhij∑

i

∑
j whij

.

This is a weighted mean of the observations yhij , which denotes the jth observation
from PSU i in stratum h. Note that we write Yh as a stochastic variable, because
the choice of households that are used to compute it is random, whereas yhij is
viewed as deterministic in this setting.

Direct estimates
The survey package (Lumley, 2004) allows for the computation of direct estimates
based of a set of survey data using the aforementioned scaling. Producing direct
estimates means that no spatial correlation is assumed, so that estimates within
each administrative area only make use of the responses in that specific area.
Such estimates are easily made when using binary data as inputs. Therefore,
we produce estimates of prevalences of the chosen variables along with their
respective standard deviations. This provides useful insights into whether or
not more complex estimators are necessary to get useful results. Estimates of
prevalences and standard deviations are made on logit scale using a quasibinomial
model, described in L. Mercer et al. (2014).

After selecting only responses from females between the ages 20-39 from
the DHS survey, a total of 436196 responses on education and 65777 responses on
employment across India are used to produce the direct estimates. In Figure 2.2
the direct estimates of the prevalence of completed secondary education in India
are plotted along with the coefficients of variance for each estimate on the admin
1, admin 2 and admin 3 levels. Similar plots for current employment are shown in
Figure 2.3.
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Figure 2.2: Direct estimates of prevalences (left side) and the associated coefficients
of variance (right side) of completed secondary education in all admin 1 areas
(top row), admin 2 areas (middle row) and admin 3 areas (bottom row). Areas
that are colored red had no observations.
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Figure 2.3: Direct estimates of prevalences (left side) and the associated coefficients
of variance (right side) of current employment in all admin 1 areas (top row),
admin 2 areas (middle row) and admin 3 areas (bottom row). Areas that are
colored red had no observations.
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An obvious weakness of the direct estimate approach is that it is not possible
to produce direct estimates in many areas on the admin 3 level. This is due to
the lack of a sufficient amount of data on such a fine scale, where some admin 3
areas have zero responses. The coefficients of variance are also high, especially for
the estimates on the admin 3 level when looking at employment. These results
motivate the need for model-based approaches to obtain estimates on fine scales,
and to improve accuracy on the admin 1 and 2 levels.

2.3 Covariate raster
In addition to the application of spatial regression in the model-based estimation,
covariates can be included as an extra model component. Covariate values are
assigned to each administrative area based on mapping available data from
WorldPop (2018) to the areas. The covariates that are used in this thesis
are chosen based of analysis from the DHS India report (Population Sciences
- IIPS/India and ICF, 2022).

The report states for example that "Among both females and males, the
median number of years of schooling is higher in urban areas than in rural areas
(7.5 years versus 4.0 years among females and 8.8 years versus 6.5 years among
males)" and "The employment level is much higher among less educated persons,
highest among persons with less than 5 years of schooling (89% among men
and 34% among women)". With the reported analytics in mind, the following
covariates are chosen to be included in the simulation study, with all the necessary
data being available online.

Population density
It is clear from the DHS report that there are large differences between populations
from urban and rural areas. A simple way to capture some of these differences
is to include population density as a covariate. Data from WorldPop (2018) is
openly available and used to compute population density. WorldPop provides
estimated population numbers on a 100m×100m grid across the whole country,
separated by genders and age groups. Thus the estimates can be mapped to
areas on the admin 1, admin 2 and admin 3 levels, and added together to obtain
population counts in each area. Population density is then calculated by dividing
by the area of the regions. The population counts also serve another purpose, as
they can be used to compute weights for estimation on admin 1 and admin 2 level
through weighted sums of admin 3 estimates. Details on how this is calculated
are described in Section 4.5.
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Nighttime lights
Data on nighttime lights is another interesting metric provided by WorldPop
(2018). Looking at the amount of nighttime lights relative to the population within
a region can give an indication of the amount of wealth, level of development and
degree of urbanisation in the region. All of these factors are expected to affect
both education and employment, making nighttime lights a relevant covariate to
consider during estimation.



Chapter 3

Background

The direct estimate approach presented in Chapter 2 is clearly not usable for small
area estimation when working with data similar to the DHS survey data from
India. An alternative method that can provide estimates even in areas without
any available data, is to instead use a model-based approach. In this chapter we
explain the theory behind a commonly used such approach, along with how it can
be turned into a computationally efficient method for accurate estimation.

3.1 Areal spatial modelling
To obtain model-based estimates in a set of areas, a useful method is to apply
areal spatial modelling. The term areal implies that estimates are made for
an entire administrative area, and not for individuals within the area. The
DHS survey data is provided with geographical points for each data point on
a continuous scale. In order to apply areal spatial modelling these data points
are all mapped to their respective admin 1, admin 2 and admin 3 areas, which
consequently converts the data to a discrete format.

A common approach for modelling discrete spatial data is to create mod-
els based on the relationships between neighbouring regions. One way this can
be done is through the usage of a covariance function based on the distances
between centroids of the administrative areas, inspired by the centroid method
introduced in Fisher (1936). However, such models typically require far too much
heavy computation when working on fine scales. Another, more easily applicable
method is the use of Spatial Autoregressive (SAR) models. In these models, the
correlation structure between neighbouring regions is specified independently of
their size and shape, leading to considerably less complexity compared to for

13



14 CHAPTER 3. BACKGROUND

example the centroid method.

When choosing an areal spatial model for fine-scale estimation, it is cru-
cial to consider the computational challenges the model entails. Fitting a model to
data across a set of more than one thousand regions leads to complex operations
that can be time consuming. Thus the model choice should be based on reasonable
assumptions that make the model usable within an acceptable time frame
while producing sufficiently accurate estimates. One widely used assumption
that entails both computational advantages and increased interpretability is
to assume that the variable of interest follows a multivariate Gaussian distribution.

A variable η = (η1, η2, . . . , ηn)T that follows a multivariate Gaussian dis-
tribution can be defined through a mean vector µ and covariance matrix Σ, so
that E[ηi] = µi and Cov(ηi, ηj) = Σij . The probability density function is then

π(η) = (2π)−n/2∥Σ∥−1/2 exp
(

−1
2(x − µ)T Σ−1(x − µ)

)
, η ∈ Rn.

Working with such Gaussian variables has multiple advantages when fitting
complex spatial models. The Gaussian distribution is one of the most commonly
used probability distributions, making it easy to recognize and interpret through
only looking at the parameters µ and Σ. It is also a well-behaved distribution
that has many desirable statistical properties. For example, the maximum
likelihood estimates of the mean and variance of a Gaussian distribution are
known to be efficient, meaning that they are consistent and have the smallest
variance among all such estimators.

However, prevalence is limited to the interval between 0 and 1, and clearly does
not follow a Gaussian distribution. To avoid this issue models are applied to the
logit transform of the prevalence. Thus for a prevalence p in an administrative
area i it is assumed that

ηi = logit(pi) = log
(

pi

1 − pi

)
follows a Gaussian distribution.

3.2 Gaussian Markov Random Fields
The assumption of a multivariate Gaussian distribution still involves certain
computational challenges. Specifically, when Σ is a dense covariance matrix
there are several mathematical operations that become highly complex during
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model fitting, such as computing the inverse and determinant of Σ. Thus it is
computationally beneficial to introduce conditions that reduce the complexity. To
this end, the neighbourhood structure between a set of non-overlapping regions in
a country can be exploited by assuming that the variable of interest follows the
Markov property.

The Markov property states that the distribution of a variable within a
region is conditionally independent of all other regions, given the values in all
neighbouring regions. It is a useful property when the neighbourhood structure
between administrative areas can be defined as an undirected graph on the form
G = (V, E), where V is the set of nodes corresponding to the administrative areas
and E is the set of edges corresponding to all pairs of neighbouring areas. To
visualize this, displays of the graph structures on admin 1 level and admin 2 level
in India are shown in Figure 3.1.

Figure 3.1: Graph structure of India on admin 1 level (left) and on admin 2 level
(right). The nodes represent administrative areas and the edges represent links
between neighbouring areas.

When a pair of nodes i, j are neighbours we denote it as i ∼ j and {i, j} ∈ E . For
a node i ∈ V we define the set of all neighbours of i as N(i) = {j ∈ V : i ∼ j}.
The global Markov property then says that

π(ηi|η−i) = π(ηi|ηN(i)), η ∈ Rn.

Another way to phrase this is that for two non-neighbouring region i, j we have
that

ηi|η−ij ⊥⊥ ηj |η−ij , {i, j} /∈ E . (3.1)
The graph structures of administrative levels as the ones in Figure 3.1 are clearly
very sparse, meaning that most nodes are conditionally independent of each
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other. The Markov property can be visualized on the admin 1 graph in India
as in Figure 3.2. Here, the distribution of ηi on the green node in the figure is
independent of all other nodes if the values on the three blue nodes are known.
Similar behaviour happens on all other nodes as well, making the conditional
distributions significantly less complex, thanks to the Markov property.

Figure 3.2: Illustration of the Markov property in action. When the nodes are
assumed to possess the Markov property, the distribution of a variable on the
green node is independent of all the red nodes, if the values are known on the
three blue nodes.

A widely used approach when modelling discrete spatial data that makes use of
both the assumption of normally distributed variables and the Markov property
is called Gaussian Markov random fields (GMRF). It is defined in Rue and Held
(2005) as

Definition 3.2.1 (Gaussian Markov Random Field). For n ∈ {1, 2 . . .} a random
vector η = (η1, η2, . . . , ηn)T ∈ Rn is called a GMRF with respect to a labelled
graph G = (V, E) with mean µ and precision matrix Q > 0 iff its density has the
form

π(η) = (2π)−n/2|Q|1/2 exp
(

−1
2(η − µ)T Q(η − µ)

)
, η ∈ Rn, (3.2)

and
Qi,j ̸= 0 ⇐⇒ {i, j} ∈ E ∀ i ̸= j.

The covariance matrix Σ is defined so that the elements are Σi,j = Cov(ηi, ηj).
This means that the complexity of the matrix is unaffected by conditional
independence. Therefore, the precision matrix Q = Σ−1 is used instead in the
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definition. Choosing to use the sparse precision matrix during modelling proves to
entail several computational advantages, which are explained further in Section 3.7.

It is possible to assume that GMRFs have precision matrices that are
not of full rank. Such cases are called improper GMRFs, and are useful when
trying to capture long-range dependencies between nodes in a graph where the
mean vector is not given. In order to apply an improper GMRF in a meaningful
way, one needs to introduce constraints to account for the rank deficiency of the
precision matrix. If the n × n precision matrix Q is of rank n − k, there must
be k independent constraints to get an identifiable model. Rue and Held (2005)
define an improper GMRF as
Definition 3.2.2 (Improper GMRF). Let Q be an n × n symmetric positive
semi-definite (SPSD) matrix with rank n − k > 0. Then η = (η1, η2, . . . , ηn)T is
an improper GMRF of rank n − k with parameters (µ, Q), if its density is

π(η) = (2π)− n−k
2 (|Q|∗)1/2 exp

(
−1

2(η − µ)T Q(η − µ)
)

, η ∈ Rn.

where |Q|∗ is the product of all non-zero eigenvalues of Q. Further, η is an
improper GMRF with respect to the labelled graph G = (V, E), where

Qi,j ̸= 0 ⇐⇒ {i, j} ∈ E ∀ i ̸= j.

Note that although an improper GMRF does not have a mean and precision
matrix (µ, Q) formally, we still denote the two parameters as the mean and
precision matrix for convenience.

A special case of improper GMRFs is an intrinsic GMRF of first order,
as defined by Rue and Held (2005)
Definition 3.2.3 (Intrinsic GMRF). An intrinsic GMRF of first order is an
improper GMRF of rank n − 1 where Q1 = 0 .
From the definition it follows that the IGMRF is invariant to the addition of a
constant c · 1 . This means that it is able to capture the deviation from any global
mean level across the graph, without the mean level having to be given. As the
mean level is often unknown and/or not our main interest, this is a desirable trait
of IGMRFs that is commonly exploited in spatial modelling, for example when
modelling prevalence through η.

3.3 The Besag model
Among the most widely used IGMRFs are the intrinsic conditional auto regressive
models (ICAR), first discussed in Besag (1974). The ICAR models have a general
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density function defined as

π(x) ∝ κ(n−1)/2 exp

−κ

2
∑
i∼j

wij(xi − xj)2

 , x ∈ Rn, (3.3)

where the precision parameter κ > 0 and symmetric weights wij are chosen to
capture the impact that the squared differences between direct neighbours have
on the likelihood. The simplest example of such a model is the Besag model,
where all weights wij = 1 ∀ i ∼ j, making it a generalization of the classical
random-walk in a two-dimensional space. Hence the conditional distribution of
the GMRF is

xi|x−i ∼ N

 1
nb(i)

∑
j∈N(i)

xj ,
1

κ · nb(i)

 ,

with nb(i) being the number of neighbours node i has. The conditional mean is
simply the mean of all neighbouring values, and the precision parameter controls
the conditional variance. An important advantage of the simple form of the Besag
model is that the structure matrix corresponding to the model is easy to define
and implement, and has the form

Ri,j =

nb(i), i = j,
−1, i ∼ j,
0, otherwise.

The precision matrix is then Q = κR, which can be shown to be a matrix of
rank n − 1. The rank deficiency of the IGMRF is resolved by introducing a
sum-to-zero constraint.

However, it can be difficult to interpret the precision parameter κ, as it
only controls conditional variance, and not marginal variance. As a result, the
total variation across graphs of different complexities, such as in Figure 3.1, can
vary a lot despite using the same precision parameter. As the two graphs in fact
cover the same country, it is unrealistic that there is much more total variation
from the mean on admin 2 level than on admin 1 level. Therefore, it is desirable
to scale the precision matrices Q so that the precision parameter primarily
controls the marginal variance across the graphs rather that the conditional.

Sørbye and Rue (2014) showed a simple solution to appropriately scale
the structure matrix R. The method is to scale it by the geometric mean of the
marginal variances of a GMRF that has Q = 1 · R as its precision matrix. Thus
we get

Q∗ = κ(cR)
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c = exp
(

1
n

n∑
i=1

log
(
R−

ii

))
,

with R− being the generalized inverse of the structure matrix which satisfies
RR−R = R. This scaling makes it easier to interpret and compare precision
parameters of ICAR models that are applied to graphs of varying complexity.
Thus all use of the Besag model throughout this thesis will include scaled versions
of the precision matrices Q.

3.4 Hierarchical models of binomial data
The Besag model and similar spatial models are not suited for modelling of
binomially distributed data directly, such as the DHS data on education and
employment. Instead, these models are applied to the logit transformation of the
prevalence parameter from the binomial distribution, as explained in Section 3.1.
Thus the spatial models are in fact a part of what is called hierarchical spatial
models. These consist of three main components which are an observation model,
a latent model and parameters that are to be estimated.

The observation model is based on the observable variables, which are
assumed to be binary responses valued 0 or 1 such as the variables introduced
in Chapter 2. In an area i there are mi observations, and the jth observation
is denoted Yij , j = 1, 2, . . . , mi. The set of observations from that area then
follows a binomial distribution

Yi|pi ∼ Bin(mi, pi),

where Yi =
∑mi

j=1 Yij .

Further, the latent model is used for the parameter pi. To achieve this
the set of parameters p from all i = 1, 2, . . . , N areas are considered together.
The latent model then assumes that the logit transform of these parameters
follows a multivariate Gaussian distribution

logit(p) = η ∼ N (µ, Q−1).

For the parameters that are to be estimated in this distribution we introduce an
expansion upon the classical Besag model, which was proposed in Besag et al.
(1991), called the Besag-York-Mollié (BYM) model. Here, an alternative to the
Besag model is presented, where a normal i.i.d. component is paired with the
ICAR component in each region. This model is used because it is reasonable
to assume that there is some degree of variation in the prevalences that is not
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explained by spatial effects, but is instead considered to be completely random.
The model uses a weighted sum of these two components

η = wBu + wRv, u ∼ N (0, QB
−1), v ∼ N (0, QR

−1), (3.4)

where u is the ICAR component and v is the i.i.d. component, and they can have
either separate or a shared precision parameter κ. Riebler et al. (2016) suggest
a reparametrization of this model that reduces the complexity of parameter
estimation. This is done by scaling the Besag component according to Section
3.3 and using a single precision parameter to control the total marginal variance,
resulting in the model

η = 1
κ

(
√

ϕu +
√

1 − ϕv), u ∼ N (0, QB
−1), v ∼ N (0, QR

−1). (3.5)

An intercept µ can also be included when the expected mean value is not equal
to 0. Then the objective is to determine the weight parameter ϕ, the precision
parameter κ and the intercept µ, in order make accurate estimations of prevalences
based on a set of binomially distributed spatial data.

3.5 Inclusion of covariates in spatial models
To further expand upon the BYM model in Equation 3.5, covariates can be
included to increase the accuracy of estimations. Naturally, the values of variables
across a country is not only determined by spatial correlation effects, but can
also just as well be affected by local circumstances. Examples of covariates that
can have a significant effect on the variables of interest are presented in Section
2.3. Building upon the model in (3.5), an intercept and covariates are included
by setting

η = Gβ + 1
κ

(
√

ϕu +
√

1 − ϕv), u ∼ N (0, QB
−1), v ∼ N (0, QR

−1), (3.6)

where the 3 × N matrix G = [1, G1, G2]T contains the observed covariate values
on each node, and β is a parameter vector with β0 being the intercept. In this
case 1, G1 and G2 represent the intercept, values for population density and
values for nighttime lights, respectively. The log transform is used on the covariate
values, as this is deemed more likely to be linearly correlated with the responses of
interest. Through this simple way of modelling with covariates, a larger amount
of available data can be used for estimations, which is likely to improve predictive
accuracy while still using interpretable parameters β.



CHAPTER 3. BACKGROUND 21

3.6 Selecting prior distributions for model para-
meters

Spatial models such as the BYM model contain specific parameters that are
estimated based on training on sets of real or simulated data. Definition of these
parameters involves defining their initial values and prior distributions. There
are mainly two options when defining the priors. The first option is to use vague
priors. A vague prior distribution is one that contains little information or is
intentionally uninformative. This is useful for situations where there is limited
knowledge about the parameter, or to avoid introducing unwanted bias into the
modelling process. A common vague prior for weight parameters is the uniform
distribution on the unit interval

w ∼ Unif(0, 1),

and for unrestricted parameters such as the intercept and covariate parameters a
normally distributed prior with a large variance is commonly used

β ∼ N (0, V 2),

where V is chosen to be a large number.

The alternative to vague priors is informative priors. These can be used
when there is information available that makes it possible to make reasonable
assumption about the parameters. When these assumptions are correct, models
are more likely to estimate the correct parameters and make more accurate
estimations. However, there is a risk involved as the estimations can be worse if the
wrong assumptions are made about the parameters. Therefore, it is interesting to
investigate how much accuracy in prediction and parameter estimation is to gain
from setting good, informative priors, and the consequences of setting bad priors.
Then it can be decided whether or not it is worth it to try to introduce informat-
ive priors, or if vague priors lead to sufficiently accurate results and is a safer choice.

Weight parameters are usually set on the unit interval w ∈ [0, 1]. When
there is reason to believe that a weight should tend more towards a certain value
on the interval, it is common to set the prior to a beta distribution

w ∼ Beta(a, b).

This way the mean and variance can be controlled by the parameters a and b,
where

E(w) = a

a + b
,
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Var(w) = ab

(a + b)2(a + b + 1) .

In Figure 3.3 a few different plots are shown to illustrate how parameters can be
chosen to adjust the prior mean and variance.

Figure 3.3: Prior beta distributions with different choices of parameters. Here
with a = 2, b = 2 (top left), a = 6, b = 2 (top right) a = 10, b = 10 (bottom left),
and a = 30, b = 10 (bottom right).

In many models there are sets of weights for different model components where
the weights in a set should sum up to 1. A set of beta priors are combined with
this constraint for a multivariate informative prior in the Dirichlet distribution
(Dirichlet, 1850), which can be used as a prior for such a set of weights. For K
weights the prior is defined as

w ∼ Dir(α),

where the probability density function is

f(w, α) = 1
B(α)

K∏
i=1

wαi−1
i , B(α) =

∏K
i=1 Γ(αi)
Γ(α0) , α0 =

K∑
i=1

αi,

and for 0 < w1, . . . , wK < 1 we have
∑K

i=1 wi = 1. Here, α is a parameter vector
that controls the shape of the prior distribution, with larger values indicating
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stronger prior beliefs that the associated weight is large. From the mean and
covariance of the variables following a Dirichlet distribution, it is clear that it can
be interpreted as a generalization of the beta distribution to higher dimensions as

E(wi) = αi

α0
,

Var(wi) = αi(α0 − αi)
α2

0(α0 + 1) .

The prior distributions of the weights w can be adjusted similarly to in Figure
3.3, using that

wi ∼ Beta(αi, α0 − αi).
Parameters that are not restricted like weights can still use informative priors that
follow normal distributions, but adjust the mean and variance to match available
information. For example, if there is strong evidence that the intercept in a model
should be approximately 1, the prior distribution

β0 ∼ N (1, 1)

can be a reasonable choice. When parameters are restricted to the positive half-
plane, such as the precision parameter κ ∈ (0, ∞), the common choice for the
prior is a gamma distribution. This can also be either vague or informative so
that

κ ∼ Gamma(α, β), E(κ) = α

β
, Var(κ) = α

β2 ,

where the two parameters control whether the prior is vague or informative.

3.7 Techniques for fast computations
The use of a hierarchical spatial model as presented in Section 3.4 together with
a set of prior distributions for the model parameters as presented in Section 3.6
leads to highly complex likelihood functions. For a set of areas the likelihood
becomes a combination of multiple binomial distributions, multivariate Gaussian
distributions and the prior distributions. This entails that heavy computations
are needed to fit the models to large sets of data, such as the DHS data across
the fine-scale administrative levels in India. Thus we need to introduce efficient
computational techniques so that models can be applicable in practice.

3.7.1 Estimation of the likelihood through the Laplace ap-
proximation

Estimation of model parameters, denoted as θ, involves computing the maximum
likelihood of said parameters together with the unknown random effects, denoted
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as z. However, computing exact likelihoods can be very computationally expensive.
For example, when working with the fine-scale administrative levels in India, z
contains thousands of latent variables. In addition, we are often working with non-
Gaussian likelihoods such as a binomial or Poisson likelihood, or combinations of
multiple likelihoods. As a result, it in unfeasible to compute exact likelihoods when
applying spatial regression models. In this thesis we are using the negative joint
log-likelihood, denoted as f(z, θ), as it has more useful attributes for optimization
purposes. The objective is to maximize

L(θ) =
∫
Rn

exp(−f(z, θ))dz, θ > 0.

As we cannot efficiently compute this exactly, we instead use an accurate and
efficient approximation called the Laplace approximation, as described in Skaug
and Fournier (2006). It is computed through three main steps. First, the minimizer
of f(z, θ) with respect to z is computed and defined as

ẑ(θ) = arg min
z

f(z, θ), θ > 0.

Second, H(θ) is computes, which denotes the Hessian of f(z, θ) with respect to
z evaluated at ẑ(θ), written as

H(θ) = ∂2

∂z2 f(ẑ(θ), θ), θ > 0.

Finally, the Laplace approximation for the marginal likelihood is computed as

L∗(θ) = (2π)n/2|H(θ)|−1/2 exp(−f(ẑ, θ)), θ > 0.

The estimates for the parameters θ are henceforth obtained by minimizing the
negative log of the Laplace approximation. The objective function becomes

− log(L∗(θ)) = −n

2 log(2π) + 1
2 log(|H(θ)|) + f(ẑ, θ), θ > 0,

which can be minimized by means of standard nonlinear optimization algorithms
such as BFGS. In addition to obtaining an estimate θ̂ after optimization, the
variance of the estimator, or any differentiable function of the estimate ϕ(θ̂), can
be estimated as such

̂Var(ϕ(θ̂)) = − ∂

∂θ
ϕ(θ̂)

(
∂2

∂θ2 log
(

L∗(θ̂)
))−1

∂

∂θ
ϕ(θ̂)T ,

which is reduced to the inverse Hessian of the log likelihood with respect to θ
when ϕ(θ) is the identity function.
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Part of these calculations is finding the first- and second derivatives of
the objective function. These computations require special techniques in order to
be fast, which is necessary when estimating parameters in complex models. One
such technique that can efficiently compute exact derivatives is called automatic
differentiation.

3.7.2 Computation of derivatives using automatic differen-
tiation

Due to Fournier et al. (2012), a good method for fast computation of exact
derivatives when working with complex spatial models is through the use
of automatic differentiation (AD). This method has many advantages over
alternative, inexact methods such as finite differences. Firstly, derivatives are
needed for the Laplace approximation to the marginal likelihood. As this is
already an approximation, using approximates to the first- and second order
derivatives would lead to exponentially growing errors, which can be detrimental
when optimizing model parameters. Secondly, methods such as finite differences
require many function evaluations. We are working with comprehensive
models that have complex likelihoods. Thus many function evaluations are
computationally expensive, making finite differences inefficient.

Automatic differentiation breaks down any complex function to a sequence of
elemental unary or binary operations on floating point representations of real
numbers. Derivation of the complex statement is hence the product of multiple
simple partial derivatives following the chain rule. As an example, we can look at
the expression for computing the squared error of a single point after applying
linear regression Si = (yi − (a + bxi))2. This can be split into five steps

t1 = bxi
∂t1

∂b
= xi,

∂t1

∂xi
= b

t2 = a + t1
∂t2

∂a
= 1,

∂t2

∂t1
= 1

t3 = yi − t2
∂t3

∂yi
= 1,

∂t3

∂t2
= −1

t4 = t2
3

∂t4

∂t3
= 2t3

Si = t4
∂Si

∂t4
= 1.

Using combinations of these partial derivatives leads to simple computations of
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partial derivatives through use of the chain rule

∂Si

∂a
= ∂t2

∂a

∂t3

∂t2

∂t4

∂t3

∂Si

∂t4
= −2(yi − (a + bxi)),

∂Si

∂b
= ∂t1

∂b

∂t2

∂t1

∂t3

∂t2

∂t4

∂t3

∂Si

∂t4
= −2xi(yi − (a + bxi)).

In AD there are two main strategies that are used to compute these partial
derivatives, namely the forward mode and the reverse mode. For models with
many estimated parameters the latter is the preferred choice. Reverse mode AD
consists of three main steps that lead to the partial derivatives of the objective
function.

• Compute and store all intermediate quantities t1, t2, t3 . . ..

• Define the partial derivatives and use them to compute the objective func-
tion’s sensitivity to each intermediate variable ∂S

∂t1
, ∂S

∂t2
, ∂S

∂t3
. . .

• Extract the gradient of the objective function by finding the shortest path
through a sensitivity and the chain rule ∂S

∂a = ∂S
∂t2

∂t2
∂a , ∂S

∂b = ∂S
∂t1

∂t1
∂b .

This technique generalizes well to any model that has an objective function that
can be decomposed in a similar manner, which is the case for the models presented
in Chapter 4.

3.7.3 Exploitation of sparsity for fast matrix operations
The neighbourhood structures between regions in India (or in any other country)
lead to highly sparse precision matrices. Using the sparse n × n precision matrices
Q in computations rather than the dense covariance matrices Σ allows us to
considerably reduce the complexity of matrix operations that are needed during
optimization. For example, part of computing the Laplace approximation, is
evaluating the likelihood of GMRFs, given by (3.2). Thus the determinant of
the precision matrices have to be computed. The determinant of a dense matrix
has a computational complexity of O(n3). However, when working with a sparse
symmetric positive definite matrix, such as the precision matrix Q, this can be
reduced to O(n3/2). This is done by first finding the Cholesky factorization of Q

LLT = Q,

which has the complexity O(n3/2). The determinant is then computed as

|Q| = |L|2 =
n∏

i=1
L2

ii,
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with complexity O(n). Another part of the density in (3.2) is computing
(x − µ)T Q(x − µ). In regular multivariate Gaussian distributions it is common
to instead denote this as (x − µ)T Σ−1(x − µ). This involves computing the
inverse of a dense covariance matrix, which has a complexity of O(n3). By
instead computing the precision matrix in advance, we completely avoid having
to compute this inverse. In addition, the sparsity of Q allows for considerably
reduced complexity of multiplying it with the vector (x − µ).

When sparse matrix operations are combined with automatic differenti-
ation to compute the Laplace approximation to the marginal likelihood, we end up
with a very efficient way of fitting certain spatial regression models. This allows
us to develop new, highly complex models and apply them to large sets of data.
In the following chapter a new model for binomial multi-level spatial regression is
presented, along with a description of how validation of the model is done and
how it is implemented through the use of techniques for fast computations.
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Chapter 4

Binomial spatial regression
models

4.1 Binomial observation model
The first part of the models that are developed in this thesis is the observation
model. Specific notation is used for observations on different administrative
levels. Let n

(1)
j , Y

(1)
j and p

(1)
j denote the number of surveyed individuals, the

number of positive responses and the associated prevalence in admin 1 area j,
respectively. The number of admin 1 areas is denoted as N1. On admin 2 level,
the corresponding variables are denoted n

(2)
k , Y

(2)
k and p

(2)
k in admin 2 area k,

with N2 being the number of admin 2 areas. Similarly, we use the notation n
(3)
l ,

Y
(3)

l and p
(3)
l for the admin 3 area l, and N3 for the number of admin 3 areas. In

the beginning of this chapter the focus is on modelling prevalence on the admin 3
level, where it is assumed that

Y
(3)

l |p(3)
l ∼ Binomial(n(3)

l , p
(3)
l ), l = 1, 2, . . . N3.

The spatial models are then applied to the prevalence p
(3)
l through a logit link

function, as explained in Section 3.4,

logit(p(3)
l ) = η

(3)
l .

Having defined the observation model, the next step is to define the second part
of the hierarchical models, which is the latent spatial models that are applied to
η(3).

29
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4.2 Latent models
4.2.1 Single-level models
Single level models only consider variation on one level. The first model considers
variation on the admin 1 level, and is denoted ’Admin 1’. We let j[l] denote the
index of the admin 1 area that admin 3 area l lies in. The model for estimation
on admin 3 level is then defined as

η
(3)
l = µ + 1√

κ

(√
ϕ1u

(1)
j[l] +

√
1 − ϕ1v

(1)
j[l]

)
, l = 1, 2, . . . N3, (4.1)

Where µ is the intercept, κ is the precision parameter and ϕ1 ∈ [0, 1] is the weight
between the Besag component u(1) and i.i.d. component v(1). As in Equation
(3.4), these model components follow multivariate Gaussian distributions

u(1) = (u(1)
1 , u

(1)
2 , . . . u

(1)
N1

) ∼ N (0, (QB
(1))−1),

v(1) = (v(1)
1 , v

(1)
2 , . . . v

(1)
N1

) ∼ N (0, (QR
(1))−1),

where QB
(1) and QR

(1) are the N1 × N1 precision matrices for the Besag and
i.i.d. components on admin 1 level, respectively.

Similarly, let k[l] denote the index of the admin 2 area that admin 3
area l lies in. The model that considers only spatial effects on the admin 2 level
is called ’Admin 2’ and models η(3) by

η
(3)
l = µ + 1√

κ

(√
ϕ2u

(2)
k[l] +

√
1 − ϕ2v

(2)
k[l]

)
, l = 1, 2, . . . N3, (4.2)

where ϕ2 ∈ [0, 1] is the weight between the Besag component u(2), and i.i.d.
component v(2). We have

u(2) = (u(2)
1 , u

(2)
2 , . . . u

(2)
N2

) ∼ N (0, (QB
(2))−1),

v(2) = (v(2)
1 , v

(2)
2 , . . . v

(2)
N2

) ∼ N (0, (QR
(2))−1),

with QB
(2) and QR

(2) being the N2 × N2 precision matrices for the Besag and
i.i.d. components on admin 2 level.

Finally, the same is done on the last administrative level through the
model ’Admin 3’, defined as

η
(3)
l = µ + 1√

κ

(√
ϕ3u

(3)
l +

√
1 − ϕ3v

(3)
l

)
, l = 1, 2, . . . N3, (4.3)
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where ϕ3 ∈ [0, 1] is the weight between the Besag component u(3), and i.i.d.
component v(3). We have

u(3) = (u(3)
1 , u

(3)
2 , . . . u

(3)
N3

) ∼ N (0, (QB
(3))−1),

v(3) = (v(3)
1 , v

(3)
2 , . . . v

(3)
N3

) ∼ N (0, (QR
(3))−1),

with QB
(3) and QR

(3) being the N3 × N3 precision matrices for the Besag and
i.i.d. components on admin 3 level. Note that the precision matrices for the
Besag components in all the models are scaled in accordance with the method
described in Section 3.3.

The intercept µ is included in the models to capture the mean level of
the estimates. Thus the Besag and i.i.d. components are only intended to capture
the patterns of deviation from the mean level. To ensure that this is the case, a
sum-to-zero constraint is introduced to u(1), v(1), u(2), v(2), u(3) and v(3).

4.2.2 Multi-level model
A new application of BYM models is to combine spatial smoothing effects and
i.i.d. effects on multiple administrative levels. The reasoning behind this is that
countries usually have different policymakers on different administrative levels,
such as India that is split into states, districts and subdistricts. The idea is that
the correlation between neighbouring areas on the lower levels (admin 2 and
admin3 ) is dependent on what types of borders they share. For example, an
admin 3 area is likely to have a stronger correlation with a neighbouring admin
3 area that is also in the same admin 1 area, than a neighbour for which the
border also separates them into different admin 1 areas. We define the suggested
multi-level model for a random vector η(3) on admin 3 level as

η
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l = µ + 1√

κ
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(√
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(1)
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ϕ2u

(2)
k[l] +

√
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(2)
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)
+√

w3

(√
ϕ3u

(3)
l +

√
1 − ϕ3v

(3)
l

))
,

l = 1, 2, . . . N3,

(4.4)

where w1, w2, w3 ∈ [0, 1] are the weights of the spatial variation on each
administrative level and w1 + w2 + w3 = 1.

The multi-level model is used with the same scaling of precision matrices
for the Besag components as the single-level models. This way the weights
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assigned to QB
(1), QB

(2) and QB
(3) can be interpreted as approximately the

proportion of the marginal variance that the components represent. Additionally,
the total marginal variance is controlled solely by the precision parameter
and is equal to κ−1. Thus the parameters of the model are easy to inter-
pret and compare when trying to understand correlation structures in real datasets.

4.3 Inclusion of covariates
The models presented so far only include an intercept and various structured and
unstructured random effects. In an attempt to include more structured effects
and improve predictive accuracy, the models can contain an extra component
that considers local covariates in each administrative area, as described in Section
3.5. Another multi-level model is proposed where covariates are included together
with the intercept as an extension to the model in Equation (4.4). This model is
called ’ML base’ and is defined for a random vector η(3) on admin 3 level as

η
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))
,

l = 1, 2, . . . N3,

(4.5)

where w1, w2, w3 ∈ [0, 1] are the weights of the spatial variation on each adminis-
trative level and w1 + w2 + w3 = 1. G = [g1, g2, . . . gN3 ] contains the covariate
values and β is a parameter vector with the intercept and covariate parameters,
as described in Equation (3.6). Covariates are included in the single-level models
in the same way, so that they can be compared to the multi-level model both with
and without covariates.

4.4 Prior distributions of model parameters
In Section 3.6 the advantages and disadvantages of setting informative priors are
discussed. To find out if vague prior distributions for the parameters are good
enough, or if informative priors can be significantly better, the models are tested
with varying choice of priors. The main interest lies in testing the importance of
priors for the weights w1, w2 and w3.

In order to select appropriate priors, the attributes of these weights must be
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considered. They act as weights that measure the contribution to the total
variation on admin 3 level from each administrative level, and are thus defined on
the unit interval and should sum up to 1. Thus it is natural to set a Dirichlet
prior for the three weights, as explained in Section 3.6.

The effects of different choices of prior distribution is investigated in Chapter
5 by varying the parameters α in the Dirichlet priors. Then we can observe
which priors achieve the highest accuracy during estimation of prevalence and
estimation of model parameters. When selecting priors during application
of the models to real data, which is done in Chapter 6, the results from the
simulation study are considered. It is also possible to consider knowledge about
the specific country of interest when selecting α. For example, if it is known that
local authorities in admin 3 areas have the power to rule in almost whichever
way they see fit, a bias towards the w3 weight can be introduced through the prior.

The remaining parameters in the model in Equation (4.5) are more com-
mon, and have previously been studied. For example, in the paper by Riebler
et al. (2016), different priors are discussed for the weight parameter ϕ between
the Besag and i.i.d. components in the BYM model. Therefore, this thesis rather
focuses on the weights between variation on the different administrative levels,
which have not been extensively researched before.

The parameter vector β contains unrestricted parameters that are set to
have vague Gaussian prior distributions β ∼ N (0, 1002 · I). The precision
parameter κ is restricted to the positive half-line, so that a gamma prior is a
natural choice. Again a vague prior is used so that κ ∼ Gamma(1, 0.01). Finally,
beta priors are used for the weights ϕ1, ϕ2 and ϕ3 that are restricted to the unit
interval. We choose ϕi ∼ Beta(1.1, 1.1), i = 1, 2, 3. This is close to a uniform
prior, but gives lower probability of getting values near 0 and 1, as it is assumed
to be unlikely that either the Besag or the i.i.d. component completely dominates
the other component.

4.5 Estimation on coarser levels
The models presented so far allow estimation on the admin 3 level. However,
there is also an interest in finding estimates on the coarser levels, ideally using
the same models. By using the same model for estimates on all three levels, we
can ensure consistency between estimates. It also makes for more explainable
estimates when they all come from the same model, and using different models
usually entails questions regarding why the same model cannot be used on coarser
levels.
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In order to obtain prevalence estimates on admin 2 and admin 1 level,
weighted averages of admin 3 estimates can be used. The weights are based on
what proportion of the population in the admin 1 area or admin 2 area that lives
in each of the admin 3 areas it contains. Data from WorldPop (2018) is used as a
basis for these weights.

Let Adm3(j) denote the set of admin 3 areas that lie inside admin 1
area j. Also let

αlj = Population3(l)
Population1(j)

be the weight assigned to the estimated prevalence in admin 3 area l in admin 1
area j. Prevalence estimates on logit scale on the admin 1 level are then made
using

η
(1)
j = logit

 ∑
l∈Adm3(j)

αlj logit−1(η(3)
l )

 , j = 1, 2, . . . N1. (4.6)

In a similar way, let Adm3(k) denote the set of admin 3 areas that lie inside
admin 2 area k, and let

αlk = Population3(l)
Population2(k)

be the weight assigned to the estimated prevalence in admin 3 area l in admin 2
area k. The weights are calculated in the same way, with all weights belonging to
the same admin 2 area summing to 1. Then we estimate prevalence on logit scale
on the admin 2 level by

η
(2)
k = logit

 ∑
l∈Adm3(k)

αlklogit−1(η(3)
l )

 , k = 1, 2, . . . N2. (4.7)

Note that when covariates are not included in the models, the ’Admin 1’ model
(4.1) gives estimates where any two admin 2 or admin 3 areas within the same
admin 1 area get the same estimates, as only spatial variation on the admin
1 level is considered. Similarly, the ’Admin 2’ model gives equal estimates in
any two admin 3 areas within the same admin 2 area. These results are also
approximately true when covariates are included, if the covariates cannot explain
a significant proportion of the variation. Therefore, it is expected that the ’Admin
1’ and ’Admin 2’ models are not able to make very accurate estimates on the
admin 3 level when there is limited information about relevant covariates.

To further motivate the use of a multi-level model, an example simulation is
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created from the model in Equation (4.4) where {w1, w2, w3} = {0.9, 0.05, 0.05},
meaning that 90% of spatial variation comes from the admin 1 level and the
remaining variation is split equally between the other two levels. When the
single-level model ’Admin 3’ is used to make estimates on the admin 1 level it
can not capture this correlation structure, and another weakness of the ’Admin
3’ model is that it will underestimate the standard deviations of the estimates.
In Figure 4.1 the results from applying the ’Admin 3’ model to the example
simulation are shown. For each admin 1 area the estimated values are plotted
together with 95% confidence intervals. Theoretically only 5% of the simulated
values should fall outside these confidence intervals, but as the plot shows this is
the case for ≈31% of the areas.

Figure 4.1: Prevalence estimates from the ’BYM - Admin 3’ model on the admin
1 level. The estimates are plotted along with 95% confidence intervals and the
correct, simulated values.

4.6 Model evaluation

Models are compared through two different criteria that measure the accuracy
of the estimated η(a) on the three levels a = 1, 2, 3. The first criterion is the
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mean-squared error (MSE) defined as

MSE(1)(η(1), η̂(1)) = 1
N1

N1∑
j=1

(η(1)
j − η̂

(1)
j )2,

MSE(2)(η(2), η̂(2)) = 1
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(η(2)
k − η̂

(2)
k )2,

MSE(3)(η(3), η̂(3)) = 1
N3

N3∑
l=1

(η(3)
l − η̂

(3)
l )2,

on administrative level 1, 2 and 3, respectively. Here, η(a) are the true values
and η̂(a) are the means of the estimated posterior distributions. The MSE is
useful to see the accuracy of the point predictions of the models. However,
it does not consider the distribution of the estimates and whether or not
the real η(a) values are deemed as plausible. For example, there can be
two different estimates of a parameter with real value 2, with two different
distributions such as in Figure 4.2. The model that produced the estimate with
the mean closest to 2 is the preferred one if only MSE is used as a criterion.
Yet the other estimate would in many cases be the preferred one as it has a
much more realistic variance. This motivates another choice of criterion for
model evaluation that can take into consideration the distribution of the estimates.

The second criterion is the continuous rank probability score (CRPS). It is
calculated as

CRPS(1)(η(1), F̂
(1)) = 1

N1
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j (z) − 1{z ≥ η
(1)
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(2)
k })2dz,

CRPS(3)(η(3), F̂
(3)) = 1

N3

N3∑
l=1

∫
R
(F̂ (3)

l (z) − 1{z ≥ η
(3)
l })2dz,

where F̂
(a) denotes the posterior cumulative distribution of η(a). This is a proper

scoring rule that is commonly used to compare predictive distributions (Matheson
and Winkler, 1976). The goal is then to identify which models perform best
with respect to both MSE and CRPS, where a low CRPS is the most important
metric.



CHAPTER 4. BINOMIAL SPATIAL REGRESSION MODELS 37

0

1

2

3

4

0 1 2 3 4
x

y1

Figure 4.2: Distribution of two example estimates of a parameter where the real
value is 2.

In Chapter 6 the spatial models are applied to the real DHS dataset
from India. When working with real data the correct values of the model
parameters are unknown, as opposed to during a simulation study. Thus the
interest lies in observing the accuracy of the estimates when compared to direct
estimates. This is done using 10-fold cross-validation. Traditionally, this means
that the data is split into 10 groups, with each group containing the data from
≈10% of the admin 3 areas. The models are fitted to data from 9 of the groups,
and then used to make estimates on the tenth group acting as a validation set.
These estimates are compared to the ’real’ values (direct estimates) using MSE or
CRPS. The process is repeated 10 times, with each of the 10 groups acting as the
validation set one time each.

However, we do not have reliable direct estimates in a large proportion
of the admin 3 areas. Therefore, only admin 3 areas with a sufficient amount
of data to use for direct estimates are included in the validation sets. 10-fold
cross-validation is then performed as such:
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• Split the admin 3 areas into two sets. Set 1 contains the areas that have
reliable direct estimates and set 2 contains the remaining areas.

• Split set 1 into 10 groups as in traditional cross-validation.

• Fit the model to the data from 9 of the 10 groups from set 1 and all of set 2.

• Make estimates in the areas from the last group from set 1 and compute
MSE and CRPS on these areas.

• Repeat for each of the ten groups.

The models applied to the admin 3 level in India are then evaluated by the two
metrics

MSE(3) = 1
10

10∑
i=1

MSE(3)(ηi
(3), η̂i

(3))

CRPS(3) = 1
10

10∑
i=1

CRPS(3)(ηi
(3), F̂i

(3)),

where ηi
(3) are the direct estimates in the admin 3 areas in group i, and η̂i

(3)

and F̂i
(3) are the means and cumulative distributions of the estimated posterior

distributions in the same areas, which are estimated by a model that is fitted to
all data except that from areas in group i.

During the process of cross-validation on admin 3 level, error estimates
are also made on the admin 1 and admin 2 levels. This is done by keeping the
estimated η̂(3) after each iteration of the cross-validation and performing the
following steps:

• Use η̂(3) to estimate η̂(1) on the admin 1 level using Equation (4.6) and
η̂(2) on the admin 2 level using Equation (4.7).

• Split the admin 1 and admin 2 areas into two sets using the same criteria
as for the admin 3 areas, where set 1 contains areas with reliable direct
estimates.

• For each of the 10 iterations, compute

MSE(1)(η(1), η̂(1)),

CRPS(1)(η(1), F̂
(1)),

MSE(2)(η(2), η̂(2)),
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CRPS(2)(η(2), F̂
(2)),

where η(1) and η(2) are direct estimates in the admin 1 and admin 2 areas
in set 1, and η̂(1), F̂

(1), η̂(2) and F̂
(2) are the means and cumulative

distributions of the estimated posterior distributions in the corresponding
areas on the admin 1 and admin 2 levels, respectively.

• Compute the final MSE and CRPS on each level as the means of the resulting
MSE and CRPS from the 10 iterations.

Using the results we can find out if the models are likely to make accurate estimates
of variables in small areas, where direct estimates are unfeasible, while being
consistent with reliable direct estimates on the coarser administrative levels.

4.7 Implementation details
The R package called Template Model Builder (TMB) is used as the main tool
to achieve fast parameter estimation for the binomial spatial regression models.
The package combines Automatic Differentiation with the Laplace approximation
along with techniques for parallel computations. AD is implemented using
operator overloading in C++ from the package CppAD. From this the gradient
and Hessian are obtained for further use in the Laplace approximation to the
marginal likelihood. TMB allows the user to differentiate between random and
fixed effects, so that the random ones can be integrated out when evaluating the
marginal likelihood.

In addition, the implementation of TMB includes automatic sparsity de-
tection which enables much faster computations when performing operations on
matrices. The sparse matrix operations are further accelerated through the use of
parallel basic linear algebra subprograms (BLAS). This is especially important
when working with GMRFs because of the heavy computations needed to perform
Cholesky factorization and the reverse subset algorithm, which can be done in
parallel.

When using the TMB package, the pre- and post processing of data has
to be done in R, whereas the model definitions, likelihood functions and reporting
of parameter estimates are implemented using C++. Despite the fast computations
that follow from this, it is required that all precision matrices, weights and input
data are generated and correctly formatted before sending them into C++. Thus
there is a lot of preparatory, time consuming work that needs to be done before
the TMB package becomes useful.
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The first step of implementation is to generate the precision matrices from all
three administrative levels and scale them properly. To do this the neighbourhood
structures must be created, while not including island regions. Here it is important
to store the indices of the removed regions, as the same regions must not be in-
cluded when reading data from other sources, such as the DHS and WorldPop data.

DHS data is read to count and map the responses to the administrative
areas. This also entails challenges as the survey data contains 5972 columns
and over 800 000 rows. When reading this data one must be careful only to
count respondents within the chosen age groups, that do not live on an island
territory. The same measures are taken when reading the WorldPop data, which
also consist of very large data files. India has an area of 3 287 000 km2, meaning
that on a 100m×100m grid there are over 300 million grid cells that all have
to be counted and mapped to their respective admin 1, admin 2 and admin 3 areas.

After having prepared all the necessary data and run the model through
TMB, there is some post processing that needs to be done. This includes
extracting all parameters of interest from C++ along with their standard deviations,
computing MSE and CRPS from the estimates on the three administrative levels,
and storing all the results.

As a result of everything that has to be in place before applying the spa-
tial models, it can take multiple days to get any results despite the speed of the
implementation in TMB. This is not only the case in India, as the same data
processing is necessary in all countries where these models are useful. On the
other hand, most of the time consuming data processing only has to be done
once for a single country. Thus, after everything is prepared, TMB is very useful
to quickly run different models on lots of datasets. Therefore, it is possible to
conduct the simulation study with hundreds of simulations in India, which is
presented in the following chapter.
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Simulation

5.1 Purpose
In this chapter a simulation study is conducted to compare the predictive accuracy
of the proposed spatial models. The goal is to determine whether or not a multi-
level model should be used to make estimates on all levels rather than single-level
models when there is variation on multiple administrative levels. In addition we
are interested in observing if the model parameters are correctly estimated for
the multi-level model, especially the parameters for the covariates. Lastly, the
multi-level model is tested with different choices of prior distributions for the
weights w1, w2 and w3, so that the effect of the priors on predictive accuracy and
parameter estimation can be observed. A set of key questions is specified as the
main focus during analysis of the results:

• Do estimates from the multi-level model generally have higher predictive
accuracy than from the single-level models?

• How does the choice of prior distribution of the weights affect parameter
estimation?

• Are the models able to correctly estimate the covariate parameters in β?

• How significant is the impact on predictive accuracy when using reduced
amounts of simulated data to fit the models?

By using the TMB library to run simulations and evaluate the models, the
techniques for fast computations described in Section 3.7 are also put to the test.
This allows us to observe how the implementation of these techniques enables
extensive testing of the spatial models, and to quantify the approximate time
needed to fit the models to real data.

41
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5.2 Simulation setup
To create realistic simulations of prevalence mappings across India, the neighbour-
hood structures on all three administrative levels are extracted from shapefile
data obtained from the Database of Global Administrative Areas (GADM). The
neighbourhood structures are used to create precision matrices for the Besag com-
ponents in the multi-level model defined in (4.5) and the single-level models. After
deciding upon appropriate values for the parameters µ, κ, w1, w2, w3, ϕ1, ϕ2, ϕ3, β,
the GMRFs u(1), v(1), u(2), v(2), u(3), v(3) are simulated and used to compute
η(3) on admin 3 level. Then a number of trials n

(3)
l is chosen in each admin

3 area l, and the number of positive responses is simulated from Y
(3)

l |η(3)
l ∼

Binomial(n(3)
l , logit−1(η(3)

l )). After simulation, the vector of numbers of responses
in each admin 3 area n(3), and numbers of positive responses Y (3) are used as
inputs to fit the models that estimate η(3).

Selected models
There is a total of eight different models used in the simulation study. The first
three are the single-level models named ’Admin 1’, ’Admin 2’ and ’Admin 3’ that
are presented in Section 4.2.1, with covariates included. The remaining five are all
based on the multi-level model in (4.5) using different choices for the parameter
vector α that controls the prior distribution of the weights w1, w2 and w3. The
first of these models is called ’ML base’, which has a flat prior α = [1, 1, 1]. Thus
there is no bias towards any of the weights which means that this will serve as a
’control’ model when observing the effects of other priors.

The next three models are assigned the parameters α = [7, 1, 1], α = [1, 7, 1]
and α = [1, 1, 7]. This makes them have a bias towards assigning weight to
the variation from the administrative level that has the highest value in α.
They are named ’ML prior 1’, ’ML prior 2’ and ’ML prior 3’, respectively. The
parameters are chosen with the expectation that they are large enough to give
observable differences in results between the models, while not introducing
unrealistically high bias. Prior distributions of the weights in ’ML prior 1’ are
plotted in Figure 5.1. Here, the initial bias towards variation on the admin 1
level is clear, and similar plots can be made that show an equal bias towards vari-
ation on the admin 2 level in ’ML prior 2’, and on the admin 3 level in ’ML prior 3’.

For the final model the parameters α = [3, 3, 3] are used. This entails a
bias towards having equal weights between the variation on each administrative
level. Thus it is less likely to assign negligible weight to any of the three levels,
and is expected to perform better when there is in fact considerable variational
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effects happening on every level.

Figure 5.1: Prior marginal distributions of the weights w1, w2 and w3 using the
parameters α = [7, 1, 1].

Variables between selected scenarios
For the weights w1, w2 and w3 a set of different combinations are tested, similar
to what is done for α. Varying these weights will firstly enable us to see how
the multi-level model compares to the single-level models in different scenarios.
Secondly, we can see the effect the choice of prior distribution of the weights has
when accurate and inaccurate priors are used in the same scenarios. The sets of
weights that are used are

wAdm1 = {w1, w2, w3} = {0.8, 0.1, 0.1},

wAdm2 = {w1, w2, w3} = {0.1, 0.8, 0.1},

wAdm3 = {w1, w2, w3} = {0.1, 0.1, 0.8},

wEven = {w1, w2, w3} = {0.4, 0.3, 0.3}.

(5.1)

These weights are used so that the majority (80%) of the total variance comes
from either of the three administrative level, and so that the variance is more
evenly distributed when using the last combination of weights. Thus each
of the multi-levels models will have a prior α that is fairly accurate in at
least one scenario. However, the prior expected values are deliberately set
to not be 100% correct for any set of weights, as choosing perfectly accurate
priors is unrealistic when working with real data. Also, it is interesting to
see if the slight inaccuracy of the prior is made up for during parameter estimation.
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The final aspect of the simulation study that is experimented with is the
amount of simulated trials within each area, n(3). It is interesting to see how
this affects the predictive accuracy, as the amount of available data varies a lot
in the real world. For example, the DHS survey in India has significantly more
responses related to education than employment among females in the 20-39 age
group. Three levels of simulated data are used to research how much of an impact
this difference has on predictions.

First, 100 trials are simulated in each admin 3 area as this approxim-
ately corresponds to the amount of responses on education from the DHS survey,
with the main difference being that responses are not evenly distributed in the
survey. Second, the number is reduced to 50 trials in each admin 3 area, with a
randomly selected 10% of the areas having 0 trials. This reflects how surveys
often lack responses from some areas. Lastly, the amount of data is reduced
even further to 20 trials in each admin 3 area, and 25% of them having 0 trials.
This leads to slightly less total trials than the amount of responses concerning
employment in the DHS survey.

Choice of values for constant parameters
The remaining parameters µ, κ, ϕ1, ϕ2, ϕ3 and β are all kept constant throughout
the simulation study. Although experimentation with these parameters also can
lead to findings of interest, this has already been done in the project by Giørtz
(2022). Keeping them unchanged allows us to focus on effects of the parameters
that are more important for answering the questions posed in this thesis. Values
for the parameters are chosen to achieve simulations that reflect realistic data,
such as the data on education from the DHS survey in India. Based on the results
from the direct estimates presented in Figure 2.2, the prevalences of completed
secondary education typically lie between 0.5 and 1. Thus the intercept is set to

µ = 0.8,

where the resulting prevalence is logit−1(0.8) = 0.69. Further, the precision
parameter is set to

κ = 0.5,

giving a standard deviation on logit scale equal to 1.41 which is close to that of
the usable direct estimates.

The parameters ϕ1, ϕ2 and ϕ3 control the proportion of variance coming
from the Besag component and i.i.d. component on each of the administrative
levels. In the simulation study we want there to be clear spatial correlation
structures, so that the weight of the i.i.d. components should be kept relatively
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low. However, having no random effect would be unlikely in any realistic case.
Therefore, the choice is to set

ϕ1 = ϕ2 = ϕ3 = 0.8,

meaning that 80% of the total marginal variance from the spatial components in
the simulation is structured variation from the Besag components.

Finally, in order to choose β it is important to remember that the main
part of the models presented in this thesis is the spatial components. Thus it is
undesirable that the variation that is due to covariates dominates the spatial
variation. However, the weight of covariates should be significant enough for
it to be useful to include them in the models. The choice is to fix β so that
approximately 25% of total variation comes from covariates, and the remaining
75% comes from spatial effects. From the model in Equation (4.5) the variance is

Var(η(3)
l ) = βT Var(G)β + 1

κ
, (5.2)

assuming that the covariates and spatial effects are independent, and using the
empirical covariance matrix of the covariate values in G. Through experimentation
it was found that using

β = [1, 0.75, 0.5]

gives the desired distribution of variance when κ = 0.5. Here, the first parameter
β0 = µ defaults to the weight of the intercept, and the second and third
parameters βp and βn belong to the logarithms of the covariates ’population
density’ and ’nighttime light per person’, respectively.

In the following sections the different models are applied to 100 simula-
tions of each combination of the suggested amounts of data and choice of
weights {w1, w2, w3}. The predictive accuracy of the models are compared in
each scenario based on average MSE and CRPS. Plots of the estimated model
parameters from the multi-level models are also presented to see whether or not
the models are able to estimate the parameters used for simulations, and help
observe the effects of using different priors.
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5.3 Comparison of multi-level and single-level
models

We begin by looking at how the multi-level model performs in comparison to
the single-level models, without using any informative priors for the model
parameters. The performance of the multi-level model is assessed through
measurements of mean MSE and CRPS. These are calculated based on 100
simulations of 100 trials in each admin 3 area, and repeated for all of the
four weight combinations in Equation (5.1). The results on the admin 1 level,
admin 2 level and admin 3 level are shown in Table 5.1, Table 5.2, Table
5.3, respectively. We can first observe that the ’Admin 1’ model has on
average the highest errors, especially in terms of CRPS, when the majority
of variation does not happen on the admin 1 level. It is also clear that
the ’Admin 1’ model is not a good option for estimation on the admin 2 or
admin 3 level, as the errors here are significantly higher than from the other models.

A closer look at the errors on admin 3 level from Table 5.3 shows that
the multi-level model performs better than the ’Admin 2’ model in all four
scenarios. The ’Admin 3’ model has only slightly lower MSE than the multi-level
model when using the weights wAdm3, but is otherwise also outperformed by it.
Meanwhile, there are no scenarios in which the multi-level model has significantly
higher errors than any of the single-level models. This is clear evidence that
a multi-level model is a more reliable choice when modelling data where the
distribution of variation is unknown.

Similar comparisons are also done with reduced amounts of simulated
data. In these cases the multi-level model still outperforms the single-level models,
with the differences in MSE and CRPS being even more evident when applying
the models to smaller sets of data. For a complete overview of the simulations
that were run, results from each of the models in all different scenarios are
collected in Appendix A. Further comparison of multi-level and single-level
models can also be found in the project thesis Giørtz (2022).
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Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Admin 1 0.47 0.83 0.83 0.68 0.91 1.38 1.44 1.21
Admin 2 0.60 0.39 0.51 0.50 0.86 0.69 0.87 0.80
Admin 3 0.90 0.45 0.38 0.49 1.06 0.72 0.68 0.74
ML Base 0.42 0.40 0.41 0.37 0.69 0.67 0.69 0.67

Table 5.1: Error estimates of the estimated η on admin 1 level from the single-level
models and the multi-level base model when applied to simulations with each
weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Admin 1 1.88 8.93 7.37 5.44 3.16 7.21 6.40 5.53
Admin 2 0.53 0.62 0.91 0.67 1.08 1.16 1.50 1.24
Admin 3 0.54 0.68 0.62 0.52 1.09 1.21 1.11 1.08
ML Base 0.36 0.62 0.66 0.49 0.93 1.12 1.12 1.06

Table 5.2: Error estimates of the estimated η on admin 2 level from the single-level
models and the multi-level base model when applied to simulations with each
weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Admin 1 2.33 9.35 11.72 6.95 3.64 7.49 8.41 6.44
Admin 2 0.89 0.94 5.73 2.26 1.86 1.89 5.25 3.16
Admin 3 0.57 0.73 0.81 0.66 1.28 1.41 1.48 1.37
ML Base 0.44 0.56 0.82 0.63 1.14 1.23 1.47 1.34

Table 5.3: Error estimates of the estimated η on admin 3 level from the single-level
models and the multi-level base model when applied to simulations with each
weight combination.

5.4 Effect of choice of priors on predictive accur-
acy

Four variations of the multi-level model are suggested as alternatives to the ’ML
base’ model. These have different choices of parameters to the prior distributions
of the weights w1, w2 and w3, and are described in Section 5.2. We want to
investigate how the choice of priors affects the predictive accuracy of the model in
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different scenarios. This is done by applying the models to the same simulations
as in Section 5.3. The results on the admin 1 level, admin 2 level and admin 3
level are shown in Table 5.4, Table 5.5, Table 5.6, respectively.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

ML Base 0.42 0.40 0.41 0.37 0.69 0.67 0.69 0.67
ML Prior 1 0.40 0.38 0.38 0.37 0.67 0.66 0.68 0.68
ML Prior 2 0.39 0.33 0.41 0.35 0.69 0.66 0.70 0.65
ML Prior 3 0.45 0.35 0.36 0.46 0.71 0.66 0.66 0.71
ML Prior 4 0.39 0.34 0.40 0.38 0.67 0.66 0.70 0.69

Table 5.4: Error estimates of the estimated η on admin 1 level from the multi-level
models when applied to simulations with each weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

ML Base 0.36 0.62 0.66 0.49 0.93 1.12 1.12 1.06
ML Prior 1 0.36 0.59 0.59 0.53 0.94 1.11 1.09 1.07
ML Prior 2 0.37 0.61 0.65 0.49 0.95 1.12 1.12 1.05
ML Prior 3 0.37 0.56 0.56 0.52 0.95 1.10 1.08 1.06
ML Prior 4 0.36 0.61 0.66 0.54 0.94 1.12 1.12 1.08

Table 5.5: Error estimates of the estimated η on admin 2 level from the multi-level
models when applied to simulations with each weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

ML Base 0.44 0.56 0.82 0.63 1.14 1.23 1.47 1.34
ML Prior 1 0.44 0.54 0.80 0.65 1.14 1.23 1.47 1.36
ML Prior 2 0.44 0.55 0.82 0.63 1.15 1.24 1.48 1.34
ML Prior 3 0.45 0.53 0.78 0.63 1.15 1.22 1.46 1.34
ML Prior 4 0.44 0.55 0.83 0.65 1.15 1.24 1.49 1.36

Table 5.6: Error estimates of the estimated η on admin 3 level from the multi-level
models when applied to simulations with each weight combination.

The results show only small differences in predictive accuracy for any choice of
prior distribution. For example, when measuring error on the admin 3 level from
the ’ML Prior 3’ model on data simulated with the weights wAdm3, one could
expect a more significant decrease in error, as the model has an accurate prior.
Table 5.6 shows a maximum relative difference in MSE between the ’ML Prior 3’
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and ’ML Prior 4’ models of approximately 5%. Thus it seems as though setting
informative priors has a limited effect in terms of obtaining accurate predictions.
Scaling up the parameter vector α decreases the variance of the priors, similar to
in Figure 3.3. This leads to more strict informative priors, that can have more
impact on predictions. However, significantly scaling α implies high certainty of
the values of the weights {w1, w2, w3}, which is unlikely to be justified in any
realistic case. Therefore, it is not a priority to investigate this further.

On the other hand, sometimes we are not only interested in predictions,
but also in parameter estimates in order to help understand the structure of
the distribution of variation across different levels. Herein lies also possible
explanations as to why the choice of priors have so little effect on MSE and
CRPS. Thus we look further into the estimation of model parameters from the
different suggested models.

5.5 Estimation of model parameters using differ-
ent priors

By setting informative priors through the use of the Dirichlet parameters α, bias
is introduced during estimation of model parameters. Not only does it affect
estimation of the directly targeted parameters w1, w2 and w3, but the bias can
also have an added effect onto other parameters. In order to observe changes in
parameter estimation from using different priors, we first look at how the ’ML
Base’ model without any informative priors performs.

Figure 5.2 and Figure 5.3 show parameter estimates from the ’ML Base’
model in two different scenarios. The figures show that the model is able to
accurately estimate the parameters µ, βp and βn in both cases, and this was
a trend throughout the simulation study. Thus it is clear that the model is
able to capture the effect of covariates when they contribute to a considerable
proportion of the variation in the data. As there were only minor differences
between estimates of these three parameters in all the simulations, the inclusion
of covariates is not discussed further in this chapter. Instead, the importance of
including covariates is explored further when working with real data in Chapter 6.

Another takeaway from the box plots is that the model struggles with
estimating the weights between the Besag and i.i.d. components on the coarse
administrative levels. Especially the parameter ϕ1 is rarely accurate. This is due
to there only being 39 admin 1 areas that are used, so that the amount of data
points is too small to properly capture the correlation structure between them.
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Figure 5.2: Estimated parameters using the ’ML Base’ model on 100 different
simulations with {w1, w2, w3} = {0.8, 0.1, 0.1}, where 100 trials were simulated in
each admin 3 area. The actual values that were used for simulation are marked
with the red lines.

Figure 5.3: Estimated parameters using the ’ML Base’ model on 100 different
simulations with {w1, w2, w3} = {0.1, 0.1, 0.8}, where 100 trials were simulated in
each admin 3 area. The actual values that were used for simulation are marked
with the red lines.
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In Figure 5.3 the weights {w1, w2, w3} = {0.1, 0.1, 0.8} are used for simulation.
Thus the proportion on variation coming from the admin 1 and admin 2 levels
is very small, making it substantially harder to accurately estimate ϕ1 and
ϕ2. Underestimation of these weight means that the i.i.d. components of the
BYM models are assigned too much weight. Thus it seems as if the model has
overestimated the total amount of randomness. However, this is compensated
for through increasing the estimated value of κ, which makes the total variation
decrease.

The results showed multiple ways in which estimation of κ varies depending on
estimates of the various weight parameters. At first, the inverse proportionality
with estimates of ϕ1, ϕ2 and ϕ3 is clear. In addition, in Figure 5.4 we can see
that when the prior is erroneously biased towards w1, there is a direct impact on
the estimates of w1, w2 and w3, but this also leads to smaller values of κ. This
occurs when too much weight is assigned to the coarse administrative levels, as
variation from these levels leads to less randomness, which in turn is compensated
for through underestimation of κ. The effects of the weights on the randomness

Figure 5.4: Estimated parameters using the ’ML Prior 1’ model on 100 different
simulations with {w1, w2, w3} = {0.1, 0.1, 0.8}, where 100 trials were simulated in
each admin 3 area. The actual values that were used for simulation are marked
with the red lines.
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in the data is illustrated in Figure 5.5, where two simulations are created with
the same value of κ, but different sets of weights. There is clearly less total
randomness between the areas in the left plot where w1 is dominant, as the
within-state variation is much lower than in the right plot where w3 is dominant.

Figure 5.5: Two simulations of prevalence in India. The left plot was made with
the weights {w1, w2, w3} = {0.8, 0.1, 0.1}, and the right plot used {w1, w2, w3} =
{0.1, 0.1, 0.8}.

Finally, there is a clear trend among the models ’ML prior 1’, ’ML prior 2’ and
’ML prior 3’ that even when the models are correctly biased towards a weight
w1, w2 or w3 that is dominant, they tend to overestimate the weight towards
which they are biased. Thus using a prior that is expected to increase accuracy
of parameter estimation in a certain scenario may have the opposite effect. An
example of this phenomenon can be seen in Figure 5.6 and Figure 5.7. When using
a prior with bias towards w3, this weight is estimated too high, which was already
a problem for the ’ML base’ model in Figure 5.3. Thus the accuracy of parameter
estimation got worse even though the choice of prior is reasonable. However, as
the dominant weights were easily overestimated, using the prior α = [3, 3, 3] often
gave the best parameter estimates by counteracting this effect. This was especially
clear in cases where the weights for fine scale level were dominant, but the ’ML
prior 4’ model actually seemed to give either better or just as good parameter
estimates as the ’ML base’ model in all cases.
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Figure 5.6: Estimated parameters using the ’ML prior 3’ model on 100 different
simulations with {w1, w2, w3} = {0.1, 0.1, 0.8}, where 100 trials were simulated in
each admin 3 area. The actual values that were used for simulation are marked
with the red lines.

Figure 5.7: Estimated parameters using the ’ML prior 4’ model on 100 different
simulations with {w1, w2, w3} = {0.1, 0.1, 0.8}, where 100 trials were simulated in
each admin 3 area. The actual values that were used for simulation are marked
with the red lines.
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5.6 Predictions with reduced amount of simulated
data

In the final part of the simulation study we want to research how the performance
of the multi-level model varies when applied to data sets of different sizes. In
the previous sections, each simulation has consisted of 100 simulated trials
within each admin 3 area. We label this a ’large’ data amount to which
the model is expected to be fitted well. Two other data amounts are used
for the remaining simulations. The ’medium’ data amount consists of 50
simulated trials within each admin 3 area, but in a randomly selected 10%
of the areas there are 0 simulated trials. This is taken a step further in
the simulations with a ’small’ data amount. Here, there are 20 simulated tri-
als within each admin 3 area, with a randomly selected 25% of them having 0 trials.

The results on the admin 1 level, admin 2 level and admin 3 level from
the multi-level model using different data amounts are shown in Table 5.7, Table
5.8, Table 5.9, respectively. The errors are calculated as the mean error from
the five different versions of the multi-level model, each having one of the prior
distributions for the parameters specified earlier. There is a clear increase in
error when reducing the amount of data, which is to be expected. However, this
increase is actually slower than the increase that would occur when using direct
estimates on the same amount of data, even when disregarding the fact that zero
trials are simulated in a proportion of the areas.

For direct estimates the expected error can be approximated through the
variance

Var(η̂) = Var(p̂) ·
(

d

dp
logit(p)

)2
= 1

n
p(1 − p)

(
1
p

+ 1
1 − p

)2
.

To approximate this we simulate the prevalence in 105 independent areas, using
Equation (5.2) to obtain

p = logit−1(η), η ∼ N (µ, βT Var(G)β + 1
κ

) = N (0.8, 2.667).
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Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Large 0.38 0.34 0.40 0.38 0.68 0.67 0.70 0.70
Medium 0.74 0.56 0.57 0.65 0.95 0.86 0.89 0.93

Small 1.39 1.05 1.01 1.11 1.38 1.23 1.22 1.29

Table 5.7: Error estimates of the estimated η on admin 1 level aggregated from the
five multi-level models when applied to simulations with each weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Large 0.36 0.61 0.67 0.53 0.94 1.13 1.13 1.09
Medium 0.58 0.91 0.97 0.87 1.21 1.46 1.46 1.43

Small 1.00 1.71 1.65 1.56 1.61 2.07 2.02 1.99

Table 5.8: Error estimates of the estimated η on admin 2 level aggregated from the
five multi-level models when applied to simulations with each weight combination.

Model MSE (101) CRPS (101)
wAdm1 wAdm2 wAdm3 wEven wAdm1 wAdm2 wAdm3 wEven

Large 0.45 0.56 0.83 0.65 1.16 1.23 1.48 1.36
Medium 0.67 0.84 1.36 1.07 1.42 1.55 1.96 1.77

Small 1.06 1.43 2.53 1.87 1.79 2.03 2.75 2.37

Table 5.9: Error estimates of the estimated η on admin 3 level aggregated from the
five multi-level models when applied to simulations with each weight combination.

After simulating 105 prevalences, computing Var(η) for each of these and aggreg-
ating over the results, we get that for simulations with a large amount of data
(n = 100), medium amount of data (n = 50) and small amount of data (n = 20)

V̂ar(η)n=100 = 1.22 · 10−1,

V̂ar(η)n=50 = 2.43 · 10−1,

V̂ar(η)n=20 = 6.08 · 10−1,

respectively. Clearly, the errors from the multi-level model do not increase by
the same factor. This shows how using a model-based approach that can borrow
informational strength in space becomes an increasingly better option when the
amount of available data is small.

The tables show that the difference in predictive accuracy seems to be
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relatively substantial between the different amounts of data that were tested.
This is also the case when looking at a visualization of the estimated η̂ in Figure
5.8. Here it is also clear that the estimates are less accurate in areas without any
simulated trials. Corresponding plots when using other versions of the multi-level
model or different weight combinations are very similar as well. This shows that
the model is able to capture a substantial part of the correlation structure, even
when there is not much available data, but the accuracy of estimates is heavily
affected by the amount of data.

Figure 5.8: Simulated η on admin 3 level plotted against corresponding estimated
values from the ’ML prior 4’ model using different amount of simulated data as
input. The simulation is made with the weights {w1, w2, w3} = {0.4, 0.3, 0.3}.
The large data amount is used for the left plot, medium amount for the middle
plot and small amount for the right plot. Areas where no trials were simulated
are marked in red.



Chapter 6

Case study: DHS survey in
India

6.1 Purpose
Having seen that the multi-level model is able to produce accurate estimates on
simulated data, the model is also applied to data from the DHS survey conducted
in India between 2019 and 2021. The goal is first to see if the multi-level model
is able to produce useful estimates of the variables of interest on the three
administrative levels in India, where we also test the effect of removing covariates
from the model. We look at both the significance of the estimated parameters
for the covariates, and the difference in estimation error between the multi-level
model with and without covariates. Part of the validation process here is to
see the accuracy of estimates in areas where no data is available. This is done
using the technique presented in Section 4.6. Additionally, while applying the
models to the real DHS data we are able to measure the run time needed to fit
the models. Hence we can assess whether the computational techniques presen-
ted in Section 3.7 are sufficient to make the multi-level model applicable in practice.

The DHS data is also used as a means to compare the multi-level model
to the single-level models proposed in Section 4.2.1. They are compared in terms
of predictive accuracy to find out whether the multi-level model is the preferred
model choice when working with real data, as this can give different results than
when only using simulated data. In addition, the models are applied to smaller
subsets of the available data. Depending on the resulting performance, it can
be argued if it is possible to obtain sufficiently accurate estimates on admin 1
and admin 2 level with less survey data. This can then be used to decide how

57
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resources are best spent during planning of future surveys.

Finally, we also look into the insights that the estimated model paramet-
ers can give in the specific case of India, and how similar analysis can be
conducted on other data sets. This is because the purpose of using a multi-level
model is, besides accurate estimates, to understand the correlation structure
between variables in areas across the country .

6.2 Criteria for selecting data used for validation

In Section 4.6 it is explained that the models are evaluated on the real data
through cross-validation, where only areas with a sufficient amount of data are
used in the validation sets. This is because the ’real’ prevalences are not known,
so the models are validated by using direct estimates instead. Thus the areas
used for validation must have direct estimates that are reliable. In order to prop-
erly select these areas, the survey design and responses are taken into consideration.

The DHS survey data is split into responses from rural and urban parts
of India. There must be at least 3 clusters from rural parts and 3 clusters
from urban parts of an area for a direct estimate to be obtainable. Thus the
first part of selecting the areas is to filter out the ones without this amount of
clusters. In practice this can be done by computing direct estimates using the
survey package, as described in Section 2.2, and seeing which estimates have
unstable standard deviations. When there is an insufficient amount of clusters,
the computed standard deviations either tend to 0 or become very high. Thus we
only consider areas where the direct estimates have standard deviations between
0.01 and 1 when creating validation sets.

In addition, part of the survey design is scaling of the observations ac-
cording to the method described in Section 2.2. This entails that both the
number of responses and number of positive responses within each admin 3 area
change significantly after scaling. To further ensure reliable direct estimates,
another criterion for the selected areas is that they must have a total of more
than 20 responses after scaling. As a result, 2000 out of the 2308 admin 3 areas
(excluding island territories) are used for validation of the models when applied
to data on educational level. For the data on employment, only 919 admin 3
areas qualify to be included in the validation sets.
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6.3 Demonstration of multi-level model

The multi-level model with covariates included, specified in Equation (4.5), is
first run on the complete sets of data on educational level and employment.
In Figure 6.1 the estimates from the model of the prevalence of completed
secondary education in India are plotted along with the coefficients of variance
for each estimate on the admin 1, admin 2 and admin 3 levels. Similar
plots for current employment are shown in Figure 6.2. Here it is of interest
to determine whether the model-based method provides more useful estim-
ates than commonly used methods. therefore, the plots are compared to the
corresponding plots from using direct estimates, which are presented in Section 2.2.

When compared to the plots of direct estimates, the results show very
little difference in the estimated prevalences on admin 1 and admin 2 level.
However, the coefficients of variance are not as similar. Especially in the center
part of India, where there are many small neighbouring regions, the coefficients
of variance are smaller for the model-based estimates than the direct estimates.
Conversely, in the north-eastern part of India there are not as many small areas,
and this part of India is almost disconnected from the rest. Here, the coefficients
of variance are significantly higher for the model-based estimates. This shows a
major weakness of the spatial regression methods used in the model, which is
that the accuracy of estimates gets worse as the sparsity of the neighbourhood
structures increases. Still, the main advantage of the model-based method is that
we are able to obtain estimates in all admin 3 areas, which is clear from the figures.

In Table 6.1 the error estimates resulting from cross-validation of the
multi-level model on the DHS data are displayed together with corresponding
results from the model without covariates. It is immediately clear from the
results that the errors are significantly lower on the admin 1 and admin 2 levels
than in any scenario from the simulation study, such as in Section 5.3. This
happens despite the fact that approximately the same amount of data is used.
The difference lies in how data is distributed across the administrative levels
during the simulation study compared to how the DHS survey data is distributed.

The DHS survey conducted in India between 2019 and 2021 was designed specific-
ally to obtain accurate estimates on admin 1 and admin 2 level. Respondents
from the survey are somewhat evenly split between areas on these levels, whereas
the simulated data in Chapter 5 are instead evenly split between areas on admin
3 level. These two ways of distributing data are far from equal, because the
amount of admin 3 areas that make up either an admin 1 or admin 2 areas varies
a lot. For example, the capital of India, New Delhi, is considered an admin 1 area,
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Variable Covariates MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Education Yes 0.08 0.19 2.34 0.39 0.73 2.45
No 0.06 0.19 2.83 0.37 0.73 2.83

Employment Yes 0.15 0.52 4.16 0.61 1.40 3.12
No 0.15 0.56 4.20 0.61 1.41 3.14

Table 6.1: Error estimates of the estimated η from the multi-level model on the
three administrative levels. The estimates are made based on a selection of direct
estimates with low uncertainty for each of the two variables of interest.

admin 2 area and admin 3 area on its own. Considering the part of the simulation
study where a ’Large’ amount of data was simulated, this means that only 100
out of the 230800 simulated responses belonged to the admin 1 area New Delhi.
When having admin 1 areas with only 100 responses, it cannot be expected to get
accuracies as low the ones in Table 6.1 on admin 1 level. This is not the case in
the survey data, as 6387 females between the ages 20 and 39 responded to the
survey in New Delhi. This is a way higher number than in any other admin 3
area, with the second most responses from an admin 3 area being 1545. This
shows how the survey is designed specifically to ensure enough responses in each
admin 1 area, rather than evenly distributing responses between admin 3 areas.

Shifting focus to the error estimates on admin 3 level, the results are rel-
atively high errors compared to corresponding errors from the simulation study.
Despite higher errors, the resulting estimates are still useful. The errors from
the estimates regarding educational level correspond to an average error of
approximately ±6.5 percentage points when converted to a probability scale, and
similarly ±8.2 percentage points for the estimates regarding current employment.
The CRPS scores also indicate that estimates with reasonable standard deviations
are produced for both of the variables. Thus one can argue that the estimates on
admin 3 level are useful for the purpose of making data driven decisions for small
regional governments, as long as the uncertainty is also taken into consideration.

The estimated distributions of the parameters β in the multi-level model
in Equation (4.5) can be used to assess the effect of including the covariates
presented in Section 2.3. Table 6.2 shows estimates of the precision parameter
and covariate parameters, along with the standard deviations of the estimates.
Using Equation 5.2 to look at the two components of the variance, it can be found
that, according to the estimated parameters, covariates make up approximately
9% of the total variation in the data on education, and approximately 3.7% in
the data on employment.
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This reflects the results in Table 6.1, where the errors on admin 3 level
are higher when covariates are not included, but for employment the difference is
negligible. Thus the results indicate that including the right covariates has a
positive effect on the accuracy of estimates, but the spatial components of the
model are still the most important when working with this data. Note that the
intention in this thesis is to investigate if the inclusion of covariates works as an
additional component in the multi-level model, not to find the ideal covariates for
modelling the two variables of interest. However, this is could be done through
experimentation with a wider range of covariates and significance tests using the
estimated parameter values and standard deviations.

Variable E(κ) SD(κ) E(βp) SD(βp) E(βn) SD(βn)
Education 1.113 0.131 0.305 0.019 0.183 0.029

Employment 1.886 0.177 -0.120 0.025 0.039 0.042

Table 6.2: Estimated values and standard deviations for the precision parameter
κ and parameters for the log transform of the covariates ’population density’ and
’nighttime lights per person’, denoted as βp and βn, respectively.

When applying the multi-level model to the variables of interest, the average run
time needed to produce estimates in all admin 3 areas was 12 minutes and 20
seconds for the prevalence of completed secondary education, and 9 minutes and
3 seconds for the prevalence of current employment. This is definitely acceptable
times to make estimates, and shows that it would not take long to run the model
on similar variables from the available DHS data in a range of countries. Also,
India has a complex administrative structure compared to many other countries
in the world. Thus running the model on data from other countries is likely to be
even faster.
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Figure 6.1: Estimates from the multi-level model of prevalences (left side) and the
associated coefficients of variance (right side) of completed secondary education
in all admin 1 areas (top row), admin 2 areas (middle row) and admin 3 areas
(bottom row).
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Figure 6.2: Estimates from the multi-level model of prevalences (left side) and the
associated coefficients of variance (right side) of current employment in all admin
1 areas (top row), admin 2 areas (middle row) and admin 3 areas (bottom row).
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6.4 Comparison to single-level models with re-
duced data sets

The models are compared through the accuracy of their prevalence estimates on
logit scale on each administrative level, similarly to in Chapter 5. Estimates are
made by fitting the models to 50% of the available DHS data on education and
employment, and producing separate estimates for each administrative area on all
three levels. The estimates are compared to direct estimates in the corresponding
areas, which are made using the remaining 50% of the data. Data used for
model-based estimates and direct estimates is divided through randomly selecting
half of the clusters from the survey and using data from those clusters in the
model-based estimates, while data from the remaining clusters is used for direct
estimates. MSE and CRPS is computed using only areas with reliable direct
estimates, as described in Section 6.2. To ensure accurate error estimates, this
process is repeated 10 times, with the data being randomly split in half anew each
iteration. Then the average MSE and CRPS from each of the models are computed.

Results from the multi-level and single-level models are presented in Table 6.3
and Table 6.4, with the tables representing results on the data on education and
employment, respectively. The observant reader can notice that the errors from
the multi-level model are significantly lower on admin 3 level than they were
in Section 6.3. This is due to the change in selection of training and testing
data. For the errors in Table 6.1, the models are fitted to training data where
all observations from areas is the test set are removed. For the results in the
tables below, data is selected based on randomly selected clusters instead of areas,
meaning that most areas in the test set still have observations that are used to fit
the models.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 0.11 2.49 4.24 0.53 3.15 3.82
Admin 2 0.21 0.40 1.97 0.68 1.05 2.29
Admin 3 0.16 0.38 0.98 0.60 1.03 1.61

Multi-level 0.12 0.36 0.97 0.53 1.02 1.61

Table 6.3: Error estimates of the estimated η from each of the models on the
three administrative levels. The errors in this table were calculated from running
the models on the real DHS data on education.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 0.21 2.27 4.29 0.76 2.67 3.54
Admin 2 0.42 1.09 2.90 0.96 1.84 2.73
Admin 3 0.33 1.08 1.52 0.91 1.88 2.11

Multi-level 0.23 1.04 1.57 0.78 1.85 2.13

Table 6.4: Error estimates of the estimated η from each of the models on the
three administrative levels. The errors in this table were calculated from running
the models on the real DHS data on employment.

Based on the error estimates, it is clear that none of the single-level models
noticeably outperform the multi-level model on any level. However, the accuracy
of the single-level models is very similar on the levels they are mainly intended,
compared to that of the multi-level model. That is, using the ’Admin 1’ model
for estimates on the admin 1 level and so on, seem to give just as good estimates
as the multi-level model. It is then a question of whether it is preferred to
apply simple models for more explainable estimates on each level separately,
or to apply a more complex model to ensure consistency between estimates on
different levels and allow for more insight into the correlation structure of the data.

Finally, the multi-level model seems to be able to produce accurate es-
timates on the admin 1 and admin 2 levels, even when only fitted to data from
50% of the clusters in the DHS survey. This means that when only estimates
on coarser levels are of interest, especially on the admin 1 level, it is possible to
spend less resources on the survey and still get good results. However, this all
depends on how accurate the recipients of the estimates need them to be, which
has to be taken into consideration when designing the survey.

6.5 Interpretation of estimated model parameters
An advantage of applying the multi-level model to real data sets is that the
estimated model parameters can be used to get a better understanding of
the structure of the variation of a variable across a country or region. For
example, when applied to the data on education, the multi-level model estimated
the weights E({w1, w2, w3}) = {0.339, 0.051, 0.610} with standard deviations
SD({w1, w2, w3}) = {0.072, 0.026, 0.073}. The weights represent the proportional
contribution of each administrative level to the total marginal variance of the
spatial model components. This can then be interpreted as a strong indication
that most of the variation happens on the admin 3 level, while variation on the
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admin 1 level also has a significant impact. However, the simulation study showed
that the parameter estimates are likely to be somewhat inaccurate, despite the
relatively low estimated standard deviations of the weights. This is important
to take into consideration before drawing any conclusions. Still the results are
reliable enough to create an overall picture of how educational levels varies across
different administrative borders.

The parameters κ and β can be used to estimate the marginal variance
of the variable of interest using Equation (5.2). This is a way to measure how
large the differences between different parts of the country currently are, which is
useful as many countries strive to reduce differences among the population. The
covariate parameters βp and βn also provide a simple way to see if the covariates
are negatively or positively correlated with a variable, and to what degree. For
example, Table 6.2 shows that a high population density is positively correlated
with educational level, meaning that investing in the expansion of urban areas
can help boost educational level across areas.



Chapter 7

Discussion

We have been able to develop a fast multi-level model for small area estimation
that is a good alternative to traditional methods. Both the simulation study and
case study on India provide results that clearly show that the multi-level produces
estimates that are as good or better than the single-level models when the data
has variation on multiple spatial scales. None of the single-level models could
consistently compete with the multi-level model in all scenarios, and seem to only
be preferable model choices when a large emphasis is placed on using models of
lower complexity. However, the accuracy of estimates from the multi-level model
varied significantly between different scenarios. It was demonstrated that the
errors increase when a large proportion of variation happens on the fine-scale
administrative levels, and that the amount of data used to fit the model has a
great impact on the accuracy of the estimates.

On the other hand, having small amounts of available data is a big part
of the motivation behind developing the spatial model in the first place. Therefore,
it is interesting to see that the multi-level model can produce useful estimates
with the small amounts of data, depite the reduction in accuracy that comes
from scarce training data. In Section 2.2 it is illustrated that direct estimates are
insufficient when making estimates on a fine scale when many areas have little
to no available data. We also saw in Section 5.6 that as the amount simulated
data decreases, the expected error of direct estimates increases faster than the
observed errors from the multi-level model. Thus using the model-based approach
is a good option when there is a need for estimation in areas with small amounts
of available data, even if direct estimates are obtainable.

Another aim of the simulation study was to investigate what effect differ-
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ent prior distributions of the weight parameters w1, w2 and w3 have on predictive
accuracy and parameter estimation. The effect on predictive accuracy turned
out to be almost negligible. It seems that the level of bias introduced through
the parameter vector α must be unreasonably high for it to make a significant
difference on predictions. However, the prior does have a noticeable effect on
parameter estimation. The models tended to overestimate the most dominant of
the three weight parameters w1, w2 and w3. As a result, the prior α = [3, 3, 3]
introduces a bias that can compensate for this effect, making it the prior with
the most accurate parameter estimates throughout the simulation study. Thus
this seems to generally be a reasonable choice of prior, even when the bias it
introduces does not accurately reflect reality.

Results from the simulation study show that the parameters in β are
very accurately estimated. Thus the inclusion of covariates worked well as an
extra component in the multi-level model. This was also the case when applying
the model with covariates to the real DHS data from India during the case study.
The estimated errors on admin 3 level from the cross-validation increased when
removing covariates from the model, especially for the data on education. For
employment the results do not show much of a difference, which could be due to
the lower amount of data or simply that the covariates are not as relevant for this
variable. However, even for education the covariates only made up approximately
9% of variation in the estimates. Thus the inclusion of covariates can help
increase accuracy, but the spatial regression components of the model should still
be the main focus and takeaway when interpreting the results. This shows an
important part of making the model-based estimates, which is to properly analyze
the estimated model parameters, in order to understand which components are
the most impactful.

Another interesting finding from the simulation study is the interaction
between the precision parameter κ and the different weight parameters. For
example, the weights between the Besag components and i.i.d. components
on admin 1 and admin 2 level, ϕ1 and ϕ2 are easily underestimated, meaning
that too much weight is assigned to the random components. This is then
compensated for through overestimation of κ, which in turn reduces the estimated
total variability from the model. Especially on the admin 1 level, accurate
estimation of the weight ϕ1 is difficult as there are only 39 admin 1 areas
included when fitting the model. That is not a sufficient amount of areas
to get accurate estimates of this weight, which should be carefully carefully
considered when trying to interpret the weight itself and the precision parameter.
This is likely to be a recurring problem when applying the model in other
countries as well, as there are usually few areas on the coarsest administrative level.
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From the case study on India it is clear that the multi-level model can
produce useful results when applied to a real data. It is able to make use of
the survey design to get estimates on the admin 1 and admin 2 level that in
the worst cases are only 2 percentage points off the direct estimates. It also
produces admin 3 estimates where the estimated prevalences are in general
around 6-8% off. This shows much room for improvement, but is accurate
enough to be useful insight when considering the lack of alternative ways
of making reliable estimates, especially in areas where direct estimates are
unfeasible as we saw in Section 2.2. Through the results from the multi-level
model, local policymakers in admin 3 areas can get the information they need to
make more data-driven decisions, even in areas where little actual data is available.

In order to get a better picture of how the multi-level model performs
on DHS data, there are changes that could be made to the simulation study
that will make it more representative for the available datasets. For example,
the simulated responses can be distributed more based on admin 1 or admin 2
borders, instead of simulating the same amount of responses within each admin 3
area. This will help get more realistic error estimates on the admin 1 and admin
2 level, which is an important part of displaying the applicability of the model. In
addition, there are many more parameter combinations that can be experimented
with to see the predictive accuracy in more scenarios. That was partly done in
Giørtz (2022), where a simulation study was conducted with different values of
the intercept µ and precision parameter κ, but this should still be researched
even further.

Section 3.7 presents computational techniques that have been a crucial
part of running the models fast and being able to apply the models through
an extensive simulation study and the case study. The complexity of the
multi-level model and administrative structure in India entail large computational
challenges, which demonstrates the power of the used techniques. By using the
implementations of the Laplace approximation, Automatic Differentiation and
sparse matrix operation provided by the TMB library in R, we were able to run
and fit the models to hundreds of simulations in different scenarios and real DHS
data, all within a reasonable time frame. On average, fitting the multi-level model
took approximately 5 minutes to perform, with the amount of data included
being the main factor that affected the run time. Fitting the model to the real
DHS data on education took slightly longer, but still only around 10 minutes,
which is considered to be an acceptable result.

On the other hand, an extensive amount of data collection and prepara-
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tion must be completed before the multi-level model can be applied. This includes
downloading and mapping population and covariate data from WorldPop (2018)
to administrative areas on each level, extracting complex shapefiles of the country
in question and using this to create neighbourhood matrices, and reading and
cleaning massive data files from the DHS surveys. Going through this process
takes significantly more than 5 minutes, which makes it a time consuming task to
apply the model for the first time to a new country. However, this only has to be
done once for each country, meaning that when all the preparations are done,
the multi-level model can be used to make estimates of a range of variables of
interest across a country.

The multi-level is useful in other scenarios than the case study presented
in this thesis, as it is designed to generalize well to a wide range of datasets.
For example, the DHS program has performed over 400 surveys in more than
90 countries, which means that there is already a lot of available data similar
to the data used in Chapter 6 that is well suited for the new multi-level model.
Additionally, the model can be applied to data on other scales, for example by
including a national administrative level above the admin 1 level, or a fine-scale
grid of 10 × 10 kilometers below the admin 3 level. In that case the model can be
compared to continuously indexed models or other discrete models such as the
Leroux model (Leroux et al., 2000).

In addition, results from the model can be used to determine how to
better perform surveys in the future. Through analysis of the model es-
timates, it can be determined in which areas the estimated variables have
high and low uncertainties, and then make adjustments to upcoming surveys
thereafter. For example, the estimated coefficients of variance in the north-
eastern part of India are slightly higher when using the multi-level model
compared to the direct estimates, which we can see from the case study. If
the intention is to use the model-based approach to make estimates on future
DHS survey data, it would be wise to prioritize acquiring more data from this
part of India, and in the island territories that the model can not currently include.

The development of a new multi-level model for accurate small area es-
timates has shown to be successful. The model provides a way to make
estimates across administrative levels where there are areas with little to no
available data, while producing estimates on different levels that are consistent
with each other. The inclusion of covariates in the model worked well and
gave improved results when applied to real sets of data, whereas the results
of using informative priors for the model parameters did not lead to much
difference in predictive accuracy. Along with useful estimates, the model
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parameters provide good insight into the correlation structure of the data
and increased interpretability of covariate effects. It can also be adjusted to
include more or fewer administrative levels, other covariates or even new spatial
components. The fact that estimates on multiple different levels all come from
the same model is also a desirable trait of the multi-level model, as this increases
simplicity compared to when different methods are used for estimates on each level.

To further improve the performance and usefulness of the multi-level model, an
effort should be put into researching optimal survey design for surveys that are
specifically intended to be used as input data for the model. Thus surveys can
be conducted to achieve accurate estimates while spending as little resources as
possible. Also, a larger focus can be put on collecting appropriate covariate data,
which could be worth investing more resources into to achieve better estimates,
rather that having more comprehensive surveys. Future work with multi-level
models is bound to result in improved performance during estimation, which can
be crucial for making a difference in developing countries.
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Appendix A

Simulation results

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 0.564 2.349 2.535 1.481 3.226 3.676
Admin 2 0.598 0.528 0.892 0.855 1.080 1.855
Admin 3 0.895 0.538 0.569 1.058 1.088 1.276
ML base 0.422 0.356 0.435 0.693 0.933 1.140

ML prior 1 0.404 0.362 0.438 0.671 0.938 1.142
ML prior 2 0.393 0.366 0.444 0.692 0.949 1.152
ML prior 3 0.448 0.367 0.445 0.712 0.947 1.153
ML prior 4 0.389 0.356 0.442 0.674 0.937 1.150

Table A.1: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.8, 0.1, 0.1}.
A total of 100 observations were simulated in each admin 3 area in this case.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 1.242 8.947 9.344 1.554 7.215 7.487
Admin 2 0.391 0.621 0.938 0.687 1.158 1.891
Admin 3 0.447 0.675 0.725 0.718 1.206 1.413
ML base 0.403 0.619 0.556 0.669 1.117 1.234

ML prior 1 0.382 0.586 0.544 0.656 1.110 1.230
ML prior 2 0.333 0.612 0.554 0.659 1.122 1.236
ML prior 3 0.350 0.561 0.529 0.656 1.096 1.219
ML prior 4 0.336 0.608 0.553 0.663 1.123 1.237

Table A.2: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.8, 0.1}.
A total of 100 observations were simulated in each admin 3 area in this case.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 3.345 8.001 1.910 2.094 6.436 8.415
Admin 2 0.509 0.909 5.734 0.869 1.496 5.250
Admin 3 0.379 0.618 0.808 0.677 1.107 1.478
ML base 0.407 0.664 0.818 0.692 1.117 1.469

ML prior 1 0.380 0.586 0.797 0.681 1.094 1.470
ML prior 2 0.405 0.649 0.819 0.702 1.124 1.482
ML prior 3 0.364 0.559 0.778 0.658 1.079 1.463
ML prior 4 0.400 0.660 0.826 0.704 1.125 1.485

Table A.3: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.1, 0.8}.
A total of 100 observations were simulated in each admin 3 area in this case.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 0.679 5.439 6.948 1.209 5.531 6.439
Admin 2 0.498 0.673 2.256 0.796 1.242 3.161
Admin 3 0.487 0.522 0.659 0.739 1.080 1.371
ML base 0.370 0.493 0.627 0.666 1.057 1.343

ML prior 1 0.370 0.526 0.648 0.677 1.068 1.355
ML prior 2 0.348 0.493 0.628 0.652 1.052 1.341
ML prior 3 0.457 0.516 0.633 0.711 1.060 1.344
ML prior 4 0.384 0.535 0.653 0.691 1.079 1.361

Table A.4: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.4, 0.3, 0.3}.
A total of 100 observations were simulated in each admin 3 area in this case.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 1.053 1.966 2.375 1.211 3.159 3.635
Admin 2 1.364 0.959 1.161 1.380 1.497 2.000
Admin 3 1.572 1.056 1.057 1.571 1.575 1.740
ML base 0.606 0.557 0.671 0.896 1.204 1.430

ML prior 1 0.758 0.557 0.662 0.953 1.194 1.417
ML prior 2 0.831 0.573 0.663 0.956 1.199 1.415
ML prior 3 0.775 0.595 0.678 0.975 1.218 1.426
ML prior 4 0.739 0.575 0.668 0.946 1.205 1.420

Table A.5: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.8, 0.1, 0.1}.
In each simulation a total of 50 observations were simulated in a random selection
of 90% of the admin 3 areas in this case, and 0 observations in the remaining
areas.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 1.272 9.243 9.648 1.591 7.227 7.531
Admin 2 0.850 1.318 1.288 1.043 1.685 2.076
Admin 3 0.909 1.566 1.600 1.106 1.898 2.079
ML base 0.521 0.931 0.842 0.848 1.464 1.549

ML prior 1 0.536 0.904 0.836 0.863 1.456 1.548
ML prior 2 0.549 0.890 0.821 0.851 1.439 1.534
ML prior 3 0.621 0.952 0.848 0.885 1.470 1.551
ML prior 4 0.558 0.914 0.835 0.856 1.462 1.548

Table A.6: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.8, 0.1}.
In each simulation a total of 50 observations were simulated in a random selection
of 90% of the admin 3 areas in this case, and 0 observations in the remaining
areas.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 7.002 10.779 13.230 3.827 7.303 8.759
Admin 2 0.938 1.670 6.120 1.191 2.025 5.264
Admin 3 0.786 1.408 2.039 1.045 1.726 2.275
ML base 0.659 1.044 1.393 0.922 1.482 1.976

ML prior 1 0.578 0.985 1.371 0.891 1.469 1.968
ML prior 2 0.615 1.008 1.375 0.896 1.469 1.970
ML prior 3 0.623 1.049 1.367 0.915 1.487 1.963
ML prior 4 0.571 0.967 1.355 0.886 1.456 1.961

Table A.7: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.1, 0.8}.
In each simulation a total of 50 observations were simulated in a random selection
of 90% of the admin 3 areas in this case, and 0 observations in the remaining
areas.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 3.018 5.574 7.008 2.554 5.538 6.412
Admin 2 1.017 1.250 2.576 1.192 1.719 3.238
Admin 3 1.047 1.250 1.524 1.196 1.696 2.044
ML base 0.653 0.862 1.055 0.916 1.426 1.762

ML prior 1 0.600 0.842 1.061 0.895 1.420 1.768
ML prior 2 0.755 0.855 1.044 0.939 1.410 1.750
ML prior 3 0.739 0.887 1.074 0.958 1.437 1.773
ML prior 4 0.653 0.872 1.072 0.929 1.425 1.770

Table A.8: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.4, 0.3, 0.3}.
In each simulation a total of 50 observations were simulated in a random selection
of 90% of the admin 3 areas in this case, and 0 observations in the remaining
areas.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 1.864 2.156 2.449 1.660 3.122 3.555
Admin 2 2.771 1.897 1.714 2.160 2.178 2.323
Admin 3 3.104 1.982 1.912 2.439 2.262 2.371
ML base 1.158 0.906 1.025 1.287 1.574 1.776

ML prior 1 1.165 0.922 1.028 1.294 1.581 1.777
ML prior 2 1.230 0.945 1.031 1.321 1.586 1.774
ML prior 3 1.373 0.967 1.045 1.357 1.597 1.784
ML prior 4 1.393 0.996 1.060 1.381 1.611 1.793

Table A.9: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.8, 0.1, 0.1}.
In each simulation a total of 20 observations were simulated in a random selection
of 75% of the admin 3 areas in this case, and 0 observations in the remaining
areas.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 2.645 9.484 9.599 2.163 7.113 7.368
Admin 2 1.594 2.566 2.075 1.566 2.506 2.507
Admin 3 1.798 3.132 3.048 1.674 2.892 2.971
ML base 1.131 1.824 1.497 1.277 2.125 2.068

ML prior 1 1.077 1.788 1.473 1.256 2.100 2.055
ML prior 2 0.978 1.725 1.441 1.217 2.079 2.040
ML prior 3 0.986 1.763 1.464 1.209 2.095 2.049
ML prior 4 1.051 1.708 1.429 1.233 2.072 2.033

Table A.10: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.8, 0.1}.
In each simulation a total of 20 observations were simulated in a random selection
of 75% of the admin 3 areas in this case, and 0 observations in the remaining
areas.

Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 2.315 7.678 11.769 2.111 6.228 8.205
Admin 2 1.920 3.100 6.980 1.754 2.825 5.348
Admin 3 1.689 2.702 4.067 1.624 2.561 3.371
ML base 1.027 1.738 2.520 1.229 2.047 2.742

ML prior 1 1.030 1.721 2.550 1.243 2.046 2.756
ML prior 2 0.982 1.739 2.555 1.238 2.053 2.761
ML prior 3 1.007 1.800 2.595 1.239 2.069 2.770
ML prior 4 1.008 1.652 2.525 1.224 2.019 2.747

Table A.11: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.1, 0.1, 0.8}.
In each simulation a total of 20 observations were simulated in a random selection
of 75% of the admin 3 areas in this case, and 0 observations in the remaining
areas.
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Model MSE (101) CRPS (101)
Admin1 Admin2 Admin 3 Admin 1 Admin2 Admin3

Admin 1 2.197 5.745 7.119 1.941 5.412 6.304
Admin 2 2.168 2.429 3.328 1.819 2.481 3.468
Admin 3 2.158 2.576 2.932 1.877 2.563 2.919
ML base 1.194 1.489 1.833 1.315 1.961 2.359

ML prior 1 1.170 1.502 1.845 1.304 1.966 2.368
ML prior 2 1.129 1.500 1.839 1.293 1.960 2.359
ML prior 3 1.284 1.587 1.878 1.347 1.992 2.375
ML prior 4 1.110 1.560 1.867 1.290 1.987 2.371

Table A.12: Error estimates of the estimated η from each of the models on the three
administrative levels. The errors in this table were calculated from running the
models on 100 separate simulations using the weights {w1, w2, w3} = {0.4, 0.3, 0.3}.
In each simulation a total of 20 observations were simulated in a random selection
of 75% of the admin 3 areas in this case, and 0 observations in the remaining
areas.
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