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Abstract
In this thesis, a high-order sharp interface immersed boundary method for solving the

heat conduction equation is presented. The approach is based on a second-order finite

difference scheme with the immersed boundaries resolved through a sharp interface ghost

point method. In this approach, the ghost point values are determined by a Weighted

Least Squares technique in which the boundary condition is imposed at the immersed

boundary with a high-order approximating polynomial. The main contribution of this

thesis is the development of a method for achieving higher-order solutions through the

use of Richardson extrapolation with a grid-doubling approach, thus avoiding the use

of large ghost point stencils. The methods are verified for steady-state heat conduction

problems with Dirichlet and Neumann boundary conditions. Furthermore, the verification

is extended to time-dependent heat conduction cases by simulation of heat conduction in a

cross-section of an infinite cylinder with constant surface temperature. The implementation

of the method is shown to accurately resolve the boundary conditions and shows potential

for application in areas of practical interest within the domain of engineering and biofluid

dynamics. The future potential of the method and possible improvements are discussed.
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Sammendrag
I denne masteroppgaven presenteres en høyordens skarp grenses "immersed boundary"

metode utviklet for varmeligningen. Metoden er basert på en andre ordens "finite difference"

løser hvor geometriene er representert ved hjelp av en spøkelsespunkt metode. I denne

prosedyren bestemmes spøkelsespunktene ved hjelp av en minste kvadraters metode

der randbetingelsen på geometrien blir tilnærmet med et høyordens polynom. Den

viktigste bidraget i denne oppgaven er utviklingen av en metode for å oppnå høyordens

løsninger ved bruk av Richardson-ekstrapolasjon, som dermed unngår bruk av store

spøkelsespunkt stensiler. Metodene blir verifisert for stasjonære varmeledningsproblemer

med Dirichlet- og Neumann-randbetingelser. Videre utvides verifiseringen til tidsavhengige

varmeledningstilfeller ved å simulere varmeledning i et tverrsnitt av en uendelig sylinder

med konstant overflatetemperatur. Implementeringen av metoden viser stor grad av

nøyaktighet for randbetingelsene og viser potensiale for anvendelse innenfor relevante

områder for ingeniørfag og biofluid-dynamikk. Fremtidig potensiale for metoden blir

diskutert, og mulige forbedringer er drøftet.
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... Chapter 1

Introduction

1.1 Motivation and Background

Computational Fluid Dynamics (CFD) has emerged as a powerful and transformative

tool for analyzing fluid flow phenomena and in many fields it has revolutionized the way

engineers and scientists study fluid flows. Today, CFD has found extensive applications in

various domains, ranging from biomedical research, mechanical engineering, and aerospace

to weather and climate modeling. Within the realm of CFD, special attention has

been given to flows exhibiting Fluid-Structure Interaction (FSI) phenomena due to their

significance in numerous biological and engineering systems. These systems often involve

intricate dynamic interactions between fluid flow and moving or deforming boundaries,

resulting in complex physical phenomena. Accurate understanding and modeling of FSI

is crucial for a wide range of applications, including flexible pipes, turbines, aeroelastic

phenomena, and biofluid dynamics.

In biofluid dynamics, one such area of research is the study of respiratory disorders in

the human upper airways such as Obstructive Sleep Apnea Syndrome (OSAS). OSAS

is a common sleep disorder characterized by repeating partial or complete obstruction

of the upper airway during sleep. These episodes known as apneas occur when muscles

supporting the soft tissue relax to a degree in which the tongue and soft palate collapse

the airway, and are closely related to the flow conditions in the airways [1].

For this reason, understanding the airflow of the respiratory system will be critical in

assisting medical professionals to improve and perform effective surgery for patients. For
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its importance to public health, OSA is being investigated in an interdisciplinary research

project entitled "Virtual Surgery in the Upper Airways - New Solutions to Obstructive

Sleep Apnea Treatment" (VirtuOSA) funded by the Research Council of Norway. As part

of the project, research has been conducted on modeling physiological effects in the upper

airways during respiration using, in part, using Immersed Boundary Method (IBM) for

the moving boundaries resulting from the FSI phenomena occurring in the airway. [2]

Conventional approaches used in CFD for FSI problems typically rely on body-conforming

meshes in order to accurately resolve the fluid-structure boundary. However, as the

solid boundaries undergo motion or deformation, the need to regenerate or update the

body-conforming mesh arises. This process is quite computationally expensive, and when

dealing with highly dynamic boundaries or when employing higher-order methods it

becomes increasingly challenging to ensure the well-posedness of these algorithms [3].

These limitations have inspired a growing interest in non-body conforming approaches

like the immersed boundary method, which eliminates the need for mesh regeneration and

may significantly reduce the associated costs related to updating the boundary geometry.

Nevertheless, this alternative method introduces its own set of challenges that require

careful consideration and resolution.

This thesis builds on concepts and methods explored in the author’s project work [2], and

the following contents of this chapter are revised versions of said project work with a

number of alterations adjusted for the new direction of this thesis.
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1.2 Literature Review

The term Immersed Boundary Method (IBM) is originally a reference to the method

used by Peskin which he presented in the paper “Flow patterns around heart valves: A

numerical method”, where it was used to model elastic tissue fluid-structure interactions

of mitral valves in the human heart. Since then a range of derivative modifications and

approaches have been developed. Building upon this concept, Goldstein et al. [4] developed

a method for rigid bodies using feedback forcing. A general overview of immersed boundary

methods is presented in [3], where the immersed boundary term is extended to also include

methods developed under the term "Cartesian grid methods", and methods with similar

capabilities for viscous flows with immersed boundaries on grids that do not conform to

the boundary shapes. In this thesis, the same extended definition will be used but in

relation to problems not confined to fluid flows.

According to Mittal and Iaccarino [3] and Khalili et al. [5], the immersed boundary

method can be broadly classified into two main categories based on the procedure by

which the boundary condition is imposed. Namely continuous forcing and sharp interface

(discrete forcing) approaches. Methods such as that of Peskin [6] and Goldstein et al. [4],

whereby the boundary condition is imposed by modification of the modeling equations

with a forcing term and applied to the whole domain, fall into the first category. The

main advantage of the continuous forcing methods is that they are independent of spatial

discretization. However, some drawbacks are their instabilities for high Reynolds number

flows with rigid boundaries due to the inherent stiffness imposed on the forcing terms,

particularly for unsteady flow [7][4]. Additionally, the force distribution function can

introduce significant smearing over the nodes surrounding the boundary leading to reduced

accuracy [3].

To avoid the issue of modeling the forcing term, Mohd-Yusof [7] developed a method that

extracts the forcing from the numerical solution. In this approach, the forcing term is

computed at each iteration by enforcing the tangential velocity at the boundaries using

the velocity difference of the external points to their mirrored velocities internally. The

advantages of this method are that of removing the instabilities and strict time-step

limitations of the method developed by Goldstein et al. [4], and the absence of user-

specified parameters in the forcing terms. However, the forcing distribution still extends
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into the fluid domain which can significantly degrade the accuracy near the boundaries

[3].

A sharp-interface method, based on the ghost point Finite Difference Method (FDM)

approach, which imposes the Boundary Condition (BC) by reconstruction at the ghost

points, was developed by Tseng and Ferziger [8]. Where ghost points are defined as

points on the Cartesian grid located within a boundary with their neighbors in the fluid

domain. In this method, the issue of the force distribution function smearing is mitigated.

Furthermore, the method has been shown to have large potential for highly complex

bodies with moving boundaries and high Reynolds number flows, in which the need to

accurately resolve boundary layers puts greater emphasis on local accuracy.

Many variations exist, and a range of reconstruction possibilities of varying accuracy

is presented in [9]. These methods have been employed by Tseng and Ferziger [8] and

were also used by Ghias et al. [10] for a range of subsonic compressible flows. In [11],

these principles are built upon for a fast and efficient solver for flows with complex

three-dimensional moving boundaries. Using similar concepts, a high-order method for

low Mach number compressible flows with acoustic wave propagation is presented in [5].

Capturing acoustic wave effects may be of particular interest for the simulation of the

upper airways and OSAS, where acoustics could have an important role in the dynamics.

In [12][13][1] higher-order reconstruction schemes are employed on the boundaries using a

Weighted Least Squares (WLSQ) method. Higher-order reconstruction approaches for the

ghost point method often require large stencils into the fluid domain, which might lead to

exacerbating the issues of the interpolation stencil intersecting nearby boundaries [12].

With the WLSQ method as implemented in [12][13] this problem is somewhat mitigated, as

it can inherently adjust to capture fluid points elsewhere for the ghost point reconstruction.

Though this may still have a negative effect on the accuracy of the solution. Additionally,

for thin geometries, the higher-order ghost point stencils into the solid domain may not

be possible with conventional methods.

The use of Richardson extrapolation to achieve an improved, higher-order solution for the

immersed boundary method has not been extensively emphasized in previous research

on immersed boundary methods. The Richardson extrapolation is a method in which

originally second-order centered difference solutions of Partial Differential Equations



1.3 Objective 5

(PDE) are combined to obtain a higher-order estimation of the exact solution. In the

paper "The approximate arithmetical solution by finite differences of physical problems

involving differential equations, with an application to the stresses in a masonry dam" [14],

Richardson applied the method to achieve fourth-order accuracy for the Laplace equation.

The method has been demonstrated also for higher-order approximation such as sixth-

order using three grid solutions, though the focus here will be on the fourth-order

approximation with grid doubling. In the original method by Richardson [14] the second-

order central differences are used exclusively, and as further emphasized in [15] this is in

fact a requirement of the method for achieving fourth-order accuracy. In [14], Richardson

noted that it was conceivable that the extrapolation would be extended to a continuous

solution for the whole domain. Later, in [16] a method is presented for which the correction

terms are interpolated and fourth-order accuracy is also achieved on the fine grid solution.

The main motivation for the use of Richardson extrapolation on the sharp interface ghost

point IBM is the potential to limit the geometric restrictions of higher-order ghost point

interpolation stencils into the solid domain.

1.3 Objective

The objective of this thesis is to implement and verify a sharp interface ghost-point

immersed boundary method for the two-dimensional heat conduction equation for both

steady and unsteady problems of heat flow. Following this an "Improved IBM" approach

for increasing the accuracy of the WLSQ IBM based on Richardson extrapolation will

be investigated. While the verification is limited only to heat conduction, a suggested

implementation for the Navier-Stokes equations, relevant to biofluid dynamics and the

work of VirtuOSA, will be presented.

A real-time application for running simulations featuring a Graphical User Interface (GUI)

is developed, intended to provide an example featuring tools to debug and investigate

the behavior of the implementation. The application is written in C++ using common

open-source libraries for data logging, math, and graphics which are further specified in

appendix C. The application also includes post-processing scripts and material used for

various parts of this thesis.

The contents herein are written in the context of its application to fluid mechanics. As
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such, the terminology that will be used throughout is centered around fluid flows, even

though many concepts detailed in this report have broader applications in science and

engineering.
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1.4 Outline

The report is organized as follows: In section 2 the governing equation of heat conduction

is formulated. Section 3 presents the numerical method for the discretization of the heat

equation and a detailed formulation of the immersed boundary methods and Improved

IBM. This section also includes a short description of how the IBM could be applied to

the Navier-Stokes Equation and definitions for measuring the discretization errors. The

benchmark problems are used for verification and development and are presented in section

4. In section 5 the performance and complexity of the methods and implementations are

discussed. Results of the WLSQ IBM and Improved IBM are presented and discussed

in section 6. Conclusions are given in chapter 7. Finally, section 8 discusses the future

outlook for the methods detailed herein.
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... Chapter 2

Governing Equations
In this study, the two-dimensional heat conduction equation will be considered. The

following chapter is a revised version of that given in [2]. The two-dimensional heat

conduction equation is a fundamental Partial Differential Equation (PDE) for heat and

fluid flow which models many physical processes [17] and is a convenient starting point

for the study on improvements to finite difference IBM methods.

2.1 Heat Conduction Equation

The heat conduction equation can be formulated as

∂T

∂t
= α∇2T , (2.1)

where T is temperature, α thermal diffusivity of the medium defined as

α = k

ρcp

, (2.2)

where k is the thermal conductivity, ρ is density and cp is specific heat at constant pressure.

For the two-dimensional isotropic and homogenous case in Cartesian coordinates, eq. (2.1)

can be written as
∂T

∂t
= α

(
∂2T

∂x2 + ∂2T

∂y2

)
. (2.3)

The heat conduction equation requires both initial conditions for the domain and boundary
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conditions to be provided. The boundaries are typically either of the Dirichlet or Neumann

boundary condition types. Other options such as Robin boundary conditions are not

considered in this study. For the Dirichlet condition, the temperature T is directly

described at the boundary, while for the Neumann condition, the normal temperature

gradient ∂T
∂n

is given at the boundary.
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... Chapter 3

Discretization
This chapter presents the formulations by which the governing equations and immersed

boundaries are discretized. For spatial discretization, the ghost-point Finite Difference

Method (FDM) will be used. Other common approaches in CFD include the Finite

Volume Method (FVM) and Finite Element Method (FEM). The contents of this chapter,

and in particular sections 3.1, 3.2.2, 3.3 are revised versions of the author’s previous work

[2], with modifications and new material added.

3.1 Forward Time Centered Space

The solution domain is discretized by finite differences using the forward Euler method

in time and central differences in space, also known as Forward Time Centered Space

(FTCS) discretization as introduced by Roache [18].

From the heat conduction equation (2.3) the discretized form by FTCS is

T n+1
i,j = Ti,j + rx

(
T n

i+1,j − 2T n
i,j + T n

i−1,j

)
+ ry

(
T n

i,j+1 − 2T n
i,j + T n

i,j−1

)
, (3.1)

where n is the time level and T n
i,j is the FDM approximation of the exact solution

T (xi, yj, tn), where xi = i∆x, yj = j∆y, tn = n∆t. ∆x and ∆y are the constant grid

spacings, and ∆t the time step size. The von Neumann numbers are defined by
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rx = α∆t

∆x2 , ry = α∆t

∆y2 . (3.2)

The heat conduction equation discretized by the FTCS scheme has the following stability

criterion:

rx + ry ≤ 1
2 . (3.3)

3.2 Immersed Boundary Method

3.2.1 Weighted Least Squares Method

In this section, a sharp-interface ghost-point IBM method utilizing a WLSQ approach

for ghost-point approximation will be presented. The fundamental idea of this approach,

as presented in [3][13], is to impose the boundary conditions of the IB on the fluid by a

layer of ghost points similar. As such, no modifications to the discretization scheme is

required. For a second-order scheme, one layer of ghost points is needed when separating

the fluid and solid domains across the IB. The ghost points for this approach are defined

as grid nodes within the solid domain with at least one neighbor in the fluid [3]. Following

[12][13], the boundary condition is then imposed on the ghost point values by high-order

polynomial interpolation with weighted least square error minimization. The procedure of

immersing boundaries and separation of fluid and solid domains is shown in figure 3.1,

along with normal vector, Boundary Intercept (BI), and WLSQ stencil. Note that the

WLSQ stencil is centered at the nearest fluid node to the BI.
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Figure 3.1: Schematic of the immersed boundary flagging process including an illustration
of ghost point normal vector, BI and WLSQ stencil for a ghost point adjacent to the
boundary. Solid (inactive) points are shown in red, with ghost points in green and fluid
points shown in blue.

For a generic variable, ϕ, approximated in the region around the body intercept with

relative coordinates x
′ = x − xBI , y

′ = y − yBI the method follows:

ϕ(x′
, y

′) ≈
r∑

i=0

r∑
j=0

Ci,jx
′iy

′j , i + j ≤ r . (3.4)

where Ci,j are the coefficients and r is the polynomial order. As shown in [12], equation

(3.4) is the Taylor series expansion of ϕ across the boundary intercept location.

From the WLSQ formulation, [12][13] show the coefficients can be determined by

minimizing the weighted error for q data points in the following manner

min
c

q∑
n=1

[wn (VnC − ϕn)]2 , (3.5)

where n is the nth data point and wn is the corresponding weight. Vn is the nth row of
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the Vandermonde matrix V on the form V = {V T
1 , V T

2 , ..., V T
q }T with

Vn =
{
1, x1y0, x0y1, ..., xr−1y0, x0yr−1, ..., xr−2yr−1, xr−1yr−2, xry0, x0yr

}
. (3.6)

And C is the coefficient vector defined by eq. (3.4) on the following form

C =
{
C0,0, C1,0, C0,1, ..., Cr−1,0, C0,r−1, ..., Cr−2,r−1, Cr−1,r−2, Cr,0, C0,r

}
, (3.7)

such that the vector product VnC in eq. (3.5) is the approximate solution of ϕ from eq.

(3.4) for data point n [13].

In previous papers, the choice of weight function varies. In [12] the weights are given by a

cosine weight function, while in [19] inverse distance weighting is used. In this thesis, a

variation of the exponential weighting function given in [13] is employed, given by the

following definitions

wn = e
− d2

n
ad , ad = kd

q∑
n=1

(
x

′

n
2 + y

′

n
2
)

. (3.8)

Where dn =
√

x′
n

2 + y′
n

2 is the distance from the nth data point to the boundary intercept

and ad defines a measure of the area covered by the data points q of the numerical stencil.

Adjustment of the weight function distribution is achieved by changing the value of kd.

The number of polynomial coefficients, p, to determine is a function of the polynomial

order r, and is listed in table 3.1 for the two-dimensional case with r = 1, . . . , 4. In

order to determine the coefficients, a suitable number of data points around the body

intercept are needed. This region of points should be chosen such that ideally all values

are strongly correlated with the ghost point. Additionally, in order to avoid the WLSQ

problem becoming ill-posed the number of points within the region must be greater than

the number of coefficients, such that q > p(r).

Equation (3.4) is solved not only for the fluid data points but also for the boundary

intercept and corresponding ghost point. The data is structured such that the first entry

is given by the ghost point and with subsequently q − 1 data points in the surrounding
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fluid domain following.

Table 3.1: Number of coefficients p(r) for polynomial order r in 2D.

r p(r)
1 3
2 6
3 10
4 15

Some examples of circular (or spherical in 3D) search regions and their construction

algorithms can be found in [13][12][19]. However, in this thesis, a square region is used

for simplicity. The reasoning for this is tied to the assumption that for a large stencil,

the weight function will essentially redefine the stencil back into a circular shape. This

requires oversizing the stencil, which is not good for performance, but assuming that

this holds true it saves some implementation complexity from the implementation. With

the shape defined, the size of the region must be determined in such a way that the M

matrix, is well-conditioned. In previous studies, several algorithms for this procedure have

been presented. In [12], the size of the search region is adaptively chosen such as to get

a well-conditioned matrix. In [13][19] similar methods are used with rank-based stencil

selection to determine which points are added. In this work, the number of points to

be used for the minimization problem is given as a predetermined value. From there, a

subgrid centered around the fluid node closest to the boundary intercept is iteratively

expanded until the required fluid points are captured.

The exact solution to the WLSQ problem of eq. (3.5) for the vector of coefficients C is

given by

C = (WV )+ Wϕ (3.9)

where ϕ is the vector of data point values ϕ =
{
ϕ0, ϕ1, ..., ϕq,

}
and superscript ’+’ denotes

the pseudo-inverse of a matrix [12]. W is the diagonal weight matrix and V is the

Vandermonde matrix. For r = 1, V reads
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V =



1 x|1 y|1 xy|1
1 x|2 y|2 xy|2
... ... ... ...

1 x|q y|q xy|q


. (3.10)

With W being q × q and V being q × p matrices. Singular Value Decomposition (SVD) is

used to calculate the (WV )+ pseudo-inverse in eq. (3.9). Further, by defining and storing

a weight matrix

M = (WV )+W (3.11)

with dimensions p × q such that C = Mϕ, it is now readily seen that the coefficients Ci,j

are a linear combination of ϕn which can be written in the form

C0,0 =
q∑

n=1
M(1, n) · ϕ(x′

n, y
′

n)

C1,0 =
q∑

n=1
M(2, n) · ϕ(x′

n, y
′

n)

C0,1 =
q∑

n=1
M(3, n) · ϕ(x′

n, y
′

n)

...

(3.12)

From eq. (3.4), knowing that the coefficients are those of the Taylor series expansion at

the boundary intercept, the values and derivatives at the boundary intercept are given by

C0,0 = ϕ(xBI , yBI) C1,0 = ∂ϕ

∂x
(xBI , yBI) C0,1 = ∂ϕ

∂y
(xBI , yBI) (3.13)

Therefore for a given Dirichlet or Neumann boundary condition, the ghost point value can

be expressed by the result of equations (3.12) and (3.13) [12]. For a Dirichlet condition at

the boundary, ϕ(xBI , yBI) = ϕBI , the ghost-point value is computed from

ϕGP = ϕBI −∑q
n=2 M(1, n) · ϕ(x′

n, y
′
n)

M(1, 1) . (3.14)
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With a Neumann boundary condition ∂ϕ
∂n

(xBI , yBI) = ζ the ghost point value is given by

ϕGP = ζ −∑q
n=2(nxM(2, n) + nyM(3, n)) · ϕ(x′

n, y
′
n)

nxM(2, 1) + nyM(3, 1) , (3.15)

with nx, ny the components of the normal vector at the boundary intercept.

The WLSQ method of boundary reconstruction provides a high degree of flexibility with

respect to geometry and choice of the numerical stencil for the accuracy achieved. While

it requires a significantly larger numerical stencil than the image point method, it retains

the flexibility of conforming to any number of boundaries which it may encounter within

its search region. The method also extends easily to higher-order reconstruction. The key

element to successfully implementing the method is ensuring the well-posedness of the

least squares problem. A convenient measure to ensure this is to monitor the condition

number of matrix M . If the condition number becomes large (e.g. O(106) or larger),

then eq. (3.9) becomes very sensitive to input values such that small numerical errors of

the ghost point values can amplify and lead to numerical instability [12]. Increasing the

numerical stencil q to include more fluid points in the domain is then required in order for

the method to remain stable. Typically, the MV matrix is singular meaning that usually

one cannot get a well-posed WLSQ problem with the minimum required stencil size [12].

Because of the user-specified parameters, the WLSQ IBM requires some additional set-up

work. The procedure which is followed in this thesis can be summarized generally in the

following steps (usually in order):

1. Determine the polynomial order r of eq. (3.4) for the reconstruction.

2. Determine the number of points q to include in the WLSQ problem.

3. Adjust the weight function scaling kd, optimizing for the best fit of eq. 3.4 with

regards to boundary reconstruction accuracy for a given stencil size q.

As such this implementation of the WLSQ IBM introduces significant complexity in terms

of configuration and optimization compared to the IP IBM which does not require any

set-up. For each choice of polynomial order r, steps 2 and 3 must be performed to optimize

the results, or indeed even find a stable solution. The approach which was employed

herein for a given polynomial order r was to initially select a large stencil size q in step
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2 of the procedure. This way the weight scaling kd of step 3. can be optimized alone

with respect to accuracy and stability. Once kd is determined, the stencil size q may be

reduced approaching limits given in table 3.1 (with kd increased proportionally) such that

a number of "excess" points which would be given effectively zero weight are excluded.

The computational cost of the method is, like the image point method, dependent on

the particular geometries modeled along with method order r, and stencil size q. With

stationary boundaries, the method is performant even for large numerical stencils, as the

main computational expense is performed ahead of time and then stored in the matrix

M . The operations that are performed for each ghost point are then limited to highly

performant vector operations [12]. However, if the boundaries are changing (e.g. FSI),

the cost of the method will be much greater as the weight matrix M = (MV )+W must

again be computed. A more detailed analysis of performance is presented in chapter 5.

3.2.2 Image Point Method

This section describes the sharp-interface image point IBM method utilized in the author’s

project work [2] which will be referred to for comparison with the WLSQ IBM method.

The fundamental approach is the same as for the WLSQ approach, and they share identical

formulations for determining ghost points where all grid nodes of the domain are flagged

according to whether they are inside any solid domain, as illustrated in figure 3.2 by

Khalili et al. [13].
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Figure 3.2: Schematic of points used to determine the flow variables at a ghost point
adjacent to an immersed boundary. [13]

With the image-point approach, the values at the ghost point are determined by the

boundary conditions and interpolated values in the fluid domain. An Image Point (IP) is

introduced, defined as the mirror point of the GP, normal to the IB. Its stencil intersects

the immersed boundary defining the Boundary Intercept (BI) location at its half-length

[5]. When the BI and corresponding IP have been determined, expressing the value at the

IP for a generic flow variable ϕ is achieved using bilinear interpolation [11]. The bilinear

interpolating polynomial needs four nodal values surrounding the image point and takes

the following form [11][13]:

ϕ (x, y) = C1xy + C2x + C3y + C4 , (3.16)

where the four unknown coefficients are determined by the Vandermonde matrix and

surrounding nodal values:

C = V−1ϕ , (3.17)

with the values of the four surrounding nodes ϕ = [ϕ1, ϕ2, ϕ3, ϕ4]T , and Vandermonde
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matrix of the form

V =



xy|1 x|1 y|1 1

xy|2 x|2 y|2 1

xy|3 x|3 y|3 1

xy|4 x|4 y|4 1


. (3.18)

In the case of a sample point being located on a boundary with Neumann BC given by ζ,

the normal gradient ∂ϕ(xBI ,yBI)
∂n

= ζ is instead used [13]. Taking the normal derivative of

eq. (3.16) gives then

ζ = C1(ynx + xny) + C2nx + C3ny . (3.19)

As such the row corresponding to the sample point in the Vandermonde matrix is replaced

by

[(ynx + xny), nx, ny, 0] . (3.20)

Following formulations in [11][13], eq. (3.16) and eq. (3.17), the image point value ϕIP

can be expressed as

ϕIP =
4∑

i=1
βiϕi + T.E. (3.21)

where β is the coefficient vector given by

β =
(
V−1

)T
[xy|IP , x|IP , y|IP , 1]T (3.22)

such that the coefficients are only dependent on the geometric coordinates. Consequently,

they can be determined once the grid, boundaries, and image points are determined, and

will only need updating if these parameters are changed. With stationary boundaries and

a static grid, the main computational cost can therefore be performed in the initialization

step.
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Figure 3.3: A, Schematic of the situation when one surrounding interpolation point is a
body intercept; B, Schematic of the situation when two of the surrounding interpolation
points are body intercepts. [13]

In some situations, the nodes surrounding the image point may be ghost points, as seen

in figure 3.3 by Khalili et al. [13]. In these cases, the nodes chosen for the interpolation

polynomial are then replaced by the boundary condition at the corresponding BI location

following [11].

Finally, obtaining the value at the ghost point is achieved with a linear extrapolation of

the IP and GP values using the boundary conditions. For a Dirichlet BC, this can be

expressed as

ϕGP = 2ϕBI − ϕIP + O
(
∆l2

)
, (3.23)

where ∆l is the length of the normal stencil from GP to IP [13]. For a Neumann BC the

ghost point is computed by

ϕGP = ϕIP − ∆lζ + O (∆l) , (3.24)

where the normal gradient given by the BC is represented by ζ. This computation of the

ghost point values is according to [11] 2nd-order for the Dirichlet BC and 1st-order for

the Neumann BC in respect to ∆l and therefore also in relation to the grid spacing given
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that ∆l = O(h).

3.3 Improved IBM

The Improved IBM approach herein is a Richardson extrapolation method for which

the main goal is to achieve higher-order solutions without the need for large ghost-

point stencils. Richardson extrapolation is a technique used to improve the accuracy of

numerical approximations of solutions to differential equations. It is commonly used in

CFD to improve the accuracy of numerical solutions to the equations governing fluid flow.

The technique involves using solutions at different levels of refinement and combining

them using a weighted average to produce a more accurate approximation. This can

be particularly useful when solving complex problems involving fluid flow, where a high

degree of accuracy is required.

The method as originally presented takes separate 2nd-order solutions using a grid doubling

method, using a fine grid and a coarse subgrid defined of alternate points, combining

them to obtain a 4th-order solution defined on the subgrid [16].

For two uniformly spaced grids with a grid spacing h and 2h, let the numerical solutions

given by eq. (3.1) be Th and T2h respectively. For a constant von Neumann number, with

time step ∆t on the fine grid, it follows from eq. (3.3) that the coarse grid has a time

step of 1
4∆t. Knowing the truncation error of eq. (3.1) can be written (in simplified form)

for the two grids as

Th = Tex + 1
2∆t − 1

12h2 + O(∆t2, h4) (3.25)

T2h = Tex + 2∆t − 1
3h2 + O(∆t2, h4) , (3.26)

where Tex is represents the exact solution. And with every time level of the coarse grid

representing four time levels on the fine grid, it follows that

Tr = 4Th − T2h

3 = Tex + O(∆t2, h4) . (3.27)

Where Tr is the Richardson extrapolation of the fine and coarse grids at synchronized time
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levels at the coinciding node locations. As shown the Richardson extrapolation increases

the order of the method to 2nd-order in time and 4th-order in space.

According to [15], the general form of the extrapolation for centered difference schemes

and omitting the temporal component, using fine grid and coarse grid solutions f1 and f2

is:

fexact = f1 + f1 − f2

rp − 1 + O(∆p+2) . (3.28)

Where fexact is the exact solution, p is the order of the method and r is the refinement

factor defined by r = h2/h1. With grid doubling such that r = 2, and FTCS having

spatial order p = 2, eq. (3.28) can be simplified to

fexact = 4
3f1 − 1

3f2 + O(∆p+2) (3.29)

which is 4th-order accurate for solutions f1 and f2 [15] and is equivalent to eq. (3.27). In

either case, as described before, f1 must be evaluated for alternate nodes, which coincide

with nodes on f2, as such the 4th-order accurate solution is only defined on the coarse

grid solution. A method described as "Completed Richardson extrapolation" [16] shows

how 4th-order can be achieved on the full fine grid solution, however, this is beyond the

scope of this project.

In the program which has been developed, the Richardson extrapolation is applied purely as

a post-processing step to the solutions either at steady state or at synchronized time levels

of the simulation. Though there is also the potential for the method to be incorporated

into the time step iteration, as has been presented by Richards [20]. In this case, the

Richardson extrapolation for the fine grid is computed, and both fine and coarse grid

solutions are updated by this extrapolation at each synchronized time level.
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3.4 Considerations for the Compressible Navier-

Stokes Equations

The implications of the WLSQ IBM for compressible Navier-Stokes equations are mainly

boundary condition treatment for the velocity, pressure, and temperature. The immersed

boundary method used herein has also been applied to the compressible Navier-Stokes

equations in previous papers [13]. For walls the no-slip condition is typically applied,

meaning a Dirichlet BC is imposed on the velocity. For the pressure, a zero gradient,
∂p
∂n

= 0, on the boundaries may be used to approximate the boundary layer. The

temperature field requires that the wall has either a temperature or a heat flux specified,

as such both Dirichlet and Neumann BC’s can be used depending on the situation. But

assuming adiabatic boundaries, the temperature BC can be enforced with a zero density

gradient, ∂ρ
∂n

= 0. Thus the Dirichlet and Neumann boundary conditions would be applied

the same way as detailed in section 3.2.1.

The Improved IBM can likewise be applied to the Navier-Stokes Equations in the same

manner as described in section 3.3. While discretization methods and other factors can have

an impact on the validity of eq. (3.29), its application is general to any differential equation

and can be applied to the compressible Navier-Stokes equations without modification. A

key limitation is that centered differences must be employed for 4th-order accuracy, if

uncentered differences are used the extrapolation is only 3rd-order accurate [15].

3.5 Discretization Error

The errors in the discretization methods are monitored by observing errors on the form

∆Terr = T − Tex and evaluating the L2-norm of this field. The L2-norm for a generic field

ϕ is defined by

∥ϕ∥2 =

√√√√√∆x∆y
N∑
i,j

ϕ2
i,j

= h

√√√√√ N∑
i,j

ϕ2
i,j

(3.30)

for h = ∆x = ∆y.
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For steady-state problems, the convergence is monitored by observation of the iterative

changes

Ei = ∥ϕn − ϕn−1∥2
∥ϕ1 − ϕ0∥2

(3.31)

where ϕ0 is the initial field. As the simulation is approaching steady-state, Ei should

approach zero.
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... Chapter 4

Benchmark Problems
In this chapter, the benchmark cases and methods used will be presented. In order to test

and verify the implementation and methods for the WLSQ IBM and Improved IBM a

set of suitable benchmark problems is needed. The first benchmark problem is the heat

equation (2.3) evaluated on a domain between two concentric circles for steady-state heat

conduction.

In the second benchmark problem, the transient behavior of the methods is evaluated. In

this case, the heat conduction in the cross-section of an infinitely long cylinder is simulated

from a zero initial condition with constant surface temperature given by a Dirichlet BC.

The thermal diffusivity is α = 1.0 and the thermal conductivity is k = 1.0 throughout.

4.1 Steady State Heat Conduction between

Concentric Circles

In this benchmark problem, the heat equation (2.3) is evaluated for steady state heat flow

between concentric circles in a unit square Cartesian domain. The performance of the

WLSQ IBM and Improved IBM is evaluated for combinations of Dirichlet and Neumann

boundary conditions, and the full case setup is illustrated in figure 4.1. In this figure, any

grid points that lie outside the fluid domain are hidden away. This benchmark problem

is carried over from the author’s project work [2], and the following section is adapted

with modifications from said work. The test case has also been evaluated with other IBM

codes such as that of [13], making it a suitable point of comparison.
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The exact solution for this problem in polar coordinates is in the form

T (r) = A ln r + B , (4.1)

where the constants A and B are determined based on boundary type and values [13].

(a) Dirichlet − Dirichlet (b) Dirichlet − Neumann

(c) Neumann − Dirichlet

Figure 4.1: Schematic of benchmark geometry for steady state heat conduction between
concentric circles. The outline of the immersed bodies is highlighted in red, for which
boundary conditions are labeled. The underlying Cartesian grid with nodes in the solution
domain is indicated with blue-colored dots.
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First, some configuration work for the WLSQ method as outlined in section 3.2.1 is

performed along with an accuracy investigation into the effects of changing the order of

the polynomial approximation r. This investigation was performed on the steady-state

benchmark with the Dirichlet configuration. An overview of the benchmark geometry and

boundary configurations is given in figure 4.1, with the Dirichlet configuration specified in

4.1a.

In order to evaluate the differences in a consistent manner the stencil size was set large

enough such that at the extremities the weights given are very near zero. Following table

3.1 it is expected that for r = 1, ..., 4 the largest stencil size would be for that of r = 4.

Assuming that lower orders require smaller stencils, a reasonable size was found to be

q = 35. This way the assumption is that the result is approximately independent of

stencil size and the weight function correlates more directly to the accuracy and can

therefore be optimized in isolation. Additionally, by keeping the stencil size constant

throughout, the optimal weight scaling can be compared directly for each choice of r.

The weight function is then optimized by monitoring the condition number of matrix M

and making adjustments to the weight scaling kd to balance accuracy and stability. The

results of this investigation are then used as a guideline for the setup of the following

configurations. And for verification purposes, the main analysis will be focused on the

fourth-order configuration, r = 3 as this enables comparison with findings of [13].

Table 4.1: Overview of configurations for the steady state heat conduction between
concentric circles benchmark with Dirichlet and exact solution given by A ≈ 0.9066,
B ≈ 2.7259.

Case
No.

N rx + ry tf nt α rinner router Tinner Touter

1 11 3 × 102

2 21 12 × 102

3 41 0.1 0.15 48 × 102 1.0 0.149 0.449 1 2
4 81 192 × 102

5 161 768 × 102

6 321 3072 × 102

7 641 12288×102

The configurations with Dirichlet BC for both boundaries are presented in table 4.1 and

assigned case numbers 1 − 7. Each successive configuration performs a grid refinement on

the Cartesian grids N × N starting from case No. 1 with N = 11 up to N = 641. For the
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Dirichlet case, the field is initialized in a linear distribution between the boundaries in

order to reduce computational time as compared with a uniformly initialized grid. Based

on the results of the above study, a weight scaling of kd = 0.01 is used. The inner and

outer circles are given a radius of approximately r = 0.15 and r = 0.45, and the reason

the actual values are offset by 0.001 is to avoid situations where the grid points overlap

the boundary perfectly at low resolution as this could lead to large asymmetry in the

solution.

Table 4.2: Overview of configurations for the steady-state heat conduction between
concentric circles benchmark with Dirichlet BC on the outer circle and Neumann BC on
the inner circle, with the analytical solution given by A = 0.298, B ≈ 2.2386.

Case
No.

N rx + ry tf nt α rinner router Tinner

(
∂T
∂n

)
outer

8 11 7 × 102

9 21 28 × 102

10 41 0.1 0.35 112 × 102 1.0 0.149 0.449 2 2
11 81 448 × 102

12 161 1792 × 102

13 321 7168 × 102

14 641 28672×102

Table 4.3: Overview of configurations for the steady-state heat conduction between
concentric circles benchmark with Neumann BC on the outer circle and Dirichlet BC on
the inner circle, with the analytical solution given by A = −0.898, B ≈ 0.2904.

Case
No.

N rx + ry tf nt α rinner router

(
∂T
∂n

)
inner

Touter

15 11 8 × 102

16 21 32 × 102

17 41 0.2 0.8 128 × 102 1.0 0.149 0.449 -2 2
18 81 512 × 102

19 161 2048 × 102

20 321 8192 × 102

21 641 32768×102

Following the Dirichlet configurations, the mixed Dirichlet-Neumann and Neumann-

Dirichlet (read outer-inner boundary) configurations are given in table 4.2 and table

4.3 respectively. The same grid refinement process outlined above is performed for each

boundary configuration. When mixed boundary conditions are considered, the field is

uniformly initialized with a constant value given by the Dirichlet boundary.

For each refined grid, the Richardson extrapolation method is performed generating five
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Improved IBM solutions in total for each of the three boundary configurations of tables

4.1, 4.2, and 4.3.

The stopping criterion for the simulations is based on eq. (3.31), where the convergence is

measured by the change in L2-norm of the temperature field between time levels. The

stopping criterion is based on this iterative change approaching zero.

4.2 Heat Conduction in a Cross-Section of an Infinite

Cylinder

In order to further test the methods in view of problems that require transient solutions,

a suitable test case for the transient heat equation is needed. In this benchmark problem,

the heat equation is evaluated in the cross-section of a cylinder of infinite length with

constant surface temperature Ts and zero initial temperature.

According to Jaeger and Carslaw [21], the temperature for this problem in cylindrical

coordinates can then be described by radial position 0 ≤ r ≤ rs and time t alone. In

Fourier-Bessel form this is given by

T (r, t) = Ts

[
1 − 2

rs

∞∑
n=1

e−kα2
nt J0(rαn)

αnJ1(rsαn)

]
, (4.2)

where ±rsαn, n = 1, 2, . . . , are the roots of

J0(rsα) = 0 . (4.3)

k is the thermal conductivity, and Jn(x) are Bessel functions of the first kind.

The simulations are compared against eq. (4.2), utilizing a finite series of n = 1, 2, . . . , 200.

With this limitation, the form is no longer exact, and in particular it is inaccurate in the

immediate time after the initial condition when t is small. As such, use has been limited

to well-developed states.

Following the same process as before, the boundaries are immersed into a unit square

Cartesian domain. The full case setup is illustrated in figure 4.1. In this figure, any grid

points that lie outside the fluid domain are hidden away.
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Table 4.4: Overview of configurations for the transient benchmark of heat conduction in
a cross-section of an infinite cylinder

Case
No.

N rx + ry ti tf nt α rs Ts

1 11 350
2 21 1400
3 41 0.02 0.0 0.035 5600 1.0 0.449 2
4 81 22400
5 161 89600
6 321 358400
7 641 1433600

Figure 4.2: Schematic of benchmark geometry for the transient heat conduction in a
cross-section of an infinite cylinder. The outline of the immersed body is highlighted in
red, with the Dirichlet boundary condition labeled. The underlying Cartesian grid with
nodes in the solution domain is indicated with blue-colored dots.

The configurations considered are presented in table 4.4. Similarly to the steady state

problem, the simulations are performed on (N × N) grids as defined in figure 4.2 from

N = 11 with grid doubling up to N = 641. The domain is initialized by constant initial

temperature Ti = 0, starting at initial time ti = 0.

The simulations are run up to an end time tf , where the Improved IBM method is

performed and results are analyzed.
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... Chapter 5

Performance of the Numerical

Methods
This section will present comments on the performance and complexities of significant

components related to the discretization methods. Some parts of the developed code and

technical aspects of the hardware and architecture will be featured, for which performance

numbers are given in section 6.3.

5.1 Forward Time Centered Space

The FTCS discretization for the 2D heat equation is presented in section 3.1, and a

possible implementation is shown in appendix D. Following this function implementation

there are two main steps

1. Create a temporary copy of the current field values O(N2)

2. Calculating and assigning new values to the current field O(N2)

meaning the function call has a complexity O(N2). With one function call occurring per

time level, the complexity associated with a full simulation is then O(nt N2), where nt is

the number of time levels from the initial condition to the end time.



34 5.2 Weighted Least Squares Method

5.2 Weighted Least Squares Method

5.2.1 Construction

The largest time complexity associated with the WLSQ method is related to constructing

and solving the least squares problem of eq. (3.11). However, for problems with stationary

boundaries, the result can be stored and needs not be recomputed unless the parameters

of the WLSQ method are changed. For stationary boundaries, and since usually nt ≫ N ,

this set-up cost is typically very small with regards to the total time complexity and can

therefore be neglected. In such cases, the performance is mostly dictated by the update

function described in section 5.2.2.

The construction process is defined in this case as the parts of the algorithm which can

be pre-computed and stored. The implementation details are included as source code in

appendix D. The implementation can be summarized in the following steps:

1. Construct the numerical stencil

2. Construct the Vandermonde matrix V

3. Compute the weights and assemble the weight matrix W

4. Compute and store the weight matrix M , for which the pseudoinverse of (WV )+ is

solved by the SVD algorithm O(p2q)

The performance of the method is dominated by the SVD algorithm with complexity

O(p2q) [22], of which p(r) is a function of the order and q is the stencil size. However, it

should be noted that there is significant complexity involved in the other steps, so the

total cost of the method is also quite dependent on i.e. of the stencil construction.

In this particular implementation, the JacobiSVD class from the Eigen library is employed.

Depending on stencil size, stability, and accuracy requirements there may exist other more

suitable methods to compute the pseudoinverse.

5.2.2 Update Function

The update function is the most relevant in terms of the performance of the WLSQ method

in this thesis, as the boundaries are always stationary. The main update function of the
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WLSQ IBM can be implemented as presented in appendix D. Following this method, the

major time complexities can be summarized as

1. Updating data point values ϕ =
{
ϕ1, ϕ2, ..., ϕq,

}
which has complexity O(q)

2. Calculating ghost point value by the Dirichlet (3.14) BC or the Neumann (3.15) BC

of which the vector dot product has the highest complexity of O(q)

where q is the number of points used in the WLSQ problem (3.9). As such, for a total of

NGP ghost points, the full complexity of applying boundary conditions is then O(NGP q).

Identically as before, when summed over the full simulation of nt time levels, the complexity

totals O(nt NGP q).

Then for the case of stationary boundaries, the overall complexity is therefore determined

by O(nt max(NGP q, N2)). This result shows that the complexity is dependent on the

immersed boundaries. In general, while typically q ≪ N2, the number of ghost points

varies greatly based on geometry in the range NGP ⪅ N2. If the boundary has a large

surface area relative to domain size and resolution, the condition NGP q ≥ N2 may be true,

and as a result, the complexity would then be dominated by the WLSQ IBM. However, in

practice, the FTCS scheme is normally the dominant complexity because of the resolution

needed for such geometries. For the FTCS scheme, it should also be noted that while the

complexity is O(N2), a significant constant time proportion from floating-point operations

is only applicable to the fluid points of the domain, as these computations are skipped for

any solid or ghost points. Meaning overall performance is greatly dependent on the number

of fluid points. As such, it can be assumed that in most cases the overall complexity

remains O(ntN
2).

5.3 Improved IBM

The Richardson extrapolation method used for the Improved IBM following eq. (3.27)

has the complexity of O(N2) where N refers to the number of grid points in each spatial

direction of the coarse grid. However, the method requires very few floating point

operations and as such the cost of this method is small in comparison to both the FTCS

and WLSQ methods. Additionally, it need only be computed for time levels of interest

and can be run as a post-processing step.
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5.4 Hardware and Architecture

The developed C++ code is built with the MSVC compiler targeting the x64 architecture

for Microsoft Windows 11. The hardware which is utilized is presented in table 5.1.

Table 5.1: Overview of system specifications.

System Specifications
Processor Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 3696 Mhz, 6 Core(s),

12 Logical Processor(s)
GPU NVIDIA GeForce GTX 1080
OS Microsoft Windows 11 Home, Version 10.0.22000 Build 22000
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... Chapter 6

Results and Discussion
In this chapter, the results of the WLSQ IBM and Improved IBM will be presented and

discussed for a range of boundary conditions and test cases with comparisons to results

for similar methods found in the available literature.

6.1 Steady State Heat Conduction between

Concentric Circles

The steady-state benchmark case presented in section 4.1 is utilized for verification of the

implementation and particularly for comparison of results to the findings of [13] as well

as the author’s own project work [2]. The simulations were performed for Dirichlet and

mixed Dirichlet-Neumann boundary conditions as given by the configurations presented

in tables 4.1, 4.2, and 4.3.

Before setting up the simulation cases, an investigation of the WLSQ method accuracy

with varying polynomial approximation r is performed as described in section 4.1. For a

stencil size of q = 35 it was found that kd would need to be small to distribute the points

evenly on the weighting function. Interestingly, tests indicated that the most accurate

results with this implementation are found when the condition number of M is large. It

was generally observed that the accuracy would improve as the weight scaling is reduced

and that the condition number would increase in response, leading to instability. It was

also noticed that the condition number criteria of < O(106) [12] was not sufficient for this

implementation.
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The observations during tests were that for small von Neumann numbers, the accuracy

could be improved by allowing condition numbers several orders of magnitude higher.

Conversely, when the von Neumann number approaches the stability limit of the FTCS

the condition number may need to be much lowered. For this reason, there were no

absolute criteria set for the condition number. Nevertheless, it still proved to be a decent

indicator of stability when the von Neuman number is kept constant. For this reason, the

von Neumann number was kept small in order to achieve high accuracy and keep a decent

stability margin.

Table 6.1: kd and L2-norm corresponding to the simulations presented in figure 6.1 for
varying WLSQ polynomial order r with grid size N = 161.

r kd L2

1 0.00025 1.6949 × 10−5

2 0.005 1.0287 × 10−5

3 0.005 1.0370 × 10−5

4 0.005 1.0381 × 10−5
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(a) r = 1 (b) r = 2

(c) r = 3 (d) r = 4

Figure 6.1: Comparison showing error distributions (a), (b), (c), and (d) of the simulation
results for the WLSQ IBM with varying polynomial order r at resolution N = 161.
Simulations are performed on the steady-state benchmark problem with Dirichlet boundary
conditions.

Results from the WLSQ accuracy study in the form of error distribution plots with accuracy

ranging from 2nd-order to 4th-order at grid resolution N = 161 are presented in figure 6.1.

Corresponding weight scaling and errors are shown in table 6.1. These results indicate

that there are minimal changes in accuracy for the steady state benchmark with Dirichlet

boundaries for simulations with r ≥ 2. This is based on the error distributions taking a

very similar form, with small variations at the boundary as well as very consistent L2-norm.
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Focusing on the second-order WLSQ method (r = 1) some differences are observed. Most

notably the error distribution is significantly changed throughout the domain, with large

errors observed at the boundaries. This increase in error is also observed in the L2-norm,

which is approximately ×1.6 larger. Based on this result choosing a WLSQ method of

third order or greater appears necessary in order to achieve good accuracy.

As previously discussed in chapter 4, the fourth-order boundary reconstruction (r = 3)

is chosen for the main analysis as it provides a point of comparison with [13]. However,

with all results for r ≥ 2 showing similar performance, it may be possible to employ a

lower order and achieve similar results.

Continuing with the fourth-order WLSQ configuration for the remaining steady-state

simulations, the stencil size was kept constant at q = 35. The weight scaling and von

Neumann numbers were adjusted for each boundary configuration, with a basis in the

results above. It is assumed that the observations of the WLSQ accuracy study are also

valid for mixed Dirichlet-Neumann boundary conditions, but this was not studied. The

simulation results for a single mesh size N = 161 for each boundary configuration are

presented in figure 6.2, the left-hand side shows temperature T , whereas the right-hand

side displays the error in the form of temperature delta compared with the analytical

solution. They correspond to cases 5, 12, and 19 from tables 4.1, 4.2 and 4.3 respectively.
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(a) Dirichlet-Dirichlet (b) Error

(c) Dirichlet-Neumann (d) Error
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(e) Neumann-Dirichlet (f) Error

Figure 6.2: Comparison showing simulation results with grid size N=161 for (a), (c), and
(e) boundary condition configurations on the steady-state benchmark problem. Including
error distribution plots (b), (d), and (f) for each respective configuration.

6.1.1 Dirichlet Boundaries

The simulations with Dirichlet boundaries ran for nt = 300 time levels on the coarsest grid

corresponding to case No. 1 of table 4.1. Convergence for each configuration was monitored

throughout and is presented in figure 6.3. In this representation, all configurations are

drawn at synchronized time levels. All configurations are observed to approach steady-state

with iteration errors |Ei| ≤ O(10−14) at time levels ranging from nt = 250 to nt = 300.

Figure 6.3: Convergence of steady-state simulations with Dirichlet boundaries.
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The error distribution for the WLSQ method for the Dirichlet boundary is observed to

be effectively fully smooth by inspection of figure 6.2b, with the largest errors located

not along the boundary, but rather in the internal region of the domain with magnitudes

O(10−5) for grid size N = 161. As such the 4th-order WLSQ method indicates significant

improvement over the image point method for which it was shown that the same case

led to large, sharp errors located directly at the boundaries [2]. From figure A.1 it is also

observed that the error distribution for this configuration is very consistent throughout

the grid refinement process. This indicates that the boundary is well-resolved and that

small changes to the mesh geometry resulting from the immersed boundary flagging

process do not further propagate to large changes in the solution. While the current test

cases do not provide a view into accuracy on highly complex geometries, this result is

promising in this aspect. Overall this is significant in reference to the Improved IBM as

the Richardson extrapolation method requires the field values to be smooth everywhere

and have monotone behavior with respect to grid refinement.

Figure 6.4: Grid convergence rates for the steady-state benchmark problem with Dirichlet
boundary conditions including reference lines indicating the order of accuracy.

This is further established in figure 6.4 where clear 2nd-order, monotone convergence of

the L2-norm is observed for all cases starting from case No. 4 of table 4.1 with N = 81
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and errors reduced to ≤ O(10−6) at N = 641. As such, figures 6.2a, 6.2b and 6.4 verify

that the implementation of the WLSQ IBM for Dirichlet boundaries is achieving the

expected order of accuracy, and resolves the benchmark problem with errors which are in

line with other reports such as Khalili et al. [13].

On the other end, for coarser meshes, the grid refinement shows both increased error

as well as non-monotone convergence. And is a clear indication that with insufficient

resolution the accuracy of the WLSQ IBM degrades rapidly. This is to be expected when

using the WLSQ IBM method and is reported by several authors as previously described

in section 3.2.1. This limitation is particularly evident for high polynomial order as

this requires the inclusion of many points in the fluid domain as indicated in table 3.1.

Measures such as reducing the order of the method can be useful for coarse grids because

this reduces the required size of the numerical stencil, and may in some cases have little

effect on accuracy as shown in figure 6.1, and table 6.1.

While several authors also report second-order L2 convergence for Dirichlet boundaries

with IP IBM for similar benchmark problems [2][13], an important distinction is that

for the IP method, a clear non-monotone convergence trend is seen throughout the grid

refinement process.

6.1.2 Neumann Boundaries

For the Neumann boundary condition, there are two distinct configurations as each of

the circular boundaries is tested individually. These are presented in tables 4.2 and 4.3.

As with the Dirichlet boundaries, simulation results of the WLSQ method for Neumann

boundaries with grid size N = 161 are presented in figures 6.2e and 6.2c. Results for all

configurations can be found in the form of contour plots in appendix A.

For configurations 8 − 14 shown in table 4.2 with Dirichlet BC on the outer circle and

Neumann BC on the inner (Dirichlet-Neumann) the simulations ran for nt = 700 time

levels at ∆t = 0.0005 on the coarsest grid. The convergence results for this configuration

are presented in figure 6.5.
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Figure 6.5: Convergence of steady-state simulations with with Dirichlet BC on outer
circle and Neumann BC on inner circle.

For configurations 15 − 21 from table 4.3 with Neumann BC on the outer circle and

Dirichlet BC on the inner (Neumann-Dirichlet) the simulations ran for nt = 800 time

levels at ∆t = 0.001 on the coarsest grid. The convergence results for this configuration

are presented in figure 6.6.

Figure 6.6: Convergence of steady-state simulations with Neumann BC on outer circle
and Dirichlet BC on inner circle.

As before, all configurations are drawn at synchronized time levels corresponding to

the coarsest grid. All configurations are observed to approach steady-state with |Ei| ≤

O(10−13) after 600 − 700 iterations for Dirichlet-Neumann and 700 − 800 for Neumann-

Dirichlet.
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Based on the results presented in these figures, it is observed that the field values along the

boundary remain smooth, but a clear distinction for the Neumann condition is that the

errors are larger along the boundary than for the Dirichlet case. Particularly large errors

are found at the Neumann boundary in the Dirichlet-Neumann configuration. Still, all

configurations achieve similar accuracy, within one order of magnitude and with L2-norms

reduced to ≤ O(10−6).

Grid refinement results are shown in appendix A, figures A.3 and A.5. For the Neumann-

Dirichlet configuration, the refinement results are similar to that of the Dirichlet case,

with quite consistent behavior for high-resolution grids. However, the Dirichlet-Neumann

configuration shows some inconsistencies. These are mainly in regard to the bias of the

error distribution which is shown to wander quite significantly between grids even at high

resolution. This may be a problem for the Richardson extrapolation employed by the

Improved IBM, as it requires that the behavior is consistent.

The convergence rates of the L2-norm for the grid refinement study are presented in figure

6.8 for Dirichlet-Neumann configurations, and figure 6.8 for Neumann-Dirichlet, with a

clear indication of 2nd-order convergence in both cases for grid sizes N ≥ 81. This is a key

result, as it shows that the WLSQ IBM implementation achieves 2nd-order accuracy in

space for all configurations, verifying the FTCS and WLSQ IBM implementation behave

similarly to that presented in [13].



6.1 Steady State Heat Conduction between Concentric Circles 47

Figure 6.7: Grid convergence for the steady-state benchmark problem with Dirichlet
BC on outer circle and Neumann BC on inner circle. The plot includes reference lines
indicating the order of accuracy.

Figure 6.8: Grid convergence for the steady-state benchmark problem with Neumann
BC on outer circle and Dirichlet BC on inner circle. The plot includes reference lines
indicating the order of accuracy.
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It is observed that obtaining 2nd-order convergence with Neumann boundaries seems to

require a finer grid spacing than for the Dirichlet boundaries. It should be noted that

the weight scaling in this study is adjusted for the accuracy of the fine grids, and so

improvement for the coarser grids could be achieved by manual tuning of parameters.

In previous papers, it has been explained and verified that the IP IBM is reduced to

1st-order accuracy with Neumann boundaries [11][13]. This fact was explored further by

Khalili et al. [13] where it was compared against a WLSQ IBM with similar observations

of improved accuracy as shown here.

6.1.3 Improved IBM

The Improved IBM by the Richardson Extrapolation method is applied as a post-processing

step to all configurations from tables 4.1, 4.2, and 4.3, with contour plots of errors given

in appendix A. The resulting error distribution for the Dirichlet boundary employing

configurations 5 and 6 with coarse grid N = 161 and fine grid N = 321 is presented

in greater detail in figure 6.9. As the figure shows, the error distribution remains quite

smooth in the internal field of the fluid domain. Though by comparison to the WLSQ

IBM solutions on the coarse and fine grid as shown in subfigures 6.9a and 6.9b, it is clear

that the errors at the boundary do not see the same level of improvement. This indicates

that the boundaries still exhibit some inconsistency through grid refinement. Still, results

show that the errors have been greatly reduced globally when compared to the fine grid

solution for grids with high resolution.

For the Dirichlet-only configuration, a clear 4th-order accuracy is shown in figure 6.4 and

therefore verifies that the extrapolation is functioning as the theory suggests. This is an

important finding, as this was not observed with basis in the image point method, and has

not been previously shown for the WLSQ IBM method to the knowledge of the author.

The results from the Richardson extrapolations are however not unilateral. Because for

mixed boundaries, while the Neumann-Dirichlet configuration shows a consistent increase

to near 4th-order accuracy, the Dirichlet-Neumann configuration shows increased accuracy

but with severely inconsistent convergence. It is suspected that this is a consequence of

the wandering seen in the error distributions as discussed in section 6.1.2 and shown in

figure A.4.
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(a) WLSQ IBM case No. 5 (N = 161) error. (b) WLSQ IBM case No. 6 (N = 321) error.

(c) Improved IBM [5-6] error

Figure 6.9: Surface plot of Improved IBM error for grid size N = 161 on the steady-
state benchmark problem with Dirichlet boundaries as compared to the baseline WLSQ
IBM errors for grid sizes (a) N = 161 and (b) N = 321 employed in the Richardson
Extrapolation.
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An important observation is that for all configurations of the steady-state benchmark,

an increase in accuracy is only observed at high resolution. As such the overall increase

of accuracy through grid refinement is somewhat limited, and care is needed in order to

avoid situations where the Improved IBM results in a less accurate solution. It is plausible

that with the WLSQ IBM configured with emphasis on coarser grids, similar results could

be achieved at a lower resolution.

6.2 Heat Conduction in a Cross-Section of an Infinite

Cylinder

In order to investigate how the WLSQ and Improved IBM extend to time-dependent use

cases, a transient benchmark problem based on heat conduction in a cross-section of an

infinite cylinder presented in section 4.2 is employed. The simulations are configured

as listed in table 4.4. Due to the similarity of geometry and boundary conditions, it is

assumed that the parameters used for the WLSQ IBM as it was set up in section 6.1 are

valid. The simulations are therefore performed with r = 3, q = 35, and weight scaling

kd = 0.005.

In order to reduce time-dependant errors of O(∆t) from the FTCS scheme, a small von

Neumann number is employed. As described in section 4.2 the simulations are initialized

with zero temperature at initial time ti = 0 and are run up to time tf = 0.035 where they

are subsequently analyzed.

The Improved IBM is then performed as a post-processing step following the method

outlined in section 3.3. The transient benchmark problem employed does not cover as

extensive of analysis on the methods as the steady-state method, mainly because the

geometry is simpler and performed only for the Dirichlet boundary condition. Additionally,

based on the steady-state results, it can be expected that a Neumann condition may lead

to different behavior.

Results showing the time evolution of a simulation with grid size N = 161 are presented

in figure 6.10. As time evolution shows, the case is well developed at its stopping criterion,

and subsequently no issues regarding the accuracy of the analytical solution of eq. (4.2)

is expected.
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(a) t = 0.0 (b) t = 0.01

(c) t = 0.035

Figure 6.10: Surface plot of WLSQ IBM case No. 5 with grid size N = 161 on the
unsteady benchmark problem for three points in time, each individually shown in (a), (b),
and (c).
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A grid convergence study is performed on the cases presented in table 4.4, with convergence

rates presented in figure 6.11. It is found that the WLSQ IBM performs to expectations,

achieving 2nd-order accuracy with errors in line with previous results. In addition, full

improvement to the expected 4th-order accuracy is observed for the Improved IBM. The

WLSQ IBM achieves 2nd-order accuracy at a grid size of N = 41 and above, which also

coincides with the Improved IBM achieving 4th-order accuracy. In this configuration, the

Improved IBM shows an improvement in accuracy for any grid spacing, however, based

on results observed in section 6.1 this should not always be expected.

Figure 6.11: Grid convergence rates for the unsteady benchmark problem with Dirichlet
boundary condition including reference lines indicating the order of accuracy.
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6.3 Performance

Table 6.2: Simulation performance benchmarked on the target hardware.

Configuration
Boundary

Conditions
Time

Steady state

Dirichlet 1h 20m 15s

Dirichlet-Neumann 3h 11m 17s

Neumann-Dirichlet 3h 32m 41s

Unsteady Dirichlet 1h 38m 59s

The simulations were performed on a standard personal home computer with specifications

as listed in table 5.1. The steady-state benchmark with Neumann boundaries took the

longest at roughly three hours, while for Dirichlet boundaries and the transient benchmark,

the simulations took roughly one and a half hours. The simulation timings are provided

in table 6.2.
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... Chapter 7

Conclusions
In this thesis, an improved sharp interface immersed boundary method utilizing Richardson

extrapolation to achieve higher order accuracy has been developed and verified for the

two-dimensional heat conduction equation discretized by the FTCS scheme. The immersed

boundaries are resolved by employing a high-order sharp interface ghost point approach

utilizing a Weighted Least Squares method. The methods have been assessed on a steady

state benchmark problem of heat conduction between concentric circles with Dirichlet

and Neumann boundary conditions. Additionally, the methods have been investigated on

a time-dependent problem modeled for heat conduction in a cross section of an infinite

cylinder with constant surface temperature.

The WLSQ IBM implementation is found to achieve the theorized 2nd-order accuracy

of the FTCS formulation for every boundary configuration and benchmark investigated.

For Dirichlet BC, the higher order WLSQ method is shown to simulate the benchmark

problems correctly with boundaries resolved to a high degree of accuracy including smooth

distributions and monotone convergence. However, for the steady state benchmark, the

error characteristics are found to be two-fold as in this case when employing Neumann

BC on the inner circle a reduction of accuracy was observed at the boundary along with

non-monotonic convergence. This inconsistent convergence has been investigated and it is

shown that the implications for the improved IBM method can be profound. Additionally,

because of the large stencil size required for the fourth order WLSQ method, good accuracy

could not be guaranteed for coarse grids. Furthermore, it was found when optimizing

parameters for best accuracy, that the stability of the method would be severely impacted
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and that a low von Neumann number was required. This has a serious impact on the

simulation time.

Further, the Improved IBM implementation achieved the theorized 4th-order accuracy

in space for both steady and time dependant problems with Dirichlet BC’s. This is a

key result relating to the improvement seen from the WLSQ method, as the IP method

employed in the author’s project work [2] showed no such improvement. With Neumann

BC applied on the outer circle on the steady-state problem an improvement was found to

near 4th-order, however when the inner circle was defined by a Neumann condition the

convergence was irregular. Results indicate that the non-monotonic convergence observed

for the Improved IBM may be from changes in the boundary errors resulting from grid

refinement.

Correctly configuring the WLSQ IBM (and consequently the Improved IBM) to achieve

these results has shown to be a labor-intensive process of iterative parameter optimization.

For this reason, some skepticism of the consistency of the results is maintained. With

parameters slightly out of tune, the results could change significantly. And so it is

recommended to view these results not as showing performance which can be expected for

any problem without modification, but as a snapshot of the capabilities of the currently

quite primitive implementation.
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... Chapter 8

Future Work
The fundamental motivation for the project is the application of the method to problems

involving the Navier-Stokes on flows with transient phenomena, including complex and

moving boundaries. From the current state of development and verification, there is a

significant road of challenges ahead. The WLSQ IBM has previously been utilized for

some problems in this area [13][12], but the effectiveness of the Improved IBM is uncertain

for moving boundaries and for more complex equations.

Furthermore, while the WLSQ is shown to accurately resolve Dirichlet boundaries, results

indicate that further investigation into improving the accuracy and consistency for

Neumann BC’s is necessary in order to achieve the expected fourth order accuracy

for the Improved IBM in this case.

A rather straightforward addition to the method herein would be to extend the Improved

IBM to the fourth order on the fine grid solution following the work of Roache and Knupp

[16] and Richards [20]. This approach was considered during this thesis and preliminary

results increased order of accuracy also on the fine grid points bounded by the coarse grid

of the fluid domain. However, extending the extrapolated fine grid solution to the full

limits of the boundary would require the inclusion of ghost point values. This could lead

to loss of accuracy at the boundaries, though with the assumption of a smooth extension

of the field values into the solid, it seems reasonable that this would be negligible. Results

regarding this method were excluded due to time limitations.
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Appendix

A Contour Plots - Steady State Heat Conduction
between Concentric Circles

A.1 Dirichlet Boundaries

(a) Case No. 1 (b) Case No. 2

(c) Case No. 3 (d) Case No. 4
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(e) Case No. 5 (f) Case No. 6

(g) Case No. 7

Figure A.1: Error contours for WLSQ IBM cases with steady state heat conduction
between concentric circles for Dirichlet BC on both boundaries. Figures (a)-(g) show
results corresponding to each case in table 4.1.
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(a) Improved IBM on Case No. [1-2] (b) Improved IBM on Case No. [2-3]

(c) Improved IBM on Case No. [3-4] (d) Improved IBM on Case No. [4-5]



A Contour Plots - Steady State Heat Conduction between Concentric Circles 63

(e) Improved IBM on Case No. [5-6] (f) Improved IBM on Case No. [6-7]

Figure A.2: Error contours for Improved IBM with steady state heat conduction
between concentric circles for Dirichlet BC on both boundaries. Figures (a)-(f) show
results corresponding to each pair of cases in table 4.1.
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A.2 Dirichlet - Neumann Boundaries

(a) Case No. 8 (b) Case No. 9

(c) Case No. 10 (d) Case No. 11
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(e) Case No. 12 (f) Case No. 13

(g) Case No. 14

Figure A.3: Error contours for WLSQ IBM cases with steady state heat conduction
between concentric circles for Dirichlet BC on the outer circle and Neumann BC on the
inner circle. Figures (a)-(g) show results corresponding to each case in table 4.2.
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(a) Improved IBM on Case No. [8-9] (b) Improved IBM on Case No. [9-10]

(c) Improved IBM on Case No. [10-11] (d) Improved IBM on case No. [11-12]
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(e) Improved IBM on Case No. [12-13] (f) Improved IBM on Case No. [13-14]

Figure A.4: Error contours for Improved IBM with steady state heat conduction between
concentric circles for Dirichlet BC on the outer circle and Neumann BC on the inner circle.
Figures (a)-(f) show results corresponding to each pair of cases in table 4.2.
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A.3 Neumann - Dirichlet Boundaries

(a) Case No. 15 (b) Case No. 16

(c) Case No. 17 (d) Case No. 18
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(e) Case No. 19 (f) Case No. 20

(g) Case No. 21

Figure A.5: Error contours for WLSQ IBM cases with steady state heat conduction
between concentric circles for Neumann BC on the outer circle and Dirichlet BC on the
inner. Figures (a)-(g) show results corresponding to each case in table 4.3.
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(a) Improved IBM on Case No. [15-16] (b) Improved IBM on Case No. [16-17]

(c) Improved IBM on Case No. [17-18] (d) Improved IBM on Case No. [18-19]
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(e) Improved IBM on Case No. [19-20] (f) Improved IBM on Case No. [20-21]

Figure A.6: Error contours for Improved IBM with steady state heat conduction between
concentric circles for Neumann BC on the outer circle and Dirichlet BC on the inner circle.
Figures (a)-(f) show results corresponding to each pair of cases in table 4.3.
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B Contour Plots - Heat Conduction in a Cross-
Section of an Infinite Cylinder

(a) Case No. 1 (b) Case No. 2

(c) Case No. 3 (d) Case No. 4
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(e) Case No. 5 (f) Case No. 6

(g) Case No. 7

Figure B.1: Error contours for WLSQ IBM cases with transient heat conduction in a
cross-section of an infinite cylinder with constant surface temperature. Figures (a)-(g)
show results corresponding to each case in table 4.4.
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(a) Improved IBM on Case No. [1-2] (b) Improved IBM on Case No. [2-3]

(c) Improved IBM on Case No. [3-4] (d) Improved IBM on Case No. [4-5]
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(e) Improved IBM on Case No. [5-6] (f) Improved IBM on Case No. [6-7]

Figure B.2: Error contours for Improved IBM with transient heat conduction in a
cross-section of an infinite cylinder with constant surface temperature. Figures (a)-(f)
show results corresponding to each pair of cases in table 4.4.
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C Application Overview
The application which has been developed is structured in two parts. The first of which
is the IBM Application containing the WLSQ IBM method and solver config. And a
second part in the form of a data viewer which provides a GUI for setting up, running,
and analyzing the simulations in real-time. The main classes of the IBM Application are:

1. GeometrySDF

2. CartGrid

3. Schemes

4. Solver

Which are responsible for the immersed boundaries, the cartesian grid, the FTCS scheme,
and organizing the simulation tasks. The main libraries utilized in this area are

1. Eigen - Linear algebra

2. HDF5 - Hierarchical Data Format version 5

3. HighFive - High-level interface for HDF5

Figure C.0: View of the GUI window for running the simulations, in this case running the
steady-state benchmark with Dirichlet boundaries. The application has two representations
of the field, one on the right to inspect the geometry of the immersed boundary, and
another on the left to view the error distribution.
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The data viewer consists of a main UI layer, built on the following graphics libraries

1. OpenGL - Rendering API

2. ImGui - Immediate mode GUI framework

3. ImPlot - Plotting library for ImGui

An example of the application is presented in figure C.0 where an example simulation is
performed, with the view focused on the N = 81 grid.

The application including all source codes is available at

https://github.com/TerjeTL/ImprovedIBM

https://github.com/TerjeTL/ImprovedIBM
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D Source Code
1 void FTCS_Scheme::Update(double dt, double r)
2 {
3 BoundaryCondition();
4

5 phi_old = m_mesh_grid->GetPhiMatrix();
6 Eigen::MatrixXd& phi = m_mesh_grid->GetPhiMatrixRef();
7

8 auto grid_extents = m_mesh_grid->GetMeshSize();
9

10 #ifdef MT_ON
11 #pragma omp parallel for num_threads(4)
12 #endif
13 for (int j = 1; j < grid_extents.first-1; j++)
14 {
15 for (int i = 1; i < grid_extents.second-1; i++)
16 {
17 // skip if node is a ghost point/inactive
18 if (m_mesh_grid->GetCellFlag(i,j) != 0)
19 {
20 continue;
21 }
22

23 phi(j, i) = phi_old(j, i) + 1.0 * r * (phi_old(j, i + 1)
24 - 2 * phi_old(j, i) + phi_old(j, i - 1)
25 + phi_old(j + 1, i) - 2 * phi_old(j, i)
26 + phi_old(j - 1, i));
27 }
28 }
29

30 euclidian_norm = (phi - phi_old).squaredNorm();
31 }

Source Code 1: Function implementation of the FTCS scheme.
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1 //-------------------
2 // WLSQ Main Update
3 //-------------------
4 // This function updates all ghost point values using the WLSQ method.

Prerequisites for↪→

5 // this method is that the wlsq data of each ghost point has been
previously initialized↪→

6 // with WLSQInit, and that WLSQUpdateGeometry has been called if there
have been any changes↪→

7 // to the configuration such as the weight function or boundary
geometries.↪→

8 void CartGrid::WeightedLeastSquaresMethod()
9 {

10 for (auto& [ij, wlsq] : m_wlsq_data)
11 {
12 // Update vector of phi values corresponding to the node

selection↪→

13 int n = 0;
14 for (auto [i, j] : wlsq.m_num_stencil_reduced) // pre-sliced

numerical stencil↪→

15 {
16 wlsq.m_phi_vec_reduced[n] = phi_matrix(j, i);
17 n++;
18 }
19

20 double linear_comb_sum =
wlsq.m_M_boundary.dot(wlsq.m_phi_vec_reduced);↪→

21 wlsq.m_gp_val = wlsq.m_bc_term - linear_comb_sum * wlsq.m_M_den;
22 }
23 }

Source Code 2: Function implementation of the WLSQ .
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1 void CartGrid::WLSQUpdateGeometry()
2 {
3 // Keep track of maximum condition number
4 double cond_max = 0.0;
5

6 // Perform the update on all ghost points
7 for (auto& [ij, wlsq] : m_wlsq_data)
8 {
9 const int i = ij.first;

10 const int j = ij.second;
11

12 wlsq.ghost_point = { i, j };
13

14 // Obtain the immersed boundary and normal direction to the
boundary↪→

15 size_t parent_sdf = ghost_point_parent_sdf(j, i);
16 Eigen::Vector2d world_loc = GetWorldCoordinate(Eigen::Vector2d{

i, j });↪→

17 Eigen::Vector2d unit_normal =
immersed_boundaries.at(parent_sdf)->GetNormal(world_loc.x(),
world_loc.y());

↪→

↪→

18

19 // Define the desired stencil size
20 const int stencil_size_required = 35;
21

22 ConstructNumericalStencil(wlsq, stencil_size_required);
23

24 // Construct the Vandermonde matrix, starting with GP as first
row↪→

25 wlsq.m_vandermonde = ConstructVandermonde(3, wlsq, wlsq.m_pos);
26

27 // Construct the diagonal weight matrix
28 wlsq.m_weight = ConstructWeightMatrix(m_weight_scaling, wlsq,

wlsq.m_pos);↪→

29

30 // Compute the pseudoinverse (WV)^+
31 Eigen::MatrixXd w_v_product = wlsq.m_weight * wlsq.m_vandermonde;
32 auto pseudo_inv = PseudoInverseSVD(w_v_product);
33 cond_max = std::max(cond_max, pseudo_inv.second);
34

35 // Compute the final weight matrix
36 wlsq.m_M = pseudo_inv.first * wlsq.m_weight;
37

38 // Initialize related vars
39 wlsq.m_phi_vec = Eigen::VectorXd::Zero(wlsq.m_active_nodes_num +

1);↪→

40 wlsq.m_bc_type = GetBoundaryCondition(i, j);
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41 wlsq.m_unit_normal = unit_normal;
42 wlsq.m_bc_value = GetBoundaryPhi(i, j);
43

44 // Optimization measures (pre-slicing data)
45 wlsq.m_num_stencil_reduced = std::vector<std::pair<int,

int>>(wlsq.m_numerical_stencil.begin() + 1,
wlsq.m_numerical_stencil.end());

↪→

↪→

46 wlsq.m_phi_vec_reduced = wlsq.m_phi_vec(Eigen::seq(1,
Eigen::placeholders::last));↪→

47 Eigen::VectorXd M_0 = wlsq.m_M(0, Eigen::seq(1,
Eigen::placeholders::last));↪→

48 Eigen::VectorXd M_1 = wlsq.m_M(1, Eigen::seq(1,
Eigen::placeholders::last));↪→

49 Eigen::VectorXd M_2 = wlsq.m_M(2, Eigen::seq(1,
Eigen::placeholders::last));↪→

50

51 // Pre-compute terms for the main update function
52 if (wlsq.m_bc_type == BoundaryCondition::Dirichlet)
53 {
54 wlsq.m_M_boundary = M_0;
55 wlsq.m_M_den = 1.0 / wlsq.m_M(0, 0);
56 wlsq.m_bc_term = wlsq.m_bc_value * wlsq.m_M_den;
57 }
58 else if (wlsq.m_bc_type == BoundaryCondition::Neumann)
59 {
60 auto n_x = wlsq.m_unit_normal.x();
61 auto n_y = wlsq.m_unit_normal.y();
62

63 wlsq.m_M_boundary = n_x * M_1 + n_y * M_2;
64 wlsq.m_M_den = 1.0 / (n_x * wlsq.m_M(1, 0) + n_y *

wlsq.m_M(2, 0));↪→

65 wlsq.m_bc_term = wlsq.m_bc_value * wlsq.m_M_den;
66 }
67 }
68

69 //printf("Condition Number: %g\n\n", cond_max);
70 }

Source Code 3: Function implementation of the WLSQ Construction.



82 D Source Code

1 // method for calculating the pseudo-Inverse as recommended by Eigen
developers↪→

2 template<typename MatrixType>
3 std::pair<MatrixType, double> PseudoInverseSVD(const MatrixType& mat,

double epsilon = std::numeric_limits<double>::epsilon())↪→

4 {
5 Eigen::JacobiSVD< MatrixType > svd(mat ,Eigen::ComputeThinU |

Eigen::ComputeThinV);↪→

6

7 double tolerance = epsilon * std::max(mat.cols(), mat.rows()) *
svd.singularValues().array().abs()(0);↪→

8 double condition_number = svd.singularValues()(0) /
svd.singularValues()(svd.singularValues().size() - 1);↪→

9

10 return { svd.matrixV() * (svd.singularValues().array().abs() >
tolerance).select(svd.singularValues().array().inverse(),
0).matrix().asDiagonal() * svd.matrixU().adjoint(), condition_number
};

↪→

↪→

↪→

11 }

Source Code 4: Function implementation SVD pseudoinverse.
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