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Preface

This master’s thesis was written in the spring of 2023 with the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology (NTNU). The project
was proposed and supervised by Professor Marta Molinas and Andres Soler.

The thesis is a continuation of the work presented in the semester projects ”Design of pro-
tocol and collection of data for an EEG-based alcohol detector” [1, 2]. Parts of Chapter
2 and Sections 3.1, 3.2 and 3.3 are updated and extended versions of chapters from these
project theses, in which Appendix A and B were also presented. These appendices are
included in this thesis with minor modifications. The data set presented in this master’s
thesis was collected solely during this spring, and no data collected during the semester
project were used due to differences in hardware.

The results of the alcohol detector project will be submitted to the IV Latin American
Workshop on Computational Neuroscience (IV LAWCN) as M. Vassbotn, I. J. Nordstrøm-
Hauge, A. Soler, and M. Molinas, ”EEG-Based Alcohol Detection System for Driver Mon-
itoring”. This paper can be found in Appendix G.

Before starting this project, neither of us had any knowledge about EEG signals, BCIs
or alcohol metabolism. Hopefully, this master’s thesis reflects the knowledge and experi-
ences we have gained through working on this project.

Trondheim, 1st June 2023
Molly Vassbotn & Iselin J. Nordstrøm-Hauge
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Abstract

This thesis examines the possibility of detecting the presence of alcohol in electroen-
cephalography (EEG) signals. Driving under the influence of alcohol is a global problem,
and the purpose of this work is to contribute with the first steps towards designing an EEG-
based alcohol detector to be utilised in an onboard brain-computer interface (BCI) system.
This BCI system could help prevent the consequences of driving under the influence of
alcohol.

An experiment was designed for collecting EEG signals from 20 participants, both while
under the influence of alcohol and not. The data collected during the experiment was
recorded using 16 EEG channels, and the participants partook in two recording sessions.
In one session, the participants were presented with an alcoholic drink consisting of a
mix of 0.45 g/kg ethanol and orange juice. In the other, they were presented with a non-
alcoholic drink. During each 66-minute recording session, the participants were instructed
to perform the Flanker task and their blood alcohol concentration (BAC) values were mea-
sured at specific points in time. This was in addition to 5-minute EEG recordings where
the participants were instructed to sit still, while relaxing with their eyes open.

The analysis of the recorded BAC values showed that the BAC values after alcohol con-
sumption increased over time. Most of the participants did not reach their peak BAC,
which is the maximum point of BAC before it starts decreasing. To be able to capture
the peak in the future, the participants should be instructed to not eat beforehand, or they
should be given an undiluted alcoholic drink. A statistical analysis of the Flanker data
shows that there is a significant decrease in the response time of the participants while un-
der the influence of alcohol. This is likely caused by the disinhibition typically observed
in people under the influence of alcohol. These results show that the participants were
affected by the alcohol, and, therefore, their EEG signals are most likely affected as well.

To investigate the effect of alcohol on EEG signals, three classification models were devel-
oped to classify the collected signals. Two individual models were implemented. One is
a random individual model which randomly splits the collected data into training and test
sets. The other is an individual model across sessions which splits full 5-minute recordings
into either the training or test set. The average accuracies of these models were 100% and
90.7%, respectively. Although the random individual model has a better accuracy, the in-
dividual model across sessions is seen as the best model since the implementation is more
realistic. This makes it more applicable as a real-world alcohol detector.

The last classifier is a general model. This model trains on 19 participants and tests on the
last, unseen participant. The average accuracy of this model was 62.9%. As indicated by
low precision and recall values, the model has difficulties with classifying alcohol samples
correctly.
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Sammendrag

Denne masteroppgaven undersøker muligheten for å detektere tilstedeværelsen av alko-
hol i elektroencefalografi (EEG)-signaler. I dag er alkoholpåvirket kjøring et verdensom-
spennende problem. Målet med dette prosjektet er å danne grunnlaget for en EEG-basert
alkoholdetektor som videre kan brukes i et hjerne-datamaskin-grensesnitt system. Dette
systemet kan potensielt hjelpe med å bekjempe problemet med alkoholpåvirket kjøring.

Et eksperiment ble designet hvor EEG-data fra 20 deltagere ble samlet inn. Deltagerne
var både påvirket og upåvirket av alkohol under innsamlingen. Dataene ble samlet inn
ved å bruke 16 EEG-kanaler, og hver deltager deltok på 2 innsamlingstimer. I den ene
innsamlingstimen ble deltageren servert en alkoholholdig drikk med 0.45 g/kg etanol og
appelsinjuice. I den andre timen fikk deltageren en tilsvarende drikke uten alkohol. Hver
innsamlingstime varte i omtrent 66 minutter. I løpet av timen ble det samlet inn 5-minutters
EEG-opptak, i tillegg til at deltageren ble bedt om å gjennomføre Flanker-testen. Promillen
ble også målt. Under EEG-opptakene fikk deltageren beskjed om å sitte stille med åpne
øyne, å slappe av, og å bevege seg så lite som mulig.

De innsamlede promilledataene ble analysert. Analysen indikerte at promilletoppen ikke
ble nådd for de fleste av deltagerne. For at denne skal inkluderes burde deltagerne enten
bli servert en konsentrert alkoholholdig drikke, eller så må de unngå å spise før innsam-
lingstimene. En statistisk analyse av Flanker-dataene ble gjennomført. Denne analysen
viser at det er en signifikant nedgang i responstiden for alle deltagere etter alkoholinntak.
Denne nedgangen er sannsynligvis forårsaket av impulsiviteten en person kan oppleve etter
å ha drukket alkohol. Disse resultatene viser at deltagerne ble påvirket av den konsumerte
alkoholen, og derfor er de innsamlede EEG-signalene deres mest sannsynlig også påvirket.

Tre klassifikatorer ble utviklet for å undersøke alkoholens effekt på EEG-signaler. To
av disse var individuelle modeller. Den ene individuelle modellen delte EEG-dataene
tilfeldig inn i et treningssett og testsett. Den andre modellen, en individuell modell på
tvers av datainnsamlinger, sørget for å dele data fra samme 5-minutters opptak inn i enten
treningssettet eller testsettet. De gjennomsnittlige nøyaktighetene for disse modellene var
henholdsvis 100% og 90.7%. Selv om den tilfeldige individuelle modellen virker bedre
basert på nøyaktighet alene, er den individuelle modellen på tvers av datainnsamlinger
likevel sett på som den beste av disse. Det er fordi implementeringen av denne modellen
er mer realistisk, og dette gjør modellen bedret egnet til bruk i det virkelige liv.

Den siste klassifikatoren er en generell modell. Denne modellen trente på data fra 19
deltagere, og ble testet på dataene fra den siste, usette deltageren. Den gjennomsnittlige
nøyaktigheten til denne modellen var på 62.9%. I tillegg hadde modellen en lav presisjon
og en lav gjenkalling. Dette tyder på at modellen har problemer med å klassifisere signaler
som er påvirket av alkohol riktig.
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1
Introduction

Today, alcohol drinking frequently accompanies socialising as a routine activity in various
groups of society. 84.0% of individuals aged 18 and above in the United States have drunk
alcohol at some point in their life [3]. Similarly, 81.7% of Norwegians in the age group
16 to 79 have drunk alcohol in 2021 [4]. Around the world, 40.7% of all 20 to 24-year-
olds consume alcohol, making it the most commonly used substance among the young [5].
When alcohol is consumed, it reaches the brain within minutes. It can affect the brain in
several ways, such as slurred speech, blurred vision and slowed reaction time [6].

1.1 Motivation

Activity in the brain generates electrical signals. Electroencephalography (EEG) is a tech-
nique used for capturing these signals by placing electrodes on the scalp. Today, EEG is
a commonly used technique for studying the brain. Many studies [7, 8, 9] have been in-
vestigating if it is possible to detect alcoholism using EEG data. These studies have been
successful, resulting in high classification accuracy. However, there has been less focus on
using EEG data for detecting alcohol in a healthy body.

Driving under the influence of alcohol is a worldwide problem. It is estimated to cause the
death of at least 273 000 road users every year, although the actual number is believed to
be higher [10]. The legal blood alcohol concentration (BAC) for driving varies for differ-
ent countries, but, for most, the BAC limit is within the range of 0.2‰ to 0.8‰ [11].

The legal BAC limit in Norway is 0.2‰ [12]. Here, 25% of drivers who died in traffic
between 2001 and 2010 had a BAC above the legal limit. 1 out of 10 drivers injured
while driving is also above this limit [13]. In Canada and the United States, the legal BAC
limit is 0.8‰ [14]. In the United States, 31% of all traffic crash fatalities involve people
driving under the influence of alcohol [15]. Similarly, the involvement of alcohol was a
contributing factor in approximately 20% of all fatal collisions in Canada in 2018 [16].

1



1 Introduction 1.1.1 Problem Description

To decrease the number of injuries and deaths, it is important to stop people from driving
under the influence of alcohol before the accidents happen. Today, using breathalysers
is the most common way of detecting if a person is under the influence of alcohol. The
breathalyser estimates the BAC by using a single breath sample. It is the police’s preferred
tool to use when they suspect a person is driving while intoxicated.

Although using breathalysers is a quick and inexpensive way of measuring the BAC, it has
some disadvantages. Using breath samples is an indirect way of measuring the amount
of alcohol in the blood, and incorrect measurements can occur. Residual alcohol in the
mouth can result in a higher measured BAC than the actual value. If a person has been
drinking juice few minutes before a breathalyser test, the breathalyser can show a BAC
value higher than zero, resulting in it falsely detecting the presence of alcohol. Factors
such as temperature and humidity can also affect the accuracy of the breathalyser [17].

Several studies [18, 19, 20] have been proposing an in-vehicle alcohol detector that can
inform drivers if their level of alcohol intoxication is above the legal limit or if their level
of drowsiness is considered too high for driving. These factors can be determined by using
several different methods. [18] is using a series of low-cost alcohol MQ3 sensors together
with machine learning, while [19] is monitoring biological signals like the body-trunk
plethysmogram and respiration of the driver. [20] is using a neural network for image pro-
cessing of the face of the driver.

Creating a similar in-vehicle alcohol detector using a brain-computer interface (BCI) with
EEG signals could be of great interest. Using EEG signals instead of breath samples could
potentially result in fewer sources of errors, as brain signals could be less affected by
the external factors that affect the breathalyser. This could lead to a system with higher
precision and better accuracy than the breathalyser.

1.1.1 Problem Description
The purpose of this thesis is to implement an alcohol detector using EEG signals. These
EEG signals were collected from 20 participants. Each participant takes part in two sep-
arate recording sessions, where they are served an alcohol-based drink in one session and
a non-alcoholic substitute in the other session. The resulting EEG dataset was used as
input in a deep learning model. The purpose of the model is to classify whether features
of alcohol drinking are present or not in the EEG signals, and by this create an alcohol
detector. Figure 1.1 shows the entire alcohol detector project from start to finish.

Figure 1.1: A graphical representation of the steps in the design of an alcohol detector [1, 2].

2



1 Introduction 1.1.2 Related Work

1.1.2 Related Work

[21] Ziya Ekşi, Akif Akgül and Mehmet Recep Bozkurt. ”The Classification of EEG
Signals Recorded in Drunk and Non-drunk People.” In: International Journal of
Computer Applications Vol. 68, No. 10, April 2013
This article aimed to design a system that can detect if a participant is drunk or not based
on their EEG signals. The Yule-Walker method was applied as preprocessing to the data,
and the classification was done by using an artificial neural network. The data set con-
sisted of EEG data from 50 drunk people and 50 non-drunk people. Here, the state of
drunk was not defined clearly. The best results achieved by the network were obtained
with 900 epochs of an unknown length, with a classification accuracy of 95%. With 300
and 1500 epochs, the accuracy was 80% in both cases.

[7] Leila Farsi et al. ”Classification of alcoholic EEG signals using a deep learning
method.” In: IEEE Sensors Journal Vol. 21, No. 3, February 1, 2021
This paper introduces and compares two algorithms that are used for the detection of al-
coholism using EEG signals. Algorithm 1 applied feature extraction methods to a data set
and input this data to an artificial neural network. The performance of this algorithm was
compared to Algorithm 2, which is a deep learning algorithm. Raw EEG data were used
as the input for this algorithm. Algorithm 2 achieved an average classification accuracy
of 93%, which is 7% higher than the average accuracy of Algorithm 1. In addition, the
paper also indicates that Algorithm 2 outperformed the state-of-the-art algorithms in the
literature.

[8] Hamid Mukhtar, Saeed Mian Qaisar and Atef Zaguia. ”Deep Convolutional Neu-
ral Network Regularization for Alcoholism Detection Using EEG Signals.” In: Sen-
sors Vol. 21, No. 16, August 2021
In this paper, raw, normalised EEG signals were given as input to a convolutional neu-
ral network to detect alcoholism. The architecture of the network is compact, consisting
of only four convolutional layers, with normalisation and pooling operations. To avoid
overfitting, regularisation techniques such as dropout, batch normalisation and L1/L2 reg-
ularisation were added to the network. To evaluate the performance of the model, k-fold
cross-validation was used, with k = {3, 5, 10}. Using k = 10 lead to the best test accuracy
of 98%.

[22] Jones, A.W. ”Biochemical and Physiological Research on the Disposition and
Fate of Ethanol in the Body.” In: Medicolegal aspects of alcohol, 5th Edition, 2008
In this research, Jones presents, among other topics, how factors such as gender, body
mass index (BMI), body composition, type of alcohol, drinking duration, food intake and
biological differences can affect the alcohol metabolism in the human body. Through this,
the BAC evolution is also influenced. Another focus of the research is how different meth-
ods for measuring the alcohol content influence the measured BAC value. The BAC may
vary depending on where in the body it is measured (i.e., the blood, the breath or in dif-
ferent tissues) and on what kinds of instruments are used. Sometimes, irregular spikes
in the BAC curves appear when consecutive measurements are taken in intervals of 1-2
minutes. These spikes could be due to short bursts in the alcohol absorption rate caused
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by a ”sudden and unpredictable opening and closing of the pyloric sphincter”. Jones men-
tions that the spikes can be more apparent when using a breathalyser compared to other
instruments. This could be attributable to factors such as breathalyser characteristics and
breathing patterns, among other suggestions.

1.1.3 What Remains to Be Done?
As presented in the literature above, a high emphasis has been placed on the health-
damaging effects of alcohol by classifying people suffering from alcoholism. Hardly any
work regarding the effects of mild drinking on healthy people has been done, especially
concerning low levels of alcohol consumed during social activities. Only [21] has been
investigating the classification of alcohol-influenced EEG signals from healthy people, by
using an artificial neural network. This study also applied preprocessing techniques to the
data set. Using deep learning methods with raw EEG signals as input has not been tried
yet, although applying such methods has provided successful results when classifying al-
coholic and non-alcoholic EEG signals.

1.2 Objectives
The overall aim of this thesis is to establish the basis of a BCI system for alcohol detection
based on EEG signals, and to investigate the effect that a mild alcohol dose may have on
selective attention, accuracy and time response to stimuli. The investigation is divided into
two main objectives, and one sub-objective:

O1 Design of an experiment that can provide input information for the design of an
alcohol detector system based on EEG signals and perform data collection

O1.1 Perform an analysis of the BAC and behavioural data collected during the ex-
periment

O2 Evaluate the classification of alcoholic and non-alcoholic EEG signals using deep
learning techniques on individual and general models

1.3 Approach
The central element of this work is the analysis of human EEG signals with and without the
influence of alcohol. In this work, the EEG data of 20 healthy participants were recorded
during an experiment where both alcoholic and non-alcoholic drinks were ingested. Be-
fore the data collection experiment was performed, extensive research was conducted to
design the recording protocol. The first part of this research was done while working on
the project theses [1, 2] which predates the work in this master’s thesis. The articles pre-
sented in Section 3.1.1, as well as the articles mentioned in Section 2.3 and Section 2.4,
were reviewed. Based on these, as well as the knowledge gained during the work with the
project theses, adjustments were made to improve the designed protocol. This improved
protocol was designed as explained in Section 3.1. The collected BAC and behavioural
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data were analysed by using the software described in Section 3.3.2.

The second part of the research was conducted by reviewing related works for the design
of the alcohol detector. The most relevant results of this research are presented in Section
1.1.2. After this research was done, the gathered information was used to implement and
adapt the convolutional neural network (CNN) EEGNet as described in Section 3.5.2 and
Section 3.6. Due to some technical issues with the EEG equipment, some of the collected
data were not at full length. Adjustments were made in order to use as much of this data
as possible in the training and testing of the models. The metrics presented in Section 3.7
were used to evaluate the performance of the models.

1.4 Contribution
The following are the contributions of this thesis:

• A gender-balanced EEG data set based on the data of 20 healthy people with two
sessions, where one session is with alcohol and the other is a non-alcoholic session

• A participant-based classifier which can detect the presence of alcohol with an av-
erage accuracy of 90.7%

• An alcohol detector which can classify the presence of alcohol through EEG signals
across participants with an average accuracy of 62.9%

1.5 Limitations
The duration of one data collection session is approximately 66 minutes. Due to individual
differences in alcohol metabolism, each participant will most likely reach different stages
of intoxication during this period [23]. Therefore, it is impossible to guarantee that all par-
ticipants will reach the peak BAC value during the experiment. This leads to differences
across participants in the data set, where some participants are more intoxicated than oth-
ers.

The equipment used to collect the data set, Unicorn Hybrid Black, does not provide soft-
ware to check the scalp-electrode impedance. When using consumer grade EEG recording
equipment, impedances up to 10 kΩ are acceptable [24]. With no possibility of checking
the impedance before or during the recordings, it is not possible to confirm whether the
collected data are within the acceptable value range or not. Consequently, the quality of
the collected EEG signals might not be as good as desired.

1.6 Outline
This thesis consists of five chapters. Chapter 2 presents the theoretical background mate-
rial. Here, brain signals, the generation of EEG signals and the effect of alcohol on the
brain are presented. Chapter 3 describes the protocol used for data collection, the resulting
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data set and the methods used for classification. The BAC values, the Flanker task and
the classification results are presented in Chapter 4. These results are discussed in Chapter
5. The conclusion and future work of the thesis are provided in Chapter 6. In Appendix
A, B and C, the questionnaire, consent form and information letter to the participants are
provided. An overview of the collected data set is presented in Appendix D. Additional
results from the Flanker task are presented in Appendix E. In Appendix F, additional plots
of confusion matrices from the general model are presented. Finally, a version of the
submitted paper derived from the work of this thesis can be found in Appendix G.
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2
Background

This chapter introduces brain signals and how these can be captured by EEG. Further, the
chapter explores how ethanol, hereby referred to as alcohol, is metabolised in the human
body, and its effects on the human brain. An introduction to sample sizes in EEG studies
is presented, as well as the optimal channels for the detection of alcoholism. This chapter
aims to present the necessary information needed for understanding the designed protocol
for data collection and to understand how alcohol affects the brain. This chapter’s purpose
is also to provide an understanding of how the BAC evolves after alcohol ingestion.

2.1 Brain Signals

The human brain can be divided into four areas, as presented in Figure 2.1. Each of these
areas, called lobes, are responsible for different functions. The frontal lobe, for instance,
is responsible for decision-making, planning and movement control [25].

Figure 2.1: The four lobes of the human brain [26].
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2.1.1 Neural Activity
There are two types of cells in the brain. These are called glial cells and nerve cells, or
neurons. A neuron consists of dendrites, an axon and a cell body, as illustrated in Figure
2.2. The neuron can transmit electrical impulses, and brain signals, from the dendrites and
along the axon. When the signal has reached the end of the axon, it triggers the release of
a chemical transmitter known as a neurotransmitter. The neurotransmitter travels from the
axon terminal bundle of one neuron to the dendrites of another neuron. This gap is known
as a synapse. The travelling across the synapse stimulates the creation of a new electrical
impulse [27].

Figure 2.2: A neuron’s structure. Adapted from [28].

2.1.2 EEG Signals
EEG is a non-invasive method used for studying the electrical activity generated in the
brain by the activity of thousands of neurons in the cortical areas [28]. This activity is
captured by electrodes placed on the surface of the scalp. The International 10-10 Sys-
tem, presented in Figure 2.3, is a system standard which describes the placement of the
electrodes. It provides guidelines for the placing of up to 85 electrodes [29].

15.12.2022, 21:22

Side 1 av 1https://upload.wikimedia.org/wikipedia/commons/f/fb/EEG_10-10_system_with_additional_information.svg

Figure 2.3: The 10-10 system for placement of electrodes [30].

EEG can be used to measure event-related potentials (ERPs), which are voltage changes
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locked to a specific event or stimulus [31]. Such events or stimuli are typically related to
cognitive, sensory or motor tasks [32].

EEG signals are characterised by low voltages, making them vulnerable to noise [33].
Noise that can be attributed to a specific source is called artifacts. Muscle contractions,
heartbeats, blinking, movements of the eyes and power line interference can all be sources
of artifacts [34]. In addition, a common problem in EEG studies is that EEG signals vary
from participant to participant. The signals can also vary in recording sessions of a single
participant performed at different times. These problems can be caused by a misalignment
of electrodes or different head shapes across participants. The scalp-electrode impedance
might also change over time [35].

2.1.3 Frequency Bands
EEG signals can be divided into five frequency bands, as shown in Table 2.1. Each fre-
quency band is distinguished by a frequency range and is associated with a state of the
brain. The alpha band can be divided into the slow alpha band (7.5-9 Hz) and the fast al-
pha band (9-12 Hz). A low dose of alcohol is known for increasing the slow alpha activity.
Moderate doses of alcohol increase the activity in both the slow alpha band and the theta
band. The effects of alcohol on the beta band are more ambiguous [36].

Table 2.1: The name of each frequency band together with their frequency range and the associated
state of the brain. Adapted from [1].

Name Frequency band [Hz] Associated state

Delta (δ) 0.5− 4 Deep sleep
Theta (θ) 4− 7 Drowsiness
Alpha (α) 7.5− 12 Relaxed awareness
Beta (β) 12− 30 Active thinking

Gamma (γ) > 30 Peak concentration

2.1.4 Brain-Computer Interface
A BCI is a system that allows direct communication between a user and an external device,
such as a computer. To enable this communication, the brain signals from the user are
recorded and interpreted by the BCI. The signals are then translated into commands which
can be used to interact with the external device [37]. Until today, BCIs have mainly been
used to help paralysed or disabled patients interact with their environment [38].

2.2 Alcohol and the Brain
After alcohol is ingested orally, the body begins to absorb it within 10 minutes. The
amount of alcohol in a person’s bloodstream is indicated by the BAC value. After alcohol
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is consumed, the BAC value rises rapidly. The peak is usually reached 30-90 minutes after
the consumption [39].

2.2.1 Alcohol Metabolism

Alcohol metabolism is the body’s ability to convert ingested alcohol into other compounds.
Through this process, the alcohol is detoxified and eliminated from the bloodstream. This
prevents it from damaging organs and cells within the body.

Several factors affect the metabolism of the body and, by that, the BAC [23]. One of
these factors is how fast the alcoholic drink is ingested. Slow ingestion of alcohol leads
to a lower BAC peak, while rapid consumption leads to a quickly rising BAC value and
a higher BAC peak. The gender of the person consuming the drink is also affecting the
metabolism. Even when the alcohol dose is adjusted for body weight, women tend to reach
a higher peak BAC value compared to men [40]. This is because women tend to have a
higher amount of body fat and a smaller amount of body water compared to men of the
same weight [41]. When food is present in the stomach, alcohol is absorbed more slowly.
This causes a lower peak BAC value [22].

Figure 2.4a depicts the typical evolution of a BAC curve. The first part of the curve, the
absorption phase, is the most unpredictable part of the BAC curve. As stated above, it can
depend on factors such as gender, age and BMI [22]. Figure 2.4b shows how BAC curves
can vary between individuals who have received the same dose of alcohol, both with and
without food.

(a) A hypothetical BAC curve showing the
unpredictable nature of the absorption phase.

Adapted from [22].

(b) The BAC profile curves of four individuals after
ingesting 0.8 g/kg ethanol on an empty and full stomach

[22].

Figure 2.4: Illustrations of how the BAC curves of individuals can
vary after receiving the same dose of alcohol.
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2.2.2 The Effect of Alcohol on the Brain

One of the main impacts of alcohol on the brain is its ability to alter the synapses of neu-
rons [42]. In other words, alcohol affects the transmission of signals between neurons in
the brain. This affects how the lobes in the brain communicate. This disturbance can cause
several problems. One example is the slowing down of the central nervous system, which
can cause a person to speak, think and move slower than usual [43].

The impact of alcohol can also be observed in the frontal lobe of the brain. As mentioned
in Section 2.1, this lobe is responsible for decision-making, planning and self-control. Al-
cohol consumption can impair these functions, leading to impulsive actions and decisions
[25, 44]. Findings in [45] indicate that alcohol consumption can result in a reduced at-
tention span. While these symptoms are typically associated with alcohol intoxication,
research has shown that individuals may experience different reactions to alcohol [46].

2.3 Sample Size in EEG Studies

The replication of a scientific study is crucial when building confidence in results, and it
is regarded as one of the fundamental characteristics of a study [47, 48]. An insufficiently
large sample size is a reason for replication failure, and it may lead to the significance
of the study being overestimated [49]. The sample size in EEG studies is often small,
as the collection and processing of EEG data often are resource intensive [50]. When
investigating the sample size in 150 ERP articles, [51] found that the average number of
participants is 21.

2.4 Optimal EEG Channels for Detection of Alcoholism

As mentioned in Section 2.1.2, the 10-10 system provides up to 85 positions for electrode
placements. While using all of these would provide information about the electrical activ-
ity in all brain regions, it would also result in both a resource-intensive data collection and
a computationally expensive analysis. [52] performed a discrete harmony search to find
which positions in the 10-10 systems were optimal for alcoholism detection. This search
resulted in 12 optimal channels, presented in Figure 2.5. Using these 12 channels reduced
the accuracy of alcoholism detection by only 2.63% compared to using 61 channels.
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Figure 2.5: The 12 optimal channels for detection of alcoholism. The optimal channels are marked
in green. Adapted from [53].
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3
Materials and Methods

This chapter presents the designed protocol for the collection of EEG signals that are
both affected and not affected by alcohol. First, the choices made in the design of the
protocol are presented. Then, the resulting protocol is described in detail, as well as the
utilised hardware and software. Next, the chapter presents the resulting data set and the
preprocessing of this. The neural network used for the classification of the EEG data,
EEGNet, is introduced, and the alterations made to EEGNet are also explained. Last, the
training and testing of the implemented models are mentioned, as well as the metrics used
to evaluate their performance.

3.1 Experimental Design

3.1.1 Pre-Design Research
Before the protocol for the data collection was designed, the following related literature
was reviewed. In all the presented studies, young men were given alcohol while their EEG
signals were measured. All studies found changes in the slow alpha, theta, or beta fre-
quency bands after alcohol consumption. As mentioned in Section 2.1.3, alcohol is known
for causing changes in these frequency bands. Thus, these studies were advised when
creating the protocol, as the given doses are documented to affect the EEG signals. All
following doses are given in either g/kg or ml/kg. g or ml refers to the amount of ethanol,
while kg refers to the participant’s weight.

[36] describes an experiment where 24 young males were administered low doses (LD)
of alcohol and a placebo drink. The dose of alcohol was set to 0.75 ml/kg. 95% ethanol
was mixed with a ”sugar-free, non-caffeinated, carbonated beverage” to obtain a 20%-by-
volume drink. The placebo drink was made by mixing the same drink mixer with 1 ml of
ethanol. This ethanol, called a primer, was added to make the participants unsure whether
their drink was alcoholic or not. The experiment lasted for 3 hours.
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In [54], 37 healthy and young men received either an alcoholic consisting of 0.5 g/kg
ethanol, or a non-alcoholic drink. The alcoholic drinks consisted of vodka and orange
juice. The placebo drinks had a placebo cocktail mix instead of vodka. All participants
were right-handed. Before the experiment, each participant was served breakfast. Two
baseline EEG recordings of 4 minutes were completed before the drink was served. 45
minutes after the drink, new EEG recordings were done. The participants were then served
another glass of the drink, and the waiting and recording of EEG signals were repeated.
The BAC of each participant was measured before and after each EEG recording. The
total time of the experiment was 2.5 hours.

[55] presents an experiment where 21 healthy, young men were given a low dose (LD),
high dose (HD) and a placebo drink in a random order. The LD was set to 0.5 ml/kg. The
HD was set to 0.8 ml/kg. Only one type of drink was administered per session, and there
was at least one day between each of the three sessions. For the placebo condition, the
participant was given a volume of ginger ale equal to 2.0 ml/kg. The alcoholic drinks con-
sisted of either one part LD or HD ethanol and three parts ginger ale. Each session lasted
140 minutes, giving a total experiment time of approximately 7 hours per participant.

3.1.2 Key Protocol Parameters
Based on the related literature presented in Section 3.1.1, and the available time and equip-
ment, the protocol was designed.

Participant Selection

In Section 3.1.1, all studies had male participants in their twenties or thirties. All par-
ticipants were healthy and neither abstained from alcohol nor suffered from alcohol use
disorders. The average number of participants for these studies was approximately 27. In
Section 2.3, the average sample size for 150 ERP studies was found to be 21 participants.
Based on these findings, the decision was made to set the total number of participants to 20.

The goal of this project is to create an alcohol detector that works on all drivers. Therefore,
both males and females were included. To get a gender-balanced data set, the decision was
made to choose 10 males and 10 females for the group of 20 participants.

To make the data from the participants easily comparable, a set of selection and exclusion
criteria for the participants was set. These criteria are seen in Table 3.1. The criteria were
chosen based on the information presented in the articles in Section 3.1.1. The participants
who fit the criteria were chosen based on the results of the questionnaire presented in
Appendix A. The chosen participants were also instructed to read and sign the project’s
consent form, seen in Appendix B.

Alcohol Dose

In all experiments in Section 3.1.1, the alcoholic drinks were based on either vodka or
pure ethanol. The alcohol was mixed with either a juice or a carbonated beverage. With
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Table 3.1: A summary of the selection and exclusion criteria for the participants of the project.

Selection criteria Exclusion criteria
20-30 years old No history of drug or alcohol abuse
Right-handed No history of drug or alcohol abuse in close family
Social drinker No major medical issues or history of psychiatric problems

these articles in mind, the decision was made to serve a drink consisting of orange juice
and standard 40%-by-volume Smirnoff vodka. The Smirnoff vodka was chosen as pure
ethanol was not possible to obtain. For the non-alcoholic drink, the vodka was replaced by
an equal volume of a non-alcoholic, vodka-flavoured mixer diluted with water. The drinks
were mixed with a ratio of one part vodka or vodka mixer to three parts orange juice.

To choose the alcohol dose, the previously mentioned articles and Table 23.1 and Table
23.2 in [56] were consulted. [56] reviews and summarises alcohol-related EEG studies.
The doses presented in these tables were used to calculate the mean and median for an LD,
HD and a single dose option, and the results are presented in Table 3.2.

Table 3.2: Calculated mean and median doses from 35 EEG and ERP studies. Adapted from [2].

Single dose LD HD Mean
Mean 0.452 g/kg 0.348 g/kg 0.604 g/kg 0.468 g/kg

Median 0.400 g/kg 0.300 g/kg 0.660 g/kg 0.453 g/kg

Based on these results, and the doses described in Section 3.1.1, the alcohol dose was set
to 0.45g/kg alcohol. The selected drink doses for both the alcoholic and the non-alcoholic
drink are presented in Table 3.3.

Table 3.3: A summary of the drink doses given to the participants. The volume of alcohol served
was calculated based on the ethanol content per ml vodka stated on the Smirnoff bottle.

Drink dose Alcoholic drink Non-alcoholic drink
Ethanol 0.45 g/kg 0.00 g/kg

Vodka mixer and water 0.00 g/kg 0.45 g/kg
Orange juice 3.00 · (0.45 g/kg) 3.00 · (0.45 g/kg)

Chosen EEG Channels

The 12 optimal channels for the detection of alcoholism mentioned in Section 2.4 were
chosen for the data collection. As the available equipment has 16 channels, this placement
resulted in 4 leftover electrodes. These 4 electrodes were placed to make the electrode
placements symmetrical. The final placement of the electrodes is shown in Figure 3.1.
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Figure 3.1: The 16 channels used for the recording of EEG signals. The red channels are the four
leftover channels added to the optimal channels for symmetry. Adapted from [53].

The Flanker Task

The participants were instructed to perform the Flanker task [57] during the recordings.
The task measures the selective attention, accuracy and response time (RT) of the partic-
ipants. This is of interest as alcohol is known for affecting both the attention span and
the RT of intoxicated people [45]. The Flanker task also tests a person’s ability to ignore
irrelevant stimuli around a focal point. This can be compared with how a driver needs to
keep their focus on the road, while still retaining an overview of the surroundings.

During this version of the Flanker task, the participant is presented with five letters. They
are instructed to press either the A-key or the L-key on the keyboard depending on the
middle letter. If the middle letter is either X or C, they should press A. If the middle
letter is V or B, the correct response is L. The middle letter is flanked by four identical
letters. These are all either X, C, V or B. Consequently, 16 combinations of letters can
be shown to the participant. If the flanked letters and the middle letter correspond to the
same response, the trial type is called congruent. If not, the trial type is called incongruent.

The participants are presented with all combinations presented in Table 3.4 in random
order. This sequence is called a block. Between each combination of letters, a cross is
presented for two seconds before a new combination appears. There are a total of 6 blocks
in the task, meaning the participants are presented with 96 sequences of letters in total. 48
of these are congruent and 48 are incongruent. After each block is presented, there is a
seven-second break. Among other parameters, the RT and the response of the participant
are recorded.
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Table 3.4: The stimuli presented during one block in the Flanker task.

Congruent Incongruent
XXXXX XXVXX
XXCXX XXBXX
CCCCC CCVCC
CCXCC CCBCC
VVVVV VVXVV
VVBVV VVCVV
BBBBB BBXBB
BBVBB BBCBB

Recording Time

The articles in Section 3.1.1 describe a total recording time of 2.5-7 hours per participant.
With 20 participants, this would lead to a total recording time of 50-140 hours with 2
sessions per participant. This does not include the time needed before each session for
preparation and after each session for clean-up and debriefing. Considering this, the total
recording time was set to about 2 hours per participant, giving about 1 hour per session.

To ensure enough EEG data would be collected, each EEG recording was set to 5 minutes.
The drink ingestion period was set to 10 minutes. Making the participants drink during
such a short period would cause the BAC to rise faster and therefore also reach the peak
faster, as mentioned in Section 2.2.1. The Flanker task lasted approximately 7 minutes.
After each part of the session, there was a break of either 2 or 5 minutes. The BAC of
the participant was measured before the first EEG recording, as well as in each 5-minute
break starting 15 minutes after the drink ingestion period ended.

Since the desired session time was approximately 1 hour, the decision was made to per-
form a total of four EEG recordings during a session. This gave a total session time of
approximately 66 minutes, meaning the total experiment time for each participant was just
above 2 hours.

3.2 The Protocol and Data Collection

The general outline of the data collection session is visualised in Figure 3.2. The first
part, the pre-experiment recordings, took place before the participant was given either an
alcoholic or a non-alcoholic drink. After the drink ingestion period of 10 minutes, the post-
drink recordings commenced. The following sections describe each part of the session, as
well as the necessary preparations, in more detail.
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Figure 3.2: A detailed overview of the data collection session.

3.2.1 Preparation
Before the data collection sessions, the participants were given the information letter pre-
sented in Appendix C. Here, they were instructed to not drink caffeine on the same day as
the recording. They were also instructed to abstain from alcohol the evening before and
the morning of the recording.

Since the drink dose was determined individually based on each participant’s body weight,
the weight of each participant was measured before their first session. The height and the
head size of the participant were also measured.

3.2.2 Pre-Experiment Recordings
The pre-experiment recordings are illustrated in Figure 3.3. At the beginning, a breathal-
yser was used to confirm that the participant was not affected by alcohol. After this, the
recording session started with a 5-minute EEG recording. During these five minutes, the
participant sat in a chair while relaxing with their eyes open. The participant was instructed
to focus their eyes at one point and to sit as still as possible. They were not allowed to talk
during the EEG recording.

After this recording, the participant was given two minutes to read the instructions of
the Flanker task. After the two minutes, they performed the Flanker task as described in
Section 3.1.2. The EEG signals of the participant were recorded while performing the
task.

3.2.3 Drink Ingestion
After the pre-experiment recordings, the drink ingestion began. During a period of 10
minutes, the participant was given their drink divided equally into five cups. One cup
was presented every two minutes. The participant was instructed to drink each cup as fast
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Figure 3.3: The pre-experiment recordings.

as possible. This was done to better control when the alcohol entered the body of the
participant. Figure 3.4 summarises the drink ingestion part of the session. During these 10
minutes, no EEG signals were recorded.

Figure 3.4: An overview of the drink ingestion period. Every two minutes the participants are
instructed to drink a cup as fast as they can. The drink is divided equally into 5 cups, giving a total

drink ingestion time of 10 minutes.

3.2.4 Post-Drink Recordings

As seen in Figure 3.5, the post-drink recordings consisted of three 5-minute EEG record-
ings and one Flanker recording. All recordings were performed as described in Section
3.2.2. Between each recording, there was a 5-minute break. BAC recordings were also
performed. For these recordings, the breathalyser Alcoscan ALC-1 was used. Due to
limitations in this breathalyser, as described in Section 3.3.1, the first BAC value was not
recorded until 15 minutes after the drink ingestion.

The BAC measurements were done regardless of the type of drink the participant received.
This was done to make sure the participant did not know which drink they were given.
When they were given alcohol, the mouthpiece was changed between each recording to
make sure there was no residual alcohol affecting the recordings. The mouthpiece was not
changed between each recording when the participant received the non-alcoholic drink.
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Figure 3.5: A visualisation of the recordings after the drink is ingested. The BAC values are
recorded using a breathalyser.

3.2.5 Deviation From the Protocol

Originally, the order of the two sessions was to be random for all participants, meaning
some would be served the alcoholic drink in their first session and the others would be
served the non-alcohol drink first. This was done to make sure the participants would not
know which drink they were given. If they knew they were given alcohol, they might
alter their behaviour due to this, and not due to the effect of the alcohol itself. The first
participant, P1, who was assigned alcohol in the first session, was convinced the drink
contained alcohol. Due to this, the decision was made to serve each of the remaining
participants the non-alcohol drink in the first recording session. In this drink, the vodka-
flavoured mixer would add an alcohol-like flavour, but the flavour would not be strong
enough to give away whether the drink did contain alcohol or not. Consequently, 19
out of 20 participants received the non-alcohol drink in the first recording session and an
alcoholic drink in their second recording session.

3.3 Equipment

3.3.1 Hardware

Unicorn Hybrid Black

The available EEG recording equipment was the Unicorn Hybrid Black headset, seen in
Figure 3.6. As one Unicorn Hybrid Black headset only has eight channels available, two
headsets were used simultaneously to use the 12 optimal channels presented in Section
2.4. These were combined with the g.GAMMAcap from g.tec to increase the number
of available electrode placements, as the cap from Unicorn Hybrid Black only has eight
available positions.
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(a) The Unicorn Hybrid Black electrodes with the
g.GAMMAcap from g.tec.

(b) The experimental setup of the two Unicorn Hybrid
Black devices.

Figure 3.6: The Unicorn Hybrid Black headsets with the chosen electrode placements. The 3D
printed earclips secure the four earlobe references, two from each headset. The two headsets are

secured to each other by using hair elastics and to the cap by using velcro.

Alcoscan ALC-1

The breathalyser Alcoscan ALC-1, seen in Figure 3.7, was used to measure the BAC of
the participants. The accuracy of the breathalyser is ±0.05‰ at 1‰, giving a precision of
95%. Alcoscan ALC-1 cannot be used to measure the BAC value in the first 15 minutes
after alcohol ingestion.

Figure 3.7: Alcoscan ALC-1, the breathalyser used to measure the BAC of the participants [1].
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KERN MPE

KERN MPE is the device used to measure the height and weight of the participants before
the data collection. It is depicted in Figure 3.8

(a) The display of the KERN MPE machine shows the
participant’s weight.

(b) The vertical measuring bar is used to measure the
participant’s height.

Figure 3.8: Pictures of the KERN MPE machine which measures the weight and height of the
participants [1].

3.3.2 Software

Code

The code written for this project is found in this GitHub1. As of June 2023, the repository
is private. Access can be provided upon request.

Python Libraries

The Expyriment library was used to create the Flanker task. The results were analysed
using the Pandas and Matplotlib libraries. To perform the statistical analysis of the Flanker
results, the ttest ind function from the SciPy library was used. The MNE library
was used for inspection of the collected data. When creating the classifier, the NumPy
library was used for data loading. The scikit-learn and TensorFlow libraries were used for
normalisation of the data and for implementing the classifiers.

1 https://github.com/wavesresearch/Alcohol_Detection_Project_2022-2023
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Lab Streaming Layer

Lab Streaming Layer (LSL) is an open-source software system. It enables synchronous
streams and recordings of neural, physiological and behavioural data. For this project,
LSL was utilised in the recording of the EEG data and the Flanker task data. Each time
there was an event in the Flanker task, a marker was sent to the LSL stream. The events
and the corresponding markers can be seen in Table 3.5. For both the recording of the
EEG data and the Flanker data, time stamps were also sent in the stream.

Table 3.5: The marker sent to the LSL stream with the corresponding event in the Flanker task.
Adapted from [1].

Event Marker
Cross presented ’1’

Congruent stimulus presented ’2’
Incongruent stimulus presented ’3’

Break between blocks ’4’
Flanker task started ’5’
Flanker task ended ’6’

A-key pressed ’97’
L-key pressed ’108’

No key pressed ’None’

LabRecorder

LabRecorder2 is the program that records the LSL streams. It allows the combination of
all LSL streams into a single file. All combined streams are time synchronised using the
time stamps and saved in an XDF file.

3.4 Data Set
The key parameters of the 20 participants who took part in the data collection are shown
in Table 3.6. The BMI of each participant was calculated using Equation 3.1.

BMI =
Weight [kg]

Height [m]2
(3.1)

Each EEG recording was planned to last for five minutes, but due to trouble with the
recording devices, some recordings were shortened, or no data were recorded at all. An
overview of the length of each recording for all participants can be seen in Appendix D.

2 https://github.com/labstreaminglayer/App-LabRecorder
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Table 3.6: Overview of all participants and their relevant parameters.

Participant Gender Age Weight [kg] Height [cm] BMI
P01 Female 24 67,9 174 22.4
P02 Female 23 85,5 161 33.0
P03 Female 24 84,1 174 27.8
P04 Female 23 72,8 165 26.7
P05 Female 25 60,6 165 22.3
P06 Male 23 64,1 182 19.4
P07 Female 24 70,3 169 24.6
P08 Male 24 72,5 177 23.1
P09 Male 24 73,5 182 22.2
P10 Female 23 61,4 162 23.4
P11 Male 25 83,6 188 23.7
P12 Male 25 88,5 191 24.3
P13 Female 24 57,1 166 20.7
P14 Male 23 93,2 187 26.7
P15 Female 28 70,2 178 22.2
P16 Female 25 81,6 165 30.0
P17 Male 23 92,2 191 25.3
P18 Male 23 81,5 184 24.1
P19 Male 24 95,1 194 25.3
P20 Male 23 72,4 175 23.6

3.4.1 Preprocessing of Data

Before the collected data set was used as input to the classifiers, some preprocessing was
applied. First, the 5-minute recordings were split into epochs. After this, the data were
split into a training and a test set. The length of the epochs and how the data were split
into training and test sets for each classifier is presented in Section 3.6.

The data set was not subjected to any artifact removal or filtering procedures; only nor-
malisation was performed. [58] suggests that normalisation of the data before the training
of a neural network is crucial for obtaining good results. By applying normalisation, the
wide ranges in the raw EEG signals are reduced [8].

The standard scaler was used to normalise the data by removing the mean and scaling to
unit variance. The standard score z, of a sample x, is calculated by using Equation 3.2. µ
is the mean of the training samples, and σ is the standard deviation (SD) of the samples.
An overview of the preprocessing of the data can be seen in Figure 3.9.

z =
x− µ

σ
(3.2)
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Figure 3.9: A visualisation of the preprocessing of the data. After the data is split into epochs, it is
split into a training and a test set. The two sets are normalised separately before the data is fed into

the model, EEGNet.

3.5 EEGNet
To create models for the classification of EEG signals, a CNN was used. In this thesis,
the CNN architecture EEGNet was chosen to create the classification model for alcohol
detection. EEGNet was made specifically for the classification and interpretation of EEG
signals. It is known for performing well on different types of EEG signals, even when
data is very limited. EEGNet has been shown to perform as well as other more paradigm-
specific EEG CNN models, but EEGNet has 102 fewer parameters than these models. This
makes EEGNet more computationally efficient [59].

3.5.1 Architecture
Figure 3.10 shows the architecture of EEGNet. EEGNet uses temporal convolution in the
first layer to learn frequency filters. After this, EEGNet uses depthwise convolution. The
purpose of this is to provide a direct way of learning spatial filters for each temporal filter.
This enables efficient extraction of frequency-specific spatial filters. The regularisation
technique dropout is applied to prevent overfitting.

Figure 3.10: A visualisation of the architecture of EEGNet [59].

Separable convolution is used to separate the process of learning to summarise individual
feature maps over time, from the process of optimally combining them. Finally, EEGNet
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has a fully connected layer with softmax activation. This produces a probability distribu-
tion over the possible class labels. EEGNet has several hyperparameters, including F1, D
and F2. These hyperparameters control the number of temporal filters, the depth of the
network and the number of pointwise filters, respectively.

3.5.2 Alterations

The creators of EEGNet have provided a Keras implementation of EEGNet. The imple-
mentation can be found in this Github3 repository. This implementation has been used as a
foundation for the classifiers developed in this thesis. Some alterations have been applied
to the original implementation as there are differences in the used data sets. The original
implementation is made for data sampled at 128 Hz, while the data collected in this thesis
were sampled at 250 Hz. Because of this, the length of the temporal convolution in the
first layer is set to 125, as it is intended to be half the sampling rate.

The original implementation is built for multi-class classification. The objective of this
thesis is to perform binary classification for classifying whether a signal is affected by al-
cohol or not. Therefore, the activation function in the output layer is chosen to be sigmoid
instead of softmax and the number of classes is set to one.

3.6 Implemented Models
Three classifiers were made to detect alcohol-affected EEG signals. All were implemented
using EEGNet with the alterations described in Section 3.5.2. All models were optimised
by using the Adam algorithm [60] with a learning rate of 0.001. The used loss function
was binary cross entropy. The hyperparameters of EEGNet were chosen to be their default
values; F1 = 8, D = 2, F2 = 16. Two of the implemented classifiers are individual
models, and the third classifier is a general model. All three models are presented in the
following sections.

3.6.1 The Individual Models

Both individual models were trained and tested on data from the same participant.

The Random Individual Model

In the random individual model, the data from each participant was split into epochs of 5,
10, 20 and 30 seconds. After splitting, 20% of the data were used as the test set, while the
remaining 80% of the data were used as the training set. The splitting of test and train-
ing data was done randomly, meaning epochs from the same 5-minute recording can be
present in both the training and the test set. The same epoch is not present in both sets.

3 https://github.com/vlawhern/arl-eegmodels
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As the data set for each participant is quite small, 5-fold cross-validation was used to train
and validate the model. The cross-validation was performed by splitting the training data
for each participant into five subsets. Four of the five subsets were used for training, while
the last was used for validation. This was repeated five times. Each time, the accuracy of
the validation set was stored, and in the end, an average of all the accuracies was calculated
and used as an estimate for the overall model accuracy.

This estimate of the model accuracy was then used to determine which epoch length lead
to the best performance. This epoch length was then used on the test set to get a final
evaluation of the performance of the random individual model. The best-performing epoch
length for this model was also used for the two other models.

The Individual Model Across Sessions

In this model, all epochs from the same 5-minute recordings were placed in the same
set, instead of splitting epochs randomly into the training and test set. One non-alcoholic
recording and one alcoholic recording were chosen randomly to be in the test set of each
participant. The remaining data were used in 3-fold cross-validation, as seen in Figure
3.11. The test set was used for the final evaluation of the model.

Figure 3.11: An example of how the data were divided for the individual model across sessions.
The blue boxes represent training data and the green boxes represent validation data. The orange

boxes represent the test data used for the final evaluation of the model. 3-fold cross-validation was
used to find the best-performing hyperparameters for the model. a1-a3 are the alcohol-affected

recordings, while n1-n5 are the 5-minute recordings not affected by alcohol.

3.6.2 The General Model
For the general model, EEGNet was trained using data from 19 of the 20 participants and
then tested on the last, unseen participant. The hyperparameters of the model were chosen
by using cross-validation.

3.7 Evaluation
To get an unbiased evaluation of the performance of the models, several evaluation metrics
were used. These metrics describe the performance of the model on unseen data. A confu-
sion matrix is a visual representation of the performance of the model. It displays the true
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negative (TN) and true positive (TP) predictions on the diagonal. The anti-diagonal shows
the number of false negative (FN) and false positive (FP) predictions.

By using Equation 3.3, the confusion matrix can be used to calculate the accuracy of the
model. Although accuracy is commonly used, it can give an inaccurate description of the
performance if the data set is imbalanced.

Accuracy =
TN + TP

TN + FN + TP + FP
(3.3)

Precision is a measure of how well the model avoids false positive predictions. Recall
describes the model’s ability to correctly identify all positive cases. They are calculated
by using Equation 3.4 and Equation 3.5, respectively.

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

The F1 score, calculated by using Equation 3.6, is a performance metric that combines
both the precision and the recall to provide a comprehensive evaluation of the overall per-
formance of the model.

F1 score = 2 · precision · recall
precision+ recall

= 2 · TP

2TP + FP + FN
(3.6)

The last metric used is specificity, which describes how well the model avoids predicting
false negatives by using Equation 3.7.

Specificity =
TN

TN + FP
(3.7)
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4
Results

In this chapter, the BAC values and the behavioural data from the Flanker task are pre-
sented. The classification results of the alcohol detectors are summarised. The average
accuracy, precision, recall, F1 score and specificity for both the individual models and the
general model are presented. Selected confusion matrices are also presented.

4.1 About the Results
For the Flanker task, all presented results are derived based on the average values of all
participants. Individual results and other comparisons of the averages from all participants
can be found in Appendix E. The significance of the average results presented in this chap-
ter was analysed by performing the t-test to obtain the relevant p-values. Here, a p-value
less than p = 0.1 indicates a tendency. A p-value less than p = 0.05 indicates significance.

The two individual models presented in this chapter were trained and tested as described in
Section 3.6.1. The general model was trained and tested as described in Section 3.6.2. To
evaluate the performance of these three classifiers, the five metrics presented in Section 3.7
were used. All metrics are given as a value in the range of 0 to 1, where 1 equals perfect
classification within that metric. To ensure the evaluation of these models was unbiased,
the test set used for the final evaluations of the models was never present in the training
sets.
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4.2 BAC Evolution

The measured BAC values after ingestion of alcohol for each participant are presented in
Table 4.1. Before the recordings, all participants had a BAC value of 0.000‰. In the non-
alcoholic recording session, all participants had a BAC value of 0.000‰ throughout the
session. Figure 4.1 shows the average BAC values for males, females and all participants
at each BAC measuring point during the alcoholic recording session.

Table 4.1: The BACs of all participants at approximately 15, 25, 37, and 42 minutes after (m.a.)
alcohol ingestion.

Participant Gender 15 m.a. 25 m.a. 37 m.a. 42 m.a.
P01 Female 0.450‰ 0.440‰ 0.430‰ 0.450‰
P02 Female 0.270‰ 0.330‰ 0.380‰ 0.400‰
P03 Female 0.420‰ 0.420‰ 0.500‰ 0.540‰
P04 Female 0.440‰ 0.430‰ 0.490‰ 0.450‰
P05 Female 0.440‰ 0.450‰ 0.470‰ 0.490‰
P06 Male 0.310‰ 0.390‰ 0.400‰ 0.430‰
P07 Female 0.110‰ 0.140‰ 0.190‰ 0.210‰
P08 Male 0.250‰ 0.260‰ 0.290‰ 0.320‰
P09 Male 0.420‰ 0.430‰ 0.440‰ 0.450‰
P10 Female 0.340‰ 0.260‰ 0.260‰ 0.360‰
P11 Male 0.550‰ 0.530‰ 0.540‰ 0.500‰
P12 Male 0.390‰ 0.370‰ 0.460‰ 0.480‰
P13 Female 0.520‰ 0.470‰ 0.490‰ *
P14 Male 0.430‰ 0.470‰ 0.480‰ 0.480‰
P15 Female 0.530‰ 0.480‰ 0.570‰ 0.560‰
P16 Female 0.480‰ 0.460‰ 0.580‰ 0.540‰
P17 Male 0.250‰ 0.280‰ 0.290‰ 0.380‰
P18 Male 0.480‰ 0.380‰ 0.470‰ 0.520‰
P19 Male 0.320‰ 0.310‰ 0.340‰ 0.400‰
P20 Male 0.630‰ 0.470‰ 0.480‰ 0.490‰

* No measurement due to technical issue with the breathalyser

Figure 4.2 shows the BAC evolution of P11 (male) compared to the average BAC evolu-
tions, both for all males and for all participants. As the figure shows, P11 had a different
BAC curve than average with a clear drop from the penultimate to the last measurement.
The averages for males and all participants show an increase in BAC value in the same
interval.

Figure 4.3 shows the BMI of each participant plotted against that participant’s average
BAC values.
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Figure 4.1: Average BAC values for males, females and all participants during the alcoholic
recording session. The inserted window shows an enlarged version of the most relevant area.

Figure 4.2: The measured BAC value of P11 at each BAC measuring point compared to the
average of all participants and the average values of the males.
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Figure 4.3: Average BAC values plotted against the BMI for each participant.

4.3 Behavioural Data From the Flanker Task

Figure 4.4 shows the average accuracy and RT before and after the ingestion of the non-
alcohol drink. As Figure 4.4a shows, the average accuracy increases with a value of 0.018
from before to after the ingestion of the non-alcohol drink. With a p-value of p = 0.00012,
this change is significant. For the average RT, seen in Figure 4.4b the value decreases by
58 ms. between the two Flanker tasks. The p-value of p = 3.27 · 10−14 indicates that this
change is also significant.

(a) Average accuracy before and after ingestion of the
non-alcohol drink. Significance:

*** p = 0.00012 < 0.0005.

(b) Average RT before and after ingestion of the
non-alcohol drink. Significance:

**** p = 3.27 · 10−14 < 0.00005.

Figure 4.4: Comparison of average Flanker task values before and
after ingestion of the non-alcohol drink.
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Figure 4.5 presents the average results from the Flanker tasks performed after drink in-
gestion. As seen in Figure 4.5a, the average accuracy for all participants decreases with
a value of 0.01 from 0.987 to 0.977 when alcohol is present. The difference in accuracy
is significant with a p-value of p = 0.015836. Figure 4.5b shows the average RT for all
participants. After ingestion of alcohol, the RT decreased by 25 ms., from 675 to 650 ms.
The difference in RT is significant with a p-value of p = 0.000091.

(a) Average accuracy. Significance:
* p = 0.015836 < 0.05.

(b) Average RT. Significance:
*** p = 0.000091 < 0.0005.

Figure 4.5: Average accuracies and RTs for the Flanker task.

Figure 4.6 shows the average congruent and incongruent results. Figure 4.6a presents the
average accuracies for the congruent and incongruent responses. Figure 4.6b presents the
average RTs.

(a) Average accuracy for congruent and incongruent
responses. Significance:

n.s. p = 0.429890, * p = 0.014666 < 0.05.

(b) Average RTs for congruent and incongruent
responses. Significance:

* p = 0.016503 < 0.05, ** p = 0.001529 < 0.005.

Figure 4.6: Average congruent and incongruent responses for the
Flanker task.

For the congruent responses, the average accuracy decreases with a value of 0.005, from
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0.989 to 0.984 from the non-alcohol to the alcohol-influenced Flanker task. The corre-
sponding average RT decreased from 654 to 633 ms., giving a difference of 21 ms. For
the incongruent responses, the average accuracy decreases from 0.985 to 0.969. Thus, the
difference between the non-alcohol and alcohol-influenced Flanker task is 0.016. The av-
erage RT decreases from 695 to 668 ms., giving a difference of 27 ms. All changes were
found to be significant, except for the change in congruent accuracy. Here, the p-value was
p = 0.429890. This value is also too high to indicate a tendency (p < 0.1).

4.4 Detection of Alcohol Presence

4.4.1 The Individual Models

The Random Individual Model

Table 4.2 presents the average accuracies with SDs from the cross-validation of the ran-
dom individual model. The average accuracy and SD are shown for epochs of length 5,
10, 20 and 30 seconds. As seen in Table 4.2 and Figure 4.7, the random individual model
achieves the highest accuracies when the epoch length is 5 seconds.

As the model has the highest accuracy when the epochs are 5 seconds long, this epoch
length was used when evaluating the performance of the random individual model on the
test set. The performance on the test set for each participant is presented in Table 4.3. As
seen, the maximum score is achieved for all participants, across all metrics.

Figure 4.7: The average accuracies of the individual model for different epoch lengths. The
accuracies presented are averages across all participants.
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Table 4.2: Validation set accuracies of the random individual model for different epoch lengths
when using 5-fold cross-validation.

Length of epochs 5 seconds 10 seconds 20 seconds 30 seconds
Accuracy (SD) µ(σ) µ(σ) µ(σ) µ(σ)

P01 1.000 (0.000) 0.945 (0.082) 1.000 (0.000) 0.928 (0.067)
P02 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
P03 1.000 (0.000) 1.000 (0.000) 0.968 (0.063) 0.967 (0.039)
P04 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.952 (0.062)
P05 1.000 (0.000) 0.988 (0.023) 1.000 (0.000) 0.880 (0.153)
P06 1.000 (0.000) 1.000 (0.000) 0.866 (0.146) 1.000 (0.000)
P07 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
P08 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.953 (0.092)
P09 1.000 (0.000) 0.969 (0.061) 0.968 (0.063) 1.000 (0.000)
P10 1.000 (0.000) 0.988 (0.022) 1.000 (0.000) 0.950 (0.099)
P11 0.985 (0.029) 0.988 (0.023) 0.951 (0.059) 0.819 (0.083)
P12 0.932 (0.135) 1.000 (0.000) 1.000 (0.000) 0.954 (0.061)
P13 1.000 (0.000) 1.000 (0.000) 0.969 (0.042) 0.907 (0.113)
P14 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
P15 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
P16 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
P17 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.981 (0.036)
P18 1.000 (0.000) 1.000 (0.000) 0.989 (0.021) 0.938 (0.089)
P19 1.000 (0.000) 1.000 (0.000) 0.958 (0.039) 0.938 (0.123)
P20 1.000 (0.000) 1.000 (0.000) 0.989 (0.021) 1.000 (0.000)
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Table 4.3: The performance of the random individual model on the test set, when using epochs of
length 5 seconds.

Participant Accuracy Precision Recall F1 score Specificity
P01 1.000 1.000 1.000 1.000 1.000
P02 1.000 1.000 1.000 1.000 1.000
P03 1.000 1.000 1.000 1.000 1.000
P04 1.000 1.000 1.000 1.000 1.000
P05 1.000 1.000 1.000 1.000 1.000
P06 1.000 1.000 1.000 1.000 1.000
P07 1.000 1.000 1.000 1.000 1.000
P08 1.000 1.000 1.000 1.000 1.000
P09 1.000 1.000 1.000 1.000 1.000
P10 1.000 1.000 1.000 1.000 1.000
P11 1.000 1.000 1.000 1.000 1.000
P12 1.000 1.000 1.000 1.000 1.000
P13 1.000 1.000 1.000 1.000 1.000
P14 1.000 1.000 1.000 1.000 1.000
P15 1.000 1.000 1.000 1.000 1.000
P16 1.000 1.000 1.000 1.000 1.000
P17 1.000 1.000 1.000 1.000 1.000
P18 1.000 1.000 1.000 1.000 1.000
P19 1.000 1.000 1.000 1.000 1.000
P20 1.000 1.000 1.000 1.000 1.000

Average 1.000 1.000 1.000 1.000 1.000
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The Individual Model Across Sessions

The results of the test set for the individual model across sessions are shown in Table 4.4.
13 of the participants scored perfectly across all metrics. The confusion matrices of the
seven participants who did not score perfectly are presented in Figure 4.8. The lowest
accuracy was obtained for P14, with an accuracy of 50.8%. The best-performing metric is
precision, with an average of 99.2%, closely followed by specificity with 99.1%.

Table 4.4: The performance of the individual model across sessions on the test set, when the data is
split into epochs of 5 seconds. Results marked in green are above the average value of that metric,

and those marked in red are below average.

Participant Accuracy Precision Recall F1 score Specificity
P01 1.000 1.000 1.000 1.000 1.000
P02 1.000 1.000 1.000 1.000 1.000
P03 1.000 1.000 1.000 1.000 1.000
P04 1.000 1.000 1.000 1.000 1.000
P06 1.000 1.000 1.000 1.000 1.000
P09 1.000 1.000 1.000 1.000 1.000
P10 1.000 1.000 1.000 1.000 1.000
P12 1.000 1.000 1.000 1.000 1.000
P13 1.000 1.000 1.000 1.000 1.000
P15 1.000 1.000 1.000 1.000 1.000
P17 1.000 1.000 1.000 1.000 1.000
P18 1.000 1.000 1.000 1.000 1.000
P20 1.000 1.000 1.000 1.000 1.000
P08 0.941 1.000 0.883 0.938 1.000
P11 0.908 0.845 1.000 0.916 0.816
P07 0.808 1.000 0.616 0.762 1.000
P16 0.808 1.000 0.616 0.762 1.000
P19 0.616 1.000 0.233 0.378 1.000
P05 0.555 1.000 0.466 0.635 1.000
P14 0.508 1.000 0.016 0.032 1.000

Average 0.907 0.992 0.842 0.871 0.991
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(a) P8 (b) P11

(c) P7 (d) P16

(e) P19 (f) P5

(g) P14

Figure 4.8: The confusion matrices of the participants from the individual model across sessions
who did not achieve an accuracy of 100%.
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4.4.2 The General Model
Table 4.5 shows the results of the general model on the test set. The participant column
shows which participant was used in the test set for each model run. The average accuracy
across all participants is 62.9%. The best-performing metric is specificity, with a value
of 81.5%. The best accuracies were achieved with P15 and P09 in the test set, with an
accuracy of 94.1% and 90.2%, respectively. The lowest accuracies were obtained using
P04, P19 and P02, resulting in accuracies of 25.0%, 29.4% and 29.5%, respectively.

Table 4.5: The performance of the general model on the test set. Results marked in green are above
the average value for that metric, and those marked in red are below the average.

Participant Accuracy Precision Recall F1 score Specificity
P15 0.941 1.000 0.856 0.922 1.000
P09 0.902 0.814 1.000 0.897 0.829
P13 0.875 0.750 1.000 0.857 0.800
P01 0.857 1.000 0.666 0.800 1.000
P16 0.760 1.000 0.361 0.531 1.000
P20 0.727 0.645 0.606 0.625 0.800
P05 0.694 1.000 0.267 0.431 1.000
P06 0.682 1.000 0.333 0.500 1.000
P10 0.682 0.000 0.000 0.000 1.000
P11 0.664 0.621 0.528 0.571 0.764
P08 0.642 1.000 0.044 0.085 1.000
P07 0.625 0.500 0.333 0.400 0.800
P03 0.625 0.500 0.666 0.571 0.600
P17 0.619 0.000 0.000 0.000 0.887
P12 0.550 0.000 0.000 0.000 0.880
P14 0.500 0.000 0.000 0.000 0.800
P18 0.394 0.000 0.000 0.000 0.630
P02 0.295 0.000 0.000 0.000 0.615
P19 0.294 0.000 0.000 0.000 0.470
P04 0.250 0.000 0.000 0.000 0.400

Average 0.629 0.492 0.333 0.360 0.814

Figure 4.9 shows the confusion matrices of the participants where none of the alcohol
samples were classified correctly by the model. The remainder of the confusion matrices
for the general model can be found in Appendix F.
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(a) P10 (b) P17

(c) P12 (d) P14

(e) P18 (f) P02

(g) P19 (h) P04

Figure 4.9: The confusion matrices of the participants for which the general model did not classify
any alcohol samples correctly.
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5
Discussion

The purpose of this chapter is to discuss the results presented in Chapter 4. The BAC
evolution, the Flanker results and the limitations of the EEG data are discussed, as well
as the epoch length. Then, the individual models are summarised and compared. Last, the
performance of the general model is evaluated.

5.1 BAC Evolution
As Figure 4.1 shows, the average BAC value for all participants decreases from the first to
the second measurement after drink ingestion. This trend is also visible in the averages for
males and females separately. The consecutive BAC measurements show increased aver-
age BAC values for all participants. Consequently, the peak BAC value was not reached at
the second measurement 25 minutes after alcohol ingestion. Even though the shape of the
BAC curve can vary highly during the absorption phase, as seen in Figure 2.4b, a decrease
in the BAC normally indicates that the peak value has been reached and that the absorption
phase is over. Therefore, this dip in value is most likely not due to the unpredictable nature
of the absorption phase.

An explanation for this decrease can be the sudden opening and closing of the pyloric
sphincter described in Section 1.1.2. This opening and closing can cause spikes in the
BAC profile of a participant. It may seem unlikely that this spike occurred for all par-
ticipants at the same time, but Figure 4.1 only shows average BAC values at each point
of time. Table 4.1 shows that there were several participants (P02, P05-P09, P14, P17)
who experienced an increase in BAC at 25 minutes after alcohol ingestion instead of a
decrease. This means the pyloric sphincter may have opened at a later time for these par-
ticipants than for the rest, and the pyloric spasms are still a plausible explanation for the
dip in BAC value. As also mentioned in Section 1.1.2, the spikes in BAC values can be
more apparent when using a breathalyser compared to using other methods for measuring
the BAC. Therefore, the average dip in BAC value should not be emphasised. To avoid
measuring a decrease like this, the BAC could be measured by using another instrument
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than a breathalyser, or it could be measured in intervals of more than 10-12 minutes.

Considering the increasing trend of the BAC curves seen in Figure 4.1, most participants
did not reach the peak BAC value. As described in Section 2.2, the peak is usually reached
30-90 minutes after the end of ingestion. The preferred outcome of the experiment would
be to have the participants reach the BAC peak during the alcoholic recording session. This
is to enable analyses of the behaviour of the participants while under peak BAC influence.
As the two last BAC measurements were at 37 and 42 minutes after alcohol ingestion, the
duration of each session was believed to be long enough to capture the peak. The partici-
pants were told to eat beforehand, and the chosen alcoholic drink was diluted with orange
juice. These are both factors which can prolong the time until the BAC peak is reached. To
increase the chances of the participants reaching the peak BAC, they could have been in-
structed to not eat beforehand, or they could have been served an undiluted alcoholic drink.

As seen in Figure 4.2, the BAC curve of P11 shows a distinct decline at the end compared
to the rest of the participants. This participant seems to have reached the peak BAC value.
Given that the conditions for the drink ingestion and BAC measurements were the same for
all participants, the difference in BAC curves is probably caused by biological differences
affecting the alcohol metabolism. After the end of the experiment, the above-average and
declining BAC values of the participant were mentioned to the participant himself. Upon
learning this, P11 informed the authors that he normally gets quite drunk when he drinks,
but also that he sobers up quite fast. This indicates that P11 does have a high alcohol
metabolism.

Figure 4.3 shows each participant’s average BAC plotted against their corresponding BMI.
There are several areas where some of the participants can be said to be placed linearly.
For instance, the three females with a BMI in the range of 27 to 30 may indicate a linear
correlation between BMI and BAC in that area. On the other hand, the number of samples
in this plot is relatively small and, therefore, no conclusions can be drawn based on the
presented results.

5.2 The Flanker Task
Figure 4.4 presents the changes in average accuracy and RT from the pre-non-alcohol to
the non-alcohol Flanker tasks. Here, the accuracy increases after the non-alcohol drink in-
gestion, and the change is significant. The average RT decreases significantly for the same
Flanker tasks. Since the presented drink was the non-alcohol drink, the expected change
would not be a significant increase in accuracy. As mentioned in Section 3.2.5, the pre-
non-alcohol Flanker task was the first time 19 out of 20 participants performed the Flanker
task during the experiment. When performing a new test, it is normal to be nervous. This
nervousness could cause the participant to answer slower than if they were familiar with
the test, or to answer inaccurately. Since the changes between the two Flanker tasks are
quite significant for both parameters, this nervousness is the most likely explanation for
the observed differences.
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Before the non-alcohol and alcohol Flanker tasks were performed by the participants, they
had already performed the Flanker task once in the pre-experiment recordings. By mak-
ing sure the participants had performed the Flanker task once before the counting Flanker
tasks, the nervous element mentioned above was hopefully reduced as the participants
knew what to expect of the task. This means that the changes in RT and accuracy from the
non-alcohol to the alcohol task should only be caused by the introduction of alcohol.

Both the average accuracy, depicted in Figure 4.5a and the average RT, seen in Figure 4.5b
decrease from the non-alcohol to the alcohol Flanker task. With p-values of p=0.015836
and p=0.000091, respectively, these changes are significant. Both decreases can be ex-
plained by the effect caused by alcohol entering the body. As described in Section 2.2.2,
consuming alcohol causes a person to think and move slower than normal. It can also
lead to impulsive actions and decisions. As the RT decreases after alcohol consumption,
it is probably the impulsiveness caused by alcohol that has affected the participants. This
would also explain the decrease in accuracy. When the participants make more impulsive
decisions, they answer the tasks faster. This may lead to decreased accuracy as the partic-
ipants may not have realised what the correct answer is before pressing a key.

As Figure 4.6 shows, the changes described above are also present for both the congruent
and the incongruent responses. All average accuracies and average RTs decrease from the
non-alcohol to the alcohol Flanker task. Here, all changes are significant except for the
change in congruent average accuracy. The congruent tasks are the tasks where the flanked
letters presented are compatible with the middle letter. Due to this, it is probably easier
for the participants to react correctly to these stimuli than incongruent stimuli. This can
explain why the decrease in average congruent accuracy is not-significant. Since the RT is
longer for the incongruent stimuli than the congruent stimuli, both for the non-alcohol and
alcohol-influenced Flanker tasks, the participants are probably affected by the irrelevant
stimuli.

The Flanker task was chosen as a part of this experiment to test the participants’ ability
to filter the relevant information from the irrelevant. As described in Section 3.1.2, this
can be compared to how a driver needs to be aware of both the road they are driving on
and their surroundings. As the results above show, the consumption of alcohol seems to
affect a person’s ability to make the right decision as fast as needed. While the changes
presented are small, they are still significant. And, as discussed in Section 5.1, these results
are obtained before most participants have reached their peak BAC value, where they are
most affected by the alcohol. Table 4.1 shows that the highest achieved BAC across all
participants was P20’s BAC of 0.630‰. While this is over the legal BAC driving limit of
0.2‰ in Norway, it is well below the limit of 0.8‰ set in a lot of other countries. This
highlights how important it is to include tests such as the Flanker task in alcohol-related
experiments to get an idea of how alcohol affects the selective attention and inhibitory
function of the person consuming it.
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5.3 Limitations of the EEG Data
As mentioned in Section 1.5, the scalp-electrode impedance was not possible to measure
while collecting the data. Consequently, the impedance could be higher than the desired
value for EEG signals, and the quality of the data could be lower than preferred. This
could have led to the data being more challenging to classify than it could have been with
a lower impedance.

During the collection of the data, construction work was performed outside the data col-
lection room. At times, the construction noise was quite noticeable inside the room. A few
participants completed their sessions without the presence of the construction noise, but
most did experience it at some point during the experiment. This noise is, therefore, most
likely affecting the collected EEG signals. Consequently, the noise interference could have
affected the classification results negatively.

5.4 Epoch Length
As seen in Table 4.2 and Figure 4.7, the random individual model performs best for the
epoch length of 5 seconds, which is the shortest length. A shorter epoch length results in
more data points, and increasing the number of data points can, in general, lead to better
CNN performance. Thus, the model performance increasing when using the shortest epoch
length is as expected.

5.5 Comparison of the Individual Models
The random individual model performs better than the individual model across sessions.
The two models have an average accuracy of 100% (Table 4.3) and 90.7% (Table 4.4),
respectively. A reason for the worse performance of the latter model can be differences in
the EEG signals across the recordings. These differences could have occurred due to the
cap not being placed at the same spots on the two recording days. Even for the sessions
recorded on the same day, the impedance between the electrodes and the scalp could have
varied between the recordings, or the electrodes could have moved positions slightly.

An explanation for the exceptionally good performance of the random individual model
could be that it has epochs from the same 5-minute recordings in both the training and
the testing set. Thus, the model could have learned the differences between the record-
ings during the training. Even though the individual data samples from the same 5-minute
recordings are not completely identical, they may cause some form of data leakage when
divided into both the training and test sets. This is because the samples from the 5-minute
recordings may have similar traits, and this could be the reason why the model achieved a
perfect score.

The individual model across sessions, on the other hand, is evaluated on a test set with full
5-minute recordings. These recordings are not seen in any part of the training data. This
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means it could be more difficult to classify the test data if there are any differences present,
such as varying electrode placements and electrode-scalp impedances.

Although the random individual model is performing better, the individual model across
sessions provides a more realistic implementation of an alcohol detector. If an alcohol
detector were to be calibrated for individuals before use, the EEG signals used to detect
alcohol might differ slightly from the signals used to calibrate the device. This is compa-
rable to how the data is split in the individual model across sessions. Therefore, this model
is viewed as the best of these models. This is despite it performing slightly worse than the
other model, but the realistic use of data outweighs the better performance.

The confusion matrices in Figure 4.8 show the results from the individual model across
sessions for the participants who did not achieve an accuracy of 100%. As seen, the model
classifies almost all non-alcohol samples correctly. This means the lower accuracies for
these participants are caused mostly by alcohol samples being misclassified. The majority
of these samples are false negative classifications. From a real-world perspective, this is
the worst kind of error for an alcohol detector since this means alcohol-affected drivers
would have been classified as non-affected. While the model’s average accuracy of 90.7%
is quite good, the number of false positives affects the average precision, recall and F1
score negatively. Therefore, it is important to also use these metrics as an indicator of
whether the model can be applied in the real world or not.

5.6 Classification Results of the General Model
As presented in Table 4.5, the average accuracy of the general model is 62.9%, but there
are large differences in each participant’s performance. The accuracies are in the range of
25.0% to 94.1%. These results are as expected since there might be differences in the EEG
signals across participants, as described in Section 2.1.2. These differences indicate that
training on a set of participants and testing on an unseen participant is challenging. This
could be the reason for the lower performance of this model compared to the individual
models, where the lowest accuracy obtained was 50.8%.

The general model is struggling to correctly classify alcohol samples, as indicated by the
low precision and recall values and the low F1 score presented in Table 4.5. For eight of
the participants, the model was not able to correctly classify any alcohol samples, as seen
in the confusion matrices in Figure 4.9. For four of these participants (P02, P10, P17, P19),
the BAC values were all noteworthy lower than the average values presented in Table 4.1
and Figure 4.1. Low BAC values could result in less clear alcohol features as the brain is
less affected by alcohol. This can make the classification of alcohol-affected signals more
difficult.

Another possible explanation for the low results across participants is differences in head
shapes. The head shape affects how good the connections between the electrodes and the
scalp are. During the data collection, two caps were used. One was a size medium, and
one was a size large. The medium cap was a bit large for some of the female participants,
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leading to little contact between the electrodes and scalp, especially at the back of the
head. This may have been part of the reason for the poor classification accuracies of P02
and P04, as these participants were both females with smaller heads than the other partic-
ipants.

The results obtained in this thesis are not higher than the 95% classification accuracy
achieved by [21], which investigated the detection of alcohol-influenced EEG signals. A
reason for this might be the limitations in the data set described in Section 5.3. However,
with no information about either the demographics of the data set or the channels used in
[21], it is difficult to perform a direct comparison between the results of that study and the
results presented in this thesis.

As Table 4.5 shows, P09 and P15 achieved accuracies above 90%, and P01 and P13
achieved accuracies of 85.7% and 87.5%, respectively. The precision, recall and F1 scores
of all these participants are also quite high. As discussed above, these metrics should also
be taken into consideration when judging the performance of an alcohol detector. Based
on these results, these four participants provide the belief that an EEG-based alcohol de-
tector could eventually become a helpful tool in the prevention of drunk driving. However,
the performance, in general, must be significantly improved to use this approach as an
alternative to a breathalyser.
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Conclusion and Future Work

In this chapter, the work of the thesis is concluded in light of the objectives presented in
Section 1.2 and the previously presented discussion. In the end, the suggestions for future
work are presented.

6.1 Conclusion

Section 1.2 presented the three objectives of this thesis. Objective O1 was to design an
experiment that provides input data for the alcohol detector. First, related works were re-
viewed, and key protocol parameters were discussed and decided. Then, the experiment
was designed, resulting in a data set. The experiment is summarised in Figure 3.2.

Objective O1.1 has been met by analysing the BAC data presented in Section 4.2 and the
behavioural data presented in Section 4.3. As discussed in Section 5.1, the BAC peak
value was probably not reached for most of the participants, apart from P11. Section 5.2
discusses how the participants performed on the non-alcohol Flanker task compared to the
alcohol Flanker task. All average accuracies and RTs decreased, and all changes were
found to be significant, except for the decrease in average congruent accuracy. The results
of the Flanker task show that even small amounts of alcohol can affect the performance of
the participants in terms of selective attention and inhibitory function.

The last objective, O2, was to evaluate the classification of alcohol and non-alcohol EEG
signals by using deep learning techniques. As discussed in Section 5.5, the individual
model across sessions was able to identify which data were affected by alcohol and which
data were not affected, resulting in an average accuracy of 90.7%. For the general model,
discussed in Section 5.6, the average accuracy was 62.9%, meaning it was not able to dif-
ferentiate the signals as well as the individual model. Both accuracies are still higher than
the one achieved by guessing, which is 50%.
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To conclude, it is possible to differentiate alcohol-affected EEG signals from those that are
not affected. The Flanker results indicated that the participants were affected by the alco-
hol, which again implies that the EEG signals should be affected as well. These results are
supported by the performance of the classifiers, especially the individual ones. The high
accuracies indicate that EEGNet can extract features which characterise alcohol-affected
signals. The performance of the general model is not as good, and it struggles to correctly
classify alcohol-affected signals. There could be numerous reasons for this, and improving
the performance should be explored further. Still, the models presented in this thesis could
be the first step towards creating an EEG-based alcohol detector utilised in a BCI system.

6.2 Future Work
In this thesis, the foundation for a binary alcohol detector has been presented. Although
some results are promising, further work is encouraged to make the system feasible and to
develop a prototype for real-life application.

Performing channel optimisation could improve the performance of the classifier by re-
moving noisy or redundant channels. The channels used to obtain the results in this thesis
are optimal for alcoholism detection. Therefore, finding channels optimal for alcohol de-
tection could result in better performance. This can, for instance, be done by using Deep
Learning Important Features (DeepLIFT) [61], which can identify the contribution of each
channel to the output of the classifier. It can also be done by using optimisation algorithms
comparable to the one described in [52].

Another way to improve the performance of the model is by using high-density EEG. The
channels used in the experiment are placed across the entire surface of the participant’s
head. Since there are only 16 channels, there are large distances between several of the
channels. This can potentially result in relevant information loss. By increasing the num-
ber of electrode placements, more EEG information can be recorded. This means more
data can be used as input in the model, which could help better the model performance.

Since the accuracy of the individual model increased as the epoch length decreased would
it be of interest to explore the performance of the classifier on even shorter epoch lengths.
This may result in improved accuracy. Removing power line interference and other arti-
facts can also improve the performance, as it could improve the signal-to-noise ratio. This
can make it easier for the classifier to identify neural activity caused by alcohol intoxica-
tion.

Expanding the classifier from a binary classifier to a multi-class classifier is of great in-
terest as it would provide an estimate of how intoxicated a person is. This could take the
alcohol detector a step closer to real-world use, where it can identify if a person is above
the legal BAC limit in their country.

No quantitative feature analysis has been performed in the project since no known features
have been extracted from the data. Such features can be found by utilising feature-based
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machine learning techniques. When the relevant features have been identified, qualitative
analysis such as using topographic maps can be performed to analyse which features are
the strongest in which frequency bands.

In addition to the adjustments suggested above, the performance of the alcohol detector
can be improved by improving the protocol. This can, for instance, be done by extending
the experiment duration to include the peak BAC. This extension would be in agreement
with the duration of the experiments described in Section 3.1.1 and in [22]. Another way
to improve the protocol could be to add a third recording session, in which the participants
are not served any drink, to establish a baseline. A third way to improve the protocol could
be to introduce a habituation Flanker task for all participants, in all sessions. This would
further ensure the removal of the element of nervousness, which increases the chance of
the Flanker task results being unaffected by this.

To summarise, the proposed future work for the alcohol detector project is the following:

FW1 Perform channel optimisation to improve classifier performance

FW2 Use high-density EEG to increase the amount of recorded information

FW3 Explore the epoch length further and improve the data set

FW4 Expand the classifier from binary to multi-class

FW5 Perform feature analysis by utilising machine learning, and perform qualitative and
quantitative analysis on the extracted features

FW6 Improve the protocol by extending experiment length, introducing a baseline session
without a drink, or by adding one more Flanker task in each session as a habituation
task
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Appendices

A Participant Selection Questionnaire

Questionnaire for Participants of the Alcohol
Detector Project

Name:

Age:

Weight in kg:

Height in cm:

Average of weekly units of alcohol consumed:

Approximate head circumference in cm:

Screening Questions
Please answer the questions below by marking the box that is correct for you. A first-
degree relative is someone who shares 50% of your genes, and a second-degree relative is
someone who shares 25% of your genes.

Alcohol use disorder (AUD) is a medical condition characterised by an impaired abil-
ity to stop or control alcohol use despite adverse social, occupational, or health conse-
quences. If you want to read more about AUD please click the following link: https:
//www.niaaa.nih.gov/publications/brochures-and-fact-sheets/
understanding-alcohol-use-disorder.

Do you have a history of alcohol use disorder in your first or second-degree relatives?

Yes
No

Do you have a history of drug abuse in your first or second-degree relatives?

Yes
No

Do you have major medical problems that affect the nervous system?

Yes
No

Do you have a history of alcohol use disorder?

Yes
No
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Do you have a history of drug abuse?

Yes
No

Do you have a history of psychiatric problems?

Yes
No

Are you an abstainer from ethanol use?

Yes
No

Are you allergic to alcohol?

Yes
No

Do you have sensitive skin? This gel will come in contact with your scalp.

Yes
No

Do you have a citrus allergy?

Yes
No

Edinburgh Handedness Inventory
The purpose of the Edinburgh Handedness Inventory is to objectively ascertain the handed-
ness of a participant. It is the most commonly used screening tool for handedness. Below
are 20 activities. Please specify the side you prefer to perform the given activity.

If you prefer either the left or the right side for the given activities, then mark one box
on the column of that side. If the preference for a particular side is so strong that you
would not use the other hand unless forced, then mark both the boxes on that side. If there
is no preference for any side, then mark one box on both sides of the activity.

For items that involve a bimanual task such as striking a match, the hand involved in
the usage of the key item (i.e. the match) is considered the preferred side. If you have no
experience with a given task, leave that item unmarked.

Writing

Drawing

Throwing

Scissors

Comb
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Toothbrush

Knife (without fork)

Spoon

Hammer

Screwdriver

Tennis racket

Knife with fork

Cricket bat

Golf club

Broom

Rake

Striking a match

Opening a box (lid)

Dealing cards

Threading a needle
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B Consent Form
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C Information Letter

Information letter for Alcohol detector participation
Thank you for agreeing to participate in the Alcohol Detector Project.

Before your participation, you must do the following:

• Do not drink alcohol the night before or the same day as the session.

• Do not ingest any caffeine before your session

• Remember to eat before your session

Not following these guidelines will affect the results.

You do not need to show up with newly washed hair. We recommend that you bring a
water bottle as you will be allowed to drink some water after the drink ingestion if you
want to. Since each session lasts approximately 1 hour, we recommend visiting the toilet
beforehand.

Thank you for your participation!
Molly & Iselin
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D Length of the Recorded EEG Data

Table D.1: An overview of how much EEG data was recorded in each run for all participants. The
planned amount of recorded data for each run was 5 minutes. n1-n5 are the non-alcohol-affected

recordings. a1-a3 are the alcohol-affected recordings.

Participant n1 n2 n3 n4 n5 a1 a2 a3
P01 5 min 5 min 5 min 5 min * 5 min 5 min 5 min
P02 5 min * 5 min 5 min 5 min 5 min 5 min 5 min
P03 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P04 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P05 5 min 5 min 72 sec 5 min 5 min 5 min 5 min 5 min
P06 5 min 80 sec 34 sec 5 min 5 min 5 min 5 min 5 min
P07 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P08 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P09 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P10 5 min 5 min 5 min 5 min 5 min 5 min 114 sec 5 min
P11 5 min 40 sec 5 min 5 min 5 min 5 min 5 min 5 min
P12 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P13 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P14 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P15 5 min 5 min 5 min 100 sec 5 min 5 min 5 min 5 min
P16 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P17 5 min 5 min 5 min 5 min 5 min 60 sec 5 min 5 min
P18 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P19 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min
P20 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min

* No measurement due to technical issue with the EEG equipment
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E Additional Flanker Results

Flanker Figures with Pre-Experiment Results

(a) Average accuracy before and after ingestion of the
alcoholic drink. Significance:

n.s. p=0.2112.

(b) Average response time before and after ingestion
of the alcoholic drink. Significance:

n.s. p=0.1077.

Figure E.1: Comparison of average Flanker task values before and
after ingestion of the alcoholic drink.

(a) Average accuracy before ingestion of the
non-alcoholic drink and before the alcoholic drink.

Significance:
* p=0.066 < 0.05.

(b) Average response time before ingestion of the
non-alcoholic drink and before the alcoholic drink.

Significance:
**** p=1.65·10−22 < 0.00005.

Figure E.2: Comparison of average Flanker task values before
ingestion of the non-alcoholic drink and before the alcoholic drink.
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(a) Average Flanker task accuracy with SD for all
participants.

(b) Average Flanker task RTs with SD for all
participants.

Figure E.3: Additional group level Flanker results with the
pre-experiment Flanker tasks added. The pre-experiment values are

derived from the pre-alcoholic and the pre-non-alcoholic Flanker
tasks.
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Individual Flanker Results

Table E.1: Average individual accuracies with SD from the non-alcoholic and alcoholic Flanker
tasks.

Accuracy (σ)
Non-alcohol Alcohol

P01 0.990 (0.102) 1.000 (0.000)
P02 0.990 (0.102) 1.000 (0.000)
P03 0.990 (0.102) 0.979 (0.143)
P04 0.990 (0.102) 0.979 (0.143)
P05 0.990 (0.102) 0.979 (0.143)
P06 0.990 (0.102) 1.000 (0.000)
P07 0.969 (0.174) 0.979 (0.143)
P08 0.979 (0.143) 0.945 (0.222)
P09 0.990 (0.102) 0.979 (0.143)
P10 0.945 (0.222) 0.927 (0.260)
P11 1.000 (0.000) 0.969 (0.174)
P12 0.967 (0.174) 0.956 (0.200)
P13 0.990 (0.102) 1.000 (0.000)
P14 0.990 (0.102) 0.948 (0.222)
P15 0.990 (0.102) 0.990 (0.102)
P16 0.990 (0.102) 0.969 (0.174)
P17 1.000 (0.000) 0.968 (0.174)
P18 1.000 (0.000) 0.979 (0.143)
P19 0.990 (0.102) 1.000 (0.000)
P20 1.000 (0.000) 0.979 (0.143)
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Table E.2: Average individual RTs with SD from the non-alcoholic and alcoholic Flanker tasks.

RT [ms] (σ)
Non-alcohol Alcohol

P01 559 (96) 614 (111)
P02 882 (317) 735 (229)
P03 623 (131) 596 (78)
P04 594 (132) 655 (169)
P05 722 (204) 819 (268)
P06 780 (142) 682 (102)
P07 632 (117) 685 (149)
P08 559 (87) 526 (82)
P09 688 (157) 627 (89)
P10 874 (254) 863 (193)
P11 655 (159) 660 (159)
P12 800 (197) 691 (163)
P13 796 (190) 742 (171)
P14 820 (280) 848 (230)
P15 585 (105) 609 (150)
P16 666 (139) 585 (82)
P17 638 (105) 563 (88)
P18 587 (111) 544 (72)
P19 521 (83) 504 (67)
P20 516 (72) 461 (72)
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F Confusion Matrices for the General Model

(a) P15 (b) P9

(c) P13 (d) P1

(e) P16 (f) P20

Figure F.1: Confusion matrices from the general model, for the best-performing participants based
on accuracy.
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(a) P5 (b) P6

(c) P11 (d) P8

(e) P7 (f) P3

Figure F.2: Confusion matrices from the general model for participants with an accuracy close to
the model’s average accuracy.
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