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Abstract

Through developing precise extrusion process control technology, the High Precision Extru-
sion Temperature Control through Digital Technology (ExtruTeC) research project sets out to meet
increasing demands of aluminium profiles by allowing extrusion of higher quality product and
increasing production.

As part of ExtruTeC, the work in this thesis is focused on conceptualizing a practical overall
extrusion cycle optimization layer, as part of an extrusion process control hierarchy. Furthermore,
a partial implementation of the optimization layer is covered, as means of testing the method and
implementation, and thus proving the effectiveness of the proposed extrusion cycle optimization
layer.

There are several works focused on optimizing the extrusion process, many of which con-
centrate on optimizing the ram speed curve over the extrusion phase. The idea of the extrusion
cycle optimization scheme is to take the entire extrusion process into account; the heating-,
transit-, and extrusion phase, and optimize the initial extrusion phase billet temperature, and
subsequently the heating phase reference point, in order to optimize the extrusion period and
increase production rate.

The extrusion cycle optimization problem is simplified by separating the problem into several
smaller problems, representing the different phases of the extrusion process, and arguing for its
equivalence with respect to optimality. The optimization of the extrusion phase is implemented
as a nonlinear program (NLP), with the use of direct collocation. The implementation is made
possible because of a progressor transformation of the model dynamics, from time to extrusion
length. This transformation is shown to yield several benefits, such as effortless implementa-
tion of time varying and discontinuous extrusion model equations, and a great reduction of the
number of decision variables of the respective NLP.

Upon solving the extrusion phase optimization problem in the form of an NLP, for several
configurations, it is found that by optimizing the initial taper, as well as the ram speed and
coolant valve opening, the proposed method may potentially reduce the extrusion time by up
to 50% from a non-optimized process. Additionally, it is found that introducing initial taper
optimization may yield a reduction of 26% from the case of only ram speed and coolant flow
optimization, and that introducing coolant flow optimization from a case of only ram speed
optimization may reduce the extrusion time by up to 23%. The results, however, are not verified
experimentally, and are contingent on the applicability of the implemented extrusion model. The
model used in this thesis is assumed reasonable based on crude comparisons to the reference
model, upon which this model is based.
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Sammendrag

Ved å utvikle presis kontollteknologi for ekstruderingsprosesser, skal forskningprosjektet High
Precision Extrusion Temperature Control through Digital Technology (ExtruTeC) møte den økende
etterspørselen av høykvalitetsprofiler ved å øke produktkvaliteten og produksjonsraten.

Som en del av ExtruTeC, tar arbeidet i denne oppgaven for seg et forslag til hvordan man
kan bygge opp et overordnet optimaliseringlag av ekstrudeingssyklusen, som den del av at et
kontrollhierarki for ekstruderingprosessen. I tillegg, er en sentral del av denne løsningen imple-
mentert for å både bekrefte at implementeringen av denne metoden er mulig og praktisk, og for
å produsere resultater som understreker verdien av å optimalisere hele ekstruderingssyklusen.

Det er flere studier som fokuserer på å optimalisere ekstruderingprosessen, hvorav mange tar
for seg optimalisering av ramhastiheten som funksjon av tid, over ekstruderingsfasen. Idéen til et
optimaliseringslag av ekstruderingsskylusen, er å tilrettelegge for kortest mulig ekstruderingstid
ved å optimalisere den initielle temperaturprofilen i billeten i starten av ekstruderingsfasen, ved
å ta hensyn til hele syklusen, som innebærer varmefasen, transportfasen og ekstruderingsfasen.

Det overordnede syklus-optimaliseringsproblemet er forenklet ved å dele problemet inn i
flere, mindre problem, som representerer de enkelte fasene av ekstruderingsprosessen, for så og
løse dem bakover. Det vil si at ekstruderingsfasen optimaliseres først, så transportfasen, og til
slutt varmefasen. Under noen antagelser agrumenteres det for at denne forenklingen er ekviv-
alent til det samlede problemet. Optimalisering av ekstruderingsfasen er implementert som en
ulineært program (NLP), ved hjelp av direkte kollokasjon. Denne implmenteringen er gjort mu-
lig ved hjelp av en progressortransformasjon av modellen fra tid til ektruderingslengde. Denne
transformasjonen er vist at yter flere fordeler, som å gjøre implementasjon av tidsvarierende og
diskontinuerlige modelligninger enkelt og effektivt, samt at det vil være en betydelig reduksjon
av optimaliseringsvariabler i det resulterende ulineære programmet.

Etter å ha løst optimaliseringsproblemet av ekstruderingsfasen for flere konfigurasjoner, er
det funnet at ved å optimalisere den initielle temperaturprofilen til billeten ved starten av ek-
struderingsfasen, kan man redusere ektrsuderingstiden med opp til 50% fra en ikke-optimalisert
prosess. I tillegg er det funnet at ved å optimalisere initiell temperaturprofil samt ramhastighet
og kjøleprofil, versus å kun optimalisere ramhastihet og kjølingsprofil, kan ekstruderingtiden re-
duseres med 26%. Det er også funnet at optimalisering av både kjøling og ramhastighet, versus
bare optimalisering av ramhastighet, kan redusere ektruderingstiden med 23%. Resultatene er
ikke validert med experimentell data.
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Nomenclature

Extrusion Process

Billet Cylinder of the material that is meant to be extruded

Cell ‘Cell’ is the name given to the part of a control volume that is occu-
pied by a material that is modelled. Most cells are equal to the con-
trol volume, except from the the back-most cells of the billet are sub-
volumes of the control volumes as the billet is being translated towards
the die.

Container The steel housing that encases the billet. A part of the extrusion press.

Die A steel component of the extrusion press, through which the billet is
being forced by the ram, imposing a geometric cross section of the
extrudate. It is also the name of a group of control volumes/cells within
the physical die.

Discard (or Butt) The backmost part of the billet, which is not extruded, but rather sheared
off before a new billet is inserted

Exit The name of a group of control volumes/cells at the end of the alu-
minium flow, where it has exited the die.

Extrudate Material that has been extruded through a die.

Extrusion cycle The periodic chain of events, following a billet from the start of its
heating phase (phase 1) to the end of its extrusion phase (phase 3).

Extrusion length The length that the ram has travelled from its starting position, which
is equal to the length of billet that has been extruded at any given time
during the extrusion phase.

Extrusion phase The third and last phase (phase 3) of the extrusion cycle, where a billet
is being extruded.

Extrusion press A machine that houses a billet and pushes it with a hydraulic piston
(ram) through a die, to produce the exiting extrudate.

Extrusion pressure The pressure exerted by the ram on the billet during extrusion.

Extrusion radius The distance from the main center axis to the secondary center axes,
where the main axis is the center axis of the billet, and the secondary
axes are those of each cavity.

Extrusion ratio The ratio between the speed of the ram, and the outgoing extrudate in
an extrusion process.

ExtruTeC “High Precision Extrusion Temperature Control through Digital Tech-
nology", The research project of which the work in this thesis is a part
of.

Feeder A section of the extrusion press where the aluminium flow is guided
into the port. It is also the name given to the control volumes/cells that
represents the aluminium in the feeder region.

Heating phase The first phase (phase 1) of the extrusion cycle, where a billet is pre-
heated in an induction heater before being transported (phase 2) to the
extrusion phase (phase 3).

Initial taper The billet taper at the start of the extrusion phase.
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Isothermal extrusion Extrusion where the critical temperature og the extrudate at the exit of
the die is maintained at a constant value, to ensure consistent product
quality.

MPE Multi Port Extrusion, a type of extruded aluminium tubing used in heat
exchangers, and the main extrusion profile in ExtruTeC’s case study.

Peak A section and control volume/cell of the die where aluminium flows
and is assumed to have the highest temperature during the extrusion
phase.

Plate A steel component of the extrusion press, that has channels for the flow
of liquid nitrogen.

Port A section of the die where the aluminium flow is guided to into the
“peak" region of the die.

Ram A hydraulic piston, responsible for forcing the billet through the die.

Saturation time A period of time during the heating phase, typically towards the end
of the phase, where the induction coils are idle, to allow the radial
temperature gradients in the billet to even out.

Taper The temperature distribution within a billet, typically ‘tapering’ off from
the extrusion end to the other.

Transit phase The second phase (phase 2) of the extrusion cycle, where the billet is
being transported from the induction heater to the extrusion press.

Miscellaneous

IRK Implicit Runge-Kutta scheme; an implicit numerical integration scheme.

IVP Initial Value Problem; the problem of finding the trajectory of a dy-
namic system, that contains a given value (the ‘initial value’).

ODE Ordinary Differential Equation

PDE Partial Differential Equation

Optimization

(N)MPC (Nonlinear) Model Predictive Control; a model-based controller that
predicts the state and input trajectories a given distance into the future,
called the “horizon".

Collocation point A point representing a given value of the progressor of a dynamical
system between two of its discretization points, at which a collocation
polynomial is designed to match the system dynamics.

Decision variable A variable in the set of variables that an optimization algorithm searches
through to find the optimal value of the respective objective function

Direct collocation A simultaneous dynamic optimization technique that uses collocation
polynomials in the constraints of an NLP to integrate the system dy-
namics.

Discretization interval The interval of the progressor of a dynamical system between two dis-
cretization points. The discretization interval is considered to corres-
pond to the one of the discretization points that define the interval that
appears ‘earlier’ in the progression of the system.

Discretization point A point representing a given value of the progressor of a dynamical
system, at which the system state is described as part of discretization
of the system trajectory along that progressor.

NLP Nonlinear Program; the name given to the formulation of an optimiza-
tion problem with either a nonlinear objective function or constraints.
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1 Introduction

The use of aluminium is vast and important, and in particular, the automotive industry relies on
aluminium to construct light weight vehicles. The automotive industry continuously seeks to in-
crease vehicle efficiency, thus demanding lighter and lighter components for their vehicles. This
puts pressure on the aluminium extrusion industry, since extruded aluminium profiles are fre-
quently used for various components, such as heat exchangers, in vehicles. The aluminium profiles
need to be thinner and lighter while maintaining their strength and quality, to decrease weight
without sacrificing functionality nor safety margins. The extrusion industry is already achieving
incredibly small thicknesses, and further reduction requires sophisticated and precise temperature
control to ensure high quality extrudate. With the introduction of a precise control system for
temperature control and advanced optimization techniques, the industry is also setting out to push
the limits of productivity.

The work in this thesis is part of the High Precision Extrusion Temperature Control through Digital
Technology (ExtruTeC) research project, whose aim is to develop precise temperature control for
the extrusion process, to obtain isothermal extrusion, and to improve production rate by means
of optimization techniques. The project is a collaboration between Hydro Extruded Solutions -
Precision Tubing, Cybernetica AS, SINTEF Industry and Norwegian University of Science and Tech-
nology (NTNU). A part of the project is the development of accurate models of the extrusion
process, upon which a hierarchical Model Predictive Control (MPC) control scheme will be based.
Computationally heavy and comprehensive simulations are run to gain understanding of the intric-
acies of the process, and dynamic estimation techniques are pinpointing model parameters. In the
center of the project is the case study of an extrusion press in Tønder owned by Hydro Extruded
Solutions.

Specifically, the extrusion profiles that are focused on in the ExtruTeC project are that of Multi Port
Extrusions (MPE) for heat exchangers, as illustrated in Fig. 1. A normal view of the MPE profile
is shown in Fig. 1b, where one can see a stadium shape with internal walls referred to as “webs”.
These webs are the main subjects of thickness reduction while developing the precise temperature
control technology.

(a) A ‘cut-view’ illustration of a heat exchanger for vehicles. Circled in red is the MPE profile used as a case
study in the ExtruTec project.

(b) The MPE profile, appearing in heat exchangers for vehicles, as seen in Fig. 1a, which is the main extrusion
profile of ExtruTeC’s case study. The internal walls are referred to as “webs” and are the subjects of thickness
reduction in the ExtruTeC project.

Figure 1: Illustrations of a heat exchanger and the extrusion profile used as a case study in the Ex-
truTeC project. These illustrations are sketches, and are not true depictions of the heat exchangers
and extrusion profile in question.
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1.1 Motivation

During operation, an MPE tube is pressurized, thus the strength of the inner walls are paramount.
If, for some reason, the web strength of a tube is not according to the requirements, there is a risk
of “web tearing”. Web tearing is when the pressure inside the tube is high enough to rupture the
webs. Figure 2 shows an illustration of an MPE profile that has experienced web tearing, causing
the profile to bulge. This type of failure is critical and unacceptable during operation, and must
therefore be avoided. There are two main mechanisms that cause weakening of the webs that
result in web tearing, and are both related to the extrusion phase;

i) Local melting of the webs during extrusion of the MPE profiles, due to local temperature
peaks rising above the melting point of aluminium,

ii) and flow imbalance of the inner webs and outer walls, as the extrudate exits the die.

Figure 2: An illustration showing how the webs of an MPE tube may rupture under pressure. This
type of failure is referred to as “web tearing”.

To combat the mechanisms that weaken the webs during extrusion, precise temperature control
is required. Both melting and flow rate are directly related to the temperature of the aluminium,
and it is clear that gaining understanding of the complex temperature picture of the aluminium
undergoing complex geometrical changes when extruded can help develop methods of combating
these weakening mechanisms. Of course, upon gaining deep understanding of the extrusion pro-
cess and developing sophisticated models to describe their behavior, the door opens to the world
of optimization. Because of the growing use of aluminium, and in particular, extruded aluminium
profiles, the optimization of production is desired to facilitate the current and potential future in-
crease in demand. Resultingly, the main angle of this thesis, is on the optimization of production,
by minimizing the extrusion cycle period.

In the bigger picture, an overarching motivation behind the thesis, in cooperation with Cybernetica
AS, is to gain more knowledge about- and understanding of how one can use nonlinear optimiza-
tion approaches to optimize complex industrial processes. Industrial processes are typically highly
complicated and hard to model, often resulting in greatly simplified or highly nonlinear and even
non-smooth or discontinuous models. Optimization of such systems is therefore nontrivial, and
the various typical approaches has advantages and disadvantages. Nonlinear programs (NLPs) are
strong contenders when choosing an optimization approach, since they lend themselves nicely to
being solved numerically by computers. NLPs are especially useful due to the immense increase
in computing power we have seen the last few decades, allowing computers to efficiently handle
increasingly large NLPs. Sequential methods is a category of simple ways to implement an optimal
control problem (OCP) as an NLP, though these methods, as most methods, have drawbacks in
addition to their strengths. It is therefore useful to have experience with another category of NLPs,
such as simultaneous methods, that can yield advantages outside what one can expect from se-
quential methods. Therefore, the motivation behind the work presented in this thesis is partially
to gain understanding of how, and in what circumstances, simultaneous methods are applicable to
complex industrial processes, and how to implement them in practice. In particular, the focus is
on Direct Collocation, a powerful type of simultaneous method.
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1.2 Thesis Objective

The thesis objective is to conceptualize a practical solution to the extrusion cycle optimization
problem, and perform a partial implementation as proof of concept. The thesis covers the use of
optimization techniques, in particular; Direct Collocation to optimize the overall extrusion cycle
with respect to minimum cycle period, thus increasing production rate. The proposed control
hierarchy is shown in Fig. 3, where the efforts made in this thesis are to develop the optimization
layer for the extrusion cycle. In short terms, the extrusion process can be divided into a heating
phase, a transit phase and an extrusion phase. Other parties within the ExtruTeC research project
are developing an MPC layer for the extrusion phase, to ensure precise and accurate temperatures,
and fast extrusion. Gabrielsen (2022) investigated the use of optimization techniques to control
the heating phase through simulations with promising results. The extrusion cycle optimization
layer (ECOL) computes an open-loop solution of the extrusion phase, optimizing over the initial
temperature distribution (initial taper) of the billet as it enters the extrusion phase. The ECOL also
provides a reference taper and open loop trajectories for the heating phase, and accounts for the
temperature diffusion happening during the transit phase.

Extrusion Cycle

Extr. MPCHeater cont.

Extrusion Cycle Optimization Layer (ECOL)

TransitHeatingBillet ExtrudateExtrusion

Figure 3: The intended control hierarchy for the extrusion process, consisting of an MPC solution
to control the extrusion phase (right blue), a controller for the heating phase (left blue), and an
overall extrusion cycle optimization layer (yellow).

The extrusion cycle optimization layer consists of a dynamic optimization problem in the form of
a nonlinear program (NLP) that optimizes the open-loop trajectories of the extrusion phase with
respect to extrusion time, where the control variables are the initial taper, a set point for the ram
speed, and a set point for a coolant flow valve. It must also simulate the taper backwards through
the transit phase, as an initial value problem (IVP), to provide a reference taper for the heating
phase. By accounting for the heater control problem and transit dynamics, constraints can be
imposed on the initial taper to ensure feasibility with respect to the heating phase. The open loop
trajectory solutions of the extrusion phase found by the ECOL are then made available for reference
to the extrusion phase MPC layer, opening up possibilities for the MPC control structure, such as
reference tracking. Whenever a new billet will start its cycle, the extrusion cycle optimization layer
is provided with information about the billet, such as its alloy composition and properties thereof,
its geometry, its temperature, the ambient temperature, etc., and computes a unique solution for
the individual billet. In this thesis, we do not consider varying billet properties between cycles,
such that consecutive cycles are assumed identical and one can draw conclusions on the overall
productivity.

1.3 Literature Review

Several works have studied modeling, control and subsequently optimization of the extrusion pro-
cess, mainly in order to achieve better product quality through isothermal extrusion, and higher
productivity through optimizing the ram velocity profile. This section provides a review of various
publications that present different approaches to modelling, control and optimization the extrusion
process.

Tibbetts and Wen (1995) expands on a new modelling technique described by Han et al. (1986),
and decomposes the extrusion process into a hierarchical architecture to improve the tractability of
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the control problem. They formulate two extrusion process control problems to optimize the ram
position profile; one for obtaining isothermal extrusion, and one for minimizing extrusion time.
The respective objectives they present are

min
L(t)

∫ tf

0

(
T (L(t), t)− Td

)2
dt (1)

min
L(t)

∫ tf

0

1

L̇(t)
dL (2)

with any relevant process constraints, where

L : ram position as function of time

tf : final time of extrusion phase

T : exit/peak/extrusion temperature

Td : desired exit temperature.

They continue to show that optimizing the extrusion process can yield significantly shorter extru-
sion times.

Cuéllar Matamoros (1999) presents a “semi-analytical” approach to the modelling of isothermal
extrusion processes, where by assuming that the aluminium behaves like a highly viscous fluid.
They write;

“By treating the metal as a highly viscous fluid and making appropriate assumptions re-
garding its flow, the velocities, pressure, strain, and strain rates distributions needed for
the modeling of the process are solved analytically leaving therefore only the temper-
ature distributions to be solved numerically. This semi-analytical approach allows for a
considerable reduction in computation times as compared to the usual Finite Elements
Method for the modeling of extrusion processes.”

The approach taken to model the extrusion process presented in this thesis is based on work by
Halås (unpublished) from an internal memo, and is reminiscent of the idea presented by Cuéllar
Matamoros (1999). Matamoros proceeds to formulate and solve open-loop optimization prob-
lems that optimize the ram speed both as a constant speed and as a varying speed over time, to
minimize to extrusion time. It is however not clear form the their PhD thesis exactly how they
implemented the optimization problem, nor what approach was used. Furthermore, they expand
the optimization framework to include an NMPC control scheme for online feedback control. They
also recognize the importance of the initial billet temperature profile, the ‘initial taper’, although
did not implement such an optimization scheme.

Chanda et al. (2001) also studies the effect of ram speed on isothermal extrusion, but does so
using 3D finite element method (FEM) simulations. Their focus is on constant ram speed and
step-wise varying ram speed, and their effect on the exit/peak temperature of the aluminium, and
on the extrusion pressure. The simulations are done only for early stages of the extrusion phase,
due to large computation times. They find that by using an initially high ram speed, and step
wise decreasing it over time, they are able to extrude at the same isothermal temperature as for
constant ram speeds, but with a higher average speed, thus increasing production. In addition,
they see reduced tensile stresses and effective strain rates in critical regions, which makes the
extrudate less prone to tearing, and reduced pressure requirements for the press. However, the
instantaneous ram speed changes are also found to cause sudden changes in pressure.

Zhou et al. (2004) expanded on the study by Chanda et al. (2001) in the presence of increased
computing power. They simulate an extrusion process over the entire extrusion stroke with a
gradually varying ram speed. By using a continuously decaying ram speed, they are able to main-
tain the temperature within a range of 10oC over the entire extrusion stroke. The results were
verified by experimental results.

Farjad Bastani et al. (2010) studies the effects of container cooling, ram speed, front temperature
of billet, and initial billet temperature on isothermal extrusion. The extrusion phase is divided into
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three sub-phases; start, middle and end of the ram stroke. By using 3D finite element software,
they simulate over 20 press cycles, and show that container cooling allows for an increase in ram
speed. In addition, they find that a flatter temperature taper of allows them to maintain isothermal
extrusion more consistently through the three phases of the press stroke.

Hölker et al. (2013a) uses an additive manufacturing technique called ‘selective laser melting’
(SLM) to produce dies with cooling channels, and performs trial runs to investigate the effects
of cooling strategies with compressed air. They show that cooling the die during extrusion can
lower the extrudate temperature without significant rise in extrusion pressure, thus allowing faster
extrusion with higher surface quality of the extrudate.

Finally, Holven (2020) develops and implements an NMPC control scheme for the extrusion phase
using Cyberneticas’ tools for NMPC control. The NMPC control objective is to maintain isothermal
extrusion while minimizing extrusion time, by using the ram speed and a coolant valve opening
for die cooling, as control variables. Similarly, Kulås (2022) uses Cybernetica’s tools to implement
open loop dynamic optimization and parameter estimation for a combined model; connecting the
heating, transit and extrusion phase models. This includes the temperature set points for the
heating phase and the corresponding initial taper.

As seen from the aforementioned publications, there are several works related to the study of ram
speed curves, and methods to decrease the extrusion time. Usually, they hint at the fact that the
initial billet temperature taper is a key factor in dictating the minimal extrusion time, although,
little to no research is done on its optimization except for Kulås (2022), who implements a version
of initial taper optimization. In their Master’s thesis, however, they state that the “the optimiz-
ations of both ram speed and heating coil set points struggled with instability and were difficult to
tune”. On top of this, the optimization algorithm took “around 5 minutes” to converge, which is
rather slow if one plans on implementing such an algorithm in an on-line adaptive extrusion cycle
optimization scheme, since this is in the same range as the duration of the extrusion phase for
some products. Kulås (2022) attributes these issues to the use of single shooting as the dynamic
optimization approach, and they point out that single shooting is not suited for highly nonlinear
dynamical systems over long prediction horizons, which in many cases is true. Especially when
using an explicit integration scheme, as was done by Kulås (2022), there are in general no guaran-
tees that the integration is successful in providing meaningful state trajectories, which may result
in failure to converge to an optimal solution. As a solution, they recommend either of two other ap-
proaches; multiple shooting or orthogonal collocation (direct collocation). Another recommendation
is to introduce the coolant flow as a control variable, to obtain even shorter extrusion times.

1.4 Contribution

This thesis presents an extrusion cycle optimization control scheme, in which the problem is sep-
arated into smaller optimization problems that represent different phases of the extrusion cycle;
the heating phase, the transit phase, and the extrusion phase. Under certain assumptions, some of
which are verifiable upon attaining a solution, optimality is preserved in spite of the simplification
by separation. The focus of the thesis is on dynamic open loop optimization of the extrusion phase,
and how to connect it to the heating phase. To attack the problem of optimizing the initial taper
is in itself a recent and interesting development, and this thesis presents the novel use of direct
collocation for this purpose, as suggested by Kulås (2022). In addition to optimizing the initial
billet taper, the ram speed and coolant flow are optimized over the entire horizon of the extrusion
phase. This is achieved reliably due to a novel approach of process discretization within the field of
extrusion optimization, where the system state and control trajectories are discretized in extrusion
length rather than time. The new approach allows efficient implementation of direct collocation,
which in turn allows optimization over long time-horizons while maintaining accurate predictions.
As a bonus, the new method of discretization greatly reduces the problem size, in terms of the
number of variables in the resulting NLP.

To summarize, this thesis presents

1. a proposed control structure for an open loop extrusion cycle optimal control scheme, in
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which the problem formulation is separated into smaller problems, while maintaining optim-
ality,

2. the use of direct collocation to provide reliable optimal trajectory solutions, even over long
time horizons, within a feasible time frame,

3. a novel approach to the discretization of the extrusion process state and control trajector-
ies, that allow simple and efficient implementations of direct collocation and contributes to
decreasing the problem size significantly,

4. and the use of initial taper, ram speed and coolant flow optimization combined.

1.5 Thesis Outline

The thesis starts by providing an overview of previous work that has been done on the optimiz-
ation of extrusion processes in Section 1.3, and summarizes the contributions this thesis makes
to the field of extrusion and extrusion cycle optimization. Continuing, a brief summary of the
most fundamental concepts that underlie the techniques used and presented in this thesis is given
in Section 2. The extrusion process is described in Section 3, which covers the overall process
and its decomposition into three main phases; the heating phase, the transit phase, and the ex-
trusion phase. An overview of the underlying continuous model that form the basis of the model
implementation presented in this thesis, is given in Section 4.1, followed by the description of its
discretization into implementable form, presented in Section 4.2.

The main contributions of the thesis are presented in Section 5. The Section starts by formulating
an optimal control problem (OCP), that represents the objective of minimizing the extrusion cycle
time, and upholds process constrains such as the extrusion press and heater limitations, and re-
quires isothermal extrusion at the desired peak temperature. Section 5.1.1 separates the optimal
control problem into smaller OCPs that represent the heating (OCP A) and extrusion phase (OCP
B), where optimality with the respect to the original OCP is preserved under some assumptions.
The conversion of OCP B into a nonlinear program (NLP) is covered in Section 5.2, where Sec-
tion 5.2.1 presents the progressor transformation of the extrusion model, from time to extrusion
length. Before formulating the final NLP, various considerations regarding the formulation are
covered in Section 5.2.2, and the final NLP formulation is presented in Section 5.2.3. The im-
plementation of the extrusion phase NLP into MATLAB, and properties thereof, are presented in
Section 5.4.

Section 6 presents the results of- and comments on the extrusion phase NLP testing, where solu-
tions are found for versions of the NLP that simulates the process without optimized control,
optimizes only the ram speed, optimizes the ram speed and coolant valve opening, and optimizes
the complete extrusion phase NLP. The discussion, in Section 7, covers

• model discrepancies between the model as implemented for the work in this thesis and the
model upon which it is based (Halås unpublished),

• the applicability of the proposed extrusion cycle optimization structure and the implementa-
tion presented in this thesis, with respect to a real industrial setting,

• various advantages of the proposed method,

• a more detailed discussion on the topic of understanding the feasible region of the initial
taper and on the initial guess,

• and recommendations for further work on the method.

Lastly, the conclusion is presented in Section 8.
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1.6 Notation

This thesis makes use of the following notation:

• Za,b - Short-hand notation for the set {x ∈ Z|a ≤ x ≤ b}.

• F - Used to denote a feasible set.

• Bold Variables denote array valued variables.

• f : Rn × [·] 7→ Rn - Used to denote a mathematical model on the form: q̇ = f(q; ·).

• T - Used for temperature related variables.

• t - Used to denote various time related variables.

• L - Used to denote lengths. When a subscript is used, it denotes the length of the object
denoted by the subscript, otherwise it denotes the extrusion length as a progressor for the
extrusion press model.

• µ - Used to denote dynamic viscosity when relevant to the viscous dissipation terms of the
extrusion press model. When the subscript “red” is used, it denoted a reduction factor.
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2 Theory

2.1 Metal Extrusion

2.1.1 Extrusion Basics

Metal extrusion is the process of forcing metal through an opening, producing a prismatic extrudate
on the other side. Saha (2000) defines extrusion as

“Extrusion is a plastic deformation process in which a block of metal (billet) is forced
to flow by compression through the die opening of a smaller cross-sectional area than
that of the original billet”,

and Terry Sheppard (2013) writes

“The [extrusion]process converts a cast billet of solid metal into a continuous length of
generally uniform cross-section by forcing it to flow through a die which is shaped to
produce the required form of product.”

Compared to methods such as rolling and forging, extrusion is a modern method of shaping metals.
The first credited use of extrusion as a method of forming metals was when Joseph Bramah de-
scribed his method of extruding molten lead, in his patent which was granted in 1797 (Terry
Sheppard 2013). The manufacturing of lead pipes then became viable in 1820, when Thomas Burr
invented the hydraulic extrusion press. However, it was in 1886, following the new-found method
of extracting aluminium from bauxite using electrolysis, that the extrusion method took off. The
200 year old method is to this day unrivaled in its ability to produce complex and thin-walled
aluminium profiles and at the rate at which it does so (Terry Sheppard 2013).

The basic principle of extrusion is that a metal cylinder, called a ‘billet’, is placed into a container
and pressed through an opening in a component called the ‘die’, which is illustrated in Fig. 4. The
four quintessential parts of aluminium extrusion can be summarized as;

• the Billet; an aluminium cylinder that is the source material for the aluminium profiles,

• the Container; a hollow, steel cylinder that encases the billet during extrusion,

• the Die; a steel component at the end of the container, through which the billet is forced,
shaping the aluminium into its desired shape,

• and the Ram; a hydraulic piston that pushes on the back end of the billet, forcing it through
the die.

Container

Billet

Die

Ram

Figure 4: A sketch of the four main components
of an extrusion press; the billet, container, die,
and ram, in a ’direct’ extrusion configuration.

The billet, shown as the light grey section of
Fig. 4, is the source metal for the extrudate. It
can be of varying alloy composition, have vary-
ing geometry, though is usually a solid right
cylinder, and is usually heated to specific tem-
peratures. All these factors have to be con-
sidered for each individual extrusion process
to obtain various desired process and product
properties. Even the grain and compositional
structure of the billet can affect the structure
and properties of the outgoing product, mak-
ing homogenization of the billets a field of
study, see Yucel Birol (2014), Yücel Birol (2004) and Murai et al. (2003). During extrusion, the
billet behaves like a fluid, and has intricate flow patterns that are hard to analyse and account for.
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Several studies have been carried out with the aim of gaining understanding of the material flow
during extrusion, such as Valberg (1992) and Mahmoodkhani et al. (2014), which often focus on
the flow through the die. The material flow can be complicated to understand even all the way
back in the billet, before the metal reaches the complex die geometry. For instance, Kim and Ikeda
(2000) have explored the flow of material in the billet during extrusion, where they find a clear
connection between the friction between the billet and container, and the billet surface layer flow.

The container is a rigid component that encapsulates the billet during extrusion. The container is
responsible for preventing the billet from expanding outwards, thus having to withstand the high
extrusion pressures, which can range from tens to several hundred megapascals. The container
is therefore typically made of a steel alloy, for example “5%Cr hot-work steels”, as described in
Terry Sheppard (2013). The container affects the extrusion process in two main ways; through
heat conduction and friction between the billet and the container. The container can be heated to
closely match the temperature of the billet, to reduce the heat flow between them.

The die is the component through which the billet is forced, giving shape to the outgoing alu-
minium profile. When applying force to the billet, it deforms as it passes through the die, and
takes its intended shape. This part of the extrusion process is very complex, due to the complex die
geometry. The dies are designed individually for each new profile, with varying complexity. Nev-
ertheless, even the simplest dies create intricate aluminium flow patterns. Two important fields of
study are;

• the optimal die geometry with respect to the required extrusion pressure, product quality
and die life,

• and the understanding and modelling of the temperature generation due to the deformation
and friction work in the die.

Examples of such studies, in addition to the aforementioned articles, are Qamar (2010), Li et
al. (2003), and Hölker et al. (2013b), where in the latter, they investigate the effect of cooling
channels in the die. The heat generation in the die is heavily influenced by the extrusion speed,
extrusion pressure, die geometry and die cooling. It is within the die that the temperature reaches
its highest value, making the understanding, design and modelling of the die paramount within
the topic of temperature control for aluminium extrusion.

The ram is the hydraulically actuated piston that applies force to the back of the billet, forcing
it through the die. The ram force is typically controlled by a PID controller, such that the ram
speed tracks a reference speed, which is usually constant or a predetermined velocity profile. The
ram is responsible for providing the extrusion pressure, and the maximum pressure capacity of the
hydraulic system limits the possible extrusion pressure in the extrusion press. This is an important
consideration when designing an extrusion process, as the required extrusion pressure is highly
dependant on the billet alloy, the billet-container friction, deformation work and cooling effect in
the die, and the extrusion ratio, which is the ratio between the speed of the ram and the speed of
the outgoing product.

In Fig. 5 you can see a summarizing sketch of the extrusion press, and its main components, simil-
arly to Fig. 4. The figure also illustrates the typical axial symmetry that is common in the extrusion
industry, and coarsely depicts some of the important and complex die design parameters. That
is, parameters such as feeder and port dimensions, and bearing length, which are shown as the
various incremental reductions in cross-section towards the extrusion exit. The peak temperature,
as the rest of the temperature in the die, is hard to estimate in terms of both location and tem-
perature, but is generally assumed to be located at the smallest cross-section, which is right at
the extrusion exit. The figure also shows how several ‘cavities’, or holes, are included in a die to
produce several profiles at once.
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Container

Billet

Ram

Peak Temperature

Multiple Cavities

Die

Figure 5: A rudimentary sketch of an extrusion press, illustrating its main components and the
peak temperature of the aluminium.

2.1.2 Types of Extrusion

Direct and Indirect Extrusion

Extrusion can be divided into two categories; Direct and Indirect extrusion. In direct extrusion, the
container and die are fixed in space, and a billet is placed into the container-die and compressed
by a hydraulic ram that extends into the container. This is the most common form of aluminium
extrusion. Indirect extrusion aims at reducing the billet-container friction, to drastically reduce
the extrusion pressure, by fixing the container and ram, and have the die be extended into the
container instead. However, according to Terry Sheppard (2013), it is generally more convenient
when using indirect extrusion to fix the die in space, and move the container-ram instead. These
to concepts are illustrated in Fig. 6, where the fixed entities are shown in red, and the moving
entities are shown in green.

(a) Direct Extrusion. (b) Indirect Extrusion.

Figure 6: Illustration of Direct and Indirect extrusion. Fig. 6a illustrates direct extrusion, and Fig.
6b illustrates indirect extrusion. Parts that are fixed in space are shown in red, and moving parts
are shown in green, where the green arrows indicate the direction of movement. The aluminium
is shown in blue.

The most prominent difference between the two methods is the container-billet friction. Since
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the ram must exert additional force to overcome the friction, the extrusion pressure increases
significantly. Fig. 7 shows the typical pressure curves for direct and indirect extrusion, over the
extrusion length, that is, the ram/die progress/extension into the container. The pressure curves
are divided into three distinct zones Saha (2000);

I) a zone of rapid rise in pressure at the start of the extrusion process,

II) a steady state zone, where the pressure steadily descends or is maintained,

III) and a zone where the pressure sharply increases as the “discard” is compressed.

As is clear from the figure, the pressure steadily declines during zone II in direct extrusion, this
reflects the decrease in friction force as there is less and less aluminium remaining in the container.
For the indirect method, the pressure is constant during zone II, which reflects the lack of friction
force overall. Note that these curves are typically seen for constant ram speeds, and without die
cooling, as the pressure is heavily influenced by the extrusion speed and aluminium temperature.
Also note that Terry Sheppard (2013) illustrates the pressure curves with less pronounced features
in their [Fig. 1.5].

I II III

Indirect Extrusion

Direct Extrusion

Extrusion Length

Ex
tr

us
io

n
Pr

es
su

re

Figure 7: The typical shape of the pressure curves for direct and indirect extrusion, shown along
the extrusion length. The curves are typically divided into three zones; I) Rapid Rising, II) Steady
State and III) Sharp Rise. The figure is a recreation of [Fig. 2] by Saha (2000).

The lack of friction in indirect extrusion comes with several advantages, as listed by Terry Sheppard
(2013);

• lower extrusion pressure,

• more even extrusion pressure over time, as the billet-container surface decreases,

• more uniform material flow due to the lack of relative motion,

• no heat generation at billet-container interface.

Nevertheless, direct extrusion is more common due to the simplicity of the extrusion press design,
and that direct extrusion allows for a larger circumscribing circle of the extruded profile.

Hot and Cold Extrusion

Extrusion can be divided into hot and cold extrusion (Saha 2000), where hot extrusion is the most
common and the type considered in this thesis. In hot extrusion, the billet is typically preheated in
a designated induction heater before being placed into the extrusion press. This step ensures that
the billet is malleable, and can be extruded with much less pressure than with cold extrusion. The
exact temperature of the aluminium in a hot extrusion set-up has great impact on the quality of the
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product. However, it is also possible to extrude cold aluminium. An advantage of extruding cold is
that the product has different structural properties, due to the lack of effective heat treatment.

This initial heating process of hot extrusion is responsible for producing the desired temperature
distribution in the billet prior to the extrusion. Particularly, the temperature distribution along the
length of the billet is of importance. The distribution of temperature in the the billet is referred to
as the taper, as it typically ‘tapers off’ towards the back end, and the initial distribution before the
press stroke begins is referred to as the initial taper.

2.2 Differential equations and Difference Schemes

This section is mainly based on theory by Evans (2022), Wazwaz (2002) and Strikwerda (2004).

2.2.1 Partial Differential Equations

Partial differential equations (PDEs) is an immensely broad area of mathematics, that reaches far
beyond the scope of what is needed in this thesis. Nevertheless, this section attempts to provide a
brief introduction, such that the reader may form a basic understanding of what they are, before
proceeding to delve into the main body of the thesis.

A partial differential equation is defined as an expression on the form (Evans 2022)

F

(
∂ku(x)

∂xk
,
∂k−1u(x)

∂xk−1
, . . . ,

∂u(x)

∂x
,x

)
= 0, (3)

where k ≥ 1, F : Rnk × Rnk−1 × · · · × Rn × R × D 7→ R and x ∈ D ⊆ Rn for some n ∈ N. The
unknown variable is then u(x) : D 7→ R, which is called the dependent variable. In contrast, x is
called the independent variable. We call this a kth-order PDE. A subset of PDEs is that of ordinary
differential equations (ODEs), which have the same form as (3), but is only differential in one
dimension. That is;

F

(
∂ku(y,x)

∂yk
,
∂k−1u(y,x)

∂yk−1
, . . . ,

∂u(y,x)

∂y
, y,x

)
= 0, (4)

with y ∈ R.

PDEs turn out to be incredibly useful and versatile, and have a wide variety of applications. They
turn up in countless of real world scenarios, and are predominant in describing many real world
phenomena. Wazwaz (2002) writes

“It is well known that most of the phenomena that arise in mathematical physics and
engineering fields can be described by partial differential equations (PDE). In physics
for example, the heat flow and the wave propagation phenomena are well described by
partial differential equations.”

In fact, in this thesis we encounter both heat flow and wave propagation when describing the
temperature evolution and movement of the billet during the extrusion process.

Equation (3) is said to be linear if it takes the form

k∑
i=1

ai(x)
∂iu(x)

∂xi
= f(x), (5)

and is referred to as homogeneous if f(x) ≡ 0. Two quintessential PDEs are

∂u

∂t
= α

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
(6)

∂u

∂t
= −v ∂u

∂x1
, (7)
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where u : R3×R ∋ (x, t) 7→ R, and x = [x1, x2, x3]
⊤. Both (6) and (7) are on the form of (5) with

f(x) ≡ 0, and are therefore linear homogeneous PDEs. Equation (6) is a standard heat equation
in Euclidean 3-space, and (7) is a 1-dimensional one-way wave equation (an advection equation).
Both of these equations are relevant to the extrusion process, although, it will become apparent
that it is useful to us to rewrite (6) in terms of reduced cylindrical coordinates and combine them
into one equation;

∂u

∂t
= α

(
∂2u

∂x2
+

1

r

∂u

∂r
+

∂2u

∂r2

)
− v

∂u

∂x
, (8)

where u : R2 × R ∋ (ξ, t) 7→ R, and ξ = [r, x]⊤. This is referred to as a convection-diffusion
equation, since it captures both heat diffusion and advection.

Typically when dealing with PDEs on a domain, such as ξ ∈ W ⊂ R2, where W for example
represents a billet, one also imposes ‘boundary conditions’;

∂iu

∂ξi

∣∣∣∣
ξj

= b⊤(u(ξ)), (9)

for some i ∈ N : i ≤ k, where ξj is on the boundary ofW, and b(·) ∈ R2 is some boundary value.
For the boundaries of an object that do not dissipate energy to their surroundings at that boundary,
one assigns the boundary condition

∂u

∂ξ

∣∣∣∣
ξj

= 0⊤. (10)

Initial Value Problem
The reader should also be familiar with the notion of an initial value problem (IVP). In this thesis,
we use IVP to mean a system of ODEs accompanied by the complete description of the dependent
variable, u(·), for a single value of the independent variable, t, for which to solve for u over the
entire domain t ∈ D. That is;

du(t)

dt
= f(u(t), t),

diu(t)

dti

∣∣∣∣
t0

= bi ∀i ∈ Z0,k, (11)

with u : R ⊇ D 7→ Rnu , where t0 ∈ D.

2.2.2 Finite Difference Schemes

Finite difference schemes are a family of schemes that attempt to solve PDEs numerically by ap-
proximating their derivatives using finite differences. The most basic examples of such are

Forward scheme:
∂u

∂x

∣∣∣∣
x0

=
u(x0 +∆x)− u(x0)

∆x
(12)

Backward scheme:
∂u

∂x

∣∣∣∣
x0

=
u(x0)− u(x0 −∆x)

∆x
(13)

Central scheme:
∂u

∂x

∣∣∣∣
x0

=
u(x0 +∆x)− u(x0 −∆x)

2∆x
, (14)

(15)

which intuitively approximate the derivative due to their similarity to the definition of a derivative

du(x0)

dx
= lim

∆x→0

u(x0 +∆x)− u(x0)

∆x
. (16)

Similarly, the second order derivative can be approximated by

∂2u

∂x2

∣∣∣∣
x0

=
u(x0 +∆x)− 2u(x0) + u(x0 −∆x)

∆x2
. (17)
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By combining different finite differences, one can discretize a PDE into a set of ODEs. Take for
instance the convection-diffusion equation (8). We start by defining a grid of evenly spaced points;
{r1, r2, . . . , ra} × {x1, x2, . . . , xb} with spacing ∆r and ∆x, at which we evaluate the dependent
variable, which we denote; ui,j(t) ≜ u(ri, xj ; t). Then, (8) can be approximated by

dui,j(t)

dt
= α

(
ui,j+1(t)− 2ui,j(t) + ui,j−1(t)

∆x2

+
ui+1,j(t)− 2ui,j(t) + ui−1,j(t)

∆r2

+
ui+1,j(t)− ui−1,j(t)

r∆r

)
− v

ui,j+1(t)− ui,j(t)

∆x
,

(18)

which forms a system of ODEs. By providing an initial condition, ui,j(t0) = u0
i,j ∀i, j, the PDE

has been reduced to an IVP. A caveat to remark, is that (18) breaks down at the boundaries of
the grid, as there are no points beyond the grid to evaluate the dependent variable at. In place
of (18), one may simply use another set of schemes at these boundary points. Note that (18)
may be discretized further; in time t, however, in this thesis, we do not use finite differences to
approximate time evolution. Instead, collocation is used for this purpose, which is further discussed
in Section 2.3.2.

Differential Algebraic Equations
Lastly, we briefly mention the concept of a differential algebraic equation (DAE), which is a system
of equations containing both differential equations and algebraic equations;

F

(
∂u(x, y)

∂x
, u, x, y

)
= 0, (19)

where y is an independent variable. When working with DAEs, we call the variables that appear
in the differentials; differential variables, and the ones that only appear algebraically; algebraic
variables. A system of ODEs can become a system of DEAs when for example assuming a steady
state condition on one or more points in the grid of points, as is the case in this thesis. By assuming
that ∂ui,j(t)

∂t ≡ 0 for some i, j, one obtains the following algebraic equation

0 = α

(
ui,j+1(t)− 2ui,j(t) + ui,j−1(t)

∆x2

+
ui+1,j(t)− 2ui,j(t) + ui−1,j(t)

∆r2

+
ui+1,j(t)− ui−1,j(t)

r∆r

)
− v

ui,j+1(t)− ui,j(t)

∆x
,

(20)

where ui,j(t) has become an algebraic variable.

2.3 Nonlinear Programming

This section is based on theory by Betts (2010), Biegler (2010), Biegler (2007), Rawlings et al.
(2017) and Diehl and Gros (2011).

Nonlinear programming (NLP) is a type of optimization, where the output of an objective function,
or cost function, L : Rn 7→ R is minimized by an algorithm that searches its domain. An NLP is
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typically formulated as

min
w ∈ Rn

L(w) (21a)

s.t.

cE(w) = 0, (21b)

cI(w) ≥ 0 (21c)

where the elements of w are considered the decision variables, and cE(w) = 0 and cI(w) ≥ 0
are equations and inequalities that the solution, often denoted w∗, must satisfy. There are several
algorithms that can solve such NLPs, many of which have certain advantages over others, and
some are better suited for certain classes of problems than others. In this report, the Interior Point
Optimizer (Ipopt) algorithm (Wächter and Biegler 2006) is used, which is intended for solving
large, sparse problems. The effects of utilizing other algorithms are not discussed, although this a
natural continuation of this work. Another important factor to note is that the ‘best’ algorithm for
a particular NLP can be very dependent on the specific NLP-formulation, which is not necessarily
unique for a given problem. This is, among other reasons, due to sparsity patterns in the Jacobian
of the constraint vectors (Betts 2010), which can be exploited by the algorithm. Therefore, the
effectiveness of the algorithm can vary between NLP-formulations. Another aspect to note is that
most nonlinear optimization algorithms, that are useful for the type of problems presented in this
thesis, are local optimizers, which means that there may exist better, global solutions than those
found by these algorithms. Nevertheless, in this thesis, the solutions found by such an optimization
algorithm is considered optimal.

2.3.1 Transcription Method

When formulating a dynamic optimization problem as an NLP, it is necessary to describe the solu-
tion in terms of a finite set of variables, and this usually includes describing the system state as a
finite array of variables as well. Processes such as heat diffusion in metals are inherently continu-
ous, and the temperature state of the system is typically described by q(p, t) ∈ R, where p ∈ R3

describes the point in space, and t denotes time. Transcription is the conversion of a continuous
variable into a set of evaluations of that variable at different points in its domain; as

q(t) =


q(p1, t)
q(p2, t)

...
q(pnq

, t)

 =


q1(t)
q2(t)

...
qnq

(t)

 ∈ Rnq . (22)

This inherently implies a transformation of the system dynamics from a partial differential equation
(PDE)

q̇(p, t) = f(q(p, t), qp(p, t),u(t), t), qp(p, t) =
∂q(p, t)

∂p
(23)

to a set of ordinary differential equations (ODEs), as described in Section 2.2;

q̇(t) = f(q(t),u(t), t). (24)

The state vector is still continuous in time, and can be further transcribed in time as well. To this
end, one must select a final time, tf , which will eventually be the horizon of a dynamic optimization
problem. Then a set of points must be selected between t0 = 0 and t = tf ;

0 < t1 < t2 < · · · < tf . (25)

Typically, these time points will be uniformly distributed, with a constant time step ∆t, though
this is not necessary in general. Varying the time step allows one to increase the resolution of the
discretization only at time intervals one suspects that the state will exert complex behavior, so as
to increase the accuracy of the approximation. With a constant time step, the time points can be
described by

tk = t0 + k∆t ∀k ∈ Z0,N , (26)
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where N is the number of time points after the start time, t0. The trajectories of the state vector,
q(t) ∈ Rnq , and the control vector, u(t) ∈ Rnu , are then naturally discretized as

q(t) −→ {q(t0), q(t1), . . . , q(tN )} = {q0, q1, . . . , qN} (27)

u(t) −→ {u(t0),u(t1), . . . ,u(tN−1)} = {u0,u1, . . . ,uN−1}. (28)

Before one can formulate an NLP, on must also discretize the system model (24), in terms of the
transcribed state and control trajectories;

fmodel(qk, qk+1,uk, k) = 0. (29)

That is, the discretized trajectory (27) must approximate the true solution of (24), (q∗(t),u∗(t));

qk ≈ q∗(tk)

q∗(tk) = q(t0) +

∫ tk

t0

f(q(t),u∗(t), t) dt

 ∀k ∈ Z0,N . (30)

A dynamic optimization problem can then be written as;

min
w

L(w) (31a)

s.t.

fmodel(qk, qk+1,uk, k) = 0 ∀k ∈ Z0,N−1, (31b)

cE(w) = 0, (31c)

cI(w) ≥ 0, (31d)

where if w contains both the control variables and the state variables, we call this a simultaneous
method. If the state variables are implicitly given, and w only contains the control variables, we
call it a sequential method.

2.3.2 Direct Collocation

Direct collocation is a type of simultaneous method for dynamic optimization problems of type
(31), where the state trajectories are approximated by a collocation based integration scheme (Bie-
gler 2010) (Betts 2010) (Rawlings et al. 2017). The integration scheme is derived from collocation
techniques, although, they are equivalent to implicit Runge-Kutta schemes(IRK). A major advant-
age of IRKs, over explicit integration schemes, is that they are stable numerical integrators, mean-
ing that the integration error is bounded. One may therefore use these integrators to obtain a
highly accurate numerical integration with relatively few time steps. The stable nature of the
implicit integration schemes make them suited for stiff systems, as explicit integration schemes
require very fine discretization to handle all modes of the stiff system.

The typical way of building collocation polynomial starts by defining d ‘collocation points’ on each
time interval of the discretization of the state and control trajectories;

tk,i ∈ [tk, tk+1] ∀i ∈ Z1,d, ∀k ∈ Z0,N−1, (32)

and define
tk,0 = tk ∀k ∈ Z0,N−1. (33)

One then defines the Lagrange polynomials

lk,i(t) =

d∏
j=0,j ̸=i

t− tk,j
tk,i − tk,j

∀i ∈ Z0,d, ∀k ∈ Z0,N−1, (34)

which have the property

lk,i(tk,j) =

{
1, i = j

0, i ̸= j
. (35)
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By introducing the parameters vk,i ∈ Rnq ∀i ∈ Z0,d, one can obtain

vk,i · lk,i(tk,j) =

{
vk,i, i = j

0, i ̸= j
∈ Rnq . (36)

To obtain the ‘collocation polynomial’ for time interval k, one takes the sum of (36) for all times
tk,i ∀i ∈ Z0,d to get a Lagrange polynomial;

pk(t, Vk) =

d∑
i=0

vk,ilk,i(t), (37)

where Vk = {vk,0,vk,1, . . . ,vk,d}. The polynomial then inherits the desired property

pk(t, Vk) =

{
vk,i , t = tk,i ∀i ∈ Z0,d

p ∈ Rnq , otherwise
. (38)

One can then set the initial value of the polynomial, pk(tk,0, Vk) to the state value at the start of
that interval, qk, by simply setting vk,0 = qk. By choosing Vk such that

ṗk(tk,i, Vk) = f(pk(tk,i, Vk),uk) ∀i ∈ Z1,d, (39)

the collocation polynomial approximates the state trajectory on the interval [tk, tk+1]. Notice that
the collocation polynomial is easily differentiable. Therefore the state trajectory can be approxim-
ated by finding the V = {V1, V2, . . . , VN−1} that solves the system

qk − vk,0
ṗk(tk,1, Vk)− f(pk(tk,1, Vk),uk)
ṗk(tk,2, Vk)− f(pk(tk,2, Vk),uk)

...
ṗk(tk,d, Vk)− f(pk(tk,d, Vk),uk)

 = 0 ∀k ∈ Z0,N−1, (40)

which is referred to as the ‘collocation equation’, and evaluating the polynomial at (tk+1, Vk) for
all time intervals;

qk+1 = p(tk+1, Vk) ∀k ∈ Z0,N−1. (41)

One can rewrite the polynomials to be functions of a scaled variable τ , by mapping τ to t for each
interval, using

t = (τ ·∆t+ tk) ∀k ∈ Z0,N−1. (42)

All polynomials pk(t, Vk) ∀k ∈ Z0,N−1 can then be written as a single polynomial p(τ, Vk), which
simplifies the implementation. Their derivatives are transformed by

dp(τ, Vk)

dτ
=

dpk(t, Vk)

dt
· dt
dτ

(43a)

dt

dτ
=

d

dτ

(
τ ·∆t+ tk

)
= ∆t (43b)

⇒ p′(τ, Vk) = ṗk(t, Vk) ·∆t. (44)

Equation (40) can then be rewritten as
qk − vk,0

p′(τ1, Vk)−∆t · f(p(τ1, Vk),uk)
p′(τ2, Vk)−∆t · f(p(τ2, Vk),uk)

...
p′(τd, Vk)−∆t · f(p(τd, Vk),uk)

 = 0 ∀k ∈ Z0,N−1. (45)
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Diehl and Gros (2011) states that collocation can result in very high orders of integration by
choosing the collocation points carefully, which they explain by quadrature rules. This leads to
many choices of collocation points that yield different properties.

The Direct Collocation NLP

The final NLP will optimize over all state variables at times tk ∀k ∈ Z0,N and control variables at
times tk ∀k ∈ Z0,N−1, and in addition, all the intermediate state variables vk,i ∀i ∈ Z1,d, ∀k ∈
Z0,N−1. We define w = [u⊤

0 , . . . ,u
⊤
N−1, q

⊤
0 , . . . , q

⊤
N ,v⊤

0,0, . . . ,v
⊤
0,d, . . . ,v

⊤
N−1,0, . . . ,v

⊤
N−1,d]

⊤, and
the complete NLP formulation becomes

min
w

L(w) (46a)

s.t.
qk − vk,0

p′(τ1, Vk)−∆t · f(p(τ1, Vk),uk)
p′(τ2, Vk)−∆t · f(p(τ2, Vk),uk)

...
p′(τd, Vk)−∆t · f(p(τd, Vk),uk)

 = 0 ∀k ∈ Z0,N−1, (46b)

qk+1 − p(1, Vk) = 0 ∀k ∈ Z0,N−1, (46c)

cE(w) = 0, (46d)

cI(w) ≥ 0, (46e)

Note that adding vk,0 to the set of decision variables is redundant, since the state variable qk can be
used directly in Vk = [qk,vk,1, . . . ,vk,d], thereby also removing the need for the first line in (46b).
Also, to reflect an initial value problem, the state should be known at some point i; qi = qIV ,
thus negating the need to include this variable as a decision variable. Nevertheless, it is common
for MPC purposes to include the initial value as a decision variable and instead add the inequality
constraint qIV ≤ qi ≤ qIV , or the equality constraint qi = qIV .
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3 Extrusion Process

This section breaks down the extrusion process, as seen from the complete extrusion cycle per-
spective. The extrusion process/cycle can be divided into three main phases;

1. the heating phase,

2. the transit phase,

3. and the extrusion phase.

The extrusion cycle is illustrated in Fig. 8, where a billet starts it cycle by being inserted in to a
heater, then, after the heating phase is over, being transported during the transit phase, before
finally arriving at the extrusion press, ready to begin its extrusion phase.

Extrusion Cycle
TransitHeatingBillet ExtrudateExtrusion

Figure 8: Illustration of the extrusion cycle of a billet. This is the cycle subject to optimization by
the ECOL.

The heating phase requires an available heater. The extrusion plant of the case study has two
heaters working in parallel, such that a billet may begin its cycle while another billet is still being
heated. A heater model is described by Gabrielsen (2022), and it was shown that the use of optimal
control techniques to regulate the heater to a reference taper is simple and effective. In this thesis,
we make the assumption that the feasible reference tapers under this regulator scheme are or can
easily be understood. The transit phase is assumed to be trivially modelled as an extension of the
extrusion phase model from this thesis, or the already implemented heater model.

We define time frame of an extrusion cycle in the following way:

Phase: Heating Transit Reload Extrusion

Time Interval: [−th, 0]− tt − tRL [−tt, 0]− tRL [−tRL, 0] [0, tf ]
Duration: th ≥ 0 tt ≥ 0 tRL ≥ 0 tf ≥ 0

where th is referred to as the ‘heating time’, tt is the ‘transit time’, tRL is a small ‘reload time’, and
tf is the ‘final time’ or the ‘extrusion time’. The total cycle time is then

tc = th + tt + tRL + tf , (47)

In practice the extrusion cycles will overlap, as illustrated in Fig. 9. Therefore the extrusion period,
Text, is not necessarily, and in fact usually not, the same as the total cycle time; Text ̸= tc, and
is closer to the extrusion time plus reload time; Text ≈ tf + tRL, unless an extrusion cycle is
delayed due to the unavailability of heaters. The production rate is therefore, only dependent on
the extrusion time, since the reload time is constant. This idea is explored further in Section 5.

#Cycle

Time

Figure 9: Phases: ■-Heater, ■-Transit, ■-Extrusion, ■-Reload Time
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Mostly, in this thesis, we ignore the small reload phase, as there is only a trivial distinction between
the reload phase and the transit phase, and the two may be seen as one larger phase. Both phases
consist solely of ‘waiting’, from the perspective of the ECOL.

The following table summarizes the time related parameters describing the extrusion cycle:

Parameter Unit Description
th s Duration of the heater phase
tt s Duration of the transit phase (constant)
tf s Duration of the extrusion phase and end time of extrusion cycle
tc s Duration of the one extrusion cycle
tRL s Duration of the the reload phase (constant)
t0 = −th − tt − tRL s Start time of the extrusion cycle
Text s Extrusion perioda

a The time between the start of two consecutive extrusion cycles.

Table 1: Time related parameters that describe the extrusion cycle.

The following subsections describe the different phases.

3.1 Heating phase

In the heating phase, a billet is placed into an induction heater as the first step in its extrusion
cycle. The main components of the heater are a chamber that closely encapsulates the billet, and
a set of inductors that uses electromagnetic induction to heat the billet at uniformly distributed
‘zones’ across its length. The zones are the intervals along the length of the billet that are directly
affected by the induction coils, and nearly cover the entire surface of the billet. Fig. 10 shows a
sketch of a typical induction coil arrangement. The number of coils in an induction heater may
vary, but is typically greater than four, and the affected zones are usually close together, to avoid
intermediate cold regions. Each coil has its own controlled voltage, allowing control of the power
output from each individual coil, resulting in a number of controlled variables equal to the number
of coils. It is this property that allows one to preheat the billet to a temperature distribution, called
temperature taper or just taper, where the number of coils determine the potential complexity of
the taper. Note that the radial temperature variations are also part of the temperature taper. In
fact, the induction coils mainly affect the outer part of the billet, naturally inducing a radial taper
in the billet. These radial variations can be some what accounted for by regarding the time radial
heat diffusion get to occur. Typically, towards the end of the heating phase, the induction coils are
idle for some time, to allow the radial gradients to even out before the billet is sent to the extrusion
press. This time is referred to as the ‘saturation time’. A short re-heating phase usually takes place
at the very end of the heating process, to re-heat the billet, and counter the heat loss that occurs
during transit.

Figure 10: Illustration of the induction heater, showing an aluminium billet and four surrounding
induction coils, each with their own controlled AC voltage. By controlling the power of each coil
individually, one may produce a temperature taper in the billet.
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3.2 Transit Phase

The transit phase only consists of the transportation of the billet from the induction heater to
the extrusion press. This process is usually automated, and does not have many controllable
variables. The most interesting part of the transit phase is how the temperature taper of the billet
changes during the phase, due to internal heat conduction and dissipation of thermal energy to
the surroundings. This is primarily affected by the duration of the transit phase, which is not
considered a control variable in this thesis. The ambient temperature does also affect how the
temperature taper changes during the transit phase and must be accounted for by the optimization
layer. Lastly, the transit phase is assumed to be parallelizable. That is, several billet may be in their
respective transit phases simultaneously, so as to not stall production.

3.3 Extrusion Phase

After the transit phase, the billet arrives at the extrusion press and is placed into the container,
ready to begin extrusion. In practice, there is a short ‘reload time’, where the butt of the previous
billet is sheered off, and the new billet is inserted into the container. The extrusion phase is by far
the most complex phase, and is where the actual extrusion happens. The particular extrusion press
considered in this thesis is a cylindrical press owned by Hydro Extruded Solution, and is located in
Tønder, Denmark. The press uses the direct extrusion principle with hot extrusion, and, as is usual,
consists of the four main parts; ram, container, billet and die. In addition, the die is an assembled
component, consisting of several sub-components. In this thesis, three sub-components of the die
assembly is considered, which are;

• the die ring,

• the die (as part of the ‘die assembly’, which has previously been referred to as just ‘die’),

• and the die holder.

A cut view of a rudimentary recreation of the die assembly is presented in Fig. 11a. The figure
shows a six fold symmetry, with six ‘cavities’, or ‘dies’, whereas the real die assembly uses ten
cavities. The die is depicted in Fig. 11b, alluding to the complex nature of the geometry.

(a) The die assembly. (b) The die.

Figure 11: A cut view of the rudimentary recreation of the die assembly considered in this thesis
at the end of a container (yellow), consisting of 6 dies (blue), a die holder (green), and a die ring
(orange). Fig. (b) provides a closer look at the crudely reconstructed die.

The die also has cooling channels, with the possibility of using liquid nitrogen to cool the die during
extrusion, to compensate the heat generation in the aluminium. Each die is connected to the same
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cooling system, which means that there is only one valve to vary the coolant flow for all the dies.
Thus the dies cannot be individually cooled during extrusion.

The hydraulic ram is controlled by a PID controller. The PID controlled hydraulic ram system is
constrained in terms of both speed and acceleration. I addition, the ram speed cannot be negative,
that is, the hydraulic ram cannot retract during the extrusion phase. This has to do with safety and
product quality concerns. In this thesis, we introduce a safety margin, such that the velocity must
be at least a specified value, vram, above zero, except at the start of the extrusion phase, where the
ram speed is zero.

The control signal to the cooling system is in the form of a valve opening set point as a decimal
fraction, zvalve ∈ [0, 1]. The maximum allowed opening is 20%, or zvalve = 0.2.

The control constraints are given in Table 2.

Control constraints
vram(0) = 0mm/s
vram(t) > 0mm/s ∀t > 0
vram(t) ≥ vram > 0mm/s ∀t ≥ tram > 0
vram(t) ≤ 5mm/s ∀t ≥ 0
|v̇ram(t)| ≤ 0.4mm/s2 ∀t ≥ 0
zvalve(t) ∈ [0, 0.2] ∀t ≥ 0
|żvalve(t)| ≤ zrate ∀t ≥ 0

Table 2: Constraints of the PID controlled hydraulic ram speed, and the coolant flow valve opening.

The complete control vector during the extrusion phase is

utrue(t) =

[
vram,setpoint(t)
zvalve,setpoint(t)

]
∈ R2, t ∈ [0, tf ], (48)

where vram,setpoint(t) is the set point for the ram speed, zvalve,setpoint(t) is the set point for the
valve opening, and tf is the final time of the extrusion phase. The dynamics between the set points
and actual values are not modelled, and for the remainder of the thesis, we assume that the true
values are identically equal to the set points; vram ≡ vram,setpoint(t) and zvalve ≡ zvalve,setpoint, and
subsequently, that we can control the true values directly. Note that the initial billet temperature
is also considered a control variable for the extrusion phase, though not during extrusion. For the
purposes of this thesis, the state of the extrusion process during the extrusion phase is considered
to be the temperature distribution of the billet, container, the downstream aluminium flow, and
the die assembly.

The container has an embedded heating system, and for modelling purposes, we assume that
the outer layer of the container has a fixed temperature of 390oC, thus there is no loss from the
container to the ambient air. Similarly, the die assembly is held in place by a component that,
based on experimental data, is assumed to have a constant temperature of 250oC. The heat flow
from the die is then assumed to be proportional to

250− Tdie
τdie|dieholder

, (49)

where Tdie is the relevant die temperature, and τdie|dieholer is an experimentally found transfer
speed parameter.

3.3.1 Temperatures

Data from within the research project is used to find some initial temperatures for a typical ex-
trusion phase. Table 3 lists the initial temperatures at the start the extrusion phase for various
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“sections” (defined in Section 4) within the extrusion press, as assumed in this thesis. The tem-
peratures are assumed to be uniformly distributed within each section at the start of the extrusion
phase.

Section Initial Temperature
Container 447oC

Feeder 455oC
Port 480oC
Peak 440oC
Plate 480oC

Die 487oC

Table 3: The assumed initial temperatures of the extrusion phase in various “sections” of the
extrusion press. The sections are defined in Section 4.

During the extrusion phase, all temperatures must be strictly below the melting point of alu-
minium; Tmax < Tmelt. This temperature varies with different alloys, though for simplicity, we
assume that this is above Tmelt > 660oC, and impose the constraint T ≤ Tmax = 660oC for any
system temperature T . Of course, no temperature can be below 0K/− 273.15oC neither. In addi-
tion, the temperature at the very end of the aluminium flow stream, as it exits the die (referred to
as “peak temperature”), is critical to the product quality. In this thesis, we require that the peak
temperature is in the interval Tpeak ∈ Fpeak = [600oC, 610oC]. If this requirement is satisfied, the
extrusion is considered isothermal at the desired temperature. Note that, since the initial temper-
ature is outside this region, Tpeak(t = 0) /∈ [600oC, 610oC], this requirement is not feasible, thus
some deviation is acceptable in the beginning of the extrusion phase. The temperature constraints
are summarized in Table 4

Temperature Constraints
T (t) ∈ ⟨−273.15oC, 660oC] ∀t ∈ [t0, tf ]
Tpeak(t) ∈ [600oC, 610oC] ∀t ∈ [δt, tf ]
Tpeak(t) ∈ [−273.15oC, 610oC] ∀t ∈ [0, tf ]

Table 4: Constraints on temperatures during extrusion, where T is used to denote any temperature,
Tpeak denotes the temperature at the exit of the die, and δt ∈ ⟨0, tf ⟩ denotes some time into the
extrusion phase.
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4 Extrusion Model

The model used in this thesis is based on modelling work by Halås (unpublished). Various modi-
fications to their work are made to adapt the model for use with direct collocation, and to suit
the purposes of the thesis. The model is based on partial differential equations (PDEs) describing
temperature evolution in metals, accompanied by boundary conditions. A more detailed look at
how such equations are derived, and how they are adapted for a direct extrusion process is given
in Özı̧sık (1993), Aukrust and LaZghab (2000) and Cuéllar Matamoros (1999). Parts of the model
are confidential, thus some details are left undocumented, and the model is described on a general
level.

This section describes the extrusion phase model, as this is the model that will be the basis of
the optimization problem presented later in the thesis. The heating phase model is described by
Gabrielsen (2022), and is reminiscent of the extrusion model, without some of the challenging
complexities of the extrusion phase. The transit phase remains unmodelled, but is an important
step for future work, to use in verification of feasibility of the optimal solutions found in this thesis.
This idea is explored further in Section 5 and 7.

The parameters used in the model are summarized in Table 5.
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Parameter Unit Description
hal|steel W/(m2K) Heat transfer coefficient between aluminium and steel
hal|a W/(m2K) Heat transfer coefficient between aluminium and environment
αal m2/s Thermal diffusivity of aluminium
αsteel m2/s Thermal diffusivity of steel
κal W/(mK) Thermal conductivity of aluminium
κsteel W/(mK) Thermal conductivity of steel
cp,al J/(kgK) Heat capacity of aluminium
cp,steel J/(kgK) Heat capacity of steel
ρal kg/m3 Mass density of aluminium
ρsteel kg/m3 Mass density of steel
ρLN2 kg/m3 Mass density of liquid nitrogen
QLN2 W Cooling capacity of liquid nitrogen
ηLN2 − Efficiency of LN2-cooling
ṁLN2 kg/s Mass flow of liquid nitrogen
∆hvap,LN2

J/kg Vaporization heat of liquid nitrogen
kmax m3/s Maximum volumetric flow of liquid nitrogen in cooling channels
Ta K Ambient temperature
TRef,container K Reference temperature for container heating element
Ai|j m2 Interfacing are between i and j
Rbillet m Billet radius and inner radius of container
Lbillet m Billet lengtha

Rcontainer m Outer radius of container
Lcontainer m Length of container
Rfeeder m Radius of feeder section
Lfeeder m Length of feeder section
Rport m Radius of port section
Lport m Length of port section
hpeak m Height of peak section
wpeak m Width of peak section
Lpeak m Length of peak section
Rplate m Outer radius of plate section
Lplate m Length of plate section
Rdie m Outer radius of die section
Ldie m Length of die section
Rextrusion m Extrusion Radius
Eratio − Extrusion Ratio
Ncavities − Number of cavities
Rf J/(molK) The gas constantb

Qf > 0 kJ/mol Activation energyb

Af > 0 s−1 A temperature independent parameterb

nf > 0 − A temperature independent parameterb

αf > 0 MPa−1 A temperature independent parameterb

a This parameter is time dependent, and refers to the initial length when written without time as
an argument.

b Related to flow of aluminium and resulting shear stress and strain (Sellars and Tegart (1972)
and Sheppard and Wright (1979)), as cited by Aukrust and LaZghab (2000)

Table 5: Model parameters.
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4.1 Continuous Model

The model divides the system into ‘sections’ with their own governing PDEs and coordinate systems,
and that interact via boundary conditions. A summary of these sections is given in Table 6, and Fig.
12 shows their arrangement in space. All sections are considered to be cylindrical about one of two
center axes, depicted in red and yellow in Fig.12, with the exception of the peak- and exit-sections,
which are assumed to be rectangular cuboids (their cross-sectional areas still assumed to be that
of the MPE-profiles shown in Fig 1b).

Section name Material Variable Description
“billet” Aluminium Tbillet(·) The billet.
“container” Steel Tcontainer(·) The container.
“feeder” Aluminium Tfeeder(·) The part of the downstream aluminium flow

that is inside the die ring.
“port” Aluminium Tport(·) The part of the downstream aluminium flow

within the die itself.
“peak” Aluminium Tpeak(·) The aluminium at the exit of the die,

where the product profiles are imposed.
“plate” Steel Tplate(·) The part of the die that is closest to the

peak-section. This section also contains
cooling channels.

“die” Steel Tdie(·) The remaining part of the die, surrounding
the plate- and port-sections.

“Exit” Aluminium The aluminium extrudate. This section is
NOT modelled in this thesis.

Table 6: Model section descriptions.

Billet

Container

Feeder

Port

PeakExit

Die
Plate

Figure 12: Depiction of the various model sections, as defined by the model. Steel sections are
shown in brown, and aluminium sections are shown in gray. The red arrow indicates the direction
of flow, or ‘extrusion direction’. The vertical dashed gray line separates the sections that are com-
mon for the whole system, and the sections that represent a specific cavity. The yellow and red
dashed lines represent the main and secondary center axes respectively.

The PDEs used to model the different sections are reduced cylindrical dynamic heat equations on
the form

∂T (ξ̄; t)

∂t
= v(ξ̄; t)

∂T (ξ̄; t)

∂x̄
+ α

(
1

r̄

∂

∂r̄

(
r̄
∂T (ξ̄; t)

∂r̄

)
+

∂2T (ξ̄; t)

∂x̄2

)
+ Φ̃(ξ̄;T ; v̄) + Ψ̃(ξ̄;T ; v̄), (50)

where T (ξ̄; t) ∈ R and v(ξ̄; t) ∈ R are the temperature and velocity of the material at point
ξ̄ = [r̄, x̄]⊤ ∈ R2 and time t ∈ R, respectively, and α is the thermal diffusivity of the material. For
more on how (50) is derived, we refer the reader to Cuéllar Matamoros (1999) and Özı̧sık (1993).
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The terms; Φ̃ and Ψ̃, represent the heat generation from the viscous dissipation and reduction
work respectively, which are dependent on the average velocity in the section, v̄, and are such that

v̄ = 0⇒ Φ̃, Ψ̃ = 0. (51)

The radial component of the velocity of the aluminium is assumed to be zero, such that flow only
occurs in the axial direction, thus the velocity v(ξ̄; t) is modelled as a scalar value, representing
the axial speed in the extrusion direction. Notice that the extrusion direction is in the negative
direction of the axial dimension, thus the sign of the translation/advection term is reversed. In
addition, all steel components are assumed to be rigid, such that v⃗steel(t) ≡ 0⃗, which combined
with (51) reduces the steel section models to

∂T (ξ̄; t)

∂t
= αsteel

(
1

r̄

∂

∂r̄

(
r̄
∂T (ξ̄; t)

∂r̄

)
+

∂2T (ξ̄; t)

∂x̄2

)
. (52)

The dynamic heat equation, (50), uses reduced cylindrical coordinates, ξ̄ = [r̄, x̄]⊤, where r̄ is
the radial dimension and x̄ the axial dimension, as shown in Fig. 13, with r = 0 being at their
respective center axes, shown in Fig. 12. The zero of the axial dimension is defined separately
for each section, and is located at the leftmost point of the section, such that the section spans
the interval [0, Lsection] in its axial dimension. This is a natural way of choosing the coordinate
frames, since all modelled sections except for the peak-section are cylindrical. The interactions
between the different sections are modelled as boundary conditions on the PDEs. These conditions
are presented in Table 7, Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13. For simplicity
of notation, the coordinates and time of all temperatures Tsection(ξ̄; t) are omitted in the boundary
condition tables, except for specific coordinate values. For example, we write Tbillet,(r̄=0) to mean
Tbillet(0, x̄; t) ∀x̄, t ∈ [0, Lbillet] × [0, tf ]. Any omitted value and corresponding values in other
sections are deducible from Fig 12. One shortcoming of the non-symmetric peak section is that
some of its boundary conditions remain semi-defined in the continuous space model, although, this
does not carry over to the discrete space model that we derive in Section 4.2. We do not model all
intersections rigorously in continuous space, and IA|B is used in place of coordinates of boundary
conditions where the coordinates are not defined in reduced cylindrical form.

r̄
x̄

Figure 13: The cylindrical coordinate frame used to describe points within the billet and various
other components of the extrusion press.
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Billet

Tbillet

∂r̄

∣∣∣∣
(r̄=Rbillet)

=
hal|steel
κal

(
Tcontainer,(r̄=0) − Tbillet

)
Tbillet

∂x̄

∣∣∣∣
(x̄=Lbillet(t)),(x̄=0∧r̄>Rfeeder)

= 0

Tbillet

∂r̄

∣∣∣∣
(r̄=0)

= 0

Tbillet

∂x̄

∣∣∣∣
(x̄=0∧r̄≤Rfeeder)

=
Tfeeder

∂x̄

∣∣∣∣
(x̄=Lfeeder)

Table 7: Billet section boundary conditions.

Container

Tcontainer

∂r̄

∣∣∣∣
r̄=0

=
hal|steel
κsteel

(
Tbillet,(r̄=Rbillet) − Tcontainer

)
Tcontainer

∂x̄

∣∣∣∣
(x̄=Lcontainer),(x̄=0)

= 0

Tcontainer,(r̄=Rcontainer) = TRef,container

Table 8: Container section boundary conditions.

Feeder

Tfeeder

∂r̄

∣∣∣∣
(r̄=Rfeeder),(r̄=0)

= 0

Tfeeder

∂x̄

∣∣∣∣
(x̄=0∧r̄∈Ifeeder|port)

=
Tport

∂x̄

∣∣∣∣
(x̄=Lport)

Table 9: Feeder section boundary conditions.
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Port

Tport

∂r̄

∣∣∣∣
(r̄=0)

= 0

Tport

∂r̄

∣∣∣∣
(r̄=Rport)

=
hal|steel
κal

(
Tdie,(r̄=0) − Tport

)
Tport

∂x̄

∣∣∣∣
(x̄=0∧r̄∈Iport|plate)

=
hal|steel
κal

(
Tplate,(x̄=Lplate) − Tport

)
Tport

∂x̄

∣∣∣∣
(x̄=0∧r̄∈Iport|peak)

=
Tpeak

∂x̄

∣∣∣∣
(x̄=Lpeak∧r̄∈Ipeak|port)

Table 10: Port section boundary conditions.

Peak

Tpeak

∂r̄

∣∣∣∣
(r̄=0)

= 0

Tpeak

∂x̄

∣∣∣∣
(x̄=0)

= 0

Tpeak

∂r̄

∣∣∣∣
(r̄=Ipeak|plate)

=
hal|steel
κal

(
Tplate,(r̄=Iplate|port) − Tpeak

)

Table 11: Peak section boundary conditions.

Plate

Tplate

∂x̄

∣∣∣∣
(x̄=0)

= 0

Tplate

∂r̄

∣∣∣∣
(r̄=Iplate|die)

= Tdie

∂x̄

∣∣∣∣
(r̄∈[Ldie−Lport−Lplate,Ldie−Lport])

Table 12: Plate section boundary conditions.

Die

Tdie

∂x̄

∣∣∣∣
(x̄=0),(x̄=Ldie)

= 0

Tdie

∂r̄

∣∣∣∣
(r̄=Rdie)

= 0

Table 13: Die section boundary conditions.
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4.1.1 Viscous Dissipation

The term representing the heat generation caused by viscous dissipation, Φ̃(T (ξ̄); v̄), is based on
work by Aukrust and LaZghab (2000). The term consists of multiple nested expressions, starting
with the pressure gradient along the axial dimension;

∂P (ξ̄, v̄)

∂x̄
=

(
v̄(nf + 1)√

3AfR(nf+1)(1− 2
nf+3 )

) 1
nf
(
− 2√

3αf

)(
e

Qf
RfT (ξ̄)

) 1
nf

, (53)

which is then used for the calculation of the velocity profile;

v(ξ̄, v̄) = e
−Qf

RfT (ξ̄)

(√
3

2
αf

)nf
(√

3AfR
nf+1

(nf + 1)

)(∣∣∣∣∂P (ξ̄, v̄)

∂x̄

∣∣∣∣)nf
(
1− r̄nf+1

Rnf+1

)
. (54)

Its derivative with respect to the radial dimension is then used to find the dynamic viscosity as

µ(ξ̄, v̄) =

√
3

3αf

∣∣∣∂v(ξ̄,v̄)∂r̄

∣∣∣
(

1√
3Af

∣∣∣∣∂v(ξ̄, v̄)∂r̄

∣∣∣∣e Qf
RfT (ξ̄)

) 1
nf

, (55)

and ultimately the viscous dissipation, Φ[W/m3];

Φ(ξ̄, v̄) = −µ(ξ̄, v̄)
(
∂v(ξ̄, v̄)

∂r̄

)2

. (56)

The contribution to temperature change is then found via the heat capacity and density of the
material, as

Φ̃(ξ̄, v̄) = −Φ(ξ̄, v̄)

ρcp
. (57)

Equation (57) applies to all aluminium sections, except for the peak section, as the viscous dissip-
ation contribution to the rate of change in temperature, as described in (50). Note that the section
name subscripts are omitted from the variables in the equations in Section 4.1.1, as they apply to
multiple sections and to simplify notation.

Since the objective of the work in this thesis is to implement the model equations as constraints to
a simultaneous dynamic optimization problem, it is greatly beneficial to reformulate the equations
such that all expressions are continuously differentiable with respect to the optimization variables,
which include the temperature state of the model, T (ξ̄) > 0, and the ram speed, vram > 0. In this
thesis, we therefore modify the equations such that they do not include the absolute value operator,
and reduce them to simplify implementation. First off, notice that (53) is always negative because
vram > 0 =⇒ v̄ > 0 and all flow related variables (subscripted “f”) are positive real numbers,
thus we have

∣∣∣∣∂P (ξ̄, v̄)

∂x̄

∣∣∣∣ = −∂P (ξ̄, v̄)

∂x̄
. (58)

Using (58), one can insert (53) into (54) as

v(ξ̄, v̄) = e
−Qf

RfT (ξ̄)

(√
3

2
αf

)nf
(√

3AfR
nf+1

(nf + 1)

)
·
((

v̄(nf + 1)√
3AfR(nf+1)(1− 2

nf+3 )

) 1
nf
(

2√
3αf

)(
e

Qf
RfT (ξ̄)

) 1
nf
)nf

·
(
1− r̄nf+1

Rnf+1

)

which after cancellations yields

v(ξ̄, v̄) = v̄
(nf + 3)

(nf + 1)

(
1− r̄nf+1

Rnf+1

)
. (59)
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The gradient of the velocity profile along the radial dimension is therefore

∂v(ξ̄, v̄)

∂r̄
= v̄

(nf + 3)

(nf + 1)

∂

∂r̄

(
1− r̄nf+1

Rnf+1

)
= −v̄r̄nf

(nf + 3)

Rnf+1
, (60)

which , since v̄ > 0 and r̄ ≥ 0, is always negative or zero, thus∣∣∣∣∂v(ξ̄, v̄)∂r̄

∣∣∣∣ = −∂v(ξ̄, v̄)

∂r̄
. (61)

Using (61) in (55) yields

µ(ξ̄, v̄) =

√
3

3αf
(
− ∂v(ξ̄,v̄)

∂r̄

)( 1√
3Af
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) 1
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e
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) 1−nf
nf

,

(62)

which can be used together with (56) and (60) to get

Φ(ξ̄, v̄) = − 1√
3αf

(
1√
3Af

) 1
nf

e
Qf

nfRfT (ξ̄)

(
− ∂v(ξ̄, v̄)

∂r̄

) 1−nf
nf
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1
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f

)−1(
r̄nf

√
3

(nf + 3)

Rnf+1

) 1+nf
nf

(63)

4.1.2 Viscous Dissipation for Peak Section

When modelling viscous dissipation for the peak section, we assume high strain rates. This as-
sumption results in slightly modified equations for Φ̃peak. First we introduce the ‘characteristic
length’, λ, which is found by solving the implicit equation(

2λ

hpeak

)2(
e

hpeak
2λ

(
hpeak
2λ

− 1

)
+ 1

)
− 2nf+1v̄peake

Qf
RfTpeak(ξ̄)

√
3Afhpeak

= 0, (64)

which assumes vpeak(ξ̄) = 0 for r̄ = 1
2hpeak, meaning that there is no slipping between the flowing

aluminium and the steel wall. Note that the peak section is not cylindrical, r̄ is therefore used
to mean the height inside the peak section, as opposed to the width. The maximum radial co-
ordinate is then r̄ = 1

2hpeak, at which point the aluminium flow speed is assumed to be zero. The
characteristic length is then used to find the velocity gradient in r̄ and the dynamic viscosity as

∂vpeak(ξ̄; v̄peak)

∂r̄
=

√
3Af
2nf

e

(
r̄

λ(ξ̄;v̄peak)
−

Qf
RfTpeak(ξ̄)

)
(65)

µpeak(ξ̄; v̄peak) =
1

√
3αf

∣∣∣∂vpeak(ξ̄;v̄peak)
∂r̄

∣∣∣ loge
(

2nf

√
3Af

∣∣∣∂vpeak(ξ̄; v̄peak)
∂r̄

∣∣∣e Qf
RfTpeak(ξ̄)

)
. (66)

Equations (56) and (57) are then used to find Φpeak and Φ̃peak, as for the other aluminium sec-
tions. We call attention to the fact that, similarly to the simplifications for the other sections, the
equations for viscous dissipation in the peak section can also be reduced significantly, and result in

Φpeak(ξ̄; v̄peak) = −
Af

nf2nfαf

(
r̄

λ(ξ̄; v̄peak)

)
e

(
r̄

λ(ξ̄;v̄peak)
−

Qf
RfTpeak(ξ̄)

)
. (67)

4.1.3 Reduction Work

Similarly to viscous dissipation, a reduction work is also modelled, which contributes to heat gen-
eration in the flowing material. The equations governing the reduction work are based on an
internal report by Hydro.
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To compute the reduction work that is generated when aluminium is flowing from section A to sec-
tion B, one first needs to compute a ‘reduction ratio’, RA|B , and a ‘reduction speed’, vred,A|B(v̄A),
as

vred,A|B(v̄A) = 2v̄A
R2
A

R2
A +R2

B

(68)

RA|B =

√
R2
A +R2

B

2
. (69)

Further, one computes a reduction force, Fred,A|B , using

σA|B(ξ̄, v̄A) =
2

3αf

(
(nf + 3)vred,A|B(v̄A)e

Qf
RfT (ξ̄)

√
3AfRA|B

) 1
nf

(70)

Fred,A|B(ξ̄, v̄A) = πR2
A

(
K1,A|B +K2,A|BσA|B(ξ̄, v̄A) loge

(
R2
A

R2
B

))
, (71)

to finally get the reduction work (or ‘power’), ΨA|B(ξ̄, v̄A)[W ], as

ΨA|B(ξ̄, v̄A) = Fred,A|B(ξ̄, v̄A)vred,A|B(v̄A). (72)

The contributions to the rate of change of temperature is then found via

Ψ̃A|B(ξ̄, v̄A) =
ΨA|B(ξ̄, v̄A)

cp,alρalVB
, (73)

where VB is the volume of the section downstream of the aluminium flow.

4.1.4 Reduction Work for Peak Section

The reduction work equations are also affected by the assumption of high strain rates. To calculate
the reduction speed from the port section to the peak section, we use the following equations;

Aport|peak =
πR2

billet

Eratio
(74)

vred,port|peak(v̄port) = 2v̄port
πR2

port

πR2
port +Aport|peak

, (75)

where Aport|peak is the reduction area from port to peak, which is equal to the product profile area.
The reduction work is then found by

σport|peak(ξ̄; v̄peak; v̄port) =
hpeak

2λ(ξ̄; v̄peak)αfnf
(76)

Fred,port|peak(ξ̄; v̄peak; v̄port) = πR2
port

(
K1,port|peak

+K2,port|peakσred,port|peak(ξ̄; v̄peak; v̄port)

· loge
(

πR2
port

Aport|peak

))
,

(77)

and using (72) and (73) to get Ψport|peak and Ψ̃port|peak. For the remainder of the thesis, for
tidiness, we denote the peak reduction work contributions Ψfeeder|port, Ψ̃feeder|port, Ψport|peak and
Ψ̃port|peak as Ψport, Ψ̃port, Ψpeak and Ψ̃peak respectively.

4.1.5 Average Section Speeds

The average speed in each aluminium section is simply based on the ram speed and the cross
sectional area of the section, and are derived from conservation of mass and the assumption of
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incompressibility;

Qbillet = Qfeeder = Qport = Qpeak
v̄billetAbilletρal = v̄feederAfeederρal = v̄portAportρal = v̄peakApeakρal

v̄billetAbillet = v̄feederAfeeder = v̄portAport = v̄peakApeak

v̄billetπR
2
billet = v̄feederπR

2
feeder = v̄portπR

2
port = v̄peakApeak,

(78)

where Q, v̄ and A represent the mass flow, average speed in the axial direction and the cross
sectional area in each section. As described in Section 4.1.4, the cross sectional area of the peak
section/product profile is calculated via the extrusion ratio, and is equal to the reduction area
between the port and peak section found in (74). We have Apeak = Aport|peak. The average speed
in the billet section is assumed to be equal to the ram speed;

v̄billet = vram. (79)

The remaining average speeds are then calculated as

v̄feeder = vram
R2
billet

R2
feeder

(80)

v̄port = vram
R2
billet

R2
portNcavities

(81)

v̄peak = vramEratio. (82)

4.2 Model Discretization

The implementation of the model into a simultaneous dynamic optimization problem requires that
the model is discretized, or transcribed, in both space and time. That is, the dynamic system
should be described by a finite dimensional state array evaluated at a set of time points within
the horizon of the DOP. The process of discretizing in space turns the partial differential equations
into a system of ordinary differential equations, which is explained further in Section 4.2.1. This
Section describes the discretization of the system state into state arrays, and the discretization of
the system state in time is described in Section 5.

To represent the the system state, T (ξ̄; t), as an array T (·), we choose a set of coordinates at which
we evaluate the system state, and organize the temperatures at those coordinates in an array. The
coordinates at which the temperatures are evaluated lie on a rectangular lattice within each sec-
tion, and the temperatures are assumed to be the average temperatures within subdomains/control
volumes of the section, called ‘cells’. The division of sections into cells is depicted in Fig. 14, which
shows a cut view of a billet divided into several rings. In the reduced cylindrical coordinates, these
rings appear rectangular, as depicted in Fig. 15.
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Figure 14: An illustration of the way the billet is divided into control volumes, referred to as ‘cells’.
The image shows a cut view of a subset of the billet cells, whereas the true discretizations fill the
full volume of the different sections.

For the sake of simplicity and tidiness, we introduce the discrete coordinates; ξ = (r, x) ∈ Z1,nr ×
Z1,nx for each section, which reference the cell numbering shown in Fig. 15. The values of nr
and nx are determined by the relevant section, and the section-subscript is therefore omitted. The
section state arrays can then be written as

T section(t) =

 Tsection(1, 1)(t) · · · Tsection(1, nx)(t)
...

...
Tsection(nr, 1)(t) · · · Tsection(nr, nx)(t)

 ∈ Rnr×nx . (83)

The complete system state is then the collection of the section state arrays;

T (t) =



T billet(t)
T container(t)
T feeder(t)
T port(t)
T peak(t)
T plate(t)
T die(t)
T exit(t)


, (84)

(1, 1) (1, nx)

(nr, 1) (nr, nx)

(1)

(nr)

(1)

(nr) (1, 1) (1, nx)

(nr, 1) (nr, nx)

· · ·

· · ·

...
...

· · ·

· · ·

...
...

...

...

Figure 15: Depiction of discretization of sections into ‘cells’. The coordinates represent the num-
bering of the cells, where nr and nx represent the number of cells in the radial and axial dimensions
respectively in the relevant section section.
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In this thesis, we choose to impose certain limitations on some of the discretization paramet-
ers, seen in Table 14, whereas the non-limited parameters are adjusted to optimize the trade-off
between model accuracy and the solve-time of the resulting NLP, which is explored in Section 6.

Section nr nx
Billet ND ND

Container ND ND
Feeder ≤ nr,billet 1

Port 1 1
Peak 1 1
Plate 1 1

Die ND 1

Table 14: Resolution of section discretizations. ND reads “Not Determined”, and means that the
parameter is tuned/chosen for each dynamic optimization problem (DOP).

Additionally, we introduce the parameters ∆rsection and ∆xsection, which are the thicknesses of
all cells of the section indicated by the subscript in the radial and axial dimensions respectively,
meaning that all cells have the same width in both directions. The thicknesses are found as

∆rbillet =
Rbillet
nr

(85)

∆xbillet =
Lbillet
nx

(86)

∆rcontainer =
Rcontainer −Rbillet

nr
(87)

∆xcontainer =
Lcontainer

nx
(88)

∆rfeeder = ∆rbillet (89)

∆xfeeder = Lfeeder (90)

∆rport = Rport (91)

∆xport = Lport (92)

∆xplate = Lplate = Lpeak (93)

∆rdie =
Rdie −Rport

nr
(94)

∆xdie = Ldie. (95)

Note that the radius of the feeder section in the discrete model may not be equal to its radius in
the continuous model due to the definition of the radial width of the feeder cells, which is defined
in this way to simplify the discrete model dynamics. The centers, surface areas and volumes of the
different cells, except peak and plate, are then found as

r̄r = (r − 1

2
)∆r (96)

x̄x = (x− 1

2
)∆x (97)

Ar(r) = 2πr∆r∆x (98)

Ax(x) = 2π∆r2(r − 1

2
) (99)

V (r) = Ax(r)∆x, (100)

where (r̄r, x̄x) is the center, and Ar(r), Ax(r) and V (r) are the surface areas of the outer radial
surface and axial surface and volume of cell (r, x) respectively. The areas and volume for peak and
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plate are

Ar,peak = 2hpeak + 2wpeak (101)

Ax,peak = Aport|peak (102)

Vpeak = Ax,peak∆xpeak (103)

Ar,plate = 2πRplate∆xplate (104)

Ax,plate = πR2
plate −Ax,peak (105)

Vplate = Ax,plate∆xplate. (106)

4.2.1 Discretized Dynamic Equations

Upon discretizing the system state in space, the PDEs governing the system dynamics are also
discretized in space, to obtain a system of ODEs that are only continuous in time. In order to remain
close the the model implementation by Halås (unpublished), finite difference schemes(Strikwerda
2004) are used for this purpose;

∂T

∂r̄

∣∣∣∣
(r,x)

≈ T (r + 1, x)− T (r − 1, x)

2∆r
(107)

∂T

∂x̄

∣∣∣∣
(r,x)

≈ T (r, x+ 1)− T (r, x)

∆x
(108)

∂2T

∂r̄2

∣∣∣∣
(r,x)

≈ T (r + 1, x)− 2T (r, x) + T (r − 1, x)

∆r2
(109)

∂2T

∂x̄2

∣∣∣∣
(r,x)

≈ T (r, x+ 1)− 2T (r, x) + T (r, x− 1)

∆x2
, (110)

where (107) is a central difference, (108) is a forward difference, and (109) and (110) are second-
order central differences. The terms of the continuous model (50) and the boundary conditions
presented in Tables 7-13 are rewritten terms of finite differences. The advection/translation term
becomes

v(ξ; t)
∂T (ξ; t)

∂x̄
≈ v(ξ; t)

T (r, x+ 1; t)− T (r, x; t)

∆x
. (111)

The second order axial derivative from (50) is rewritten using (110) directly, and the second radial
derivative becomes

1

r̄

∂

∂r̄

(
r̄
∂T (ξ; t)

∂r̄

)
=

1

r̄

(
r̄

∂r̄

∂T (ξ; t)

∂r̄
+ r̄

∂2T (ξ; t)

∂r̄2

)
=

1

r̄

∂T (ξ; t)

∂r̄
+

∂2T (ξ; t)

∂r̄2

≈ T (r + 1, x; t)− T (r − 1, x; t)

2r̄∆r
+

T (r + 1, x)− 2T (r, x) + T (r − 1, x)

∆r2
.

(112)

On the boundary of a section, B = Br ∪Bx, Br = {(r, x)|r = 1∨ r = nr}, Bx = {(r, x)|x = 1∨ x =
nx}, the second-order central difference is not available as there is no adjacent cell beyond the
boundary of that section. A potential solution to this is to use second-order forward and backward
differences. Another solution is, if there is a cell beyond the boundary, but from another section,
one may use this cell in the equation instead. The latter approach does not work in all cases, as
one cannot generally say that the interfacing surface area, cell volumes, and even material are the
same or equivalent. The latter approach is modified to yield

∂2T (ξ; t)

∂x̄2

∣∣∣∣
ξ∈Bx

≈ T (r, xadj ; t)− 2T (r, x; t) + Tadj(t)

∆x2

≈ T (r, xadj ; t)− T (r, x; t)

∆x2
+

Tadj(t)− T (r, x; t)

∆x2

≈ Ar
Vr

T (r, xadj ; t)− T (r, x; t)

∆x
+

A(r,x)|adj

Vr

Tadj(t)− T (r, x; t)

∆x

(113)

36



for the x-dimension, and similarly for the r-dimension. The subscript “adj” refers to the appropriate
adjacent cell, where (r, xadj) is the adjacent cell within the same section as (r, x), and Tadj is the
temperature of the adjacent cell in the neighboring section. Equation (113) functions as the dis-
cretization of the boundary conditions between sections of similar material as well. If the boundary
is between two section of different materials, A and B, the second term in (113) is replaced by

hA|BA(r,x)|adj

αAVrρAcp,A

(
Tadj(t)− T (r, x; t)

)
, (114)

where A is the material of the the relevant section, and B is the material of the neighboring section.
The one exception to this is the heat transfer between the billet and the container, which replaces
the term with

Tadj(t)− T (r, x; t)

αAVrρAcp,AΩ
, (115)

where Ω is the thermal resistance between the billet and container, and is found by

Ω =
loge

(
2Rbillet

2Rbillet+∆rbillet

)
2π∆xbilletκal

+
loge

(
2Rbillet+∆rcontainer

2Rbillet

)
2π∆xcontainerκsteel

+
1

2π∆xbilletRbillethal|steel
. (116)

The last exception is when there is no neighboring cell, such that no heat transfer is modelled, in
which case the term is simply neglected.

4.2.2 Discretization Under ‘Diminishing Billet’ Conditions

A detail that has not been explored yet is that of the diminishing billet during extrusion. In fact,
during extrusion, the billet undergoes translation, which is accounted for by (111) in the discret-
ized dynamics. Although, this implies that the billet gradually disappears from the back end, which
is not accounted for yet. The most important consideration regarding this phenomenon, is how
one chooses to model the billet once it has been shifted by ∆L. Fig. 16 shows the three main con-
tenders of how to discretize the billet after a shift of ∆L to the left. The top instance depicts the
initial, non-shifted billet discretization, which has been considered up until this point. The three
bottom instances depict three ways to discretize the billet after a shift, where the first uses a fixed
discretization grid in overall system reference frame, where the back most cells, (r, nx), shrink by
∆L. The second instance depicts a moving discretization grid which is fixed on the moving billet,
and the front cells, (r, 1), are shrunk by ∆L. The third and last instance depicts a grid where all
cells shrink by the same amount, ∆L

nx
, to maintain a homogeneous discretization grid.

t = t0: All cells: ∆x

t = t+: ∆x(r,nx) = ∆x−∆L

t = t+: ∆x(r,1) = ∆x−∆L

t = t+: All cells: ∆xt+ = ∆x− ∆L
nx

Figure 16: Illustration of three ways to adjust the spatial discretization of the billet upon it dimin-
ishing during extrusion. The figure shows four instances of the billet and its discretization, the
top being the initial/non-shifted version, and the three bottom ones being the three options after
a shift of ∆L.
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The chosen method to handle the diminishing billet is the first option from Fig. 16, where the
backmost cells, (r, nx), are shrunk. To that end, we denote the length of the backmost cells ∆xend,
and simply rewrite the equations from Sections 4.1.4, 4.1.1 and 4.2 that regard the diminished
cells using ∆xend instead of ∆xbillet where appropriate. Note that once ∆L > ∆xbillet, the back-
most cells disappear entirely, and the cells to their left become the new backmost cells, and the
discretization parameter nx is updated as

nx ← nx − 1. (117)

This is illustrated in Fig. 17, where the the billet and its discretization is shown for three different
time instances, and the backmost cells disappear, or ‘die’. The width of the backmost cells is then
∆xend = ∆xbillet − (∆L − ∆xbilletNdead), where Ndead is the number of cells that have already
died, and ∆L is the total amount of shift from the initial state of the system.

Figure 17: Illustration of the backmost cells disappearing, or ‘dying’, during the extrusion process.

Another consideration is how to modify the container interaction with the dead cells. In the real
system, the container is interacting with air where the a cell has died, though the model assumes
that no heat exchange happens at this interface after the cell dies.

4.2.3 Coolant Model

Lastly, the effect of coolant flow is modelled. The coolant used for the die cooling channels is liquid
nitrogen (LN2), and the control variable associated with its flow is the valve opening, zvalve ∈
[0, 1], as a decimal fraction, where

zvalve = 0→ valve fully closed

zvalve = 1→ valve fully open

0 < zvalve < 1→ valve partially open.

The cooling channels appear in the model through their effect on the plate section, as a negative
power contribution that is linear in coolant mass flow. The mass flow rate is computed from

ṁLN2(zvalve) = kmaxz
s
valve

ρLN2

Ncavities
, s > 0, (118)

where kmax is the maximum volumetric flow, and ρLN2 is the coolant mass density. The exponent
s [−] is a unit-less number that captures the nonlinear relationship between the valve opening and
mass flow rate. The cooling capacity is then found via

QLN2(zvalve) = −ṁLN2∆hvap,LN2, (119)

and ultimately the contribution to the rate of change of temperature, Ξ, is found via

Ξ(zvalve) =
ηQLN2

ρsteelcp,steel∆Vplate
. (120)
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5 Optimization

As the motivation behind this thesis is to gain understanding and experience with the use of direct
collocation as a tool for optimization of complex and nonlinear industrial processes, this Section
explores the formulation and implementation of an NLP that optimizes the extrusion process. The
goal is to develop a reliable optimization formulation that finds the initial billet taper that allows a
control scheme to extrude a given billet as fast as possible while satisfying any requirements on the
temperature of the system. This algorithm will compliment a preexisting NMPC control scheme
that optimizes the ram speed and coolant flow throughout the extrusion period, to minimize the
extrusion time while maintaining the peak temperature within a set of specified requirements, seen
in Fig. 3. The result should be an open loop optimization algorithm that facilitates the best possible
initial taper for the extrusion phase, so as to allow the smallest possible extrusion time.

The Section starts with an overview of the general control problem, that is, what the goal of the
extrusion cycle optimization layer is, in terms of an optimal control problem (OCP). Then, in
Section 5.1.1, the problem is simplified by separating the overall OCP into two OCPs representing
the heating- and extrusion phase, connected via the transit phase as an initial value problem (IVP).
Under some assumptions, the separated problems are equivalent to the original problem, allowing
one to solve a much simpler control problem, while still obtaining the optimal solution with respect
to the overall control problem. Following is a Section that covers the conversion of the OCP
into an NLP. Various considerations about the formulation of the equivalent NLP are presented in
Section 5.2.2. The section ends with an overview of the implementation of the NLP in MATLAB,
and some considerations thereof.

5.1 Optimal Control Problem

The objective of the proposed control scheme is to satisfy the following objectives;

i) maintain the desired peak temperature according to a set of specified requirements through-
out the extrusion phase,

ii) and minimize the total extrusion period Text.

The available control inputs are the ram speed and coolant-valve opening; vram(t) ∈ [vram, 5mm/s]
and zvalve(t) ∈ [0, 0.2]. In addition, the initial taper is available as a control variable since this op-
timization takes places in the ECOL (see Fig. 3), which means that it occurs before the billet enters
its extrusion cycle. The reference temperature for the heating phase is therefore free to be op-
timized. The overall control problem encompasses the heating phase, transit phase and extrusion
phase, and can be written as;

min
w

Text (121a)

s.t.

Tpeak(t) ∈ Fpeak(t) ∀t ∈ [0, tf ], (121b)

T (t) ∈ ⟨0, Tmax] ∀t ∈ [0, tf ], (121c)

vram(t) ∈ [vram, 5mm/s] ∀t ∈ [0, tf ], (121d)

|v̇ram(t)| ≤ 0.4mm/s2 ∀t ∈ [0, tf ], (121e)

zvalve(t) ∈ [0, 0.2] ∀t ∈ [0, tf ], (121f)

|żvalve(t)| ≤ z̄rate ∀t ∈ [0, tf ], (121g)

V h(t) ∈ V ∀t ∈ [t0, t0 + th]. (121h)

where w = {V h(t),T init, vram(t), zvalve(t)}, V h(t) being the control variables in the heating
phase, V is the domain of the heater control inputs, and T init = T billet(0) being the initial taper.
Note that (121c) is element wise, and applies to all relevant sections. Lastly, Fpeak(t) represents
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the feasible region for the peak control volume/cell at time t, and Tmax is the maximum allowed
temperature, which is typically a little lower than the melting point of the current aluminium alloy,
as previously discussed.

5.1.1 Separation of Problem Formulation

Control of the complete extrusion cycle can be considered a multistage problem, as described by
Diehl and Gros (2011), due to the ‘multistage’ nature of the heating-, transit-, and extrusion phase.
Such systems are also reminiscent of hybrid systems, as described by Biegler (2010) and Borrelli
(2003). Typically, multistage/hybrid systems require implementation of logic to model the various
stages, such as in the Mixed Logic Dynamical (MLD) Systems described by Borrelli (2003). In the
context of direct collocation, Biegler (2010) uses switching profiles and guard/switching functions
to implement transitions between stages. In this thesis, however, we attempt to avoid dealing with
hybrid systems entirely by separating the control problem, (31), into smaller control problems
representing the different phases, while maintaining overall optimality. By separating the overall
optimal control problem into smaller OCPs, no logic is required to distinguish between the three
phases, and they can be implemented as standard dynamic NLPs.

To this end, we make use of the observation that, in practice, we have; Text ≈ tRL + tf , which can
be seen in Fig. 9, where tRL is the reload time and tf is the extrusion time, as defined in Table 1.
This is the case, as long as the extrusion phase is the ‘bottle neck’ of the extrusion cycle. That is,
since the extrusion phase plus reload phase of different cycles cannot overlap, the next cycle must
be delayed by at least tf+tRL. Furthermore, since there are 2 heaters in our case study, neither can
the heating phases of three cycles overlap. Therefore, the extrusion period must also be delayed
by at least 1

2 th. The extrusion period is therefore assumed to be expressed as

Text ≈ max

{
1

2
th, tRL + tf

}
. (122)

Based on internal data from Hydro and the work by Gabrielsen (2022), the heating phase can
be completed in th ≈ 300s for a non-optimized cycle, whereas the extrusion time is typically
tf ≈ 330s. The reload time is estimated to be tRL ≈ 23s. Accounting for the parallel heater
phases, the extrusion period is therefore Text ≈ max{150s, 353s} = 353s. To finish, we make an
assumption that the heating time, th, is generally not heavily affected by the reference taper for
the heater, such that the initial taper that minimizes tf , does not result in a significant increase in
heating time. We then have a reduction margin of 353s − 150s = 203s before the heating phase
becomes the ‘bottle neck’, and the production rate cannot be increased further by decreasing the
extrusion time. Fig. 18 illustrates this concept, where the extrusion time is shortened from what is
depicted in Fig. 9, resulting in a shorter extrusion period and higher production rate. In the figure,
the heating phases of two cycles overlap, which is permitted in this case study, whereas three
simultaneous heating phases would not be possible and cause ‘bottle necking’. It is also important
to note that by optimizing the heating time, the reduction margin may be even greater. The current
estimate of th = 300s is based on the generic heater optimization by Gabrielsen (2022), and in
practice, the non-optimized heating phase is currently in the range of 500s to 600s.
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#Cycle

Time

Figure 18: Phases: -Heater, -Transit, -Extrusion, -Reload Time.
Illustration of the extrusion cycles with small extrusion times. The figure showcases how the
heating time must be very large in comparison to the extrusion time before it affects the extrusion
period.

Under these assumptions, the optimal control problem can be separated into two parts; the heating
phase (OCP A), [t0, t0+ th], and the extrusion phase (OCP A), [0, tf ]. The transit phase, which here
consumes the reload phase, is completely unactuated, and occurs as an intermediary IVP between
the two parts. This approach yields two separate optimization problems, where the extrusion phase
is optimized first with respect to extrusion time, and the heating phase is optimized second, with
the primary goal of achieving the appropriate billet taper within the th ≤ 2(tRL+ tf ), to guarantee
optimality. The separation is illustrated in Fig. 19. To ensure that the solution of OCP B is feasible
with respect to OCP A, the feasible end-states of the heater must be transformed via the transit IVP
to find the respective feasible initial tapers for OCP B, as illustrated in Fig. 19a.

ECOL

OCP A IVP OCP BFinitFref

(a) The feasible end-states of the heater, Fref , are fed into the transit IVP to
compute the feasible set of initial tapers, Finit.

ECOL

OCP A IVP OCP BT initT ref

(b) The solution of OCP B is fed to the transit phase IVP to compute the reference
taper for the heating phase.

Figure 19: Illustrating the separation of the OCP into two parts, connected via the transit phase.
The second part (B) encompasses the extrusion phase and is solved first, and the first part (A)
encompasses the heating phase and is solved second, based on the solution of OCP B and the
dynamics of the transit phase (the IVP).

An important observation is that after OCP B has been solved to find an initial taper, one can
compute the respective heating time, and verify that that the heating phase has not become the
bottle neck; 1

2 th ̸> tRL + tf , thus preserving optimality. As both single shooting and collocation
techniques have been extensively tested for the heater, by Gabrielsen (2022), and the transit IVP
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is a trivial extension of that implementation, the remaining part of interest is that of the extrusion
phase. To reduce the workload, this thesis will not cover the implementation of the OCP A, nor the
transit IVP, and rather focus on the core part of the ECOL, which is OCP B, the extrusion phase.
The OCP B problem is

min
T init, vram(t), zvalve(t)

tf (123a)

s.t.

T init(t) ∈ Finit(t) ∀t ∈ [0, tf ], (123b)

Tpeak(t) ∈ Fpeak(t) ∀t ∈ [0, tf ], (123c)

T (t) ∈ ⟨0, Tmax] ∀t ∈ [0, tf ], (123d)

vram(t) ∈ [vram, 5mm/s] ∀t ∈ [0, tf ], (123e)

|v̇ram(t)| ≤ 0.4mm/s2 ∀t ∈ [0, tf ], (123f)

zvalve(t) ∈ [0, 0.2] ∀t ∈ [0, tf ], (123g)

|żvalve(t)| ≤ z̄rate ∀t ∈ [0, tf ]. (123h)

where T represents the temperature array of any section, 0 < vram < 5mm/s, and

Fpeak(t) =

{
[−273.15oC, 610oC], t ∈ [0, δt⟩
[600oC, 610oC], t ∈ [δt, tf ]

(124)

for some δt ∈ ⟨0, tf ⟩. Time δt amounts to zone I) from Fig. 7, and should be as small as possible
to maximize the amount of high quality product yielded form the billet. It remains a design choice
whether or not to implement measures to ensure that δt is small, and depending on these measures,
one may introduce an implicit or explicit trade-off between making δt small and making tf small.
The choice has been made to not include a constraint nor cost associated with δt in OCP B, to leave
this design choice open.

5.2 Nonlinear Programming

As stated in Section 1.1, part of the motivation behind the thesis is to gain understanding of the
use of simultaneous approaches to formulating nonlinear programs (NLPs) to optimize complex
dynamical industrial processes, with focus on direct collocation. In order to reformulate (123) as
an NLP, or to transcribe the problem, one must first discretize the model in time;

{T (0),T (t1), . . . ,T (tN )} → {T 0,T t1 , . . . ,T tN } (125)

{vram(0), vram(t1), . . . , vram(tN−1)} → {vram,0, vram,t1 , . . . , vram,tN−1
} (126)

{zvalve(0), zvalve(t1), . . . , zvalve(tN−1)} → {zvalve,0, zvalve,t1 , . . . , zvalve,tN−1
}, (127)

for all section temperature arrays T (t). The system trajectories can then be approximated by using
using orthogonal collocation (Diehl and Gros 2011), as seen in Section 2.3, by implementing the
constraints

p′(τ1, Vk)−∆tk · fk,1(p(τ1, Vk),uk) = 0
p′(τ2, Vk)−∆tk · fk,2(p(τ2, Vk),uk) = 0

...
p′(τd, Vk)−∆tk · fk,d(p(τd, Vk),uk) = 0

T k+1 − p(1, Vk) = 0


∀k ∈ Z0,N−1. (128)

The variable T k+1 represents the relevant temperature variable at discretization point k + 1. Note
that T k − vk,0 = 0 has been omitted, as addressed in Section 2.3.2, and that the discretization
interval size ∆tk is not necessarily uniform across the horizon. As described in Section 4.2.1 and
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Section 4.2.2, the model equations describing the temperature dynamics are dependent on the cell
length ∆x, which for the backmost billet cells, changes as the billet is being extruded, thus making
the dynamics time varying. Therefore, fk,j is used to denote the discretized model dynamics at
time tk,j = tk + τj∆tk. Furthermore, the dynamics of the boundary cells of a section are different
from the the internal cells, implying a discontinuous change in the model as the backmost cells
die, and the next set of cells become the new backmost cells. Implementing (128) is therefore not
trivial, as the extrusion length at time tk,i is unknown prior to solving the optimization problem.

One approach to overcoming this obstacle may be to simply add a variable for the ‘extrusion
length’, L, and impose

L(t) =

∫ t

0

vram(τ) dτ, (129)

which allows one to define the dynamics as functions of the extrusion length. Upon discretizing
the extrusion length variable;

{L(0), L(t1), . . . , L(tf )} → {L0, L1, . . . , Lf}, (130)

and imposing a constraint for each new variable, one increases the number of variables and con-
straints by the number of discretization points, which is undesirable. Compared to the size of
the rest of the NLP, however, this increase in variables and constraints is minuscule. The greater
issue with the approach is that the discontinuities in the dynamic functions cannot be smoothly
described by the introduction of the extrusion length as a variable, thus logical statements or some
type of approximations are required to implement the dynamic constraints. In the former case,
the NLP is converted into a mixed integer nonlinear program (MINLP), which are generally much
harder to solve. Instead, another solution, that circumvents these obstacles, is chosen for the work
in this thesis, which is presented in Section 5.2.1.

5.2.1 Progressor Transformation of the Extrusion Model

To address the practical problem of implementing discontinuous, ‘extrusion-length-varying’ dy-
namic constraints, we first introduce the term ‘progressor’:

Definition. Let the state, xA(γ) ∈ Rn, of the dynamical system A be defined on the continuous set
γ ∈ [γ0, γf ] ⊆ R by the Initial Value Problem

dxA(γ)

dγ
= fA(xA(γ),u(γ)), xA(γi) = xi, (131)

where γi ∈ [γ0, γf ], and u(γ) ∈ Rm is a control trajectory. Then, any variable λ(xA(γ),u(γ)) ∈
[λ0, λf ] ⊆ R is a progressor of A under control trajectory u(γ) iff there exists a continuously differen-
tiable, bijective function g : [γ0, γf ] 7→ [λ0, λf ], such that

λ = g(γ). (132)

It is natural to think of time as a ‘progressor’ of a dynamical system, and the extrusion model
described in this thesis is, in fact, defined in terms of time. Time, t ∈ [0, tf ], is therefore a progressor
of the extrusion model. We then make the important observation that, by requirement, we have
vram(t) > 0 ∀t ∈ ⟨0, tf ], making the extrusion length monotonically increasing in time on the
domain of the extrusion model. This implies a bijective mapping between the extrusion length and
time, which in turn means that the extrusion length is also a progressor of the extrusion model.
Figure 20 illustrates this concept by depicting a ram position curve that maps the extrusion length
at the model discontinuities to points in time as a continuously differentiable, bijective mapping.
Note that upon discretizing the system, we utilize a piecewise constant ram speed, implying a
continuous, but not differentiable position curve at the discretization points. This is, however, not
a problem. The figure illuminates the fact that the points in time at which the model discontinuities
occur are dependent on the ram position curve, which is uniquely defined by the ram velocity curve,
by (129). Since part of the objective of the NLP implementation is to solve for ram velocity over
the duration of the extrusion phase, one does not know the time points of the discontinuities prior
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to solving the NLP itself. Therefore, one cannot simply implement the model constraints on a grid
of discretization points in time.

Time

Extrusion Length

Figure 20: A conceptual sketch of the relationship between progress in time and progress in ex-
trusion length, as given by the ram position curve (shown in orange). The figure illustrates how
the times at which the discontinuities of the model occur are dependent on the ram velocity curve,
and therefore unknown prior to solving for the optimal ram speed.

By transforming the extrusion model to be progressed by extrusion length rather than time, one
can discretize the system in extrusion length instead, allowing one to align the discretization points
with the discontinuities of the model. This concept is illustrated in Fig. 21, where a set of arrows
indicate a uniform discretization grid of a billet that aligns with the axial cell intersections, which
is where the model exhibits discontinuous changes. Such a transformation circumvents several
issues, since;

• the model equations are known at the discretization points prior to knowing the ram speed
curve, and are therefore implementable as constraints in an NLP,

• the discretization points may be aligned with the discontinuous model changes, effectively
‘hiding’ the discontinuities and avoiding logical statements in the NLP,

• and lastly, by knowing exactly what cells are active at each discretization point, one does not
have to allocate variables for all cells at every discretization point, which reduces the size of
the NLP significantly.

The latter point is discussed further in Section 7.1.2.
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Figure 21: An illustration of a discretization grid in extrusion length, that aligns with all model
discontinuities of the model. These discontinuities occur at the axial billet cell intersections, where
the green arrows point. The blue arrows indicate additional discretization points. The red arrow
indicates the direction of extrusion.

The mapping from time, t, to extrusion length, L, is described by (129). By applying the chain
rule,

dx

dt
=

dL

dt

dx

dL
, (133)

we get the extrusion-length-progressed model

dx

dL
=

1

vram(L)
f(x,u, L), (134)

which is known, and therefore implementable. The model constraints are then imposed as

vram,k · p′(τ1, Vk)−∆L · fk,1(p(τ1, Vk),uk) = 0
vram,k · p′(τ2, Vk)−∆L · fk,2(p(τ2, Vk),uk) = 0

...
vram,k · p′(τd, Vk)−∆L · fk,d(p(τd, Vk),uk) = 0

qk+1 − p(1, Vk) = 0


∀k ∈ Z0,N−1, (135)

where ∆L is the size of the discretization interval [Lk, Lk+1], and the discretization of extrusion
length is defined by

L0 = 0 (136)

LN = Lbillet (137)

Lk+1 = Lk +∆L ∀k ∈ Z0,N−1. (138)

Notice that, in this thesis, the spacial discretization of the billet is uniform, thus the interval size,
∆L, is constant.

5.2.2 Various NLP Considerations

This section covers various considerations regarding the constraints and objective in regard to
reformulating (123) as an NLP.

Ram Acceleration and Valve Rate

The acceleration of the ram position and the rate of change of the valve opening must be approx-
imated in order to constrain them in an NLP. The ‘best’ way to do this is not clear, and various
approaches may have varying properties that are either desirable or undesirable. One possible ap-
proach is that of finite differences. Although, when the discretization grid is not uniform in time, it
is not trivial to conclude on what finite difference should be used. A natural difference to consider
is a ‘time-center-to-center’ difference, as illustrated by the violet graph in Fig. 22.
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vram,1

vram,3

vram,2

vram,1

Figure 22: The figure depicts a piecewise constant ram speed curve over both extrusion length.
L, and time, t. The piecewise constant speeds are of uniform length in extrusion length, both not
in time, making a time-center-to-center time derivative approximation (violet) nonlinear in ram
speed.

The ram acceleration can be approximated by the slope of the time-center-to-center curve as

v̇ram(tk+1) ≈
vram,k+1 − vram,k
1
2

(
∆tk +∆tk+1

) . (139)

By rewriting

∆ti =
∆L

vram,i
, (140)

one gets

v̇ram(tk+1) ≈
vram,k+1 − vram,k

1
2

(
∆L

vram,k
+ ∆L

vram,k+1

) =
2vram,kvram,k+1

∆L

(
vram,k+1 − vram,k
vram,k+1 + vram,k

)
. (141)

As seen from (141), a property of the time-center-to-center acceleration approximation is its non-
linear dependence on the velocity itself, which is typically not desired. A much simpler, though
somewhat naive, approach, is to use a space-center-to-center difference, resulting in

v̇ram(tk+1) ≈
vram,k+1 − vram,k

∆L
. (142)

This approach is linear and thus more desirable in an NLP. However, the interpretation of (142)
is less consistent with an average acceleration over several discretization points, and it deviates
quickly from the time-center-to-center approach with large values of vram,k+1 − vram,k. Similar
methods can be considered for approximating the rate of change of the valve opening.
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Figure 23: An illustration of how the piecewise constant
ram speed reference will be tracked in practice by the hy-
draulic ram system. The blue graph represents the piece-
wise constant ram speed reference, and the purple graph
represents the hydraulic ram system tracking the reference
by availing maximum acceleration near the steps in the ref-
erence, denoted tac.,kand tac.,k+1.

Of course, both of these approxima-
tions fall somewhat short, since the
model assumes a piecewise constant
ram speed and valve opening, and
their derivatives are subsequently in-
finite at the discretization points, and
zero elsewhere. The real extrusion
press is of course unable to track such
references, and will in practice have
to operate at the practical maximum
rate of change near the discretiza-
tion points to accommodate the step
changes, as is illustrated in Fig. 23.
The regions in which the press ac-
celerates, denoted tac.,kand tac.,k+1in
the aforementioned figure, are re-
gions where the model deviates fur-
ther from the real system then in
the regions of constant speeds. It is
therefore desirable to minimize these
regions, in order to maximize the model accuracy. As seen from Fig. 23, the sizes of these regions
are proportional to the step size of the reference, thus constraining the sizes of these regions
is more consistent with (142), although the bounds should then be reconsidered to represent a
bound on the minimum acceptable region of acceleration. In addition, as mentioned in Section 3,
in this thesis we assume that the real system is able to track the set points adequately, such that we
may assume to be able to directly set the ram speed itself. It is also worth noting that at high ram
speeds, the discretization interval size in time, ∆tk, is itself small, and the regions of acceleration
should be smaller than the discretization interval, so as to not overlap;

1

2

(
tac.k + tac.k+1

)
≤ ∆tk ∀k ∈ Z1,N−2. (143)

If this is not satisfied, the system may fail to track the reference entirely, because it cannot reach
the current set point before the next step. Of course, when using fine discretization, the piecewise
constant reference may be filtered to produce a smooth reference representing an average. In this
case, (143) does not apply, and other considerations must be made to ensure feasibility. How-
ever, the implementation in this thesis is expected to use a coarse discretization grid and minimal
smoothing.

We denote the approximation of ram acceleration and valve opening rate of change by dram(·) and
dvalve(·) respectively. The limitations of the rate of change of the valve opening is unknown for
the case study considered in this thesis, and subsequently we assume that the valve can change
infinitely fast and no constraint is imposed on it. Nevertheless, the bound dvalve(·) ∈ [−z̄rate, z̄rate]
is included in the problem formulation, to indicate that such a constraint is possible and indeed
natural to consider. For the ram acceleration, a version of the simple linear approach (142) is used
due to its simplicity. By assuming that the ram speed is consistently near some value ṽ, such that
vram,k ≈ vram,k+1 ≈ ṽ, one can approximate (141) by

2ṽṽ

∆L(ṽ + ṽ)

(
vram,k+1 − vram,k

)
=

ṽ

∆L

(
vram,k+1 − vram,k

)
(144)

to obtain a scaled version of (142), and impose the constraint

|vram,k+1 − vram,k| ≤
∆L

ṽ
0.4mm/s2. (145)

It is clear from (145) that larger values of ṽ are more conservative. A value equal to the maximum
ram speed is therefore chosen; ṽ = 5mm/s.
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Constraints on the Initial Taper

The initial temperature taper of the billet at the start of the extrusion phase (“initial taper”) is
limited by the capabilities of the heater and the transit time, and these limitations should be reflec-
ted by constraints in the final NLP formulation. The exact limitations themselves are not exactly
known, as they rely on the region of feasible end-tapers of the heating phase, which has not been
investigated. Nonetheless, under some assumptions, a set of simple constraints are implemented.
First off, we assume that radial variations in the initial taper have limited effect on the optimal
extrusion time, and subsequently all radial differences can be set to zero;

T init(r, x) = T init(r + 1, x) ∀(r, x) ∈ Z1,nr−1 × Z1,nx , (146)

where T init = T billet,0. This has the effect of regularizing the initial taper, which helps avoid a
region of ‘nearly equally good’ solutions and may speed up the optimization algorithms somewhat.
The initial taper is then reduced to axial variations in temperature. By requirement, the initial
taper must possess an axial temperature taper greater than some minimum taper δT−

init > 0, such
that

∂Tbillet(t = 0)

∂x̄

∣∣∣∣∣
(r̄,x̄)

≤ −δT−
init ∀(r̄, x̄) ∈ [0, Rbillet]× [0, Lbillet]. (147)

This is approximated in terms of the established billet cells as

T init(r, x) ≥ T init(r, x+ 1) + ∆T−
init ∀(r, x) ∈ Z1,nr

× Z1,nx−1, (148)

where ∆T−
init = δT−

init∆xbillet. If another, more strict minimum taper is imposed, such as to
accommodate the feasible heater end taper region, ∆T−

init takes a new value, corresponding to the
new minimum taper. The upper limit to the initial taper will be imposed by the heating phase, and
we assume that such a constraint is sufficiently represented by

T init(r, x) ≤ T init(r, x+ 1) + ∆T+
init ∀(r, x) ∈ Z1,nr × Z1,nx−1, (149)

where ∆T+
init ≥ ∆T−

init is some maximum taper dictated by the heating phase combined with the
transit phase. Note that the constraints imposed by the heating/transit phase, (149), amounts
to the part of Finit that is re-assessed with every extrusion cycle in the proposed extrusion cycle
control scheme in Section 5.1.1.

Control Variables

The control variables uk = [vram,k, zvalve,k]
⊤ must be bounded according to the specifications in

Section 3. For the ram speed, we impose

vram,k ∈ [vram, 5mm/s] ∀k ∈ Z0,N−1, (150)

where vram > 0 is close to, but sufficiently above, zero. This is both by press requirement, and
to ensure the existence of the Jacobian of the dynamic constraints, which is further discussed in
Section 5.3. In this thesis, we choose

vram = 0.125mm/s. (151)

For the valve opening, zvalve,k, we perform a variable transformation;

ẑ ≜ zsvalve, (152)

and rewrite (118) as
ṁLN2(ẑ) = kmaxẑ

ρLN2

Ncavities
, (153)

to obtain a linear relationship between the valve opening variable, ẑ, and the cooling term, Ξ, in
(120). Notice that on the domain zvavle ∈ [0, 0.2], given by Table 2, the the transformation (152)
is bijective. The constraints are then also transformed as

ẑk ∈ [0, 0.2s] ∀k ∈ Z0,N−1. (154)
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To recover the valve opening after solving the NLP, simply apply

zvalve,k = s
√
ẑk ∀k ∈ Z0,N−1, (155)

which is possible because of the bijective nature of the variable transformation on its domain.

Temperature Bounds

According to Table 4, all temperatures must stay below the melting temperature of aluminium
Tmelt = 660oC. Of course, no temperature can be below 0K/ − 273.15oC, and the system should
not be able to be driven below this limit, since it would not be consistent with the law of physics,
and the same assumptions are made for the system model. Nevertheless, it may be useful to
constraint the temperature variables from below, to avoid needless iterations in the regions of
low temperatures. In fact, we assume that all temperatures will be above room temperature, and
impose the element wise constraint

T ζ,k > 20oC ∀k ∈ Z0,N ∀ζ ∈ S, (156)

where S = {billet, container, feeder, port, peak, plate, die}.

In addition to the hard constraints on all temperatures, the peak temperature should lie within
a certain region to maintain isothermal extrusion. Table 4 requires that the peak temperature is
maintained within the interval [T peak, T peak], where T peak = 600oC and T peak = 610oC. The
exception is that there must at least be a time period [0, δt] where the peak temperature rises from
its initial value and into the isothermal region. In this thesis, soft constraints are chosen, in order
to accommodate initial deviations, yet motivate isothermal extrusion when possible. Using soft
constraints rather than choosing some time δt, after which we impose hard constraints, has the
benefit of not having to make assumptions about the rise time of the peak temperature. This is a
major advantage, since one does not have to re-assess δt for every extrusion cycle, after receiving
information about the incoming billet. Of course, choosing δt too small would render the NLP in-
feasible, and choosing δt too large would allow non-isothermal extrusion for longer than necessary.
The soft constraints are imposed as

Tpeak,k ∈ [T peak − ϵk, T peak + ϵk], ϵk ≥ 0 ∀k ∈ Z1,N , (157)

where ϵk ∀k ∈ Z1,N are decision variables that are optimized simultaneously to the rest of the
NLP. Under (157), we have isothermal extrusion whenever ϵ remains equal to zero, and ϵ increases
linearly with deviations from the isothermal region. We therefore add

Jϵ = γϵ

N∑
k=1

ϵk (158)

to the objective in order to motivate isothermal extrusion, where γϵ >> 0 is some large coefficient.
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Port and Peak in Steady State

The equations governing the dynamic behavior of the port and peak sections of the model are

dTport,k
dt

= v̄port,k
T feeder,k(rextrusion)− Tport,k

Lport

+ hal|steelAport|die
T die,k(1)− Tport,k
ρalcp,al∆Vport

+ αalAfeeder|port
T feeder,k(rextrusion)− Tport,k

∆VportLport

+ αalAport|peak
Tpeak,k − Tport,k
∆VportLport

+ Φ̃port,k + Ψ̃port,k

(159)

dTpeak,k
dt

= v̄peak,k
Tport,k − Tpeak,k

Lpeak

+ hal|steelApeak|plate
Tplate,k − Tpeak,k
ρalcp,al∆Vpeak

+ αalAport|peak
Tport,k − Tpeak,k
∆VpeakLpeak

+ Φ̃peak,k + Ψ̃peak,k

(160)

for all k ∈ Z1,N , where rextrusion is the cell number that aligns with the port section, that is;

rextrusion =

⌈
Rextrusion
nr,feeder

⌉
, (161)

and vport,k and vpeak,k are the average aluminium flow speeds in the port and peak sections re-
spectively. Due to the small volumes and high flow rates, the terms Φ̃port,k, Ψ̃port,k, Φ̃peak,k and
Ψ̃peak,k become very large, resulting in very large derivatives. The model therefore acts as a stiff
system, which implicit integration schemes such as collocation are typically suited for. However,
the large derivatives may result in poorly conditioned constraint Jacobians. By setting the left
hand side of (159) and (160) to zero, we assume that the port and peak sections are always at
steady state, and convert the model into a differential algebraic equation (DAE). The temperature
variables Tport and Tpeak are then regarded as algebraic variables. We define the right hand sides
of (159) and (160) as gport,k,i(·) and gpeak,k,i(·) respectively for the algebraic relationship between
the variables at collocation point i in discretization interval k. The algebraic equation

gk,i(·) =
[
gport,k,i(·)
gpeak,k,i(·)

]
= 0 (162)

is then imposed as a constraint on the NLP for all discretization points and collocation points except
the initial discretization point (k, i) = (0, 0).

Characteristic Length: λ

The characteristic length, λ, is required to find the both the viscous dissipation energy and re-
duction work, Φ̃peak and Ψ̃peak, of the peak section, and is defined by (64), which is an implicit
equation. Solving lambda must therefore be done numerically via an iterative method. By de-
fining a set of variables representing the characteristic length at the various discretization points,
{λ0, λ1, . . . , λN}, one can impose (64) as a constraint for every discretization point, and thereby
solve numerically for lambda simultaneously to solving the optimization problem. One may define
separate variables for the characteristic length at every collocation point (k, i), although in this
thesis, the characteristic length is assumed constant over the discretization interval.
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Before implementing such a scheme, two key modifications are made, in terms of how the charac-
teristic length appears in the model equations. Firstly, solving (64) for Tpeak yields

Tpeak =
Qf

Rf

(
loge

((
1

Cλ(v̄peak)

)(
2λ

hheak

)2(
e

hpeak
2λ

(
hpeak
2λ

− 1

)
+ 1

)))−1

, (163)

where

Cλ(v̄peak) =
2nf+1

√
3hpeakAf

v̄peak. (164)

Then, inserting (163) into the equation for the viscous dissipation energy, (67), then simplifies the
expression to

Φpeak = − v̄peakhheakr̄

2nfαf
√
3λ3

(
e

hpeak
2λ

(hpeak
2λ

− 1
)
+ 1
)−1

e
r̄
λ , (165)

which renders the viscous dissipation energy in the peak section completely independent of the
peak temperature itself. Of course, the dependency is still implicitly present through the definition
of the characteristic length. Furthermore, via (82) we see that the viscous dissipation energy
is linear in the ram speed, vram. Note that the viscous dissipation energy is distributed across
the height of the peak section, r̄, though an average energy over several values of r̄ is used.
Accompanied by the fact that the peak reduction work is on the form

Ψpeak = Wψ
1

λ
v̄peak, (166)

where Wψ > 0 is a constant, we see that (160) comes out to be linear in Tpeak and vram.

The second key modification is a variable transformation of the characteristic length. By applying
the transformation

λ̂ ≜
1

λ
, (167)

one may rewrite (165) and (166) as

Φpeak = − v̄peakhheakr̄

2nfαf
√
3

λ̂3
(
e

λ̂hpeak
2

( λ̂hpeak
2

− 1
)
+ 1
)−1

er̄λ̂ (168)

Ψpeak = Wψλ̂v̄peak. (169)

After the transformation, the viscous dissipation energy, (168), is somewhat simplified due to the
lack of reciprocal appearances of λ. The reduction work, (169), has become linear in λ̂, which
further simplifies the equations. The value of λ̂ can then be found by substituting λ̂ = 1

λ in the
definition of the characteristic length, (64);

(
2

λ̂hpeak

)2(
e

λ̂hpeak
2

(
λ̂hpeak

2
− 1

)
+ 1

)
− 2nf+1v̄peake

Qf
RfTpeak(ξ̄)

√
3Afhpeak

= 0. (170)

Objective

The objective of OCP B is to minimize the extrusion time, tf , and the objective of the NLP should
reflect this. Because the ram speed is assumed piecewise constant, the extrusion time, tf , is

tf =

N−1∑
k=0

∆tk =

N−1∑
k=0

∆L

vram,k
= ∆L

N−1∑
k=0

1

vram,k
. (171)

In addition to minimizing extrusion time, though not specified, it is natural to want to minimize
the use of coolant. Since there is a ‘band’ of equally good temperatures for the peak section,
(157), there is some ‘wiggle room’ for the coolant flow and initial taper, of equally well performing
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solutions. For the purpose of regularizing the NLP, some weight is added to the valve opening
variable, ẑ, in the cost;

Jẑ = γẑ

N−1∑
k=0

ẑk. (172)

By minimizing the coolant used, the initial taper is likely to be of lower temperature as well, thus
potentially saving cost on both coolant and preheating.

When combining (171), (172), and (158), we get the complete objective

J(V,Pϵ,Z) = tf + Jϵ + Jẑ =

N−1∑
k=0

1

vram,k
+ γϵ

N∑
k=1

ϵk + γẑ

N−1∑
k=0

ẑk, (173)

where V = {vram,0, vram,1, . . . , vram,N−1}, Pϵ = {ϵ1, ϵ2, . . . , ϵN}, Z = {ẑ0, ẑ1, . . . , ẑN−1}, and the
constant ∆L has been omitted by rewriting γϵ,ẑ ← γϵ,ẑ

∆L .
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5.2.3 Final NLP Formulation

The optimal control problem representing the extrusion phase, (123), has been reformulated as a
nonlinear program via several assumptions, considerations, and simplifications presented earlier
in this section. The final resulting NLP is summarized here:

min
W

N−1∑
k=0

1

vram,k
+ γϵ

N∑
k=1

ϵk + γẑ

N−1∑
k=0

ẑk (174a)

s.t.

vram,kp
′(τi, Vζ,k) = ∆Lf ζ,k,i(p(τi, Vζ,k),uk) ∀i ∈ Z0,d, ∀k ∈ Z0,N−1, ∀ζ ∈ Sd, (174b)

qk+1 = p(1, Vk) ∀k ∈ Z0,N−1, (174c)

gk,i = 0 ∀(k, i) ∈ Z0,N × Z0,d \ (0, 0), (174d)

T init(r, x) = T init(r + 1, x) ∀(r, x) ∈ Z1,nr−1 × Z1,nx
, (174e)

T init(r, x) ≥ T init(r, x+ 1) + ∆T−
init ∀(r, x) ∈ Z1,nr × Z1,nx−1, (174f)

T init(r, x) ≤ T init(r, x+ 1) + ∆T+
init ∀(r, x) ∈ Z1,nr

× Z1,nx−1, (174g)

Tpeak,k ∈ [T peak − ϵk, T peak + ϵk] ∀k ∈ Z1,N , (174h)

ϵk ≥ 0 ∀k ∈ Z1,N , (174i)

T ζ, ∈ [20oC, Tmelt] ∀k ∈ Z0,N ∀ζ ∈ S, (174j)

vram,k ∈ [vram, 5mm/s] ∀k ∈ Z0,N−1, (174k)

ẑk ∈ [0, 0.2s] ∀k ∈ Z0,N−1, (174l)

dram(V) ∈ [−0.4, 0.4][mm/s2], (174m)

dvalve(Z) ∈ [−z̄rate, z̄rate], (174n)

where

W = V ∪ Z ∪ D ∪ P (175a)

V = {vram,0, vram,1, . . . , vram,N−1} (175b)

Z = {ẑ0, ẑ1, . . . , ẑN−1} (175c)

D =
⋃

sec∈S
Vsec (175d)

Vsec = {Vsec,0, Vsec,1, . . . , Vsec,N} (175e)

Vsec,k = {T sec,k,vsec,k,1, . . . ,vsec,k,d} ∀k ∈ Z0,N−1 (175f)

S = Sd ∪ Sa (175g)

Sd = {billet, container, feeder, plate, die} (175h)

Sa = {port, peak} (175i)

P = Pλ ∪ Pϵ (175j)

Pλ = {λ0, λ1, . . . , λN} (175k)

Pϵ = {ϵ1, ϵ2, . . . , ϵN} (175l)

where vsec,k,i is state collocation variable i in discretization interval k of the section denoted by
the subscript in place of “sec”. Additionally, all constraints are element wise.

53



5.3 Analysis on Differentiability

The existence of the Jacobian and Hessian of the constraint expressions and the objective function,
used by the optimization algorithm, requires that the constraints and objective function are twice
differentiable on the point of evaluation. Here we inspect the differentiability of the constraints
and objective function with respect to the decision variablesW.

First off, we notice that all temperature difference terms are on the form

C
(
T a − T b

)
, (176)

where C is a positive constant, which is infinitely differentiable. Secondly, we recognize that the
collocation polynomial (37) is also infinitely differentiable everywhere. The notable terms of the
dynamic equations are the viscous dissipation energy terms, Φ, as computed in (56) and (67), and
the reduction work terms, Ψ, as computed in (72). Note that these terms are proportional to the
dynamic temperature contributions, Φ̃ and Ψ̃, via (57) and (73) respectively. We write the terms,
as deduced in Section 4.1.1, 4.1.3 and 5.2.2, on their general form;

Φ = −(vram)
n+1
n eσT

−1

Cϕ (177)

Ψ = −(vram)
n+1
n eσT

−1

Cψ (178)

Φpeak = −(vram)
n+1
n Ĉϕλ̂

3
(
eλ̂h
(
λ̂h− 1

)
+ 1
)−1

er̄λ̂ (179)

Ψpeak = Ĉψλ̂vram, (180)

where Cϕ, Cψ, Ĉϕ, Ĉψ, n, σ, and r̄ are positive constants. Note that T represents a different cell
temperature depending on the specific instance of the energy terms. By differentiation with respect
to the present decision variables, one obtains

∂Φ

∂vram
= −

(n+ 1

n

)
(vram)

1
n eσT

−1

Cϕ (181)

∂Φ

∂T
= (vram)

n+1
n

σ

T 2
eσT

−1

Cϕ (182)

∂2Φ

∂v2ram
= −

(n+ 1

n2

)
(vram)

1
n−1eσT

−1

Cϕ (183)

∂2Φ

∂T 2
= −(vram)

n+1
n

σ

T 2

(
σ + 2T

)
eσT

−1

Cϕ (184)

∂2Φ

∂vram∂T
=
(n+ 1

n

)
(vram)

1
n

σ

T 2
eσT

−1

Cϕ (185)

for the derivatives of (177), and the derivatives of (178) have the same structure. It is clear that
none of the equations above are defined for T = 0, because of the reciprocal appearance of T in all
equations. Additionally, we have n = nf > 1, thus (vram)

1
n = n

√
vram is not defined for vram < 0.

Furthermore, (vram)
1
n−1 = (vram)

1
n

vram
is not defined for vram ≤ 0, and we subsequently require

T ̸= 0 (186)

vram > 0 (187)

for the existence of the Jacobian and Hessian of the constraint equations. Differentiation of (179)
and (180) with respect to both vram and T is rather involved because of the complex dependence
on the characteristic length, and is not shown here. Also worth noting, is the effect of the coolant
valve opening variable, zvalve, which after the transformation (152), is linearly dependent on ẑ
and all derivatives exist everywhere.

Both requirements (186) and (187) are satisfied on the feasible region of (174). Although, the op-
timization algorithm used, IPOPT, may try to evaluate the constraints outside the feasible region,
despite being an “interior point”-method. In fact, when availing a simultaneous method, such as
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direct collocation, the solution is usually not feasible before the algorithm has converged. There-
fore, we cannot guarantee the existence of the Jacobian on the iteration points, and subsequently
cannot guarantee convergence of the algorithm. However, by supplying reasonable initial guesses
to the algorithm, convergence is not a major issue, and in the event of convergence-failure, minor
adjustments to the initial guess may be made until convergence is successful.

Note that the existence of the Hessian may not be necessary, if one uses a Hessian approximation
technique, such as BFGS.

5.4 Implementation

This section covers aspects of the implementation of (174) in code. The implementation is done in
MATLAB (The MathWorks Inc. 2023), with CasADi (Andersson et al. 2019) for algorithmic differen-
tiation, interfacing to IPOPT (Wächter and Biegler 2006). The main outline of the implementation
is presented, along with the main part of the code that composes the NLP. By reading this section,
the reader will be able to understand and recreate the core aspects of the implementation, to such
an extent that they should be able to reproduce similar results to what is presented in Section 6.
Note that some aspects of the extrusion -process and -model, particularly parameter values, are
confidential, thus the exact results presented in this thesis are not reproducible. Nevertheless, the
reader should be able avail the ideas, methods, and implementation techniques used in this thesis
to approach and solve similar problems.

Define Cycle Parameters

Instantiate ExtrusionProcess

Build NLP

Solve NLP

Figure 24: Flow chart depicting the
process of defining cycle specific prop-
erties, and making and solving the cor-
responding NLP.

The code is structured such that a class “ExtrusionPro-
cess()” contains all information about the extrusion pro-
cess to be optimized. Such information includes geomet-
ric properties, material properties, initial temperatures,
process constraints, and miscellaneous other properties.
Furthermore, the class contains all information about the
corresponding NLP that should be built in order to optim-
ize the process. This information includes the discretiz-
ation of both time/extrusion length and the various sec-
tions, the number of collocation points per discretization
interval, what optimization algorithm and linear solvers
to use, initial guesses, cost function weights, and more.
The idea is that, based on the information received about
the incoming billet and the current state of the process,
the class constructor defines these properties appropri-
ately, along with the desired NLP properties. Then, one
of its methods, “BuildNLP()”, is called to build the cor-
responding NLP, followed by “SolveNLP()”, which solves
the NLP. This is illustrated in Fig. 24, which depicts a flow chart of the defining, calling, and
use of the ExtrusionProcess class. Listing 5, in Appendix A, shows an example code that defines
various properties of the extrusion process and NLP specifications, then proceeds to instantiate an
ExtrusionProcess, and build and solve the NLP.

CasADi provides two main symbolic variable types, SX and MX variables. SX variables form scalar
expressions that are computationally efficient, while MX variables form matrix expressions that are
memory efficient. In this implementation, SX variables are used for defining the functions/map-
pings relating the states to their derivatives, and other mappings, MX variables are used for the
optimization variables.
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5.4.1 MATLAB Implementation

BuildNLP()

Iterate over discretization points

Def. SX variables [6]

Def. initial MX variables [7]

Impose initial conditions [1]

Def. collocation variables [8]

Def. billet dynamics [2]

Def. alg. & param. equations [9]

Solve for parameters [10]

Define next state MX variables [11]

Impose soft constraints [12]

Solve alg. states at coll. points [13]

Impose coll. & cont. constraints [3]

Def. next MX variables [14]

Impose constraints on v̇ram [15]

Solve alg. states at disc.points [16]

Compute cost [4]

Figure 25: Structure of the BuildNLP routine of
the ExtrusionProcess-class. The related Listings
are given in square brackets.

Here we display code that highlights the parts
of the BuildNLP() method of the ExtrusionPro-
cess-class that define important variables, con-
straints, and objective terms. The outline of the
BuildNLP() method is summarized in Fig. 25,
where the subroutines are presented in order,
along with their respective Listings. The List-
ings that are not presented in this section can
be found in Appendix A. Three of the Listings
are run once, before a for-loop iterates over the
discretization points and define the respective
state, control and parameter variables and con-
straints for that discretization point and the re-
spective collocation points. Lastly, the cost/ob-
jective is computed as an expression of the rel-
evant decision/optimization variables.

In the presented code, the variable NLP
represents the ExtrusionProcess-class instance,
where CLC (“collocation”) is a property “struct”
thereof, containing various elements of the
direct collocation NLP being built. The
sub-struct CLC.S contains the symbolic vari-
ables and expressions defined in the BuildNLP
routine, which is divided into, among others;

S.x: state variables
S.u: control variables
S.p: parameter variables

S.coll: collocation variables
S.w: decision variables
S.g: constraint expression
S.J: cost expression.

Before being collected into NLP.CLC.S.g, con-
straint expressions are stored into either g{} or
h{}, for storing constraints on the form g(·) = 0
and lbg ≤ h(·) ≤ ubg, respectively. Geometrical
properties are stored in the property struct G
(“geometry”). Lastly, “parameters” refer to the characteristic length, λ, and the soft constraint
parameter, ϵ.

Listing 6 defines the scalar-expression type variables that are used to form CasADi-Functions/maps
that describe the various relationships such as system dynamics, implicit parameter equations, and
cost/objective values. Similarly, Listing 7 defines the initial matrix-expression type variables that
represent the system state, control and parameter values at discretization point 0. As the initial
state of the extrusion phase is given, initial values are imposed via constraints on all sections except
for the billet, whose initial temperatures is considered a control variable. Instead, the initial billet
temperatures are constrained to be homogeneous in the radial dimension, and constrained to a
minimum and maximum taper in the axial dimension. The initial value constraints are imposed
as shown in Listing 1. This part of the code is central in the implementation, because this is
where one implements the feasible region for the initial taper, which is an important consideration.
The feasible region of the initial taper is dependent on the available heater time, and the transit
dynamics which may vary from cycle to cycle due to, for example, temperature changes in the air,
and the properties of the incoming billet. Therefore the constraints on the initial taper may need
to be adjusted between cycles, which is done in this part of the code.
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Listing 1: Imposing initial conditions, where ∆T−
init ≤ hbillet ≤ ∆T+

init

for name = 〈loop over sections〉
if name ~= billet

nr = NLP.G.nr.(name); % Retrieve nr for section
nx = NLP.G.nx.(name); % Retrieve nx for section
g{end+1} = T.(name) − ones(nr*nx,1)*NLP.initial_value.(name);

else
nr = NLP.G.nr.billet; % Retrieve nr for billet
nx = NLP.G.nx.billet; % Retrieve nx for billet
if 〈using free initial taper〉

% Enforce homogenous radial temperature distribution
for r = 1:nr−1

for x = 1:nx
g{end+1} = T.(name)((x−1)*nr+r) − T.(name)((x−1)*nr+r+1);

end
end
% Describe initial taper (top row of cells):
for x = 1:nx−1

h_billet{end+1} = T.(name)((x−1)*nr+1) − T.(name)(x*nr+1);
end

else 〈using fixed linear initial taper〉
range = 〈difference from back-end to front-end of billet〉
bottom = 〈temperature of back-end of billet〉
g{end+1} = T.(name) − reshape(ones(nr,1)*(nx:−1:1)*range/nx + bottom,[],1);

end
end

end

Next, all variables and constraints are defined iteratively for the discretization points and colloca-
tion points throughout the optimization horizon, where the current discretization point is denoted
k, and “next” is used about discretization point k+1. The loop starts by defining the collocation
variables for the current discretization interval as MX variables, as shown in Listing 8. It is worth
mentioning that if we have nx,billet(k + 1) = nx,billet(k) − 1, the next billet section variable has
nr,billet fewer elements than the current variable, thus the continuation constraint (174c) cannot
be implemented for all elements of the current billet section variable. Nevertheless, the collocation
equation, (174b), is implemented for all elements of the current billet variable, to account for all
cells over the integration step. Therefore, the collocation variables corresponding to all cells of the
current billet variable are defined, as can be seen in Listing 8.

Since the dynamics are dependent on the current billet length, and subsequently the current dis-
cretization point, the billet dynamics, and the dynamics of all other sections that depend on the
billet state, are recalculated for every discretization point. This is shown in Listing 2. This part of
the code is central because it is the core of the progressor transformation idea, and why it works.
By transforming the extrusion model to be progressed by extrusion length rather than time, we
were able to ‘hide’ the model discontinuities at the discretization points, and, importantly, pre-
define the dynamics on a discretization interval, since they are known in extrusion length. In this
part of the code, we define the dynamics specific to each discretization interval, which allows the
implementation of direct collocation.

Listing 2: Defining billet dynamics.
nr = NLP.G.nr.billet;
nx = 〈retrieve remaining numer of axial cells in billet〉;
if nx ~= 0

T_SX.billet = SX.sym(['T_SX_billet_',k_str],nr*nx);
〈construct Input_Cell{}〉
for name = 〈loop over sections dependent on the billet section〉

dT_SX.(name) = NLP.dT.(name)(NLP,T_SX,C_SX,P_SX,k);
dT.(name) = Function(['dT_',char(name),'_',k_str],Input_Cell,{dT_SX.(name)});

end
end

The next parts of the code deal with; defining the non-billet-dependent-section, algebraic, and
parameter equations in terms of CasADi functions (Listing 9), creating the symbolic parameter
expressions and adding them to the set of equality constraints g{} (Listing 10), defining the MX
variables for all sections at the next discretization point, to be used in the collocation equation
(Listing 11), Imposing soft constraints on the next peak temperature (Listing 12), and creating the
algebraic expressions for the collocation points as functions of the state, control and parameter
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variables at the respective collocation points (Listing 13).

The, perhaps, most central part of the implementation is the implementation of the collocation
equation and continuation constraints, (174b) and (174c), which is shown in Listing 3. The code
makes use of a set of predefined coefficients, NLP.p.Li{} and NLP.p.dLi{}, which correspond to Lag-
range polynomials, to construct the collocation polynomials for the different cells of each section
iteratively. The differential of the particular cell is found by mapping the current system state to
the differential via the CasADi-function made in Listing 2 and Listing 9. In addition, the differ-
ential of the collocation polynomial, dp, is evaluated at each collocation point, by multiplying by
an array corresponding to the exponents of the collocation points; NLP.p.tau_i = [τd−1

i , . . . , τ0i ].
The collocation equation is then imposed by setting their difference to zero, while scaling the state
differential, dT_temp by the length of the discretization interval NLP.nlp.dL = ∆L, and scaling the
collocation polynomial differential by the ram speed C.ram = vram,k. Lastly, the continuation con-
straint is imposed by evaluating the collocation polynomial at τ = 1, as sum(p.(name)), and setting
it equal to the next state variable via an equality constraint.

Listing 3: Impose collocation and continuation constraints.
for name = 〈loop over differential sections〉
nr = NLP.G.nr.(name);
nx = 〈nx of section at current disc. point〉
nx_next = 〈nx of section at next disc. point〉

% Loop over all cells of section:
for rx = 1:nr*nx

% Define collocation polynomial p, and its derivative dp:
p.(name) = NLP.p.Li{ 1}.*T.(name)(rx);
dp.(name) = NLP.p.dLi{1}.*T.(name)(rx);
for d = 1:NLP.nlp.d

p.(name) = p.(name) + NLP.p.Li{ d+1}.*T_coll{d}.(name)(rx);
dp.(name) = dp.(name) + NLP.p.dLi{d+1}.*T_coll{d}.(name)(rx);

end
% Define collocation equation:
for d = 1:NLP.nlp.d

〈construct Input_Cell{}〉
dT_temp = dT.(name)(Input_Cell{:});
g{end+1} = (NLP.nlp.dL) .* dT_temp(rx) − dp.(name)*NLP.p.tau_{d}.*C.ram; % collocation equation

end
% Define continuation constraint:
if rx <= nr*nx_next % Only if next variable has corresponding cell

g{end+1} = sum(p.(name)) − T_next.(name)(rx);
end

end
end

The remaining part of the iterative loop, that loops over the discretization points, are concerned
with; updating the state section variables; T.(name) ← T_next.(name), and defining the next con-
trol and parameter variables (Listing 14), imposing constraints on the step sizes in the ram speed
(Listing 15), and creating and imposing constraints on the algebraic expressions for the current
discretization point (Listing 16).

The last part of the implementation that is presented, is the construction of the cost/objective,
which is shown in Listing 4. The code adds all the reciprocals of the ram speeds, the soft constraint
parameters, ϵk, scaled with a large and somewhat arbitrary value of 100000, and the valve opening
variables ẑ, with a small weight of 10.
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Listing 4: Computing cost.
J_ram_SX = NLP.cost.ram.*(1./C_SX.ram);
J_ram = Function('J_ram',{C_SX.ram},{J_ram_SX});

NLP.CLC.S.J = MX.zeros;

%%% Extrusion Time:
for ram = [ NLP.CLC.S.u.ram{:}]

NLP.CLC.S.J = NLP.CLC.S.J + J_ram(Cost_ram);
end

% Cost of violating peak soft constraint
for epsilon = NLP.CLC.S.p.epsilon

NLP.CLC.S.J = NLP.CLC.S.J + epsilon{1}*100000;
end

% Regularizing cost on valve opening
for z_hat = NLP.CLC.S.u.valve

NLP.CLC.S.J = NLP.CLC.S.J + z_hat{1}*10;
end

5.4.2 NLP Horizon

In practice, as mentioned in Section 3, there is a reload phase where a small remaining piece of
the billet, called the “butt”, is sheered of before the next billet is inserted into the container. This
implies that the billet is not fully extruded, thus the horizon of the NLP does not need to be equal
to the full length of the billet, and should in fact be slightly shorter. The length of the butt may be
varying for different products, and the horizon should therefore be adjusted accordingly. In Section
5.2.3, we presented the final NLP formulation, (174), which assumed the horizon N . Although we
until now have considered N = Lbillet/(nx,billetndisc.), where ndisc. is the number of discretization
points per axial billet cell, in practice we choose to not optimize over all N discretization points.
The implementation covered in this thesis optimizes over {0, 1, . . . , N − 1}.

5.4.3 Notable IPOPT options

When calling ipopt for solving an NLP, many options are available (Wächter, Vigerske et al. n.d.),
to customize the algorithm. Through these options, one may tailor the solver to the specific NLP
one is solving, to, for example, reduce the solve time/number of iterations needed or increase the
accuracy of solution. Some of the most notable options that are used in the implementation in this
thesis are listed in Table 15. Variables not listed take their default values.

Option Value
nlp_scaling_method: “gradient-based” a

nlp_scaling_max_gradient: 100 a

nlp_scaling_min_value: 10−8 a

print_level: 3 b

acceptable_tol: 10−6 a

linear_solver: “mumps”
linear_system_scaling: “none”

hessian_approximation: “limited_memory”
limited_memory_update_type: “bfgs” a

a default value
b The print level is relevant to the solve-time of the al-

gorithm, but not the number of iterations used.

Table 15: IPOPT options.
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5.4.4 Scaling of variables

By default, as seen from Table 15, ipopt scales the (augmented) system variables, such that the
gradient is maximum 100. Normally, one should scale the variables in you system to be in the range
[0.01, 100], to avoid ill-conditioned linear algebra. The order of magnitude of the various variables
in the system are shown in Table 16. They span from 10−4 to 102, which is somewhat of a wide
spread, however, the solver will scale the system variables if necessary. Therefore, external scaling
is only considered if convergence issues are experienced.

Variables Order of Magnitude
T sec 102

vram 10−3

ẑ 10−1

ϵ 102a

λ 10−4

a This value is typically zero on the
solution, if isothermal extrusion is
achieved, though may be larger
during iterations.

Table 16: Variable Magnitudes.

5.4.5 Sparsity Patterns

Another important aspect to consider is the sparsity and sparsity patterns of the NLP. Some optim-
ization algorithms exploit the sparsity of the constraints and objective Jacobians to speed up the
computations, and uses linear solvers for which the sparsity is of varying importance. Therefore,
the sparsity is important for the solve time of the NLP, and here, we inspect the sparsity of the direct
collocation formulation, (174), built by the implementation covered in Section 5.4.1. We consider
a typical instance of the NLP, defined as in Table 17. The sparsity pattern of the corresponding
constraint Jacobian is shown in Fig. 26.

Property Value
d 2
nL 2

(nr, nx)billet (3,6)
(nr, nx)container (2,2)

nr,die 6
coolant yes

ram speed free
initial taper free

Table 17: Particular configuration for the NLP of which the constraint and objective Jacobians are
inspected in Fig. 26 and Fig. 27.
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Figure 26: Sparsity pattern of the constraints Jacobian of the implementation of (174) with para-
meters as specified in Table 17. Blue dots indicate all elements with potentially non-zero values
upon evaluation. Density: 0.0058023.

The number of constraints is for the particular NLP is 968, and the number of decision variables is
960, making the total number of elements equal to 968 · 960 = 929280. The number of non-zero
elements is 5392, thus the density of the constraint Jacobian shown in Fig. 26 is 5392/929280 =
0.0058023.

The Jacobian is not notably diagonal, which is typically desired, since linear solves are able to
exploit the diagonal structure of matrices to solve linear systems efficiently. It is not clear whether
or not rearranging the variables to yield a diagonal structure will yield significant reductions in
the solve time, due to the preprocessing that occurs in the linear solvers. Conflicting opinions
have been provided by professors that have been queried on this topic, therefore, to reduce the
work load, rearranging the variables to obtain a diagonal structure of the constraint Jacobian is
not prioritized.

For completeness, the Jacobian of the objective function with respect to the decision variables is
also shown, seen in Fig. 27

61



0 100 200 300 400 500 600 700 800 900
Decision Varable Columns

0

1

2
C

on
st

ra
in

t
R

ow
s

Sparsity Pattern of Objective Jacobian

Figure 27: The sparsity of the respective objective Jacobian to the NLP defined in Table 17. The
Jacobian consists only of a single row.

The objective Jacobian, however, is insignificant compared to the constraint jacobian for the type
of NLPs solved in this thesis. We also emphasize that the sparsity of the constraint Hessian is also
relevant. Although, we know that it has, at most, the density of the Jacobian.
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6 Results

This Section presents the solutions to various versions of the optimal control problem (121),
where an increasing degree of control freedom is optimized. Section 6.1 addresses the validity
of the model, in terms of its specific applicability to the case study process of this thesis. Sec-
tion 6.2 presents simulations, using typical control trajectories. The optimization is presented in
Sections 6.3, 6.4, and 6.5, which cover the optimization of only the ram speed, the ram speed
and coolant flow, and solutions to the complete optimal control problem (121) as implemented as
(174) respectively.

All bounds on the initial taper are constant for the results presented in this Section, and take the
values; ∆t−init = 10 and ∆t+init = 20. This means that the practical bounds on the initial taper
change with the axial billet discretization. Of course, one may also scale the initial taper bounds,
∆t−init and ∆t+init, to accommodate the discretization, and achieve bounds that better reflect the
same continuous tapers.

6.1 Model Tuning and Validation

The extrusion phase model that is implemented, as described in this thesis, is mainly based on mod-
elling work by Halås (unpublished), and is meant to represent the case study extrusion process.
Preferably, the model should be compared and validated against the case study extrusion press,
however, such a validation is not done. Another viable option is to compare the model against the
implementation by Halås (unpublished), which is tuned to coincide well with the case study pro-
cess. No rigorous comparison is made between the two implementations, nevertheless, the model
used in this thesis is tuned to match that of Halås by means of crude comparison between results.
The tuning process resulted in the following scaling of the reduction work of the port section, and
the reduction work and viscous dissipation terms of the peak section:

Ψport ← 0.135 ·Ψport (188)

Φpeak ← 0.135 · Φpeak (189)

Ψpeak ← 0.135 ·Ψpeak. (190)

This is a notable reduction of the terms, which should be understood. The exact cause of the
deviations between the two models is unknown, although there are several known discrepancies
between the models, that may contribute to the deviations. These discrepancies include the in-
tegration scheme that is used to integrate the models, the several types of discretization of the
models (spatial discretization of each section, and progressor discretization), the omission of the
exit temperature, and different means of computing the reduction and viscous dissipation energy
terms for the port and peak section. These sources of model discrepancies are further discussed in
Section 7.3. In consultation with Halås, M.Sc., based on their experience with the reference model
and the case study extrusion process, the model used in this thesis is considered to be reason-
able and to sufficiently represent the case study process, in order to claim relevance of the results
presented in this thesis to the case study, and to the aluminium extrusion process in general.

6.2 Simulation Results

First, we fix all control inputs, to simulate a non-optimized extrusion process. These solutions form
a basis on which to compare the model to existing data from extrusion processes. Furthermore,
they highlight the significance of the optimization scheme, by providing contrasting non-optimized
trajectories and respective extrusion times.

As is common in industry, the ram speed is kept constant for the simulations, and four different
speeds are tested. Cooling is not included in the dynamics, and the initial taper is fixed and shown
in Fig. 28. The results of the tests are presented in Fig. 29 and Table 18
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Figure 28: The fixed initial taper used for all instances where a fixed taper is used in this thesis.
The temperature of a cell is displayed inside that cell in [oC]. The cell-color is a visual aid, where
the color represents the relative temperature compared to the rest of the billet, and highlight the
temperature distribution inside the billet. The discrete radial and axial coordinates are displayed
along the sides of the billet. The figure corresponds to the structure presented in Fig. 12, such that
the extrusion happens from right to left.

Simulation: 1 2 3 4
Billet (6, 12) (6, 12) (6, 12) (6, 12)

Container (3, 3) (3, 3) (3, 3) (3, 3)
Die 6 6 6 6
d 2 2 2 2
nL 3 3 3 3
NL 16 16 16 16
nw 2172 2172 2172 2172
ng 2185 2185 2185 2185
neq 2127 2127 2127 2127
nin 58 58 58 58
vram 0.0015 0.0025 0.0035 0.0045
tf 562.5 337.5 241.1 187.5
tsol 0.7 1.6 3.1 2.7
Niter 11 24 49 41

Table 18: Simulation results, where Billet, Container, and Die are the number of cells in the re-
spective sections, d is the number of collocation points, nL is the number of discretization points
per axial billet cell, thus NL = nx,billet · nL is the number of discretization points along the pro-
gressor, nw is the total number of decision variables, ng is the total number of constraints, neq is
the number of equality constraints, nin is the number of inequality constraints, vram is given in
m/s, tf is the extrusion time in seconds, tsol is the solve time in seconds, and Niter is the number
of iterations before convergence. Entries in black are defining properties, entries in green ( ) are
recessive properties, and entries in red ( ) are the results.

The solve times and number of iterations used are highly affected by the initial guess given to
the algorithm, which is further discussed in Section 7.5. The extrusion time of simulation 2 is
interesting in that it represents a realistic extrusion time, since we notice that simulation 2 achieves
isothermal extrusion at the desired peak temperature. The results, in terms of the temperature
evolution shown in Fig. 29, is used to inspect the dynamical behavior of the system for various
ram speeds, and aids in validating the model applicability. We see that, that the higher the ram
speed, the higher the peak temperature. The radial temperature gradient in the billet is also
greater for higher ram speeds, which corresponds with the intuition that more heat is generated
towards the radial walls due to higher radial velocity gradients. The feeder also experiences greater
radial temperature gradients, and also greater overall temperature, which corresponds with our
intuition about the reduction work. Notably, all simulations seem to achieve isothermal extrusion
at different temperatures, only with minor decrease in peak temperature throughout the extrusion
phase.
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Figure 29: The simulation results of the tests defined in Table 18. Temperatures: -peak, -port,
-feeder, -billet. Within a color-scheme, darker colors represent cells at higher radial coordinates.

The shortest billet graphs represent the rightmost cells, that die first, and the longest graphs rep-
resent the leftmost cells, that die last.
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6.3 Optimal Ram Speed

Here, we inspect solutions where the initial taper is fixed, and no coolant is used. These solutions
therefore only optimize the ram speed, with respect to minimum extrusion time. These solutions
provide a means of comparing the optimization scheme and its current implementation to other
ram speed optimization schemes and solutions. Additionally, they further emphasize the differ-
ence between pure ram speed optimization and multi-control optimization that includes coolant
and initial taper. The fixed initial taper shown in Fig. 28 is also used for the ram speed optim-
ization NLPs. The problem is solved for 5 different discretizations, seen in Table 19, which also
show the respective extrusion times, solve times, and iteration counts. The solutions are shown in
Fig. 30, which shows the optimal ram speeds, and Fig. 31, which shows the respective temperature
trajectories.

Ram-NLP: 1 2 3 4 5
Billet (3, 8) (4, 8) (5, 8) (4, 10) (4, 12)

Container (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)
Die 6 6 6 6 6
d 2 2 2 2 2
nL 2 2 2 2 2
NL 16 16 16 20 24
nw 1438 1698 1958 2374 3146
ng 1451 1711 1971 2391 3167
neq 1393 1653 1913 2317 3077
nin 58 58 58 74 90
tf 285.4 296.2 309.2 307.1 316.4
tsol 2.9 1.2 2.4 2.8 10.0
Niter 98 31 38 38 89

Table 19: Results of the Ram Speed Optimization NLPs. Symbols and colors have the same meaning
as in Table 18.
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Figure 30: The ram speed trajectory results of the tests defined in Table 19.
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Figure 31: The temperature trajectory results of the tests defined in Table 19.
Temperatures: -peak, -port, -feeder, -billet.

It is clear that the spatial discretization of the billet, and subsequently the progressor discretization,
affects the solution notably. Even though all NLPs yield quite similar temperature trajectories, and
achieves isothermal extrusion at Tpeak ≈ 610oC, we see that the billet temperatures are somewhat
different, and the ram speed trajectories are not the same. These differences in the ram speed tra-
jectories result in a spread in the total extrusion times; [4min 45s, 5min 16s], which is a difference
of 31s, or relative uncertainty of ±5%. Nevertheless, the ram speed trajectories all exhibit the same
general shape, which will serve as a general reference/starting point for an MPC control scheme
during extrusion, thus the exact optimal speed curve is not crucial to obtain.

The solve times are all in the range [1.2s, 2.9s], except the last NLP, “Ram-NLP 5”, which has
the finest discretization and most decision variables and constraints, and is solved in 10s. Thus,
indicating that the solve time is generally low, although, is apparently vulnerable to unfortunate
discretization. This phenomenon is also apparent by the drastic increase in number of required
iterations, from 31 to 98, when decreasing the number of radial billet cells from 4 to 3 in Ram-NLP
2 and Ram-NLP 1.

Generally, by optimizing the ram speed, we achieve extrusion times of around 5min, which is
equivalent of an 1− 300s

337.5s ≈ 11% improvement from the second simulation, which used 5min 37.5s
while also achieving isothermal extrusion at the desired peak temperature.
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6.4 Optimization with Coolant

In this Section, both ram speed and coolant flow trajectories are optimized with respect to min-
imum extrusion time, given the same fixed initial taper as in the simulations and the ram speed
NLPs. These solutions demonstrate the effect of also optimizing coolant flow, as opposed to only
optimizing the ram speed, as suggested by Kulås (2022). Various NLPs are solved, with varying
discretization, as seen in Table 20, where the extrusion times, solve times, and number of iterations
are shown as well. The optimal ram speeds and coolant valve openings are shown in Fig. 32, and
the temperature trajectories are shown in Fig. 33.

RC-NLP: 1 2 3 4
Billet (4, 8) (4, 6) (6, 6) (3, 8)

Container (2, 2) (2, 2) (2, 2) (2, 2)
Die 6 6 6 6
d 2 2 2 2
nL 2 2 2 2
NL 16 12 12 16
nw 1698 1118 1400 1438
ng 1711 1127 1409 1451
neq 1653 1085 1367 1393
nin 58 42 42 58
tf 236.5 228.1 222.0 230.6
tsol 287.0 1.2 112.8 217.3
Niter 7735 49 3535 8228

Table 20: Results of the Ram Speed Optimization NLPs. Symbols and colors have the same meaning
as in Table 18.
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Figure 32: The optimal control trajectories of the NLPs defined by Table 20.
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Figure 33: The temperature trajectory results of the tests defined in Table 20. RC → Ram Speed
and Coolant NLP. Temperatures: -peak, -port, -feeder, -billet.

From Fig. 32a it is clear that the ram speed trajectories all resemble that of the solutions in Sec-
tion 6.3, which only optimized ram speed. In the solutions presented here, however, the ram
speeds are consistently higher, thus shortening the extrusion time, which is possible with the in-
troduction of the coolant. Furthermore, form Fig. 32b, we see that the coolant flow is maximized
over nearly the entire extrusion phase, with a reduction towards the end. This is consistent with
the intuition that raising the ram speed and raising the coolant flow have opposite effects on the
peak temperature, thus maximizing the coolant flow allows maximum ram speeds.

The extrusion times achieved when optimizing both coolant and ram speed are in the range
[3min 42s, 3min 56s], which is consistent, and improves upon the extrusion times obtained in Sec-
tion 6.3 by 1 − 230s

300s ≈ 23%, and improves the non-optimized process by 1 − 230
337.5 ≈ 32%. The

solutions show a substantial improvement by the introduction of coolant to the extrusion process,
however, as seen from Table 20, the solve times drastically increased from the sole ram speed
optimization. The solve times after the introduction of coolant increased hundredfold, form the
about 1s − 3s to about 100s − 300s. This means that the solve times are in the same range as
the extrusion times, which is not desirable, since the solve time must be smaller than the extru-
sion cycle period, which is assumed to be approximately equal to the extrusion time plus a small
reload time. Although, we notice that for RC-NLP 2, the solve time remains in the same range
as without cooling, and similarly with the iteration count. Since the solution of RC-NLP 2 is not
notably different form the other solutions, the anomalous solve time is seemingly an artifact of
‘randomness’. As in Section 6.3, the solve times and iteration counts seem sensitive to the initial
guess and system discretization. This effect is also apparent by the difference in iteration count
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between RC-NLP 3 and RC-NLP 4, which are 3535 and 8228 respectively, even though they have
nearly the same number of decision variables and constraints.

6.5 Optimizing Initial Taper

This Section presents the main results, which are the solutions to the ‘full NLP’, (174), which
expands upon the NLPs in Section 6.4 by allowing the use of the initial taper as a control vari-
able. Various versions the full NLP are tested, where one batch (“Fine”/“FF”) uses discretiza-
tion similar to that of the discretization of the simulation NLPs in Section 6.2, and another batch
(“Coarse”/“CF”) explores the effects of using coarser discretization, with the goal of reducing the
solve times. The Fine NLPs are presented in Table 21, and their solutions are presented in Fig. 34,
Fig. 35, and Fig. 38, which show the coolant valve opening trajectories, the temperature traject-
ories, and the initial tapers respectively. All optimal ram speed trajectories of the full NLPs, both
fine and coarse, are constant and equal to the maximum speed; vram,k = 5mm/s ∀k ∈ Z0,N−2

(N is the number of state-discretization points before reducing NLP horizon due to a small unextruded
“butt”).

FF-NLP: 1 2 3 4 5a 6 7
Billet (6, 12) (6, 12) (6, 10) (6, 10) (6, 12) (6, 10) (6, 8)

Container (2, 2) (3, 3) (3, 3) (2, 2) (2, 2) (2, 2) (2, 2)
Die 6 6 6 6 4 4 6
d 2 2 2 2 2 2 2
nL 2 2 2 2 3 3 4
NL 32 30 36 36 20 24 24
Nw 4148 4498 3378 3088 6036 4482 4396
Ng 4168 4518 3394 3104 6068 4508 4424
Neq 4067 4417 3311 3021 5919 4385 4295
Nin 101 101 83 83 149 123 129
tf 172.5 172.5 171.0 171.0 171.0 174.0 174.4
tsol 33.1 4655 50.2 6.7 2998 1030 8019
Niter 143 18158 312 50 6658 4649 47027

a Return Status: “Solved_To_Acceptable_Level”

Table 21: Results of the fine full NLPs, (174), for various parameters. FF→ Fine Full NLP. Symbols
and colors have the same meaning as in Table 18.

The fine NLPs are considered the most ‘accurate’, since they utilize the finest discretization. From
Fig. 35 we see that all the fine NLPs achieved isothermal extrusion at the desired temperature, and
exhibit similar temperatures overall in the system progression. One difference between the fine
NLP solutions to take note of is in the initial tapers. All the initial tapers exhibit linear descent
towards the back-end of the billet, and agree on a temperature around 430oC at the front-end,
though the axial gradients vary somewhat. In fact, the initial taper descends by about 10oC per
cell, which is the minimum taper imposed on the initial taper; ∆t−init = 10oC, which means that all
initial tapers are as ‘flat’ as possible, while maintaining a leftmost temperature of 430oC to ensure
isothermal extrusion. The varying axial billet discretization therefore causes the rightmost cells
to be of varying temperature, since the constraint on the minimum taper is not scaled with the
discretization.
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Figure 34: The valve opening trajectory results of the tests defined in Table 21. FF → Fine Full
NLP.

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 1

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 2

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 5

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 6

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 7

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 8

0 100 200

Time [s]

300

400

500

600

T
em

pe
ra

tu
re

 [
o
C

]

FF-NLP 9

Figure 35: The temperature trajectory results of the tests defined in Table 21. FF→ Fine Full NLP.
Temperatures: -peak, -port, -feeder, -billet.
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Furthermore, we notice that solve times have increased substantially from that of the simulations
with similar discretization. The solve times of the ‘fine full NLPs’ range from 33s to over 2hours.
Of course, these solve time are too large, and must be reduced before implementing the ECOL. As
with the previous results, the solve times vary drastically between configurations, and this effect
should be understood to reliably solve the NLPs within the required time frame. The same effect is
also present for the iteration count, as also observed for the previous results.

Since the ram speeds are maximized, the extrusion time is minimized by all the full NLPs. The
equivalent extrusion time is approximately 2min 50s, with some variance because of the differ-
ent discretizations. Note that the billet is not fully extruded in the implementations, but is only
extruded until the next to last discretization point, and the length of the discretization interval
therefore affects how much of the billet is not extruded in the various NLPs, thus causing minor
variations in the extrusion times. By introducing the initial taper as a control variable, the extru-
sion time is reduced by 1− 170

230 ≈ 26% from the case with only ram speed and coolant, and reduced
by 1− 170

337.5 ≈ 50% from the non-optimized process.

From Fig.34 we see that the various configurations produce similar overall behavior of the valve
opening trajectories. All valve opening trajectories begin close to the maximum 20%, at the start
of the press, then proceed to decrease as the process progresses, down to the 6%− 2% range, with
a slight rise at the end. Nevertheless, the different trajectories experience fluctuations that are
reminiscent of process noise, which is unique to each solution. Arguably, these fluctuations are not
significant, as the exact nature of the trajectories do not have major impact on the initial taper,
as evident by Fig. 38. Another, interesting observation is that, even though the the ram speed is
maximized, the valve opening is not, as is the case in Section 6.4. The initial tapers found by the
full NLPs are generally of much lower temperature than the fixed initial taper in Section 6.4, and
likely compensates for the reduction in coolant flow, as was intended by (172).

The results of the ‘coarse full NLP’ batch are presented in Table 22, Fig. 36, Fig. 37, and Fig. 39,
which present the discretizations, extrusion times, solve times, and integration count, the coolant
valve opening trajectories, the temperature trajectories, and the inital tapers respectively.
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Figure 36: The valve opening trajectory results of the tests defined in Table 22. CF→ Coarse Full
NLP.
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CF-NLP: 1 2 3 4 5 6
Billet (3, 12) (3, 10) (3, 6) (3, 6) (3, 6) (3, 6)

Container (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)
Die 4 4 4 4 4 4
d 2 2 2 3 4 2
nL 2 2 2 2 2 3
NL 24 20 12 12 12 18
Nw 2470 1872 892 1169 1446 1357
Ng 2490 1888 900 1177 1454 1371
Neq 2389 1805 853 1130 1407 1300
Nin 101 83 47 47 47 71
tf 172.5 171.0 165.0 165.0 165.0 170.0
tsol 65.5 653.2 2.2 4.8 10.7 67.8
Niter 944 15811 110 175 265 2808

Table 22: Results of the coarse full NLPs, (174), for various parameters. CF → Coarse Full NLP.
Symbols and colors have the same meaning as in Table 18.
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Figure 37: The temperature trajectory results of the tests defined in Table 22. CF → Coarse Full
NLP. Temperatures: -peak, -port, -feeder, -billet.

The coarse full NLPs also all achieve isothermal extrusion at the desired peak temperature, as seen
in Fig. 37. The point of using coarser discretization is to reduce the number of decision variables
and constraints, and subsequently reduce the solve time. From Table 22, we see that the solve
times are generally in the range of 1min or lower, with one exception at 10min 53s. These solve
times are feasible with respect to a practical implementation of an ECOL at an extrusion plant,
since the respective extrusion times are in still at about 2min 50s. However, we still see the unpre-
dictable nature of the solve time, which further emphasizes the need to gain more understanding
of the sensitive nature of the NLPs and how to construct NLPs with predictable solve times. Non-
etheless, the main portion of the coarse NLPs have feasible solve times, and as seen in Fig. 36,
Fig. 37, and Fig. 39, they all produce similar as solutions. We therefore obtain conceptually viable
implementations of (174) by allowing somewhat coarse discretization.

The initial tapers consist of the same front temperature and linear axial gradient as with the fine
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NLPs. The temperature differences between axial cells remain on the boundary of ∆t−init = 10oC,
which means that the initial tapers remain as flat as possible, while maintaining 430oC in the
leftmost cells.

As with the fine NLPs, the coolant valve opening trajectories exhibit a ‘noisy’ behavior, and a
somewhat general tendency to start high, and decrease as the process progresses. The fluctuating
nature of the trajectories, however, is more pronounced for the coarse NLPs.

Lastly, we observe that the number of collocation points (2,3 or 4) does not seem to have any
significant effect on the system trajectories, thus using d = 2 produces the same results with fewer
variables and constraints, and shorter solve times.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

FF-NLP 1

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2

429.1 419.0 408.9 398.9 388.8 378.7 368.5 358.4 348.1 337.7 327.2 316.2
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1
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6

FF-NLP 2

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3

429.2 419.1 409.1 399.0 388.9 378.9 368.8 358.7 348.5 338.3 328.0 317.3
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FF-NLP 5

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1

429.1 418.8 408.6 398.5 388.3 378.1 367.7 357.0 337.6 326.1
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FF-NLP 6

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1

429.3 419.1 408.9 398.7 388.4 378.1 367.6 357.0 346.0 334.1
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FF-NLP 7

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5

431.7 421.7 411.7 401.7 391.7 381.6 371.6 361.5 351.5 341.3 331.1 320.5
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FF-NLP 8

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1

432.0 422.0 412.0 402.0 392.0 382.0 372.0 362.0 349.9 338.1
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FF-NLP 9

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

428.7 418.7 408.6 398.6 388.6 378.6 368.6 358.5

Figure 38: The optimal initial tapers with respect to the NLPs defined in Table 21. FF→ Fine Full
NLP. The color scheme is fixed with respect to the temperature values in all results of the set of
Full NLPs.
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1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

CF-NLP 1

431.5 421.5 411.5 401.5 391.5 381.4 371.4 361.4 351.4 341.4 331.4 321.4

431.5 421.5 411.5 401.5 391.5 381.4 371.4 361.4 351.4 341.4 331.4 321.4

431.5 421.5 411.5 401.5 391.5 381.4 371.4 361.4 351.4 341.4 331.4 321.4

1 2 3 4 5 6 7 8 9 10

1

2

3

CF-NLP 2

430.7 420.7 410.7 400.7 390.7 380.6 370.6 360.5 350.3 340.0

430.7 420.7 410.7 400.7 390.7 380.6 370.6 360.5 350.3 340.0

430.7 420.7 410.7 400.7 390.7 380.6 370.6 360.5 350.3 340.0

1 2 3 4 5 6

1
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3

CF-NLP 3

428.1 416.7 405.4 394.0 382.0 368.8

428.1 416.7 405.4 394.0 382.0 368.8

428.1 416.7 405.4 394.0 382.0 368.8

1 2 3 4 5 6

1
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3

CF-NLP 4

430.2 418.8 407.7 396.4 384.7 371.8

430.2 418.8 407.7 396.4 384.7 371.8

430.2 418.8 407.7 396.4 384.7 371.8

1 2 3 4 5 6

1
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3

CF-NLP 5

430.2 420.2 410.1 400.1 390.1 380.0

430.2 420.2 410.1 400.1 390.1 380.0

430.2 420.2 410.1 400.1 390.1 380.0

1 2 3 4 5 6

1

2

3

CF-NLP 6

430.1 420.1 410.1 400.1 390.0 379.9

430.1 420.1 410.1 400.1 390.0 379.9

430.1 420.1 410.1 400.1 390.0 379.9

Figure 39: The optimal initial tapers with respect to the NLPs defined in Table 22. CF → Coarse
Full NLP. The color scheme is fixed with respect to the temperature values in all results of the set
of Full NLPs.
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7 Discussion

7.1 Advantages of the Proposed Method

7.1.1 Advantages of the Extrusion Cycle OCP Separation

The proposed extrusion cycle optimization scheme has several benefits, which are discussed here.
First of all, the concept of having an optimization layer for the extrusion cycle is beneficial because
it allows for the planning and tuning of initial conditions and reference trajectories for the various
phases to minimize the overall extrusion cycle period, though this idea is not novel. This thesis
presents a separation of the overall control problem into several smaller problems, and argues
for the preserved optimality through the verifiable assumption that the required heating process
trajectory for a given solution can be performed in less than double the extrusion time and reload
time combined. The assumption is said to be verifiable through the implementation of the heating
phase optimization by Gabrielsen (2022), or similar implementations. Additionally, assumptions
were made on the billet taper constraints, which is further discussed in Section 7.4. The thesis
presented the concept of the reduction margin in (122), complementing the separation principle,
which is generalizable to any number of parallel available heater, as;

Text ≈ max

{
1

nh
th, tRL + tf

}
, (191)

where nh ≥ 1 is the number of parallel available heaters. Conveniently, this method can also be
used to estimate the minimum necessary number of parallel heaters to optimize production, which
is an interesting observation.

By separating the control problem into several smaller problems, we expect to reduce the overall
solve time. For the sake of analysis, we assume that the solve time of an NLP is O(n2), where n
represents the number of decision variables (where we assume n ∝ ng ∝ nw), which is considered
a conservative estimate of the solve time. This way, the solve time correspond nicely with the
number of elements of the constraint Jacobian. By then considering the number of variables in
an NLP corresponding to a non-separated NLP, nw,tot, and the number of variables of the NLPs
corresponding to the three separated phases; heating-, transit-, and extrusion phase, denoted nw,h,
nw,t, and nw,e respectively, such that;

nw,tot = nw,h + nw,t + nw,e, (192)

we get a solve time reduction factor of

µred =
n2
w,h + n2

w,t + n2
w,e

n2
w,tot

=
n2
w,h + n2

w,t + n2
w,e

(nw,h + nw,t + nw,e)2
. (193)

Example wise, Fig. 40 illustrates the reduction factor for various reasonable values of nw,h, nw,t,
and nw,e. We see that the under the assumed reasonable NLP sizes, the reduction factor is typically
in the range µred ∈ [0.33, 0.5], which means that by separating the extrusion cycle OCP, we expect
to have reduced the overall solve time by 50%− 67%. This, of course, is a crude estimate. Another
observation is that under the assumption that the heating time will not become the bottle neck,
and using constant constraints on the initial taper, one may omit the open loop optimization of the
heating phase and the simulation of the transit phase. In this case, the reduction factor is reduced
to

µred =
n2
w,e

n2
w,tot

. (194)
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(b) Legend corresponding to Fig. 40a.

Figure 40: The graphs represent the reduction factor arising from the separation of the extrusion
cycle OCP, under the assumptions given in Section 7.1, for various values of nw,h, nw,t, and nw,e.
For simplicity of notation, (b) uses nw,h = 100nh, and nw,t = 100nt.
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7.1.2 Problem Reduction by Progressor Transformation

Extrusion Length

Figure 41: The figure illus-
trates how the proper alloca-
tion of variables for the billet
cells throughout the NLP ho-
rizon contributes to reducing
the necessary number of NLP
variables. The dark cells in-
dicate ‘active’ cells, and light
cells indicate ‘dead’ cells. The
red line illustrates the how
the number of active cells are
nearly half the total number
of cells.

Aside from the advantages of transforming the extrusion model
to be progressed by extrusion length that are already discussed in
Section 5.2.1, there is an additional advantage gained from em-
ploying this technique. As stated in Section 5.2.1, when the model
is discretized in time, one does not know at what discretization
points the various cells die, thus one must account for all cells
at all discretization points. Technically, one can know something
about at what discretization points they die, because of the upper
and lower bound on the ram speed, yet one must still account for
the worst case. By discretizing in extrusion length, one knows ex-
actly at what discretization points all cells die, and one only needs
to allocate variables for the correct number of cells.

By only accounting for the correct number of billet cells, the num-
ber of variables representing the billet section in the NLP is reduced
by up to 50%, depending on the spatial discretization of the billet.
We see this by considering the number of variables needed to ac-
count for the full length of the billet at all discretization points,
including the collocation points, and the number of active cells
when discretizing in extrusion length, to get

wL,billet =
1

2
(1 + d)nr(nx + 1)N (195)

wt,billet = (1 + d)nrnxN, (196)

where wL,billet and wt,billet are the number of billet cells/variables
in the extrusion length and time discretization cases respectively,
d is the number of collocation points, (nr, nx) is the discretization
of the billet, and N is the number of discretization points. The
reduction is then measured by

µ̂red =
wL,billet
wt,billet

=
1
2 (1 + d)nr(nx + 1)N

(1 + d)nrnxN
=

1

2
+

1

2nx
, (197)

which for a typical discretization of nx = 12, amounts to µ̂red =
1
2 +

1
2·12 = 0.5416̄, meaning a reduction of 45.83̄%. We also see that

with finer and finer axial discretization of the billet, the reduction
approaches 50%;

lim
nx→∞

µ̂red(nx) =
1

2
. (198)

This is concept is illustrated in Fig. 41.

If we consider FF-NLP 1 from Section 6.5, the number of billet vari-
ables is wL,billet = 3744, which is a substantial portion of the total
Nw = 4148. The equivalent number of billet variables when ac-
counting for all cells, active and inactive, is wt,billet = 6912, which
amounts to a total of N t

w = 7316 decision variables. We then see
that the overall reduction of problem size, in terms of decision
variables, is reduced by 1− 4148

7316 ≈ 43%.
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7.2 Applicability in a Real Industrial Setting

To the extent that one can regard the implemented extrusion model as a satisfactory mathematical
twin of the real case study process, the method produced initial tapers and respective control
trajectories that reduce the extrusion time by 1 − 170s

330s ≈ 48% from the assumed tf = 330s of the
current process. The new extrusion period is therefore Text ≈ max{ 12300s, 23s + 170s} = 193s,
and the new reduction margin is 193s − 150s = 43s ≥ 0, which means that the heating phase, if
maintaining similar heating time, has not become the bottle neck. Of course, the heating phase
problem may be solved as well, to confirm the that 1

2 t
∗
h ̸> 193s. By assuming model validity,

the method is therefore applicable in the sense that it contributes to the increase in production,
by simply providing a tailored initial taper. By providing the respective control trajectories to
the extrusion phase MPC scheme, the tailored initial taper may be exploited by the local MPC
controller, in order to accomplish the optimal extrusion process predicted by the ECOL. It is also
worth mentioning that even if the heating phase becomes the bottle neck, the solution may still be
optimal with respect to the overall extrusion period, although this is not guaranteed.

If one considers the implementation to be representative of some generic extrusion process, and
not necessarily the specific case study process, the effectiveness of the method may instead be
measured by comparison to the simulations, which represent non-optimized extrusion phases of
the hypothetical extrusion process. We therefore compare simulation 2 in Section 6.2 to the op-
timized processes in Section 6.3, Section 6.4, and Section 6.5. The overall reduction from the
non-optimized simulation to the fully optimized process is, as stated in Section 6.5, about 50%,
which is consistent with the reduction with respect to the case study process. We also saw that
by the introduction of the initial taper as a control variable, versus only optimization of the ram
speed and coolant flow, the extrusion time is reduced by about 26%, which further demonstrates
the effect of an extrusion cycle optimization layer.

In terms of applicability, it is worth considering the necessity of an extrusion cycle optimization
layer versus the difficulty of implementing it in practice. This aspect is brought to the readers
attention because of the seemingly predictable nature of the optimal initial tapers. All the optimal
initial tapers found, for the various discretizations, seem to follow a simple pattern; the leftmost
radial column of cells should have the temperature that corresponds to the desired peak temperat-
ure at maximum speed, and the remaining cells should descend as little as possible, that is, along
the minimum linear taper. Because of this pattern, a certain predictability emerges, that, perhaps,
allows one to bypass the cumbersome implementation of an extrusion cycle optimization layer, and
compute high performing initial tapers by following simple rules. Of course, finding the correct
left-temperature is not straight forwards, though should be easier than implementing the entire
ECOL. Another caveat to this simple bypass, is the lack of respective control trajectories, which
may be necessary for the local MPC scheme to fully exploit the computed initial taper.
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7.3 Model Discrepancies

There are several deliberate and known discrepancies between the model as developed by Halås
(unpublished), hereby referred to as the ‘base model’, and the adapted version in this thesis, hereby
referred to as the ‘current model’. These differences will cause deviations in the solutions, which
are important to be aware of and understand upon comparing the models. Even though a rigorous
comparison between the two model implementations is made in this thesis, it is useful to discuss
some of the discrepancies between them to gain understanding of what differences to expect.
Such expectations may help detect inherent flaws regarding the method used, and disregard small
deviations caused by the different nature of the implementations, and importantly, explain the
needed scaling factors shown in Section 6.1.

The most notable model discrepancies are;

• the current model is integrated using orthogonal collocation, while the base model is integ-
rated using an explicit RK-scheme,

• the base model is discretized in regular time intervals, whereas the current model is discret-
ized in regular intervals of the extrusion length,

• the sizes of the discretization intervals are not only regular in different progressors, but may
also be of significantly different magnitude,

• the exit section is not modelled in the current model, while it is modelled in the base model,

• the spatial discretization of the various sections may vary between solutions and may there-
fore be a source of trajectory deviation,

• the base model uses 2 axial cells for the port section,

• and the base model uses the previous values for port and peak in the nonlinear terms of the
reduction and viscous dissipation energy.

Using different integrators may have a significant effect on the calculated system trajectories, es-
pecially when using coarse discretization over long horizons. Because of the different integrators,
in combination with the different and varying step sizes, the trajectories are expected to deviate
somewhat in regions of rapid changes such as the start of the extrusion phase until a steady state
is reached, corresponding to zone I in Fig. 7, and then only gradually deviate as the system pro-
gresses. Since the exit temperature is not modelled, the peak temperature is expected to decrease
more in the base model during low ram speeds, as the exit speed of the aluminium is slower. How-
ever, because of the generally high exit speeds during normal operations, which negate the heat
diffusion upstream towards the peak section from the exit section, this difference is not expected
to cause any significant deviation. The accuracy of the approximation of the advection equation
rapidly decreases with coarse discretization, which corresponds to the axial discretization of the
billet. Different axial discretization of the billet between the base and current models may there-
fore cause the temperature taper to evolve differently for the two models. The division of the port
section into 2 cells in the base model allows for a gradient across the section, but is not expected
to cause great trajectory deviation. However, upon potentially experiencing difficulty validating
the model in future work, one should consider matching the the number of port cells between
the two models. Lastly, the fact that the base model uses previous port and peak temperatures in
the nonlinear terms to allow the explicit calculation of the algebraic states is, after minor testing,
expected change the dynamics somewhat, with most notable effect on the scaling necessary for the
reduction and viscous dissipation energy. Since the current model avails a simultaneous method,
the proper implicit equations are trivially implemented. The proper implicit algebraic equations
are therefore used, and the scaling factors given in Section 6.1 are applied to tune the model. In
total, given the many discrepancies, it is not exactly clear where the need for the significant scaling
in Section 6.1 arises.
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7.4 Transit IVP and Feasible Region of the Initial Taper

The extrusion cycle optimization layer (ECOL) is contingent on being able to solve the transit ini-
tial value problem (IVP). During the transit phase, the billet experiences heat diffusion and loss
to its environment during its transportation to the press. This phase determines what the initial
taper of the extrusion phase is, based on the end taper of the heating phase. This is formulated as
an IVP, since there are no control variables in this phase, but rather only an initial condition and a
set of ordinary differential equations (ODEs). We see that the feasible end tapers of the heater can
be transformed through the IVP to their respective initial tapers, thus seemingly forming a feasible
region for the initial taper, that may be imposed as constraints in the extrusion phase control prob-
lem. However, it is not obvious whether of not the the boundary of the set feasible end-tapers of
the heating phase exactly maps to the boundary of the transformed set. Furthermore, it is not even
clear how to define such a boundary, as the taper can take many complex shapes, and system limit-
ations may be concerned with both maximum temperatures and maximum temperature gradients.
Constructing the feasible region for the initial tapers is therefore is not trivial, and mapping out
the feasible region of the heater end taper is not trivial in itself. In this thesis, a simple constraint is
imposed on the maximum and minimum gradients of the initial taper, as well as the general system
temperature constraints. To fully exploit the concept of optimizing the initial taper, it is important
to understand the limitations of the heater and how it translates through the transit phase.

Importantly, the transit IVP must also be calculated backwards, with the initial taper as the initial
condition, and the respective end taper of the heating phase as the variable to find. This way, one
may compute the reference taper for the heater based on the optimal initial taper. By imposing the
proper constraints on the initial taper of the OCP B control problem, one ensures that this reference
is feasible with respect to the heating phase. The transit IVP must be solved for every cycle, since
the optimal initial taper may change form cycle to cycle, depending on for example changes in the
other initial temperatures of the extrusion phase, or updates in the model parameters. Additionally,
the ambient temperature may affect the transit dynamics. Because of possibility of varying transit
dynamics, and perhaps even updates in estimates of the alloy properties of the billet, the feasible
region of the heater end tapers may be updated regularly as well, which should be taken into
account when implementing an ECOL in an extrusion plant. Depending on the method chosen to
compute the feasible initial taper, the solve time for this may be high, and should perhaps be done
in parallel to the ECOL and updated every few cycles.

7.5 Initial Guess

The initial guess used for the various optimization problems solved in this thesis is based on an
arbitrary, generic result, which is considered to be equally ‘wrong’ for all tests, and does not affect
the general size of the solve time and iteration count. It may, however, affect how the solve times
and iteration counts vary between the tests, as the initial guess may ‘randomly’ favor some of the
NLPs. Especially, the simulations are affected by the initial guess, since the generic solution used
as the initial guess achieves isothermal extrusion at the desired peak temperature, which is only
the case for simulation 2.

The initial guess for all temperatures are interpolated based on the common generic solution,
except for the billet, which uses a constant 500oC as the initial guess. Additionally, ϵ and λ̂ are
guessed to be constant 0 and 6.9444 · 103 respectively, and the ram speed vram and coolant flow
variable ẑ are guessed to be constant and equal to 0.005m/s and 0.2 respectively, where relevant.
In an extrusion plant implementation of the methods proposed in this thesis, the initial guess that
is used may be adapted dynamically, as the solution to the previous cycle is likely to be close to the
solution of the next cycle. Also, upon changing the product extrudate profile, or aluminium alloy,
the initial guess may be based on a solution found when previously using similar alloys or profiles.

Upon minor testing with the implemented NLP, it seems that the initial guess is crucial in achieving
low solve times. It turns out that a generic initial guess performs well, nevertheless, even better
performance may be achieved by specializing the initial guess for every cycle. Of course, providing
a reasonable, non-constant initial guess for the billet may also improve the performance notably,
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as the billet cells account for a substantial portion of the decision variables.

7.6 Regularization

A small point is made about the lack of regularization of the extrusion phase NLP, even though
some regularization is already present, as discussed in Section 5.2.2. As seen from Fig. 34 and
Fig. 36, the coolant valve opening trajectories vary notably between solutions, even though a
general shape seems to be present. To attempt to make the exact trajectories more predictable,
and converge to a ‘true’ optimal trajectory upon increasing the number of discretization points,
one may try to regularize the NLP even more. By regularizing the NLP, specifically in terms of
the coolant valve opening, one transforms the cost of a region of nearly equally optimal valve
opening trajectories such that it more strongly favors a particular solution in that region more than
others. That way, minor variation in the problem otherwise will have less of an impact on the
optimal valve opening trajectory. Regularization affects the overall NLP solution, however, and
comes at the cost of distorting what is considered optimal. Therefore, it is not trivial to design
regularization measures, as the resulting trade-off between regularization and optimality with
respect to the original problem is not necessarily easy to understand, and it is not necessarily clear
what is a desirable trade-off.

An example of a form of regularization is to penalize the difference between two consecutive valve
opening values, which is also touched upon in Section 5.2.2, but is not done for the results in Sec-
tion 6. Some testing with various regularization terms in the objective has been explored, though
the results are not presented, and no remarkable improvement was found. If more predictable
control trajectories, that is; similar across different NLP configurations, are deemed necessary in
future work, some form of regularization should be considered.
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7.7 Further Work

This thesis comprehensively covers the idea- and implementation of an extrusion cycle optimiz-
ation layer that makes use of the initial taper to minimize the extrusion times beyond what is
possible with only the ram speed and coolant flow while maintaining isothermal extrusion at the
desired peak temperature, by accounting for the complete extrusion cycle. Nevertheless, there are
several aspects of the method that may be further studied, to improve upon the idea and execution.
Here, we list the most obvious, notable, and direct areas that one should study further to improve
upon the concept and implementation:

• Model validation - Upon implementing an extrusion cycle optimization layer, one should
properly validate the model against the real process, to ensure feasibility with respect to the
physical extrusion process.

• Implement and test the complete ECOL - This thesis covers the concept of simplifying an
ECOL implementation by separating the overall control problem into several smaller prob-
lems, and covers only the implementation of one of them; the extrusion phase control prob-
lem. The complete implementation of all phases and their connections to each other should
be explored further, and implemented and tested.

• Understanding the feasible regions of the initial taper and the heater end-taper better - To
properly implement constraints on the initial taper based on the feasible region of the heater
end-taper, one must understand the limitations of the heater, and how to define a meaningful
and useful boundary of the feasible heater end-taper region. This boundary should be such
that it is easily convertible via the transit IVP, and implementable as constraints on the initial
taper.

• Methods of specializing the initial guess - By choosing initial guesses that are close the solu-
tion, the algorithm is likely to converge faster. Therefore, it is beneficial to construct a scheme
that produces a reasonable initial guess, in order to reduce the solve time of the extrusion
phase NLP. One should further study how to use the information from previous solutions to
make reasonable guesses for a given cycle.

• Solve time/Iteration count sensitivity to problem discretization - Upon testing several discret-
izations of the same problem, we observed the occasional spike in solve time and iteration
count. In a practical implementation of the ECOL, it is desirable to be confident in the feasib-
ility of the solve time, that is tsol < tf + tRL, such that the production does not halt because
the next cycle is waiting for the ECOL to find the optimal open loop trajectories. One should
therefore understand why- and what makes the solve time spike for some configurations, and
how to prevent this effect. This may be closely connected to the issue of finding good initial
guesses, and perhaps regularization.

• Linear solvers - The optimization algorithm (IPOPT, Wächter and Biegler (2006)) used in this
thesis, makes use of external linear solvers for the solving the large and sparse linear systems
necessary to find the descent directions. This allows one to use linear solves that are suited
for the particular problem in question. For simultaneous methods, these systems are usually
highly sparse, and benefits from using linear solvers that exploit sparsity. Finding the best
linear solver for the the particular problem may greatly reduce the solve time. The solver
used in this thesis is MUMPS, and we recommend testing solvers such as the HSL (Harwell
Subroutine Library) linear solvers; MA27, MA57, HSL_MA77, HSL_MA86 and HSL_MA97.

• Optimization Algorithms - It is natural to investigate whether there are other algorithms than
IPOPT that may be advantageous when solving the NLPs implemented in this thesis.
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8 Conclusion

The objective of this thesis is to conceptualize a practical solution to a extrusion cycle optimization
layer, as part of a greater extrusion process control hierarchy (Fig. 3), and to partially implement
a solution, so as to provide insight into the effectiveness of such a layer as proof of concept.

We have presented a practical simplification of the extrusion cycle optimization problem, which is
based the separation of the overall process into three distinct phases; the heating-, transit-, and
extrusion phase, and optimizing them in backwards order; first optimize the extrusion phase, then
solve the transit IVP, and lastly, solve the heating phase problem. We found that by assuming that
the heating time does not increase significantly when varying the initial taper, optimizing only the
extrusion process is equivalent to optimizing the overall extrusion cycle under a reduction margin,
after which the heating time may be confirmed by solving the transit IVP and heating problem, thus
confirming the optimality of the solution. A difficulty regarding the feasible region of the initial
taper and heater end-taper has been discussed, such as the difficulty of defining such a region, and
how to convert it onto the equivalent feasible region for the initial taper. This region may vary from
cycle to cycle, and should ideally be computed every cycle by the ECOL. However, because of the
potential difficulty and time consumption of such a computation, a potential parallel computation
is suggested, that may compute a feasible region over several cycles, and update the estimate every
few cycles. Otherwise, simple linear constraints are also possible.

A partial implementation of the ECOL, specifically the extrusion phase, has been covered extens-
ively, and several practical considerations and solutions to various aspect and obstacles have been
addressed. The extrusion phase optimization problem has been converted into an equivalent NLP,
by using a simultaneous approach; direct collocation. Using a simultaneous approach seemed prob-
lematic since part of the objective is to optimize the ram speed. Without knowing the ram speed
prior to solving the NLP, one does not know the extrusion length as a function of time, and since
the dynamic equations are dependent on the extrusion length, the model equations are unknown
in time as well. However, by exploiting the inherent extrusion process criteria that the ram speed
must always be strictly positive, we concluded that the extrusion length is a progressor of the ex-
trusion phase. Since we only need to optimize the extrusion phase, as a result of the extrusion
cycle OCP separation, this was sufficient to be able to perform a progressor transformation of the
model equations. The progressor transformation then made it possible to efficiently implement the
model dynamics as constraints in the extrusion phase NLP. Additionally, the spatial discretization
of the billet resulted in discontinuous changes in the model dynamics at unknown times, which is
also an artifact of the unknown ram speed. However, these discontinuities happen at known values
of the extrusion length, thus after the progressor transformation, we were able to only integrate
the system between the discontinuities, effectively ‘hiding’ the discontinuities at the discretization
points. We also observed that, by performing a progressor transformation into extrusion length,
one knows what billet cells are still active at every discretization point, meaning that one only
has to allocate variables for the active cells. Depending on the discretization used, this observa-
tion allows us to reduce the number of billet cells by up to 50%, and we saw that for a typical
implementation of the NLP, the overall number of decision variables was reduced by 43%.

Several results were presented, were different spatial and progressor discretizations, number of
collocation points, and discretization points per billet cell were tested for different implementations
of the extrusion phase NLP. The first results were of a version of the NLP where all control variables
were fixed, thus simulating a non-optimized extrusion phase. Secondly, the ram speed was freed
to be optimized, while the coolant valve opening and initial taper remained fixed, followed by
implementations were the coolant valve opening was also freed. Lastly, the initial taper was freed
to accommodate the complete extrusion phase optimization problem. We found that with each new
control variable that was optimized, the achievable extrusion times became shorter. By comparing
the non-optimized simulations to the fully optimized process, we found that the extrusion time was
reduced by about 50%. Similarly, introducing initial taper optimization reduced the extrusion time
by about 26% from the case with only ram speed and coolant flow optimization, and introducing
coolant optimization yielded a 23% reduction from ram speed optimization only. To fully conclude
on the effectiveness of the method, however, the model should be validated by comparison to the
relevant real process, and experimental data should confirm the reduced extrusion times.

84



Bibliography

Andersson, Joel A E et al. (2019). ‘CasADi – A software framework for nonlinear optimization and
optimal control’. In: Mathematical Programming Computation 11, pp. 1–36.

Aukrust, Trond and Sami LaZghab (2000). ‘Thin shear boundary layers in flow of hot aluminium’.
In: International Journal of Plasticity 16.1, pp. 59–71. ISSN: 0749-6419. DOI: https://doi.org/
10.1016/S0749-6419(99)00047-9. URL: https://www.sciencedirect.com/science/article/%20%
5C%5C%20pii/S0749641999000479.

Betts, John T (2010). Practical methods for optimal control and estimation using nonlinear program-
ming. SIAM.

Biegler, Lorenz T (2007). ‘An overview of simultaneous strategies for dynamic optimization’. In:
Chemical Engineering and Processing: Process Intensification 46.11, pp. 1043–1053.

— (2010). Nonlinear programming: concepts, algorithms, and applications to chemical processes.
SIAM.

Birol, Yücel (2004). ‘The effect of homogenization practice on the microstructure of AA6063 bil-
lets’. In: Journal of Materials Processing Technology 148.2, pp. 250–258.

Birol, Yucel (2014). ‘Homogenization of direct chill cast AlSi1MgMn billets’. In: International
journal of materials research 105.1, pp. 75–82.

Borrelli, Francesco (2003). Constrained optimal control of linear and hybrid systems. Vol. 290.
Springer.

Chanda, Tapas, Jie Zhou and Jurek Duszczyk (2001). ‘A comparative study on iso-speed extrusion
and isothermal extrusion of 6061 Al alloy using 3D FEM simulation’. In: Journal of Materials
Processing Technology 114.2, pp. 145–153.

Cuéllar Matamoros, Carlos Fernando (1999). ‘Modeling and control for the isothermal extrusion
of aluminium’. PhD thesis. ETH Zurich.

Diehl, Moritz and Sébastien Gros (2011). ‘Numerical optimal control’. In: Optimization in Engin-
eering Center (OPTEC).

Evans, Lawrence C (2022). Partial differential equations. Vol. 19. American Mathematical Society.
Farjad Bastani, Amin, Trond Aukrust and Sverre Brandal (2010). ‘Study of isothermal extrusion

of aluminum using finite element simulations’. In: International Journal of Material Forming 3,
pp. 367–370.

Gabrielsen, Trym Arve L. (2022). ‘Methods for dynamic optimization with application to the alu-
minum extrusion process’.

Halås, Anne (unpublished). Modelling of the extrusion process – Press. Documentation of Cybernet-
ica’s heater model.

Han, CH, Dong-Yol Yang and M Kiuchi (1986). ‘A new formulation for three-dimensional extru-
sion and its application to extrusion of clover sections’. In: International journal of mechanical
sciences 28.4, pp. 201–218.

Hölker, Ramona et al. (2013a). ‘Controlling heat balance in hot aluminum extrusion by addit-
ive manufactured extrusion dies with conformal cooling channels’. In: International Journal of
Precision Engineering and Manufacturing 14, pp. 1487–1493.

— (2013b). ‘Controlling heat balance in hot aluminum extrusion by additive manufactured ex-
trusion dies with conformal cooling channels’. In: International Journal of Precision Engineering
and Manufacturing 14, pp. 1487–1493.

Holven, Stian (2020). ‘Modelling and Model Predictive Control of an Extrusion Press for High
Precision Aluminium Profiles’. MA thesis. NTNU.

Kim, Young-Tae and Keisuke Ikeda (2000). ‘Flow behavior of the billet surface layer in porthole die
extrusion of aluminum’. In: Metallurgical and Materials Transactions A 31, pp. 1635–1643.

Kulås, Mats (2022). ‘Dynamic Optimization and State- and Parameter Estimation used on an Ex-
trusion Press for Aluminium’. MA thesis. NTNU.

Li, Q et al. (2003). ‘Finite element investigations upon the influence of pocket die designs on metal
flow in aluminium extrusion: Part I. Effect of pocket angle and volume on metal flow’. In:
Journal of Materials Processing Technology 135.2-3, pp. 189–196.

Mahmoodkhani, Yahya et al. (2014). ‘Numerical modelling of the material flow during extrusion of
aluminium alloys and transverse weld formation’. In: Journal of Materials Processing Technology
214.3, pp. 688–700.

85

https://doi.org/https://doi.org/10.1016/S0749-6419(99)00047-9
https://doi.org/https://doi.org/10.1016/S0749-6419(99)00047-9
https://www.sciencedirect.com/science/article/%20%5C%5C%20pii/S0749641999000479
https://www.sciencedirect.com/science/article/%20%5C%5C%20pii/S0749641999000479


Murai, Tsutomu et al. (2003). ‘Effects of extrusion conditions on microstructure and mechanical
properties of AZ31B magnesium alloy extrusions’. In: Journal of Materials Processing Technology
141.2, pp. 207–212.

Özı̧sık, M Necati (1993). Heat conduction. John Wiley & Sons.
Qamar, SZ (2010). ‘Shape complexity, metal flow, and dead metal zone in cold extrusion’. In:

Materials and Manufacturing Processes 25.12, pp. 1454–1461.
Rawlings, James Blake, David Q Mayne and Moritz Diehl (2017). Model predictive control: theory,

computation, and design. Vol. 2. Nob Hill Publishing Madison, WI.
Saha, Pradip K (2000). Aluminum extrusion technology. Asm International.
Sellars, CM and WJ McG Tegart (1972). ‘Hot workability’. In: International Metallurgical Reviews

17.1, pp. 1–24.
Sheppard, T and DS Wright (1979). ‘Determination of flow stress: Part 1 constitutive equation for

aluminium alloys at elevated temperatures’. In: Metals Technology 6.1, pp. 215–223.
Sheppard, Terry (2013). Extrusion of aluminium alloys. Springer Science & Business Media.
Strikwerda, John C (2004). Finite difference schemes and partial differential equations. SIAM.
The MathWorks Inc. (2023). MATLAB Version: 9.14.0.2239454 (R2023a) Update 1. Natick, Mas-

sachusetts, United States. URL: https://www.mathworks.com.
Tibbetts, Brian and John Wen (1995). ‘Application of modern control and modeling techniques to

extrusion processes’. In: Proceedings of International Conference on Control Applications. IEEE,
pp. 85–90.

Valberg, Henry (1992). ‘Metal flow in the direct axisymmetric extrusion of aluminium’. In: Journal
of Materials Processing Technology 31.1-2, pp. 39–55.

Wächter, Andreas and Lorenz T Biegler (2006). ‘On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming’. In: Mathematical programming
106.1, pp. 25–57.

Wächter, Andreas, Stefan Vigerske et al. (n.d.). print_options_documentation. URL: https://coin-
or.github.io/Ipopt/OPTIONS.html#OPT_hsllib.

Wazwaz, Abdul-Majid (2002). Partial differential equations. CRC Press.
Zhou, Jie, Luo-xing Li and J Duszczyk (2004). ‘Computer simulated and experimentally verified

isothermal extrusion of 7075 aluminium through continuous ram speed variation’. In: Journal
of Materials Processing Technology 146.2, pp. 203–212.

86

https://www.mathworks.com
https://coin-or.github.io/Ipopt/OPTIONS.html#OPT_hsllib
https://coin-or.github.io/Ipopt/OPTIONS.html#OPT_hsllib


Appendix

A Listings

Listing 5: Code that instantiates an ExtrusionProcess(), builds the corresponding NLP, and solves it.
% Define porperties that do not take default value:
nlp.d = 2; % Number of collocation points
nlp.nL = 2; % Number of disc. points per billet cell
G.nx.billet = 10; % Number of axial billet cells
G.nr.billet = 6; % Number of radial billet cells
P.rho.aluminium = 2752; % Density of the incoming aluminium billet

nlp.reference_solution = 'Reference.mat' % Provide initial guess to the solver

% Instantiate extrusion process:
myEP = ExtrusionProcess('G',G,'P',P,'nlp',nlp);

% Build NLP:
myEP.BuildNLP

% Solve NLP:
my.EP.SolveNLP

Listing 6: Defining SX variables.
for name = 〈loop over sections〉

nr = NLP.G.nr.(name); % Retrieve nr for section
nx = NLP.G.nx.(name); % Retrieve nx for section
T_SX.(name) = SX.sym(['T_SX_',char(name),'_0'],nr*nx);

end
for name = 〈loop over control variables〉

C_SX.(name) = SX.sym([char(name),'_SX_0']);
end
for name = 〈loop over parameters〉

P_SX.(name) = SX.sym([char(name),'_SX_0']);
end

Listing 7: Defining initial optimization variables.
for name = 〈loop over sections〉

nr = NLP.G.nr.(name); % Retrieve nr for section
nx = NLP.G.nx.(name); % Retrieve nx for section
T.(name) = MX.sym(['T_',char(name),'_0'],nr*nx);
NLP.CLC.S.x.(name){1} = T.(name);

end
for name = 〈loop over control variables〉

C.(name) = MX.sym([char(name),'_0']);
NLP.CLC.S.u.(name){1} = C.(name);

end
for name = 〈loop over parameters〉

P.(name) = MX.sym([char(name),'_0']);
NLP.CLC.S.p.(name){1} = P.(name);

end

Listing 8: Defining collocation variables.
for name = 〈loop over sections〉

nr = NLP.G.nr.(name);
nx = 〈retrieve nx of section at current disc. point〉 % This value is not constant for the billet section
for d = 1:NLP.nlp.d

T_coll{d}.(name) = MX.sym(['T_',char(name),'_', k_str,'_coll_', num2str(d)],nr*nx);
NLP.CLC.S.coll.(name){end+1} = T_coll{d}.(name);

end
end
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Listing 9: Defining algebraic and parameter equations.
for name = 〈loop over sections that are independent of the billet section〉

dT_SX.(name) = NLP.dT.(name)(NLP,T_SX,C_SX,P_SX,k+1);
dT.(name) = Function(['dT_',char(name)],Input_Cell_SX_algebraic,{dT_SX.(name)});

end
for name = 〈loop over parameters〉

Pf_SX.(name) = NLP.Pf.(name)(NLP,T_SX,C_SX,P_SX,k);
Pf.(name) = Function(['Pf_',char(name)],Input_Cell_SX_algebraic,{Pf_SX.(name)});

end

Listing 10: Solving for parameters.
〈construct Input_Cell{}〉
for name = 〈loop over parameters〉

g{end+1} = Pf.(name)(Input_Cell{:});
end

Listing 11: Defining next state variables.
for name = 〈loop over sections〉

nr = NLP.G.nr.(name);
nx = 〈retrieve next nx value of section〉
if nx ~= 0

T_next.(name) = MX.sym(['T_',char(name),'_',k_str], nr*nx);
NLP.CLC.S.x.(name){end+1} = T_next.(name);

end
end

Listing 12: Imposing soft constraints.
epsilon = MX.sym(['epsilon_',k_str], 1);
NLP.CLC.S.p.epsilon{end+1} = epsilon;
h_peak{end+1} = T_next.peak − NLP.constraint.lb_soft.peak + epsilon; % h_peak > 0;
h_peak{end+1} = NLP.constraint.ub_soft.peak − T_next.peak + epsilon; % h_peak > 0;

Listing 13: Solve for algebraic states at collocation points.
for d = 1:NLP.nlp.d

〈construct Input_Cell{}〉
for name = AlgebraicNames

g{end+1} = dT.(name)(Input_Cell{:});
end

end

Listing 14: Defining next optimization variables.
for name = [BilletDependentNames AlgebraicNames NonBilletDependentNames]

if 〈T_next.(name) exists〉
T.(name) = T_next.(name);

end
end

if 〈not the last discretization point〉
v_prev = C.ram;
for name = InputNames

C.(name) = MX.sym([char(name),'_', k_str]);
NLP.CLC.S.u.(name){end+1} = C.(name);

end
end

if 〈not the last discretization point〉
for name = ParameterNames

P.(name) = MX.sym([char(name),'_', k_str]);
NLP.CLC.S.p.(name){end+1} = P.(name);

end
end

Listing 15: Impose constraints on steps in ram speed.
h_Dram{end+1} = (C.ram − v_prev) + (NLP.nlp.dL/NLP.nlp.vtypical) * NLP.constraint.ub.Dram;
h_Dram{end+1} = −(C.ram − v_prev) + (NLP.nlp.dL/NLP.nlp.vtypical) * NLP.constraint.ub.Dram;
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Listing 16: Solve for the algebraic states at the discretization points.
for name = AlgebraicNames

g{end+1} = dT.(name)(Input_Cell{:});
end

Listing 17: Constructing Input_Cell{}.
Input_Cell = {};
for name = 〈loop over relevant sections〉 % This depends on the function the input cell if used for

Input_Cell{end+1} = T.(name);
end
for name = 〈loop over control variables〉

Input_Cell{end+1} = C.(name);
end
for name = 〈loop over parameters〉

Input_Cell{end+1} = P.(name);
end
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