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Abstract

A target tracker is a key component of autonomous navigation. Target trackers can
be defined using Bayesian probabilistic modelling, or end-to-end with neural net-
works. The MT3v1 and MT3v2 are two generations of Transformer-based neural
trackers which aim to provide an alternative to Bayesian trackers, by trading online
computation cost for offline training, without sacrificing performance. Certain lim-
itations with these two have motivated the development of the MT3v3. This next
generation Transformer tracker is shown to perform better than its predecessor and
the Bayesian IMM-JIPDA tracker in certain scenarios, while being more flexible
and adaptable to new autonomy pipelines. A pre-trained MT3v3 network is pro-
vided, alongside a user-friendly implementation. However, it is also shown that the
MT3v3 performs very poorly in the worst-case, and struggles to track targets that
cross over one another or run in parallel. Since the MT3v3 is a black-box system, it
is also difficult to interpret why this is the case. As such, more development work
is needed for the MT3v3 to improve reliability and interpretability.



Sammendrag

En m̊alfølger er en nøkkelkomponent i autonom navigasjon. Målfølgingsalgoritmer
kan defineres ved hjelp av Bayesiansk probabilistisk modellering, eller ende-til-ende
med nevrale nettverk. MT3v1 og MT3v2 er to generasjoner av Transformer-baserte
nevrale m̊alfølgere hvis m̊al er å tilby et alternativ til Bayesianske m̊alfølgings-
algoritmer, ved å bytte ut online beregningskostnad for offline trening, uten å
ofre ytelse. Visse begrensninger med disse to har motivert utviklingen av MT3v3.
Denne neste-generasjons Transformer-m̊alfølger er vist å yte bedre enn sin forgjenger,
samt den Bayesianske IMM-JIPDA-m̊alfølgeren i visse tilfeller, samtidig som at den
er mer fleksibel og tilpasningsdyktig til nye autonomisystemer. Et forh̊andstrent
MT3v3-nettverk er gjort tilgjengelig, sammen med en brukervennlig implemen-
tasjon. Det vises dog at MT3v3 presterer veldig d̊arlig i de verste tilfellene, og har
problemer med å følge m̊al som krysser over hverandre eller kjører parallelt. Siden
MT3v3 er et sort-boks system, er det i tillegg vanskelig å tolke hvorfor ytelsen er
som den er. MT3v3 trenger derfor mer utviklingsarbeid for å forbedre p̊alitelighet
og tolkbarhet.
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1
Introduction

The title of this thesis implies one of two things:

1. Transformer-based point-object multitarget trackers do not currently exist

2. There exists Transformer-based point-object multitarget trackers that are not
robust and/or flexible

As will become apparent, the latter case is true. The overarching goal of this
thesis is thus to develop a Transformer-based point-object multitarget tracker that
is robust in scenarios of differing complexity and is flexible enough to be used in
various tracking pipelines. This tracker will be a continuation of the development
started in (Pinto et al. 2021a) and (Pinto et al. 2022).

1.1 Motivation

Multitarget target tracking (MTT) is a critical aspect of modern autonomous sys-
tems, with applications ranging from robotics and driverless vehicles to surveillance
and defense (Tian et al. 2019), (Wang et al. 2017). The core challenge of MTT, as
the name implies, lies in accurately identifying and tracking multiple targets using
measurements that are corrupted by noise. Further complicating MTT is the fact
that a target at any given time may not produce a measurement at all, as well
as the presence of clutter measurements which originate from sources other than
the intended targets. Point-object MTT refers to the problem where targets are
assumed to be points in 2D or 3D space, and existing solutions to this problem
predominantly employ Bayesian methods and statistical models for describing both
the targets and measurements. A counterpart to these solutions are the trackers
based on neural networks, such as recurrent neural networks (RNN) or long-short
term memory (LSTM) networks. Instead of mathematically modelling MTT as a
Bayesian estimation problem, neural trackers are deep learners, trained on large
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1 Introduction 1.2 Problem formulation

amounts of data to automatically learn the relevant statistical and geometric prop-
erties embedded in the measurements.

In recent times, a family of neural networks known as Transformers have emerged
as a powerful alternative to architectures like the RNNs and LSTMs. Initially in-
troduced by (Vaswani et al. 2017), transformer networks have revolutionized the
field of natural language processing, and their applications have extended to other
domains such as computer vision and time series analysis. Transformers excel at
identifying both simple and complicated dependencies in the input data, irrespec-
tive of their spatial or temporal arrangement, and are especially well suited for
handling sequential data.

The MTT problem is inherently a sequential problem as the positions and ve-
locities of targets evolve over time, and sensors observing these targets produce
time-series. Given these characteristics, it is reasonable to consider employing
Transformers for tackling the MTT problem, as they have demonstrated remark-
able performance in other domains. However, existing research on using Trans-
formers for tracking predominantly focuses on camera-based bounding-box track-
ing, leaving somewhat of a gap in the literature with regards to their application in
point-object tracking. This presents an opportunity for further investigation and
potential advancements by exploring the capabilities of Transformers in addressing
the challenges associated with point-object MTT.

1.2 Problem formulation

(Pinto et al. 2022) ask the question

Can Deep Learning be Applied to Model-Based Multi-Object Tracking?

and implement the MultiTarget Tracking Transformer v2 (MT3v2) as an improve-
ment over the MT3v1 (Pinto et al. 2021a). It is demonstrated that the MT3v2
is capable of matching the performance of state-of-the-art Bayesian trackers in
simpler tasks, while outperforming them in more complex tasks. Exploring this
was the main topic of the project thesis (Strøm 2022), where it was shown that
while the trained MT3v2 networks perform well on the same tasks that they were
trained on, crossing tasks and pretrained networks yielded poor performance. Fur-
thermore, the way the MT3v2 was benchmarked did not show the capability of the
MT3v2 as a tracker, and the trained networks can only be run in a specific con-
figuration, rendering them unusable for scenarios outside of those used in training.
Furthermore, the localization errors for the predictions made by the MT3v2 were
significantly higher than the Bayesian tracker counterparts, and the data genera-
tor used for training and testing do not necessarily produce bona fide multitarget
tracking scenarios.

These observations have motivated a more comprehensive examination and con-
tinued refinement of the MT3v2. The aim of this thesis is thus to address some
of the limitations and shortcomings of the MT3v1 and MT3v2 with a new archi-
tecture, offer additional analysis beyond what is presented in (Pinto et al. 2021a)
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1 Introduction 1.3 Main contributions and thesis outline

and (Pinto et al. 2022), and benchmark its performance against other Bayesian
methods in a broader range of scenarios.

1.3 Main contributions and thesis outline

The following list is to be considered as the main contributions of this thesis:

1. A thorough review of the MT3v1 and MT3v2 architectures

2. The MT3v3, an improved multitarget tracking Transformer architecture

3. Benchmarking and comparing an MT3-based tracker against a new set of
baselines and in new scenarios

All relevant code implementations related to the new MT3v3 architecture, as well
as pretrained versions of the MT3v3, will be made publicly available at https:

//github.com/chrstrom/mt3v3.
Chapter 2 presents theory for both the Bayesian and Transformer solutions to

the MTT problem, as well formally introducing what is meant by the MTT problem
in the first place. The sections related to the Transformer network architecture
is partially borrowed and condensed from that which is presented in the project
thesis (Strøm 2022). Additions were made to specifically tailor this theory section
to explain the architecture changes made to the MT3v2 to produce the MT3v3.
Chapter 3 is dedicated to going in-depth with the trackers MT3v1 and MT3v2, in
terms of their architecture changes as compared to the original Transformer, their
reported performance, and limitations that plague them. This is also work that
was started in (Strøm 2022), but the presentation here is much more thorough and
describes issues related to the MT3v2 data generation scheme that was previously
not known. Some data obtained by the original creators of these architectures will
also be presented and used to generate figures in this chapter. The previous work
on the MT3v1 and MT3v2 and the limitations of the respective architectures have
motivated the development of the MT3v3, and chapter 4 presents the changes
made in this new architecture. This is by far the most important contribution of
the three, and will be the focus on the subsequent chapters. Chapter 5 describes
the setup of the simulators used for training and testing the MT3v3, and how the
benchmark pipeline is designed. Results obtained with the MT3v3 are presented in
chapter 6, and contains various tests and comparisons between different trackers
and scenarios. These results are discussed in chapter 7, while the conclusion and
suggestions for future work is presented in chapter 8.
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2
Theory

This chapter serves to provide a theoretical foundation that is necessary for for-
mulating the multitarget tracking problem for point-objects and a set of corre-
sponding solutions. Firstly, the mathematical notation used throughout the thesis
will be presented. Then, the most important aspects of the Transformer neural
networks are explained, since these are required to understand the implications
of the changes made to the MT3v3. After this, a short introduction to Bayesian
statistics is given, before the multi-target tracking problem itself is defined and ex-
plained. Lastly, some possible solutions to the target tracking problem are briefly
introduced, as well as some methods and metrics for measuring the performance
of a tracker.

2.1 Notation

Vectors and matrices receive bold typesetting, while scalars do not. Measurements
and state vectors are denoted z and x respectively, and can be subscripted to
indicate time. For example, all measurements between time 1 and k is written
z1:k. ”x” is used as a ”placeholder parameter” throughout this section, and unless
specified, this has no particular interpretation. Hats are added to variables to
indicate that they represent some estimate of the underlying true value, i.e. that
x̂ is an estimate of the true x. Any variables related to the neural network section
are named according to the context they appear in, and is made explicit as new
concepts are introduced.

Most probability distributions will be denoted p(·) and conditional distributions
as p(·|·). It is important to remark that the subscript for each pdf is left out for
the sake of brevity. I.e. if Z is a random variable and z is a realization, the pdf of
Z evaluated at z is denoted as the simplified p(z) as opposed to pZ(z). Subscript
is instead used in some places to avoid ambiguity. A handful of distributions are
mentioned throughout, and U(lower,upper) is used to denote the uniform distri-
bution, while N (µ, σ2) and N (µ,Σ) are used to denote the single and multivariate
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2 Theory 2.2 Transformer neural networks

Gaussian respectively. The Poisson distribution is denoted P(λ). || · ||(·) is used
to denote normalization, where the subscript is used to differentiate normalization
schemes like layer-norm (LN) and field-of-view (FOV). All neural networks, both
individual components and an entire network from input to output is represented
by some mapping fname, where ”name” is used to specify what the mapping refers
to.

2.2 Transformer neural networks

The Transformer was first introduced in (Vaswani et al. 2017) as a novel architec-
ture designed to address sequence mapping tasks, such as natural language process-
ing, without using recurrent or convolutional layers. Instead, attention-mechanisms
are employed in order to capture long-range dependencies and effects in the input
data while parallelizing computations more efficiently. The success of Transform-
ers in natural language processing has inspired applications in other areas, such
as computer vision, speech recognition, generative models, and graph-structured
data. This section provides an overview of the most important modules that are
used in Transformers.

2.2.1 Preliminary theory

Before presenting the main components that make up a Transformer, it is important
to be aware of the fundamental building blocks and techniques employed in each
of these.

Feed-forward network

The purpose of a feed-forward network is to map inputs to outputs by learning
a representation of the underlying mapping function through a composition of
simpler functions (Bishop and Nasrabadi 2006). This is achieved by organizing a
set of nodes into layers, and connecting the outputs of the nodes in a given layer
to the inputs of the nodes of the subsequent layer. The input layer will get its
inputs from the data itself, while the output of the output layer is either used
directly or fed to some other component of a more complex system. In short, a
feed-forward network is simply some learned function fnn(·) between the input and
the output. The input and output will depend entirely on the problem that the
network is designed to solve, and can be scalar, vectors, or matrices. A single node
of the network, also referred to as a neuron or unit, has a set of weights w, a bias
b and an activation function fa. The output of a node is generated by applying
its activation function to the sum of its bias and the weighted sum of the inputs.
Letting hl denote the output of the l ’th layer, the output of node i in the next
layer can be expressed as

hl+1
i = fa(ali + bli) ali = wl

i

⊤
hl (2.1)
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2 Theory 2.2.1 Preliminary theory

and each hl+1
i will be concatenated to form the layer output hl+1. This notation

style is consistent with (Ba et al. 2016) and will be used throughout the rest of these
sections. If a non-linear activation function is chosen, the network is enabled to
learn complex and non-linear mapping functions between the input and output of
the network as a whole. Some common activation functions include tanh, sigmoid
and ReLU, which are presented in short below.

The hyperbolic tangent (tanh) is a function which maps its input to the range
[−1, 1] and is defined as

tanh(x) =
ex − e−x

ex + e−x
(2.2)

providing a smooth, differentiable transition between values. The tanh function is
often used in situations where it is beneficial to have both positive and negative
outputs that are limited in magnitude.

The sigmoid function is defined as

σ(x) =
1

1 + e−x
(2.3)

and maps the input to a range between 0 and 1, creating a smooth, differentiable S-
shaped curve. The sigmoid function is frequently used when modeling probabilities
or binary classification tasks due to the output range. The Softmax function is a
sigmoid that is generalized to work with N > 2 classes.

The Rectified Linear Unit (ReLU) function is defined as

ReLU(x) = max(0, x) (2.4)

which is a simple function which acts as a gate by making all negative values of x
evaluate to 0. The ReLU function has become popular due to its computational ef-
ficiency and ability to mitigate the vanishing gradient problem in deeper networks,
but may encounter the problem of ”ReLU-death”, where a node using ReLU pro-
duces a gradient that evaluates to zero for all inputs. (Lu et al. 2019). It is also
not differentiable at the origin, so some care must be taken in implementation for
this.

A fully-connected feed-forward network is a fundamental building block of
Transformer networks, which to summarize is a composition of nodes stacked into
layers, where each layer is fully interconnected with the next. ReLU is almost
exclusively utilized in the FFN modules, while the input and output layers are
defined from the specifics of the task the network is supposed to solve.

Learning

The weights and biases of a network are initialized either randomly or with some
fixed scheme, which in general will not produce a network that correctly solves the
input-output mapping problem (Bishop and Nasrabadi 2006). As such, the weights
and biases must be fine-tuned in such a way as to minimize the difference between
the expected and actual network output, for a given set of inputs. Doing this
manually is infeasible, and so automatic methods have been developed to solve the

6



2 Theory 2.2.1 Preliminary theory

tuning task. Automatically changing the weights and biases of the network based
on the output error of the network can collectively be referred to as the networks
learning or training phase. Firstly, the network is used to calculate the output given
some input, where the correct output is known. This stage is known as the forward
pass. Then, the generated output and the corresponding known correct output is
used in a loss function to calculate a score of how well the network performed. An
automatic learning scheme then uses the gradient of the loss function in order to
find the direction each weight and bias should be adjusted in order to minimize the
loss function. That is, denoting the weights and biases as W and the loss function
as L, then

W←W − λ ∂L
∂W

(2.5)

where λ is referred to as the learning rate of the training process and is a tunable
hyperparameter. Calculating the gradient of the loss function is usually done by
means of backpropagation. If the gradient of the loss function is calculated across
all available sets of inputs and known outputs, this method is called batch gradient
descent. However, if this training set is very large, it becomes computationally
infeasible to calculate the full gradient for every step. As such, stochastic gradient
descent is more commonly used. The main difference in stochastic gradient descent
is that a single training point is used to calculate the gradient Li, which is then
used to update W. This allows for more efficient learning, but may introduce more
noise in the process. Mini-batch gradient descent is also commonly used, where
more than one but less than the total training samples are used to calculate the
gradient of the loss function.

There is no one-rule-fits-all for determining λ, but different schemes have emerged
to adapt the learning rate depending on how the loss function evolves. A commonly
used algorithm for this is the Adam optimizer of (Kingma and Ba 2014), which
adaptively computes learning rates for different parameters, and in practice requires
little to no tuning.

Automatic learning means that explicitly modelling dependencies between the
inputs and outputs is not required. This is beneficial for tasks where defining
models can be problematic or impossible. However, it also means that most neural
network solutions are ”black boxes”, where it is difficult to interpret why a solution
does or does not work.

Residual learning

Residual learning is a concept that simplifies the training process of deep neural
network by taking an alternate approach of representing the mapping between
inputs and outputs. (He et al. 2016) The idea behind residual learning is to use
shortcut connections that skip one or more layers in the network, and in the most
extreme case, have a skip connection that goes all the way from the input to the
output. This makes the network learn the residual (or difference) between the input
and the desired output, rather than the entire mapping directly. One example that
illustrates the benefits of residual learning is in the case where identity is the correct
mapping between the input and output, i.e. fnn(y) = y. With a skip connection
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2 Theory 2.2.2 Input embedding

that attaches the output directly to the input, the network will simply learn that
all weights and biases should be zero, thus making the shortcut connection the
only path that affects the output. Without any shortcuts, the network would have
to learn to approximate the identity mapping by combining a set of non-linear
operations, something which is more complex.

Layer normalization

Layer normalization is a common technique utilized in neural networks in order
to speed up the training process and was introduced by (Ba et al. 2016) as an
alternative to other normalization techniques. It is motivated by the fact that
the output of any given layer is correlated with the output of the previous layer.
This in turn yields gradients with respect to the weights of a given layer which
highly depend on the outputs of the previous layer. Over the course of training,
the output distributions of the hidden layers may shift in sync with one another.
This in turn will make it harder for the network to learn an approximation of the
true mapping from input to output. Layer normalization approaches this problem
by fixing the mean and variance of the input sum for each layer, and is done using
the normalization statistics

µl =
1

L

L∑
i=l

ali σl =

√√√√ 1

L

L∑
i=l

(
ali − µl

)2
(2.6)

where L is the number of hidden units in layer l. This can be computed on-demand
and has low computational and spatial complexity since it does not require to
maintain any history across training steps. Using layer normalization, equation 2.1
becomes

hl+1
i = f

(
(
g

σl

(
ali − µl

)
+ bli

)
(2.7)

where g is an additional gain factor that can be tuned.

2.2.2 Input embedding

The very first stage of the Transformer architecture is the input embedding stage,
and the purpose of this module is to convert the input data to a consistent format
that is usable by the network. This is required since the inputs for a specific
Transformer architecture could be anything from english words to measurements
from a radar. For example, an English sentence can be translated into a vector of
indices representing the position of each word in a dictionary of available words,
which in the natural language processing domain is referred to as tokenization
(Zhou et al. 2021). Using the example of radar measurements, the raw input
already contains real numbers, and so tokenization is not required. However, input
embedding is still necessary, since it serves another important purpose, namely to
capture and utilize semantic and/or syntactic information in the raw input data.
Each input element is mapped to a vector of dimension dmodel, which is a tunable
parameter of the network. In (Vaswani et al. 2017), this is set to 512. The final
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2 Theory 2.2.3 Positional encoding

output of the input embedding for a sequence of length T is thus T × dmodel. The
mapping from a raw input to its embedding is learned through the training process
of the network. It is not known a priori what this mapping will prioritize or learn
from the input data, and will vary from task to task. It is also hard to interpret
directly, and getting insight into what goes on in this stage simply due to the high
dimensionality of the embeddings and the complex interaction effects that that
may be embedded.

2.2.3 Positional encoding

Transformers are by default invariant to permutations of the input sequence, which
means that temporal dependencies are not inherently learnable by the network.
Positional encoding is a technique that injects positional information in the in-
put sequence into the embeddings, and is done before the input of the encoder.
This added information enables the model to effectively model dependencies be-
tween tokens, even when they are distant from one another in the input sequence.
Encodings can be both relative and absolute. Relative encodings capture the re-
lationship between tokens based on their positions relative to one another, while
absolute encodings embed information about the global position of each token.
There are also multiple different ways to implement these two methods.

Sinusoidal position encoding

Sinusoidal encoding is the method used in the original Transformer in (Vaswani
et al. 2017). Position encodings are generated by applying sinusoidal functions to
each position index. Specifically, for position p and dimension i, the encoding is
calculated as

PE(p, 2i) = sin

(
p

10000
2π
d

)
, PE(p, 2i+ 1) = cos

(
p

10000
2π
d

)
(2.8)

and was originally chosen as it was hypothesized that the network would learn to
attend to relative positions more easily, since PE(p + k, i) can be expressed as a
linear function of PE(p, i) for any fixed offset k. Since the position encodings will
have the same dimension as the input embeddings, this method allows the network
to extrapolate onto input sequences longer than those seen in training.

Learned position encoding

Learned encoding is an alternative approach to sinusoidal encodings and is also
touched upon in (Vaswani et al. 2017). Instead of using some fixed deterministic
function, this method initializes a position encoding matrix with values that will
be learned in training. In doing so, it may allow the network to learn task-specific
positional information that may be more relevant to the problem domain. How-
ever, this approach does not generalize well, since the maximum supported input
sequence length is determined by the size of the position encoding matrix, here
denoted τ . When learning absolute position encodings, the learned matrix will
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Figure 2.1: An example of the absolute position encoding vector for τ = 6. Original
figure is from (Huang et al. 2020).

Figure 2.2: An example of the relative position encoding matrix for τ = 6. Note how
the same weight is used for elements that are at the same distance from one another.
Also note that the same weights are used for multiple distances above a certain threshold.
Original figure is from (Huang et al. 2020).

instead be a vector of dimension τ . Relative encodings will be a lookup matrix
of size τ × τ , where elements along the anti-diagonals will be the same. Figures
2.1 and 2.2 show what this will look like. Note that the lookup matrix displayed
here also incorporates an addition effect by defining a threshold that determines if
a distance should receive a unique value. I.e. it is possible to define a concept of
”far away”, where all elements that are further apart from one another than this
threshold receive the same position encoding.

Time2Vec

Time2Vec is a more recent positional encoding method proposed by (Kazemi et al.
2019) and is, as the name implies, a method specifically adapted to representing the
temporal aspect of the input sequence through the position encoding. Time2Vec
extends the idea of learned position encodings by introducing both trainable and
non-trainable components to the position embedding. In doing so, the idea is to
provide richer representations of time or position information in the input data.

10
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Mathematically, Time2Vec is defined as

t2v(τ)[i] =

{
ωiτ + φi, if i = 0

F (ωiτ + φi) , if 1 ≤ i ≤ k
(2.9)

where τ is some scalar notion of time, F is some periodic function, while ωi and
φi are learnable parameters. For example, F could be chosen to be a sinusoid,
which makes Time2Vec somewhat resemble the original sinusoidal position encod-
ing. Letting the first dimension be linear in τ also allows the network to cap-
ture time-dependent but non-periodic patterns in the input data. Despite having
learned parameters, Time2Vec is defined across the dimensions of the input embed-
dings, meaning that it is not limited to a fixed size of the input sequence. (Kazemi
et al. 2019) show promising results when using the position encodings as inputs to
the network, instead of adding it to the input embeddings.

2.2.4 Attention

At the very core of the Transformer architecture lies various attention modules.
Attention allows the Transformer to efficiently process information in the input
sequences by only focusing on relevant parts of the input data and selectively
attending to different elements based on their relevance. Assessing inputs by rele-
vance is part of what a Transformer learns through the training process. Attention
is a powerful mechanism to capture complex dependencies in input data, while
remaining computationally feasible for longer input sequences.

Mathematically speaking, the attention mechanism is a nonlinear mapping of a
query and a set of key-value pairs. The output can be interpreted as a masking of
the input values, where the mask is calculated using the query and key. (Vaswani
et al. 2017) introduced the query, key, and value notation, which is conceptually
similar to a content retrieval system. In this analogy, the query represents a search
term, the keys are a set of items to be searched, and the values correspond to the
best matches found between the queries and the keys. Attention mechanisms were
explored ahead of the introduction of the Transformer, such as in (Bahdanau et al.
2014) and (Luong et al. 2015), as both additive and multiplicative attention. The
original Transformer uses the latter, applied in parallel to a set of queries, keys and
values for the sake of efficiency. This mechanism is coined as scaled dot-product
attention and takes the form of the function

fattention(Q,K,V) = MV, M = softmax

(
QKT

√
dk

)
(2.10)

M in this formulation is the mask that is applied to the values in V, and it becomes
apparent why this is a form of multiplicative attention function. The dimension of
K is dk × dk and the scaling factor

√
dk is introduced to counteract performance

loss that is observed for very high-dimensional matrices. (Vaswani et al. 2017)
illustrates this effect by considering a hypothetical case where all components of
the queries and keys are i.i.d N (0, 1). In this case their dot product is N (0, dk)
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which would yield very small gradients for large values of dk. This in turn would
hinder learning when training the network.

The single attention function in equation 2.10 can be used to form a multi-head
attention function. It is an extension of the attention mechanism, designed to en-
able the use of attention to capture different types of relationships in the input
data by computing attention independently in multiple subspaces, and concate-
nating these at the output. The basic idea of multi-head attention is to expand
the attention function into several parallel ”heads”, each with their own inputs.
Letting the number of heads be denoted h, the multi-head attention mechanism is
thus

fmha(Q,K,V) = [head1, . . . ,headh]WO (2.11)

Where WO is an additional projection used at the output in order to ensure that
dimensions of the final output are correct in terms of how the model is defined.
Also note that each head is computed according to

headi = fattention(QWQ
i ,KWK

i ,VWV
i ) (2.12)

where the projection matrices WQ
i , WK

i and WV
i are all learned and unique for a

single head.
By letting Q = K = V the normal attention mechanisms become so-called

self-attention mechanisms. In doing so, the mask M can be interpreted as a score
for which elements in the input sequence are important, and how important they
are relative to one another. This is a powerful technique to interpret the input
embeddings as it allows for capturing dependencies between any two elements in
the input sequence, regardless of the distance between them, and to ignore inputs
that are deemed to not be important. In the target tracking case, a tracking
Transformer could learn to attend to the input by weighing measurements deemed
to have come from the same target very heavily with one another, and to ignore
clutter.

2.2.5 Architecture overview

In general, a Transformer contains two main modules; the encoder and decoder.
The former is responsible for generating an alternative representation of the input
sequence, while the latter uses this representation to produce the network output.

Encoder

The purpose of the encoder is to capture information in the form of features and
contextual effects that exists in the input sequence. This is done by producing
an alternative representation of the input data, referred to as a continuous repre-
sentation or embeddings, akin to those produced by the input embedding module.
Mapping the input to this continuous representation is done using stack of N iden-
tical layers which iteratively process the input data, where N is a configurable
hyperparameter. The choice of N affects the capacity of the encoder, potentially
allowing the Transformer to capture more complex relationships and patterns in
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Input
embedding 

Multihead self-
attention 

|| ||

Feed-forward
neural network 

|| ||

Positional
encodings 

N 

Figure 2.3: A block diagram of the encoder block, based on the figure in (Vaswani et al.
2017). The input data is fed to the input embedding block. || · || represents the layer norm
expressed in equation 2.6. Figure is taken from (Strøm 2022).

the input data as N increases. However, a larger N also increases the number of
learnable parameters, which in turn comes at the cost of greater computational
complexity during inference and an increase in training time.

Each layer in the encoder is composed of two primary sub-layers; multi-head self-
attention and a position-wise feed-forward network. The multi-head self-attention
block weighs every input token with all the other tokens, and is learned to weigh
the relative importance of the different input tokens. By calculating self-attention
for multiple heads in parallel, the network can attend to multiple different features
of its input. The output of the multi-head self-attention is then passed to a feed-
forward network, which is applied independently to each position of the attended
input sequence. This is what allows the decoder to learn interactions between the
input features. This structure is presented in figure 2.3. Both sub-layers are short-
cut, where the input to each sub-layer is added to the output before passing on.
This is how residual learning is applied in Transformer networks. Both sub-layer
outputs are additionally normalized using the statistics presented in equation 2.6
before being passed along, in order to stabilize training and improve convergence.

Decoder

The decoder is responsible for generating an output sequence based on the encoded
input data. Like the encoder, the decoder consists of stacked identical layers. The
decoder also uses multi-head self-attention and a feed-forward network in each
sub-layer, but also employs an additional encoder-decoder attention block.

The decoder is responsible for generating an output sequence by leveraging the
encoded information from the inputs as calculated by the encoder. Similarly to
the the encoder, the decoder is composed of a stack of N identical layers, where N
is typically the same as the number of encoder layers. Each decoder layer differs
from the encoder layer in that it contains three sub-layers instead of two. The
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first sub-layer is a masked multi-head self-attention module, while the second is
an encoder-decoder cross-attention mechanism, while the final is a position-wise
feed-forward network. Like the encoder, these layers are interconnected by residual
connections and followed by layer normalization. A graphical view of this can be
seen in figure 2.4.

Masked attention is similar to the multi-head self-attention mechanism used in
the encoder but with an added masking mechanism to prevent the model from at-
tending to future positions in the output sequence during training. This is crucial
for autoregressive tasks, where the model needs to generate the output sequence one
element at a time without access to future information. However, since the ground-
truth information is available during training, it is possible to also compute this
in parallel. The encoder is connected to the decoder through the cross-attention
mechanism. Here, the keys and values are the output of the final encoder layer,
while the queries come from the current decoder layer’s masked attention module.
This allows the decoder to iteratively produce an output sequence while dynam-
ically using information in the encoded inputs. Note that the skip connection in
the cross-attention mechanism passes the query matrix along, and not the keys and
values from the encoder.

Depending on the specific Transformer task, the final decoder layer is processed
in different ways. In the original Transformer architecture, a linear projection is
used to map the decoder output back to dictionary indices. This vector is then
passed through a softmax function to generate a vector of output probabilities.
The word with the highest probability is then typically chosen as the final output.

Output
embedding 

Masked multihead
self-attention 

Feed-forward
neural network 

|| ||

Positional
encodings 

|| ||

Multihead cross-
attention 

Encoder
outputs 

|| ||

Linear and
softmax 

N 

Figure 2.4: A block diagram of the decoder block, based on the figure in (Vaswani
et al. 2017). The output embedding block takes right-shifted outputs as its inputs. || · ||
represents the layer norm expressed in equation 2.6. Figure is taken from (Strøm 2022).
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2.3 Bayesian estimation

Bayesian estimation is a powerful probabilistic approach to infer information about
stochastic systems by combining prior knowledge with observed data. Systems can
be modelled using a wide range of probability distributions, and provides a way
of injecting assumptions or priors about how a system behaves from one point in
time to another, or the relationships between variables.

2.3.1 The Bayes filter

The problem of estimating some underlying state of a system through noisy mea-
surements can be expressed in general terms as two equations that constitute the
Bayes filter (Brekke 2020), under a set of assumptions. Firstly, the process model,
i.e. how the system evolves over time, should be on the form

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1) (2.13)

which means that when xk−1 is given, then xk should be independent of every other
prior states and measurements. That is, at time k− 1, xk−1 holds all the available
information in the system about the distribution of xk. For the measurement
model, i.e. how x maps to z, the assumption is that

p(zk|x1:k, z1:k−1) = p(zk|xk) (2.14)

which can be interpreted in a similar fashion to the process model - that the
information about the measurement at time k is entirely contained in the state
vector at that time.

Armed with these assumptions, the Bayes filter equation can be stated as a pre-
diction step and an update step, which will be carried out cyclically. The prediction
step is defined as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.15)

while the update step is

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.16)

The result presented in equations 2.15 and 2.16 is very powerful due to its generality
and because it provides an optimal way of fusing information between the belief of
how a state is propagated and measurements of this state, regardless of what each
p(·) actually is. However this design is deceptively simple, for the very same reason
it is powerful, as specifying what each distribution should actually be is not trivial
(Robert et al. 2007). In particular, there is no guarantee that p(xk|z1:k) maintains
its shape through multiple prediction and update steps, which is problematic since
any implementation of a Bayes filter in all likelihood will execute multiple of these
cycles. It is thus common to invoke some assumptions to ensure that the prediction
and update steps always end in the same family of probability distributions, which
also allows for closed-form solutions to be expressed. The Kalman filter is one such
example.
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2.3.2 The Kalman filter

The Kalman filter is a specific formulation of the Bayes filter where the state
transition and measurement model are assumed to be linear, while the noise terms
are assumed to be additive white gaussian. Under these assumptions, equation
2.13 becomes

p(xk|xk−1) = N (xk;Fxk−1,Q) (2.17)

while equation 2.14 becomes

p(zk|xk) = N (zk;Hxk,R) (2.18)

When these assumptions hold, the prediction and update steps are Bayes optimal,
i.e. the estimates x̂ of the true state are as good as they can be. The Kalman filter
algorithm works by firstly defining the initial estimate x̂0 and its corresponding
initial covariance P0 which contains the initial uncertainty of the estimate. The
initial covariance matrix is often set to be diagonal.

Prediction

The prediction step for the Kalman filter is perhaps best expressed in terms of the
predicted density

p(xk|z1:k−1) = N
(
xk; x̂k|k−1,Pk|k−1

)
, (2.19)

where
x̂k|k−1 = Fx̂k−1, Pk|k−1 = FPk−1F

⊤ + Q (2.20)

are the mean and covariance of the prior posterior density N (xk−1; x̂k−1,Pk−1).

Update

The Kalman update takes the form of the posterior density

p (xk|z1:k) = N (xk; x̂k,Pk) (2.21)

where
x̂k = x̂k|k−1 + Wkνk, Pk = (I−WkH)Pk|k−1 (2.22)

Wk is referred to as the Kalman gain, and is obtained from

Wk = Pk|k−1H
⊤ (HPk|k−1H

⊤ + R
)−1

(2.23)

while νk is the innovation, i.e. the difference between an actual measurement and
the predicted measurement,

νk = zk −Hx̂k|k−1 (2.24)

Although a formal derivation of the Kalman filter equations is not provided here,
there is still valuable insight to be gained by examining the prediction and update
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steps. The assumption of linearity makes the filter computationally efficient and
straightforward to implement. However, it may not be suitable for systems with
highly nonlinear dynamics or measurement models. In such cases, an extension
like the Extended Kalman Filter (EKF) can be used instead. By the assumption
of white Gaussian noise, the prediction and update step are simple and will remain
simple across multiple iterations, as the product of Gaussians is also Gaussian.
Consequently, the state estimate and its covariance can be fully described by the
posterior mean and covariance across all steps. Using the Kalman filter in practice
reduces down to selecting appropriate values for the elements of Q and R, which
often requires domain knowledge and some understanding of a system’s behavior.
Measurements will not always come at regular intervals, but due to the two-stage
nature of the Kalman filter, multiple prediction stages can run in between updates.
Lastly, using a Kalman filter on its own assumes that an incoming measurement is
known to have originated from a specified target.

2.4 Multitarget tracking

The core of this thesis revolves around multitarget tracking solutions - but what
is the multitarget tracking problem that needs to be solved in the first place? It
is essential to define what exactly this question entails, any assumptions that are
made, as well as the theoretical and practical concerns that may arise when defining
and implementing these solutions.

The multitarget tracking problem as a whole is a fundamental challenge in many
fields, such as air- and surface surveillance systems (Blackman 2004), computer vi-
sion, and autonomous vehicles (Challa et al. 2011), where the main objective con-
denses down to estimating the trajectories of multiple maneuvering targets over
time. This process involves establishing tracks as they appear, associating mea-
surements to existing tracks, and predicting the motion of tracked targets. This
process is complicated by factors such as clutter measurements, measurement noise,
false alarms and misdetections, and varying target dynamics.

A possible approach is, as mentioned by both (Brekke 2020) and (Challa et al.
2011) to simply use solutions for the single target tracking problem and run them
in parallel, which will work perfectly fine when all targets are separated. However,
when two or more targets are close to one another, the effectiveness of this approach
may degrade substantially. This has motivated the development of true multitarget
trackers.

2.4.1 Assumptions and challenges

In order to solidify the somewhat loose terms that have been used so far, a set
of assumptions need to be listed. Firstly, a first-order Markov assumption about
the evolution of a target state is made. That is, all the information about xk is
contained in xk−1. Thus, xk only depends on xk−1. Furthermore, it is assumed
that any measurement zk is only dependent on the state xk, and not any other
target state or measurements. These are fairly standard assumptions to make in
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both the single and multitarget case. The following list of assumptions can be
defined:

I. Any target generates at most one measurement, and any measurement comes
from at most one target.

II. The state of a live target evolves from one timestep to another according to
some model fx (xk|xk−1)

III. A target measurement is related to its state according to some model fz (xk|xk−1)

IV. A target generates a measurement with probability PD (xk)

V. Existing targets survive from timestep k-1 to k with probability PS(xk−1)

VI. New targets are born according to a PPP1 with intensity function µ(·)

VII. Clutter measurements appear according to a PPP with intensity function c(·)

Many of the challenges associated with multitarget tracking can be expressed
in terms of these assumptions. For example, V and VI express how there will be
an unknown number of objects, potentially none at all, at any given time instance.
However, because of IV, zero measurements does not necessarily mean that there
are no targets present. IV and VII together further implies that the total number
of measurements does not perfectly correlate with the number of targets present.
Note that while not explicitly stated for the sake of generality, PD is often times
assumed to be constant, and assumption I rarely holds on its own. This introduces
practical concerns such as measurement clustering, in order to adhere to these
assumptions. The alternative would be to lift the assumption entirely, which is
what is done for extended object tracking, but this is not considered at all in this
thesis.

A challenge unique to multitarget tracking presents itself under these assump-
tions: Multiple measurements may arise close to multiple targets, and these mea-
surements may both have come from the targets, but also from clutter. As such,
there may be many plausible ways of associating measurements and tracks.

Another challenge arises with the models fx and fz. Aside from the inherent
modelling challenge itself, there are some practical concerns that must be taken.
Specifically, in order to generate closed-form solution, the structure of these models
needs to be maintained through the Bayes’ filter update and predictions. These
steps contain multiplications between the aforementioned fx and fz, which limits
the choice of models to those that are conjugate priors. Conveniently, Gaussians
are conjugate priors, and as such it may be beneficial to introduce the further
assumptions that the motion and measurements models are linear and Gaussian,
which means

fx (xk|xk−1) = N (xk;Fxk−1,Q) (2.25)

and
fz (zk|xk) = N (zk;Hxk,R) . (2.26)

1Poisson Point Process. See (Streit and Streit 2010) for details.
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which are on a form that correspond to the previously introduced Kalman filter
formulation.

2.4.2 Clairvoyant Kalman Filter

The previously mentioned challenges with multitarget tracking arises from the fact
that in practice, given a sensor scan zk = {z1k, · · · znk}, there are in general no
distinguishing features between true and false measurements or any explicit infor-
mation about which true measurement originated from which target. However,
given perfect association information, i.e. the knowledge of which target produced
which measurements and which measurements are clutter, the tracking problem
collapses to a simple state estimation problem akin to the Kalman filter. This is
the motivation behind what has been named the Clairvoyant Kalman filter (CKF).
By invoking the Gaussian-linearity assumptions previously presented, and provid-
ing ground-truth association information, the CKF is Bayes optimal and will never
produce a false detection. The CKF may miss a target, but only in the cases where
a spawned target has not yet produced any measurements. This ”tracker” will
provide the strongest possible baseline which can be used to empirically assess the
optimality of other trackers. It is important to note that the CKF is not intended
for any practical use, since the required information is rarely ever available - and
in the case that this information is available, there is no target tracking problem
to solve.

The workflow of the CKF is fairly simple. The event Bi
k denotes that target

i produced a measurement for the first time, at timestep k. This does not cor-
respond to the ground truth birth time of the target, but instead the observable
birth through the measurements. In a similar manner, the event Di

k denotes the
time a target despawns, but in the ground-truth sense, as opposed to the time
at which the last measurement was produced. When Bi occurs, a new Kalman
filter KFi is initialized. The predictor of KFi will run for every timestep until Di

occurs, while the corrector will run whenever target i produces a measurement.
In order to distinguish measurements from one another, zk is embedded in the
super-measurement z̃k = [zk, i], where i ∈ {−1} ∪ N denotes a unique identity of
the target that the measurement came from, and i = −1 is used as an indicator
for false measurements.

Again, it is very important to clarify that the CKF is not a tracker, in the
sense that it does not solve any of the challenges related to the tracking prob-
lem. Regardless, the Kalman filter or another formulation of the Bayes’ filter is a
core component of many multitarget trackers, which in turn makes the CKF the
strongest and a reasonable baseline to compare against. Additionally, a tracker that
performs better than a CKF may indicate that there is something wrong with how
the tracker is being benchmarked, or that the tracker uses additional information
outside of what is given to the CKF.
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2.4.3 The joint integrated probabilistic data association fil-
ter

The Joint Integrated Probabilistic Data Association Filter (JIPDA) was introduced
by (Musicki and Evans 2004) and is an extension of the integrated probabilistic
data association (IPDA) filter to multiple targets. The IPDA is again an extension
of the he probabilistic data association filter (PDAF) to estimate the probability
of track existence. This section introduces these concepts and how they build off
of one another. However, it does not dive into the details, as this can be found in
separate literature. The following subsections are highly based on (Brekke 2020).

The probabilistic data association filter

The PDAF is a target tracker that enforces stricter assumptions than those pre-
sented in section 2.4.1. Most notably, it is assumed that there is one and only
one target in the sensor view, which is equivalent to a birth intensity of zero and a
survival probability of one. Furthermore, it is assumed that PD is constant. The as-
sumptions of how the target state evolves and how target-oriented measurements
are related to the target state remain the same. The problem that the PDAF
solves is then to track a single object over time, where an unknown number of
clutter measurements and either zero or one target measurement is given for each
timestep. ”Tracking a single object” means to approximate the density of the tar-
get state, pk (xk). While the PDAF is a somewhat dated tracking algorithm, first
introduced in (Bar-Shalom and Tse 1975), it serves as a good introduction to the
data association problem and how a target tracker differs from algorithms like the
Kalman filter, as well as how it is similar. Assuming that a track has already been
established, the PDAF can be split into two steps like the Kalman filter, namely
the prediction and update steps. In the prediction step, the state of the target at
time k is estimated using the state at k − 1 and a model of the target’s motion,
again like the Kalman filter. The update step is where the main difference lies.
The set of measurements at time k may not contain any measurement belonging
to the true target, and it may also contain clutter measurements. To model this,
the events ak = 1, . . . ak = mk are defined, where ak = 1 represents measurement
”1” originating from the target and so on. Additionally, ak = 0 is used to model
that no measurement originated from the target. Then, instead of modelling the
measurement-conditional state distribution as p (xk|z1:k), it is additionally con-
ditioned on the aforementioned events as p (xk|ak, z1:k). To define the posterior
density of the target state, the probability of each event conditioned on the mea-
surements up to time k needs to be defined. These event probabilities are also
referred to as the association probabilities. The fundamental difference between
an estimator like the Kalman filter and a tracker lies in this measurement-to-track
data association problem. These event probabilities incorporate information about
the target detection probability, the number of measurements at time k, the pre-
dicted target state, as well as the the clutter and measurement models. It is also
unreasonable to consider every single measurement at time k when performing the
update step. Instead, a validation gate is introduced. This is a region of the sen-
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sor surveilance region that is usually defined as an ellipse shaped according to the
predicted state covariance. This means that only measurements that are in a re-
gion where the true target is expected to be are considered for the update step. A
detailed explanation of this can be found in chapter 7.3 in (Brekke 2020).

After the data association step, the posterior distribution of the target state
is, under the initial Gaussian-linearity assumption, a mixture of Gaussians. This
assumption would thus immediately be broken at the next timestep. Mixture
reduction is employed to prevent this, and can be considered as the final step of
the PDAF update step. In short, mixture reduction in the PDAF involves moment
matching the mixture down to a single Gaussian that has the same expectation
and covariance as the mixture.

Lastly, the prediction and update steps assume that a track is already estab-
lished, but exactly how this is done is not part of the PDAF formulation directly.
Instead, an ad-hoc track management scheme such as 2/2&M/N can be used. In
short, this is a process that starts by establishing a ”preliminary track” if two
consecutive measurements appear close to one another. This preliminary track is
maintained for N steps according to the PDAF steps. If this track received at least
M measurements inside its gate through these N steps, it is considered a ”confirmed
track” and continues to be updated by the PDAF. If not, the preliminary track is
killed and the process starts over. Once a track is confirmed it can be maintained
using the same test, but inverted. That is, if the track does not receive more than
M measurements inside its gate for N timesteps, it is terminated. The M and N for
track confirmation and termination are user-defined, and do not necessarily have
to be the same. It is worth mentioning that while the PDAF assumes that one
single target exists in the surveilance region, it is possible to approximate a solu-
tion to the MTT problem by using a set of single-target trackers like the PDAF in
parallel. As long as none of the validation gates of the multiple tracks overlap, this
can be a very good approximation. However, if they do overlap, the performance
of this approach may quickly deteriorate. Two immediate improvements that can
be made over the PDAF are thus to introduce a more rigid way of dealing with
track existence and to properly formulate the data association and update step for
multiple targets.

Track existence probability and the IPDA

The integrated PDA differs from the PDAF by including an extra state indicating
whether or not a target exists. This existence state evolves over time, and an asso-
ciated existence probability is included in the prediction and update steps. Doing
this allows for managing tracks by thresholding. A track starts its life cycle from a
measurement with some initial existence probability. If this existence probability
reaches above some threshold, it can transition into a confirmed track. Likewise,
a confirmed track can be terminated if its existence probability drops below some
potentially different threshold. It is worth noting that unlike the 2/2&M/N ap-
proach, no decision about track existence has to be made. Instead, the existence
probabilities simply give a measure of the probability that a track corresponds to
a true target – The decision of whether or not to establish a track is not fixed. De-
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tails on how to calculate the posterior distribution for the existence probability for
a single track can be found in chapter 7.5 of (Brekke 2020). This existence-based
approach thus offers more flexibility than the PDAF. However, the IPDA is still
formulated under the assumption that at most one target is present.

Joint formulation of the association problem

Moving from the assumption of a single target to multiple targets being present
is achieved by modelling the probabilities of all possible assignments of multiple
measurements to multiple targets, under the constraint detailed by assumption
I from section 2.4.1. Like the PDAF, this joint formulation utilizes association
hypotheses. However, this is now defined as ak =

[
a1k, . . . a

n
k

]
where atk = j if

measurement j is claimed by target t, and atk = 0 if no measurement is claimed
by target t. When a measurement is ”claimed” by a target, it cannot be claimed
by another target, as per assumption I. As (Brekke 2020) writes, these association
hypotheses can be defined as the mapping

ak : {1, . . . , n} → {0, 1, . . . ,mk} | ask = atk ̸= 0 ⇒ s = t. (2.27)

Where the PDAF and IPDA define the pdf p (xk|ak, z1:k), the joint formulation
used in the JPDA models the joint distribution p

(
x1
k, . . .x

n
k |ak, z1:k

)
. While the

derivation of the final mixture-reduced target state posterior is somewhat more
involved than with the single-target trackers, it follows the same steps. Using the
event-conditional probabilities, a mixture of Gaussians is constructed for each track.
The difference lies in that multiple tracks are defined – The mixture reduction
is thus performed per-track, leaving one Gaussian to describe each target. This
formulation, in addition to modelling existence probability loosely constitute the
inner workings of the JIPDA. The JIPDA will use the same association events as
the JPDA, but the numerical values for the association probabilities will be slightly
different due to the introduction of the existence probability for each target.

Implementation details

Certain considerations have to be made in order to make these trackers feasible to
implement and run in practice, especially for the J(I)PDA (Brekke 2020). Summing
across all association hypothesis has exponential complexity, which will quickly
become computationally infeasible. As such, simplifications have to be made. The
aforementioned gating can help with this, to not consider very unlikely assignments.
Track clustering is another mentioned approach, which involves segmenting the
measurement space into local clusters and utilizing single-target tracking for each
cluster, then switching to the joint formulating whenever validation gates overlap.
Lastly, while the total number of hypotheses will grow exponentially, it is likely that
most of the probability mass is contained within a small subset of these. Utilizing
an algorithm such as the Murty’s method allows for the top-k best hypotheses to
be extracted, while the rest can be effectively discarded. Lastly, it is worth noting
that while the mixture-reduction and hypothesis pruning steps are necessary to
run the J(I)PDA, they also discard information which may impact performance.
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2 Theory 2.4.4 Interacting Multiple Models

2.4.4 Interacting Multiple Models

The previous sections have assumed that a single motion and measurement model is
defined a-priori. However a single model cannot necessarily describe every possible
maneuvering target. As such, multiple models can be defined, as well as a notion
of how one model will transition to another. Firstly, a set of M models are defined

xk = f (s) (xk−1) + vk; vk ∼ N
(
0,Q(s)

)
zk = h(s) (xk) + wk; wk ∼ N

(
0,R(s)

) (2.28)

for s = 1, 2, · · ·M as in (Brekke 2020). Then a vector containing the probabilities
of each model at time k is defined as

pk =
[
p
(1)
k , p

(2)
k , · · · , p(M)

k

]⊤
(2.29)

This probability vector evolves according to pk = π⊤pk−1, where π is a matrix of
transition probabilities. Specifically, an element πi,j of π contains the probability
that the target evolves from model i at time k − 1 to model j at time k.

This modelling approach is called interacting multiple models (IMM), and when
designing Bayesian trackers, densities can additionally be conditioned on s1:k, al-
though the specifics of this is left out of this theory section. An example where it
is very reasonable to use IMM is modelling the flight of commercial planes, as both
the standard constant-velocity and coordinated-turn models accurately describe
different sections of a flight. A JIPDA tracker that implements IMM can be found
in (Brekke et al. 2021).

2.4.5 Transformer Trackers

While the Transformer networks were originally designed to process natural lan-
guage, their impressive performance on these tasks has inspired adaptations to
many other fields, including target tracking. The main approach for leveraging
Transformers in object tracking is to do so in an end-to-end fashion (Carion et al.
2020). This refers to a network that can take raw inputs and process them in such a
way to generate the final output estimates without any hand-crafted pre- or post-
processing. Furthermore, a large majority of Transformer-based target trackers
come from the computer vision field, and as such, it is common to see other net-
work architectures such as convolutional or recurrent neural networks introduced
in hybrid with a transformer, such as in (Zhu et al. 2020) and (Meinhardt et al.
2022). In these methods, the output will be a single or a set of images, and the
output will be a set of bounding boxes for each input. The MT3v1 and MT3v2
from (Pinto et al. 2021a) and (Pinto et al. 2022) are Transformer-only networks
which instead operate directly on points in some measurement space, and output
a set of estimates in state space.

A key advantage of Transformer-based solution is that they are easily paral-
lelizable, allowing for very efficient training. This feature is especially beneficial
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2 Theory 2.5 Performance metrics for tracking algorithms

when training for complex tasks that require significant computational resources,
such as object tracking. Compared to Bayesian tracking methods, which rely on
prior assumptions and probabilistic models, Transformer trackers remove the task
of explicitly modeling the tracking task. This offers an ease-of-use and the poten-
tial for avoiding the need to tune the models to specific tasks, but comes with the
downside of needing to train a network offline and design its architecture in such
a way as to solve the tracking problem in the first place. Removing the explicit
modeling also reduces the explainability of the solution. The online inference time
of a Transformer will also not be greatly affected by input length, something which
may not be the case with some Bayesian methods.

An end-to-end Transformer tracker will not require any explicit modelling of
state distributions or data association like the Bayesian trackers outlined previ-
ously. As such it will not require the use of simplification techniques in order to
be computationally feasible. Instead, the goal is for the Transformer to be trained
well enough to learn this implicitly. A substantial advantage that a Transformer
brings is the use of attention, allowing the network to adaptively attend to certain
measurements in the input set. However, this also comes with a drawback of being
hard to interpret, and requiring a rich training process.

2.5 Performance metrics for tracking algorithms

To assess a tracker or compare multiple trackers against one another, some per-
formance metric or metrics need to be used, which provides insight into what a
tracker is doing through numerical data.

2.5.1 Generalized Optimal Sub-Pattern Assignment metric

The mathematical intricacies of the mapping between the estimated targets and the
ground-truth targets is not immediately clear, which has lead to the development
of various metrics in order to assess the performance of multitarget trackers. One
of the most recent proposals is the Generalized OSPA (GOSPA) in (Rahmathullah
et al. 2017) which, given two random sets, accounts for the localization errors for
matches between the two sets, as well as cardinality differences between the two
sets. It is worth noting that while some meaning can be extracted from the GOSPA
metric on its own, it is arguably more useful as a comparison tool.

From the definition presented in (Rahmathullah et al. 2017), the GOSPA metric
between the estimated set of targets X and the corresponding ground truth Y is

d(c,α)p (X,Y) =

 min
π∈Π|Y|

|X|∑
i=1

d(c)
(
xi, yπ(i)

)p
+
cp

α
(|Y| − |X|)

 1
p

(2.30)

for |X| ≤ |Y|, while the order of the input sets are swapped in the case of |X| > |Y|.
Πn contains all permutations of the set {k ∈ N : k ≤ n} for any n, and any element
of Πn will be a sequence on the form (π(1), . . . , π(n)). Furthermore, d(c)(x, y) =
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2 Theory 2.5.2 Decomposing GOSPA

min(c, d(x, y)) where d is some distance metric for any real x and y. d(c)(·) is
referred to as a cut-off metric, since its maximum value will be c, irrespective of
the values of x and y and the choice of d(·).

GOSPA can be interpreted as the cost of localization error for the assignment
between |X| and |Y| which minimizes the cut-off localization error plus the cost of
cardinality mismatches between the two set. Since the sum of localization errors
goes from 1 to |X|, any missed or false target will have the cost cp

α .
In the definition of GOSPA there are three parameters that can be tweaked, c,

p, and α, under the constraints c > 0, 1 ≤ p <∞, and α ≤ 2. The parameter c can
be interpreted as the distance at which a ground truth target should be considered
missed and when an estimate should be considered a false detection. As p increases,
the localization cost of target estimates that are far away from any ground truth
object increases, akin to penalizing ”outliers”. This cost is somewhat limited since
targets that are distance c from any ground truth target is deemed unassignable and
will thus receive the cost cp. The cost of the cardinality mismatch |Y|−|X| decreases
for increasing α, but increases for increasing c and p. (Rahmathullah et al. 2017)
argues that α = 2 is the most appropriate value for evaluating MTT trackers. In
short the argument uses that the cost of a missed target and false detection should
be the same, regardless if it has been associated with another element under the
permutation set. Under the worst-case assumption that the false detection and
missed targets fall outside of the cut-off c for all possible permutations of the input
sets, they will both contribute with a cost of cp. That is, a cost of cp for an
assignment between two input elements.

In doing so, the GOSPA metric in equation 2.30 is expressed using assignment
sets instead of permutation sets:

d(c,2)p (X,Y) =

min
γ∈Γ

 ∑
(i,j)∈γ

d(xi, yj)
p +

cp

2
(|X|+ |Y| − 2|γ|)

 1
p

(2.31)

where γ is a set of pairs of indices on the form (i, j) representing the estimate with
index i in X being associated with the ground truth target at index j in Y. That
is, a particular assignment set may be expressed as γ ⊆ {1, . . . |X|} × {1, . . . |Y|},
while the set of all possible assignment sets is denoted Γ. Every index gets at most
one assignment, in order to avoid a single estimate being associated with multiple
ground truth targets, and vice versa. The cardinality of γ will maximally be |X|·|Y|,
i.e. the assignment set covering all possible assignments between estimates and
ground truths.

2.5.2 Decomposing GOSPA

The elements inside minimization operation in equation 2.32 constitute the cost
for one possible assignment between |X| and |Y|, and can be written as

Ccp (γ) =
∑

(i,j)∈γ

d(xi, yj)
p +

cp

2
(|X| − |γ|) +

cp

2
(|Y| − |γ|) (2.32)
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2 Theory 2.5.3 Localization error in GOSPA

which makes interpretability immediate, as the overall assignment cost is decom-
posed into three distinct elements. The first element of this sum is the localization
error, i.e. the sum of the p-th order distance between the associated estimates and
ground truths. The second element is the cost of misdetections, since |X| − |γ|
counts the number of ground truth objects that have not been matched to a target
estimate. Similarly, the last element is the cost of false detections, since |Y| − |γ|
counts the number of unmatched target estimates. Both missed and false detections
contribute with a cost of cp

2 , due to the scaling factor used in the cost function.
Note that this formulation of GOSPA using α = 2 does not use a cut-off distance
for localization error. Instead, the minimization over all elements in Γ will find
an optimal γ∗ which will be a tradeoff between localization error and the summed
cost of misdetections and false detections. This tradeoff is weighted using c, mean-
ing that the interpretation of c from before still holds. Lastly, it is worth noting
that while d(x, y) can be any measure between x and y, it is both common and
reasonable to use euclidean distance for the point-object MTT problem.

2.5.3 Localization error in GOSPA

The localization error in GOSPA need to be properly interpreted, especially when
comparing multiple trackers. Firstly, the maximum localization error increases
with an increase in the number of detected targets in a scene, and by extension,
the number of total targets in the scene. A tracker that performs worse in terms
of localization error could still get a lower localization score than another, better
performing tracker, if the former correctly identifies fewer targets in the scene. It
is possible to normalize with the number of detected targets, but this is not always
done. Secondly, if no targets are detected, the localization error will be zero. This
can for example affect ensemble averages, by appearing as if the overall localization
error is lower than it actually is. Lastly, a state vector often contains elements with
different units, for example position in meters and velocity in meters per second.
While the state can be considered a single point in state space, and thus GOSPA
can be applied, the calculation of localization error no longer makes sense when
mixing units. A simple work-around for this can simply be to split the state vector
into new vectors, all of which contain elements of the state vector that have the
same units, then calculating GOSPA for each of these.

2.5.4 Filter consistency

At the core of the Bayesian trackers, and implicitly in the neural trackers, lies some
kind of filter. A filter is said to be consistent if the errors it makes are, on average,
well described by the output of the filter. (Brekke 2020). That is, if the filter makes
a large error, it should also be less certain about that output. Likewise, if the filter
is very certain about a prediction, it should also have a small error. Furthermore,
the errors should not be biased, i.e. be acceptable as zero mean and white. These
are properties that should be tested for to ensure that the filter is well-behaved.
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2 Theory 2.5.4 Filter consistency

Normalized estimation error squared

Testing if the filter uncertainty is commensurate with the errors can be done using
the normalized estimation error squared (NEES), which for any given timestep is
calculated as

ϵk = (x̂k − xk)
⊤
P−1

k (x̂k − xk) (2.33)

i.e. the square of the estimation error, scaled with the inverse of the uncertainty
provided by the filter. NEES can be calculated across N ensemble runs per timestep
for the average NEES (ANEES). The ANEES should follow a scaled χ2 distribution,
and confidence intervals at the level of α for the ANEES plotted over time can be
expressed as

l =
1

N
F−1

(α
2

;Nd
)
, u =

1

N
F−1

(
1− α

2
;Nd

)
(2.34)

where F−1 is the inverse χ2 and d is the dimension of x. Ideally, the ANEES
plotted over time should generally lie within these limits.

Ljung-Box test

Testing the whole sequence of estimate errors E = [e1, e2, · · · , eT ] for whiteness
can be expressed as the hypothesis test{

H0 : E is a white noise sequence

H1 : E is not a white noise sequence
(2.35)

An approach to test for this is to use the Ljung-Box test of (Ljung and Box 1978).
This utilizes the fact that the autocorrelation for a white-noise sequence, i.e. how
well the sequence correlates with itself, is 1 using zero offset, and 0 for all other
offsets. This offset is also referred to as the lag. For h number of lags, the Ljung-Box
statistic is defined as

Q = T (T + 2)

h∑
k=1

ρ̂2k
T − k

(2.36)

where ρ̂k is the sample autocorrelation at lag k. Q is χ2-distributed, and thus
H0 can be rejected if Q > χ2

1−α,h for significance level α. This test can also be
performed over a set of lags individually, and the hypothesis test can then be
performed for each specific lag.

One-sample t-test

The filter can be tested for bias by testing if the sample mean of the state errors
is significantly different from zero. The test is formulated as{

H0 : µE is 0

H1 : µE is different from 0
(2.37)
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The t-statistic is calculated as

t =
Ē− µ

s√
T

(2.38)

where s is the sample standard deviation of E and µ in this case is 0. Again, a
significance level α can be set, and H0 is rejected if |t| > tα/2, T−1. The absolute
value of t is used since this test is two-tailed, i.e. the mean error has the potential
to both be greater than or smaller than zero. tα/2, T−1 is the critical t-value for
the set significance level and with T − 1 degrees of freedom.
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3
The Multitarget Tracking
Transformers V1 and V2

The MT3v1 and MT3v2 were covered briefly in the previous chapter, but a more
thorough examination of these trackers are in order, since these serve as the ba-
sis for the MT3v3. This work was partially conducted through the project thesis
(Strøm 2022) and is extended further here. While the MT3v1 and MT3v2 are
similar in many aspects, there are a few distinctions that are important to point
out. This chapter starts by introducing the MT3v1 in detail, as well as its reported
performance and how this was measured. Then, the changes that were made to
the MT3v1 to produce the MT3v2 are presented, together with its reported per-
formance. Lastly, an overview of limitations and possible improvements for each
of these architectures are discussed.

3.1 The MT3v1

The first MT3 architecture was initially presented in (Hess and Ljungbergh 2021)
as the Multi-Object Tracking Transformer (MOTT) and was later used in the
publication (Pinto et al. 2021a) where it was given the name MT3. To use a
consistent naming convention, this will henceforth be referred to as the MT3v1.

3.1.1 Architecture

The MT3v1 is at its core an adoption of the DETR architecture presented in
(Zhu et al. 2020), modified to work with point-objects and to perform multitarget
tracking. In short, it is a Transformer architecture that takes a set of measurements,
as its input and produces an output set consisting of estimated target states. The

input is denoted ZT−τ :T =
[
z1T−τ , · · · , ziT−τ , · · · , z1T , · · · , z

j
T

]
and consists of all the

measurements received between the current time T and τ time in the past. The
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3 The Multitarget Tracking Transformers V1 and V2 3.1.1 Architecture

superscript for each measurement denotes the index for a single point measurement
received at some specific time, and note that the number of measurements received
at any given timestep is in N, and is in general not the same for every timestep. A
single measurement is assumed to be on the form z = [x y]

⊤
, which implies that the

sensor generating these measurements operates in the cartesian plane. Denoting
the MT3v1 as fMT3v1 (·), the output is X̂T = fMT3v1 (ZT−τ :T ). Each element of

the output is on the form x̂T,i = [xi yi pi]
⊤

where i ∈ {1, . . . , 16}. The xi and
yi are the estimated cartesian coordinates of a single object, and pi denotes the
probability that this estimate belongs to a true target. All estimates with a pi > α
are considered to be true, and the default value for this is α = 0.9.

Encoder

The mapping fMT3v1 (·) is a two-stage encoder-decoder process. The encoder maps
the input set to some learned embedding vector e = fenc (ZT−τ :T ). The design of
fenc is similar to that of (Vaswani et al. 2017), where a stack of identical encoder
layers are used to calculate e. The raw input sequence is firstly embedded and
injected with positional information, denoted z′ = fie (Z)+p. The input embedding
fie is referred to as the pre-processor of the MT3v1, since it converts the input
measurements to a format that is usable in the encoder, and consists of a learned
linear transformation and a normalization factor. The normalization factor ensures
that the x and y coordinates of each measurement are mapped to the range [−1, 1],
under the assumption that the maximum and minimum values x and y can attain
are the same. The positional encoding p in the MT3v1 is a learned vector that
does not depend on the input sequence. The preprocessed measurements are taken
as input to the first encoder layer, which produces the first embedding e1 through
the two stages

z′′ = ∥z + fmha (z′, z′, z′)∥LN
e1 = ∥z′′ + fnn (z′′)∥LN

(3.1)

where ∥·∥LN is the layer normalization function from (Ba et al. 2016), fmha is
the multihead attention function from equation 2.10, and fnn is a two-layer feed-
forward network with a ReLU activation in between Any subsequent encoder layer
l will take el−1 as its input instead of z′. Lastly, dropout is employed in all layers
of the encoder. The encoder is configurable using the parameters described in table
3.1, which also contains the specific values used in the MT3v1.

Decoder

The MT3v1 decoder is based on the DETR decoder of (Zhu et al. 2020) and is on
the form X = fdec (e,o), where e is the output of the final encoder layer, and o are
a set of object queries. Like the encoder, the MT3v1 decoder consists of a stack of
identical layers, and can be formulated in a similar manner, although with three
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Parameter Value Description

d model 256 Dimension of the embedding vector
n heads 8 Number of attention heads in fmha

n layers 6 Number of encoder layers for fenc
dim feedforward 2048 Dimension of the hidden layer in fnn

dropout 0.1 Dropout probability used in all layers of the encoder

Table 3.1: The configurable parameters of the MT3v1 encoder

stages instead of two:

y = ∥o1:k + fmha (o1:k,o1:k,o1:k)∥LN
y′ = ∥y + fmha (y, e, e)∥LN
d1 = ∥y′ + fnn (y′)∥LN

(3.2)

Also note that the second multi-head attention function takes two arguments,
meaning that the keys and values are set to e, while the queries are set to y.
The first novelty of the MT3v1 architecture is found in how the object queries are
calculated, and is referred to as the selection mechanism. While the DETR decoder
learns a static set of object queries to use as the starting point of the decoder, the
MT3v1 selection mechanism uses the encoder embeddings to select a subset of the
input sequence to use as object queries. That is, object queries are calculated from
o = fsel (e). The selection mechanism fsel is structured as follows. Firstly, the
encoder embeddings are used to calculate scores m and adjustments δ as

m = softmax (fnn (e))

δ = fnn (e)
(3.3)

Then, the scores are used to calculate the indices of which elements of the input
sequence to extract:

Ztop = Zr, r = Top-k (argsort (m)) (3.4)

which are added to the adjustments in order to produce the final object queries

o1:k = Ztop + δ (3.5)

The idea of the selection mechanism is thus to provide the decoder with a good
starting point by finding promising measurements in the input sequence. (Pinto
et al. 2021a) explains the additional adjustments as allowing for more flexibility,
in the sense that the object queries are not restricted to being a transformation of
only the selected measurements. Figure 3.1 shows the selection mechanism used in
the MT3v1.

Each decoder layer does not produce output estimates directly, but instead the
adjustment or offset ∆l that can be applied to Ztop. This is referred to as iterative
refinement, and is a technique introduced in (Zhang et al. 2019). The adjustment
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Figure 3.1: The selection mechanism of the MT3v1. Figured based on (Pinto et al.
2021a) but expanded with some details that were left out in their figure.

Parameter Value Description

d model 256 Dimension of the embedding vector
n heads 8 Number of attention heads for f1mha and f2mha

n layers 6 Number of decoder layers for fdec
dim feedforward 2048 Dimensions of the hidden layer for all fnn

dim state ref 128 Dimension of the single-layer network used to calculate state refinements
dim obj sel 128 Dimension of the single-layer network used to calculate object queries

dim ext prob 128 Dimension of the single-layer network used to calculate existence probabilities
dropout 0.1 Dropout probability used in all layers of the decoder

Table 3.2: The configurable parameters of the MT3v1 decoder. Note that d model used
here needs to be the same as in the encoder

at layer l is computed as ∆l = fnn
(
dl
)

and is used together with Ztop and all
previous adjustments in order to produce the estimates

X̂l
T = Ztop +

l∑
n=1

∆n (3.6)

The output estimate of the final decoder layer is then used as the output X̂T of
the MT3v1. The corresponding existence probabilities are not iteratively refined,
but instead calculated directly at each layer as pl = fnn

(
dl
)
.

An important distinction between the MT3v1 decoder and the original Trans-
former architecture lies in the way they generate outputs. While the original Trans-
former is autoregressive, producing outputs one element at a time conditioned on
previously generated outputs, the MT3v1 decoder produces all outputs in parallel.
The primary advantage of generating outputs in parallel is a speedup in both train-
ing and inferencing. Since all outputs are generated simultaneously, the decoding
time remains approximately the same for all sequence lengths. Since the MT3v1
decoder is not autoregressive, it is like the encoder, permutation invariant in e.
Thus, the accuracy of the final output is conditioned on how good o and Ztop are.
For example, if all of the measurements in Ztop lie far away from the true targets

in a scene, it is unreasonable to expect that the output estimates X̂T are good.
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3.1.2 Loss function

The loss function used by (Pinto et al. 2021a) is a the total sum of two different
types of losses, a log loss and a contrastive loss

L = LL + LC (3.7)

The log loss is based on the localization error given the best matching between
ground-truth targets and the MT3v1 output estimates, together with the proba-
bilities of missed and false targets. In short, the optimal matching is solved using
the Hungarian algorithm of (Kuhn 1955) and a matching loss is computed. This
is combined in the final log loss function, which in addition to the matching loss
penalizes missed and false targets.

As covered in detail in both (Khosla et al. 2020) and (Tian et al. 2020), con-
trastive loss is a method to of learning by comparing similar and dissimilar samples.
In the context of the MT3v1, similar samples could mean samples that are closeby
in measurement space, or two measurements that are both either clutter or origi-
nated from the same target. Dissimilar samples could be a clutter measurement and
a target measurement. In the contrastive loss function, the ground-truth knowledge
of which target a measurement came from, or if it is clutter, is used to define a loss
that makes the measurements from the same target produce points in embedding
space that are close to one another. This loss is weighted with a configurable pa-
rameter α which determined the overall importance of this loss. It is also referred
to as contrastive auxiliary loss, since this loss introduces an auxiliary task aside
from the main task of estimating the ground truth positions of targets, in the form
of learning to separate which measurements are clutter, and which measurements
originated from which target.

Also note that instead of computing the loss at the final decoder output, each
intermediate decoder output produces its own loss, and the final loss for a given
input is the sum of the losses from each decoder layer. This was done since it both
accelerated learning and improved the final performance of the MT3v1.

3.1.3 Reported performance

The MT3v1 is tested by (Pinto et al. 2021a) on two different tasks, a simple ”Task
1” and a more complex ”Task 2”. Higher complexity means more clutter, lower
detection probability, more process and measurement noise, and a higher proba-
bility of new targets spawning. The parameters for these tasks are presented in
table 3.3 compared against two other trackers, the PMBM and δ-GLMB. The other
two trackers serve as a strong baseline for performance, but the intricacies of these
trackers are not covered here. Scores for the three trackers across the two tasks
are presented in table 3.4. These results were obtained in (Pinto et al. 2021a)
using 1000 Monte Carlo simulations and averaging the scores. For each simulated
scenario, measurements from 20 timesteps are simulated, and the GOSPA scores
for the three trackers at the final timestep are reported. Note that confidence
intervals are not provided. In (Pinto et al. 2021a) it is argued that the MT3v1
achieves good tracking performance when comparing against the other baselines,
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Task λ0 pd λc σq σz

1 4 0.9 0.05 0.5 0.1
2 6 0.8 0.075 0.9 0.3

Table 3.3: Parameters for the tasks the MT3v1 is tested on. λ0 is the average number of
initial objects, pd is the probability of detection, λc is the clutter intensity, σq is process
noise, and σz is measurement noise.

Task Method GOSPA Localization Missed False

1
PMBM 1.267 0.102 0.632 0.195
δ-GLMB 1.863 0.098 1.137 0.335
MT3v1 1.277 0.141 0.528 0.094

2
PMBM 4.075 0.3025 3.225 0.163
δ-GLMB 4.450 0.280 3.515 0.323
MT3v1 3.662 0.3767 1.995 0.364

Table 3.4: Performance of the MT3v1 on tasks 1 and 2, compared to baselines as reported
in (Pinto et al. 2021a)

and that it excels in reasoning about probable associations between measurements
and targets, while regressing the state estimates could be improved. The reported
performance is also for two separate architectures, each trained on data generated
using the task-specific parameters, although these pretrained architectures have
not been made public by the authors.

3.2 The MT3v2

The MT3v2 was introduced by (Pinto et al. 2022) and is, as the name implies, an
improvement over the MT3v1. This section will present these improvements.

3.2.1 Architecture

The architecture of the MT3v2 encoder is identical to that of the MT3v1. How-
ever, instead of assuming cartesian input measurements, it is assumed that each
measurement in Z is on the form z = [r ṙ θ]

⊤
, i.e. range, doppler and bearing.

This also changes the normalization factor in the input embedding to

s = [rmax − rmin ṙmax θmax − θmin]
⊤

(3.8)

which is used for element-wise division for each measurement z.
The selection mechanism introduced in the MT3v1 is expanded upon in the

MT3v2 architecture. Firstly, the softmax function is replaced with an element-
wise sigmoid. This is a sublte change, but increases the number of possible output
configurations by removing the restriction that the outputs must sum to 1. Two
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3 The Multitarget Tracking Transformers V1 and V2 3.2.2 Loss function

feed-forward networks are also added. Where the MT3v1 selection mechanism
calculates the decoder object queries as Ztop + δ where Ztop are used as the start-
ing point for the decoder’s iterative refinement, the MT3v2 selection mechanism
computes the decoder object queries and corresponding positional encodings as

o = f1nn (etop)

q = f2nn (etop)
(3.9)

while the starting point of the iterative refinement is Ztop + δ. This approach
makes the distinction between decoder object queries and initial estimates clear,
while also injecting more information in the decoder in the form of the learned
positional encodings which differ from those used in the encoder.

While the decoder structure of the MT3v2 is mostly kept the same as the
MT3v1, its functionality is expanded in order to produce outputs on the form
x̂ = [µ, Σ, p] where µ = [x, y, vx, vy], Σ is a diagonal covariance matrix, and p is

the corresponding existence probability. Thus, each element of the estimate X̂T can
be interpreted as multi-Bernoulli. As such, the decoder becomes somewhat more
complex since the measurement space and state-space differs from one another, and
due to the fact that the decoder simply needs to predict more variables. In order
to achieve this, the decoder firstly projects the initial estimates from measurement
to state space, producing the initial state estimates

µ0 = [r · cos(θ), r · sin(θ), 0, 0] (3.10)

and it is these estimates that are iteratively refined in the decoder, in the same
manner as in the MT3v1:

µl = µ0 +

l∑
n=1

∆n (3.11)

Unlike the state estimates, the associated covariance matrices and existence prob-
abilities are not iteratively refined, but calculated directly from the decoder inputs

Σl = Diag
(
Softplus

(
f l,1nn

(
ol
)))

pl = Sigmoid
(
f l,2nn

(
ol
)) (3.12)

3.2.2 Loss function

Comparing to the MT3v1, the MT3v2 uses the same contrastive auxiliary loss
function, but formulates the log loss in a more sophisticated manner using an
approximation of the expected sum of the negative log-likelihood of the output
estimates, which is based off of (Pinto et al. 2021b).

3.2.3 Reported performance

The MT3v2 is benchmarked against the same trackers as the MT3v1, but the test-
ing scheme is somewhat more involved. Firstly, four tasks are tested instead of two,
each with a separately trained architecture specific to a single task. The first two
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Task λ0 pd λc σq λb

1 2 0.95 4.4 · 10−3 0.2 1.3 · 10−4

2 6 0.7 2.6 · 10−2 0.9 3.5 · 10−4

3 2 0.95 4.4 · 10−3 0.2 1.3 · 10−4

4 6 0.7 2.6 · 10−2 0.9 3.5 · 10−4

Table 3.5: Parameters for the tasks the MT3v2 is tested on. λ0 is the average number of
initial objects, pd is the probability of detection, λc is the clutter intensity, σq is process
noise, and λb is the birth intensity.

tasks use a diagonal measurement covariance matrix, while the final two use a more
realistic radar model where measurement noise increases rapidly and non-linearly
near the edges of the radar field-of-view. Aside from the different measurement
noise model, tasks 1 and 3 otherwise use the same data generation parameters -
likewise for task 2 and 4. Task 1 and 3 are considered to be simpler due to a higher
probability of detection and survival , fewer clutter measurements and average
number of starting targets, and a lower target birth intensity. These parameters
are presented in table 3.5, while the reported GOSPA scores in (Pinto et al. 2022)
are repeated here in table 3.6. The total GOSPA score for each tracker is reported
with 95% confidence intervals. This allows for the conclusion that the MT3v2
performs as good or better than the baselines with significance. Furthermore, the
MT3v2 evaluation pipeline includes the negative log-likelihood loss described in
(Pinto et al. 2021b) for the MT3v2 and the best-performing baseline out of the
two model-based trackers, which also shows the MT3v2 performing comparatively
better than the baseline as the task complexity increases. The authors attribute
this to the MT3v2 being better at handling complex associations many timesteps
in the past more effectively. Lastly, the missed rates of the PMBM and MT3v2
are plotted in different sectors of the sensor FOV, which shows that the MT3v2
is better at handling the extreme nonlinearities that appear at the edges of the
FOV for task 3 and 4. As was the case with the MT3v1, the MT3v2 performs the
worst in terms of localization error, which in (Pinto et al. 2022) is attributed to
the diagonal covariance matrices Σl and too little training.

The selection mechanism of the MT3v2 is somewhat more involved, as it gen-
erates adjusted measurements and position encodings, in addition to the object
queries. As figure 3.2 shows, the adjusted measurements are instead used directly
in the first decoder layer, while the object queries are generated directly from the
top-k embeddings. The corresponding position encodings are also calculated from
these.

In addition to the reported estimate performance, the MT3v2 is also bench-
marked in terms of computational complexity, and is recited here in table 3.7. Due
to the MT3v2 decoder operating in parallel, it is expected that inference time does
not increase by any orders of magnitude as the task complexity increases. However,
the much faster online inference times comes at the cost of offline training time.
Individual MT3v2 architectures were trained for the four different tasks, each for
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Task Method GOSPA Localization False Missed

1
PMBM 3.44 ± 0.18 2.24 0.12 1.07
δ-GLMB 3.84 ± 0.20 2.13 0.06 1.64
MT3v2 3.46 ± 0.18 2.32 0.12 1.01

2
PMBM 19.03 ± 0.53 6.40 0.57 12.06
δ-GLMB 20.63 ± 0.61 5.56 0.23 14.83
MT3v2 17.03 ± 0.46 8.12 0.96 7.95

3
PMBM 7.27 ± 0.30 3.93 0.10 3.24
δ-GLMB 7.42 ± 0.30 3.21 0.70 3.79
MT3v2 6.01 ± 0.27 3.50 0.21 2.29

4
PMBM 26.72 ± 0.71 2.08 0.02 24.61
δ-GLMB 27.43 ± 0.71 3.26 0.02 24.14
MT3v2 22.82 ± 0.56 8.88 0.57 13.37

Table 3.6: The reported performance of the MT3v2 for each task, compared to baselines,
as reported in (Pinto et al. 2022).

Figure 3.2: The selection mechanism of the MT3v2. Figured based on (Pinto et al.
2022) but expanded with some details that were left out in their figure.
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Task Algorithm Inference time (s)

PMBM 4.92
1 δ-GLMB 13.14

MT3v2 0.03

PMBM 126.80
2 δ-GLMB 217.66

MT3v2 0.04

PMBM 13.90
3 δ-GLMB 40.40

MT3v2 0.04

PMBM 310.14
4 δ-GLMB 781.00

MT3v2 0.06

Table 3.7: Inference times for the MT3v2

approximately 4 days. Unlike the MT3v1, these pretrained architectures are made
available online 1.

3.3 Problems and possible improvements

3.3.1 MT3v1 specific

A clear disadvantage of the MT3v1 architecture is that the decoder does not pro-
duce velocity estimates. This will prevent the MT3v1 from being used in any
systems where velocity estimates are expected further down the pipeline, without
having to resort to some ad-hoc solution using only the position estimates. Like-
wise, the MT3v1 comes with the disadvantage of not estimating uncertainties for
the output components either. This limits confidence assessment available to the
user of the MT3v1, whether that be a human or another system downstream.

The MT3v1 assumes that the input measurements are cartesian, which is not
a problem or limitation in and of itself. However, it it is important to recognize
that sensors like lidars, radars and cameras that are commonly used in tracking
pipelines generally do not output raw measurements in the cartesian plane.

This could be remedied by simply transforming each measurement to the ap-
propriate space, but this comes with its own problem, namely the normalization
factor s. Since this is defined entirely by the two parameters supper and slower,
the sensor surveilance region is assumed to be square. If a sensor measuring range
can detect targets further than

supper−slower

2 range away, some measurements may
be normalized outside of the expected range of -1 to 1, which in turn will lead to
degraded performance in these scenarios. In the case of a sensor measuring range

1https://chalmersuniversity.app.box.com/s/kuf5wpjy8ufemy8ynpak7rrfh9p2exft
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and bearing, the remedy for this will be to define the sensor field of view as an
inscribed square defined by a circle with radius equal to the max sensor range and
its origin at the sensor position. The drawback of this approach is that a section
of the real sensor field of view will be left unused.

3.3.2 MT3v2 specific

In addition to range-bearing measurements, the MT3v2 assumes that the input
measurements contain a doppler component. The distributions of range, doppler
and bearing in the simulated scenarios used by (Pinto et al. 2022) for training and
testing are shown in figures 3.3, 3.4 and 3.5 respectively. These histograms confirm
that the data generation method outlined by the authors is correct. However, it
also reveals that the doppler measurements for true targets and clutter are very
different. It is thus likely that the MT3v2 quickly learns to rely on the doppler
measurements when discriminating between true and false measurements, instead
of through likely associations between tracks and measurements. The other trackers
used as grounds for comparison are explained to have been modified to support
doppler measurements following the suggestions of (Crouse 2014). However, there
is no explicit measurement classification that is performed in the baselines. Thus,
it is difficult to establish that the MT3v2 is a tracker that performs as well as the
baselines, and it might be more correct to refer to it as a filter that distinguishes
between true and false measurements. However, due to the MT3v1 performing
well without the use of doppler measurements, it may still be interesting to design
and test an architecture that uses range and bearing, but no doppler. This would
also constitute a tracker that can be used with sensors that do not provide doppler
measurements, and it is hypothesized that such a tracker would generalize better,
since it could not rely on the distribution of the measurements at all in order to
distinguish between targets and clutter.

The generalizability of the MT3v2 is something that was explored in (Strøm
2022), by crossing the four available pretrained architectures and the four tasks.
Each architecture produced GOSPA scores that were significantly worse for the
tasks it was not trained on. While this is a reasonable result for the tasks that
used a different measurement model, it is a disadvantage of the MT3v2 that it
is so sensitive to changing clutter and noise levels. There is also an interesting
discussion to be had about how mismatch between tuning and the parameters used
in simulated data for the baseline trackers should be used to compare mismatches
between training data and simulated data, but this is delayed until chapter 7.

3.3.3 Common problems

Since the two architectures share many traits, and their training and evaluation
loops are very similar, certain limitations and problems apply to both architectures.
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Figure 3.3: Histogram of range measurements from targets and clutter from the data
generator used to train and test the MT3v2.

Figure 3.4: Histogram of doppler measurements from targets and clutter from the data
generator used to train and test the MT3v2.
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Figure 3.5: Histogram of bearing measurements from targets and clutter from the data
generator used to train and test the MT3v2.

Architecture

Both the MT3v1 and MT3v2 use a learned position encoding vector that is added
element-wise to the input embeddings along its first dimension. This enforces that
the input sequence is of a fixed length τ , which for these architectures is set to
20. When there are not enough timesteps with measurements in the input, this
problem may simply be alleviated by padding the input sequence and indicating
where padding has occurred using a corresponding mask for the input. However,
it is not possible to truncate sequences that are longer than τ without also losing
information. A moving window across the measurement history must be used in
order to use the MT3v1 and v2 as trackers. While this is mentioned briefly in
the introduction sections of their respective papers, it is not further discussed. 20
timesteps may only account for a time window in the order of magnitude of sec-
onds in real-world scenarios, and it is not unreasonable for a target to temporarily
disappear for some seconds. For the MT3v1 and v2, such a scenario would result
in the loss of all measurements that came from the target in question, effectively
having to restart its track solution. Furthermore, the case of targets entering from
the perimeter of the sensor field of view will rarely ever happen, although this is
a case that is likely to occur often in real-world scenarios. As the figures 3.3, 3.4
and 3.5 show, the architectures will be provided significantly more measurements
closer to the sensor, which may also impact generalizability.

The contrastive component LC of the loss function utilized in both architectures
is conceptually sound, as two measurements from the same target that are close
to one another in time will be similar to one another. However, if the simulated
data produces measurements that are too easy to distinguish from one another

41



3 The Multitarget Tracking Transformers V1 and V2 3.3.3 Common problems

Figure 3.6: The contrastive loss component after 10000 and 400000 gradient steps.
Figure was generated using data from the training metrics logger of the MT3v2 from the
pretrained architecture for task 1 from (Pinto et al. 2022)

by simply observing their distributions, this component may dominate the NLL
loss, resulting in an architecture that may get stuck in a local minimum where it
is unable to learn more complex dependencies in areas such as data association
and target maneuvering. Furthermore, it appears that the information that can be
obtained by contrasting measurements is learned early on, leading to a significant
portion of the total loss that cannot be reduced further through more training.

As described previously, the MT3v1 and v2 decoders are based on the DETR,
and as such they both produce outputs in parallel instead of autoregressively. This
in turn means that the output estimate for any given timestep in only conditioned
on the available measurement set, and not the previous estimates. While the
parallel approach offers lower training and inference times, it seems unconventional
to design a tracker that does not use any information about the previous estimate,
at least from the Bayesian and target-tracking assumption point of view. High
localization error for both the Transformer trackers is a problem that is discussed
in both papers, but it is not specifically attributed to the decoder architecture
being parallel.

Evaluation

While the reported performance of the two architectures seem to perform as good
or better than two very strong baselines in terms of GOSPA scores, the way these
scores are computed still leaves much to be desired. Namely, the GOSPA score for a
specific scenario of τ timesteps is calculated by comparing the ground truth targets
and the tracker estimates at the very last timestep. This is problematic for several
reasons. Firstly, it does not clearly indicate how well new tracks are initialized.
This could have been shown by computing GOSPA scores for each timestep across
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an ensemble of scenarios, and providing the averages for each timestep. Secondly,
by letting new targets spawn with a normally distributed state about a single point
and only allowing one target to spawn per timestep, there will be more scenarios
that appear as ”single-target tracking in parallel” as compared to ”challenging
multitarget tracking”. While it could be argued that the former is much more
common in real-world scenarios, it would still be beneficial to include hand-crafted
scenarios to demonstrate how capable the MT3v1 and v2 are in complex multitarget
scenarios. This is especially true since the entire focus of the two papers revolve
around the multi in multitarget tracking.

The reported GOSPA for the MT3v2 compares points in state-space, i.e. carte-
sian position and velocity, and a euclidean distance metric is used to calculate the
localization error component. However, this is problematic since position and veloc-
ity have different units, and as such they cannot simply be added together. Doing
this also makes it impossible to assess how well the trackers estimate positions and
velocities separate from one another.

Complexity evaluation in this context is very difficult. The implementations
of the baseline trackers are mostly CPU intensive. The Transformers however can
almost entirely be ran on GPUs. The baseline trackers also do not have a learning
component since they are model-based, which means that all computational com-
plexity occurs at runtime. Meanwhile, the Transformer trackers require multiple
days of GPU time on top-of-the-line hardware. Variation in time and memory
complexity will also differ based on the input data for the model-based trackers,
while the Transformers will stay approximately the same for all inputs. Evaluation
of time and memory complexity is discussed in greater detail in chapter 7.
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4
The Multitarget Tracking
Transformer V3

Significant work has gone into the development of the MT3v1 and MT3v2 and has
provided a solid foundation for point-object tracking using Transformers without
being bound to the computer vision domain. Nevertheless, as described in the
previous chapter, both architectures are limited by certain issues and constraints
that must be resolved to enable further progress and facilitate usage outside of the
highly specific environment they have currently been deployed into.

The specific limitations of the MT3v2, together with the shared problems be-
tween the MT3v1 and MT3v2, serve as the motivating factors behind the main
contribution of this thesis, namely the MT3v3 architecture. This next generation
of MT3 trackers introduces two major changes to the MT3v2. Firstly, the archi-
tecture itself is adjusted to allow for higher capacity, to produce more accurate
decoder estimates, and to be flexible in the input sequence length. Secondly, the
training procedure and data generator is altered to facilitate better generalizability
and greater robustness to variations in the input data.

4.1 Architectural changes

The MT3v2 was used as the starting point for the MT3v3. The architectural
changes that were made can roughly be divided in two – Changes made to the
encoder side and changes made to the decoder side, i.e. changes in the input and
the way the outputs are generated.

4.1.1 Input

The first architectural changes can be found in the input and the modules before
the first encoder layer.
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Firstly, the doppler component from the measurements has been removed. This
comes with the benefit of supporting a larger set of sensors, since scanning sensors
that provide doppler in addition to range and bearing is a subset of those that
produce range and bearing only. In the case of cartesian position measurements,
these can be converted to measurements on a format supported by the MT3v3
without requiring measurements of the target’s velocity. Secondly, it provides for a
more interesting tracking challenge. By removing doppler, the network must learn
to attend to measurements in such a way as to estimate velocities without any
explicit information about this in the measurements. Furthermore, as shown in
the previous chapter, the MT3v2 may be using the doppler component to directly
estimate which measurements are clutter and which originate from targets, and it
is hypothesized that the removal of the doppler component forces the network to
learn a different approach to this problem.

To remove the constraint of input sequences of size τ only, the learned absolute
positional encoder was replaced. (Vaswani et al. 2017) shows good results using
sinusoidal position encoding, and states that this was preferred over a learned
encoding since it allows the network to use input sequences of arbitrary lengths. It
is also possible to define a relative encoding scheme which simply uses the integer
differences between the indices of the elements in the input sequence. While this is
a very simple and efficient approach, it also runs the risk of introducing numerical
instability for large input sequences. This can be somewhat alleviated by dividing
each element in the matrix by the current sequence length. Lastly, the Time2Vec
approach was considered due to its design that specifically focuses on encoding
temporal sequences. This makes it align well with the MT3v3 input sequences,
which consist of time-ordered data. All three of the aforementioned positional
encoding schemes were implemented for use with the MT3v3, which allowed for
future assessment of which method provides the best results for the MTT task.

4.1.2 Outputs

Another observation that was made in (Strøm 2022) and throughout the initial
experimentation with the MT3v2 is that the existence probabilities in the output
for a given pretrained architecture would fluctuate a lot across for longer tracks
and for changing clutter intensity. This effect was in some cases noticeable in con-
secutive predictions for a target that generated measurements in both time steps,
resulting in some tracks exhibiting a flickering-like effect. As described previously,
the existence probabilities in the MT3v2 are calculated directly from the decoder
output using a feed-forward network. However, an alternative approach could be
to utilize the iterative refinement process that is done for the state estimates. For
the MT3v3 this was implemented as a three-stage process,

1. Calculate the initial existence probabilities as p0i = fnn (oi)

2. For each layer, calculate adjustments for the existence probability of each
component using the state estimates at the current decoder layer, ρli =
fnn

(
yli
)
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3. After the final decoder layer, calculate the final existence probability for each
component as pi = p0i +

∑L
l=1 ρ

l
i

which is practically identical to the iterative refinement process done for the state
estimates. It is hypothesized that iteratively refining the existence probabilities will
incorporate more information from the encoded input and the decoder outputs, as
opposed to simply letting the probability of existence for each output component
be calculated directly from the final decoder layer.

As described by (Pinto et al. 2022), a possible improvement to the MT3v2
architecture could be to estimate the full covariance matrix at the output instead
of limiting it to be a diagonal matrix. Doing so requires an increase in output size
of the network that is used to generate the covariance matrix for each component
from 4 to 16. To accommodate this, the capacity of the network was increased by
adding another layer and using ReLU activations in between. Although this change
will require more computations, it constitutes only a minor portion of the entire
MT3v3 architecture. Given how little needed to be changed in order to facilitate
this, it was deemed worth-wile to implement this proposed change.

4.2 Changes to the training pipeline

While all of the changes from MT3v1 to MT3v2 focused on the architecture itself,
the changes made for the MT3v3 also involve the training loop. This is done since,
no matter how sophisticated the architecture is, the overall performance will be
commensurate with the quality of the training pipeline and the provided data.

4.2.1 Adaptive weighing of contrastive auxiliary loss

As shown in figure 3.6, the contrastive loss stagnates quickly, and will at some
point in the training process dominate the total loss. This is in large caused by the
scaling factor α being fixed. As the contrastive loss stagnates, all the information
about similar and dissimilar samples has been used, and it would be reasonable to
lower α at this point.

For the overall learning late, all MT3 trackers use the ADAM optimizer from
(Kingma and Ba 2014), which among other things adapts the learning rate depend-
ing on the behavior of the gradient of the loss function. This concept has inspired
the adaptive weighing of contrastive loss that is used in the MT3v3. Instead of
setting α to a constant ahead of a training job, only the initial value α0 is set.
Then, for every gradient step, the weighting

αk =
α0√

rk+1 + δ
, rk+1 = ρrk + (1− ρ)∇⊤

c ∇c (4.1)

will be used. ∇c is the gradient of the contrastive loss, while ρ is a hyperparameter
that is used to determine how much the accumulated gradient should be weighed
against the square of the current gradient. This update is identical to that of the
ADAM optimizer, but using the gradient of the contrastive loss only, instead of

46



4 The Multitarget Tracking Transformer V3 4.2.2 Bimodal target birth model

the gradient of the total loss. δ is a small constant used to avoid poor numerical
properties when the accumulated gradient is small, and is typically set to 10−6. By
accumulating the square of the gradient, the goal is to achieve a smooth decrease
in αk as k increases and the gradient changes.

4.2.2 Bimodal target birth model

Both the MT3v1 and MT3v2 employ a Gaussian birth model, which can be ex-
pressed as

x0 ∼ N (µ0,Σ0), µ0 =


x0
y0
vx,0
vy,0

 , Σ0 =


σ2
x0

0 0 0
0 σ2

y0
0 0

0 0 σ2
vx0

0

0 0 0 σ2
vy0

 (4.2)

where the number of targets to spawn for any given timestep is sampled according
to

nb ∼ P(λb) (4.3)

This birth model, together with the limited number of timesteps, leads to training
data that does not cover a large area of the sensor view, especially as the maximum
range increases. Furthermore, many targets in a real-world scenario will simply
move into the sensor view from the outside, something that cannot be represented
using this birth model.

In order to improve this, the MT3v3 uses a bimodal birth model. That is, in
addition to the Gaussian birth model, henceforth referred to as M1, a second birth
model M2 is defined. M2 simulates targets moving into sensor view, and is defined
by

x0 =


r̃max · cos(θ0)
r̃max · sin(θ0)
va · cos(ψ0)
va · sin(ψ0)

 (4.4)

where

r̃max = rmax + ϵ, ϵ ∼ U(0, 1), θ0 ∼ U(θmin, θmax) (4.5)

determine the initial position of the new target around the perimeter of the sensor
view. The offset ϵ is used to emulate how targets may have entered some distance
into the field of view in between two scans. It also serves as a way to prevent the
MT3v3 from attending too much to measurements with ranges exactly at rmax.

va =
√
v20,x + v20,y , ψ0 = atan2(x0,2, x0,1) + α0, α0 ∼ U(−α, α) (4.6)

are used to sample an initial velocity for the target that ensures that it moves into
the sensor view, and not away from it. The x and y component for the velocity are
sampled according to the same distribution as in the first birth model, while α is
a user-configurable parameter that defines a sector that the initial velocity can lie

47



4 The Multitarget Tracking Transformer V34.2.3 Uniform distribution of data generator parameters

within. For example, letting α = π
4 defines a quarter-circle, with its origin in the

starting position of the target, and its center line pointing towards the origin.
Instead of a single birth intensity, both λM1

b and λM2

b are used to independently
sample

nM1 ∼ Poisson
(
λM1

b

)
and nM2 ∼ P

(
λM2

b

)
(4.7)

which are then both used to spawn new targets. This approach was selected in
favor of sampling a single n and then drawing which birth model to use, in order
to have more fine-grained control of the average number of targets that enter the
sensor view or appear around the sensor at any given time step.

4.2.3 Uniform distribution of data generator parameters

While the MT3v1 and MT3v2 define separate tasks of varying difficulty, and train
architectures specifically for each task, the goal of the MT3v3 is to be more robust to
changes in the underlying parameters used to generate data. Most notably, based
on the cross-model validation results in (Strøm 2022), the following parameters
were used when training the MT3v3

k ∼ U(10, 100)

pd ∼ U(0.7, 1.0)

σq ∼ U(0.1, 5.0)

λc ∼ U(5, 15)

λM1

b ∼ U(0.0, 0.2)

λM2

b ∼ U(0.0, 0.2)

ps ∼ U(0.8, 1.0)

nstart ∼ U(1, 6)

(4.8)

The choice of uniform distributions for all parameters was to not inject any par-
ticular bias in the choice of parameters. Since the MT3v3 is already trained on so
many samples, and new scenarios can be generated on the fly, it is reasonable to
vary this data in an attempt to make the final trained architecture perform well
across a wide selection of scenarios, without the need for any fine-tuning. How-
ever, too much variation in the data generator parameters may lead to intractably
long training times to see good performance on any scenarios. Sensor measurement
noise was specifically left out of this scheme, since it is a reasonable assumption
that a single MT3v3 architecture will be trained for a single sensor, especially given
that sensor field-of-view must be specified a priori.

4.3 Implementation

In terms of the practicality of using the MT3v1 and MT3v2, their implementations
severely limit the operability of pretrained architectures, and setting them up for
use with external applications was shown to be time-consuming. However, looking
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past the inputs and outputs, the MT3v1 and MT3v2 are implemented to a decent
standard when it comes to configurability, scalability and readability.

The aim of the MT3v3 implementation was thus to keep the good parts of
the prior versions, but improve upon the input and output, as well as providing
examples which serve as a way for new users to get their own MT3v3 architectures
running without much hassle. The approach of improving the architecture while
simultaneously attempting to make the architecture more user-friendly is in part
inspired by the various developments and versions of the YOLO architectures (Jiang
et al. 2022).

Firstly, the changes described above were implemented on a fork of the MT3v2,
with the intent of changing as few parts of the core implementation as possible,
while cleaning up unused components. All three position encoders were imple-
mented and are configurable as part of the encoder configuration. Secondly, the
data generator was expanded to allow for passing of information that the CKF
requires in testing, such as target death times. This was implemented to be
backwards-compatible with the data generation used for training the MT3v3, which
does not require this information. The issue of input and output formatting was
addressed by creating a separate module with a set of conversion functions to and
from standard Numpy ndarrays to the format that the MT3v3 outputs and the
format that is required at the input. This module also ensures that all data is kept
on the same device, either CPU or GPU, for sake of data compatibility. Separate
examples and corresponding tutorials were made for the following:

1. Training an architecture from scratch

2. Loading a pretrained architecture

3. Incorporating the MT3v3 in an existing pipeline

As previously mentioned, the goal of this is to make the MT3v3 easy to use for new
users, which in turn promotes future development. Lastly, the MT3v2 repository
contains bloat and code that appears to have been used specifically for generating
figures for the paper associated with it, and residuals from the MT3v1. These were
all removed and cleaned up in the MT3v3 fork.

4.3.1 Network size

The removal of the doppler component of the input measurements reduces the
total number of parameters of the embedding module by a third. However, the
introduction of the Time2Vec encoding introduces two learnable parameters per
embedding dimension, which is an increase from the 3 by 20 learned lookup table
of the MT3v2. The rest of the encoder is unchanged. As for the decoder, the itera-
tive refinement implementation replaces the feed-forward network used to estimate
existence probabilities for each decoder layer. However, the size of this network
remains the same and as such does not change the number of parameters in the
MT3v3 when comparing to the MT3v2. This is not the case for the feed-forward
networks used to estimate the state uncertainty for each decoder layer. As this is

49



4 The Multitarget Tracking Transformer V3 4.3.1 Network size

Module learnable params Description

Input embedding 2× 256 Model dimension is 256, 2 values per input
Position encoding 2× 256 Single phase and frequency per embedding
Encoder: fmha 4× 256× (256 + 1) Self-attention, 4 square weight matrices plus bias
Encoder: fnorm,1 2× 256 First layer normalization
Encoder: fnn 2× 2048× (256 + 1) A single feed-forward network with 2 layers
Encoder: fnorm,2 2× 256 Second layer normalization
Selection mechanism: fnn,e1 256× 256 Embedding projection for m1:n. No bias.
Selection mechanism: fnn,e2 256× 256 Embedding projection for δ1:n. No bias.
Selection mechanism: fnn,q 16× (256 + 1) 16 queries to generate
Selection mechanism: fnn,ox 2× 256× (256 + 1) Starting points for state estimates
Selection mechanism: fnn,op 1× 256× (256 + 1) Starting points for existence probability
Decoder: fmha,1 4× 256× (256 + 1) Self-attention, 4 square weight matrices plus bias
Decoder: fnorm,1 2× 256 First layer normalization
Decoder: fmha,2 4× 256× (256 + 1) Cross-attention, 4 square weight matrices
Decoder: fnorm,2 2× 256 Second layer normalization
Decoder: fnn,x 128× (256 + 1) + 128× (128 + 1) + 4× (128 + 1) Position and velocity delta
Decoder: fnn,p 128× (256 + 1) + 128× (128 + 1) + 1× (128 + 1) Existence probability delta
Decoder: fnn,Σ 128× (256 + 1) + 128× (128 + 1) + 16× (128 + 1) Uncertainty estimator
Decoder: fnn, oc 1× (256 + 1) Object classifier
Decoder: fnn,1 2× 2048× (256 + 1) A single feed-forward network with 2 layers
Decoder: fnorm,3 2× 256 Third layer normalization
Decoder: fnn, cc 256× 256 Contrastive classifier. No bias.

Total 18 030 228 6 encoder and decoder layers

Table 4.1: The number of learnable parameters in the MT3v3 categorized by module
and listed from input to output. The MT3v3 uses a single preprocessing step consisting of
input embedding and positional encoding, 6 encoder layers, a single selection mechanism,
and 6 decoder layers.

applied element-wise, the number of learnable parameters for this module is four
times as many for the MT3v2 as compared to the MT3v2. In total, there are N
learnable parameters in the MT3v3. An overview of each module and it’s total
number of learnable parameters is presented in table 4.1.
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Experimental setup

The MT3v3 requires a significant amount of data for training, which facilitates the
need for a stochastic data generator. When testing however, it might be inter-
esting to consider a set of specific hand-crafted scenarios, which ideally should be
done programmatically. All of this also requires powerful compute units in order
to be done on a tractible timescale, which also requires its own setup. This chapter
outlines the data generator, a simulator for hand-crafting scenarios, and the com-
putational resources used for this. The setup for benchmarking the MT3v3 is also
covered.

5.1 Data generator

A large number of samples are required to train the MT3v3 - in the order of mag-
nitude of 106. For this reason, automatic data generation becomes a requirement.
To allow for efficient training, this process must also be parallelized. By simulating
data one has access to ground truths, object birth and death times, as well as
knowing which measurements are true and which are false. The MT3v2 includes a
simulator that solves the issues of automatic data generation and parallelization.
However, as was shown in chapter 3, this generator has certain problems associ-
ated with it. The implementation of the data generator for the MT3v3 builds off
the previous versions, but aims to address these problem. Table 5.1 contains all
the user-configurable parameters that will be referenced throughout the following
subsections.

5.1.1 Workflow

The MT3v3 data generation workflow in short, is as follows:

1. t← t+ ∆t

2. Step alive targets once
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Parameter Description

n Number of timesteps, upper and lower bound
max objects Maximum number of objects in the scene at any given instance
dt Time step size
ps Probability of survival, upper and lower bound
pd Probability of detection, upper and lower bound
σq Process noise, upper and lower bound
Σr Measurement noise
λclutter Clutter intensity, upper and lower bound
λb, edge Birth intensity for targets entering FOV, upper and lower bound
λb, in Birth intensity for targets appearing in FOV, upper and lower bound
nstart Average number of starting objects, upper and lower bound
FOV Sensor field of view
µ0 Target starting state
Σ0 Target starting variance

Table 5.1: The user-configurable data generation parameters.

3. Kill targets outside sensor field of view

4. Spawn new targets

5. Remove targets that do not survive

6. Generate true measurements from alive targets

7. Generate false measurements

8. Shuffle and timestamp measurements and return

and the details of each mechanism is described in the next subsections.

5.1.2 Targets

Ground truth targets use a near-constant velocity model in order to propagate the
state of each object forward in time. Given the state vector xk = [x y vx vy] at
time k, then

xk+1 ∼ N

([
I2 I2∆t

02x2 I2

]
xk,

[
I2

∆3
t

3 I2
∆2

t

2 ∆t

I2
∆2

t

2 I2∆t

]
σ2
q

)
(5.1)

where ∆t is the time between samples and σq is the standard deviation for the
process noise, which is also interpretable as the noise intensity in acceleration. If
this is set to zero, all targets will move in a perfectly straight line, and increasing
it from zero yields targets that maneuver more. The implementation of this model
is left unchanged between the MT3v2 and MT3v3.
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5.1.3 Sensor model

A sensor model contains models for measurements and how targets are detected.
For the measurement model, the MT3v1 uses a cartesian model, while the MT3v2
uses polar measurements in conjunction with doppler. The MT3v3 strikes a middle-
ground, providing options for both cartesian and polar measurements, but removes
the doppler component that is used in the MT3v2. The two available measurement
models are thus

zk,c = Hxk + wk, H =

[
1 0 0 0
0 1 0 0

]
, wk ∼ N (02×1,Σc) (5.2)

and

zk,p = h(xk) + wk, h(xk) =

[ √
x2
k,1 + x2

k,2

atan2 (xk,2,xk,1)

]
, wk ∼ N (02×1,Σp) (5.3)

respectively, where Σc and Σp are diagonal matrices containing noise intensities.
The sensor field of view parameters can be set in order to limit the sensor’s

surveillance area. For the cartesian model this is given as the ranges

xmin ≤ x < xmax, ymin ≤ y < ymax (5.4)

while for the polar model as

rmin ≤ r < rmax, θmin ≤ θ < θmax (5.5)

Furthermore, the parameter pd is used to configure the probability of detection,
i.e. if a target produces a measurement at a given timestep. The probability of
detection together with the sensor field of view is collectively referred to as the
detection model for the sensor. In the context of the simulator, a target producing
a measurement is equivalent to that target being detected.

5.1.4 Clutter model

The clutter model is used to simulate clutter measurements, and is modeled as a
PPP. That is, the number of clutter measurements for a given step is firstly sampled
according to

n ∼ P(λc) (5.6)

which is then used to draw nclutter clutter measurements. When the cartesian mea-
surement model is used, a clutter measurement will simply be sampled uniformly
in the sensor field of view

zclutterk,i =
[
U(xmin, xmax) U(ymin, ymax)

]T
(5.7)

For the polar model, the clutter model becomes

zclutterk,i =
[
fr (U(0, 1)) U(θmin, θmax)

]T
(5.8)
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where
fr (u) = rmin + (rmax − rmin)

√
u (5.9)

is used to sample range in order to avoid a difference in density of clutter mea-
surements across the sensor view. If range was simply sampled uniformly as with
bearing, there would be a surplus of clutter measurements closer to the sensor.
This solves the problem of an increase in clutter intensity near the sensor that is
seen in the MT3v2. In both the cartesian and polar case, i ∈ (0, n− 1)

5.1.5 Target birth and death

A target is said to have spawned or been born when it first appears in the the sensor
view. There are two ways a target can spawn – Either by crossing into the sensor’s
range from the outside or by appearing somewhere within the surveillance area of
the sensor. The former is a more plausible scenario, especially for environments that
do not have many obstacles that can occlude targets. The MT3v3 data generator
employs the bimodal birth model as described in section 4.2.2.

Target death is, as the name implies, the opposite of target birth. Thus it
follows that a target dies or despawns when it exits the sensor view. Targets may
also at any random timestep simply disappear while still inside the sensor field of
view. This could happen if a target is occluded by an obstacle. The mechanism
of target death is simulated in a very simple manner, based on the probability of
survival. For target i, ui ∼ U(0, 1) is sampled, and target i is killed if ui < 1− ps.
Any target that exits the sensor view is also killed.

5.1.6 Detection model

The detection model used in the MT3v3 data generator is simply a constant prob-
ability of detection model. That is, for every ground-truth target, a measurement
is generated if i < pd, where i ∼ U(0, 1) and pd is the user-defined probability of
detection. The MT3v2 implements an additional detection model that is meant to
emulate a specific automotive radar, but this is removed in the MT3v3 in order to
simplify the implementation.

5.2 Traffic and detection simulator

While the data generator is good for producing a large quantity of training data,
it does not allow for fine-grained control over what scenarios are produced. When
testing the MT3v3, or any multitarget tracker for that matter, it is reasonable
to test its performance on scenarios that are deliberately challenging. Examples
of challenging scenarios can be multiple targets crossing close to one another, or
targets moving in parallel.

To test such scenarios, a detection simulator was developed on top of an ex-
isting traffic simulator developed by Zeabuz AS. The traffic simulator is a library
that simulates the motion of a set of vessels that can be configured with various at-
tributes, such as vessel dynamics, control algorithm and maneuvering scheme. The
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aforementioned bona-fide multitarget tracking scenarios can thus be simulated by
simply configuring vessels to behave in a certain manner in the traffic simulator.
However, this simulator only produces ground truths, which are unsuitable for test-
ing the MT3v3. For this reason, a detection simulator was developed1, the purpose
of which is to turn the ground truths from the traffic simulator into measurements
from a simulated sensor.

5.3 Training and testing pipeline

The MT3v3 training and testing scheme was set up from scratch, and was done
in order to validate that the new implementation was working as intended. The
hardware originally used to train the MT3v1 and MT3v2 is also not available
publicly, which meant that the training and testing setup would have to be redone
regardless.

5.3.1 Hardware

Access to the IDUN compute cluster of NTNU’s High Performance Computing
Group (Själander et al. 2019) was granted in order to train the MT3v3 at a large
scale. A single compute note with one NVIDIA A100 GPU with 24GB allocated
VRAM was used, which allowed for 32 concurrent scenarios of 100 timesteps to
be used for training. A data logger and evaluation tool was also scheduled to
periodically generate data from the training process. All job details were specified
using the SLURM workload manager, and all configuration parameters can be
found in tables 5.3 and 5.2. The tools used for logging training data are the same
for the MT3v2 and the MT3v3.

5.3.2 Training and validation data

The hardware setup described above was ran for a total of 12 days wall-clock
time. This was chosen since it is about the same time as the four MT3v2 networks
were trained for combined. This resulted in about 1.9 · 106 gradient steps, which
totals to 6.0 · 108 generated scenarios that was processed by the MT3v3. However,
since weights and biases are saved periodically, training can resume from periodic
checkpoints if required. Periodic evaluation was performed by simply generating
unseen scenarios and calculating a set of performance metrics. Since 32 batches
were generated in parallel for each step, mini-batch gradient descent was used to
update the weights, alongside the Adam optimizer.

5.3.3 Testing

Since testing does not require the large amounts of data as in the training scheme,
it was decided to perform testing locally. A single laptop with an Intel(R) i7-

1The detection simulator was developed by the author and Odin Aleksander Severinsen for
Zeabuz AS, and will thus not be made publicly available.
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12800H CPU, an NVIDIA RTX A2000 8GB GPU, and 32GB of RAM was used.
Inference time with the MT3v3 is similar to that of the IDUN setup, and although
parallelization is substantially limited, it is not required for testing. Intelligent
paging file management also allows for larger scenarios to be tested without running
out of memory.

Parameter Description

device Device used for computation
ngs Number of gradient steps
nbs Number of batches to run in parallel
ηl Learning rate
ηp Patience parameter for learning rate reduction
ηf Factor by which learning rate is reduced
α Contrastive loss scaling factor
αp Patience parameter for contrastive loss scaling reduction
αf Factor by which contrastive loss scaling is reduced
kcheckpoint Interval for saving model weights
kprint Interval for printing progress updates
kplot Interval for generating plots
ksave Interval for saving plots
klog Interval for logging updates
keval Interval for evaluating GOSPA metric

Table 5.2: All user-configurable training parameters

Parameter Description

partition Either short, CPUQ or GPUQ, depending on the task
account Which account to be billed for the job
time The time limit for the SLURM job
nodes The number of compute nodes to utilize
tasks-per-node How many tasks to run per node
mem Allocated memory in MiB

Table 5.3: The SLURM parameters for the NTNU HPC cluster used for training the
MT3v3.

5.4 Benchmarking

While various performance metrics can be calculated for the MT3v3 alone, they
can only provide a limited amount of information when presented in isolation. It is
thus important to compare the MT3v3 to some baseline. A decision was made to
use the CKF as a baseline for the optimal achievable performance, since it does not
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rely on data association as it is already given the target-to-measurement ground-
truth information. The CKF also allows for sanity-checking the data generator
and the other trackers. I.e., if the CKF has a false detection score that is not zero,
there is something wrong with the data generator or CKF setup. Likewise, if one
of the trackers perform better than the CKF, it is a sign that either the CKF is
wrongly implemented, or that the tracker in question has access to information
it should not have. Since the transformation from measurement to state space
is non-linear, an Extended Kalman Filter was used at the core of the CKF. The
IMM-JIPDA represents the other end of the baseline spectrum, i.e. a target for the
MT3v3 to beat. This decision was made since the MT3v3 needs to show promising
results to be considered for future research or use in a real application. ”Promising
results” can thus be defined as performing equally as good as or better than the
IMM-JIPDA, since this is a tracker that performs reasonably well without the
sophistication of the current Bayesian state-of-the-art trackers.

Since the measurements from the MT3v3 are polar, but the state estimates
are assumed to be cartesian, the CKF is in reality implemented as a Clairvoyant
Extended Kalman filter, but for sake of brevity, it is still referred to as the CKF.
While the linearization process introduces errors, the CKF is still considered to be
the strongest available baseline without directly accessing the ground-truth state.

5.4.1 Previous generation MT3

Since the MT3v1 uses cartesian measurements, it was deemed unfit for comparison
with the MT3v3. The MT3v2 on the other hand, is used as grounds for comparison
at certain points, especially for assessing the use/lack of doppler measurements. For
the MT3v3 to be considered the ”next-generation” of the MT3 trackers, it should
also not perform drastically worse than its predecessors.

5.4.2 Tuning

The CKF and IMM-JIPDA each have a set of tunable parameters that can be
changed on-the-fly. The MT3v3 on the other hand, would need to be retrained with
a new set of parameters if a change is desired. For this reason, whenever the MT3v3
is tested against data generated using parameters that fall within the training
range, the IMM-JIPDA is perfectly tuned to the data generator. In scenarios which
the MT3v3 has not specifically been trained for, the median values for the data
generator parameter ranges are used for tuning the IMM-JIPDA. This is somewhat
of an arbitrary choice however, and is something that is discussed in chapter 7. The
CKF is always given access to perfect tuning parameters.

5.4.3 Performance indicators

GOSPA for position and velocity serves as the go-to performance metric, since it
does not require any ad-hoc assignment of targets and tracks, due to operating
directly on point-patterns. As noted previously, GOSPA cannot be calculated for
both position and velocity directly, due to the different units between the two.
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For this reason, GOSPA is calculated using position only, while the quality of the
velocity estimates is determined separately. Calculating GOSPA for more than
just a single timestep is also used to assess various stages of the trackers for certain
scenarios.

NEES is used to assess the consistency of the MT3v3 estimates, and is calculated
only for the estimates that are matched to a ground-truth. State errors are also
tested for bias and whiteness using a one-sample two-tailed t-test and a Box-Ljung
test respectively.
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Results

6.1 Data and scenario generation

In order to get an idea of what type of data that is automatically generated during
training for the MT3v3, a set of randomly picked scenarios are presented in figure
6.1. In these figures, the data generator parameters have been fixed to those
presented in table 6.1, but note that in the actual training pipeline, many of these
are sampled for each training instance. The intention of these figures is simply to
show how a scenario might look like, and for sanity-checking the data generator.

Parameter Value

k 100
pd 0.85
σq 1.0
λc 10

λM1

b 0.1

λM2

b 0.1
ps 0.75

nstart U(2, 4)
σr Diag(1.5, 0.044)

Table 6.1: The parameters used to generate what is considered the ”median” scenarios.
The measurement noise is the same as that used in training, and corresponds to a variance
of 2.25 meters and 6.25 degrees in range and bearing respectively. Fixing k is also fixed
to the highest value attained in training in order to see effects that may only appear after
sufficiently many timesteps.

Figure 6.2 shows a set of scenarios that would be generated for the MT3v2
during training. Note how due to the architecture, these scenarios are limited to
20 timesteps only. Also note that since that the positions of all new targets are
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Figure 6.1: Four example scenarios from the MT3v3 data generator. Green tracks are
the ground truths of the simulated targets, red dots are true measurements, and black
dots are clutter.
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normally distributed around the sensor, a large majority of the sensor view does
not see any targets.

There are mainly five different parameters that are tweaked when designing a
”simple” and ”complex” scenario. These are the two noise components of the mea-
surement model, the process noise of the targets, clutter intensity and probability
of detection. A simple and complex scenario is plotted side by side in figure 6.3.

6.2 Training metrics

To assist in the selection of what positional encoding to be used, a set of MT3v3
architectures, each with their respective positional encoding module, were trained
in parallel using the same data generation seeds, for 105 gradient steps. The total
loss for each architecture is presented in figure 6.7, while the certainty distribution
for each architecture is shown in figure 6.4. This figure shows two graphs for each
position encoding scheme - average matched and unmatched certainties. The aver-
age matched certainty is the average existence probability for all predictions that
have been matched with a ground truth target. Likewise, the average unmatched
certainty is the average existence probability for all unmatched predictions. Lastly,
the standard deviation for position and velocity estimates for the three networks
are plotted in figures 6.5 and 6.6.

Two MT3v3 networks were trained using the t2v position encoding, but with
two different methods for generating existence probabilities. The first uses the
direct feed-forward network approach from the MT3v2, while the second one uses
iterative refinement. The certainty distributions for the first 105 gradient steps is
shown in figure 6.8. The training loss for both networks was practically the same,
so this figure is left out.

As described previously, the final MT3v3 architecture was trained for 1.9 · 106

gradient steps. The total loss for this is shown in figure 6.9. GOSPA was evaluated
periodically every 104 gradient steps, and is shown in figure 6.10

6.3 Benchmarking the MT3v3

The bulk of the results are from the MT3v3 benchmarking process, and aims to
provide a detailed insight into how the MT3v3 performs compared to the IMM-
JIPDA and CKF baselines. The MT3v2 is also tested in some aspects in order to
get the full picture of how the new architecture performs. As described when intro-
ducing the CKF, it is the strongest possible baseline due to it accessing information
about the ground-truth targets that is otherwise hidden in any real scenario. On
the other hand, the IMM-JIPDA provides a ”target to beat”. Thus, when look-
ing at performance in various scenarios, the MT3v3 is compared to the CKF and
IMM-JIPDA. In the following section, the data generator parameters are fixed, and
the CKF and IMM-JIPDA are provided with these parameter in order to obtain
an optimal tuning.
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Figure 6.2: Four example scenarios from the MT3v2 data generator. Green tracks are
the ground truths of the simulated targets, red dots are true measurements, and black
dots are clutter.
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Figure 6.3: A simple and a complex autogenerated scenario. Green tracks are the
ground truths of the simulated targets, red dots are true measurements, and black dots
are clutter.

Figure 6.4: Certainty distributions for the first 100 000 gradient steps.
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Figure 6.5: Position standard deviations for the first 100 000 gradient steps.

Figure 6.6: Velocity standard deviations for the first 100 000 gradient steps.
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Figure 6.7: Total training loss for the first 100 000 gradient steps.

6.3.1 Initialization

Firstly, by setting both birth intensities to 0.0 and the probability of survival to 1.0,
it is possible to gain insight into how the MT3v3 performs during startup and in the
timesteps where new targets enter the sensor view, and how well these tracks are
maintained over time. The position and velocity GOSPA for such a scenario with
100 timesteps is shown in figures 6.11 and 6.12. These results were obtained from
the ensemble mean of 1000 Monte Carlo simulations. The corresponding ensemble
averages are shown in tables 6.2 and 6.3 respectively. Note that the averages are
shown both through the entire sequence and from k = 15 onwards. This is done to
show the effect of the initialization process.

Architecture GOSPA Loc False Missed

CKF 0.346 ± 0.031 0.207 0.000 0.139
MT3v3 5.918 ± 1.553 0.402 0.647 4.869
JIPDA 6.020 ± 0.604 0.674 4.964 0.383

CKF* 0.287 ± 0.010 0.045 0.000 0.152
MT3v3* 3.074 ± 0.419 0.256 0.253 2.566
JIPDA* 5.445 ± 0.310 0.646 4.786 0.013

Table 6.2: Position GOSPA when birth intensities are set to 0.0 and probability of
survival is set to 1.0. Stars indicate that the scores are calculated starting at timestep 15.
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Figure 6.8: Certainty distributions for the first 100 000 gradient steps when comparing
directly predicted and iteratively refined existence probabilities.
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Figure 6.9: The total loss for the full MT3v3 training process.
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Figure 6.10: Periodically evaluated GOSPA scores for the MT3v3 during training.

Architecture GOSPA Loc False Missed

CKF 1.452 ± 1.323 1.159 0.063 0.230
MT3v3 6.789 ± 1.380 1.957 0.286 4.546
JIPDA 6.838 ± 0.689 1.525 4.948 0.365

CKF* 1.295 ± 0.247 1.110 0.000 0.186
MT3v3* 4.211 ± 0.476 1.515 0.177 2.518
JIPDA* 5.882 ± 0.345 1.083 4.786 0.012

Table 6.3: Velocity GOSPA when birth intensities are set to 0.0 and probability of
survival is set to 1. Stars indicate that the scores are calculated starting at timestep 15

6.3.2 Doppler information and velocity estimates

Firstly, and perhaps most importantly, is the removal of doppler information in
the input to the MT3v3. To benchmark how this affects the velocity outputs, the
following was done: Firstly, the evaluation scheme used in (Pinto et al. 2022) was
used, but expanded with velocity-GOSPA. Then, the original MT3v2 architecture
using Task 1 was evaluated both with and without doppler information on the
output. In the latter case, the doppler of all measurements was simply set to
0.0, and was done in order to assess how the pretrained MT3v2 is affected by
the removal of doppler. Lastly, the MT3v3 using Time2Vec positional encoding is
evaluated in the same way.
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Figure 6.11: MT3v3 compared to the CKF and JIPDA through 100 timesteps. 1000
Monte Carlo simulations were used to produce ensemble averages for each timestep. The
parameters in table 6.1 were used, except for birth intensities which were set to 0.0, and
ps was set to 1.0.
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Figure 6.12: MT3v3 using velocity distance (magnitude only) compared to the CKF
and JIPDA through 100 timesteps. 1000 Monte Carlo simulations were used to produce
ensemble averages for each timestep. The parameters in table 6.1 were used, except for
birth intensities which were set to 0.0, and ps was set to 1.0.
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Architecture GOSPA Loc False Missed

MT3v2 2.119 ± 0.161 0.949 0.120 1.050
MT3v2ND 69.561 ± 0.541 5.911 63.515 0.135

MT3v3 3.284 ± 1.104 0.234 0.917 2.133

Table 6.4: Position GOSPA. MT3v2ND is a pretrained MT3v2 tested on data where
the doppler component of all measurements are 0.0.

Architecture GOSPA Loc False Missed

MT3v2 3.056 ± 0.175 1.906 0.110 1.040
MT3v2ND 67.588 ± 0.597 4.208 63.380 0.000

MT3v3 3.903 ± 1.342 1.820 0.433 1.650

Table 6.5: Velocity GOSPA. MT3v2ND is a pretrained MT3v2 tested on data where
the doppler component of all measurements are 0.0.

6.3.3 Sliding window effects

In a practical implementation a sliding window will likely have to be implemented,
in order to avoid an unbounded increase in memory consumption of the tracker
as the measurement sequence increases in length. To test the extreme case of
this, the MT3v3 was tested using short sliding windows. The results of this are
presented in figure 6.13 which displays the result of three different sliding window
lengths, N = 15, N = 10 and N = 5. Note that these tests are hot-started with 15
timesteps. The birth intensities and probability of survival are set such that any
given target has a 0.05 probability of dying at any given moment and a target will
spawn with probability 0.05. From the ensemble average GOSPA over time, it is
clear that a smaller window size leads to more missed targets. It also appears to
lead to somewhat more false estimates. This then leads to a higher total GOSPA
score the smaller the sliding window.

Architecture GOSPA Loc False Missed

CKF 0.237± 0.018 0.162 0.000 0.075
MT3v3-5 6.266± 0.361 0.156 0.329 5.781
MT3v3-10 4.862± 0.210 0.182 0.271 4.409
MT3v3-15 4.178± 0.242 0.166 0.226 3.786

JIPDA 5.248± 0.219 0.439 4.352 0.458

Table 6.6: MT3v3 across 100 timesteps with sliding window sizes of 5, 10 and 15.
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Figure 6.13: MT3v3 across 100 timesteps with sliding window sizes of 5, 10 and 15.

72



6 Results 6.3.4 Variability in MT3v3 performance

6.3.4 Variability in MT3v3 performance

Even while fixing the data generator parameters, there is a sizable gap between
the best and worst GOSPA scores obtained by the MT3v3. In order to gain some
insight into what these scenarios look like, a selection of scenarios in which the
MT3v3 produces GOSPA scores that are both twice as high and twice as low as
the JIPDA were studied in more detail.

When the MT3v3 performs poorly

A selection of four scenarios in which the MT3v3 performs very poorly are presented
in figure 6.14. Note that each figure is zoomed in on the part of the sensor view
in which the MT3v3 misses tracks the most, as it rarely ever produces false tracks.
All scenarios have relatively low clutter and contains many ground-truth targets
that move close to one another.

When the MT3v3 performs well

On the other hand, the MT3v3 performs much better than the JIPDA sometimes,
and a selection of four such scenarios is presented in figure 6.15. The difference in
performance between the two trackers in all of these cases can mostly be attributed
to the JIPDA establishing false tracks. These scenarios contain comparatively more
clutter and fewer targets than the scenarios in which the MT3v3 performs poorly.

6.3.5 Filter consistency

A metric that was not considered in previous assessments of the MT3 trackers is
how consistent the final trained network is. This was tested for the MT3v3 using
ensemble average NEES with the estimates and ground truth associations found
when calculating GOSPA. Furthermore, the errors in x and y were tested for bias
and whiteness.

Figure 6.16 shows the ensemble average NEES for 100 Monte Carlo simulations,
and how it falls well below the lower χ2 interval, with α

2 = 0.025, never peaking up
into the confidence interval. The position errors were tested for whiteness using a
Ljung-Box test with 10 lags. From this it was concluded that the position errors are
sufficiently white. The errors were also checked for bias using a one-sample t-test,
and it was also concluded that both errors are acceptable as zero-mean. The raw
test results for whiteness and bias can be found in tables 6.8 and 6.7 respectively.

Mean t-statistic p-value

x -0.004 -0.326 0.745
y 0.031 1.544 0.126

Table 6.7: The results from the one-sample t-test to test the x and y errors for bias.
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Figure 6.14: Four examples of the MT3v3 performing poorly. In all cases the MT3v3
is missing large sections of true tracks.

6.4 Generalizability tests

Generalizability was tested for the MT3v3 by simply generating scenarios with pa-
rameters outside of the ranges defined in equation 4.8. Specifically, the probability
of detection, clutter intensity and measurement noise were altered to make new
and more difficult scenarios. The JIPDA was not retuned for any of these scenar-
ios, but instead was tuned once by giving it the median values of the parameter
distributions.
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Figure 6.15: Four examples of the MT3v3 performing well. In all cases the JIPDA is
making many false tracks.

Since the initialization phase has already been tested previously, all generaliz-
ability tests were carried out with hot-started trackers. That is, GOSPA estimates
are calculated at the timesteps nh ≤ k ≤ nmax where nh > 0. Unless explicitly
stated, all ensemble averages below use nh = 25, nmax = 100 and nmc = 1000.

75



6 Results 6.4 Generalizability tests

Figure 6.16: Ensemble average NEES for the MT3v3 across 100 timesteps. α
2
= 0.025

is used for the χ2 intervals.
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x y

Lag Q p Lag Q p

1 0.094 0.759 1 2.874 0.090
2 0.710 0.701 2 3.136 0.208
3 0.834 0.841 3 3.191 0.363
4 1.300 0.861 4 3.343 0.502
5 2.330 0.802 5 3.347 0.647
6 2.874 0.825 6 3.420 0.755
7 3.101 0.875 7 4.198 0.757
8 3.145 0.925 8 4.236 0.835
9 3.235 0.954 9 4.247 0.894
10 4.092 0.943 10 5.244 0.874

Table 6.8: Ljung-Box test results for 10 lags. Q is the value of the Ljung-Box statistic,
while p is the corresponding p-value.

6.4.1 Probability of detection

Lowering the probability of detection to values below what was seen in training for
the MT3v3 resulted in significantly more missed targets, as can be seen in table 6.9.
The JIPDA on the other hand, did not perform significantly worse when lowering
pd.

Algorithm GOSPA Loc False Missed

CKF 2.095 ± 0.465 1.062 0.000 1.033
MT3v3 14.528 ± 1.900 0.627 1.221 12.680
JIPDA 9.564 ± 0.860 1.751 3.419 4.394

Table 6.9: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1 except for pd which is
set to 0.5. All scenarios were hot-started with 15 time steps.

6.4.2 Clutter intensity

Higher clutter intensities make for more challenging tracking scenarios. As such,
a clutter intensity that resulted in an average of 30 false measurements for each
timestep was selected. The resulting position GOSPA is shown in table 6.10. The
MT3v3 is shown to be significantly less prone to establishing false tracks compared
to the JIPDA, while only missing targets a bit more often.
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Algorithm GOSPA Loc False Missed

CKF 0.457 ± 0.043 0.270 0.000 0.186
MT3v3 3.794 ± 0.655 0.610 1.061 2.123
JIPDA 10.954 ± 1.353 0.638 9.711 0.605

Table 6.10: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1 except for λc which
was multiplied by a factor of 5 from the highest value used in training. All scenarios were
hot-started with 15 time steps.

6.4.3 Measurement noise

Measurement noise is assumed to be known to a certain extent a-priori, but the
effect of increased measurement noise is tested regardless in order to get an idea
of how the MT3v3 performs when there is a mismatch between the configured
and actual measurement noise. Increasing both components by a factor of 10
does not yield significantly different results for either of the trackers as table 6.11
shows. However, increasing the measurement noises to σr = 10 and σθ = π

4 yielded
substantially more missed targets and an increase in localization errors, as table
6.12. While the MT3v3 yielded a lower localization score than both the CKF and
JIPDA, it also missed more targets.

Algorithm GOSPA Loc False Missed

CKF 0.805 ± 0.132 0.238 0.000 0.091
MT3v3 3.206 ± 0.313 0.671 1.224 1.311
JIPDA 4.377 ± 0.167 0.644 3.303 0.430

Table 6.11: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1, except for the mea-
surement noise, which were set to σr = 1.0 σθ = 0.1745. All scenarios were hot-started
with 15 time steps.

Algorithm GOSPA Loc False Missed

CKF 1.377 ± 0.267 1.312 0.000 0.065
MT3v3 5.794 ± 0.243 0.921 0.402 4.471
JIPDA 9.821 ± 0.236 2.555 4.353 2.914

Table 6.12: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1, except for the mea-
surement noise, which were set to σr = 10 σθ = π

4
. All scenarios were hot-started with

15 time steps.
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6.4.4 Birth and probability of survival

By increasing only the birth intensity, more targets will be present at any given
timestep, while the opposite is true when decreasing probability of survival. If both
birth intensities are increased and probability of survival is decreased, more and
shorter tracks will appear. All three cases were tested for the MT3v3. The first of
these is shown in table 6.13, and in terms of total GOSPA, the MT3v3 and JIPDA
perform very similarly. However, most of the total GOSPA score for the MT3v3 is
from missed targets, while it is mostly from false tracks for the JIPDA.

Architecture GOSPA Loc False Missed

CKF 0.594 ± 0.034 0.384 0.000 0.211
MT3v3 7.853 ± 0.320 0.610 1.933 5.310
JIPDA 7.831 ± 0.394 1.150 5.192 1.488

Table 6.13: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1, except for birth
intensity which was set to 0.25, and probability of survival was set to 0.75

Setting the probability of survival to 1.0 and the birth intensity to 0.25 yields
scenarios with many targets, and the performance on these is shown in table 6.14.
The MT3v3 ends up missing many more targets than the JIPDA, and thus performs
significantly worse. On the other hand, by setting the birth intensity to 0.0 and the

Architecture GOSPA Loc False Missed

CKF 1.730 ± 0.113 0.987 0.000 0.744
MT3v3 29.884 ± 1.189 1.717 0.878 27.290
JIPDA 8.462 ± 0.682 3.816 2.465 2.181

Table 6.14: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1, except for birth
intensity and probability of survival which were set to 0.25 and 1.0 respectively.

probability of survival to 0.75, there will quickly be very few targets in the scenario.
As table 6.15 shows, the JIPDA performance is significantly better as compared
to the previous scenarios in this subsection. While the MT3v3 performance is also
better, it is still much worse than the ”normal” scenarios that were tested earlier.

6.4.5 Long input sequences

The maximum sequence length that was used during training was 100 timesteps.
Seeing how the MT3v3 performs on sequences much longer than this can reveal
if the network is able to attend to a reasonable set of measurements, even when
there is a lot of information in the overall input data. To test this, scenarios
with 1000 timesteps were generated and used to evaluate the trackers in the same
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Architecture GOSPA Loc False Missed

CKF 0.286 ± 0.111 0.246 0.000 0.040
MT3v3 7.240 ± 0.576 0.527 2.626 4.088
JIPDA 3.905 ± 0.355 0.496 2.557 0.852

Table 6.15: Ensemble averages for GOSPA with position localization errors over 1000
Monte Carlo simulations using the same parameters as in table 6.1, except for birth
intensity and probability of survival which were set to 0.0 and 0.75 respectively.

way as before. To calculate the ensemble averages, nmc = 100 was used, in order
to keep testing times tractable. All other data generator parameters aside from
sequence length were set to values inside the ranges used while training, in order
to see the effects of longer input sequences in isolation. The ensemble averages
are presented in table , and it appears that the increased sequence length does not
impact performance negatively or positively.

Algorithm GOSPA Loc False Missed

CKF 0.491 ± 0.013 0.102 0.000 0.389
MT3v3 2.318 ± 0.218 0.196 0.539 1.583
JIPDA 3.937 ± 0.075 0.393 3.209 0.334

Table 6.16: Ensemble averages for GOSPA with position localization errors over 100
Monte Carlo simulations using the same parameters as in table 6.1, except for the sequence
length, which was fixed to 1000 timesteps.

6.5 A selection of MTT scenarios

Aside from just using the data generator to benchmark the average performance of
the MT3v3 on the scenarios produced by the data generator, a handful of scenarios
were also generated using the traffic- and detector sim. These scenarios are hand-
crafted to be difficult and test how well the tracker handles multiple targets in close
proximity.

6.5.1 Target crossing

A subset of the handcrafted scenarios specifically test how well the MT3v3 handles
targets that cross paths. Figure 6.17 shows three such scenarios. The first is a
simple two-target crossing, while the second has two targets cross the first path
in opposite directions. The third crossing scenario is similar to the first, but adds
two stationary targets. The average GOSPA for the three crossing examples is
shown in table 6.17. The MT3v3 across the board has a higher total GOSPA,
but only the crossing scenario with stationary targets yields a higher total GOSPA
with statistical significance – The confidence intervals are higher than before due to
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Figure 6.17: Three crossing examples. Arrows are used to indicate direction and mag-
nitude of the targets’ velocities.

not using ensemble averages from Monte Carlo simulations. As before, the JIPDA
produces more false tracks, but the MT3v3 also produces a higher number of false
tracks in these scenarios than before. The MT3v3 and JIPDA output estimates
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are shown in figure 6.18.

Scenario Algorithm GOSPA Loc False Missed

Single Crossing MT3v3 12.962 ± 3.310 1.942 5.306 5.714
JIPDA 8.759 ± 1.692 0.800 7.653 0.306

Advanced Crossing MT3v3 16.084 ± 3.422 1.594 4.898 9.592
JIPDA 9.264 ± 2.549 0.815 8.143 0.306

Stationary Targets MT3v3 21.324 ± 2.549 1.467 7.918 11.939
JIPDA 11.835 ± 1.327 0.713 10.714 0.408

Table 6.17: The GOSPA scores for a single run of each handcrafted crossing scenario.

6.5.2 Parallel targets

Another subset of the handcrafted scenarios are meant to test how well the MT3v3
can separate two targets moving in parallel. These are shown in figure 6.19. The
first two scenarios have two targets that approach one another and together with
one another respectively. The third is the most complex of the three, as the targets
maneuver heavily while also moving close to one another.

The average GOSPA scores for the three parallel scenarios are shown in table
6.18. The total GOSPA score for the MT3v3 is higher than the JIPDA in all three
cases, but without statistical significance in the first two. As with the crossing
examples, the MT3v3 makes more false tracks in all three parallel scenarios as
compared to previous benchmarking. The MT3v3 and JIPDA output estimates
are shown in figure 6.20.

Scenario Algorithm GOSPA Loc False Missed

Parallel Approach MT3v3 7.203 ± 1.512 1.186 4.661 1.356
JIPDA 6.295 ± 1.481 0.617 5.508 0.169

Parallel Together MT3v3 7.373 ± 1.780 1.186 4.831 1.356
JIPDA 6.295 ± 1.481 0.617 5.508 0.169

Maneuvering Together MT3v3 13.754 ± 2.330 2.738 3.983 7.034
JIPDA 6.595 ± 1.061 4.306 1.949 0.339

Table 6.18: The GOSPA scores for a single run of each handcrafted parallel scenario.

6.6 Bearings only tracking

The problem of bearings-only tracking is, as the name implies, about tracking
targets using nothing but bearings. Not having access to range measurements thus
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Figure 6.18: The tracker outputs for the three crossing scenarios.

makes this a much more challenging problem. While the MT3v3 was not designed
with this in mind, it was tested regardless due to the flexibility of the data generator
to produce data like this. The range component of the data generator was simply
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Figure 6.19: Three scenarios with targets moving in parallel. Arrows are used to indicate
direction and magnitude of the targets’ velocities.

removed, and the MT3v3 was configured to expect measurements on the form [θ t].
The development of the total loss, the certainty distributions and a sample of the
output hypotheses for the current scenario is shown in figure 6.21. The network
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Figure 6.20: The tracker outputs for the three parallel scenarios.

quickly learns to place hypotheses on the radial line between the sensor and a target.
However, the network is also unable to reduce the spread of the hypotheses, and
the certainty distribution stagnates. As shown in figure 6.22, further training does
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Figure 6.21: A selection of training data from the bearings-only MT3v3. Stars represent
estimates produced by the network, and each corresponding number is the existence
probability of that component. Clutter measurements are not displayed.

not appear to lead to any substantial improvements.
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Figure 6.22: A selection of training data from the bearings-only MT3v3, continuing
from the network that was already trained with about 500k steps shown in figure 6.21.
Stars represent estimates produced by the network, and each corresponding number is
the existence probability of that component. Clutter measurements are not displayed.
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7
Discussion

7.1 MT3v3 architecture changes

The main architecture changes that were tested are the position encoding scheme,
iterative refinement of existence probabilities, and full covariance estimates. Im-
proving flexibility and robustness were the two main factors considered when deter-
mining how beneficial an architectural change is, since these were the motivating
factors behind designing the MT3v3 to begin with.

7.1.1 Position encoding

The three encoding schemes that were considered were an integer difference ap-
proach, the sinusoidal encoding from (Vaswani et al. 2017), and the Time2Vec
approach as described in (Kazemi et al. 2019). The latter was determined to be
the best choice for the MT3v3, as a reasonable middle-ground between good nu-
merical properties and evaluation performance.

A common factor between all the implemented position encoders is the require-
ment that they are able to handle input sequences with an arbitrary number of
elements. This was made to be a hard requirement since the goal of the MT3v3 is
to be more flexible than the previous generations of MT3 trackers,

Furthermore, using more timesteps means that the tracker has access to more
information, which could lead to performance gains. The downside of accepting
a variable number of input measurements is that there are no direct guarantees
that the MT3v3 will produce good outputs when given an input sequence that is
longer than the longest sequence used for training. It is hypothesizes that for very
long sequences, the MT3v3 will attend to the latest N measurements, and that the
upper limit of usable information is determined by dmodel, since this defines the
embedding dimension used throughout the network.

In terms of training performance for the MT3v3 using integer difference en-
coding, the standard deviations for state estimates, certainty distributions, and

88



7 Discussion 7.1.1 Position encoding

the total output loss all plateaued early in the training process, indicating that no
useful learning took place. This may be caused by numerical problems with this
approach: Since the position encoding is added to the input embeddings, and the
integer differences between the indices of two elements increases linearly with the
distance between the two elements in the input sequence, the position encoding will
dominate the embedding for long sequences. It is hypothesized that normalizing
the position encodings would yield better numerical properties for this approach.
This could be done either by normalizing with the current sequence length, or with
the maximum sequence length for all inputs. The former of these approaches would
yield a different encoding for every sequence length, but could be used for arbitrary
sequence lengths. The latter would produce the same encoding for all sequences,
but would be limited to sequences defined by the maximum length used for nor-
malization. In any case, this approach was deemed to be naive and subsequently
discarded.

The matched and unmatched certainty distributions for the MT3v3 with si-
nusoidal encoding converged to 1 and 0 respectively within the first few hundred
thousand gradient steps, which is a clear improvement over the integer encoding.
The standard deviations of the state estimates are somewhat high, and also seem to
plateau after about 20000 gradient steps. The total loss decreases evenly with in-
creasing gradient steps. However, the certainty distributions and total loss appears
somewhat unstable, as indicated by the random spikes in their respective graphs.
The estimated standard deviations at the output appear to be more stable.

As for the Time2Vec approach, the average matched and unmatched certainty
also converge towards 1 and 0 respectively, and appear to be more stable than
the sinusoidal encodings. The unmatched certainty average converges somewhat
more quickly than the sinusoidal, but the matched certainty average converges
more slowly. It is hypothesized that since Time2Vec introduces a set of learnable
parameters for frequency and phase to the sinusoidal embedding, as well as a linear
dimension, the MT3v3 will potentially find a more optimal configuration compared
to its sinusoidal counterpart. This is because the additional learnable parameters
offer the network greater flexibility in adapting to the training scenarios, which in
turn comes with the potential of better numerical properties for the architecture.
However, it is also anticipated that due to the increased complexity introduced by
these additional parameters, the network may require more time to attribute high
existence probabilities to matched outputs. However, as the total loss graph shows,
the overall convergence is quicker. Since all outputs with an existence probability
higher than 0.5 are considered to be alive, the effect of a slower convergence in
the average certainties will not be as apparent beyond a certain point. It is also
worth noting that the standard deviations for the position estimates for the MT3v3
using Time2Vec are the highest out of the three position encoders. Meanwhile, the
standard deviations for the velocity estimates are a little better than the sinusoidal
encoding. In both cases, the Time2Vec standard deviations are more stable than
the sinusoidal. While these both appear to stagnate early on, this is also something
that was noted early in the training process for the MT3v2. It is hypothesized that
the total loss at the output of the final decoder is more affected by differentiating
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true and false measurements and estimating the total number of targets in a sce-
nario than refining the estimated state uncertainties. As such, it is assumed that
these will improve with more training.

A weakness in this approach of architecture selection is that each architecture
was trained for 105 gradient steps before analyzing the resultant data output,
and making a decision about architecture. This is one order of magnitude lower
than what was used for the final MT3v3. In an attempt to make more informed
architecture decisions, the data generator parameters were fixed at their median
values for this training. However, there may still be some interaction effects or
other nuances to each approach that is only seen after training for longer or for
a particular combination of data generation parameters. This is something that
remains unknown for the sinusoidal and integer encoding. In either case, due
to the nature of tracking data, i.e. sequentially arranged according to time of
measurement, as well as the promising results presented in (Kazemi et al. 2019),
Time2Vec appears to be a good choice of encoding for the MTT task.

7.1.2 Existence probability

The problem of introducing iterative refinement to the existence probabilities at
the output was solved by starting each component at some learned point based
on the object queries, then iteratively refining each existence probability for each
decoder layer. The MT3v3 was not trained fully without this new addition, so a
direct comparison between a single FFN and iterative refinement for estimating
existence probabilities cannot be done. However, the MT3v3 was trained for 105

steps with the old and the new existence probability estimator, and the results are
very close to one another, as figure 6.8 shows.

When the MT3v3 was trained for the full number of iterations determined
earlier, iterative refinement of existence probability was used. It is hypothesized
that the iterative refinement process does not add sufficient probability mass to the
components that align with potential tracks, given how the MT3v3 missed track
rate is much higher than the false track rate. Instead of learning what the initial
probability existence should be, it may be a better approach to simply let p0i = 0.5
for all i and let the iterative refinement stage adjust the components up and down
from this middle-point.

7.1.3 Full covariance matrices

In (Pinto et al. 2022) it is hypothesized that estimating the full covariance matrices
at the output could improve the relatively high localization errors of the MT3v2.
This was the motivation for doing this in the MT3v3. While the MT3v3 sees sub-
stantially lower localization errors than the MT3v2, it is not possible to deduce
that this is the result of adding full covariance matrix estimates. Since the covari-
ance matrix for any given output estimate is the result of separate feed-forward
networks, it does not directly affect the output estimate for that scenario. Instead,
it affects the gradient of the loss function, which in turn will affect future outputs.
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However, the network that predicts initial velocity from position estimates was in-
creased in size. The network may also fundamentally learn tracking in a different
manner to the MT3v2, given that it does not utilize doppler measurements. As
such, it is unknown what the full covariance matrices actually contribute to.

Judging by the NEES shown in figure 6.16 it appears that the covariance es-
timates should be higher, in order to make the MT3v3 consistent. However, due
to the covariance not directly affecting the output estimates of the next step, this
would not actually improve any state predictions.

While the standard deviations for the output estimates plateau early in the
training process in both the MT3v2 and MT3v3, it is more prominent in the latter.
This may be caused by the fact that the covariance FFN has to estimate four
times the number of outputs, and as such, learning becomes slower. There is
also something fundamentally different between the covariance that comes from a
Bayesian tracker like the JIPDA and the covariance estimates from the MT3v3.
This is discussed in more detail in section 7.6.3.

7.1.4 Potential future architecture changes

Since the MT3v3 does not greatly alter the fundamental architecture of the MT3v2,
it is also based on the DETR from (Zhu et al. 2020). Since this is a parallel archi-
tecture, it does not explicitly use the estimates of the previous timestep to generate
the estimates for the current timestep. In terms of target tracking, and especially
when comparing to the Bayesian approaches, this could be a sub-optimal approach
when it comes to the accuracy of the tracker. Additionally, since the MT3v3 gener-
ates outputs in parallel, it is harder to compare it to a model-based approach, since
they process the information in the input on two fundamentally different premises.
For this reason, it is worth exploring an autoregressive decoder. The original Trans-
former architecture in (Vaswani et al. 2017) is autoregressive, and the literature on
autoregressive Transformers is vast. An autoregressive Transformer can naturally
model the joint probability of the entire output sequence given the input sequence
as a product of conditional probabilities, since each output is conditioned on both
the inputs and all previous inputs. This architecture approach is more in-line with
how the model-based trackers are formulated.

Another future architecture change could focus on the bearings-only problem.
As previously shown, the output estimates of the current MT3v3 stagnates fairly
early in training when only using angle measurements. It is thus likely that a major
change in the encoder or decoder would have to be made in order to achieve better
results on this task.

7.2 Benchmarking the MT3v3

The performance of the MT3v3 in a ”standard configuration”, i.e. with data gen-
erator parameters within the limits used during training, was tested and compared
to the CKF and JIPDA.

91



7 Discussion 7.2.1 Track initialization

7.2.1 Track initialization

The false detection and missed detection components of the GOSPA shown in
figure 6.11 shows how the MT3v3 performs in terms of track initialization and
convergence. Firstly, the MT3v3 on average takes longer to produce outputs that
are considered to be alive as compared to the JIPDA. This can be seen in how the
missed score for the CKF converges after around 5 timesteps, while the MT3v3
only does so after around 20 timesteps. The MT3v3 also never converges to the
JIPDA in terms of missed detections, As for false detections, the MT3v3 initially
decreases in the first few timesteps, then increases again, before finally decreasing
substantially from 25 timesteps and onwards. The false detections for the JIPDA
initially increases, then slowly decays across the scenario, but with a value much
higher than the MT3v3. Lastly, the error in position estimates for both trackers
appear to converge fairly quickly. Overall, this leads to a total GOSPA that is
lower for the JIPDA in the first 20 timesteps, before the MT3v3 catches up and
performs better for the rest of the scenario.

It is desirable for a tracker to correctly identify true targets in as few timesteps
as possible, especially when other parts of an autonomy system depends on the
situational awareness a tracker provides. That is, the longer it takes to establish
a track, the longer a potentially important target can exist in sensor view with-
out any other parts of the system being informed. Since the time delta between
measurements in the data generator is set to 0.1s, the 20 timesteps it takes for the
MT3v3 to establish tracks corresponds to 2.0s of wall-clock time. This will however
be different for every specific system the tracker will be part of, which means this
consideration needs to be made on a case-by-case basis.

7.2.2 Position estimates

The position estimates of the MT3v3 are considerably better than the MT3v2. As
discussed earlier, there could be numerous reasons for this – The full covariance
matrix estimation and the increased velocity predictor network size to name a few.
However, the training process itself could also have facilitated this. As indicated in
(Strøm 2022), the MT3v2 seemed to almost exclusively base the position estimates
on the values of the measurements, which is not the case for the MT3v3 to the same
extent. It is hypothesized that since the network is trained on a more varied set of
scenarios, that the network somewhat learns a general sense of motion model, and
how to weigh measurements against the expected target motion. It is important to
clarify that this type of weighing is not explicitly modelled, and is only assumed to
have been learned implicitly. Since the MT3v3 does not use doppler measurements,
it is also hypothesized that the network is forced into learn some concept of motion
model in order to separate true and false measurements.

Furthermore, it is hypothesized that the adaptive contrastive loss helps the
network during the training process, in the sense that localization errors will affect
the gradient of the loss function to a greater extent as α decreases. This could
in turn prevent stagnation in the learning process and allow for lower localization
errors.
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7.2.3 Velocity estimates

If the MT3v3 is to compete with other Bayesian trackers, is important that it
can produce good velocity estimates without any direct information about velocity
in the input (i.e. without doppler measurements). As shown in figure 6.12, the
velocity error for the MT3v3 converges to the velocity error of the JIPDA. However,
this takes about 80 timesteps which is very slow. Despite the slow convergence,
the errors in velocity are still acceptable after around 20 timesteps. As table 6.3
shows, the velocity errors across the entire sequence is only about 0.5 meters per
second higher for the MT3v3 compared to the JIPDA.

It is also worth noting that the errors in velocity estimates for the JIPDA
initially decreases below the CKF, but converges to a higher value than the CKF.
It is likely that this is caused by differing initial values for each filter’s initial state
uncertainty, as these were not kept the same throughout testing. When using
points in velocity space, the CKF also produces some false target estimates. This
is again likely caused by the way the CKF is initialized. Since there is no velocity
information in the very first estimate, the first velocity estimate will in all likelihood
also be far off the true velocity of the target. In velocity space, this estimate may
thus be seen as false.

7.2.4 Sliding window

A smaller sliding window will reduce the available information in the input se-
quence to the network. Since the MT3v3 was shown to use about 15 timesteps
to establish tracks, it is expected that using a window size smaller than this will
lead to poor performance. This aligns well with what figure 6.13 shows in terms of
missed targets. A smaller window size also produces more false estimates, which
could indicate that the network becomes overconfident in estimates when a rich
measurement history is not available. This could also be the reason for the spike in
false estimates seen between timesteps 1 and 20 in figure 6.11. Since 20 timesteps
was the lower bound on the number of timesteps for scenarios used for training, it
is possible that this poor performance is also the result of poor generalization to
short input sequences. Lastly, while the localization error is lower for all MT3v3
and sliding window combinations, this is mostly caused by zero localization error
due to not having correctly detected any targets.

7.2.5 Variation in birth and death

The MT3v3 performs worse when setting birth intensities to zero and lowering
the probability of survival. When the birth intensity is high, there are many more
targets in the scenario, and as such, worse performance is to be expected. However,
when setting lowering probability of survival, the MT3v3 also performs poorly. This
may be due to most targets in the scene dying before the long initialization period
required by the MT3v3 has passed.
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7.2.6 Variation in performance

As seen in figure 6.14, the MT3v3 performs very poorly in certain scenarios, in the
sense that it misses entire or parts of multiple tracks. This is observed for both
high and low clutter intensity, and even with pd = 1.0. By visual inspection there
does not appear to be any recurring effects that triggers this, except for potentially
the case where multiple targets maneuver close to one another. This performance
loss was also not observed for any scenario with less than four targets present.
In any case, missing tracks to this extent is detrimental to the usefulness of the
MT3v3 as a multitarget tracker, and understanding why these situations occur is
essential if the goal is to use this tracker in any real-world scenario. However, since
the MT3v3 is an end-to-end neural approach, interpretability is a challenge, as is
discussed in section 7.6.3.

On the other hand, there are scenarios in which the MT3v3 performs much
better than the JIPDA. These are exclusively scenarios where the JIPDA produces
many false tracks. This is consistent with the observations that the MT3v3 rarely
produces false tracks but misses more targets, while the opposite is true for the
JIPDA. All scenarios where the MT3v3 performs substantially better, including
those shown in figure 6.15, have between one and three targets present, and a
relatively high clutter density at certain regions of the sensor field of view.

The reason for the high variability between scenarios with few targets and
scenarios with many targets is not certain. A possible reason for this is simply
that scenarios like these are rarely generated during training. Concretely, finding
the first four scenarios where the MT3v3 had a total average GOSPA score of
more than two times that of the JIPDA took 2141 randomly generated scenarios.
Similarly, finding the first four scenarios where the total average GOSPA score
of the MT3v3 was less than half of the JIPDA took 9875 randomly generated
scenarios. Regardless of how frequent they appear, the worst-case performance of
a tracker is important to keep in mind, and for the MT3v3 this is particularly bad
when comparing to its average performance.

Another indicator of the variation in performance are the confidence intervals
throughout all MT3v3 results. In general, they tend to be higher than the CKF
and JIPDA. However, noting the difference in confidence intervals in table 6.2, it
appears that this variation is largely due to target initialization.

As figure 6.10 shows, the MT3v3 stops making false estimates after about 106

gradient steps, while the missed target loss remains higher than this. It is possible
that the MT3v3 either has not learned how to properly assign existence probabili-
ties, and that more training would improve this. It could also be that the MT3v3
has been trained for too many gradient steps, and that it becomes overconfident in
the estimates it learns to produce in training, and that an earlier checkpoint would
actually improve overall performance. The latter hypothesis would be in-line with
the bias-variance tradeoff, which explains how, as the error the network makes
decreases (bias), the greater the variation in the output will be for comparatively
smaller changes to the input. This was however not explored further.
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7.2.7 Handcrafted scenarios

In general, the JIPDA performs significantly better in the handcrafted scenarios.
In all the handcrafted scenarios, the MT3v3 produces more false tracks than when
using the data generator. The exact reason for this is uncertain, but it is hypothe-
sized that there are some numerical differences between the data generator and the
detector simulator that is causing the MT3v3 to make false estimates. It may also
be due to the fact that the time delta used in the detector simulator is not the same
as the data generator. Regardless of the cause of this difference, it highlights the
importance of testing a neural network tracking solution using other data pipelines
when determining its performance. Since only nmc = 1 was used, the confidence
intervals are large. These could be reduced by re-generating measurements from
the same ground-truth targets nmc > 1 times and calculating ensemble averages as
before. Doing so may alter the conclusion drawn from the data presented in tables
6.17 and 6.18.

Crossing targets

In all the first crossing scenario where two targets cross paths, the JIPDA correctly
tracks both targets throughout the entire sequence, although it establishes some
false tracks throughout the sensor field of view, some of which intersect with the
true targets’ paths. The MT3v3 performs worse, as the targets are not correctly
identified in the few meters before they cross. The crossing itself also impacts the
localization error negatively for some timesteps after. Although not shown in the
plots, the MT3v3 produces estimates that align well with both tracks throughout
the entire scenario, but at certain points their existence probabilities drop below the
fixed threshold. It thus appears that iteratively refining the existence probability
does not necessarily help in scenarios like these.

The second crossing scenario is more complicated as two targets cross a third in
parallel. However, the JIPDA handles this just as well as the simple crossing. The
MT3v3 misses more targets in this scenario, and the target moving vertically is not
correctly tracked until after both targets pass. One of the crossing targets is also
not detected in the timesteps before and after crossing. It is possible that the extra
target that crosses is in close enough proximity to the rest that the MT3v3 sees
these measurements as clutter, and thus stops producing track estimates. It is also
possible that employing an autoregressive decoder would alleviate these problems,
as the previous estimates would be taken into consideration when producing the
estimates at the current timestep.

Stationary targets are added to the first crossing scenario to create a third.
Doing so makes the JIPDA produce even more false tracks, but all targets are
still correctly identified and tracked. The MT3v3 estimates the stationary target
positions more accurately than the JIPDA, but this comes at the cost of much worse
performance on the moving targets. In total this amounts to an even higher missed
target rate in this scenario as compared to the first. It is uncertain why adding
stationary targets so drastically changes the estimates for the crossing targets, but
it may be an indicator that the MT3v3 expects that the existence of a single target
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in a region decreases the likelihood that other measurements around it are also
from other targets. This would also explain the track fragmentation that occurs
around the region where two targets cross paths.

Parallel targets

When two target approach one another, the JIPDA correctly tracks both targets
throughout the entire sequence. However, it also produces a third false track that
evolves alongside one of the targets. This false track may be the result of a com-
bination of clutter measurements aligning with true measurements, and that the
measurement noise makes a single track appear as two separate ones. Where the
JIPDA creates a third false track, the MT3v3 instead misses the true target, while
the second true target is tracked well. There is no significant difference in the total
GOSPA score for the two trackers in this scenario. However, the MT3v3 score is
actually mostly composed of false tracks, and not missed targets.

The JIPDA does not produce the extra third false track for the scenario where
the two targets move together, which may indicate that this was an one-off error
caused by the specific combinations of true and false measurements. However,
taking into consideration the whole sensor view, the JIPDA produces the same
score in terms of false tracks for this scenario. The MT3v3 also manages to track
both targets well without the fragmentation seen in the parallel approach scenario.
In any case, the two trackers do not produce significantly different total GOSPA
scores here either.

As for the three maneuvering targets, the JIPDA produces multiple tracks in the
regions where all three targets are close to one another. It also does not manage
to correctly track all turns that two of the targets make. However, it performs
significantly better than the MT3v3, which struggles to establish all three tracks,
and only partially tracks the targets once established. However, it appears to better
adapt to the hard turns that they make. This indicates that the MT3v3 either has
not learned a concept of ”motion model” and mostly follows the measurements, or
that it has learned that targets can make sharp turns, and combines this knowledge
with the measurements. Again, while not shown in the figures, the MT3v3 produces
output components that align well with all targets throughout the entire scenario,
but many of these components have very low existence probabilities.

Summary of the handcrafted scenarios

The goal of the handcrafted scenarios was both to test how the MT3v3 handles
specific scenarios that can appear in the real world, but that have not been seen
in training. There are also additional challenges with using data that originates
from an entirely different simulation scheme. The JIPDA either performs as well or
better than the MT3v3 in all scenarios, and the MT3v3 struggles to create output
estimates that have a high existence probability for a large majority of timesteps
in most scenarios. This indicates that more work need to be put into how the
existence probabilities are generated for the MT3v3 to be more robust in such
conditions.
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7.2.8 Validity of the benchmark procedure

The CKF has not been considered much when explaining or discussing the results,
since it is ”cheating” the tracking task. Instead, it can be used to reveal implemen-
tation or testing errors, if the false components of its GOSPA score is not zero or
any tracker performs better than it. It is also used as an indicator of how optimal
the other trackers - the close to the CKF the other two trackers are, the closer they
are to performing as good as they possibly could.

GOSPA and its decomposition was the only performance metric that was con-
sidered throughout the benchmarking process. This was done as an attempt to
standardize how any given scenario was tested, but this has certain disadvantages.
For example, while the missed target component offers some insight into how well
the targets are tracked, it does not offer any insight into how fragmented tracks
are. As discussed earlier, the MT3v3 has no notion of what a ”track” is, and so
further development would have to be made in order to facilitate the use of other
performance metrics. It is thus important to keep in mind that this benchmarking
procedure cannot be considered exhaustive, as it provides partial insight into how
the trackers perform. A full discussion on how to exhaustively test a tracker is well
outside the scope of this thesis, but is also an important consideration for future
work.

A perfect comparison between the MT3v2 and MT3v3 cannot be made either,
since they operate on fundamentally different information. As discussed in section
3.3.2, the doppler component especially for the MT3v2 can be used as a strong
discriminant between true and false measurements, as well as providing some in-
formation about the cartesian velocity of the targets. The MT3v3 also sees more
varied data, and is designed to operate on a wider set of scenarios, as opposed
to the task-specific MT3v2. The MT3v3 will also use the entire measurement se-
quence when producing output estimates. For these reasons, the MT3v2 was left
out of many of the benchmarks, especially when testing generalizability and on
hand-crafted scenarios.

As previously mentioned, the IMM-JIPDA (which as a reminder is simply re-
ferred to as the JIPDA throughout the text) was selected as the ”Bayesian tracker
to beat”, as opposed to the more sophisticated PMBM and δ-GLMB trackers that
were used to benchmark the MT3v2. This was a conscious decision made early
on, as there were doubts around the thoroughness of the reported MT3v2 perfor-
mance, and how the MT3v3 would perform without doppler information and the
other architectural changes. The VIMMJIPDA implementation that was used can
be configured to not use visibility (V) and multiple models (IMM), which would
reduce it to a normal JIPDA. However, since the MT3v3 was designed to oper-
ate on a range of different scenarios, which includes targets with different motion
models, it was decided to keep the IMM component.

When presenting results, it is explicitly stated whether or not the JIPDA was
tuned beforehand, as this is an important consideration to make, and will be fur-
ther discussed in section 7.5. As described in section 7.2.7, the JIPDA makes
significantly more false tracks than the MT3v3 across all tests, while missing fewer
true targets. By increasing the track confirmation threshold, a more optimal bal-

97



7 Discussion 7.3 Training scenarios

ance between false and missed targets could potentially have been found for each
scenario. If this threshold is set too high however, the very fast track initialization
times seen in the JIPDA may be impacted negatively. The opposite is true for
the MT3v3, as it misses significantly more targets than the JIPDA while simul-
taneously producing much fewer false tracks. The poor initialization time for the
MT3v3 could thus also potentially be improved by tuning the existence threshold
for specific tasks. As explained earlier, whenever scenarios were generated using
parameters within the ranges that were used for training the MT3v3, the JIPDA
was given the exact tuning parameters used. It is argued that this is a fair middle-
ground for both trackers, since such scenarios are to be considered ”known” to the
MT3v3, and providing true scenario parameters is the only way to make a specific
scenario ”known” to the JIPDA as well. On the other hand, whenever parameters
outside of the training ranges were used, it is argued that the JIPDA would be given
an unfair advantage by being provided with the true scenario parameters. Tuning
each tracker for every test scenario would also take up considerable time, and in
a real-world scenario it is not reasonable to expect the tracker to be continuously
tuned.

7.3 Training scenarios

As shown in figures 6.2 and 6.1, the old and new data generator respectively produce
very different scenarios. By enriching the target birth process, the MT3v3 can
train on a more varied dataset that covers a greater part of the sensor FOV. The
method implemented for the MT3v3 specifically also scales with the FOV, unlike
the MT3v2 which leads to a smaller portion of the sensor FOV being covered as the
total surveilance area increases. Furthermore, in open-sea scenarios or scenarios
with few occlusions, the majority of targets will enter into the sensor view at the
edge of its field-of-view. As such, it is argued that the target birth model developed
for the MT3v3 is an improvement over its last generation counterpart.

The standard way to organize data is to split it into training-testing or training-
validation-testing. These names are very descriptive for what each data set is used
for. Training data is used for training the network, while the test data is left out
of the training procedure in order to assess the generalizability of the network, i.e.
how well the network performs on unseen data. Validation data can be used in
order to assess how the network is doing while training and give an estimate of the
expected test performance. This is especially important for a fixed dataset that
may be used multiple times throughout the training loop. However, all versions of
the MT3 trackers use a data generator that can produce arbitrarily large datasets.
As such, training and test data is simply generated on-demand.

Batch gradient descent is not possible when data is generated on-demand. This
would instead require all data to be generated and stored ahead of time, but is
infeasible in practice, which can be illustrated with some napkin math. Consider a
data generator where two targets produce measurements and two clutter measure-
ments are present at every timestep on average, and each scenario is on average
100 timesteps long. Storing these simulated measurements and their associated ids
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using 32 bit floating points would result in 8GB of total data. While this is not
necessarily a large amount for the current generations of compute units. However,
using the MT3v3 average inference time in the training loop of around 250ms, a
single training step would take almost 16 days. A more reasonable approach is
taken, utilizing the parallelizability of the transformer, by generating the maxi-
mum number of scenarios that can be kept in memory at once, treating it as a
single batch and updating the learnable parameters after processing this batch.
This approach of generating a batch of data on-demand and updating the network
parameters after processing said batch indirectly constitutes mini-batch gradient
descent.

7.3.1 Sensor placement

It is also worth noting that while the sensor can be placed anywhere in the cartesian
plane, it will be fixed throughout all scenarios. A moving sensor would increase the
variation in each scenario significantly, and would add an additional challenge that
the MT3v3 would have to solve. Introducing a moving sensor platform would either
require extra pre-processing to use the MT3v3 in its current state, but perhaps more
interesting would be to adapt the input of the MT3v3 to also contain the pose of
the sensor at the time of each measurement.

7.3.2 Scenario parameters

The bounds for the parameter distributions used for training scenarios as presented
in table 5.2 were chosen through a subjective evaluation, where the goal was to
achieve some variety in the training data while not requiring an infeasible long
training period. However, such an approach is in a sense very arbitrary, and the
effect of introducing such a variation in the training data was not tested. It would
be possible to train two networks, one using the aforementioned distributions, and
one with fixed parameters, and benchmark them against one another. This was
however not done, as the MT3v3 was only trained using the full 1.9 · 106 gradient
steps once. It is also unknown whether this way of training the MT3v3 is the most
efficient. For example, it could be more computationally efficient to generate fewer
scenarios, but reusing them multiple times.

7.4 Generalizability

Good generalizability is important for several reasons – Robustness, real-world
application and efficiency to name a few. The importance of each of these will
of course depend on the purpose of the tracker. For example, if the purpose of
spending resources to set up and train the MT3v3 is to get a tracker that is to be
used in the real-world as part of an autonomy pipeline, it is very important that the
network performs well on real-world data without needing to see all potential input
data during training. Real-world data will not necessarily follow the distributions
defined by the MT3v3 data generator, and can be affected by effects that are
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not explicitly modelled by the data generator. One of the main motivating factors
behind the design of the MT3v3 was, as previously mentioned, a desire for increased
robustness to varying scenarios. In this regard, good generalizability implies good
robustness.

Generalizability was tested by simply changing some of the parameters of the
data generator. To limit the scope of the experiments, the parameters λc, pd and
Σr were selected as the main parameters to change. In addition, the MT3v3 was
tested with very long input sequences in order to assess the effect of input sequences
much longer than those seen during training.

7.4.1 Clutter intensity

It was shown in (Pinto et al. 2022) that the MT3v2 outperformed the Bayesian
state-of-the-art trackers used for benchmarking by a large margin in scenarios with
a lot of clutter. However, since the doppler component used in the MT3v2 could
be used to discriminate between a large majority of true and false measurements,
it was not given that the MT3v3 would perform as well in scenarios with high
clutter intensity. However, as shown in table 6.10, the MT3v3 does not miss any
more targets in scenarios with a clutter intensity that is 5 times higher than the
maximum intensity seen in training. The MT3v3 does end up making false tracks
more often in these high-clutter scenarios, but nowhere near as many as the JIPDA.
When increasing the clutter intensity past a certain point, in this case by 20 times
the maximum intensity seen in training, the MT3v3 ends up missing all targets,
while the JIPDA almost exclusively produces false tracks. It is unreasonable to
expect great performance in such a case, since the ratio between false and true
measurements is extremely high. While the MT3v2 managed to produce some true
tracks while missing fewer targets through similar clutter intensities, the difference
in distributions of doppler between true and false measurements are again a likely
cause for this.

7.4.2 Probability of detection

As shown in table 6.9, the MT3v3 performs very poorly when provided with a
scenario generated using a probability of detection that is much lower than that
used for training. The MT3v3 ends up missing almost all tracks when pd = 0.4,
even while the rest of the data generator parameters are set to their median values,
resulting in a total GOSPA that is much higher than the IMM-JIPDA. This is a
result that is to be expected, given the relatively long track initialization time of the
MT3v3. It is likely that the network does not attend to a set of true measurements
well enough when there are unexpectedly large gaps between measurements, leading
to either no outputs that land near a true target, or that the components that do
have an existence probability that is too low. Testing a detection probability higher
than the maximum value seen in training, that is > 0.95, was not done, since this
case will only provide more information to the network, and thus it is highly unlikely
that it produces worse results than with any lower pd.
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The probability of detection for any particular target for a given environment
in the real world can vary quite heavily (Bocquet 2011), and since the MT3v3
cannot be tuned on-the-go, the poor performance when pd is low may be a limiting
factor. This is especially the case if the MT3v3 is to be used in any safety-critical
operations.

7.4.3 Measurement noise

It can be argued that good generalizability in the measurement noise is not as im-
portant as other factors, since measurement noise can somewhat be known a-priori
using information provided by the sensor manufacturer. However, it can still be
used to get some insight into how output estimates are affected by the inputs. As
with the previous experiments, measurement noises below the smallest values used
in training were not tested. Since it is already shown that the MT3v3 is overcon-
fident in the measurements when generating target estimates, lower measurement
noise would simply lead to a lower localization error.

As shown in table 6.11, increasing the measurement noise by a factor of 10 did
not significantly impact performance. The localization error is somewhat larger,
which is reasonable given that the true measurements in these scenarios are of
lower quality. When increasing the measurement noise by a factor of 100, both the
number of false and missed targets increase significantly. This may indicate that
the MT3v3 does not attend to some true measurements when they end up too far
apart from one another, as a result of the largely increased measurement noise.

7.4.4 Input sequence length

As presented in table 6.16, increasing the sequence length to 1000 timesteps does
not significantly affect performance. While the total GOSPA is somewhat lower,
it is within the confidence interval of the scenarios with 100 timesteps. The total
GOSPA may also be lower simply because the higher scores that are seen in the
beginning of a scenario will have less impact on average GOSPA as the sequence
length increases.

7.4.5 Improvements over the MT3v2

Since the MT3v2 was trained for 4 different tasks, while the MT3v3 is trained for
a single, more varied ”task”, a direct comparison cannot be made for performance
between the two. However, the very poor cross-model test results that were shown
in (Strøm 2022) indicate that the MT3v2 will only perform well on scenarios that
are seen during training. Since the MT3v3 is given more varied scenarios in train-
ing and performs well across the entire range of data generator parameters, while
also providing reasonable performance for more difficult scenarios, it appears that
enriching the training data yields a better performing tracker. This is not unex-
pected, as anything the network can learn is entirely dependent on the input data
it is provided.
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It is important to point out the difference between generalizability in the context
of unseen data from the same distribution that was used to generate training data,
and generalizability to data that comes from a different distribution. All MT3
architectures perform well on unseen data from the same distribution that was
used to generate the training data. The task-specific MT3v2s outperform the
MT3v3 in the specific tasks they were trained for, which is reasonable given that
the MT3v2 was designed to be trained against a fixed task, and can use doppler
information from the input measurements. However, there is no guarantee that
data from, lets say, a real world scenario could be modelled adequately using the
very same parameters that were used for one of these specific tasks. In this case,
it is likely that the MT3v3 would perform better, simply because there is a greater
probability that the data distribution from such a scenario could be adequately
modelled using a combination of the parameters that were sampled during training.
This performance would likely be a result of the MT3v3 having ”seen” more data
distributions during training. As demonstrated when setting the probability of
detection far below the values used for training, or the clutter intensity very high
above those used in training, the MT3v3 may also be flexible enough to handle
scenarios that cannot be fully modelled by the training data.

7.5 Why use the MT3v3

Benchmarking the MT3v3 against JIPDA has provided valuable insights into the
advantages of using MT3v3 for target tracking, while the additional development
efforts that went into the MT3v3 implementation have also introduced additional
benefits to using the MT3v3. It is important to consider this, as

A Transformer-based tracker must at the very least perform better than
a JIPDA to be considered for future research. – Edmund F. Brekke

Put in other words, if the MT3v3 does not offer any benefits over a ”simple” multi-
target tracker such as a JIPDA, then it is difficult to justify spending computational
resources or additional research time on Transformers for point-object tracking.

7.5.1 Robustness and flexibility

The MT3v3 provides much lower position errors than the MT3v2 in the scenar-
ios that were tested using both trackers, which is a clear cut improvement over
the previous generation of MT3. Since the MT3v3 also provides good velocity
estimates without doppler measurements, it is possible to use the MT3v3 in au-
tonomy pipelines which utilize sensors that do not provide doppler, in contrast
to the MT3v2 which in this case would perform very poorly. It can also support
an arbitrary number of input measurements, which minimizes the pre-processing
required to integrate the MT3v3 with existing systems.

It was also shown that the MT3v3 handles an increase in both clutter intensity
and measurement noise significantly better than the JIPDA. It could thus be advan-
tageous to use the MT3v3 in situations that cannot be reasonably be modelled as a
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constant, which would avoid having to estimate λc online. Since the GOSPA score
of the MT3v3 is significantly better than the JIPDA after about 15 measurements,
it could be reasonable to employ the MT3v3 to track long data sequences. This
use case is further substantiated by the fact that the MT3v3 can utilize the infor-
mation in every available measurement with a negligible change in inference time.
While not tested, this implies that there is potential for performance gain over the
JIPDA in the case that the first-order Markov assumption does not hold. Lastly,
the MT3v3 does not explicitly perform any linearization in the measurement space
to state space transformation, and so it is hypothesized that performance loss due
to strong non-linearities can be mitigated.

7.5.2 Ease of use

While this relates more to the implementation and practical sides of the MT3v3,
they are still important to consider. The MT3v3 was implemented with ease of use
in mind. Support for measurements in common data structures such as Python
lists and Numpy arrays was added through a utility library, and get-started ex-
amples were written to minimize the friction of getting started with training and
inferencing with the MT3v3.

The MT3v3 is also fairly lightweight. The entire pretrained network is just
over 200MB and achieves 50 inference steps per second on an NVIDIA RTX A2000
mobile GPU. There is also no extra memory overhead caused by the MT3v3 itself
when the number of input elements increases, and the inference time does not
change significantly with an increasing number of inputs.

Almost every tunable parameter is set before training, and as such, the task
of tweaking and tuning can be performed almost entirely offline. This can be
advantageous as it reduces deployment time given that the MT3v3 ”just works”,
and is an advantage that most end-to-end neural solutions share. Since the data
generator has been enriched in the MT3v3, it has seen more scenarios and can
utilize this information to generalize somewhat well outside of known scenarios.
The improved data generator is also flexible in that it is backwards compatible with
both the MT3v1 and MT3v2, as both cartesian and polar measurement models are
available. Doppler can also be turned on and off.

Lastly, there is very little modelling work required for the MT3v3, as it is
assumed that the network will learn this automatically. This is especially ad-
vantageous for effects that are not necessarily straight-forward to model and/or
incorporate in a Bayesian tracker. For example, while the bimodal birth model in
the data generator can be explained with a few equations, more work would have
to go into developing and implementing the Bayesian tracker, while the MT3v3 will
instead likely learn these effects through the training process without any explicit
instructions or clever ways of incorporation of this information.
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7.6 Why not to use the MT3v3

While there are certain advantages to using the MT3v3, there are also significant
downsides that must be taken into consideration.

7.6.1 Offline training

A downside that is immediately clear is that the MT3v3 has to be trained offline,
and is one that all neural networks share. While a pretrained MT3v3 network is
provided, any changes either requires additional training, or a complete retrain of
the network. This process is very computationally expensive, and requires a GPU
with a large quantity (over 20GB) of memory. Some rough estimates using the
IDUN hardware setup as an example, training the MT3v3 for 3.5 ·106 takes around
200 hours (wall-clock) and consumes about 100 kWh. While this is insignificant
when comparing to massive-scale models like the GPT4, it is still a cost that must
be considered, and if this cost is not deemed to be worthwhile to spend, the MT3v3
cannot be used aside from the the pretrained network that is provided. The need
for retraining when changing certain network configuration parameters thus also
hinders flexibility.

7.6.2 Variation in performance

The good average performance that the MT3v3 achieves is plagued by high vari-
ation in performance, as discussed previously. While no upper bound for GOSPA
score has been determined for the MT3v3, the poor performing scenarios show
that this will be much higher than the JIPDA. At certain points, the MT3v3 will
miss an entire track where it is reasonable to assume that it should have been able
to. Given how poor the MT3v3 has been shown to perform, it cannot be trusted
for any safety-critical application. This includes most autonomy pipelines that are
deployed in the real-world outside of controlled experiments. As such, the MT3v3
must still be considered a research object.

7.6.3 Black box architecture

The variation in performance is hard to reason with due to how the MT3v3 by
nature is a black box. Attention maps can offer some insight by indicating which
inputs the network considers significant when generating outputs. However, these
maps fail to provide explicit information about how the measurements are utilized
to generate outputs. Furthermore, projecting measurements into feature space adds
a lot of complexity which makes interpretation very challenging, or even impossible,
as the features are entirely learned throughout the training process. Even if the
features could be fully explained, which is highly unlikely, one would still need to
describe how these features are combined with the selected anchor measurements
in order to produce the final outputs. This would include an explanation of how
the selection mechanism determines what measurements are ”best”.
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Lastly, while the outputs contain uncertainty estimates, there is no way to
guarantee that this reflects some inherent uncertainty that the network actually
has when generating measurements. This adds another layer of obscurity when in-
terpreting measurements, and can be detrimental to how the estimates are actually
used in an autonomy pipeline that relies on this. As the NEES plots show, the
state uncertainties do not correspond well to the estimate error of the MT3v3, and
it is likely that this is caused by the disconnect between the uncertainty estimates
and the inherent uncertainty in the network, if such a thing can be established.
This lack of correspondence between state error and uncertainties that cannot be
tuned away may deter users from the MT3v3.

As the MT3v3 is an end-to-end network, no information about the targets or
environment is given a-priori. While this comes with the advantage of ease of use, it
also discards a lot of potentially useful information that could be used to generate
better estimates or learn quicker. This total lack of probabilistic modelling also
contributes to the black-box effect.

7.7 The bearings-only MT3v3

The bearings-only tracking problem was tested with the MT3v3 due to how simple
it was to set up. No architectural changes were considered and no existing literature
was consulted. A single network was trained in two batches, which was shown in
figures 6.21 and 6.22. The network appears to quickly learn to place all hypotheses
in a straight line between the sensor and the estimated bearing of the target, which
is reasonable, given that there is no information about range directly available in
the measurements. However, it does appear that the components which are further
away from the target receive less existence mass on average, as compared to the
components that are closer to the target. In any case, as evident in the certainty
distribution plot, the network eventually stagnates and is unable to be confident
in what existence probability each output component should receive. It is not
expected for this to happen without a major change to the network architecture,
again due to the very limited information at the input.
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Conclusion

With the rise of increasingly more intricate applications of autonomy, so does the
requirement for good situational awareness systems. A tracker tracking system
that is capable of tracking multiple targets over time is an integral part of many
such systems. The current research field of multi-target tracking is roughly split
in two, the purely Bayesian domain which utilizes explicit probabilistic modelling
of the multi-target problem, and the neural network domain where the modelling
effort is replaced by clever neural network architecture design and offline training.
Transformer trackers is a subsection of the neural tracking domain and is in large
dominated by camera tracking. There is a gap in the neural tracker research, as
comparatively little effort has gone into Transformer trackers that use point-object
as their input. This thesis serves as a contribution to the point-object Transformer
tracking literature, by expanding upon the limited existing work in this field.

8.1 Addressing the title assertion

As per the title, the goal of this thesis was to contribute to the field of Transformer-
based point-object multi-target trackers by providing a new architecture that is
more flexible and robust than the existing alternatives. The main contribution of
this thesis is thus new generation of MT3 tracker, namely the Multi-Target Tracking
Transformer v3 (MT3v3). This is an end-to-end neural tracker for point-objects,
and builds upon the previous MT3v1 and MT3v2 architectures of (Pinto et al.
2021a) and (Pinto et al. 2022). The MT3v3 produces estimates of targets’ carte-
sian positions and velocity from polar measurements without requiring doppler
information, and can support an arbitrary number of measurements at the in-
put. By only utilizing range and bearing measurements, while still providing good
velocity estimates at the output, the MT3v3 is flexible to be used in autonomy
pipelines that utilize sensors such as low-cost radars or lidars that do not provide
doppler information. Robustness was improved by altering the training scheme
for the MT3v3 in numerous ways, and the generalizability of the fully trained ar-
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chitecture was tested. Compared to the MT3v2, the MT3v3 performs as good or
better in terms of GOSPA on a set of generated scenarios. Using an IMM-JIPDA
and a CEKF as the upper and lower baseline for error, the MT3v3 is also shown
to produce good results in terms of localization and identifying targets in certain
scenarios of varying complexity. However, the number of timesteps required to
initialize tracks is comparatively high. The worst-case performance of the MT3v3
is also very poor, and it is significantly outperformed by the IMM-JIPDA in a
set of handcrafted MTT scenarios. This variability in performance together with
its black-box nature means that the MT3v3 should still be considered a research
object.

8.2 Future work

There are many reasonable steps to take forward from the MT3v3, but based on
the work done in this thesis, the most prominent future developments involve

1. Designing an autoregressive decoder for an MT3 architecture

2. Tackling other tracking problems, such as bearings-only tracking.

3. Using the family of MT3 architectures to design a hybrid neural-Bayesian
tracker.

Firstly, it is hypothesized that an autoregressive decoder would allow the architec-
ture to more easily learn to weigh an associated measurement with some learned
relationship between the measurement history and the motion of the targets present
in said measurements. This could further lead to a faster track initialization times
and a further reduction in localization error, especially for increasing measurement
noise and low probability of detection. Secondly, Transformers exceed in modelling
dependencies that extend far into the past of the input sequence, and requires
no explicit modelling of the task to be solved. This could be exploited in solv-
ing other problems in the tracking domain, such as bearings-only tracking. The
MT3v3 could easily serve as a starting point for experimenting with this, by sim-
ply removing the range part of the input measurements. Lastly, there may exist
a best-of-both-worlds architecture that uses both neural and Bayesian techniques.
An example of this could be that modelling the motion of maneuvering targets is
a well-known problem, and multiple different such models are used in the IMM
scheme. However, measurement-to-track association gets increasingly complex as
the number of measurements in the input sequence increases, and simplifications
have to made in any real-time tracker that utilizes data association. In contrast,
Transformer architectures can be designed to produce outputs at about the same
speed regardless of the number of input elements. Utilizing a Transformer as a
pre-processor for a Bayesian estimator could thus provide a good alternative to the
end-to-end style that the MT3 trackers are designed in.
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