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Abstract

Calibration is a central topic for the field of autonomous systems, as an assumption
of accurate calibration is an assumption that is made whenever sensor data is used
to build a model of the world around the system. Despite this, calibration is mostly
performed by hand and by using specialized methods and infrastructure. This is
inefficient and if the properties of the sensor changes, even if only slightly, during
operation, then using the now wrongful calibration can have fatal consequences.
One set of calibration parameters that all sensors have are the extrinsic calibration
parameters, meaning the position and orientation of the sensor.

The Hand-Eye calibration problem is a mathematical equation whose solution
is the unknown extrinsic calibration of a sensor. If the sensor to be calibrated is
capable of estimating its egomotion, then the equation can be solved entirely by
the use of captured data. Such a method for data-driven estimation of the extrins-
ics enables on-line fault detection and re-calibration, and the Hand-Eye equation
thus motivates further study. The extrinsic parameters are however unobservable
through Hand-Eye calibration when purely planar motions are concerned, which
leads to poor performance for the nearly planar ship-data in focus for this thesis.

Previous work by the author in the specialization project and associated con-
ference paper has shown it possible to perform Hand-Eye calibration to find the
orientation of ship-mounted camera, when the camera motion is reconstructed
using egomotion algorithms. This thesis entails in-depth analyses of the specific
challenges of using the nearly planar ship-data for Hand-Eye calibration. This is
done by analysing the Park-Martin Hand-Eye solver in detail. New methods re-
garding the numerical properties of data for use in Hand-Eye calibration are de-
rived and used to further improve the possibility of on-line, real-time calibration
of ship-mounted cameras’ extrinsic parameters through purely data-driven, and
therefore automatic, methods.
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Sammendrag

Norwegian translation of the abstract.
Kalibrering er et sentralt tema innenfor autonome systemer som følge av at ant-
akelsen om kalibrerte sensorer alltid er tilstede når sensordata brukes til å utvikle
en modell av verden rundt det autonome systemet. Til tross for dette gjøres kalib-
rering i dag stort sett for hånd ved hjelp av spesialiserte metoder og infrastruktur.
Dette er ineffektivt og dersom sensorens egenskaper endres – selv en liten endring
– under operasjonen av det autonome systemet, vil den nå inkorrekte kalibrerin-
gen kunne ha fatale konsekvenser. Et sett kalibreringsparametere felles for alle
sensorer er de ekstrinsiske kalibreringsparameterne, det vil si posisjonen og ori-
enteringen av sensoren.

Hånd-Øye-kalibreringsproblemet er en matematisk ligning, hvor dens løsning
er den ukjente ekstrinsiske kalibreringen av sensoren. Dersom sensoren som kal-
ibreres har evnen til å estimere sin egen bevegelse kan ligningen løses i sin helhet
ved hjelp av innsamlet data. En slik metode for datadrevet estimering av de ek-
strinsiske parametrene muliggjør feildetektering og re-kalibrering under kjøring
av det autonome systemet. Dermed motiverer Hånd-Øye-ligningen til videre un-
dersøkelse. De ekstrinsiske parameterne er dog ikke observerbare for Hånd-Øye-
kalibrering når det gjelder rent planare bevegelser, noe som fører til dårlig ytelse
for den nært planare skipsdataen som er fokuset i denne oppgaven.

Gjennom prosjektoppgaven og en tilknyttet konferanseartikkel har forfatteren
vist at det er mulig å utføre Hånd-Øye-kalibrering for å finne orienteringen av et
skipsmontert kamera når kamerabevegelsen er rekonstruert ved å estimere kam-
eraets bevegelse ved hjelp av dens egen data. Denne masteroppgaven tar for seg
en dybdeanalyse av utfordringene knyttet til bruken av nært planare skipsdata for
Hånd-Øye-kalibrering. Dette er gjennomført ved å analysere Hånd-Øye-løseren
kalt Park-Martin i detalj. Gjennom denne analysen utledes nye metoder for å un-
dersøke de numeriske egenskapene til skipsdataen. Disse metodene er deretter
brukt til å videre muliggjøre online sanntidskalibrering av skipsmonterte kamera
sine ekstrinsiske parametre gjennom rent datadrevne, og dermed autonome, met-
oder.
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Chapter 1

Introduction

The field of autonomous systems is rapidly evolving, and in Norway, the focus is in
large part on autonomous ships. With Norway’s long coast and naval traditions,
this is not a surprising development. Today, several projects with semi- or fully
autonomous ships are being tested in Norwegian waters, with projects such as
Yara Birkeland and Asko Maritime paving the way for efficient and innovative
transport of people and goods. These advances have been in part, or even fully,
enabled by advances in sensor fusion and as a consequence the accuracy of the
calibration of these sensors is more vital to operations than ever.

Any sensor is in principle a method of perceiving the environment given some
assumed relationship, the measurement model, between the environment and the
obtained measurement data. This way, sensors act as an autonomous system’s eyes
and ears in enabling perception of the environment, decision-making, and navig-
ation, among others. To do these tasks safely, efficiently and confidently requires
accurate calibration of the sensor-suite. Accurate calibration of the sensors ensures
their assumed measurement model is as reflective of reality as possible, allowing
for safe use of the measurements. All sensors have a specific set of parameters
that make up the calibration of that sensor, and typically all these parameters
must be calibrated in a way unique to the sensor. However, one important set of
calibration-parameters that is calibrated more or less the same way for all sensors
are the extrinsic parameters, meaning the position and orientation of the sensor.
To illustrate the importance of accurate knowledge of sensors’ extrinsics, consider
an algorithm using camera images for automatically detecting obstacles in front of
an autonomous car. If the orientation of the camera shifts during operations, the
perceived position of obstacles is no longer accurate. This can lead to dangerous
and even fatal consequences.

A popular method for performing calibration of the extrinsic parameters of
a camera, when said camera is mounted on a robotic arm, involves solving the
Hand-Eye calibration problem. This problem is a mathematical matrix equation, for
which the unknown variable is the extrinsic calibration [1]. The equation is simple
and concise, and is in principle only based on a handful of equalities. Research on
the problem since its inception in 1989 has mostly focused on specialized solvers in

1



2 Daniel Bjerkehagen: Automatic extrinsic calibration

an attempt to estimate the extrinsics with lower error and shorter runtime [2, 3],
and some solvers are able to get as close as within 0.1◦ and 2 mm of the ground
truth parameters in optimal, controlled experiments. The problem formulation
mostly makes use of the ability to estimate the pose of a camera between two
images [4], but in principle any sensor whose data enables egmotion estimation
can have its extrinsics solved by Hand-Eye calibration.

Egomotion estimation is the problem of finding the motion of a sensor relative
an often assumed static environment. For cameras, this can be done efficiently
when a calibration plate is available, but multiple algorithms exist for performing
egomotion estimation even in unstructured environments. This is often performed
by detecting and tracking geometric features in the images, and such methods
have enabled the use of the dense camera information.

Previous work by the author has shown how it is possible to recognize that a
ship with a mounted camera has the same set of measurements as the classical
Hand-Eye problem formulation. In the specialization project leading up to this
thesis it was shown how one could go about estimating the camera orientation of
a ship-mounted camera by formulating and solving a fitting Hand-Eye calibration
problem, a conclusion corroborated by simulations using real-world data resulting
in around 2◦ estimation error. Using the Hand-Eye framework with camera for this
setup is advantageous in multiple ways, most chiefly in it being purely data-driven
and as such requires no extra infrastructure neither on the ship nor in the dock. But
utilizing the HE calibration problem to this end also highlighted some important
questions unanswerable by established theory. It has been known since the first
papers on the problem that only two motions of the system of non-parallel axes
of rotation are enough to make the orientation of the camera relative the robotic
arm observable [1, 5], but not much literature exists on quantifying the effect of
the nearly parallel axes that ship motions result in. Moreover, established theory
deals in qualitative measures when describing the optimal datasets for Hand-Eye
calibration when the system can be commanded to take any pose [6, 7], but leaves
something to be desired when it comes to deciding how datapoints should be
picked and paired in a dataset consisting of a possibly very large amount of data.

With a motivation to answer these questions and simultaneously develop meth-
ods to more easily analyse the Hand-Eye calibration problem, this thesis develops
new theoretical frameworks. The derived theory enables the quantification of in-
formation present in any single datapoint to be used in Hand-Eye calibration, rel-
ative the entirety of a dataset. This is done by analyzing a specific Hand-Eye solver
with properties advantageous for such developments, the Park-Martin solver. En-
abled by the theoretical derivations in this thesis, methods are shown capable of
estimating the camera orientation to within 1.3◦ of the ground-truth values, and
performing the estimation accurately with 3 times fewer datapoints than previ-
ously demonstrated. The theoretical framework enabled also opens the door to
interesting questions to pursue in future work.

The problem of estimating the position of a ship-mounted camera is not con-
sidered neither in this thesis nor the spesialization project, due to this problem
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still being difficult to solve for ship-like movements.

1.1 Organization

This thesis is organized into parts roughly defined as follows:

• Introductory material and existing theory in literature, Chapters 1 and 2.
• New theoretical derivations done in this thesis, Sections 3.1 to 3.3.
• Proposed methodology, Sections 3.3.5 and 3.4.
• Simulation results testing derived theory and proposed methodology, Chapter 4.
• Discussion and conclusion of results in this thesis, Chapters 5 and 6.





Chapter 2

Theory

2.1 Coordinate frames

Coordinate frames are used to represent the poses of rigid objects as well as
describing the transformation of vectors between multiple rigid objects. For 3-
dimensional space, defining the coordinate system A is done by defining three
orthonormal vectors, or axes, (xA,yA,zA) centered at an origin OA. With this, any
point may be defined relative to frame A as a unique linear combination of the
three axes.

Further, if three new orthonormal vectors are defined as a linear combination
of the coordinate axes of frame A one may define a second coordinate frame.
Naming this coordinate system B, defining its origin OA

B and collecting its axes
into the columns of a matrix RAB as in Equation (2.1), we are able to define the
orientation and position of B relative to A numerically.

RAB =



xA
B yA

B zA
B



 (2.1)

2.1.1 Notation

In this thesis, the following notation is adhered to when it comes to the notation
of coordinate frames and similar mathematical objects.

• Any non-scalar object is given in bold. v,A.
• Vectors are written in lowercase, matrices in uppercase.
• When relevant, the coordinate system for which a vector is defined in is

superscripted. va. When not relevant, this is omitted.
• Coordinate transforms are given on the form Hab, being understood as either

a matrix finding the coordinate expression in coordinate system “a” of a
vector given in coordinate system “b”, or as the pose of coordinate system
“b” relative system “a”.

5



6 Daniel Bjerkehagen: Automatic extrinsic calibration

• The angle-axis representation of orientations is denoted with θ as the angle,
a as the unit-norm axis, and ω= θa as the resultant rotation vector.

Coordinate frames and their origins then allow for mathematical description
of the relative orientation and position of rigid objects. This is done by defining
coordinate frames that are fixed to the geometry of these objects, following some
chosen convention. The following describes different such conventions for defin-
ing the coordinate frames that are relevant for this project.

2.1.2 The Body Frame

For marine vessels a common practice when defining a coordinate system rigidly
attached to the ship is to define the X-axis pointing forwards along the bow, the
Z-axis to be pointed downwards and the Y-axis to complete the right-handed co-
ordinate system [8]. This coordinate frame is simply dubbed the body frame.

2.1.3 The Camera Frame

Some users [9–11] prefer to define the Z-axis of cameras to point along the op-
tical axis, the Y-axis to point downwards along the camera body and the X-axis to
complete the right-handed system. Others, however, prefer to have the X-axis be
pointed along the optical axis, the Z-axis pointing upwards, and the Y-axis there-
after.

Naming the conventions “A” (Z along optical axis, Y down) and “B” (X along
optical axis, Z up) respectively, Equation (2.2) relates the two through a rotation
matrix.

RAB =
�

xA
B yA

B zA
B

�

=





0 −1 0
0 0 −1
1 0 0



 (2.2)

For marine operations where the body-coordinate system often is defined with
the X-axis forwards and the Z-axis downwards, some might find it intuitive to
define the camera coordinate frame equivalently. Therefore, a third convention is
to have the X-axis pointing along the optical axis, the Z-axis pointing downwards
and the Y-axis completing the coordinate system. The transformation relating this
convention, “C”, and convention “A” is given in Equation (2.3). An illustration of
all three common camera frame conventions is given in Figure 2.1.

RAC =
�

xA
C yA

C zA
C

�

=





0 1 0
0 0 1
1 0 0



 (2.3)
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CA B

Figure 2.1: Three common conventions for defining a coordinate frame rigidly at-
tached to a camera. In the figure, standard coloring of the axes as red=X, green=Y
and blue=Z is used.

2.1.4 North-East-Down inertial frame

While the body- and camera-frame are frames attached to objects to describe their
pose, the North-East-Down (NED) coordinate frame is a commonly used inertial
frame for these objects to be positioned relative to.

The globe is near spherical and therefore navigational data will reflect this.
This can be impractical when using motion models and inertial navigation, which
often assume the world to be locally flat. The NED coordinate system is construc-
ted by choosing a reference point at which a plane tangent to the globe is construc-
ted. Then local to this point, other measured ship-positions will appear planar and
so the assumption holds [8].

2.2 The SO(3) group

When three orthonormal axes are ordered as columns in a matrix the resulting
matrix is called orthonormal as well. The set of all orthonormal matrices that have
its determinant equal to 1 form a group under matrix multiplication (·), called the
special orthogonal group of dimension 3: SO(3). The group may be defined as in
Equation (2.4).

SO(3) =
�

{R ∈ R3×3 | R⊤R= RR⊤ = I3×3, det(R) = +1}, (·)
�

(2.4)

Elements of SO(3) are to be understood as the orientation of objects, or the
rotation of vectors between objects. The rotation matrices have 9 elements, but
only 3 degrees of freedom [12]. Therefore multiple simpler parametrizations of
SO(3) exist rather than defining three orthonormal vectors. Most notable are the
angle-axis representation, Euler-angles and quaternions [8].

2.2.1 Lie groups

Since the set of SO(3) is defined by all 3 by 3 matrices satisfying a constraint, then
this set is by definition a manifold on R3×3 defined by said constraint. The con-
straint can be shown to be differentiable, which classifies SO(3) as a Lie group [12].
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Lie groups are special in that their differentiable nature allows for the ex-
istence of tangent spaces centered at any group element, where these tangent
spaces are n-dimensional vector spaces. More importantly, it is possible to define
an exponential map that maps vectors in the tangent space to group elements. The
tangent space of a group G at its identity element E is its associated Lie algebra,
denoted g, which in itself has properties not used in this thesis directly. The fact
that these tangent spaces and the Lie algebra in particular are real vector spaces
makes them isomorphic to Rn. This allows for easy application of useful and fa-
miliar concepts over the vector space Rn, such as convexity and the derivative,
onto the much more complicated group-structure simply by casting elements to
and from the Lie algebra using the aforementioned exponential map. The func-
tions transforming elements between the Lie group, the Lie algebra and vectors
in Rn are here denoted by the symbols given in Equations (2.5) to (2.8), inspired
by the work of Solà et al. [12]. Equation (2.5) is the aformentioned exponential
map and Equation (2.6) is its inverse, while Equation (2.7) is the vee function and
Equation (2.8) is its inverse the wedge function.

exp : g→ G (2.5)

log : G→ g (2.6)

(·)∨ : g→ Rn (2.7)

(·)∧ : Rn→ g (2.8)

Solà et al. additionally define short-hand functions for transforming directly
between the Lie group and the reals, shown in Equations (2.9) and (2.10).

Exp : Rn→ G, Exp(a) = exp(a∧) (2.9)

Log : G→ Rn, Log(R) = log(R)∨ (2.10)

If the group G in Equations (2.5) to (2.8) is the Lie group SO(3), its Lie al-
gebra is denoted so(3). The elements of so(3) are skew-symmetric matrices and
associating these with vectors in R3 is shown in Equation (2.11).





ω1
ω2
ω3





∧

=





0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0



 (2.11)

Interestingly, the corresponding column vector of some element in so(3) is ex-
actly the well-known rotation vector of the associated rotation. This last property
comes from the fact that the exponential map exp : so(3)→ SO(3) is exactly the
Rodrigues rotation formula, seen in Equation (2.12). Here, [·]× is principally the
same action as (·)∧, sending vectors to skew-symmetric matrices.

exp(ω∧) = I3×3 + sin(θ ) [a]× + (1− cos(θ )) [a]2× (2.12)
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For the SO(3) group, the inverse of the exponential map is the logarithm map
seen in Equation (2.13).

log(R) =
θ (R−R⊤)

2sin(θ )
, where θ = arccos

�

tr(R)− 1
2

�

∈ [0,π) (2.13)

Two more useful properties of the SO(3) group are listed in Proposition 1 and
Proposition 2. These properties are taken from the work of Park and Martin [13],
for which the authors provide proofs.

Proposition 1. Let B,X ∈ SO(3), then log
�

XBX⊤
�

= X log (B)X⊤

Proposition 2. Let B,X ∈ SO(3), then X log (B)X⊤ = (XLog (B))∧

It must be noted that the theory of Lie groups is much more complex than
presented here, and is simplified for the purposes of this thesis.

2.2.2 Representing noise over a rotation

This chapter is largly a reproduction of the theory presented by Mangelson et al.
in [14].

Observations and measurements are intrinsically uncertain. Representing this
uncertainty over a vector of measurements is often done by assuming the measure-
ment is perturbed by some small stochastic variable. The uncertainty can then be
modelled by choosing an appropriate probability density function for the stochastic
variable, often the multivariate Gaussian distribution. The multivariate Gaussian
is parametrized by a positive semi-definite covariance matrix Σ ∈ RN×N and mean
µ ∈ RN , the latter of which is often set to zero when modelling measurement
noise as perturbations. This is described in Equation (2.14), where y is the mean
or “true” value being measured and z is the small perturbation by noise.

y=





y1
...

yN



+





z1
...

zN



 , where z :=





z1
...

zN



∼N (0,Σ) (2.14)

For tasks where the pose of some object is of interest, it is natural to want to
describe the uncertainty of said pose. It has been shown that doing so in a way
that preserves the group-structure of the poses leads to better results than simply
modelling noise over for example the Euler-angles [15].

The method is as follows. We once more consider measurements to be per-
turbed by some Gaussian noise-vector, ξ ∼ N (0,Σ). The noise is then applied to
the mean pose H by multiplying with its exponentiation, either to the left or the
right; H= exp(ξ∧) ·H or H= H · exp(ξ∧). The perturbation is seen as an element
of the group tangent space, where the difference between left- and right multi-
plication signifies whether the perturbation is part of the Lie algebra centered at
the identity element or the tangent space centered at H, respectively. These can
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be understood as whether the perturbations have coordinates given relative the
global or local reference frames. In this thesis, the latter will be used as this leads
to easier interpretation of the covariances, but the former is equally as valid.

Other authors [14, 16] expand on this model to show how one can perform
propagation of correlation using this method. This allows for an even more accur-
ate representation of the uncertainty over poses, especially when one is interested
in the composition of multiple poses.

2.2.3 A metric over the group of 3D rotations

A metric is a real-valued function defined over some set which enables a notion of
closeness between elements of the set. Sets for which such a function is defined
is called a metric space, a structure useful in its own right. In this thesis, defining
a metric over SO(3) will be useful for comparing multiple orientation-estimates
against a ground truth.

Many metrics may be defined over SO(3), but one metric of particular geo-
metric interpretation is the one used in [13], restated in Equation (2.15). Here,
|| · ||2 is the standard Euclidian norm of a vector.

d(A,B) = || log(A⊤B)∨||2, A,B ∈ SO(3) (2.15)

The metric may be understood as the angle of the shortest rotation connecting
the orientations A and B, or equivalently the shortest path over so(3) connecting
the two elements [17].

2.2.4 Other properties

Lastly, two useful operations over SO(3) used later are presented briefly.
Firstly, with the aforementioned notion of “perturbing a group element” it is

possible to define a notion of the derivative of functions over a group. This is done
as

∂ f (X )
∂X := limτ→0

Log( f (X )−1 ◦ f (X ◦ Exp(τ)))
τ

. (2.16)

In this way, one can define Jacobians for commonly used functions of rotations [12].
These Jacobians also allow for the definition of Taylor expansions and thereby the
propagation of noise through nonlinear functions.

Two particularly useful Jacobians of functions over SO(3) used in this thesis
are the group action derivative, Equation (2.17), and right Jacobian, Equation (2.18).

JRβ
R = −R [β]× (2.17)

Jr(θa) := Jexp(ω∧)
ω = I3×3 −

1− cos(θ )
θ2

[a]× +
θ − sin(θ )
θ3

[a]2× (2.18)



Chapter 2: Theory 11

Secondly, the Baker–Campbell–Hausdorf (BCH) formula seen in Equation (2.19)
allows for useful association of two Lie algebra elements with their exponen-
tial [16]. Here, [·, ·] is the Lie bracket of the relevant Lie algebra, which for so(3)
is the commutator for matrices [A,B] = AB−BA.

log(exp(ω∧1 )exp(ω∧2 )) =ω
∧
1 +ω

∧
2 +

1
2
[ω∧1 ,ω∧2 ]

+
1
12
[ω∧1 , [ω∧1 ,ω∧2 ]]

+
1
12
[ω∧2 , [ω∧2 ,ω∧1 ]] . . .

(2.19)

More importantly, taking the vee-function of each side of Equation (2.19) re-
veals the important approximate relationship

Exp(ω1)Exp(ω2)≈ Exp(ω1 +ω2), (2.20)

an approximation whose error is small if either ω1 or ω2 is a small vector. The
approximation becomes an equality if the so(3) elements commute, which for
their R3 equivalents mean they are parallel.

2.3 The SE(3) group and Homogeneous Transforms

As introduced in Section 2.1, describing the pose of objects relative each other is
done with an orientation and a position. In Section 2.2, the mathematical prop-
erties of such orientations is explained through the language of rotation matrices
R. The position of an object in space is trivially described by a three-dimensional
vector t. The pair (R, t) is then a mathematical description of a pose.

Similarly to rotations, poses can act as an action over vectors in addition to
being seen as objects in themselves. Letting Tnb = (Rnb, tnb) be the pose of some
coordinate frame “b” relative the coordinate frame “n”, then the action of Tnb
over a vector expressed in the former frame gives the same vector expressed in
the latter frame. This is done mathematically as seen in Equation (2.21).

Tnb · pb = Rnbpb + tnb = pn (2.21)

The action of poses over vectors can be represented more elegantly through
the use of Homogeneous Transformation (HT) matrices. These are 4 × 4 real
matrices consisting of both the rotation matrix R and position vector t, seen in

Equation (2.22). Constructing a homogeneous coordinate vector, p̃b =
�

pb⊤ 1
�⊤

,
the group action of SE(3) over the homogeneous coordinate vectors is simply mat-
rix multiplication Hnbp̃b = p̃n [11].
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Hnb =

�

Rnb tnb
01×3 1

�

(2.22)

H−1
nb = Hbn =

�

R⊤nb −R⊤nbtnb
01×3 1

�

(2.23)

Homogeneous Transformation matrices are commonly used as a representa-
tion of the pose both in the fields of computer vision [10, 11] and robotics [18].

Poses are elements of the rigid motion group SE(3), and therefore HTs are
a representation of SE(3)-elements. The group of rigid motions is a Lie group
similarly to SO(3). This means one can identify the Lie algebra by the group’s tan-
gent space and thereby perform vector operations that are mapped to the group
through the exponential map. In this thesis, only the orientation of objects is es-
timated, and as such properties of the SE(3) Lie algebra is not utilized. A further
explanation is therefore omitted.

2.3.1 Relative pose

The following explanation given below is in large taken from the specialization
project written by the author.

The concept of a relative pose is used extensively throughout this project to
describe data and its properties. Relative pose should be understood as the fol-
lowing. Poses defined in some inertial frame are said to be absolute poses. Let Hna
and Hnb be HTs describing the pose of two different frames, “a” and “b”, relative
the same inertial frame, “n”. The relative pose of b relative a is then computed
as Equation (2.24). Figure 2.2 illustrates the interpretation of relative pose, as
defined in this project.

Hab = H−1
na Hnb

= HanHnb
(2.24)

2.4 The approximate Hessian in nonlinear least squares

The Hessian matrix, or simply Hessian, is the matrix of second-derivatives of some
scalar function. The Hessian is of importance in optimization and estimation, as
it conveys information about the function’s convexity and is related to the co-
variance of estimates [19]. More fundamentally, the Hessian shows up in the
Taylor-expansion of a scalar field. Equation (2.25) shows the Taylor-expansion
centered at x0 of a scalar field f (x). Here J0 := J f

x (x0) = ∇x f ⊤(x0) is the Jac-
obian of f with respect to x evaluated at the center of the Taylor expansion, x0,
while H0 := J∇x f

x (x0) is the Hessian evaluated at the center.
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Hab

Hna Hnb Hnc

Hbc

n

Figure 2.2: The relative pose between three coordinate frames, and their rela-
tionship with the reference frame

f (x)≈ f (x0) + J0 · (x− x0) +
1
2
(x− x0)

⊤H0(x− x0) + ... (2.25)

The scalar field f (x) is said to be convex everywhere if its Hessian is positive
semi-definite. This applies to the Taylor-expansion as well, and if an n-th order
approximation of f is constructed by ignoring every term beyond the n + 1-th
of Equation (2.25), then the approximation is locally convex around x0 if H0 is
positive semi-definite[20].

In nonlinear least squares, the cost-function to be minimized is such a scalar
field. This is often done by minimizing the sum-of-squared residuals, seen in Equa-
tion (2.26). Here, y= [y⊤1 , . . . ,y⊤N ]

⊤ is the vector of measured values,
f(x) = [f1(x)⊤, . . . , fN (x)⊤]⊤ is the vector of predicted values for some input x and
r= y− f(x) is the vector of residuals.

minxF(x) =minx
1
2

N
∑

i=1

||yi − fi(x)||2 =minx
1
2
||y− f(x)||2 =minx

1
2

r⊤r (2.26)

When performing nonlinear least squares, many methods make use an estim-
ate of the Hessian of the cost-function to be minimized in Equation (2.26). This
will for large optimization problems be infeaseable, due to the amount of variables
this would incur. A common approach is therefore to perform an approximation
of the Hessian of the cost-function. The derivation of which is reproduced below.

Taking the first-order Taylor expansion of the measurement-prediction func-
tion f around some chosen point x0 would lead to the form f(x)≈ f(x0)+J0·(x−x0).
Note how the Jacobian, Jf

x(x0), now is a matrix since f is vectorial, as opposed to
being a vector as in Equation (2.25). Choosing x0 such that f(x0) = y, which
means centering the Taylor expansion at the global minimum of the optimization
problem, the optimization problem simplifies to Equation (2.27).
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minx
1
2
||J0 · (x− x0)||2 (2.27)

Naturally, the value of x0 such that f(x0) = y is not known, that is the whole
point of iterative optimization, but the form in Equation (2.27) does lead to easier
analysis onwards. Notably, defining F̃(x) := 1

2 ||J0 · (x−x0)||2 as an approximation
of the full optimization function, the Hessian of the actual cost-function F(x) in
Equation (2.26) can be approximated by Equation (2.28).

∇x F̃(x) =∇x
1
2
||J0 · (x− x0)||2 (2.28)

=∇x
1
2
(J0 · (x− x0))

⊤(J0 · (x− x0)) (2.29)

=∇x
1
2
(x− x0)

⊤(J⊤0 J0)(x− x0) (2.30)

= (J⊤0 J0)(x− x0) (2.31)

∇2
x F̃(x) =∇x(J

⊤
0 J0)(x− x0) (2.32)

= J⊤0 J0 (2.33)

These results show how the Hessian of the cost function can be approxim-
ated by the square of the Jacobian of the prediction-functions. Further, since the
first order Taylor approximation of f is exactly equal to the full function when
evaluated at the centre of the expansion, the apporoximated Hessian will also be
“perfect” when evaluated at the global minima. When using this approximation in
optimization, the Jacobian evaluated at the minima is not known since the min-
ima is unknown. This is solved by instead developing the approximate Hessian
about the current estimate of the minima, and finding the step of steepest descent
away from this estimate [20].

2.5 Egomotion estimation algorithms

Multiple algorithms have been developed in the field of computer vision that pro-
duce an estimate of the movement of a camera given a set of pictures. Such
methods are unified under the term “camera egomotion estimation” [21], and
some famous examples include methods of Simultaneous Localization and Map-
ping (SLAM), Visual Odometry (VO), and Structure from Motion (SfM). Explained
briefly, estimating camera egomotion is often done by tracking the movement of
points in the real world as observed through the subsequent images for which
those points are visible [22]. Given the tracks of these points across multiple im-
ages, the camera motion relative these points can be estimated given geometric or
numeric considerations [4, 23]. Lastly, these rough motion estimates are refined
by softly enforcing some constraint, often by some optimization. If the scale of the
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environment is known, for example by identifying the known distance between
two estimated points or using calibration plates, then the estimated camera mo-
tions can also be given in this same scale. Using calibration plates does however
require additional infrastructure, which is not always possible. If, however, such
scale information is not present then the camera motions will be given in an ar-
bitrary scale not necessarily equal to the metric scale of the performed motions.

2.6 Hand-Eye calibration

The Hand-Eye calibration problem originates in robotics and concerns the issue of
finding how a sensor capable of egomotion estimation, often a camera, is rigidly
mounted relative some end-effector whose pose can be controlled. The parameters
to be estimated are the extrinsic parameters describing said relationship. Study of
the Hand-Eye calibration problem formulation is often attributed to being done
first by Shiu et al. in 1989 [1]. Since then many papers have been written on
different solution techniques to recover the extrinsic parameters [5, 13, 24], with
research mainly focused on improving the accuracy given better computational
power the last few decades.

2.6.1 Visual derivation

A

B
X

X

Figure 2.3: Conceptual illustration of the Hand-Eye Calibration problem. The
setup consists of a camera (red), an end-effector and a calibration plate. In the
illustration, the rigid system undergoes some controlled motion.

To derive the problem formulation, consider Figure 2.3. In the original formu-
lation of the calibration problem, a rig consisting of a camera and end-effector
is attached to a robotic arm, which in turn allows for precise movement of the
end-effector. The setup is moved between two predetermined poses and pictures
of a stationary calibration plate are captured at each pose. The relative pose of
the camera between each picture may then be calculated by any of a multitude
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of egomotion algorithms, and since the dimensions of such a calibration pattern
are known then the translation part of the relative pose is known to correct met-
ric scale. The relative pose of the end-effector is naturally also known since the
whole point of a robotic arm is the precise control of the end-effector. Assum-
ing the mounting of the camera relative the hand is constant for the timespan
analyzed then by visual proof the following equivalence can be made (a rigorous
proof will follow in Section 2.6.2):

AX= XB (2.34)

Here, A is the Homogeneous Transformation describing the relative pose of
the end-effector between the two pictures, B is similarly the relative pose of the
camera, and X is the assumed constant HT of the extrinsics. Following the arrows
in Figure 2.3, Equation (2.34) follows naturally.

2.6.2 Formulation for ship-data

In previous work by the author, it has been shown that it is possible to fit the
Hand-Eye calibration problem formulation of robotic hands onto the case of ship-
mounted cameras and thereby enable finding the extrinsics of the ship-mounted
cameras through any technique which works on the robot-arm setup. The follow-
ing derivation is in part taken from a conference proceeding written by the author,
to be published at the Fusion 2023 conference in June of 2023. A preprint of the
paper can be seen in Appendix C.

Modern ships are equipped with advanced sensor-suites which fuse GNSS
measurements with inertial- and attitude measurements. This means the ship’s
absolute pose in the NED coordinate frame is available frequently and with high
accuracy. If such a ship is equipped with a camera then any egomotion algorithm
presented in Section 2.5 can be used to reconstruct the movement of the camera
relative an unknown reference frame chosen arbitrarily by the algorithm, although
with unknown scale.

Let Hnb(t j) be the HT describing the measured pose of the ship body frame “b”
relative the chosen NED frame “n” at some timestamp t j . Let Hni(t j) be the recon-
structed egomotion of the camera frame “i” relative NED at the same timestamp.
Note that this last measurement is not available, since the camera reconstruction
is given relative some unknown mediary frame denoted “m” used by the egomo-
tion algorithm. This will be addressed below. Using these symbols, the unknown
extrinsic calibration is the HT Hbi(tp) = Hbi(tq) := Hbi, ∀tp, tq. With these math-
ematical symbols defined, the following derivation can be performed. Readers are
advised to keep close attention to subscripts and to the difference between left-
and right-multiplication of matrices.
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I4×4 = I4×4

GG−1 = HH−1, ,∀ G,H ∈ SE(3)

Hnb(tq)Hbn(tq) = Hnb(tp)Hbn(tp) ,∀ tp ̸= tq

Hnb(tq)Hbi(tq)Hin(tq) = Hnb(tp)Hbi(tp)Hin(tp) ,Hbn(tp) ·
Hbn(tp)Hnb(tq)HbiHin(tq) = HbiHin(tp) , · Hni(tq)

Hbn(tp)Hnb(tq)Hbi = HbiHin(tp)Hni(tq)

H−1
nb (tp)Hnb(tq)Hbi = HbiH

−1
ni (tp)Hni(tq)

(2.35)

The last line of this derivation is very similar to the Hand-Eye calibration prob-
lem, but two challenges must be addressed. These being that neither H−1

ni (tp) nor
Hni(tq) are known and the fact that the actual measurement has translation given
in some unknown scale, due to the landmark-based camera egomotion reconstruc-
tion. The actual measurements Hmi(t j) are related to these unknown HTs through
the relationship Hni(t j) = HnmHλmi(t j), where Hλmi(t j) := fλ(Hmi(t j)) is the func-
tion sending Homogeneous Transformation matrices to their scaled variant, and
λ is the unknown scale factor.

fλ : SE(3)→ SE(3), fλ(H) =

�

R λt
01×3 1

�

, λ ∈ R>0 (2.36)

Then one can see that

H−1
ni (tp)Hni(tq) =

�

HnmHλmi(tp)
�−1

HnmHλmi(tq) =
�

Hλmi(tp)
�−1

Hλmi(tq) (2.37)

where this last equality becomes

�

Hλmi(tp)
�−1

Hλmi(tq) =
�

fλ(Hmi(tp))
�−1

fλ(Hmi(tq))

=

�

Rmi(tp) λtmi(tp)
01×3 1

�−1 �
Rmi(tq) λtmi(tq)

01×3 1

�

=

�

Rmi(tp)⊤ −λRmi(tp)⊤tmi(tp)
01×3 1

��

Rmi(tq) λtmi(tq)
01×3 1

�

=

�

Rmi(tp)⊤Rmi(tq) λRmi(tp)⊤
�

tmi(tq)− tmi(tp)
�

01×3 1

�

= fλ(H
−1
mi (tp)Hmi(tq)).

(2.38)

This shows that the knowledge of how the mediary frame aligns with NED is
not necessary since this is cancelled out in the calculation of the relative pose. It
also shows that the inclusion of the unknown scale parameter does not induce any
additional complexity of the problem other than an extra unknown parameter λ.
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At this point, naming the relative poses and unknown extrinsic transform as

H−1
nb (tp)Hnb(tq) := Apq (2.39)

fλ(H
−1
mi (tp)Hmi(tq)) := Bpq(λ) (2.40)

Hbi := X (2.41)

the last line of Equation (2.35) becomes

ApqX= XBpq(λ). (2.42)

This therefore shows how it is possible, with the measurements available on a
ship, to formulate a fitting Hand-Eye calibration problem, with the downside that
the problem will be scaleless and therefore have an extra unknown parameter.

During the derivation, it is required that tp is a strictly different point in time
than tq, since the case of tp = tq causes the relative motion to be the identity, A=
B= I4×4, which in turn results in Equation (2.42) to contain no useful information.
It is also clear why the extrinsics as well as the scale factor must be assumed to
be constant over the duration of the data to be able to derive the given equality,
since otherwise there would be twice as many unknown parameters. The validity
of assuming the scale to be constant is highly dubious [22, 25], but alleviated in
this project by considering egomotion estimates of short timespans.

The matrix product on each side of Equation (2.42) can be expanded to pro-
duce the full set of equations in the scaleless Hand-Eye equations seen in Equa-
tions (2.44) and (2.45). Note especially that the unknown scale parameter does
not appear in Equation (2.44).

�

RA tA
01×3 1

��

RX tX
01×3 1

�

=

�

RX tX
01×3 1

��

RB tBλ

01×3 1

�

(2.43)

=⇒
RARX = RXRB (2.44)

RAtX + tA = RXtBλ+ tX (2.45)

A conceptual illustration of the setup is shown in Figure 2.4. It is worth not-
ing the likenesses of this experimental setup to that in Figure 2.3, which further
legitimizes the previous derivations.

Multiple methods exist for finding the X which solves Equation (2.42) for the
unknown extrinsics, either by some closed-form equation or by iterative optimiz-
ation of a loss function. A summary of select methods is given in Section 2.6.4.

2.6.3 Mathematical properties

What follows is a summary of some of the mathematical properties of Equa-
tion (2.42) important for this thesis.
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X

X
B(λ)

A [th]

Figure 2.4: Conceptual illustration of the Hand-Eye Calibration problem for the
case of a ship-mounted camera (in red). Note the variable λ representing the
unknown scale factor, and how a feature detection algorithm must be employed
instead of a calibration plate, with a detected landmark represented as a star.

Relationship of rotation axes

The way rotations of the system are linked through Equation (2.44) has a useful
property. Following derivations by Park and Martin in [13] we can rearrange

RARX = RXRB (2.46)

RA = RXRBR⊤X (2.47)

and apply the SO(3) logarithm to each side as well as Proposition 1 from Sec-
tion 2.2.1 we get

log(RA) = log(RXRBR⊤X ) (2.48)

log(RA) = RXlog(RB)R
⊤
X . (2.49)

Further, applying Proposition 2 and the vee function gives

log(RA) = (RXLog(RB))
∧ (2.50)

log(RA)
∨ = Log(RA) = RXLog(RB). (2.51)

Equation (2.51) tells us that for any datapair of relative poses (A,B), the rotation
axis of an end-effector movement α := Log(RA) is linked to the rotation axis
of a camera movement β := Log(RB) through the unknown orientation of the
camera relative the end-effector. This property simplifies the coming analysis of
observability and will be crucial to describe the properties of data to be used in
Hand-Eye calibration.

Observability

Shiu et al. showed that to be able to uniquely determine the camera orientation RX
which solves the purely rotational Hand-Eye calibration problem given in Equa-
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tion (2.44), the robot arm must undergo at least two non-zero motions with non-
parallel axis of rotation [1]. That is, the extrinsics are observable when for any
two datapairs (RA,1,RB,1) and (RA,2,RB,2) it holds that

Log(RB,1) := β1 ∦ β2 =: Log(RB,2). (2.52)

The choice made in this thesis to formulate this requirement in terms of the ro-
tation axes of camera poses as opposed to end-effector poses is arbitrary. This is
because the property in Equation (2.51) shows that any geometric analysis of the
end-effector rotation axes is equivalent to that of camera rotation axes since the
two are related through a constant and structure-preserving rotation RX. That is;
the angle between β1 and β2 are conserved under this rotation.

Andreff et al. additionally showed in [5] how failure to meet the condition in
Equation (2.52) results in different indeterminate cases, depending on the nature
of the performed motions. Of note for this work is in the case where the system
undergoes purely planar motion, that being motion where all translation is con-
tained in a plane and all rotation of the system is performed about the normal to
the plane of translation. This means all the rotation axes are parallel. In this case,
Andreff et al. prove that two nonzero movements still cause the entire extrinsics
to be solvable except the height of the sensor relative to the plane of motion, but
only when the full Hand-Eye equation Equation (2.42) is solved simultaneously.
Solving for example for the rotation RX alone is not possible. On the upside, their
method allows for the estimation of the scale parameter λ under the given condi-
tions.

Construction of relative poses

A simple way to achieve the two relative poses necessary to obtain observability of
the extrinsics is to have the robot arm capture four absolute hand- and eye-poses
and to compute the relative pose between two and two absolute poses. However,
the choice of which absolute poses should be paired to create a single relative pose
is not obvious. Consider Figure 2.5. In this figure, four absolute poses of the end-
effector have been constructed for illustratory purposes, H1,H2,H3,H4. When it
comes to observability, the relative poses H−1

i H j and H−1
j Hi are equivalent, since

Log(R⊤i R j) = −Log(R⊤j Ri) [12], thereby offering no new “parallelity”. This means
that of the four absolute poses, it is possible to generate three unique pairs when
permutations of these pairs are considered equal. The rotation axes of two such
choices of relative poses calculated are shown in Figures 2.5b and 2.5c, and it is
clear that the choice of pairs is not arbitrary. The pair in Figure 2.5b is parallel and
therefore does not yield the extrinsics observable, while the pair in Figure 2.5c is
seemingly orthogonal.

Tsai et al. propose in [6] a methodical way to command the robot arm to
produce an optimal set of poses to solve the Hand-Eye calibration problem. When
the system cannot be commanded as such, Schmidt et al. [7] reformulate the
method of Tsai et al. to a list of geometric criteria one should try to maximize.
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Figure 2.5: Illustration of how the choice of pairing absolute poses to make up
a single relative pose matters. Notice how the choice of pairing rotations affects
their geometry.

Neither of these are precise formulations on the numerical properties of the input-
data, and neither address the challenge posted above of how one should choose
pairs of absolute poses to construct a single relative pose. Additionally, despite the
theory by Tsai et al. giving a quantification of how the geometry of chosen data
affects the uncertainty of estimated extrinsics when using their Hand-Eye solver,
seen in Equation (2.53), it is not clear how one would go about expanding this
theory to concern an arbitrary number of datapoints.

Var(ωX)∝
p

Var(β1)2 + Var(β2)2

sin
�

∠(β1,β2)
�

√

√ 1
||β1||2

+
1

||β2||2
(2.53)

2.6.4 Hand-Eye solvers

With the Hand-Eye calibration problem formulated and some of its basic mathem-
atical properties quantified, what remains is to actually solve the problem for the
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unknown extrinsics. In the field of research on the Hand-Eye problem, a multitude
of solution techniques, hereby called solvers, have been created [2]. These solvers
come in many variations based on the chosen parametrization of the poses [24],
whether they solve for both the rotation and position of the sensor simultan-
eously [5] or separately [6, 13] as well as whether the solver uses a closed-form
calculation or an iterative procedure [26]. Additionally, most of these solvers nat-
urally give rise to some minimization criteria, which can be applied in any non-
linear least-squares solver.

Previous work of the author in Appendix C has entailed comparing these solv-
ers when the input-data is gathered from ship-sensors. Of the solvers tested, the
solution technique of Park and Martin [13] was shown to fare well even when
ship-data is considered. In this thesis, the mathematical properties of this solver
are explored further, following the results of the previous work.

The Park-Martin solver was proposed in their 1994 paper on the topic. Unlike
the early papers on Hand-Eye calibration [1, 6], their solver was not derived from
geometry but rather from group theory. The Park-Martin solver bases itself on
first solving for the camera orientation in Equation (2.51), to then use the estim-
ated orientation when solving for the camera position. They derive the solution
to Equation (2.51) to be as shown in Equation (2.54).

RX = (M
⊤M)−1/2M⊤,where

M=
N
∑

i=1

Log
�

RB,i

�

Log
�

RA,i

�⊤ (2.54)

The closed-form solution in Equation (2.54) can alternatively be formulated
as a nonlinear optimization problem, which generally is beneficial when the data
is corrupted by the presence of noise. In that case, the calibration problem is for-
mulated as a general nonlinear least squares problem, as seen in Equation (2.55),
and solved by an iterative solver such as the Levenberg–Marquardt algorithm or
BFGS algorithm [20]. Here, fi is named the ith residual, x are the optimization
variables, F(x) is the cost function and ρ(·) is some weighting function.

minx F(x) =
1
2

∑

i

ρ( fi(x)
2) (2.55)

The Park-Martin residual to be minimized is then simply the difference between
terms in Equation (2.51), that being Equation (2.56).

fi(x) = fi(R) = Log(RA,i)−RLog(RB,i) (2.56)

It should be noted, however, that the solver presented by Park and Martin
for estimating the camera position does not take into account the unknown scale
parameter present when using egomotion algorithms for constructing the camera
movement. Some solvers, like the one presented by Andreff et al. in their 2001
paper [5], can additionally estimate the unknown scale. For this project however,
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the problem of scale is avoided by only performing estimation of the rotational
extrinsics.





Chapter 3

Theoretical contributions

Previous work by the author has shown that it is possible to find the orientation
of ship-mounted cameras by formulating and solving a fitting Hand-Eye calibra-
tion problem. To this end, the Park-Martin Hand-Eye solver was shown to give
reasonable results and to be practical, since it is closely tied to the requirements
for observability. The Hand-Eye calibration problem is still degenerate in theory
for purely planar motions and therefore performance over nearly planar ship mo-
tions is expected to suffer as a consequence. Further, existing theory on the topic of
Hand-Eye calibration is not equipped with the tools necessary to make quantifiable
assertions on how the construction, amount and excitation of relative poses affect
the estimates. This latter point is especially important when remembering that
contrary to the regular Hand-Eye calibration problem for robot-arms, the poses
of the system cannot be commanded when using this framework on ship-data,
since the ship-movement is already predetermined. The goal of the work in this
thesis is to explore these themes and to derive a new theoretical understanding
of the Hand-Eye calibration problem and the Park-Martin solver to answer these
questions when the input-data is recorded from ship-mounted cameras.

The following chapter presents the theoretical results of this thesis. These res-
ults are presented in this chapter to make a clear distinction between previously
established theory in literature, given in Chapter 2, and the results of this thesis.
Chapter 4 contains simulation results to support these theoretical findings. Unless
noted otherwise, the author has not been able to find similar theoretical deriva-
tions elsewhere in literature on the same topic.

25
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3.1 Analytic level sets of the Park-Martin cost-function

Existing derivations of properties of the Hand-Eye calibration problem often em-
ploy geometric arguments. A consequence of this is that it is difficult to answer
questions regarding the numerical properties of the data.

As a first step towards remedying this, this chapter is an exploration of the
numerical properties of the Park-Martin optimization residual ri(R) = αi − Rβ i
introduced in Section 2.6.4. This is done by analysing the level sets of these resid-
uals, in turn deriving a closed-form parametrization of these sets. The derivation
also uses geometric arguments, but the end result is numeric in nature. Analyzing
the level sets allows for rephrasing known properties of the Hand-Eye calibration
problem in the light of these level sets, as well as building new intuition on the
effect of planar data.

β i

αi

SC(αi)

S∥β i∥(0)

Figure 3.1: This diagram visualizes the points on the intersection of spheres
where all rotations R ∈ LC(||ri ||) must rotate the vector β ′i = Rβ i onto. Since
both αi and β i are three-dimensional vectors, the spheres are three-dimensional
as well. The intersection of the sphere is drawn in blue. The dashed lines are used
to aid in showing the 3D shape of the spheres.

3.1.1 Geometric derivation

The level set LC with level C of a scalar function f : X → Y is the subset of the
domain for which the function holds the given scalar level,
LC( f ) = {x ∈ X | f (x) = C} ⊆ X [20].

Solving the Hand-Eye problem can be done by minimizing the cost-function
of Park-Martin residuals F(R) =

∑N
i=1 ||αi−Rβ i||22. We start by analyzing the cost

generated by a single datapair and looking at level sets of the normed residual
r′i = ||αi − Rβ i|| = C at some level C . This is the ith term of the full sum-of-
squared-residuals cost-function. Considering Rβ i := β ′i is a vector, then the set
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of constant cost C are all rotations that rotate β i onto the sphere with radius C
centered at αi , since SC(αi) =

�

β ′i ∈ R
3 such that ||αi −β ′i||= C

	

is exactly the
definition of this sphere. Rotations additionally preserve the lengths of vectors,
and since αi = Rβ i , it must hold that ||αi||= ||β i||. Therefore all vectors β ′i must
also lie on the sphere of preserved length, S||β i ||(0), no matter the choice of R.
Then the level set LC(||ri||) must be the set of all rotations that move β i onto
the intersection of SC(αi) and S||β i ||(0). This allows for further refinement of the
definition of the level set to Equation (3.1).

LC(||ri||) =
�

R ∈ SO(3) | Rβ i = β
′
i ∈ SC(αi)∩ S||β i ||(0)

	

(3.1)

Figure 3.1 shows an illustration of the developed geometric interpretation thus
far. From the figure it is clear that as long as C < 2||αi||, then the intersection
SC(αi)∩S||β i ||(0)will be a circle. If C = 2||αi|| or C = 0, the intersection shrinks to
a point antipodal to - or at the tip of - αi , respectively. For higher costs, C > 2||αi||,
the spheres do not intersect. Simply put, there exists no rotation which will send
β i to the sphere of radius C > 2||αi||, because this would require changing the
length of the vector.

All rotations that rotate β i onto the intersection of the spheres may be fac-
torized into two simple rotations: A rotation of β i onto the circle of intersection,
and a rotation of the resultant vector around the circle of intersection. Notably,
it is only the former rotation that identifies the level set with any specific value
of (αi ,β i), the latter rotation is only an invariant action over the level set of in-
terest. We will name these rotations R1 and R2, respectively. There also exists a
second invariant action over the level sets, by rotating β i about its own axis. This
will not change β i , but doing such a rotation before R1 and R2 will change the
corresponding orientation. Naming this rotation R0, the level set is completely
characterized by the rotations R = R2R1R0, which we now will attempt to assign
numerical values.

β i

αi

R1β i

θB

R2R1β i

θA

Figure 3.2: Illustration of the angles and the rotation axes making up R1 and R2
in the Park-Martin level sets
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3.1.2 Closed-form expression derivation

With this geometric interpretation in hand, we can come to conclusions on the
exact numerical values the rotation matrices present in each level set must have.
An illustrative figure to aid in the following derivations may be seen in Figure 3.2.
The rotation of β i by R1 is characterized by being about the axis β i × αi and
some angle θ1. To find this angle, we define θA to be the angle between αi and β i
calculated as θA = asin(||β i ×αi||/(||β i||2)), using the previously noted fact that
||αi|| = ||β i||. Additionally, we define θB to be the angle between αi and a line
segment from the origin to the circle of intersections. By applying the cosine rule
and once more the fact that both vector norms are equal, the numerical value of
θB may be shown to be θB = acos((2||β i||2 − C2)/(2||β i||2))). Then the rotation
angle θ1 is given by Equation (3.2).

θ1 = θA− θB = asin

�

||β i ×αi||
||β i||2

�

− acos

�

2||β i||2 − C2

2||β i||2

�

(3.2)

The second rotation R2 is simply the rotation about the axis αi with any angle
θ2 ∈ [0, 2π]. It is worth noting how θ1 is uniquely determinable based on the data
(αi ,β i), while the value of θ2 is to be considered a free variable and therefore a
degree of freedom.

Lastly, the rotation of β i about itself, R0, is also parametrized by the angle-axis
formula. This introduces a second free variable θ0 ∈ [0,2π]. With this, the Park-
Martin residuals’ level sets have been fully characterized, and the full expression
is given in Equation (3.3).

LC(||ri||) =
�

R ∈ SO(3) s.t. ||αi −Rβ i||= C
	

=

�

R= R2R1R0 = R(θ2,αi)R(θ1,β i ×αi)R(θ0,β i)

such that (θ0,θ2) ∈ [0,2π]2

and θ1 = asin

�

||β i ×αi||
||β i||2

�

− acos

�

2||β i||2 − C2

2||β i||2

��

(3.3)

With the level sets parameterized with the presented closed-form expression,
analysis of the level sets can be performed. As a first step, the level sets are plot-
ted to gain some basic understanding. Plotting the rotation matrices themselves is
cumbersome and difficult to interpret, so a parametrization must be chosen. For
all following analysis, the level sets are analysed and visualized by casting the ro-
tations of the level set onto their Lie algebra equivalents, that being the angle-axis
representation in R3. This allows for plotting the level sets in three dimensions,
making analysis much easier. This is achieved by taking the SO(3)-logarithm of
each element in LC(||ri||). In this thesis, an implementation of the SO(3)-logarithm
with codomain ω ∈ Bπ(0), the ball of radius π, is used.
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Figure 3.3: Illustration of a single Park-Martin residual level-set, for two different
choice of level and arbitrary data

The generated plot using the described method is seen in Figure 3.3 for two
different choices of the level C and with a fixed resolution on θ0 and θ2. An ar-
bitrary ground-truth extrinsic was chosen to generate the value for β i given the
shown values of αi . We will later explore to which degree the extrinsics truly are
arbitrary and what the effects are of some other choice of extrinsics, as well as
how different choices of the value C affect the expected shape of the residual and
cost-functions.

Equation (3.3) will be the basis of further analysis in the following sections in
this chapter.

3.1.3 On the effect of different choice of level

From Equation (3.3) one is able to ascertain that the level set is expected to be 2-
dimensional, being determined by two free parameters, (θ0,θ2). This is expected
since rotation matrices are known to have 3 degrees of freedom [12] while en-
forcing ||ri|| = C naturally acts as a constraint that removes one of these degrees
of freedom. This result is reflected in the experimental results in the rightmost
subfigure of Figure 3.3.

As C → 0, the circle of intersection shrinks to a point at the tip of αi . The effect
of which is that R1 simply moves β i to align perfectly with αi , and thereby both
rotations R0 and R2 will result in the same set of orientations. A sort of gimbal
lock occurs, and one degree of freedom is lost which results in one-dimensional
level sets. The level set of C = 0 is necessarily the level set of which the ground-
truth value of RX must lie since the positive semi-definiteness of the norm implies
||αi − Rβ i|| = 0 ⇐⇒ αi = Rβ i , the latter equation of which RX is one of many
possible solutions.

This same dimensionality-argument can also be made when C = 2||αi||. When
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this occurs only a single point of S||β i ||(0)may intersect with SC(αi), and a similar
kind of gimbal lock occurs, only now centered around an orientation different
from the ground-truth.

Assume now that we have a single datapoint, i = 1 and that the level set C = 0
is analyzed. It is clear from the geometric derivation in Section 3.1.1 that any
non-zero scaling of (α1,β1) results in the same level set since the angle between
vectors are preserved under scaling. Then conversely if some second datapoint
(α2,β2) is available, as long as this second datapair is non-parallel to the first, the
two datapairs’ level sets must intersect at a singular point, that point being ωX =
Log(RX). This is because we know from previous analysis in this subsection that
the point ωX = Log(RX) must necessarily lie in both datapairs’ C = 0 level sets,
and that this cannot be true for any other point as this would imply the existence
of multiple distinct ground-truth extrinsics. This is assuming that so(3) has been
bounded to the ball of radius π, as otherwise every rotation vector is congruent
with any vector in the same direction with 2π longer length, ω ≡ ω + 2πω/
||ω|| under Exp(·). This analysis is then an alternate proof of the algebraic property
shown by other authors [1, 5, 6, 13]: Only two rotations of a non-parallell axis
are necessary to – under ideal circumstances – uniquely determine RX, that being
the intersection of the two one-dimensional level curves.

Further, if the data is not perfect, for instance being noisy or uncertain, then
their cost evaluated at the ground-truth will not be exactly C = 0, meaning their
level-sets are not one-dimensional. This explains why, through experimental res-
ults, one will often be unable to have closed-form solvers converge with any less
than 3 datapairs, since any 2 datapairs are not numerically perfect in practice
and their level sets therefore do not intersect at a point. This difference between
observability in theory and observability in practice has also been noted by other
authors [27].

In Figure 3.4, two one-dimensional level sets of non-parallel datapairs are
plotted along with the ground truth extrinsics. By banal example, it is clear that
the C = 0 level sets intersect in a single point, that point being the ground-truth
extrinsics.

3.1.4 On the effect of summation

Formulating a closed-form expression of the full cost-function’s level sets using
the level sets of the residuals is not easy, and does not lend itself to easy analysis.
Letting F(R) = 1

2

∑N
i=1 ||ri||2 be the cost-function, an expression for the level set

of level C of the cost-function F(R) is seen in Equation (3.4). The summing of all
single residuals’ contribution on the full cost allows for some residuals to attain

a lower value than the average of C =
q

2C
N required, if the other residuals eval-

uated at the same rotation attains a correspondingly higher value. The level set
of the full cost-function is therefore the orientations in the intersection of all re-
siduals’ level sets, with some leeway loosely speaking. The summing of individual
residuals also allows for the presence of noise, which corresponds to the costs be-
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Figure 3.4: The C = 0 Park-Martin level sets are drawn for the two given values
for αi and for an arbitrary choice of ground-truth extrinsics. The ground-truth’s
angle-axis parameters is marked in cyan. Notice the two level sets intersecting in
the cyan point.

ing slightly larger or smaller than they would be if the cost of the noiseless data
was evaluated at the same orientation.

LC(F) =

¨

R ∈
N
⋂

i=1

LCi
(||ri||) such that

1
2

N
∑

i=1

C2
i = C

«

(3.4)

3.1.5 On the relationship between multiple data-pairs

In the previous subsections, the level sets of the Park-Martin residual have been
plotted by arbitrarily selecting α= [0, 0,1]⊤ and calculating the value for β given
some, also arbitrarily chosen, ground-truth extrinsics RX. This has been done for
simplicity in illustration since the ship-data for which this project is focused on
will have data mostly pointing along the Z-axis, reflecting its planar nature. It is
of interest to note to which degree these choices indeed are arbitrary, or if the
choice of data and extrinsics will affect the properties of these level sets. The
former is analyzed in this section.

Let (αi ,β i) be a datapair for which the level sets already have been determ-
ined. Any second datapair (α̃i , β̃ i) can be related to the first through some rotation
R̃, through the formulas α̃i = R̃αi and β̃ i = R̃β i . The rotation R̃ is decomposed as
two rotations, first a rotation aligning β i and β̃ i and a second rotation about β̃ i
which then aligns αi and α̃i without changing β̃ i . Then the following derivation
shows the relationship between the datapairs’ level sets.

We begin by defining the level set of (αi ,β i) and performing the non-destructive
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action of multiplying with the identity:

||αi −Rβ i||= C

||I3×3αi −RI3×3β i||= C

||R̃⊤R̃αi −RR̃⊤R̃β i||= C .

(3.5)

We recognize α̃i and β ′i in the last line,

||R̃⊤α̃i −RR̃⊤β̃ i||= C . (3.6)

We know that performing a rotation of a vector will not change the norm of the
product, by definition of a rotation, so we are free to multiply the term inside the
norm with a rotation matrix of our choice. In this case, we multiply with R̃:

||R̃⊤α̃i −RR̃⊤β̃ i||= ||R̃(R̃
⊤α̃i −RR̃⊤β̃ i)||= C

||R̃R̃⊤α̃i − R̃RR̃⊤β̃ i||= C

||α̃i − (R̃RR̃⊤)β̃ i||= C .

(3.7)

At this point, we can see that the level sets of this new datapair has ele-
ments Rnew := R̃RR̃⊤. In this work, we opted for parameterizing the rotations
of each level set in the Lie algebra. Two properties of the SO(3) Lie algebra will
prove useful further, namely the property that log

�

XBX⊤
�

= X log (B)X⊤ and
X log (B)X⊤ = (XLog (B))∧. Applying this property on our new level set’s elements
we see that

log(Rnew) = log(R̃RR̃⊤) = R̃log (R) R̃⊤ =
�

R̃Log (R)
�∧

=⇒ Log(Rnew) = R̃Log (R)
(3.8)

This result shows that if the level set is parameterized over the Lie algebra, then
we expect the level set of any new datapoints to be rotated equally to how the
data is rotated.

The conclusion is validated through simulations. In Section 3.1.5 we see how
the different choice of the second datapoint affects the level set relative to the first
datapoint. Orthogonal choice of data results in orthogonal level sets, and nearly
parallel data results in nearly parallel level sets.

These results in turn hint towards a connection between the planarity of ship-
movements and differing uncertainty in differing directions of the search space.
Figure 3.5b illustrates that the level set of any nonzero cost will be much less
uncertain in the direction orthogonal to the level sets, where these do not overlap
and therefore have an empty intersection, as opposed to directions tangential to
the level sets, where many different rotations give (nearly) the same cost. This is
not as much a case in Figure 3.5a, where the overlap between the sets is minimal.
This fact is compounded by the fact that the direction of largest descent, that being
all directions orthogonal to the level sets, roughly coincide in a planar dataset,
while the same is not true for a dataset with a more diverse set of rotation vectors
present.
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(a) Orthogonal data resulting in orthogonal level sets
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(b) Nearly parallel data resulting in nearly parallel level sets

Figure 3.5: Illustrative figure of how rotating the data likewise rotates the level
sets, as shown with orthogonal and planar data. The same ground truth extrinsics
were used for both of the two cases.
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3.1.6 On the effect of different ground-truth extrinsics

The analysis so far has employed arbitrary choices for the ground-truth extrinsics,
with the hope that making some different choice of extrinsics would not have any
adverse effects on the properties of these level sets. That is, the properties derived
of the level set with some ground-truth, RX, will be the same as the properties
as the level set with different ground-truth, R̃RX. This is explicitly checked in this
subsection.

Let LC(||ri||) be the level set of the residual associated with datapair (αi ,β i),
where αi = RXβ i . Further we define LC(||si||) to be the level set of the residual
with datapair (α̃i ,β i), where α̃i = R̃RXβ i . This second datapair thereby has en-
tirely separate, but relatable, ground-truth extrinsics than the first, R̃RX. Choosing
to let both datapairs share the camera rotation vector β i can be done without loss
of generality, see discussion in Section 3.1.5. From these definitions, we can derive
that

α̃i = R̃RXβ i

=⇒ R⊤X R̃⊤α̃i = β i

=⇒ αi = RXβ i = RXR⊤X R̃⊤α̃i

=⇒ α̃i = R̃αi .

(3.9)

This means that if the former residual has elements of its level set paramet-
erized by R = R2(θ2,αi)R1(∠(β i ,αi)− θB,β i ×αi)R0(θ0,β i), then the latter re-
sidual will have level set with elements R= R2(θ2, R̃αi)R1((∠(β i , R̃αi)−θB,β i ×
R̃αi)R0(θ0,β i).

We can see that the only effect differing extrinsics will have on the level sets is
that the axis about which the second and third rotations are performed have been
slightly modified. How this affects the corresponding angle-axis parametrization
and thereby the plots from before is more difficult to say. Arguments about the
sets’ dimensionality, as related through the relevant level, will still hold even if
the axes of rotation change.

3.1.7 Boundedness of optimization

The geometric derivation of the level sets performed in Section 3.1.1 shows how
the cost of any single residual is bounded by above by ||ri(R)|| ≤ 2||αi||, for any
choice of rotation R. This in turn implies the existence of an absolute upper bound
on the cost-function, that being

F(R) =
1
2

N
∑

i=1

||ri||2 ≤
1
2

N
∑

i=1

(2||αi||)2 =
N
∑

i=1

2||αi||2 := F(R̃). (3.10)

The cost-function takes on the value of this upper bound in a dataset where all αi
are parallel, no noise is present and the cost function is evaluated at any rotation
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R̃ sending β i to the point antipodal of αi . The set of rotations achieving this can
be expressed as

R̃= R(θ2,αi)R(θ1 −π,β i ×αi)R(θ0,β i). (3.11)

The Hand-Eye calibration problem with Park-Martin cost is then a bounded op-
timization problem over the compact domain SO(3). This should not come as a
surprise, since the cost function is continuous over a compact domain, thereby
fulfilling the extreme value theorem’s criteria. A numerical value for this upper
bound, however, is enabled by the presented geometric derivation. This bound can
be useful when performing iterative nonlinear optimization of the cost-function,
but care must be taken. This is because when such optimization procedures are
performed it is most often performed over a parametrization of SO(3). This is also
done in this thesis, using the exponential map to map rotation vectors into rotation
matrices. The exponential map is known to be surjective, but not injective, and
in fact it is periodic in the input angle, see Equation (2.12) in Section 2.2.1. This
implies the cost-function is periodic as well as non-convex when viewed over the
entirety of R3. This has the disadvantage that if the domain of the parameterized
cost-function is enforced to be closed, with the intent of exploiting the derived
upper bound, then the iterative optimization may wrongfully converge to a local
minima at the boundary. See Figure 3.6 for an illustration of this. For this reason,
optimization performed in this work is not performed over a closed subset of R3,
and the upper bound derived above is not exploited further.

Figure 3.6: Illustration of an iterative optimization of a periodic cost function
over a closed domain, where the iterative scheme wrongfully converges to a local
minima at the boundary. The optimum is marked in magenta, the steps of the
iterative solver in cyan and the upper- and lower boundaries of the domain are
shown in red.
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3.2 Noise-propagation of the Park-Martin residuals

Recent advances in the fields of estimation and navigation have relied more and
more on stochastic and nonlinear models, as opposed to deterministic linear mod-
els [19, 21, 28]. With these developments as motivation, it seems worthwhile to
investigate how probabilistic modelling can be used for the Hand-Eye problem as
well. This will be done in this thesis by deriving the covariance of the Park-Martin
residuals ri(R) = αi −Rβ i given a model of the noise on both ship- and camera-
orientations. A challenge lies in these measurements not being vectors, but rather
poses, and how to model noise over such measurements. Additionally, the poses
themselves are not input to the Park-Martin residuals, but rather the relative pose
between two absolute measurements. This will lead to further complication.

3.2.1 Naïve approach

We begin the derivation by assuming that the noise over each datapair (αi ,β i)
is known and given by the simple measurement noise model presented in Sec-
tion 2.2.2. Let αi = ᾱi + zα,i , with ᾱi being the “true” relative body orientation
number i and zα,i ∼ N (0,Σα,i). This in turn means that αi ∼ N (ᾱi ,Σα,i). Simil-
arly let β i = β̄ i + zβ ,i with zβ ,i ∼N (0,Σβ ,i).

Inserting these into the Park-Martin residuals gives

ri(R) = αi −Rβ i (3.12)

= ᾱi + zα,i −R(β̄ i + zβ ,i) (3.13)

= ᾱi −Rβ̄ i + zα,i −Rzβ ,i . (3.14)

The ith Park-Martin residual is simply a linear transformation of the stochastic
measurements, which means the propagation of uncertainty is simple [19]. The
residual is then distributed by ri(R) ∼ N (ᾱi − Rβ̄ i , Σα,i + RΣβ ,iR

⊤). Note also
that the noiseless measurements still must fulfill ᾱi = RXβ̄ i , meaning the residual
evaluated at the ground truth orientation will have expression ri(RX) = zα,i −
RXzβ ,i , and thereby must be distributed by ri(RX)∼N (0,Σα,i +RXΣβ ,iR

⊤
X ).

Defining the covariance of the residual to be

Σr,i := Σα,i +RΣβ ,iR
⊤, (3.15)

then this covariance may be used when minimizing the Park-Martin residuals us-
ing the Mahalonobis norm. If an estimate of the body- and sensor-covariance
for each point in time is known then we can compensate for the uncertainty of
datapair i by scaling the residual by the inverse of the derived covariance of the
datapair’s residual, thus achieving a whitening of the residuals’ distribution. This
is done as

F(R) =
1
2

N
∑

i=1

r⊤i Σ
−1
r,i ri =

1
2

N
∑

i=1

||Σ−
1
2

r,i ri||2. (3.16)
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This should in theory allow residuals with low uncertainty to be weighted
more heavily than the residuals with high uncertainty, and thus better estimates
should be achieved.

A vital assumption for this to work is that an accurate estimate of the residuals’
covariance is being used. Note for example how the covariance of the residuals
is a function of the parameter to be estimated, R. This can potentially lead to
challenges when far away from the ground-truth value.

We denote the residual covariance in Equation (3.15) as a naïve covariance,
as it assumes the covariance of the relative rotations (αi ,β i) is known. This will
not necessarily be the case for real-world applications, and we will see how we
deal with this further.

3.2.2 Group-theoretic covariance

With Equation (3.15) we find how covariance compensation can be performed
when the covariance on the relative rotation vectors (αi ,β i) is known. In a real-
world scenario, however, it is very possible that one only knows the uncertainty of
the absolute orientation measurements making up these relative rotation vectors.
Luckily, using recent developments within robotics on representing and propagat-
ing noise over group-elements, we will still be able to derive an expression of the
corresponding covariance of (αi ,β i).

To this end, let Rnb(t j) := Rn, j and Rnb(tk) := Rn,k be the absolute measured
orientation at timestamps t j , tk. Recall from Section 2.2.2 that we model these
measurements as noisy by either right or left exponentiating them with a vectorial
noise.

Following the method of Mangelson et al. [14] we first examine the left ex-
ponentiation expression, meaning the noise vector and its covariance is defined
relative to the identity element. This is to be understood as the coordinates of the
noise and covariance being given in the world frame, n. Written up, we model the
measurements as

Rn, j = Exp(ωn, j) ◦ R̄n, j , ωn, j ∼N (0,Σn, j)

Rn,k = Exp(ωn,k) ◦ R̄n,k, ωn,k ∼N (0,Σn,k).
(3.17)

Mangelson et al. then show how the uncertainty propagates through the op-
eration of taking the relative rotation R jk := R⊤n, jRn,k will lead to it also being a
randomly distributed rotation, distributed by

R jk = Exp(ω jk) ◦ R̄ jk, ω jk ∼N (0,Σ jk) (3.18)

where

R̄ jk = R̄⊤n, j ◦ R̄n,k, (3.19)
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and the covariance is as seen in Equation (3.20).

Σ jk ≈AdR̄−1
n, j
Σn, jAd⊤

R̄−1
n, j

+AdR̄−1
n, j
Σn,kAd⊤

R̄−1
n, j

−AdR̄−1
n, j
Σn j,nkAd⊤

R̄−1
n, j

−AdR̄−1
n, j
Σ⊤n j,nkAd⊤

R̄−1
n, j

(3.20)

Using the definition of the adjoint over SO(3) and some simplifications, Equa-
tion (3.20) simplifies to Equation (3.21).

Σ jk ≈ R̄⊤n, j

�

Σn, j +Σn,k − 2Σn j,nk

�

R̄n, j (3.21)

Alternatively, if the noise and covariances are modelled as being defined loc-
ally, that is; about the current orientation, then [25] shows how the covariance
and mean rotation of the relative rotation can be developed similarly. For this, the
noise enters the rotation through the right exponentiation. We define the noisy
rotations this time as

Rn, j = R̄n, j ◦ Exp(ωn, j), ωn, j ∼N (0,Σn, j)

Rn,k = R̄n,k ◦ Exp(ωn,k), ωn,k ∼N (0,Σn,k),
(3.22)

and once more inspect the noise on the relative rotation R jk := R⊤n, jRn,k, finding
it is distributed by

R jk = R̄ jk ◦ Exp(ω jk), ω jk ∼N (0,Σ jk), (3.23)

where the covariance of relative rotation noise now admits the form in Equa-
tion (3.24).

Σ jk ≈ R̄⊤jkΣn, jR̄ jk +Σn,k − 2R̄⊤jkΣn j,nk (3.24)

No matter which of the two models is being used, the last step in our derivation
is the same. We have shown how the relative rotation R jk is perturbed by the vec-
torial noise vector ω jk, as well as derived the distribution of the latter. The object
of interest for the Park-Martin residual, however, is the rotation vector of the relat-
ive pose, Log(R jk). Taking this logarithm, and using the Baker–Campbell–Hausdorf
(BCH) approximation given in Section 2.2.4, the rather practical form in Equa-
tion (3.25) is found.

Log(Exp(ω jk) ◦ R̄ jk)≈ Log(Exp(ω jk)) + Log(R̄ jk) =ω jk +α jk

or equally, if right-exponentiation is used:

Log(R̄ jk ◦ Exp(ω jk))≈ Log(R̄ jk) + Log(Exp(ω jk)) = α jk +ω jk

(3.25)
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This is exactly the form assumed in Equation (3.13) for the naïve covariance
compensation. This is of course an approximation, but since the noise should often
be a small value relative the orientation then we can hope the approximation error
to be small as well.

The derivation above is equal for the camera-rotations, and as such the covari-
ance of both αi and β i have been found as expressions of the covariances on the
absolute measurements. Given these derivations and combining them with Equa-
tion (3.15), we get the actual covariance of Park-Martin residual i given covari-
ances on absolute rotation measurements in Equations (3.26) and (3.27). Please
note the newly introduced symbol Ḡ jk := Ḡ⊤m, jḠm,k as the relative camera rota-
tions, and distinguish this from the previously defined relative ship rotations R̄ jk.

Σr,i = Σα,i +RΣβ ,iR
⊤

≈ R̄⊤n, j

�

Σn, j +Σn,k − 2Σn j,nk

�

R̄n, j +RR̄⊤m, j

�

Σm, j +Σm,k − 2Σm j,mk

�

R̄m, jR
⊤

(3.26)

or for the case of local covariances

Σr,i ≈ R̄⊤jkΣn, jR̄ jk +Σn,k − 2R̄⊤jkΣn j,nk +R⊤
�

Ḡ⊤jkΣn, jḠ jk +Σn,k − 2Ḡ⊤jkΣn j,nk

�

R⊤

(3.27)

3.2.3 Some considerations and challenges

The developed covariance of the Park-Martin residual makes use of several as-
sumptions and simplifications, some of which may impact the actual performance
of using this for covariance compensation.

Firstly, Mangelson et al. also use the BCH approximation during their deriva-
tions of the covariance of relative poses. The derivations present here then end up
using this approximation twice. This could lead to increased inaccuracy between
the derived covariance and actual covariance.

Secondly, to use the BCH formula in Equation (3.25), an assumption was made
that the noise always is of much smaller magnitude than the rotation and that the
approximation error as such is low. This, however, is not always the case for ship
data. Since the measurements are available nearly continuously in time, then any
relative pose computed between two absolute poses close in time will be nearly
the identity, and its rotation vector is as such very small. However, rotations close
in time also coincide with datapairs of low excitation, as will be shown in Sec-
tion 4.3. As such, feeding these combinations of absolute rotations to the Hand-
Eye calibration problem should be avoided altogether.

Thirdly, it is also of interest to investigate the effect of inserting the iteratively
approximated value of RX into the expression of the covariance Equation (3.15).
Using the estimate more correctly reflects the derived covariance of the residual,
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but one can imagine this leading to poor numeric properties when this estimate
is updated at each step of the optimization.

Fourthly, note how the true rotations R̄(t) appear in Equations (3.26) and (3.27),
while we only have knowledge of their noisy counterparts. Using the noisy meas-
urements in the covariance could also impact performance.

Lastly, in this work, the noise on measured the ship and camera rotations were
assumed independent. If this methodology is to be used on a real-world dataset
where the covariances have been estimated then this assumption must be chal-
lenged. One can for instance imagine both inertial measurement units and ego-
motion algorithms being affected similarly by the ship being hit by sudden waves.
For the simulations in Section 4.2 only synthetic datasets are tested, and as such
the noise on both ship and camera can be made independent by construction.

These considerations should impact performance but also point in the direc-
tion of how the performance of the covariance compensation methods should be
tested. We will therefore in Section 4.2 test different variations of these assump-
tions.
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3.3 Information and Convexity of Hand-Eye-data

The ease at which a Hand-Eye calibration problem can be solved is dependent on
the input-data. As explained in Sections 2.6.3 and 3.1.3, both the observability and
the covariance of the estimate are highly dependent on the parallelity of the rota-
tion vectors of input relative poses. These explanations, as well as those present
in literature, sadly do not open the door to answering numerical questions on the
topic of data-selection for Hand-Eye calibration. Questions such as “how much
is the uncertainty of the estimate expected to decrease if this specific datapoint
is included in the dataset?”, and “out of all the available absolute poses, which
combination of relative poses will result in lowest uncertainty in the estimate?”
remain unanswered.

This section introduces a metric for numerically quantifying the information
of any single datapair (αi ,β i) relative to an entire dataset

�

(αi ,β i)
	

i∈T , where
T is used to denote the set of all measurement-timestamps. This is done by utiliz-
ing the Taylor expansion to build an approximation of the cost-function’s Hessian
about the ground-truth extrinsics. The resulting Hand-Eye information is used as a
weighting scheme in the nonlinear least squares Hand-Eye solver, as well as data
selection algorithms.

The derivation is based on the Park-Martin cost-function. Recall that the Park-
Martin formulation of the Hand-Eye calibration problem is an isomorphism of the
original formulation, meaning all properties of the former apply to the latter. This
means the developed method is compatible with any other Hand-Eye solver.

3.3.1 The approximate Hessian of the Park-Martin cost-function

The first step in building the proposed metric is to approximate the Hessian of the
Park-Martin cost-function. This is done following the method described in Sec-
tion 2.4. Restating briefly: The Hessian of the cost-function can be approximated
by the square of Jacobians of the measurement-prediction functions.

We define the block-vector function of measurements as

y :=





α1
...
αN



 , (3.28)

and the block-vector function of measurement-predictions as

f(x) = f(R) :=





Rβ1
...

RβN



 . (3.29)

Taking the Taylor-expansion of f as a function of a rotation is possible [25], but
cumbersome. Moreover, in this thesis, the optimization is done over the angle-
axis form of R, and as such it is reasonable to use this parameterization here as
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well. Then x0 = ωX = Log(RX) is chosen as the ground-truth sensor orientation,
meaning Exp(ωX)β i = αi for all datapairs (αi ,β i).

The Jacobian of a single prediction-function follows the chain-rule [25] and is
therefore JRβ i

ω = JRβ i
R JR

ω. The first Jacobian is simply JRβ i
R = −R

�

β i

�

×, while the
second term is the “right Jacobian”, Jr(ω) of the SO(3) group. See Section 2.2.4
for more information on these Jacobians.

The Jacobian of the stacked measurement-prediction functions is then simply
the column vector of stacked Jacobians. Inserting the ground truth-value ω =
ωX = Log(RX) gives

J0 =







−RX

�

β1

�

× Jr(ωX)
...

−RX

�

βN

�

× Jr(ωX)






, (3.30)

which in turn means that the approximate Hessian is on the form

H≈ J⊤0 J0

=
�

−(RX

�

β1

�

× Jr(ωX))⊤ . . . −(RX

�

βN

�

× Jr(ωX))⊤
�







−RX

�

β1

�

× Jr(ωX)
...

−RX

�

βN

�

× Jr(ωX)







= Jr(ωX)
⊤
�

�

β1

�⊤
× R⊤X RX

�

β1

�

× + · · ·+
�

βN

�⊤
× R⊤X RX

�

βN

�

×

�

Jr(ωX)

= Jr(ωX)
⊤
�

�

β1

�⊤
×

�

β1

�

× + · · ·+
�

βN

�⊤
×

�

βN

�

×

�

Jr(ωX).
(3.31)

Summarizing: The above calculations give that the approximate Hessian of
the Park-Martin cost-function, with center in the ground-truth extrinsics, is on the
form seen in Equation (3.32).

H≈ J⊤0 J0 = Jr(ωX)
⊤

� N
∑

i=1

�

β i

�⊤
×

�

β i

�

×

�

Jr(ωX) (3.32)

In the derivations, the unknown ground-truth extrinsics RX cancelled nicely.
The right Jacobian at the equally unknown ground-truth rotation vectorωX, how-
ever, did not. Unfortunately, it is not the case that the transpose of the right Jac-
obian J⊤r (ωX) is equal to its inverse Jr(ωX)−1. This would have been very practical,
as this would mean the effect of the right Jacobian was simply a change of basis. To
circumvent the right Jacobian at the groud-truth being unknown, further analysis
focuses on the quadratic form x⊤Hx. Comparing this with Equation (3.32) reveals
Equation (3.33), where H̃ is the sum of the squared skew-symmetric matrices.

x⊤Hx= x⊤Jr(ωX)
⊤H̃Jr(ωX)x

= (Jr(ωX)x)
⊤H̃(Jr(ωX)x)

:= x̃⊤H̃x̃

(3.33)
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The right Jacobian has full rank, a proof of which is given in Appendix A.1.
Therefore the effect of the right Jacobian is simply some transformation of any
input x to the quadratic form s(x) = x⊤Hx = x̃⊤H̃x̃. That is, the right Jacobian
will not map any vectors to zero, thanks to it being full rank. Still, it is not known
whether different inputs will get different lengths and whether the right Jacobian
can introduce skewness to the coming derivations.

For the time being, we hope that the effect of the right-Jacobian is not destruct-
ive for the results derived further, an assumption which is tested in Section 4.3.
For all further analyses, the right Jacobian evaluated at ground-truth extrinsics is
therefore omitted. And with this, the approximate Hessian about the ground-truth
extrinsics are entirely described by known objects, that being the datapoints β i .

We additionally note the analytic Jacobian (not Hessian) of the full cost-function
is

F(R) = F(Exp(ω)) =
1
2
(y− f(R))⊤(y− f(R))

JF
ω(ω) = (y− f(R))⊤







−Exp(ω)
�

β1

�

× Jr(ω)
...

−Exp(ω)
�

βN

�

× Jr(ω)






.

(3.34)

We can confirm that the Jacobian is zero as expected when evaluated in the
ground-truth extrinsics y= f(RX), in the case with no noise on the data. Deriving
an analytic Hessian was also considered for this work. This results in an expression
with, among other things, the Jacobian of Equation (3.30) which was deemed
too difficult to evaluate. The approximate Hessian is therefore used exclusively
further, but it is of course only an approximation.

3.3.2 Positive (semi)-definiteness of the approximate Hessian

As explained shortly in Section 2.4, the positive (semi)-definiteness of an optim-
ization function’s Hessian describes whether the function is convex. If the Hessian
centered at the global minimum is found to be positive semi-definite, then this im-
plies the existence of some search directions for which the cost may stay constant.
This will, at best, lead to suboptimal performance of the optimization software
and at worst may imply the existence of multiple nearby minima. It is therefore
of interest to analyze the positive definiteness of the cost-function’s Hessian, and
characterize these properties based on quantitative properties of the input data.
For the following derivations we define

�

β i

�

× := Si .
Firstly, we note the fact the product of any matrix and its transpose is sym-

metric, from the relationship
(S⊤i Si)⊤ = S⊤i (S

⊤
i )
⊤ = S⊤i Si . Further, any product of a matrix and its transpose is

positive semi-definite as well, see Equation (3.35).

x⊤(S⊤i Si)x= (x
⊤S⊤i )(Six) = (Six)

⊤(Six) = ||Six||22 ≥ 0, ∀x ∈ R3 (3.35)
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Then the approximate Hessian is symmetric and positive semi-definite as well.
From the last equality, it is possible to recognize that

Proposition 3. The product of a 3× 3 skew-symmetric matrix and its transpose is
positive definite with respect to all vectors x ∈ R3 \ sp({β i}), where sp denotes the
span of a set of vectors.

Proof. From Equation (3.35) it is clear that S⊤i Si is indefinite for some vector x if
and only if x is in the null-space of Si , since ||Six|| = 0 ⇐⇒ Six = 0 from the
definition of a norm. Since Six =

�

β i

�

× · x = β i × x = ||β i|| · ||x|| sin (∠(β i ,x))n
with n being the vector normal to both β i and x, then Six = 0 ⇐⇒ x ∥ β i ,
excluding the trivial cases of x= 0 and β i = 0.

This leads to the next result, which is pertinent for our case where multiple,
or at least two, skew-symmetric matrices are summed.

Proposition 4. The sum of two transposed-squared skew-symmetric matrices,
�

β i

�⊤
×

�

β i

�

× +
�

β j

�⊤
×

�

β j

�

×, is positive definite if and only if β i /∈ sp(β j)

Proof. If β i /∈ sp(β j) then the result follows directly from Proposition 3. For the

back-implication, if
�

β i

�⊤
×

�

β i

�

× +
�

β j

�⊤
×

�

β j

�

× is not positive definite, then it
implies the existence of some x ∈ R3, x ̸= x such that

x⊤
�

�

β i

�⊤
×

�

β i

�

× +
�

β j

�⊤
×

�

β j

�

×

�

x= 0

x⊤
�

β i

�⊤
×

�

β i

�

× x+ x⊤
�

β j

�⊤
×

�

β j

�

× x= 0

=⇒ x⊤
�

β i

�⊤
×

�

β i

�

× x= x⊤
�

β j

�⊤
×

�

β j

�

× x= 0,

(3.36)

since each of the terms of the sum is positive semi-definite. But from Proposition
3 this requires both x ∥ β i and x ∥ β j , and as such β i ∈ sp(β j).

Comparing the results above to the approximate Hessian in Equation (3.32)
we find that the cost function has zero curvature in the direction of β̃ i = Jr(ωX)β i
around the ground-truth, when two parallel datapoints are used. Recalling the
analytic expression for the Jacobian of the cost-function, Equation (3.34), one can
see that the cost-function additionally has zero gradient along β̃ i . This combined
with the zero curvature means the cost is flat locally along this direction, forming
a one-dimensional valley for which any estimate is equally as valid. This supports
the findings in Section 3.1, where the C = 0 level sets - that being centered at the
ground-truth - were found to be one-dimensional.

Let us refine these results by moving away from the general notion of “curvature”
and positive-definitiveness, and attempt to assign some numerical values to the
properties of the cost-function about the true extrinsics.
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3.3.3 Eigenspace of Hessian and bounds on the quadratic form

The Hessian matrix enters the cost-function through the Taylor-expansion, where
it appears in quadratic form x⊤H̃x. In the last subsection, we explored under which
conditions this product is strictly positive, but let us also attempt to give the nu-
merical value of the product some meaning. Once more we ignore the right Jac-
obian and focus on the innermost product.

x⊤H̃x= x⊤
� N
∑

i=1

�

β i

�⊤
×

�

β i

�

×

�

x

= x⊤
� N
∑

i=1

S⊤i Si

�

x

=
N
∑

i=1

x⊤S⊤i Six

=
N
∑

i=1

||Six||22

(3.37)

This is the most refined answer we can get for any arbitrary vector x at this
point, as the exact value will depend on the direction of the vector x and its length.
However, the results in Section 3.3.2 can be used to establish a lower bound of 0
in the case when all datapoints are parallel. Using the property of the matrix norm
of ||Ax||p ≤ ||A||p · ||x||p, an upper limit of

∑N
i=1 ||Si||22 · ||x||

2
2 can be established

as well. Defining x to be some unit-sized step simplifies this expression to the
following:

0≤ x⊤H̃x≤
N
∑

i=1

||Si||22 =
N
∑

i=1

λmax(S
⊤
i Si), (3.38)

where the last equality follows from the definition of the 2-norm over matrices.
Quantifying the upper bound requires finding the eigenvalues of the matrix S⊤i Si
for any given β i . Since the matrix has been shown to be symmetric it is expected
for its eigenspaces to be orthogonal, and since the matrix is positive semi-definite
the eigenvalues must be non-negative.

From Proposition 3 we know β i to span the null-space of S⊤i Si , which means
λmin = 0 must be an eigenvalue of S⊤i Si with eigenspace sp({β i}). For the other
two eigenvalues, a geometric argument can be made. Consider Figure 3.7. Per-
forming the product S⊤i Siv = −

�

β i

�

×

�

β i

�

× v = −β i × (β i × v) will result in a
vector lying in the plane spanned by β i and v. This is because β i × v must be
perpendicular to the plane spanned by β i and v, while β i × (β i × v) must be per-
pendicular to the plane spanned by β i and β i × v. Alternatively, one can come to
this conclusion by applying the right-hand rule to β i and v twice. It is also clear
that if v⊥ β i then (S⊤i Siv) ∥ v, meaning v is an eigenvector. Its eigenvalue will be
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||β i × (β i × v)|| = ||β i|| · ||β i|| · ||v|| =⇒ λmax = ||β i||2. Since this reasoning ap-
plies for any vector v perpendicular to β i then it must be the case that all vectors
in the plane perpendicular to β i will be eigenvectors with this same eigenvalue.

β i

v
S2

i v

Siv

−S2
i v

Figure 3.7: Illustration to help derivation of the eigenspaces of S⊤i Si . All angles
marked in black are right angles.

Summarizing these results: S⊤i Si has eigenspaces eigmin(S
⊤
i Si) = sp({β i}) and

eigmax(S
⊤
i Si) = sp({β i})⊥ with corresponding eigenvalues λmin = 0 and λmax =

||β i||2. Thus any unit-length quadratic of the approximate Hessian is bounded by

0≤ x⊤H̃x≤
N
∑

i=1

||β i||
2. (3.39)

These derivations are useful as they enable a numerical description of the
curvature of the cost-function, and therefore of the uncertainty associated with
each search direction around the ground truth. The previous chapter concluded
with the cost-function being convex for non-parallel data, and with the deriva-
tions in this chapter we are able to quantify this convexity and thus compare the
contribution from different datapoints. Having such a quantification will further
in this thesis enable the creation of “ranking” the datapoints in regards to their
contribution in lowering the uncertainty of the estimates.

3.3.4 Continuity and monotony of the quadratic form

In Section 3.3.3 we derived bounds on the quadratic form s(x) = x⊤H̃x which
relates to the convexity, and therefore uncertainty, in different directions about
the ground-truth. This was done by identifying the eigenspaces of the approximate
Hessian, and finding the increase in cost due to convexity in the directions of said
eigenspaces. If possible it is also of interest to inspect what happens in between
the eigenspaces, thus obtaining knowledge of the cost-function’s behavior for any
input. The fact that the eigenspaces of each term S⊤i Si are orthogonal makes this
quite simple, as is shown in this section. It should be noted that the derivations
in this section most likely have been derived elsewhere in literature, however, the
author has not succeeded in finding any proof of this.
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Let û, v̂ be an orthonormal basis of sp({β i})⊥ and let β̂ i be a unit-length
basis of sp({β i}). Then û, v̂, β̂ i is an unordered basis of R3. Any unit-length
vector x ∈ S1 can be expressed as a linear combination of the three basis vectors
as x= aû+ bv̂+ cβ̂ i , where a2 + b2 + c2 = 1. Then

x⊤S⊤i Six= x⊤(aλmaxû+ bλmaxv̂+ cλminβ̂ i)

= a2λmax + b2λmax + c2λmin

= (1− c2)λmax + c2λmin

= λmax − c2(λmax −λmin),

(3.40)

which for our specific values of eigenvalues gives x⊤S⊤i Six = (1− c2)||β i||2. For
any given unit-length x and β̂ i , the value of c can be found as the orthogonal

projection c = x⊤β̂ i =
x⊤β i
||β i ||

. From this, the quadratic form of the complete ap-
proximate Hessian is then expressable as

x⊤H̃x=
N
∑

i=1

x⊤S⊤i Six=
N
∑

i=1

||β i||
2 −

�

x⊤β i

�2
. (3.41)

This result is interesting in itself, and could potentially be explored further as an
alternate method of regularizing information content in a dataset. However, this
is not performed in this thesis, and Equation (3.41) will not be explored further.

Interestingly, Equation (3.40) also enables analysis of the monotony of the
quadratic form of a single datapoint. Let x(t) be the parameterization of any
geodesic along the unit sphere, starting at x(t0) = β̂ i , and ending at time t = t1
at any point in sp({β i})⊥. Then x(t) is parameterized by having c = c(t) = cos(t)
and parameter span [t0, t1] = [0, π2 ]. Then

d
d t

�

x(t)⊤S⊤i Six(t)
�

=
d
d t
λmax − c(t)2(λmax −λmin)

=
d
d t
λmax − cos(t)2(λmax −λmin)

= sin(2t)(λmax −λmin)≥ 0 ∀t ∈
h

0,
π

2

i

(3.42)

This last result shows that the effect of the quadratic form of a single datapoint
is increasing monotonically from the eigenspace of the smallest eigenvalue to the
eigenspace of the largest eigenvalue. This means the curvature associated with
any single datapoint only ever increases away from the minimum. For practical
purposes, this result can be interpreted as such: Say a dataset with an abundance
of planar datapoints is being used, and the opportunity arises to slightly shift one
of the datapoints away from the others, perhaps by replacing it with a datapoint
acquired during more exciting maneuvers of the vessel. Then this result shows
us that any shifting at all, no matter how small, away from the other datasets
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is advantageous with respect to making the uncertainty less homogeneous, since
the measure of information associated with the shifting datapoint is monotonically
increasing up until the datapoint is orthogonal to the others.

3.3.5 Information-based weighted nonlinear least squares

One challenge with using the Hand-Eye calibration framework for calibration of
ship-mounted cameras has been noted earlier: Namely that the problem is unob-
servable for planar data. In practice, however, the movement performed by ships
is never perfectly planar, with some rolling and pitching of the ship due to wave
motion. This motion is still very small, and this results in bad convergence of any
optimization procedure, especially when the presence of noise produces local min-
ima. As shown in earlier work by the author, seen in Appendix C, the planar nature
of the data will lead to badly posed optimization functions. The Park-Martin cost
functions when using ship-data is convex, but not equally so in all directions.

Not all datapoints are created equal in the eyes of Hand-Eye calibration. And in
the setting of planar data one would be more than happy to accept some datapoint
that is non-parallel to the others. But even in the event that such a datapoint was
available, it would be overshadowed by the others. The sum the of cost of all the
parallel datapoints will be much higher than the cost associated with the singular
non-parallel datapoint, meaning the cost function will still be unevenly convex.

If, however, the datapoints are weighted so that the more information-rich
datapoint could contribute more to the cost, then it is expected for the cost-
function to be more regular in its convexity, thus lending to better numerical
properties.

The knowledge obtained and analysis performed so far in Section 3.3 has
given a numerical way of quantifying the effect of different datapoints on the
cost-function. This has been done by studying the approximate Hessian of the
cost-function, and especially the quadratic form it is related to. This scalar met-
ric of information is in this section used to introduce a weighting scheme for the
nonlinear estimation problem with Park-Martin cost. Residuals weighted by this
scheme will be more strongly present in the cost function if their associated data
is “important”, in the sense that it offers more to observability than the other data.

The weighting scheme is motivated by working through the following example
of how a high amount of similar data will overshadow singular, highly excited,
datapoints:

Let {β i}i=1,2,...,N−1 be a set of parallel or nearly-parallel datapoints, and let
B := sp(β1) ≈ sp(β2) ≈ · · · ≈ sp(βN−1) be the approximate span of these data-
points. Let also βN ⊥ β1 be a singular “highly excited” (non-parallel) datapoint,
with associated span sp(βN ) ⊂ B⊥.

Recall that the approximate Hessian is calculated as H̃ =
∑N

i=1 S⊤i Si and that
the role of the Hessian is to bring information of curvature into the Taylor approx-
imation through the previously analysed quadratic form x⊤H̃x. Remember also
from Section 3.3.3 that the nullspace of S⊤i Si is sp(β i) and that the remaining
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eigenspace of S⊤i Si is sp(β i)
⊥ with double eigenvalue ||β i||2.

Let now x ∈ sp(βN ) ⊂ B⊥, ||x|| = 1 be any unit-length vector in the span of
βN , thereby being in the positive eigenspace of S⊤i Si when i ̸= N . Then

x⊤H̃x= x⊤
� N
∑

i=1

S⊤i Si

�

x

=
N
∑

i=1





�

β i

�

× x




2

=
N
∑

i=1



β i





2
sin(∠β i ,x)

2

=
N−1
∑

i=1



β i





2
+ 0.

(3.43)

Note that in the last line, the sum only goes up to N−1, since x is in the null-space

of the last datapoint’s skew-symmetric matrix
�

βN

�⊤
×

�

βN

�

×. With this we have a
numeric value of the curvature of the cost-function along the eigenspace of the
“common” type of datapoint, that being the planar data.

Let now x̃ ∈ B ⊂ sp(βN )
⊥, ||x̃|| = 1 be a vector in the eigenspace of the

“uncommon” datapoint βN . Then the same quadratic form will become

x̃⊤H̃x̃= x̃⊤
� N
∑

i=1

S⊤i Si

�

x̃

=
N
∑

i=1





�

β i

�

× x̃




2

=


βN





2
+

N−1
∑

i=1

0.

(3.44)

If one makes the additional soft assumption that 1
N−1

∑N−1
i=1



β i





2 ≈


βN





2
,

meaning that the singular orthogonal datapoint is not exceptionally larger than
any of the other datapoints, we see that

x⊤H̃x≈ (N − 1)


βN





2
= (N − 1) · x̃⊤H̃x̃. (3.45)

The value of the quadratic form is N − 1 times larger in the direction of
the common datapoint than the uncommon one. For an iterative optimization
scheme attempting to minimize the cost-function, this discrepancy leads to ill-
conditioning [20], meaning slow and inaccurate convergence. This example then
shows how even in the presence of a single datapoint which provides orthogon-
ality from the others, and thereby observability in theory, the actual convexity is
much smaller along the span of the uncommon datapoint and thereby making
its contribution insignificant compared to the other directions. The example also
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shows how this problem is compounded when the amount of planar datapoints
is large. A possible solution to this would then be to include fewer of the paral-
lel datapoints, but estimation in the presence of noise is generally expected to be
better when as many datapoints as possible are used.

To counteract this issue, it would be beneficial to weight the residuals with
high-information data more strongly than the residuals with data that does not
provide much new info. To this end and motivated by the preceding example, the
weighting function in Equation (3.46) is proposed.

wi = β
⊤
i

 

N
∑

j=1

�

β j

�⊤
×

�

β j

�

×

!

β i = β
⊤
i H̃β i (3.46)

The rationale behind the weighting scheme is as follows. The eigenspace and
null-space of any single S⊤i Si-term are orthogonal. This means that the scalar value

wi = β
⊤
i

�

∑N
j=1 S⊤j S j

�

β i is maximized when β i is as orthogonal to as many of the

datapoints
�

β j

	

j ̸=i
as possible. Firstly, this ensures that uncommon, important

datapoints are assigned a high weighting factor, by virtue of being different from
as many of the other datapoints as possible. Secondly, the weight assigned to
two perfectly parallel datapoints is zero, correctly reflecting how perfectly parallel
data does not offer anything in terms of observability and therefore just as easily
could be ignored. The weighting scheme punishes datapoints whose span already
is present in the optimization problem.

The weighting scheme is also inspired by the previously presented example.
We will now see how using the scheme affects the quadratic form in the previously
inspected directions of x̃ ∈ B = sp(β1) ≈ · · · ≈ sp(βN−1) and x ∈ sp(βN ). We
begin the example again by calculating the weights, and realizing that the weights
for the first N − 1 datapoints are exactly equal to

wi = β
⊤
i

 

N
∑

j=1

�

β j

�⊤
×

�

β j

�

×

!

β i

wi = (||β i|| · x̃)
⊤

 

N
∑

j=1

�

β j

�⊤
×

�

β j

�

×

!

(x̃ · ||β i||)

wi =


β i





2
x̃⊤H̃x̃

wi =


β i





2 
βN





2
, ∀i ∈ 1 . . . N − 1,

(3.47)

using the fact that we already calculated x̃⊤H̃x̃ previously in this example. Simil-
arly we calculate the weight of the N -th datapoint to be
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wN = β
⊤
N

 

N
∑

j=1

�

β j

�⊤
×

�

β j

�

×

!

βN

wN = (||βN || · x)
⊤

 

N
∑

j=1

�

β j

�⊤
×

�

β j

�

×

!

(x · ||βN ||)

wN =


βN





2
x⊤H̃x

wN =


βN





2
N−1
∑

i=1



β i





2
.

(3.48)

The Hessian of the cost function of weighted residuals r′i = wiri is H′ =
∑N

i=1 wi

�

β i

�⊤
×

�

β i

�

×. Taking the calculated weights and weighing the residuals,
we see that the quadratic forms previously analyzed now become

x⊤H′x=
N−1
∑

i=1



β i





2 
β i





2 
βN





2 ≈ (N − 1)


βN





6
(3.49)

and

x̃⊤H′x̃=


βN





2 
βN





2
N−1
∑

i=1



β i





2 ≈ (N − 1)


βN





6
. (3.50)

The calculations above are quite intricate, but the result they try to illustrate
is as follows: The proposed weighting scheme makes the quadratic form, which
prior to weighting was heavily skewed in favor of the common parallel data, now
equal for both directions of data. The quadratic form has been regularized. This
should, in theory, allow the optimization to more efficiently make use of the rich
information presented by the singular highly excited datapoint.

It should be noted that the proposed weighting is entirely novel and the res-
ultant weighted estimator has no guarantee of being unbiased or optimal in any
way. One could easily make any number of design choices differently, and still
achieve the posted regularization of the quadratic form.

One such design choice could be to normalize the β i before multiplying them

with H̃, thus calculating the weights as w′i =
�

β i
||β i ||

�⊤
H̃
�

β i
||β i ||

�

. This was not
chosen in this thesis, as testing observed this to lead to inaccuracies. It was identi-
fied that this is because the SO(3)-logarithm is sensitive to input rotation matrices
close to the identity. These kinds of rotation matrices occur when relative poses
are calculated from two absolute pose measurements close in time. Inputting these
rotations into the logarithm leads to very small vectors, pointing in wildly differ-
ent directions and thus seeming more non-planar than their respective rotations
actually are. When these vectors β i are not normalized, the negative effect of
their direction being inaccurate is counterweighted by their small size, so that the
weight wi overall is a small scalar. If the vectors are normalized, however, then
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vectors in wrongful directions will seem to be highly excited and therefore results
in a large weighting of the residual.

An alternative to normalizing by the size of β i could therefore be to instead
normalize the weights of the non-normalized rotation vectors, based on the max-
imum weight in the dataset. This would be performed as w′i = wi/maxiwi . Addi-
tionally, as shown in Equations (3.49) and (3.50), the weight will also increase
with dataset size. Thus when comparing the excitation present in two datasets of
different sizes it will be more representative to compensate both datasets’ inform-
ation weights by their dataset size (minus one).

The proposed weighting scheme and some possible design choices are tested
in Section 4.3.
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3.4 Hand Eye data-selection

In the classical Hand-Eye calibration setup, the hand and eye are mounted to a
robotic arm, meaning precise predetermined movements can be captured as data
baseline for the estimation algorithms. As mentioned in Section 2.6.3, authors
such as Tsai et al. [6] then give suggestions for how to choose predetermined
poses to perform the estimation with the best numerical properties.

When performing Hand-Eye calibration as an auxiliary process on data gathered
from a rig with some other main purpose than calibration, the predetermination of
poses is most likely not possible. That is, a ship with mounted cameras generates
poses through navigation and it will not be practical to “pause” the navigation of
the ship to generate poses for calibration before continuing navigation. Further,
not all possible poses are actually feasible for the system to undergo, and some
subset of the feasible poses may be highly unlikely to actually occur.

To complicate matters further, when poses are obtained from modern nav-
igational sensors, the measurements will be available with high frequency. This
means a large amount of data is available at any given time and this amount only
grows with time. Thus, any algorithm wanting to estimate based on the data must
also handle the large number of datapoints somehow. For example, by only per-
forming estimation on a subset of data, weighting the datapoints based on some
measure of goodness or employing a receding horizon where old enough data-
points are ignored over time.

It could be beneficial to implement HE calibration in a real-time system for
online updates of the extrinsic parameters, or even as a way to detect changes
in camera orientation. In principle, the real-time application of Hand-Eye calibra-
tion of real-world data will require the algorithm to be able to produce meaningful
estimates with whatever data is given. Remembering that the HE framework re-
quires input to be relative poses based on two absolute poses, a natural question
arises: Given a (possibly very large) dataset of non-predetermined absolute poses,
how would one go about optimally choosing the pairs which make up a single re-
lative pose fed to the algorithm?

For the reasons presented, it is therefore of interest to determine a strategy for
choosing which pairs of absolute poses are to be combined into a single relative
pose that the Hand-Eye calibration should be performed based on. We have pre-
viously in Section 3.3 explored the numerical properties of data when it comes to
excitation, and it is possible to imagine a data-selection strategy also making use
of this metric. The data-selection strategies proposed in Section 3.4 are in large
based on qualitative assertions on what is good data for Hand-Eye calibration,
and less so on a theoretical derivation of optimality.

Data selection or alternatively methods for performing data selection will in this
thesis concern two things. Firstly is the issue of data pairing, meaning the pair-
ing of absolute poses into relative poses. Secondly is the issue of subset selection,
meaning the method used to reduce the set of all possible datapoints into a much
smaller subset of datapoints actually fed to the Hand-Eye solver. A data selection
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method may perform both of these tasks simultaneously, or separately. If 2N data-
points are available, a total of C(2N , 2) = (2N)!

(2N−2)!2! = N(2N − 1)∝ N2 unique
pairs may be chosen when permutations of the poses are considered equal. Any
algorithm for data-pairing that picks datapairs based on the entire set of possible
combinations then must at least have a runtime of Ω(N2) from simply construct-
ing the set off all possible pairings. This may seem like bad news for the runtime of
such an algorithm, until you consider that for subset selection the amount of pos-
sible partitions of 2N elements into subsets of size M grows astoundingly fast in
N .1 Therefore it is a natural choice to perform the pairing iteratively and greedily
without taking into consideration the final subset of data this results in, as op-
posed to a holistic approach where both optimal selection of the final subset and
the pairing of absolute poses within that subset are performed simultaneously.

3.4.1 Proposed data-selection strategies

In the following section, a number of data-selection strategies are proposed, and
in Section 4.4 simulation results comparing these strategies are presented.

In the following subsections, T denotes the set of all measurement-timestamps
t0, t1, t2, . . . tN ∈ T . A data-selection strategy defines the pairs of absolute poses to
make up a single pose. Then, since both relative ship-poses and relative camera-
poses are fed pairwise into the Hand-Eye calibration problem, the data-selection
strategy must be applied equally to both streams of data. For this reason, the
strategies are here denoted by the way they pair timestamps, which are assumed
common for both ship- and camera-poses.

All data relative first

The most simple way to combine absolute poses into a set of relative poses is to
arbitrarily choose the first datapoint as the reference pose, and to compute all
poses relative to this.

Drel.first =
�

Hnb(t0)
−1Hnb(t i)

	

t i∈T \{t0}
(3.51)

If reality was such that only subset-selection – but not the pairing of absolute
poses into relative poses – had any effect on estimation error, then the all data
relative first data-selection strategy would be an optimal data-selection strategy.
This is because in this hypothetical scenario, the choice to have all poses be cal-
culated relative to the first datapoint would be truly arbitrary. However, as shown
by example in Section 2.6.3, this scenario is strictly hypothetical, and data pairing
will affect estimation error. The all data relative first strategy reflects the expected
performance of any data-selection strategy where data pairing is not considered,
and any strategy which considers data pairing is then expected to outperform all
data relative first.

1See Stirling numbers of the second kind.
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All possible pairs

Where the all data relative first strategy represents performing no data pairing
at all, the all possible pairs data-selection strategy represents performing all pos-
sible data-pairings. The relative poses are generated using every unordered pair
of timestamps (t i , t j), where t i is defined without loss of generality to be a strictly
earlier point in time than t j . The resultant dataset is then also the superset of any
possible subset selection strategy.

Dall pairs =
�

Hnb(t i)
−1Hnb(t j)

	

t i<t j∈T
(3.52)

As mentioned earlier, least-squares methods over noisy data are generally ex-
pected to perform better the more data is available, by the noise being “averaged
out”. Intuition may then suggests that the all possible pairs strategy should per-
form the best of all strategies when residuals are weighted appropriately based
on their level of noise and information.

The all possible pairs data-selection strategy will also be used as a baseline
for other strategies presented in this section. As pointed out in [7], it is handy to
preprocess the data by constructing all possible relative poses, as this allows for
simply picking the best relative pose from the set of all possible instead of having
to somehow evaluate the goodness of the absolute poses and then construct the
best relative pose given two best absolute poses.

Tsai-Lenz score maxing

In Section 2.6.3, the work of Tsai et al. [6] was presented shortly. In their pa-
per, they describe how the uncertainty of Hand-Eye estimate is dependent on,
among other things, the angle between and magnitude of rotation vectors of re-
lative poses. These criteria can then be used to construct a metric for evaluating
any single datapairs’ suitability for Hand-Eye calibration, and datapairs in the set
of all possible datapairs can be chosen greedily based on this metric.

The proposed metric is as follows: Given some set of already chosen relative
poses and their rotation vectors, B =

�

β j

	

j∈Tchosen
and some datapoint β we wish

to compare against the chosen data, the proposed Tsai-Lenz score is defined as

s(β ; B) = ∥β∥
π
·

1
|B|

∑

β j∈B

�

�sin(∠(β ,β j)
�

� . (3.53)

The score is the product of the query-datapoint’s length, normalized to lie in
the span [0, 1], and the average sine of the angle between the query-data and
already chosen data. This score is then a direct reflection of the relationship in
Equation (2.53), Section 2.6.3. The score is maximized and Equation (2.53) is
minimized when the query-datapoint has as large a length as possible and is as
orthogonal to the chosen data as possible. The sine of the angle between rotation
axes is evaluated in absolute value since, as explained in Section 2.6, the angle
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between rotation vectors associated with any relative pose is invariant under in-
version. Explained mathematically Log(R⊤q Rp) = −Log(R⊤p Rq), and observability
only depends on non-parallelity, not the positiveness of angle between rotation
vectors.

With this scoring defined, the Tsai-Lenz score maxing data selection strategy
can be defined. The strategy is defined by starting with an empty set of chosen
datapoints, and then greedily adding onto it with the datapoints which maxim-
ize the Tsai-Lenz score given the current set of chosen data. Pseudocode of the
strategy is given in Algorithm 1. Here, P is the set of all possible rotation vectors,
and B is the set of chosen data. Please note that the choice to use the rotations of
the camera-poses to calculate the rotation vectors is as explained in Section 2.6.3
completely arbitrary.

Note that when implementing Algorithm 1, the procedure of noting which Ho-
mogeneous Transformation matrices A and B that are associated with the chosen
set B has been omitted for posterity. This step, however, is of course important to
implement, since the set of camera rotation vectors β i alone is not sufficient data
to feed into the Hand-Eye calibration problem.

Algorithm 1 Tsai-Lenz score-maxing data-selection

Require: {(Hnb(t i),Hmi(t i))}t i∈T
P ←

�

Log(Rmi(t i)⊤Rmi(t j))
	

t i<t j

B← ;
while |B|< M do
β i ←maxβ∈P s(β ; B)
B← B ∪

�

β i

	

Remove β i from P
end while

Information maxing

In Section 3.3, a method is presented for quantifying the information any single
datapair contributes to the overall estimate of the Hand-Eye calibration. With this
metric in hand, a similar data-selection strategy to the Tsai-Lenz score maxing can
be defined, only with greedy maximization of the HE information metric instead
of the Tsai-Lenz score.

The method similarly begins by constructing the rotation vector of all possible
relative poses, as well as initializing the set of chosen datapoints to consist only
of the datapoint whose rotation vector has the longest length, B =

�

maxβ ||β ||
	

.
Then, iteratively, the approximate Hessian presented in Section 3.3 is calculated
for all datapoints chosen so far and the next datapoint is chosen greedily as the one
maximizing the information metric. Pseudocode of the proposed data-selection
strategy is given in Algorithm 2. Once more, the actual datapairs fed to the Hand-
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Eye solver are found as the relative poses necessary to construct the chosen rota-
tion vectors.

Algorithm 2 Hand-Eye information metric maximization data-selection

Require: {(Hnb(t i),Hmi(t i))}t i∈T
P ←

�

Log(Rmi(t i)⊤Rmi(t j))
	

t i<t j

β0←maxβ∈P ||β ||
B←

�

β0

	

H̃←
�

β0

�⊤
×

�

β0

�

×
Remove β0 from P
while |B|< M do
β i ←maxβ∈P β

⊤H̃β
B← B ∪

�

β i

	

H̃← H̃+
�

β i

�⊤
×

�

β i

�

×
Remove β i from P

end while

Random pairs

Lastly, since the presented strategies attempt to choose data in a seemingly “intel-
ligent” manner, then an absolute minimum baseline they must perform better than
is to simply pair absolute poses at random. This strategy simply picks a random
datapoint, then a second and checks that this pair has not already been drawn. If
not then this pair is chosen and the algorithm continues until the dataset is at the
desired size. If the pair has been chosen already, then the method draws a new
pair.





Chapter 4

Simulation results

4.1 Simulation setup

4.1.1 The software

Previous works by the author, with preprint given in Appendix C, laid out a soft-
ware pipeline for performing Hand-Eye calibration using ship-data. The pipeline
reads the measured ship-poses from GPS and inertial navigation systems and con-
structs a local NED coordinate frame based on these. Simultaneously, captured
images are fed to a Structure from Motion algorithm to estimate the camera poses.
Finally, the ship and camera-poses are used to construct relative poses based
on some data selection strategy and these relative poses are fed to a Hand-Eye
solver of choice. The software is implemented in Python, using the open source
SciPy [29] library for its general purpose nonlinear least squares solver. Two SfM
libraries were tested in the previous works, OpenSfM [9] and COLMAP [30], with
the latter being preferred due to higher accuracy and ease-of-use.

The same implementation of this software-pipeline was also used for simula-
tions in this thesis.

4.1.2 The datasets

For performing simulations to investigate and substantiate the derived theory in
this thesis, four datasets were used. These consisted of two computer-generated
and four real-world datasets. A short presentation of each is given below.

Synthetic uniform

The synthetic uniform dataset is used as a baseline comparison to the other data-
sets. The poses are generated by drawing random poses uniformly over SO(3)×
[−L, L]3, for some span over possible positions L. Uniformly generating vectors
over a closed interval of 3-dimensional space is a simple task, but drawing ran-
dom rotation matrices with uniform probability is less straightforward. Drawing
an axis and an angle uniformly does not uniformly cover the space of all rotations,

59
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and neither does drawing Euler-angles uniformly [31]. For this work, the method
of Shoemake [32] is used, which is shown to result in a uniform distribution over
SO(3). The ship-poses are drawn uniformly using the presented methods, and the
camera-poses are constructed as the composition of generated ship-poses and an
arbitrarily chosen set of constant extrinsic parameters. The generated poses are
obviously not feasible for an actual ship with cameras, requiring for example the
ship to be upside-down or pointed vertically, but the synthetic uniform dataset still
serves as a useful baseline dataset. The synthetic uniform dataset represents move-
ment with no underlying structure in said movement and no continuity between
poses adjacent in time, being completely random from one timestamps to the next.
This dataset is then also highly excited in the sense that the rotation axes of gen-
erated motions are decidedly non-parallel, see Section 2.6.3 for the importance
of this.

Synthetic planar

The synthetic planar dataset is generated with the intention of closely resembling
the actual movement of ships. The ship-poses undergo a random walk on yaw, the
body Z-axis, with constant forward velocity and no up nor down velocity. Random
perturbations in roll and pitch are added as noise to simulate waves, and the
amplitude of these perturbations is controllable through changing the variance
of the added noise. This results in ship-poses that operate mostly in the plane,
but with small deviations away from purely planar motion. The camera-poses are
generated identically to that of the synthetic uniform dataset; an arbitrary set of
extrinsic parameters are chosen and multiplied with the ship-poses to generate
the camera poses.

Additionally, as explained in Section 2.6.2, using the presented pipeline on real
ship-data will cause the camera poses to be given in some unknown frame as well
as with unknown scale on the translations. These aspects are also implemented
in the synthetic planar dataset. The former is achieved by choosing an arbitrary
HT Hmn relating a simulated unknown mediary coordinate system generated by
the SfM algorithm to NED. Premultiplying all generated camera-poses with this
transform yields the camera-poses in this unknown frame. Then simply scaling
the translations with the inverse of the desired scale parameter gives camera-
poses structurally equivalent to those expected from real-world data. See also
Equation (4.1) for a mathematical explanation.

Hni(t j) = Hnmfλ(Hmi(t j))

⇐⇒

Hmi(t j) = f1/λ(H
−1
nmHni(t j))

(4.1)

One last feature of the synthetic planar dataset is the ability to model some
sudden excitation of the system. It is imaginable that the ship may suddenly be
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hit by some larger-than-normal wave, and it is interesting to see how the different
Hand-Eye solvers take advantage of the additional excitation.

Optional measurement noise is added to both synthetic datasets in the same
way as explained in Section 2.2.2, and the covariance of each datapoint is then
available for all timestamps. The two synthetic datasets are shown illustrated in
Figure 4.1, with the figure taken from the project thesis this master’s thesis is
based on.
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Figure 4.1: The 20 first generated poses in the synthetic uniform (left) and syn-
thetic planar (right) datasets

Real-world

In addition to the two aforementioned synthetic datasets, two real-world data-
sets were also available for use in simulations in this thesis. These were supplied
by Kongsberg Maritime (KM) as part of the research center SFI Autoship, a col-
laboration between Norwegian University of Science and Technology and various
commercial partners, including both Kongsberg Maritime and SINTEF. The two
datasets supplied by KM are dubbed the KM weakly excited and KM strongly ex-
cited datasets.

The KM weakly excited dataset was collected from a large passenger cruise
ship fitted with camera rigs. The subset of the full dataset used in this thesis
spanned 60 seconds as the cruise ship was leaving port. The closeness to land
and buildings means a high amount of buildings and details could be tracked by
the SfM algorithm, but this also meant waves that cause non-planar movement
was minimal. This is compounded by the large size of the vessel, and the fact that
cruise ships by design are made to rock as little as possible. The resulting mo-
tion is therefore almost perfectly planar, and the dataset is dubbed weakly excited
therefrom.

The KM strongly excited dataset, on the other hand, was collected from a small
research vessel performing rapid maneuvers outside the coast of Trondheim, Nor-
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way. The small size and rapid movements mean the captured movement is affected
by waves to a large degree, thus motivating the name. The dataset was however
captured far from land, meaning that there were fewer detectable features present
in the images. Thus the SfM reconstruction of camera motions was shown in the
project thesis leading up to this thesis to be more noisy than the KM weakly excited
dataset.

If the results in this thesis are to be recreated for other real-world datasets,
some considerations must be made. Firstly, the measurement systems fitted to
the ship were done so for research purposes, and as such the measurements of
ship-pose were much more accurate than should be expected from other similar
systems. Secondly, a numerical uncertainty of the ground truth extrinsics was not
known. This can make certain conclusions regarding results generated using this
dataset hard to support, as it is not known whether the estimated orientation is
wrong or if the ground-truth is wrong.

Figures 4.2 and 4.3 show illustrative images from both real-world datasets, for
two chosen timestamps. Note how the horizon-line in Figure 4.3 changes much
more drastically than in Figure 4.2. This behavior is consistent throughout both
datasets, and therefore gives rise to their description as being weakly and strongly
excited. Figures 4.2 and 4.3 are taken from the project thesis this thesis is based
on.

(a) Taken at 07:30:00 (b) Taken at 07:30:17

Figure 4.2: Example images from the KM weakly excited dataset

4.1.3 The metric for evaluating estimation error

In the following section whenever an estimated camera-orientation is compared
against the ground-truth extrinsics, the SO(3)-metric presented in Section 2.2.3
will be used. The resulting angle between the compared rotations is scaled to
degrees for easier interpretation.
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(a) Taken at 08:14:20 (b) Taken at 08:14:37

Figure 4.3: Example images from the KM strongly excited dataset

4.2 Covariance compensation

To accurately reflect the real-world scenario when performing covariance com-
pensation, the setup described in Section 3.2 was implemented in software. Noise
with locally defined covariances was added to the synthetic planar dataset and
propagation of these covariances through the chosen relative poses was performed.
Performing tests with synthetic noise was done to get an as accurate test of the
proposed covariance compensation as possible, as well as due to the fact that co-
variance estimates for the real-world datasets were not available. Also, the used
SfM pipelines did not produce uncertainties of the constructed camera motions
either. Previous work by the author found the standard Park-Martin cost-function
able to estimate extrinsics within 2◦ of the ground-truth when performed over the
real-world dataset with unknown noise level. Therefore, noise was added to the
synthetic planar dataset incrementally until the optimization gave a mean error
of about 2◦. This level of noise then became the baseline noise level, and levels
slightly above and below this level were tested.

Correlation between measurements of the same frame’s rotation at different
timestamps, that is between ship rotations at timestamp t j and tk or between
camera rotations at t j and tk, were not implemented. This was initially done for
simplicity, with the intent of adding it later, but as the results in this section turned
out much differently than expected, the energy was instead spent on debugging
the behavior of the methods.

First, a simple comparison of performing no covariance compensation and per-
forming compensation with the full group-theoretic covariance based on relative
poses’ covariance presented in Section 3.2 was performed. This was done by per-
forming 80 runs of optimizing the standard Park-Martin residual as well as the
covariance-compensated Park-Martin residual, each with a different instance of
the same synthetic planar dataset with random covariances and noise realization
for each run. Each run also used a random initial condition to the optimization,
within 0.3 rad ≈ 17◦ standard deviation of the ground-truth rotation vector. Ad-
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Figure 4.4: Boxplot of estimation errors from using the standard Park-Martin
residual (red, left) versus the Mahalonobis norm of Park-Martin residuals with
the previously derived residual covariance (blue, right). Note that outliers are
not plotted, but that these were at most 10◦ larger than the outermost error.

ditionally, during derivation of the covariance in Section 3.2 it was noted that its
expression requires knowledge of the true, noiseless ship and sensor rotations,
R̄nb(t j), which would not be known in a real application. For this test, the noisy
rotations were therefore used instead. The resulting boxplot of measured errors
for this test is seen in Figure 4.4.

The results in Figure 4.4 show the covariance compensated residual to never
outperform the non-compensated residuals, for the tests performed. This seems to
be the case for both the median estimation error (orange) and variance of errors
(size of boxes and whiskers), thus the covariance compensated residuals show per-
formance objectively worse than the non-compensated residual. This result was
slightly surprising, but as noted in Section 3.2 there are multiple considerations
to make when using the derived covariance.

In an effort to challenge the assumptions made during the derivation of re-
sidual covariance, the different combinations of the considerations presented in
Section 3.2 were tested. The results of which are seen in Figure 4.5. In this figure,
the different combinations are denoted as:

• No compensation – The standard Park-Martin residual.
• Naïve cov. – The residual covariance presented in Section 3.2.1, using only

the covariance of the last absolute pose in each relative pose.
• Derived cov. – The derived covariance of Park-Martin residual based on co-
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variances on absolute rotations.
• Noisy rots – Using the noisy ship and sensor rotation matrices.
• Noiseless rots – Using the true ship and sensor rotations. Note: These would

not be known in any real-world application, and this is only tested as a
debugging measure.

• Est. extr. – Inserting the estimated extrinsics R at each optimization step,
and thus updating it iteratively.

• GT extr. – Inserting the ground-truth extrinsics RX at each optimization step.
Note that this would not be possible in a real-world application, as RX is the
object to be estimated.

To generate the results in Figure 4.5, 80 runs of the same dataset with different
noise realizations were tested. The all data relative first data-selection strategy
presented in Section 3.4 was used for simplicity. In Figure 4.5, only the mean
error across all runs of a given noise level is plotted for readability.

Note how the error from using the noiseless rotations compared to using noisy
rotations seemingly coincide, for any choice of estimated or ground-truth extrins-
ics. The reverse is however not true, as the error from using estimated extrinsics is
seemingly higher than the error resultant when using the ground-truth extrinsics.
The proposed covariance methods perform better than the naïve method, which
reflects expected behavior.

Despite this, all combinations of methods tested in Figure 4.5 seemingly pro-
duce worse estimates than simply not taking the covariance into consideration.
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Figure 4.5: Mean estimation errors from 80 runs of different methods of per-
forming covariance compensation
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Figure 4.6: Mean estimation errors from 80 runs of different methods of per-
forming covariance compensation when only the latter half of constructed relat-
ive poses are used. This ensures their rotation vectors are much larger than the
added noise.

Lastly, as mentioned in Section 3.2.3, the assumption of noise being compar-
ably much smaller than movements may not be true for poses close in time. Since
the all data relative first data-selection strategy was used in these tests, the first
couple datapoints are expected to have rotation vectors of possibly very small size.
To test for this, Figure 4.6 shows the same simulation setup as in Figure 4.5, but
with only the latter half of the constructed relative poses being used for estimation.
This ensures that the rotation vectors of the relative poses used have a significant
enough size. The resulting performance of the covariance compensation methods
is nearly identical to that when using the whole dataset in Figure 4.5.

4.3 Information-weighting

The proposed HE information weights are, as mentioned in Section 3.3.5, an en-
tirely novel metric whose performance must be validated through experiments.
The proposed weighting scheme is not unique, and any number of design choices
can be implemented differently. Throughout Section 4.3, the all data relative first
data-selection strategy is used for simplicity, if nothing else is specified.

Firstly, the effect of the SO(3) right Jacobian Jr(ω) was tested experimentally,
as to answer whether ignoring its effect during the derivation of the HE informa-
tion metric was warranted. This test was done by defining a number of points on
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the sphere of radius R and a selection of values for the reference rotation vector
ω were chosen. The points on the sphere were transformed by the right Jacobian,
along with a set of orthogonal coordinate vectors. The result of this test with
R= 0.3 and ω= [0.5, 0.7,0.1] is seen in Figure 4.7.

Note how none of the points on the sphere are transformed to points of greater
distance from the origin. Also, the three orthogonal axes stay orthogonal after
the transformation and have the same length. The same result was achieved for
different choices of R andω. Seemingly the right Jacobian only affects the vectors
through some rotation.
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Figure 4.7: Points on the sphere with radius R= 0.3 (left) are transformed by the
SO(3) right Jacobian, Jr(ω) (right). The chosen reference rotation vector to the
right Jacobian, ω, is seen in black. The red, green and blue vectors are standard
coordinate axes, also transformed by the right Jacobian.

Figure 4.8 shows the proposed weighting scheme for the data in the synthetic
uniform, as well as for an instance of the synthetic planar dataset. The latter of
which has been simulated with a large sudden wave at the timestamp t = 30, caus-
ing the ship to heel about 30◦, as to induce more excitation in the data. This extra
excitation is however almost impossible to discern in Figure 4.8, except for a small
bump in the middle. The synthetic uniform dataset is seemingly so highly excited,
as measured by its information weights being large, that the weights of the syn-
thetic planar dataset are incomparable. The synthetic uniform being much more
excited than the synthetic planar dataset is however reflective of intuition regard-
ing the connection between excitation and rotation vectors from Section 2.6.3.

It is not possible to compare the distribution of excitation in the two datsets,
since the scale of their weights are so different. To counteract this issue, one could
make the design choice to normalize the weights. This is done my defining w′i :=
wi/maxiwi , which then always would be in the span 0 ≤ w′i ≤ 1. The result of
normalizing the weights present in each dataset is seen in Figure 4.9.

In Figure 4.9 it is now possible to discern how the weights of the synthetic
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Figure 4.8: The proposed information weighting scheme for each datapoint in the
synthetic uniform and synthetic planar datasets. The planar dataset experiences
a large wave at timestamp t = 30, as to induce more excitation in the estimation
problem. Notice that despite this, the weights are much larger overall for the
synthetic uniform dataset.
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Figure 4.9: The proposed information weighting scheme with normalization, for
each datapoint in the synthetic uniform and synthetic planar datasets. The planar
dataset experiences a large wave at timestamp t = 30, as to induce more excita-
tion in the estimation problem.
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Figure 4.10: The proposed information weighting scheme for each datapoint in
the KM weakly excited and KM strongly excited real-world datasets. Note that even
though the weights of the KM weakly excited dataset are seemingly zero, they are
in fact on the scale of about 10−5.

planar dataset spike at the middlemost timestamp, correctly reflecting the sudden
excitation when the ship is hit with the large wave. The distribution of the weights
is not changed when normalized, as shown by the weights of the synthetic uniform
dataset having the same shape in both Figure 4.8 and Figure 4.9.

Figure 4.10 shows a comparison of the non-normalized excitation weights for
the two real-world datasets, the weakly excited KM dataset, and the strongly excited
KM dataset. The weights in the strongly dataset are much higher than that of the
weakly excited dataset. The weights then reflect the expected qualitative behavior
of these datasets in regard to excitation.

With the information metric defined and seemingly operating as expected,
more complex questions regarding the Hand-Eye calibration problem can be at-
tempted answered. One such question is the effect of more movement on the
excitation. That is, if the ship can be commanded to perform larger turns or sud-
den stops in an attempt to generate more non-planar rotation vectors, how much
more value should a motion which results in 15◦ pitching be given as compared
to a motion which only results in 5◦ of pitching?

Figure 4.11 shows the distribution of HE information weights and deviations
away from purely planar rotation for different wave magnitudes. The results were
generated using an instance of the synthetic planar dataset with process noise and
no measurement noise, where the wave magnitude A is the scaling of Gaussian
wave noise. The dataset was for this test generated without the sudden excitation
from a large wave. Deviation from planar rotation here means the angle between
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Figure 4.11: The distribution of information weights (red, left) for a planar data-
set with variable process noise due to wave motions, resulting in higher deviation
away from purely planar rotation (blue, right)

the rotation vector of the ship and the NED Z-axis. Figure 4.11 is the distribution
of weights and deviations from the data of 80 different datasets with the given
wave amplitude.

Figure 4.11 seemingly shows that increasing wave magnitude leads to increas-
ing weights and deviations, both in terms of their span and median (orange) in-
creasing.

Notice how the medians of the weights and deviations in Figure 4.11 seem-
ingly follow quadratic and linear trends, respectively. This relationship can be in-
vestigated further by plotting the weights against the same datapoints’ deviation
from planar rotation. This plot is seen in Figure 4.12. The resultant relationship
is seemingly bounded below by a quadratic function in the deviation. Further, the
mean of distributed weights also seems to follow a quadratic line, with decreasing
density away from the mean. It should be noted that unlike how the plot is impli-
citly grouped by dataset through being grouped by wave amplitude in Figure 4.11,
the points in Figure 4.12 are taken from all the simulated datasets simultaneously.
Thus the distribution of weights/deviations within a single dataset is lost. This is
important since the weight of a highly excited datapoint in a dataset with only
planar motion is expected to be much higher than the weight of the exact same
datapoint in a highly excited dataset, and as such the weight is only relevant when
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Figure 4.12: Cross plot of weights against deviations calculated in Figure 4.11.
Each pair of deviation and weight are plotted with 10% opacity, to discern when
many similar pairs are plotted on top of each other. Note the seemingly quadratic
lower bound on the plotted points.

compared against the whole dataset.
The results so far have regarded improving the existing understanding of what

excitation is in the context of Hand-Eye calibration. For the last test in this chapter
we remind ourselves that the main goal of HE calibration is estimating the actual
camera orientation, and as such the most important metric of success is the es-
timation error.

Previous experiences and experiments suggest that when no noise is present,
the estimation errors are so small that differences between datasets just as easily
can be numerical inaccuracies. On the other hand, if the excitation due to waves
is non-existent then estimation errors are so large that differences just as well may
be from different choices of initial condition to the optimization. Between these
two extremes are many combinations of noise-level and wave-excitation which all
may be relevant for any given physical setup. Motivated by this, it is of interest
to find a more concrete relationship between how the excitation and noise affect
estimates, enabled by the analyses of excitation performed thus far in this thesis.

By associating the distribution of excitation weights with the magnitude of
waves in Figure 4.11, a connection between these distributions and estimation
error for different noise levels can be made. This is relevant, as the weights alone
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carry no information, but a distribution of weights does, and associating such dis-
tributions with the excitation due to wave motions enable a short-hand description
of the excitation for this simulation. Further, while the level of noise present in
the measurement of some system is determined by the hardware and as such is
not controllable once the ship is at sea, the apparent wave motion that a small to
medium sized ship undergoes is somewhat controllable by allowing more excit-
ing motions to be performed. As such, the wave amplitude is a reflection of the
required input to lower the error a given amount for some given noise level.

In Figure 4.13, the average estimation error for different combinations of noise
and wave excitation is plotted. The averages were calculated over 20 different runs
on 10 different instances of the synthetic planar dataset. These datasets were gen-
erated without the previously presented inclusion of a sudden large wave, and as
such only nominal wave motions induced excitation in the system. For estimating
the orientation, the standard unweighted Park-Martin cost-function was minim-
ized.

Figure 4.13 illustrates the relationship mentioned above: Too little wave amp-
litude or too high noise invariantly leads to unreasonable high estimation errors
of around 100◦ (yellow) for this system. Further, the result suggests a linear re-
lationship between any single level of wave amplitude and the error for different
noise levels. Note however how this relationship is seemingly non-linear between
multiple wave amplitudes, where the lower half of Figure 4.13 has more and more
proportion of “very bad estimation results” as opposed to the upper half.
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Figure 4.13: Heat map of resulting estimation error for datasets with different
combinations of level of measurement noise and excitation due to wave motions.
Note the logarithmic scale on both the estimation errors, as well as wave and
noise levels.
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4.4 Data-selection strategies

For comparison of the data selection strategies presented in Section 3.4, we first
take a look at some simple properties.

Figure 4.14 shows the chosen datapairs and associated information weights
for all presented data-selection strategies over an instance of the synthetic planar
dataset with the added sudden wave, as presented in Section 4.1.2. The HE in-
formation weights were compensated by the amount of chosen datapoints, as
explained shortly in Section 3.3.5, enabling the comparison of the information
weights across constructed sets of relative poses of different sizes. This is done by
defining ŵi = wi/(M − 1), where M is the amount of weights produced by the
given strategy. Performing this compensation is especially pertinent when com-
paring any strategy with the all possible pairs strategy, which will construct the
maximum number of possible pairs.

All methods compared in Figure 4.14 were required to have the second ab-
solute pose making up a single relative pose to have timestamp strictly earlier
than the first absolute pose. As explained in Section 2.6.3, this can be performed
without loss of generality. The effect of which is the upper-triangular shape of all
plots in Figure 4.14.

From the figure, one can verify that the data-selection strategies work as pro-
posed. The all data relative first strategy in Figure 4.14a has only weights associ-
ated with the 0-th row, while all possible pairs in Figure 4.14b has weights asso-
ciated with every single point on the upper-triangular. The two greedy strategies
in Figures 4.14c and 4.14d appear extremely similar both in chosen datapairs
and resulting weights, suggesting their maximizing criteria are closely related.
The random pairs strategy also seems to be working properly, as good as can be
evaluated from a singular run of the method.

The underlying dataset has, as mentioned earlier, an added larger wave at
t = 30 resulting in the ship heeling about 30◦ away from a planar orientation.
Inspecting the figures around the t = 30 datapoint, multiple observations can be
made. Firstly, the two information-maxing strategies in Figures 4.14c and 4.14d
feature the datapoint of large wave prominently, but not exclusively. Both meth-
ods also pick a handful of other datapairs as well. Secondly, the weights along
t = 30 for the dataset constructed by the all possible pairs strategy in Figure 4.14b
have seemingly lower magnitude than the weights for the same datapairs in Fig-
ures 4.14c and 4.14d. This may suggest a “sunk cost”-type behavior, where having
more and more datapoints will in fact decrease the average information in any
single datapoair.

Further, it is of interest to compare the performance of the data-selection
strategies when it comes to selecting data for use in estimation. This was done
by generating 40 different realizations of a noisy synthetic planar dataset and
performing Hand-Eye calibration by both minimizing the standard Park-Martin
residual and the proposed information-weighted Park-Martin residual for 40 dif-
ferent initial values to the nonlinear optimization procedure. All the data-selection
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Figure 4.14: Chosen datapairs and associated dataset size-compensated weights
for five tested data-selection strategies over the synthetic planar dataset with ad-
ded sudden wave at t = 30. In the figures, white is used to represent a datapair
which is not chosen by the relevant strategy.
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Figure 4.15: Illustration of span in estimation error between the presented data-
selection strategies using both the standard Park-Martin residual (left, red) and
the proposed information-weighted Park-Martin residual (right, blue). The results
were generated with many different instances of noisy synthetic planar datasets.
Note the logarithmic scale on the Y-axis.

strategies to be tested, except the all possible pairs strategy, were given the same
amount of output-datapoints to generate: 60. The resultant boxplot of estimation
errors is seen in Figure 4.15.

From Figure 4.15 one can see that all the proposed methods perform about
equally as well. All methods produce median estimation errors within 10◦ error,
with the best median performance attributed to the all possible pairs strategy. In
Section 3.4.1 it was theorized that including as much data as possible by using
the all possible pairs strategy would lead to the best results when the residuals
are properly weighted by their expected information content. This hypothesis
then was partially correct, but the info-weighted Park-Martin residual did not im-
prove estimates. In fact, only the all data relative first and Tsai-Lenz score maxing
strategies produced lower estimation errors when the info-weighted Park-Martin
residual was optimized. The latter combination did however produce the lowest
estimation error of all tested combinations, with an error of about 0.4◦. Despite
the similarities between the Tsai-Lenz score maxing and info maxing noted in Fig-
ure 4.14, the latter had both lower median estimation error and lower span of
errors than the former. Luckily for the integrity of these results, the random pairs
strategy had the highest median estimation error.

The results in Figure 4.15 suggest the presented data-selection strategies to
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perform very similarly when estimating over a dataset of 60 datapoints. One of the
motivating factors for investigating such strategies was the possibility of including
fewer datapoints than every single available datapoint, with the thought that this
can be beneficial in real-time applications where storage and computation time is
limited and the amount of available data is large. Further, if the expected effect
on the estimation error of including one more datapoint is quantified, then more
complex choices regarding the trade-off between dataset size and certainty of
estimates can be made.

To test this, the same strategies in Figure 4.15 except all possible pairs were
tested with a limitation on the constructed dataset size. The all possible pairs
strategy was excluded from this analysis since reducing its output size goes against
the point of having it as a benchmark, and because its working principle goes
against the motivation for this test. As a benchmark strategy, the all data relat-
ive first strategy and random pairs are used instead. For the all data relative first
strategy, the limitation on dataset size was implemented by only using every n-th
datapoint of the constructed dataset, where n was the number that would result
in a dataset of the demanded size.

The methods were compared on the same datasets as in Figure 4.15, and by
measuring the performance in the same way as previously. This means the single,
highly-excited dataset associated with added wave motion is included as well. The
datasets consisted of 60 absolute pose-pairs.

Figure 4.16 shows the average estimation error of the presented data-selection
strategies for different enforced dataset-sizes. Figure 4.16 shows the results by
only using the information weighted Park-Martin residual. The results from using
the non-weighted Park-Martin were similar enough to be omitted in this section,
but are given in Figure B.1 in Appendix B for completeness.

Of note, the Tsai-Lenz score maxing and info maxing strategies result in low
(about 3◦) error for as few as 10 chosen datapoints. The two methods’ results are
also notably similar, once more suggesting as in Figure 4.14 that their maximizing
criteria are similar.

The all data relative first strategy seemingly resulted in a suddenly decreasing
error for some critical number of datapoints. This can be explained by the way
its size was limited, as beyond the subset size of 30 the strategy would begin to
include the highly excited datapoint at t = 30.

The plotted results in Figure 4.16 seemingly also suggest the performance
of the strategies to converge as the subset size increases. At a subset size of 60,
the performance of simply picking random pairs has almost caught up with the
“intelligent” data-selection strategies.

The last test performed to be presented in this section is the comparison of
different data-selection strategies on the estimation error on a real-world dataset.
For this, the KM weakly excited dataset was chosen as input, since estimation on the
strongly excited were shown in the specialization project to be slow and difficult,
due to much higher amounts of noise than the weakly excited dataset. Further,
testing on the very weakly excited dataset allows for testing the hypothesis that
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Figure 4.16: Simulation result comparing estimation error from different data-
selection strategies and with varying amounts of datapairs. Note the logarithmic
scale on the Y-axis.

choosing datapairs intelligently should allow for lower estimation error. The test
was performed identically to that seen in Figure 4.15, and the results are seen in
Figure 4.17.

Contrary to the results on the synthetic planar dataset in Figure 4.15, the
results in Figure 4.17 are wildly different between optimization with the standard
Park-Martin residual and info-weighted Park-Martin. Surprisingly though, the all
possible pairs method performed very well with both optimization techniques. Its
median error of about 1.3◦ is also the lowest estimation error achieved so far, both
in this thesis and the preceding specialization project.
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Figure 4.17: Illustration of span in estimation error between the presented data-
selection strategies using both the standard Park-Martin residual (left, red) and
the proposed information-weighted Park-Martin residual (right, blue). The results
were generated using the KM weakly excited real-world dataset as input. Note the
logarithmic scale on the Y-axis.





Chapter 5

Discussion

5.1 The Park-Martin cost-function and its properties

The derivation of a closed-form expression of the level sets of the Park-Martin
cost-function, and associated properties, are, in the author’s eyes, exciting. This
however does not make them useful, practical or even any good at all. Whereas
the derivations of the approximate Hessian and consequent information metric
have been used to improve estimates of the Hand-Eye pipeline for ship-data, the
closed-form level sets have not been applied in practice further in this thesis.

Some possible use-cases for the derived closed-form expression is to optimize
along the level sets. By using the closed-form expression of the solutions and it-
eratively approach the level C = 0, knowledge of the level sets could potentially
be used to improve convergence or other properties of the solvers.

The geometric derivation of the level-set parametrization also allowed for an
intuitive assertion of an upper bound on the cost-function. Interestingly, a similar
upper bound on the approximate Hessian was found in Equation (3.39) of Sec-
tion 3.3.3. One can imagine being able to combine these two results to obtain a
tighter bound on the error of the approximate Hessian.

Lastly, analysis of residuals on the form ri(R) = αi − Rβ i is not restricted
to analysis of the Hand-Eye calibration problem. In fact, this is exactly the same
function to be minimized when aligning sets of point clouds, for example in the
field of Computer Vision [26, 33]. Study of this connection was not in the scope
of this thesis, but the similarities are enthralling.

5.2 Using knowledge of the covariances

In this thesis, the covariance of the Park-Martin residual based on covariances
of the absolute orientation measurements was derived. This was done following
fairly new theory in robotics regarding how noise over group elements should be
described [14–16]. Despite intuition saying that compensating for the uncertainty
of individual measurements should always result in better estimates, we were not
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able to show the derived covariance exhibiting this in simulations.
Any number of reasons could be the cause of this discrepancy between expec-

ted behaviour and simulated results.
Firstly: There could be an error, either logic or algebraic, in the derivation of

relative poses’ covariances done in this work. This is difficult to debug in any other
way than simply going over the derivations multiple times, which was attempted.
No outright error has been found.

Secondly, a number of possible sources of errors were noted in Section 3.2.3.
Most of these were tested for, but possibly not well enough. Additionally the noted
challenge of the BCH approximation being used twice during derivations was not
tested for.

Lastly, there could be an error in the implementation of the Mahalonobis norm
or otherwise in how the residuals are being compensated. To test for this, the soft-
ware was debugged by running the same simulations as presented in Section 4.2,
but by adding noise directly to the noiseless rotation vector datapairs (αi ,β i).
This did lead to lower errors for some datasets, but not consistently. As such it
is difficult to conclusively say whether this effect is due to error in the software,
erroneous theory, or both.

If some inferences are to be drawn from the simulation results in Section 4.2,
they are as follows. It seems like there is no problem in using the noisy rotations, as
the plots from using noisy rotations coincide with the plots of noiseless rotations.
Additionally, the simulations suggest that using the estimated camera-orientation
always results in higher errors than using the ground-truth. The naïve covariance
was consistently outperformed by the proposed covariance, pointing to the latter
at least being more on the right track than the former. However, not much weight
should be put on these inferences, as they all stem from the same assumed erro-
neous results. As such, no real conclusions on the topic of covariance compensated
Hand-Eye calibration can be drawn with any certainty.

5.3 The proposed information weighting

The proposed measure of information present in a dataset for Hand-Eye calibra-
tion has been shown to be distributed in a way that nicely reflects the expected
qualitative behaviours of tested datasets. The weights associated with the highly
excited synthetic uniform dataset resulted in weights about 1000 times the mag-
nitude of the synthetic planar dataset, as shown in Figure 4.8. This was also the
case of the real-world datasets in Figure 4.10 where the information weights
correctly identify the strongly excited dataset from the weakly excited dataset.
The magnitude of the proposed weights is then successful as a method of com-
paring the magnitude of excitation present in different datasets. However, this
comparison also highlights a weakness with the proposed weighting scheme. As
mentioned in Section 4.1.2, the KM strongly excited dataset was in previous work
shown to result in a very noisy SfM reconstruction of the camera poses, and the
weighting scheme is calculated as the rotation vector of exactly the reconstruc-
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ted camera rotations. As such, the weighting scheme will additionally pick up this
noise, and it has no method of discerning high amounts of excitation from high
amounts of noise. This has the potential to severely impact performance, as it
would imply the proposed info maxing data-selection strategy to prefer picking
the noisiest datapairs out of a noisy dataset, as well as the weighted Park-Martin
optimization to assign highest importance to the most noisy datapairs. This lat-
ter point could be the reason for the poor performance when using info-weighted
Park-Martin in Figure 4.17. This fault could be attempted alleviated by instead
calculating the weights based on relative ship movements, but this must only be
done if the ship pose measurements are expected to be less noisy than camera
pose estimates. Another point is that for any given dataset, the level of noise on
measurements and expected excitation can come in a wide range of combinations.
In this thesis, both the “somewhat noisy but very planar” KM weakly excited data-
set and the “very noisy but also highly excited” KM strongly excited datasets were
both relevant for testing. Therefore the expected usefulness of the proposed in-
formation metric is dependent on the ratio between excitation of the system and
present noise levels. This is also reflected in Figure 4.13 where this relationship
leads to a seemingly non-linear relationship with the estimation error.

The fact that different datasets may produce weights, and thereby costs, of
totally different order of magnitude under the proposed weighting scheme also
poses a challenge to the usefulness of said scheme, as this can cause the same op-
timization method to perform wildly differently on the two datasets. This would
make weighting less robust for a real-world application where the spectrum of
excitation in the dataset may change many times during the lifetime of a real-
time use of HE. It is not desirable to have to tune parameters of the optimization
method for every qualitative change in the dataset. This is compensated for by nor-
malizing the weights, and we saw in Figures 4.8 and 4.9 how the normalization
of the information weights allowed for comparing the distribution of excitation
across datasets of different magnitude of excitation. The practicality of this was
shown by example in Figure 4.9, wherein we could conclude that the synthetic
uniform dataset not only has higher excitation in terms of magnitude, but its data
is consistently highly excited. This was a counter to the synthetic planar dataset,
whose points of high excitation are centered exclusively around the timestamp
of the sudden wave motion. These two characteristic cases led to two very dif-
ferent levels of estimation error, as shown in earlier work by the author given in
Appendix C. This could be investigated further by somehow quantifying differ-
ent datasets’ excitation by the variance of their information weights’ distribution,
and comparing this variance against obtained estimation errors. It would be in-
teresting to see how the estimation errors evolve from the very narrow excitation
distribution of the synthetic planar dataset, to the wide distribution of excitation
present in the synthetic uniform dataset. In that regard, uniformly distributed
poses can be seen as the limit of planar motion with more and more wave excita-
tion. Performing this normalization did however remove information on the mag-
nitude of excitation, which also has an effect on estimation errors. Then one could



84 Daniel Bjerkehagen: Automatic extrinsic calibration

attempt characterizing datasets by both their mean and variance of their calcu-
lated HE information metrics, or by plotting their histograms, not unlike previous
works by the author as well as [7].

An alternate method of transforming the generated information metric to
more easily compare different datasets’ excitation was by compensating by the
size of the generated dataset. We saw in Section 3.3.5 how the weights for a data-
set of size M is proportional with M − 1. By normalizing weights by this size, we
saw in Figure 4.14 how the weights of both large and small chosen dataset sizes
could be compared and give reasonable results. This comparison was enabled by
the information metric being based in theoretical derivations, as opposed to being
entirely novel where such a relationship not necessarily is apparent.

The hypothesis that the proposed HE info metric is unable to differentiate
between noise and excitation seems to be supported by the results in Figure 4.17.
Here, performing info-weighted optimization on the known to be noisy KM weakly
dataset led to associated estimation errors being much higher than performing
non-weighted optimization. Combine this fact with the fact that the information-
weighted Park-Martin residual did not result in lower estimation error than the un-
weighted residuals when tested on the synthetic datasets, as seen in Figure 4.15,
then these weaknesses suggest the proposed HE information metric is most use-
ful as a measurement of excitation across different datasets. For future work, it
would be of value to decouple the excitation due to noise and excitation due to
actual ship movement somehow, especially if estimates on the level of noise are
available.

So in summary, results from this study suggest the proposed information met-
ric to be useful for quantifying excitation present in a dataset, but not for perform-
ing information-weighted estimation. The proposed measure of excitation enables
numerical description and comparison of the qualitative properties regarding ob-
servability in Section 2.6.3. It also seems that its usefulness as decision support
and data-selection criteria is best when the weights are compensated by dataset
size. A possible use-case for the metric, as supported by the results in Figure 4.16,
is the ability to quantify whether a given dataset contains enough information
to sufficiently estimate the extrinsic parameters to the desired accuracy. One can
imagine a use-case of the proposed metric where data is collected, the datasets’
information metric is calculated and estimation is only performed if the present
information is above some user-defined threshold.

The information metric also enables a discussion on the connection between
excitation, movement of the ship and resulting estimation errors. For any actual
ship, the variable one can influence is the movement of the ship. One can ima-
gine performing sudden stops and violent turning of the ship to generate more
deviation of the ship away from purely planar motion. Figures 4.11 and 4.12
illustrate this relationship, and it seems to be quadratic. This should perhaps
not come as a large surprise, since the information weights implicitly depend
on the angle between rotation vectors in the dataset, which then are trigono-
metric functions of the deviation away from purely planar motion. By comparing
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the weight/deviation-relationship in Figure 4.11 with estimation errors in Fig-
ure 4.13, some inferences between deviation from planar motion and expected
estimation error can be made. If motions can be commanded which generate
movement of the ship functionally identical to wave motions resulting in up to
25◦ deviations from planar motion (equivalent to a wave amplitude of 5), instead
of for example a nominal value of 5◦ deviation, then the resulting improvement on
estimation errors is approximately tenfold. Moreso, the relationship is not linear,
implying any improved movement of the ship just has better and better estima-
tion errors. Combine this nonlinearity with the fact that for example the error in
detected objects in images using the estimated extrinsics also are trigonometric in
the error in extrinsics, and the reward from performing larger excitations of the
system is compounded.

In Figure 4.7 we saw how three orthogonal vectors stayed orthogonal and ori-
ented right-handedly when multiplied with the right Jacobian. In addition, their
lengths did not change under the transformation. From the linearity of matrix
multiplication, this result implies this to be the case of any linear combination of
the three axes. And since the axes span R3, then this must also be the case for
any vector in R3. Then if any vector is seemingly only rotated by the Jacobian, its
omission is not unwarranted.

5.4 Comparison of data-selection methods

In this thesis, five strategies for performing data-selection have been proposed and
investigated. The motivation behind the introduction of such strategies is the fact
that for pairing absolute poses into the relative poses used in Hand-Eye calibration,
the method of pairing will significantly impact the estimation error, as shown in
Figure 2.5. In addition, it was of interest to analyze whether a strategy could be
constructed which would give reasonable estimation error for a smaller subset of
the entire dataset, by utilizing some intelligent pairing criteria.

Firstly, in Figure 4.14 we saw how the data-selection strategies operated as
they should, and the resulting information weights were illustrated. These res-
ults further emphasize the importance of datapairing on excitation in the result-
ing dataset. Figure 4.14 also shows how having too many datapoints will have
a diluting-effect, where the more exciting datapoints are not as exciting relative
the whole dataset. These observations were in whole enabled by the proposed
information metric.

When performed over a dataset of fixed size, all data-selection strategies per-
formed about equally, as seen in Figure 4.15. More importantly however, when
constrained to a dataset of smaller size in the simulation shown in Figure 4.16,
the propose “intelligent” data-selection strategies converged to a lower-bound es-
timation error about 3 times as fast as the naïve data-selection strategies. This
result is especially impactful when one of the motivations behind introducing a
limit on dataset size is the limited storage and computational power available if
HE is to be performed on data gathered in real-time. If no such restrictions are
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present, results in Figure 4.17 on the KM weakly excited dataset with inaccur-
ate camera-reconstruction suggests the all possible pairs strategy to be optimal.
This could possibly be because of the strategy somehow “averaging” out incorrect
measurements, since all possible combinations are considered. The fact that the
random pairs strategy has the lowest lower-limit error in the same figure can sug-
gest the existence of some optimal combination of datapairs, possibly being the
pairs that minimize the resulting effect of noise.

It is also of interest how all strategies compared in Figure 4.16 seemingly con-
verge to the same estimation error when the dataset size becomes large enough.
This may suggest the existence of some lower bound on the error possible for
any given level of noise, as well as possibly explain how similar the results in
Figure 4.15 are across the different strategies.

The good convergence of estimation error in Figure 4.16 was achieved with
two very similar greedy data-selection strategies: Maximization of our proposed
information metric and maximization of an excitation score based on the theory
by Tsai and Lenz [6]. This implies the maximizing metrics to be very similar in
nature. One advantage of the information metric proposed in this thesis is that it is
entirely based on matrix and vector multiplication, which typically is much faster
than computing the sine of the angle between vectors. Either way, both strategies
produce reasonable estimates for as few as 10-20 datapoints, and highlight the
importance of datapairing on efficient Hand-Eye estimates.

5.5 Critiques of the Park-Martin cost-function

This thesis has in large part involved deriving and testing properties of the Park-
Martin cost-function for performing Hand-Eye calibration. The assumption on
which all this work is built on is that this cost-function is of any value for this
purpose, better than the many other alternatives, and that it is appropriate for
our specific case of ship-data. This assumption will now be challenged.

Firstly, the cornerstone of the Park-Martin formulation of the Hand-Eye cal-
ibration problem is to perform the SO(3)-logarithm to the rotational part of the
Hand-Eye equation. This has the advantage explained earlier of the new formula-
tion being directly tied to the measure of observability for the standard Hand-Eye
problem, a property heavily utilized in this thesis. The use of the logarithm is how-
ever challenging when it comes to the numerics, as it is unstable for input matrices
close to the identity. This was noted previously in Section 3.3.5, where this in-
stability negatively affected the derivations of the information metric. Rotations
close to the identity will be especially prevalent in the dataset if the chosen data-
selection strategy for some reason chooses to pair datapoints close in time. This
should however not be the case for the two presented data-selection strategies
with best performance as rated in this thesis, those being the information maxing
and Tsai-Lenz score maxing strategies. This is because they both weigh the import-
ance of a datapair by the length of its respective rotation vector, and as such they
will tend to not pick relative poses close to the identity.
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A second, less tangible, challenge lies in how the derivation of the Park-Martin
formulation moves the Hand-Eye problem from SO(3) into the mixed space of
rotations and vectors. Meaning, in the original formulation, RARX = RXRB, all
present objects are rotations and the equation is entirely contained within the
space of SO(3). The Park-Martin formulation of α = RXβ , however, moves the
problem into the mixed space of both rotations and vectors. This has proven to
complicate matters in this thesis, for example when deriving the Hessian of the
Park-Martin cost-function in Section 3.3.1 led to a mix of Jacobians over both
SO(3) and regular vector function Jacobians. This challenge is further compoun-
ded when the norm is taken of the Park-Martin residuals to construct the cost-
function, which is even less compatible with the group structure of SO(3).

Looking past the Park-Martin solver’s disadvantages, a big advantage to us-
ing Hand-Eye for any system where sensor egomotion can be performed is its
simplicity. The calibration problem can be solved using only captured data and
requires no extra infrastructure. Further, the derivation in itself makes use of very
few assumptions, in principle only assuming the extrinsics to be constant over the
dataset used for estimation. Additionally, this assumption can be validated in a
simple matter by evaluating the expression AX = XB, and confirming the error
lies within expected values for the given level of noise over the data. As such,
the simple and reasonable assumption of staticity can also formulate a criteria for
detecting when the sensor mounting loosens and the assumption is broken.

5.6 Further work

The analyses in this thesis of the Park-Martin cost-function for HE calibration have
taken a number of different approaches. Both by analysing its level sets and its
Hessian, a new understanding of its properties has been built. Still, the author
believes there to be more to uncover to this problem. An example not shown
with plots in this thesis is the fact that the Park-Martin level sets of level C = 0
and C = 2||αi|| are seemingly orthogonal. The reason and importance of this
remains unknown, but it is interesting. It could be related to these points being
the minima/maxima of the cost function and the positive/negative definiteness of
the cost around these points. Further, by performing analyses of the Hessian we
have been implicitly analysing the geometry about the minima, and it would be
of interest to extend this analysis to any point along the cost surface.

Also of interest would be the properties of the cost-function as it evolves from
the minima to the maxima. This could be done by defining the cost surface of
(ωx ,ωy ,ωz , F(ω)) ∈ Bπ(0)×

�

0,
∑N

i=1 2||αi||2
�

⊂ R4 and analysing its properties,
especially along the w-dimension. Perhaps by starting with a single residual first
and then expanding to the full cost.

All these considerations suggest to the author that these questions may be an-
swerable together and simultaneously by viewing the cost-function in some new
light, possibly by the field of differential geometry, or even more specifically by in-
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formation geometry. However, the author is not well-read enough on these topics
to make such an assertion for certain, and as such this is left for further work.

This thesis only regarded the estimation of rotational calibration of ship-mounted
cameras. A natural evolution of the methods in this work is then to extend them
onto the problem of estimating the position of these cameras as well. The method
proposed by Andreff et al. [5] then seems reasonable to use, as it can estimate the
unknown scale of camera movements simultaneous to the position calibration.
Prior experience, however, indicates the solver of Andreff et al. to be even more
sensitive to planar motion, but the techniques employed in this thesis could help
alleviate this.

Lastly, the motivation for looking into purely data-driven extrinsic calibration
as opposed to the more standard but high-accuracy use of a calibration plate
and other framework came from another project where the camera had loosened
somewhat mid-trip. The change in extrinsics was not large, but the incident sent a
ripple through to every use-case of the camera data, highlighting the importance
of good calibration. With the contributions to observability and quantification of
data-quality made in this thesis, it is the opinion of the author that using the
Hand-Eye calibration problem in an on-line real-time environment for detection
and update of the extrinsic parameters is possible. This could possibly be done
with a receding horizon over the datapoints and/or by using the proposed in-
formation metric on the present dataset as a determiner of whether the current
dataset can estimate the extrinsics to the desired precision.



Chapter 6

Conclusion

This thesis has regarded using the Hand-Eye calibration framework to estimate
the orientation of ship-mounted cameras. This was done by expanding the work
done in the preceding specialization project by addressing the specific challenges
for this method when the input data is collected from ships.

Of special interest has been the topic of excitation and information. The qual-
itative criteria for observability when it comes to planar Hand-Eye data is well-
known, but a quantifiable metric of the information present in any single data-
point is – to the author’s knowledge – not existent in literature. In this thesis, such
a metric was proposed by analysing a quadratic form of the approximate Hes-
sian of the Park-Martin Hand-Eye solver’s residual. This metric correctly identifies
highly excited datasets from weakly excited ones, and enables comparison of the
information present across the different datapoints in a dataset as well as across
datasets of different size.

The second main interest of this thesis was the question of how the pairing
of absolute poses into relative poses affects the estimation error. Using the pro-
posed information metric as a maximizing criterion, a data-selection strategy was
formulated and compared against a number of novel strategies. This proposed
strategy allowed for estimating the camera orientation with lower error using
fewer datapoints than most other methods tested, shown through simulations.
This highlights the importance of Hand-Eye data selection, especially for real-time
applications where the amount of data is high.

An effort was also spent on investigating different ways to perform weighted
nonlinear optimization of the Hand-Eye problem, with the intent of using know-
ledge of covariances or the measure of information to weigh the residuals and
thereby achieve lower estimation errors. The covariance of the measurements was
derived based on the covariance on absolute rotation measurements, using recent
developments on the propagation of noise over group-operations. With this cov-
ariance derived, the residuals were whitened using the Mahalonobis norm. Sep-
arately, the residuals were also attempted weighted using the proposed informa-
tion metric, with the intent of more strongly weighting the information-rich but
uncommon datapoints. The proposed information weighted Park-Martin residual
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was not shown to perform better than non-weighted residuals in simulations, and
neither did the covariance compensated residuals. Some possible causes for these
methods performing poorly were discussed.

The thesis has shown the viability of purely data-driven, and thereby auto-
matic, estimation of ship-mounted cameras’ orientation by Hand-Eye calibration
with camera egomotion. The challenges that arise when using such a method have
been addressed, and specifically the question of what constitutes as good data
and how to pick it have been given proposed solutions. These proposed solutions
enable further research on the topic, and lays another brick on the path to imple-
menting real-time calibration, fault-detection and re-calibration of ship-mounted
cameras’ orientation.
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Appendix A

Additional mathematical proofs

A.1 The right Jacobian of SO(3) has full rank

Proposition 5. The right Jacobian of the SO(3) group,

Jr(θa) = I3×3 −
1− cos(θ )
θ2

[a]× +
θ − sin(θ )
θ3

[a]2× , (A.1)

has full rank.

Proof. Let us assume ∃ v ∈ R3, v ̸= 0 such that Jr(θa)v= 0. Then

Jr(θa)v= v−
1− cos(θ )
θ2

[a]× v+
θ − sin(θ )
θ3

[a]2× v= 0

=⇒
θ − sin(θ )
θ3

[a]2× v−
1− cos(θ )
θ2

[a]× v= v

=⇒
�

θ − sin(θ )
θ3

[a]× −
1− cos(θ )
θ2

I3×3

�

[a]× = I3×3.

(A.2)

The last line is exactly the definition of the inverse, and implies

[a]−1
× =

θ − sin(θ )
θ3

[a]× −
1− cos(θ )
θ2

I3×3. (A.3)

This is a contradiction, as [a]× is not invertible, as proven in the proof of Proposi-
tion 3. The skew-symmetric matrix has null-space null([a]×) = sp(a) when a ̸= 0
and is trivially non-invertible if a= 0. Therefore, by contradiction, v cannot exist
and the right Jacobian is full rank.
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Figure B.1: Simulation result comparing estimation error from different data-
selection strategies and with varying amount of datapairs, performed using the
standard Park-Martin residual. Note the logarithmic scale on the Y-axis.
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Automatic Estimation of Ship-Mounted Cameras’
Orientation by Hand-Eye Calibration

Daniel Bjerkehagen∗, Edmund Førland Brekke∗, Esten Ingar Grøtli†, Johannes Tjønnås†

Abstract—By developing a method for automatically calibrat-
ing the extrinsic parameters of ship-mounted cameras, this paper
tests combining Structure from Motion-algorithms with Hand-
Eye calibration solvers in a novel algorithm which demonstrates
an ability to discern the orientation of cameras with accuracy
comparable to- or better than current manual methods, proven
through tests with both synthetic and real-world data.

Index Terms—hand-eye calibration, structure-from-motion,
autonomous vessels, extrinsic parameters

I. BACKGROUND AND MOTIVATION

Of the research being done on autonomous systems, the
case of autonomous ships has shown to be both worthwhile
academically and strongly motivated by the industry. Recent
advances in the field of autonomous vehicles has relied on
innovations in computer vision to enable use of the dense data
cameras offer, with autonomous vessels being no exception.
As with all sensors, successfully applying the information
provided by cameras requires it to be calibrated within satis-
factory precision. One important set of calibration-parameters
relevant to most use-cases and which are often estimated by
manual measurements are the extrinsic parameters, meaning
the relative position and orientation of the camera.

One popular method for performing estimation of the ex-
trinsic parameters for the case when the camera is mounted
on a robot arm involves solving the Hand-Eye calibration
problem [1]. Research has shown some Hand-Eye (HE) solvers
able to get estimates of the extrinsic parameters as close
as within 0.1◦ and 2mm of the ground truth parameters in
optimal controlled experiments [2]. The mathematical proper-
ties required of input data to yield the extrinsics observable
through solving the Hand-Eye equations has been known for
quite some time [1], [3], but authors provide mostly general
guidelines rather than optimal strategies for selecting subsets
of data in large datasets. Furthermore, most research on the
topic relies on the use of geometric calibration targets to
reconstruct the camera motion to the correct scale.

The problem of estimating camera motion is of interest in
computer vision, and multiple algorithms exist for reconstruct-
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tion Centre focusing on safe and sustainable autonomous ship operations. We
would like to thank our partners, including the Research Council of Norway
under Project number 309230. We would especially like to thank Torbjørn
Barheim and Kongsberg Maritime (KM) for providing the data set.∗Department of Engineering Cybernetics,
Norwegian University of Science and Technology, Trondheim Norway
daniel.bjerkehagen@gmail.com, edmund.brekke@ntnu.no†Mathematics and Cybernetics,
SINTEF Digital, Trondheim, Norway
{EstenIngar.Grotli, Johannes.Tjonnas}@sintef.no

ing the motion of a camera even when a calibration target
is unavailable. Such methods often rely on feature-detection
and tracking algorithms, and some have become widely suc-
cessful due to a number of impressive results such as Visual
Localization And Mapping (VSLAM) and Visual Odometry
(VO) [4]. The algorithms used often have the disadvantage of
such reconstructions not being to metric scale, requiring fusing
the reconstruction with auxiliary motion measurements.

Methods exist for combining camera motion estimation with
the Hand-Eye calibration formulation, notably the Hand-Eye
solver developed by Andreff et al. [3], but most other Hand-
Eye solvers assume scale of the camera motion is known.
For the case of ship-mounted sensors, work has been done on
automatically finding the extrinsics of the camera relative a
sonar [5]. Roy et al. [6] use sensor egomotion reconstruction
from a vessel with planar movement to estimate the extrinsic
parameters through maximum a posteriori estimation method.
To the authors’ knowledge, no research exists on the topic
of using a camera egomotion reconstruction algorithm as
data-baseline for extrinsic calibration of ship-mounted sensors
using the Hand-Eye calibration problem formulation.

By identifying the components of the Hand-Eye calibra-
tion problem with measurements available when cameras are
rigidly mounted on ships, this paper tests a novel algorithm
pipeline for estimating the camera extrinsics using only im-
ages and measurements of the ship’s position and attitude
as input to the algorithm. The presented pipeline is thereby
purely data-driven. The report also addresses some challenges
present when using ship-data for Hand-Eye calibration, and a
qualitative way of measuring the excitation in data used for
Hand-Eye calibration is presented.

In many applications, including marine operations, the po-
sition of the camera is known with high precision due to
the accurate construction of ships. This is not necessarily the
case for the orientation of the camera. Our work therefore
makes a large simplification in only attempting to estimate
the orientation of the ship-mounted cameras.

The main contribution and two side-contributions in this
paper can be summarized as:

• A novel pipeline for data-driven extrinsic calibration of
ship-mounted cameras

• A graphical method for evaluating the excitation present
in datasets for Hand-Eye calibration purposes

• To the authors’ knowledge, the first paper which use
the framework of Hand-Eye calibration to calibrate ship
sensors’ extrinsics



II. EGOMOTION ESTIMATION ALGORITHMS

Multiple algorithms exist within the field of computer
vision which produce an estimate of the 3D motion of a
camera relative to some environment, given an ordered set of
pictures. Some of the approaches to estimate camera motion
include Simultaneous Localization and Mapping (SLAM),
Visual Odometry (VO), and Structure from Motion (SfM).
These methods are unified in literature under the term “camera
egomotion estimation” [4].

Performing estimation of camera egomotion often consists
of tracking the movement of notable features in the envi-
ronment through the pictures for which those features are
visible. Assuming these observed features are static relative
the environment also allows formulating geometric or numeric
equations whose solution is the set of plausible camera mo-
tions which caused the observed movement of features. Lastly,
most methods refine the initial camera egomotion estimates
through softly enforcing some constraint, e.g. the assumed
staticity of the environment.

III. THE HAND-EYE CALIBRATION PROBLEM

A. Scaleless Hand-Eye calibration

The Hand-Eye calibration problem originates in robotics,
being the issue of finding how a sensor, often a camera, is
mounted rigidly relative to an end effector. By analysis of
the system certain mathematical properties can be shown and
used, something often attributed to be studied first by Shiu
et al. in 1989 [1]. In the original formulation, the camera
and end effector are attached to a robotic arm, allowing for
precise movement of the system. The setup is moved between
predetermined poses and pictures are taken of a stationary
calibration target at each pose. Employing a geometric algo-
rithm, like the 8-point algorithm [7], the camera movement
between each picture is recovered. The camera movement
may alternatively even be recovered in an unstructured envi-
ronmnent with no calibration target present by employing an
algorithm for camera egomotion estimation. Andreff et al. [3]
showed that combining the known end effector-movement with
such reconstructed camera-movement, the scaleless Hand-Eye
calibration problem given in Equation (1) can be formulated.
Solving this problem for the unknown position and orientation
of the camera relative the end effector gives the Hand-Eye
calibration.

The equations describing the calibration problem can be
written as

AX = XB(λ), (1)

or equivalently,
[
RA tA
01×3 1

] [
RX tX
01×3 1

]
=

[
RX tX
01×3 1

] [
RB tBλ
01×3 1

]
(2)

These can be divided into rotational and translational parts,
that is

RARX = RXRB, (3)
RAtX + tA = RXtBλ+ tX. (4)

Here, A is the Homogeneous Transformation (HT) matrix
describing the rotation and translation of the end effector
between two poses of the system, B is the HT describing
the reconstructed camera motion between two poses and X
is the unknown rigid pose of the camera relative the end
effector, also represented as a HT. λ represents the unknown
scale of the reconstructed camera translations, since both
hand- and eye translations needs to be given in the same unit
for the equality to hold. The Homogeneous Transformation
matrices are compositions of a rotation matrix and a translation
vector like in Equation (2), which enables a mathematical
representation of the pose of a frame relative some other frame.

The matrices A and B are the so-called relative poses of
the hand and eye between two absolute poses. These terms
are to be understood as the following: Poses defined in some
inertial frame are said to be absolute poses. If the frame
“n” is an inertial frame, while Hnb(tp) and Hnb(tq) are the
absolute poses of the end effector at times tp and tq , then
Hb,pq = (Hnb(tp))

−1
Hnb(tq) := Apq is the relative pose

of the end effector between these two absolute poses. The
definition is equivalent for the relative pose of the camera,
with the camera poses being defined relative some coordinate
system defined by the egomotion algorithm. Therefore, from
the set of available absolute poses, a set of relative poses must
be constructed to be able to employ the Hand-Eye framework
for estimating the extrinsics.

B. Hand-Eye formulation for ship-case

The goal in this work is to estimate the orientation of
ship-mounted cameras. Modern ships have advanced sensor-
suites fusing GNSS measurements with inertial- and attitude
measurements, meaning the ship’s pose is available with high
accuracy. Many modern ships are also equipped with cameras
as a part of their sensor rigs.

It is possible to recognize that a ship with such a naviga-
tional system and rigidly mounted cameras have all the equip-
ment necessary to formulate a fitting Hand-Eye calibration
problem, with the solution being the unknown extrinsics of
said cameras. The pose of the ship can be seen as analagous
to the pose of the “hand” from the original Hand-Eye formu-
lation, and using an egomotion estimation algorithm on the
captured images yields the scaleless “eye” movements. It is
therefore conjectured that using the available data, that being
the ship’s pose and images captured, should allow for data-
driven estimation of the cameras’ extrinsic parameters.

It has been shown that to be able to uniquely determine
all of the extrinsic parameters, that being the Homogeneous
Transformation X in Equation (1), the system must undergo
at least two motions with non-parallel axis of rotation [8]. If,
however, the system in question undergoes planar translation
and with rotation purely about the normal of the plane, the
previous condition is consequently not fulfilled. Andreff et al.
then shows in [3] how two nonzero planar motions still render
the sensor orientation and part of the sensor position uniquely
observable, but the sensor height relative the plane of motion
is not observable.



This last point is especially relevant when it comes to the
application of the Hand-Eye calibration problem on ship-data,
since ships move mostly in the plane. Actual data generated by
ships is not perfectly planar, but comparable to how dividing
by a very small - but not exactly zero - number leads to
numerical instability, it is expected that estimates generated
with ship-data too will be numerically sensitive due to the
closeness to degeneracy [8]. This is, as mentioned earlier, only
a challenge for estimating the position of a sensor, and two
nonzero planar movements is still enough to make the sensor
orientation observable.

Another problem when attempting to combine structureless
camera egomotion algorithms with the Hand-Eye problem
formulation is the missing scale of the camera egomotion
reconstruction. Much research is being done on the topic
of metric scale estimation, often employing deep learning
to achieve this [9]. If no such auxiliary scale estimation is
used to correct the reconstructed camera movement, then most
methods for solving the Hand-Eye equation will not be able
to estimate the positional extrinsic parameters of the camera.

In this work, both the problem of missing scale and planarity
are side-stepped by only estimating the orientation of the cam-
eras. This could be further motivated by the fact that for the
case of ships, the position of the sensor is often known to high
accuracy. Additionally, using a wrongful camera orientation
for estimating the position of some object detected by the
cameras will typically cause larger error in these estimates than
wrongful camera position will, especially when the detected
object is far away.

C. Solvers

Many different approaches for solving the Hand-Eye equa-
tion have been developed over time, and may generally be
categorized into two groups of two: A solver can employ a
closed-form or iterative solution, and the solver can either
solve for the whole extrinsics simultaneously or step-wise [2].
Closed-form solvers find the theoretically optimal solution
given the data and knowledge of the noise model corrupting
the data, while iterative solutions are numerical approxima-
tions to the optimal solution which can do this without
knowledge of the noise, often found through optimization.
Simultaneous solution techniques to the Hand-Eye equation
find both orientation and position of the sensor at the same
time, while step-wise solvers solve for the orientation first and
then use that estimate to compute the position. Since only the
orientation of the camera is of interest in this work, only the
orientation-part of step-wise solvers are tested.

What follows is a short presentation of the Hand-Eye solvers
compared in this paper. In the following equations, Log is the
function which sends orientations to their respective angle-
axis counterparts in the Lie algebra of SO(3), with notation
inspired by Solà et al. in [10]. The vectorization function, vec,
is the function stacking the columns of a matrix into a large
column vector, and ⊗ is the Kronecker product. fi is the ith
residual based on the ith (A,B)-data pair, to be used in a
nonlinear least squares optimization.

Park and Martin show in [11] that the rotational Hand-Eye
equation, Equation (3), can be rewritten as RXLog (RB) =
Log (RA). This equality may then be solved by RX =
(MTM)−1/2MT, where

M =
∑

i

Log (RB,i) Log (RA,i)
T
. (5)

This solution tactic is hereby dubbed “Park-Martin Closed-
form”. Alternatively, one could formulate a nonlinear opti-
mization problem for minimizing the above derived equality,
by defining the “Park-Martin residual”

fi(x) = R(x)Log(RB,i)− Log(RA,i). (6)

Using the formulation by Andreff et al. [3], which consists
of finding the null-space of a matrix, the residual

hi(x) = (I9×9 −RB,i ⊗RA,i)vec(R(x)), (7)

can be defined and is named the “AHE residual” after the
authors’ initials. Lastly, Park and Martin define in [11] a very
simple optimization function, being only the error between the
sides of Equation (3) for some given camera orientation R(x).
Using their choice of metric over SO(3), the residual

gi(x) = Log
(
(RA,iR(x))

T
(R(x)RB,i)

)
(8)

can be defined. This residual is in this paper dubbed the
“SO(3)-metric residual”.

D. Graphical evaluation of excitation

As previously stated, Andreff et al. showed that the Hand-
Eye calibration is observable if two relative poses of non-
parallel rotation axes are used for estimation. For the purposes
of estimation, using more than the minimal set of data is
desirable for generating estimates more robust against noise.
Tsai et al. describe in [8] how the choice of arm-poses affect
the propagation of noise to the estimates of the extrinsic
parameters. Their findings are summarized in Equation (9).

Var(ωX) ∝
√
Var(ωab)2 +Var(ωbc)2

sin [∠(ωab,ωbc)]

√
1

||ωab||2
+

1

||ωbc||2
(9)

Here, a, b, c are three different points in time and ωab is the
rotation axis of the rotation (Rna)

TRnb. The formula shows
how uncertainty of the data propagates more strongly through
to the estimated camera orientation depending on the geometry
of the chosen arm-poses. Tsai et al. suggest a strategy for how
to choose poses of the robot-arm to minimize Equation (9), but
this strategy is not applicable in this work since the movements
cannot be decided ahead of time by the calibration system. It is
desirable to find a data-selection criteria based on Equation (9)
which in real-time can select the best datapairs in a stream of
high amounts of noisy data.

To this end, this work suggests a first step in develop-
ing such a data-selection strategy by providing a graphical



method for evaluating the “excitation” present in different
datasets. The method evaluates the two factors of Equation (9)
which are affected by choice of data. The type 1 excitation
is defined as the size ||ωbi||, with ωbi being the rotation
vector of relative ship-pose i. Type 2 excitation is defined
as | sin [∠(ωnb(ti),ωnb(tj))] |, for any two ship-orientations
at timestamps ti and tj . For both of the defined types of
excitation, larger values is better, due to the corresponding
factors appearing inverted in Equation (9). The graphical
method is presented further in Section V-B.

IV. IMPLEMENTATION DETAILS

What follows is an explanation of the parts of the algorithm
pipeline, as well as a summary of some questions which
challenge the validity of the given output from the algorithm.
Some of these questions and design choices are addressed,
while some questions are left unanswered as potential further
work. An overview of the pipeline is seen in Figure 1.

The positional data from ships’ navigational units are often
given in a coordinate system preferred by the GNSS-system,
like WGS84 or some geodetic coordinate. The Hand-Eye
formulation, however, requires translations to be given in
inertial Euclidian frames. A first step in the algorithm is
to process the positional data to construct a local tangent
plane from which to define the NED-coordinate system. For
simplicity, the local tangent plane was defined relative the first
datapoint, which for the short timespans analyzed in this work
was deemed sufficiently accurate.

For performing egomotion-estimation based on captured
images, the open-source library COLMAP [12] was used, with
the notable alternative of OpenSfM [13] being used during
initial testing to verify the COLMAP-reconstructions. The
choice to use a SfM-library instead of e.g. VSLAM was again
due to simplicity of use. One may imagine using the iterative
nature of VSLAM or VO to iteratively improve on an estimate
of the Hand-Eye solution.

With the aforementioned components in place, pose-data
of the ship is given relative the local tangent plane and
the SfM-libraries give camera egomotion relative some ar-
bitrary reference-frame chosen by the library. As explained
in Section III-A, the Hand-Eye Problem formulation requires
the input (A,B) pose-pairs be relative poses, that being the
change in pose between two points in time instead of relative
some absolute reference frame. Since this formulation of the
Hand-Eye calibration problem does not allow for arbritary
movements of the system, rather the system moves and the
algorithm must do best with whats given, a strategy for
choosing how the relative poses are constructed must be
employed. For this work, the simplest solution of calculating
all poses as relative the first pose is employed, but further
work should be done on examining the exact effects different
methods of constructing relative pose has on the performance
of the pipeline.

The algorithm was implemented in Python, using
SciPy’s [14] nonlinear least squares Gauss-Newton solver for
estimating the extrinsics.

V. SIMULATION RESULTS

A. The datasets

For this paper, three datasets are used to generate the results
presented. These are the synthetic uniform, synthetic planar
and real-world datasets. The synthetic uniform dataset is a
set of N poses randomly generated with uniform probability
density over SO(3) and some span of positions, the former
being achieved following the method of Shoemake in [15]. A
set of extrinsic parameters are chosen arbitrarily, and camera-
poses are synthesized by combining the extrinsics with the
aformentioned randomly generated poses, creating noise-free
knowledge of the camera-poses. Being uniformly distributed,
this dataset contains no underlying structure.

The synthetic planar dataset is generated as a random walk
on yaw (the rotation angle about the body z-axis) and a simple
movement-model. The resulting ship-poses operate mostly in
the same plane and with little to no pitch nor roll, leading
to noiseless data with similar structure to that of real-world
data. Figure 2 shows an example of the generated synthetic
ship-poses. The camera-poses are generated in the same way
as the camera-poses of the synthetic uniform dataset explained
earlier; as the composition of randomly generated ship-poses
and chosen ground truth extrinsics.

The real-world dataset was collected from a large passenger
cruise ship fitted with camera rigs. The subset of data used
for evaluating the algorithm pipeline in this paper were from
a sequence spanning 60 seconds when the ship was leaving
port. See Figure 3a for an example image captured. This
meant a high amount of features could be detected and tracked
between each image, but also that the excitation of the ship
was minimal. Figure 3b shows the output SfM reconstruction
from COLMAP over the real-world dataset. Some other points
to note about the real-world dataset is as follows: Firstly,
the vessel was fitted with an advanced navigational system,
meaning the precision of ship-pose measurements were high.
Secondly, it was not known to which numerical value of
uncertainty the ground truth extrinsic parameters fit with the
actual physical mounting of the cameras. This will pose a
challenge when attempting to draw conclusions based on
results using this dataset.

B. Visualizing excitation

The following few paragraphs regard figures visualizing the
qualitative measure of excitation from Section III-D applied
on the three presented datasets. The presence or lack of the
two previously defined types of excitation are then evaluated
using the graphical measure. Following the explanations in
Section III-D, it is expected that datasets which show higher
excitation to allow for estimating the extrinsics with lower
variance.

Figures 4a and 5a show histograms of ||ωi||2 over all
timestamps i in the synthetic uniform and planar datasets,
respectively. This visualization gives an indication of the distri-
bution of type 1 excitation present in these datasets, with more
right-shifted values meaning higher excitation. The synthetic
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Fig. 2: Randomly generated planar ship-movement

uniform dataset shows to have higher excitation of type 1 than
the synthetic planar, an intuitive result given the irratic random
nature of the dataset. Miles showed in [16] that the rotation
angle, θ, of a uniformly distributed rotation will itself be
distributed with density 2 sin2( θ2 )/π = (1− cos(θ))/π. Com-
paring this density to the histogram in Figure 4a, which will
be an approximation to the probability density of ||ωi||2 = θ2,
the results match with the expected outcome reasonably well.

Figures 4b and 5b show cross-plots of
| sin [∠(ωnb(ti),ωnb(tj))] | for all pairs of timestamps
ti, tj over the dataset. It is clear that the synthetic uniform
dataset has higher excitation of this kind as well.

From these results, one can conclude that the synthetic
uniform dataset is more strongly excited than the synthetic
planar dataset, given the definitions of excitation made in this
work. It is therefore expected that the former dataset should
allow for better estimates, since the two datasets are otherwise
identical when it comes to noise and size.

Figures 6a and 6b show the same measure of Hand-Eye
excitation, but this time evaluated over the real-world dataset.
Given the definitions of excitation presented in this paper, it
seems this dataset has comparable type 2 excitation to that of
the synthetic planar dataset, but lower type 1 excitation. The

(a) Example image from the real-world dataset

(b) Structure-from-Motion reconstruction of the real-world
dataset camera poses

Fig. 3: Illustrations of the real-world dataset used in this work.

low amount of type 1 excitation can be said to reflect the slow
and careful movements the ship performed as it was leaving
port, see the discussion of Figure 3b in Section V-A. Figure 6a
also shows that the cruise ship does not move more than about
15◦ away from its initial orientation.
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(b) Cross-plot of | sin [∠(ωnb(ti),ωnb(tj))] | for all
pairs of rotation axes ωnb(ti),ωnb(tj) in the synthetic
uniform dataset

Fig. 4: Visualizing the excitation of the synthetic uniform dataset
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(a) Histogram of rotation magnitudes present in the
synthetic planar dataset
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(b) Cross-plot of | sin [∠(ωnb(ti),ωnb(tj))] | for all
pairs of rotation axes ωnb(ti),ωnb(tj) in the synthetic
planar dataset

Fig. 5: Visualizing the excitation of the synthetic planar dataset
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(a) Histogram of rotation magnitudes present in the
real-world dataset
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(b) Cross-plot of | sin [∠(ωnb(ti),ωnb(tj))] | for all
pairs of rotation axes ωnb(ti),ωnb(tj) in the real-
world dataset

Fig. 6: Visualizing the excitation of the real-world dataset



C. Performance of the pipeline

Two metrics are used for evaluating the performance of the
algorithm pipeline when it comes to its ability to construct
accurate estimates. To strengthen the results and avoid “over-
fitting”, every even numbered datapoint is fed to the pipeline
to generate an estimate, while every odd number is used for
testing.

For comparing estimated camera-orientation versus the old
extrinsics, a norm over the group of orientations SO(3) is used
as a metric of comparison. The metric returns the angle of the
smallest rotation connecting the two orientations, scaled to de-
grees. To be explicit, the metric is shown in Equation (10). Use
of this metric allows for comparing estimated and ground truth
extrinsics directly without the challenges posed by attempting
to compare Euler-angles.

errGT =
180

π
||Log(RT

GTRest)||2 (10)

Since the estimation of the extrinsic parameters are based
on finding a solution to the equation AX = XB, a second
reasonable metric for comparing estimates is to substitute
the estimate into the equation and see to which degree the
equality holds for some given data. Since this work focuses
on the orientation of cameras, the sides of the equation may
be compared also using the presented SO(3)-norm. The error
is averaged over all (A,B)-pairs in the dataset and the error is
also scaled to degrees for consistency. The precise definition
of the metric is seen in Equation (11).

errHE =
180

π

1

N

N∑

i=1

||Log
[
(RA,iRX)

T(RXRB,i)
]
||2 (11)

Tables I and II show simulation results of the pipeline on the
synthetic uniform and synthetic planar datasets, respectively.
The different solvers are evaluated over 100 random initial
extrinsic parameter guesses, with both mean and population
variance of both metrics calculated with the generated extrinsic
parameter estimate. This is the reason why the Park-Martin
closed-form solution has variance equal to zero, being unaf-
fected by choice of initial estimate. The results firstly show
all solvers to have results multiple orders of magnitude better
on the synthetic uniform than the planar dataset. This may be
a reflection of the synthetic uniform dataset being seemingly
more highly excited, as measured by the presented qualitative
measure. It is also clear that the pipeline gives good estimates
for noiseless planar data, with estimates within 0.01◦ of the
ground-truth values.

Table III shows the same results, but with the real-world
dataset as input. The estimated extrinsic parameters are now
significantly further away from the assumed ground-truth
parameters, with an error of about 2◦. On the other hand, since
the precision of the ground-truth extrinsic parameters given
with the dataset is unknown, it is not possible to say if this
result is because the estimates are closer to the actual physical
orientation or not. The fact that all estimates result in lower

HE-solver errGT [◦] errHE [◦]
Mean Variance Mean Variance

SO3 opt. 7.930E-07 1.726E-13 1.046E-06 2.999E-13
PM opt. 4.856E-07 5.882E-14 6.378E-07 1.015E-13
PM c.-f. 1.930E-13 5.735E-57 2.562E-13 2.549E-57
AHE opt. 3.994E-07 3.929E-14 5.264E-07 6.830E-14

TABLE I: Performance of the pipeline over the synthetic
uniform dataset. The results are generated with 100 random
initial values for the iterative solvers.

HE-solver errGT [◦] errHE [◦]
Mean Variance Mean Variance

SO3 opt. 1.510E-02 1.215E-04 2.222E-05 2.631E-10
PM opt. 1.054E-02 6.032E-05 1.553E-05 1.309E-10
PM c.-f. 6.892E-07 1.121E-44 4.601E-09 0.000E+00
AHE opt. 8.909E-03 3.866E-05 1.311E-05 8.370E-11

TABLE II: Performance of the pipeline over the synthetic
planar dataset. The results are generated with 100 random initial
values for the iterative solvers.

“Hand-Eye error” than the old ground-truth may suggest the
contrary; that the estimates in fact are better reflections of the
actual camera-orientation than the old extrinsics. Whether the
lower excitation is to blame for the higher variance obtained
with this dataset compared to the synthetic planar dataset is
not possible to say, since the real-world dataset has unknown
amount of noise.

The previous results suggest the presented algorithm in-
deed being able to discern the orientation of a camera with
comparable - or better - accuracy than manual methods. It
is therefore of interest to analyze the numerical properties of
these methods. The Park-Martin residual function has a direct
tie to the definition of excitation presented in Section III-D, as
well as relatively low variance in Table III. For these reasons,
the full cost-function based on the Park-Martin residual was
plotted over the real-world dataset, seen in Figure 7. The
camera orientation is here described with Euler-angles ϕ, θ, ψ
following the zyx convention [17]. For each subplot, one of
the optimization variables is kept constant at the old assumed
ground truth value, as to enable plotting the cost as the height
at a given point in the parameter space. The cost-function
over this dataset is seemingly convex and lacks apparent local
minima, but in Figures 7a and 7b the cost is almost only

HE-solver errGT [◦] errHE [◦]
Mean Variance Mean Variance

SO3 opt. 1.847E+00 3.509E-02 1.823E-01 8.615E-09
PM opt. 2.010E+00 3.819E-04 1.823E-01 7.912E-12
PM c.-f. 2.009E+00 7.889E-31 1.823E-01 3.081E-33
AHE opt. 2.009E+00 8.805E-05 1.823E-01 1.801E-12

Org. ext. N/A N/A 2.463E-01 N/A

TABLE III: Performance of the pipeline over the real-world
dataset. The results are generated with 100 random initial values
for the iterative solvers. The results from inserting the original
(assumed correct) extrinsic parameters are also shown. Note
the apparent lower HE-error in the new estimates compared to
the old. Note also the very similar mean metric values for the
different residuals. These residuals in fact resulted in metrics
within 10−5 of each other.



dependent on changes in the ψ Euler-angle. Further testing
gave similar shape for the synthetic planar dataset, suggesting
the planarity common between the two datasets to cause the
shape.
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Fig. 7: Sketch of the Park-Martin residual, with the real-world
dataset as input

VI. CONLUSION AND FURTHER WORK

Our work tested combining egomotion reconstruction-
algorithms of camera-movement with solvers of the Hand-
Eye calibration problem, for the purposes of estimating the
orientation of ship-mounted cameras.

The performance of the developed algorithm was evaluated
on both synthetic and real data. The tests showed that the
algorithm was capable of estimating the orientation of cameras
within 2◦ of the old extrinsics, and with better performance
than the old extrinsics in a data-driven metric.

A qualitative measure was also presented for the purpose
of enabling easier understanding of the amount of excitation
in data input to the Hand-Eye calibration methods. Testing
the method gave overall expected results, but further work
can be done on developing theory on the matter of Hand-Eye
excitation, as well as finding ways to employ this in data-
selection strategies.
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