
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f M
at

er
ia

ls
 S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Erlend Mikkelsen Østvold

EBSP Indexer

An open-source alternative to commercial EBSD
software

Master’s thesis in Engineering and ICT
Supervisor: Jarle Hjelen
Co-supervisor: Bjørn Haugen
June 2023

Erlend Mikkelsen Østvold

EBSP Indexer

An open-source alternative to commercial EBSD
software

Master’s thesis in Engineering and ICT
Supervisor: Jarle Hjelen
Co-supervisor: Bjørn Haugen
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Materials Science and Engineering

Acknowledgements

This thesis considers the development of EBSP Indexer, an application for processing, indexing
and analyzing Electron Backscatter Patterns (EBSPs). EBSP Indexer is the continuation of the
prototype which resulted from the pre-study [1], developed by Hallvard Tangvik Tellefsen Relling,
Olav Leth-Olsen and Erlend Mikkelsen Østvold. The contributions from the master’s thesis of
Relling [2] have been crucial to the continuation which lead to EBSP Indexer, and includes a
more in-depth perspective on the capabilities of Dictionary Indexing (DI). The master’s thesis
of Leth-Olsen [3] considers the use of DI to identify martensite in low-carbon steel, while also
implementing additional functionality for calibrating pattern center that is present in the final
version of EBSP Indexer. The source code of EBSP Indexer may be used to complement the
reading of this thesis, which may be found either as an attachment or by the Digital Object
Identifier: 10.5281/zenodo.7925262 provided by Zenodo [4]. Locations of highlighted code are
given relative to the root directory of the source code.

This thesis has been supervised by Professor Jarle Hjelen from the Department of Materials Science
and Engineering, and co-supervised by Associate Professor Bjørn Haugen from the Department
of Mechanical and Industrial Engineering, at the Norwegian University of Science and Technology
(NTNU). I would like to reach out a special thanks to our supervisor Prof. Hjelen for his guidance,
feedback, and efforts in formulating the scope of the project. Additional thanks go to my co-
developers and master’s students Relling and Leth-Olsen, as well as my co-supervisor Assoc. Prof.
Haugen. Technical help from Ph.D. Candidate H̊akon Wiik Ånes, developer and maintainer of
kikuchipy [5], the Python library which provides the foundation for EBSP Indexer, has been
greatly appreciated. Thanks to our associates from the Electron Microscopy lab at NTNU, senior
engineers Sergey Khromov and Yingda Yu, and also the students who enrolled in TMT4166 Module
3, who helped test the application. The contributions of everyone have led to what EBSP Indexer
is today.

Lastly, I am thankful for the opportunity I was given to write my master’s thesis in cooperation
with the Department of Materials Science and Engineering at NTNU. This thesis builds upon
the very core of my chosen field of study, creating bridges between the disciplines of science and
software.

i

Abstract

Electron backscatter diffraction (EBSD) has become a well-established technique for investigating
microstructures within crystalline materials, and so the interest in pushing the limitations of EBSD
has grown. Dictionary Indexing (DI) has proven to be a valuable alternative when Hough Indexing
(HI) fails to yield accurate crystallographic information. This is due to HI relying on image feature
extraction, whereas DI takes advantage of dynamically simulated EBSD patterns (EBSPs) that
reproduce accurate intensity distributions. Many commercial EBSD software features indexing
routines based on DI, but no free alternative in the form of a traditional desktop application exists.
There do however exist open-source solutions which offer EBSD tools for processing, indexing and
analyzing EBSPs, usually accessible through an Application Programming Interface (API). Two
such solutions are the Python libraries kikuchipy [5] and PyEBSDIndex [6].

EBSP Indexer was developed as an open-source application, which uses a Graphical User Inter-
face (GUI) to increase accessibility to EBSD tools offered by kikuchipy and PyEBSDIndex. The
application was developed using principles of interaction design and aims to improve usability for
students and material scientists who are new to EBSD. A usability test was conducted to indicate
the performance, compatibility and overall user experience of the application, which received an
average score of 8.4 out of 10 from participants. Observations made during the test and data from
a questionnaire were used to further improve features, which resulted in version 0.1.0 being released
online. The application was packaged as an installer for Windows and an app for macOS, which
were made available to download through Zenodo [4] and SourceForge [7]. Additional developer
resources were made in an attempt to establish an open-source community, which provides the
possibility for future development and maintenance of the source code.

This thesis continues the work of the pre-study [1] by contributing the following:

• Addition of new software features, and overhauling of existing ones

• Carrying out a usability test of a pre-release version of the software

• Distributing and publishing the first official release of EBSP Indexer

• Developer resources in the form of guidelines, tutorials and documentation

• Submission of an abstract and a research poster to The 20th International Microscopy Con-
gress (IMC20)

Patch v0.1.1 of EBSP Indexer is already in development, and aims to fix minor issues which were
postponed or discovered after release. Future work consists of improving stability on Mac, over-
hauling the existing code design, implementing unit tests, and the possibility of Hybrid Indexing,
which combines DI and HI to increase indexing speed while retaining high levels of accuracy.

ii

Sammendrag

Elektron tilbakesprednings diffraksjon (EBSD) er blitt en godt etablert metode for å undersøke
krystallstrukturer og -orienteringer i krystallografiske materialer, og som resultat har interessen
for å presse begrensingene av EBSD økt. Dictionary Indexing (DI) has vist seg å være et ver-
difult alternativ i tilfeller der Hough Indexing (HI) ikke har mulighet til å gi god nok presisjon.
Dette er fordi HI er avhengig av ekstraksjon av Kikuchi b̊and i bilder, mens DI benytter seg av
dynamisk simulerte EBSD mønstre (EBSPs) som inneholder presise intensitetsfordelinger. Mange
kommersielle programvarer tilbyr indiserings metoder basert p̊a DI, men det er en mangel p̊a slike
løsninger som er gratis og i form av en tradisjonell skrivebords applikasjon. Derimot finnes det en
del åpen-kilde kode løsninger som tilbyr EBSD verktøy for prosessering, indisering og analysering
av EBSPs, som vanligvis er tilgjengelige gjennom et applikasjonsprogrammeringsgrensesnitt (API).
To slike løsninger er Python bibliotekene kikuchipy [5] og PyEBSDIndex [6].

EBSP Indexer ble utviklet som en åpen-kilde applikasjon, som benytter seg av et grafisk bruker-
grensesnitt (GUI) for å forbedre tilgjengelighet av EBSD verktøy fra kikuchipy og PyEBSDIndex.
Utvikling av applikasjonen har tatt hensyn til prinsipper innenfor interaksjon design, og sikter p̊a å
forbedre brukervennlighet mot studenter og andre nybegynnere innen EBSD. En brukervennlighets
test ble gjennomført for å gi en indikasjon p̊a ytelse, kompatibilitet, og brukeropplevelse, som
deltagerne ga en gjennomsnitts score p̊a 8.4 av 10. Observasjoner under testen og data fra et
egetlaget spørreskjema, ble brukt til å forbedre og videreutvikle funksjonalitet, som resulterte i
at versjon 0.1.0 ble gitt ut p̊a nett. Applikasjonen ble pakket sammen og distribuert som instal-
lasjonsfil for Windows og som app for macOS, der begge ble gjort tilgjengelige for nedlasting p̊a
Zenodo [4] og SourceForge [7]. I tillegg ble det laget og publisert en rekke utviklerresurser for å
etablere et åpen-kilde samfunn, som skal kunne gi mulighet til videreutvikling og vedlikehold av
kildekoden.

Denne oppgaven bygger p̊a arbeidet som ble gjort i prosjektoppgaven [1], ved å bidra med følgende:

• Tilføyelse av ny programvare funksjonalitet, i tillegg til fornying av eksisterende implementas-
joner.

• Utførelse av brukervennlighets test av en forh̊ands-utgivelse av programvaren

• Distribuere og publisering av den første offisielle utgivelsen av EBSP Indexer

• Utviklingsressurs i form av retningslinjer, opplæring og dokumentasjon

• Innlevering av sammendrag og forskningsplakat til Den 20. Internasjonale Mikroskopikon-
gress (IMC20)

Oppdatering v0.1.1 av applikasjonen er allerede under utvikling, og vil inneholde sm̊a feilrettinger
som ble utsatt eller oppdaget etter første utgivelse. Fremtidig arbeids best̊ar av å forbedre stabilitet
p̊a Mac, fornye kode design, implementasjon av enhetstesting, og muligheten for Hybrid Indexing,
som kombinerer DI og HI for å øke indiserings-hastighet og samtidig beholde høye presisjon.

iii

Table of Contents

List of Source Codes vi

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Pre-study and scope of this thesis . 3

2 Theory 5

2.1 Electron backscatter diffraction . 5

2.2 Graphical user interface . 11

2.3 Usability testing . 15

3 Development and methods 17

3.1 State of the software . 17

3.2 External packages and libraries . 19

3.3 Distribution of software . 25

3.4 EBSD-GUI Pre-release . 30

4 Usability test 37

4.1 Questionnaire . 37

4.2 Lab sessions . 38

4.3 Feedback and data . 39

4.4 EBSP Indexer v0.1.0 . 42

5 Results 46

5.1 Software . 46

5.2 Additional resources . 51

5.3 IMC20 abstract and research poster . 52

6 Discussion 53

6.1 Development process . 53

6.2 Usability test approach . 55

6.3 Software evaluation . 56

iv

6.4 Source code and resources . 58

7 Future work 60

8 Conclusion 62

Bibliography 63

Appendices i

A EBSD-GUI Pre-release - Questionnaire . i

B EBSD-GUI Pre-release - Questionnaire results . iv

C Image of main application window . x

D IMC20 abstract submission . xi

E IMC20 EBSP Indexer poster . xii

F EBSP Indexer README.md . xiii

G Developer Tutorials - Contribution guidelines . xv

H Developer Tutorials - Installation . xvi

I Developer Tutorials - Distribute new versions . xviii

J Developer Tutorials - Workflow . xx

K Documentation - Package utils . xxii

L Documentation - Package scripts . xxxii

v

List of Source Codes

1 Redirecting output from a method that is called in a separate thread 23
2 PyInstaller hook for kikuchipy . 25
3 New approach for exporting the Python scripts into an application 26
4 Installing Microsoft Visual Studio C++ Redistributed 2015-2022 automatically . . 27
5 Unix command which points to the Unix file within the app bundle 28
6 The addition of signals to extend the functionality of the previous version of worker 35
7 Temporary fix using navigation mask before the release of kikuchipy v0.8.4 36
8 Solution for refining orientations in single or multiple crystal maps 45

List of Figures

1 Comparison between phase maps from Hough Indexing and Dictionary Indexing . 2

2 Simplified flow chart showing steps that the EBSD process is composed of 3

3 Illustration of how an experimental setup for EBSD analysis might look 5

4 Electrons interacting with the prepared sample according to Bragg’s law 6

5 Image Quality map of an SDSS dataset that contains sigma phase 7

6 Hough transformation of multiple points on a line to a single peak in Hough space 8

7 Indexed pattern with identified Kikuchi lines . 9

8 Steps of pattern matching . 10

9 Comparison of simulated EBSPs used in DI and HI 11

10 GUI of AZtecCrystal . 13

11 GUI of TSL OIM Data Collection . 14

12 GUI of the prototype created by Natlandsmyr . 15

13 GUI displayed on a portable device . 15

14 Flow chart showing the planned development process of the software 19

15 Unhandled exception in the script when running Qt6 on an unsupported platform
or one that is missing runtime libraries . 23

16 Variations of a trash icon provided by Linea Iconset 24

17 Copyright notice displayed inside the application’s Terminal. 29

18 Comparison between old and new phase table . 31

19 Allowed docking area inside the QMainWindow class 33

20 Job Manager containing jobs in different states . 34

21 Render Queue of DaVinci Resolve . 34

22 Questions used to establish the demographic of the participants 37

23 Plenary session with students in TMT4166 . 38

24 Summary of data gathered from the usability test and questionnaire 39

25 New icon for EBSP Indexer . 42

vi

26 Exit confirmation dialog . 42

27 Handling of phases from crystal maps and master patterns in refinement dialog . . 44

28 Warning displayed when there is a conflict between phases 45

29 Customizable main application window . 47

30 System Viewer with adaptive context menus . 47

31 Introduction of user restrictions to signal-to-noise improvement dialog window . . . 48

32 Final version of the overhauled dialog window for Hough Indexing 48

33 New functionality for specifying a phase . 49

34 Final version of dialog for refinement of orientations 49

35 Customizable jobs using threads that can perform Python code inputted by the user
through the terminal . 50

36 Inspecting a downloaded nickel dataset using Signal Navigation 51

37 Contributions to the main branch of the GitHub Repository during the spring
semester of 2023 . 53

38 Usability as a function of the number of features in GUI and API 56

39 GUI of EBSD-Image, an old Java open-source project from 2011 59

40 Re-indexing step in Hybrid Indexing . 60

List of Tables

1 Overview of maintained EBSD software which takes advantage of pattern matching 3

2 Overview of supported platforms for Qt 5.15 LTS and Qt 6.5 LTS. 23

3 Issues discovered during usability test of EBSD-GUI Pre-release 40

vii

Acronyms

API Application Programming Interface. 2, 3, 11, 20–22, 29, 30, 56, 57, 59

BCC Body-centered Cubic. 9, 21

CPU Central Processing Unit. 20, 22, 32, 46

DI Dictionary Indexing. 1, 2, 7, 9–11, 14, 15, 18, 20, 30, 35, 36, 38, 43, 48, 49, 54, 57, 60

DOI Digital Object Identifier. 30, 46

EBSD Electron Backscatter Diffraction. 1–3, 5, 8–10, 12, 13, 16, 20, 37, 41, 42, 53, 55–57, 59, 62

EBSP Electron Backscatter Pattern. 1–3, 5–11, 20, 21, 38, 42, 46

FCC Face-centered Cubic. 2, 9, 21

GPL General Public Licence. 20, 21, 24, 29, 46, 51, 62

GPU Graphics Processing Unit. 19, 22, 30, 32

GUI Graphical User Interface. 3, 4, 11–15, 18, 19, 22–25, 27, 28, 30, 32, 41, 43, 46, 53, 54, 56–62

HI Hough Indexing. 1, 2, 7–11, 17, 18, 20–22, 30–32, 35, 36, 38, 39, 43–45, 48, 49, 53, 54, 57, 60

IDE Integrated Development Environment. 27, 28

IMC20 The 20th International Microscopy Congress. 46, 52, 59, 62

IPF Inverse Pole Figure. 2, 6, 13, 21, 31, 33, 36, 42, 48, 57

IQ Image Quality. 7, 9

LTS Long-Term Support. 23, 24, 28

MSVC Microsoft Visual Studio C++ Redistributed 2015-2022. 24, 27

OIM DC TSL OIM Data Collection. 12, 13, 15, 20–22, 38, 39, 42, 53, 57

OS Operating System. 20, 28, 37, 46

PC Pattern Center. 6, 20–22, 43, 46

ROI Region of Interest. 6, 7, 21, 36, 39–41, 43, 44

SDSS Super Duplex Stainless Steel. 7, 14, 15, 38, 44

SEM Scanning Electron Microscope. 1–3, 5, 7, 38, 46

UI User Interface. 15, 20, 53, 58

UX User Experience. 11, 24, 38, 53, 57

viii

1 Introduction

There is a lack of non-commercial, traditional desktop applications within the Electron Backscatter
Diffraction (EBSD) community, which features indexing routines based on dictionaries of diffraction
patterns, developed by S. Singh and M. De Graef [8].

This thesis is the continuation of the preliminary work of the pre-study [1], conducted during the
Fall semester of 2022. Necessary background on the topic of EBSD is given in the subsections
below, to better understand the current situation of software used in the industry, as well as the
previous work that has led to this thesis. Details about the goals and scope are described, which
aims to address the above problem.

1.1 Background and motivation

Information about a crystalline material’s microstructure is vital to understand the behavior of
the material. Many sciences like mechanical engineering, nanotechnology, material science, and
geomechanics, are concerned with the strength, ductility, and fatigue resistance of the material, all
of which can be derived from inspecting the microstructure. This knowledge can in return deliver
methods for manufacturing metallic materials of increased strength-to-weight ratio and energy
absorption capacity, which can be produced at a lower cost of raw materials and emissions [9].

To gain insight into the microstructure of a crystalline material, a common approach is to use
EBSD, a specific signal mode deployed using a Scanning Electron Microscope (SEM). A sample of
considerable size, taken from the crystalline material, is placed inside the vacuum-sealed chamber
of the SEM, before being exposed to a high-energy beam of electrons emitted from a probe above
the sample [1]. The electrons interact with the sample and are reflected towards a thin, transparent
phosphor screen, generating an Electron Backscatter Pattern (EBSP) that is captured by a light-
sensitive camera, from which crystallographic information can be derived. The high-energy beam
is moved across the surface of the sample, generating large datasets which might consist of multiple
hundreds of thousands EBSPs. The resolution of an EBSP is typically 100x100 pixels, where each
pixel is 8-bit, allowing datasets to be streamed at speeds of several hundred patterns per second.
As a result, the size of a dataset can become several gigabytes. To make sense of information like
grain sizes, orientations, phases, and more, the dataset of EBSPs must be indexed either during
or after the scan, the latter usually being on a separate computer. The indexing procedure is
commonly done using one of two approaches, either by Hough Indexing (HI), developed from the
work of Lassen et al. [10], or by pattern matching, which usually consists of dictionary indexing
and refinement of orientation [11].

HI [10] consists of performing the Hough Transform [12] on EBSPs to identify the high-intensity
lines, also known as Kikuchi bands. The identified bands are evaluated in comparison to theoretical
values based on the material structures present in the sample, to determine the orientation of the
grain that the EBSP originated from [1]. HI has been considered the golden standard in indexing
methods since its first introduction in 1992, due to providing reliable results at an affordable
number of required computations. The approach does however lack precision when indexing data
from samples that consist of materials with similar crystal structure, due to the resulting EBSPs
being almost indistinguishable when it comes to determining the material of origin. Identification
of the bands can be troublesome when EBSPs are subjected to noise, a common consequence
of lowering the accelerating voltage of the beam to increase spatial resolution [13, 1]. Another
problem arises when the EBSP is a superposition of two differently oriented grains, common to
occur at grain boundaries of fine-grained samples [11].

Pattern matching techniques provide an alternative in cases where HI struggles to produce correct
indexing results. A general framework for dictionary-based indexing (DI) was developed by Singh
and Graef [8] in 2016, where indexing is done by comparing the experimental patterns with a
dictionary of simulated patterns, which contains all scattering vectors [14]. In practice, the intensity
distributions are reproduced correctly in simulated patterns, resembling that of an experimental
pattern, eliminating the need to rely on theoretical positional values of the bands, derived from

1

kinematical modeling. Standard mathematical image correlation can then be utilized to determine
a match [11].

To showcase the accuracy of DI on a fine-grained sample, phase maps from an Al-10Si dataset
are shown in Figure 1a and Figure 1b using both indexing techniques. To indicate how accurate
these phase maps are, an Inverse Pole Figure (IPF) map with corresponding color key is shown
in Figure 1c, which shows the orientation of each indexed EBSP. The sample from the Al-10Si
alloy is a good example for showcasing the strengths of DI, due to the Face-centered Cubic (FCC)
structure of aluminum resembling that of silicon’s diamond structure, which follows similar FCC
Bravais lattice [15, 1].

(a) Hough Indexing (b) Dictionary Indexing (c) IPF map

Figure 1: Comparison between phase maps from Hough Indexing (a), and Dictionary Indexing (b)
on a dataset from an Al-10Si alloy. Each pixel in a map corresponds to an EBSP. IPF map with
corresponding color key (c) shows orientations that match the mapping of phases done with DI.

Source: Adapted from the pre-study [1]

Not only does HI assign silicon to the majority of the crystal map, but the areas containing alu-
minum are also dispersed with undefined borders compared to the dictionary-indexed phase map.
Most importantly, the phase map from DI matches the assignment of individual grains, identified
by the orientations displayed in the IPF map [1]. Areas of silicon correspond to orientations colored
pink and purple. Note that the IPF map was created from the dictionary-indexed crystal map,
however HI assigns similar orientations.

There exist commercial companies dedicated to providing instruments and software solutions for
SEM and EBSD. Some popular software choices are delivered by EDAX [16], BRUKER [17] and
Oxford Instruments Nanoanalysis [18], all of which provide software that is locked behind expensive
licensing [1]. There do exist free alternatives, but few of these offer pattern-matching techniques
and the ones that do lack the traditional desktop application format that commercial companies
offer. These are usually developed by open-source communities and are instead distributed as
source code, which is accessed through an Application Programming Interface (API). APIs are less
restricted in terms of functionality, offering flexibility to solve any problem regardless of shape and
size. Two projects that are regularly updated and maintained by their communities are EMsoft
[14] and kikuchipy [5]. Open-source EBSD toolboxes for MATLAB also exist, MTEX [19] and
AstroEBSD [20], but do require MATLAB licenses to be accessed. An overview of EBSD software
that includes pattern matching routines for indexing is shown in Table 1.

2

Table 1: Overview of maintained EBSD software which takes advantage of pattern matching.

Source: Adapted from the pre-study [1]

Software Title Company/Developers Open-source Platform
TSL OIM
Data Collection

EDAX, AMETEK.inc [16] No Windows

ESPRIT Dynamics BRUKER [17] No Windows 7+
AZtecCrystal Oxford Instruments [18] No Windows 10 64-bit
EMsoft M. De Graef et al. [14] Yes Fortran
AstroEBSD T. B. Britton et al [20] Yes MATLAB
MTEX F. Bachmann et al. [19] Yes MATLAB

kikuchipy H. W. Ånes et al. [5] Yes Python

The Python library kikuchipy is being developed by Ph.D. Candidate H̊akon Wiik Ånes and in
close relation with the Electron Microscopy Lab at the Norwegian University of Science and Tech-
nology (NTNU), where former master students have contributed to its development. To lower the
user threshold to entry-level for an API like kikuchipy, a type of interface and interaction style
must be chosen. A Graphical User Interface (GUI) fits the usability and user experience goals of
simplifying interaction and is why most commercial software adopts this approach. The chosen
method for distributing the software should also reinforce this premise of simplicity. Although
installing kikuchipy is made easy thanks to package installers like the package installer for Python
(Pip), it still requires a Python distribution to be already installed in the user’s system environ-
ment. Traditional desktop applications are often installed using a single installer file, making it
less of a nuisance for users who are not familiar with navigating development environments.

1.2 Pre-study and scope of this thesis

Just like the pre-study, the scope of this thesis is contained within the 2nd step of the EBSD
process [Figure 2], concerning the assignment of orientations to EBSPs in a dataset, done by the
use of software [1]. The step takes place after the dataset is acquired from the SEM, and before
the analytical interpretation formed from post-processing the results. Development of an EBSD
software that can bridge the gap between these two steps is at the center of attention.

Step 1:
Record signals
using SEM

Step 2
Index signals
using software

Step 3
Post-process

indexed signals

Scope of pre-study and this thesis

Figure 2: Simplified flow chart showing steps that the EBSD process is composed of. The scope
of this thesis regards step 2 of the process.

Considering that this thesis continues the work of the pre-study, the overall objective still applies;
To make the rich functionality of kikuchipy more accessible to users who are not familiar with the
library, or coding in general, by developing a Graphical User Interface (GUI). The result of the
preliminary work was a GUI-based software, thought to be in a pre-release and test-ready state,
which provides the foundation for a worthy solution [1]. However, further inspection shows quality
that resembles that of a prototype, due to new issues being discovered. An in-depth description
of these issues is given in Section 3.1. Although the objective implies a target group who are
not concerned with the details and complexity of programming, the GUI also aims to provide an
unrestricted experience for more advanced users. This was solved by implementing an interactive

3

Python interpreter as a terminal inside the GUI [1]. The software was packaged to provide an
executable on Windows, which could run without a Python installation. A solution for creating an
app bundle on macOS was known but did not see enough time to be tested during the pre-study.
All the commercial solutions in Table 1 seem to lack support for macOS, and that is why it would
be of great interest to develop a solution that supports this.

With the necessary functionalities in place, the focus shifts from creating features to refining them.
The software has also been allowed to be deployed and tested among students who have enrolled in
the course TMT4166 - Experimental Materials Chemistry and Electrochemistry, and signed up for
Module 3 Scanning electron microscopy, EBSD [21]. This can provide valuable feedback and data,
and serve as an indication of the software’s performance and stability. The result should be the
first official public release of the software, alongside the necessities needed to build an open-source
community to maintain the software. From this, the following objectives can be formulated:

• Resolve the prototype’s issues by implementing new features and overhauling existing ones.
The result should be distributed as an installer on Windows and as an app bundle on macOS,
and should provide a stable experience for end users.

• Conduct a usability test that involves users of the target group to receive feedback and data,
which can be used to ensure the completion of the previous point.

• Publish the software, document code, create tutorials, and define guidelines to create the
necessary foundation for an open-source community.

4

2 Theory

In this section, theoretical background on EBSD is given, with a focus on indexing and refinement
techniques that are featured in the software. Concepts and principles within interaction design
are explained, to provide the necessary background for describing the development process of the
software. Details on what a good usability test and questionnaire entail are also presented.

2.1 Electron backscatter diffraction

In order to bridge the gap between an engineering discipline and software, the necessary theoretical
background must be facilitated. Understanding the science behind the functionality that users will
benefit from in their daily tasks, is necessary for the development of an interactive product that
understands the user’s needs. This section is based on the literature study conducted and presented
in the pre-study, with some added extensions.

EBSD has become a widely accepted technique deployed by SEM for characterizing crystallographic
microstructures of metals, due to the rapid expansion of available SEMs [22]. Instead of relying on
light to form images, a SEM takes advantage of the magnification capabilities of using electrons
to generate signals that can form images. In the case of EBSD, the image shows an Electron
Backscatter Pattern (EBSP) made from Kikuchi lines, named after Seishi Kikuchi, who together
with Shoji Nishikawa discovered the first case of EBSP in 1928 [23]. From these patterns, crystal
properties like orientation, phase, shape and size of grains, texture, and strain can be obtained, all
of which enable the study of microstructure phenomenons, such as re-crystallization, grain growth
and phase transformations. Knowledge of how metals act on a submicron scale can determine the
overall performance, an advantage that contributes to a superior design within many engineering
disciplines. For example, in the manufacturing of turbines, the material of the blades should be
properly aligned to favour strength in the strain direction.

Before a sample is studied, the appropriate preparation of the sample must be made. The types
of preparations vary between materials, but all with the purpose of making the sample perfectly
flat without contaminating or damaging the surface [22]. The quality of the EBSPs are highly
influenced by the surface of the sample, and the capabilities of EBSD may therefore limit the
investigation of some materials. The prepared sample is placed and angled about 70° inside a
vacuum chamber, where it is exposed to a high energy beam of electrons, typically a 20 kV probe
current, emitted by the SEM [Figure 3] [1].

Figure 3: Illustration of how an experimental setup for EBSD analysis might look.

5

The electrons interact with the crystal of the material, described by the geometry and arrangements
of atoms, and about 5% of electrons are diffracted towards the pattern acquisition device, which
consists of a transparent phosphor screen and a light-sensitive camera [1]. The specimen-to-screen
distance is usually around 20 mm and affects the location of the projected center on the phosphor
screen, also known as the Pattern Center (PC). Photons are emitted when the high energy electrons
hit the phosphor screen, which is captured by the light-sensitive camera to create images of the
EBSPs. The high energy beam is moved over the Region of Interest (ROI) of the stationary sample,
which results in the diffraction geometry and PC shifting at each point. The impact of this shift
depends on the size of the ROI and might require dynamic calibration of PCs from spot to spot
[24].

The diffraction of electrons that form Kikuchi lines on the phosphor screen act in accordance with
Bragg’s law:

2 ∗ dhkl ∗ sin θhkl = n ∗ λ (1)

θhkl is the Bragg angle between the diffracting plane hkl and the electron beam, which is equal to
the distance from the center of the Kikuchi line to its perimeter. The wavelength λ is inversely
proportional to the accelerating voltage used, which is why such a high voltage is required to
produce distinct Kikuchi lines that can be identified [1]. The order of reflection is n, usually equal
to 1, and takes the additional distance the electron must travel into consideration [Figure 4b]. dhkl
is the interplanar spacing between parallel planes with Miller index hkl and can be derived from
the lattice parameters of the crystal structure. For a cubic crystal structure with lattice parameter
a, interplanar spacing between {hkl}-planes can be calculated by:

dhkl =
a√

h2 + k2 + l2
(2)

The center of the Kikuchi line can be interpreted as the intersection between the lattice plane of
{hkl} and the phosphor screen, meaning intersections between lines represent zone axes [Figure 4a]
[1]. Crystal orientations are derived from θhkl, acquired by assigning different families of planes
to the considered Kikuchi lines, which is done by Equation 1 and Equation 2 for cubic crystal
structures. Orientations may be visualized in an Inverse Pole Figure (IPF) map, a two-dimensional
graphical representation that shows the location of a sampled point’s direction relative to a chosen
crystal reference system [25]. Directions in the reference system can then be conveniently visualized
as values of red, green and blue in a color key [Figure 1c].

(a) Back-scattered electrons forming a cone of in-
tense electrons that appears as Kikuchi Lines on
the phosphor screen.

Source: Schwarzer et al. [24]

(b) Electrons interacting with the atoms of the
sample surface according to Bragg’s law (Equa-
tion 1).

Source: Wikipedia, The Free Encyclopedia [26]

Figure 4: Illustrations of how electrons interact with atoms in the prepared sample (b) and are
diffracted as a cone of high-intensity electrons, appearing as Kikuchi lines on the phosphor screen
(a).

6

The quality of experimental EBSPs may vary depending on the material, preparation technique
used, the EBSP detector, and the specifications of the SEM, e.g. accelerating voltage, step size
and resolution. It is therefore common for EBSD software to include options for image processing.
Some options that are available in kikuchipy are the removal of static and dynamic backgrounds,
and averaging of patterns based on their neighboring patterns [5]. Anomalies, visible damage to
the phosphor screen, and background noise, all of which are constant and present in all patterns
acquired, may be removed by subtracting the static background using a flat field image. The flat
field image contains an even background by combining noise generated from differently oriented
grains in the ROI [1]. Consequently, relative intensities are lost, and kikuchipy rescales intensities to
use the complete available data range, usually an 8-bit grey scale. Relative intensities can however
be reintroduced by dynamic background removal, which includes subtracting each pattern with a
Gaussian blurred version of itself [5]. Some EBSPs may benefit from neighbor averaging, where
a number of adjacent patterns, defined by the size of the kernel used, are combined with the
processed EBSP. The result is less noisy patterns, due to noise from camera operating conditions
being targeted. The current kikuchipy implementation of this does however not take into account
grain boundaries, meaning EBSPs at these boundaries might become a combination of differently
oriented grains. The resulting EBSP will then seem to have a completely different orientation. It is
therefore advisable to skip this step of image processing when dealing with fine-grained materials,
or when grain boundaries are studied.

Image Quality (IQ) may be quantified by measuring the sharpness of some Kikuchi lines, which
can be done by performing a Fast Fourier Transform of the original pattern [24, 10]. An IQ map
of the ROI will then show grain boundaries and surface damage due to producing lower quality
signals [Figure 5].

Figure 5: IQ map of an Super Duplex Stainless Steel (SDSS) dataset that contains sigma phase.
Both static and dynamic background has been removed, to better showcase which crystals produce
low-quality patterns. The dark spots are therefore most likely due to the presence of the sigma
phase. IQ is represented by a measure of how sharp the image of the EBSP is, based on the
procedure defined by Lassen et al. [10].

The procedure of indexing EBSPs was automated in 1992 with, among other things, the work
Image processing procedures for analysis of electron back scattering patterns by Lassen et al. [10],
and can today be performed in two ways; Hough Indexing (HI) and Dictionary Indexing (DI).

7

2.1.1 Hough indexing

HI was introduced as part of the fully automated EBSP analysis by Lassen et al. [10], and is
still the most used method for indexing which relies on image analysis [11]. Extraction of image
features, more specifically Kikuchi lines, is done using the Hough Transform. The initial Hough
transformation was first introduced in 1962 by Hough [12], and later in 1972 as part of a major
leap in computer vision, when it was used by Duda and Hart [27] to detect lines and simple shapes
within digital images.

Depending on the software, HI may be implemented in slightly different ways. They do however
all include applying a Hough transformation to the digital images of the EBSPs. The digital
image can be regarded as a Cartesian grid which consists of many points (pixels), specified by the
resolution used by the pattern acquisition device. Each point contains an intensity value and can
be identified by its location (x, y) in the grid. The intensity value is an integer within a finite range
which depends on the bit size of the data. Commonly a single 8-bit grey channel is used, which
implies a range from 0 to 255. All possible lines through a point (x, y), parameterized by ρ and θ,
can be described as:

ρ = x ∗ cos θ + y ∗ sin θ (3)

ρ is the shortest perpendicular distance from the origin (0, 0) of the grid to the line, and θ is the
angle formed between the line and an axis of reference [Figure 6a]. A point (x, y) in the spatial
domain can then be visualized as a single sinusoidal curve of constant intensity in Hough space,
which may also be regarded as a Cartesian grid with axes for ρ and θ. It is common for EBSD
software to allow the user to define the step size of this Cartesian grid, but usually, a step size of
1° is used. By transforming each point (x, y) to a curve (θ, ρ), and assigning the accumulation of
intensities of overlapping curves to a single cell, high-intensity peaks are formed in Hough space
[Figure 6a]. These are often called butterfly-peaks, due to the width of lines in the spatial domain,
which translates to minor differences in distance ρ and a constant angle θ. The result is multiple
neighboring high-intensity cells around the intersection of curves, which can easily be identified
even though the originating line is fractured [Figure 6b].

(a) Hough transform of a line in the spatial domain
to a peak in Hough space. (b) Identification of peaks in Hough space.

Figure 6: Hough transformation of multiple points on a line to a single peak in Hough space, which
can easily be identified. The EBSP of origin in image b is from the dataset described in Section 1.1.

Source: Adapted from the pre-study[1]

Optimization techniques to increase accuracy and performance may be used depending on the
implementation. An ideal assumption is that each pixel contributes to a single line in the image
instead of all possible lines, even though it might originate from an intersection between bands
[24, 1]. To simulate this, the intensity of each pixel may be directly mapped onto existing peaks
by a second Hough transformation, most likely improving accuracy. This can be considered as a
discrete Radon transform (Radon 1917) [28], which is the generalized approach from which the

8

Hough transform originated [24]. The accumulated intensity Ri of a line i, or cell i in Hough space,
can be calculated from:

Ri(ρi, θi) =

J∑
j=0

K∑
k=0

f(xj , yk) ∗ δ(ρi − xj ∗ cos θi − yk ∗ sin θi) (4)

J and K are the numbers of pixels in each dimension of the image, f(xj , yk) is the intensity of
pixel (xj , yk), and Dirac delta function δ equals 1 if the pixel is part of line i and 0 otherwise [1].

Figure 7: Indexed pattern where bands have been
assigned families of planes.

Source: Oxford Instruments [29]

The problem has then been reduced from
identifying lines to identifying single peaks of
high intensity, which is much more applic-
able to be performed automatically by a com-
puter. The next step is calculating the angles
between experimental Kikuchi lines, and com-
paring them to theoretical interplanar angles,
which are based on reflecting planes present in
the crystal structure of the material [11]. This
makes knowledge of the sample’s structure a
prerequisite, but for cubic crystal structures,
it is often sufficient to specify a FCC or BCC
structure. A lookup table of reference angles
can be derived from theoretical geometry calcu-
lated from kinematic structure factor [11]. This
also allows for the computation of relative in-
tensities, but requires a more detailed specific-
ation of the crystal structure to be used in the
indexing routine.

The experimental Kikuchi lines with the
highest intensity and smallest width are compared to the lookup table and are ranked accord-
ingly. Comparisons can either be done by full band set indexing, or by triplet/quadruplet indexing
[11]. The former compares all identified experimental angles at the same time, while the latter
puts Kikuchi lines in subsets of size 3 or 4 before each subset of bands are used to vote on a single
solution. Triplet/quadruplet indexing takes advantage of possible geometry, which usually yields
better results but requires more comparisons. Solutions are used to assign each Kikuchi line to a
family of planes [Figure 7], from which orientation matrix can be calculated with respect to the
position and angle of the pattern acquisition device [11].

2.1.2 Dictionary indexing

Increasing precision and accuracy of measured orientations have been of interest since the intro-
duction of automated indexing. Some materials’ crystallographic structures are almost indistin-
guishable from one another, making it impossible to determine an EBSP’s origin of phase using
HI, which depends on the extraction of image features. For example, ferrite (BCC structure) and
austenite (FCC structure) can easily be distinguished by the use of HI, however constituent phases
such as martensite have a body-centered tetragonal structure (BCT), where the central axis has
a different length c than the other two axes with length a, measured as the ratio c/a. Typically
c/a = 1.04 for martensite, and is more or less proportional with the content of carbon [30]. Al-
though sharing a similar crystal structure with ferrite, martensite is significantly harder and less
stable. There has therefore been an interest in the ability to distinguish between these two phases
with the use of EBSD, e.g. EDAX explored in 2009 the approach of using IQ maps to identify
martensite [30]. Later in 2021, the work of Baghdadchi et al. [31] identified martensite through
a manual selection which considered grain sizes and orientations, using AZtecCrystal [18]. The
master’s thesis of Leth-Olsen [3], co-creator of the software developed during the pre-study, at-
tempts to distinguish martensite from ferrite in low-carbon steel, using kikuchipy’s implementation
of Dictionary Indexing (DI) in combination with simulated EBSPs of martensite.

9

The origin of DI began in 2013 with a new approach for the simulation of dynamic EBSP by
Callahan and De Graef [32], based on a physics-based forward model presented by Winkelmann
et al. [33] in 2007. The new approach led to the proposal of a new framework for EBSD indexing in
2015 by Chen et al. [34]. The framework takes each measured EBSP and identifies the most similar
patterns in a dictionary, which consists of a discretization of the forward model mapped onto a
dense grid of Euler angles [34]. Work continued in 2016 by Singh and Graef [8], which provided
orientation sampling for indexing methods with ”... a near optimal covering of orientation space”
- Singh and Graef [8]. Generating the dictionary of possible oriented patterns was improved in
2019 by Foden et al. [35], where a new cross-correlation function was implemented, allowing for a
smaller-sized dictionary and consequently an increase in patterns indexed per second. The work
also introduced a follow-up step where the orientations of already indexed patterns are refined
using the same library from which the dictionary was generated from [Figure 8] [35].

Figure 8: Steps of pattern matching, a term com-
monly used to describe indexing that consists of
both DI and Refinement of orientations.

Source: Ram et al. [36]

To simulate EBSPs with correct intensity dis-
tributions, the energy of the backscattered elec-
trons leaving the sample is modeled using a
Monte Carlo simulation [32]. Both the tilt
angle and crystal structure of the sample must
be known. For crystalline samples, a second
modulation of the backscattered electrons must
be modeled for a given energy, which meas-
ures how many backscattered electrons that
exit the crystalline sample in a specified dir-
ection [36]. The total count is computed for
each possible symmetrically unique direction,
where the number of directions is sampled to
be finite [36]. The resulting intensities are pro-
jected onto the surface of a 2-sphere, which is
called a master pattern. The master pattern
then consists of the full range of possible orient-
ations [11]. Master patterns can be simulated
with EMsoft [14], and stored on a computer
using the Hierarchical Data Format.

To generate a dictionary of simulated EBSPs
from the master pattern, orientations must be sampled. The cubochoric method [37, 8] is popular
due to incorporating crystallographic symmetry when sampling, and is also available as an option
in kikuchipy. EBSP images are computed from the sampled orientations and are compared to
each experimental EBSP to measure similarity. Some popular algorithms used to compare images
are cross-correlation, normalized inner product, mutual information, and Manhattan distance [36].
The orientation of the sampled EBSP with the highest similarity score is then assigned to the
experimental EBSP.

Indexed EBSPs with a misorientation within approximately ±7° may be refined [Figure 8] by taking
advantage of a shift in the vertical or horizontal directions of the sampled EBSP, due to the duality
in the gnomonic projection [36]. This shift may be measured by a 2D Fast Fourier Transform cross-
correlation, and with the correct pattern center, an approximation of the misorientation may be
made [36]. The work of Lervik [38] implemented solutions into kikuchipy, based on the findings of
Singh et al. [39], for both refining already indexed orientations, and also refining pattern center.
Refinement is done by maximizing the similarity between simulated and experimental patterns,
while either the orientation of the indexed EBSP or pattern center is held constant [39, 38]. A
third solution which aims to refine both orientations and pattern center was also implemented,
using global optimization of the six-dimensional space presented by Pang et al. [40].

The number of comparisons between experimental and sampled patterns makes DI significantly
less computationally efficient than HI. The number of sampled patterns also increases depending
on the complexity of the symmetry group of the sample. Work has however been done to increase
indexing speeds for low-symmetry crystals. The addition of orientation refinement also allows for a
more sparse dictionary, with larger sampling sizes, to be used to speed up DI without the final result

10

losing accuracy [36]. Only the position and relative intensity of Kikuchi lines can be produced from
the kinematical approach used in HI, whereas the dynamical simulated master patterns correctly
reproduce intensity distributions within patterns [Figure 9] [11]. The intensity of each pixel in
the patterns is considered when patterns are compared, instead of basing the solution of derived
angles. This gives DI the potential for distinguishing between similar crystallographic structures,
e.g. martensite and ferrite [3].

(a) Many-beam dynamical simulation (b) Standard kinematic theory

Figure 9: Comparison of an EBSP sampled from a master pattern generated using many-beam
dynamical simulation (a), and theoretical geometry of an EBSP derived from the kinematic ap-
proach used in HI (b).

Source: Adapted from the simulations of Winkelmann [41]

2.2 Graphical user interface

A Graphical User Interface (GUI) is one of many design approaches that resides under the umbrella
term interaction design [42]. Interaction design of a GUI differs from software engineering by the
shift in the type of solution for the common issue at hand. While designers are concerned with
what design is needed to be created in order to solve the issue, software engineers deal with the
details of how to execute the design. The work of this thesis addresses both, which requires the
roles of programmer and designer to be assumed. As a designer, one must know how users act
and react to events presented to them through technology, so the User Experience (UX) may be
adapted in an effective manner [42, p.39].

Paradigms for human-computer interaction began forming in the 1980s and were based on observa-
tions of how a single user interacts with a screen-based interface [42, p.97]. The core features were
developed, which are still used today, and consisted of windows, icons, menus and pointer (WIMP)
[42]. The term WIMP was later replaced by the much more generalized Graphical User Interface
(GUI), which can also be applied to interfaces that do not necessarily take advantage of all features
implied by WIMP. However, they both follow the model-view-controller software pattern, where
only specific information of the internal software model is displayed to the user through a view
[43]. The view partially consists of a controller component, where the user is presented with the
available functionality. The alternative to GUI is a command-line user interface, where functional-
ity is accessed through typing text, possible by the command-line interpreter which communicates
with the software on behalf of the user. This usually requires some prior practice or knowledge of
the underlying API, whereas the main advantage of GUI is that operations become intuitive and
easier to master [43].

When designing a GUI, there exists a large number of principles, ”... derived from a mix of theory-
based knowledge, experience, and common sense” - Sharp et al. [42, p.57], which the designer
may consider when prioritizing the User Experience (UX). The most common design principles,

11

described by Sharp et al. [42], are visibility, feedback, constraints, consistency, and affordance.

Functions need to be visible to communicate that the user can interact with them, and highly
influences the probability of whether the user will interact with it or not. When users interact
with functionality, they expect feedback about the action which they just performed. Pointing
users in the direction of the next step can also be a powerful feature of feedback. Both visibility
and feedback can often be overlooked when designing automated functionality, where users are
not properly informed of what is happening behind the scenes. Users might be confused if values
are automatically changed when interacting with a completely different functionality. Although in
most cases, users do not need to know every detail of the process and are instead interested in the
results, however, it is still something to consider.

Users are in constant need of guidance, and constraints can be an effective way to restrict the
user from performing actions that may result in mistakes, and should therefore not be allowed.
Implementing constraints into a GUI is commonly done through shading functionality and options
grey [42], but they may also completely disappear from the user’s point of view. Note that while
the former gives feedback to the user through the display, the latter does not, even though they
both restrict the user’s available actions. This knowledge can be used to reduce the number of
graphical elements present on the display when feedback is redundant. Information may also be
displayed in a certain way to constrain the perception of the information, e.g. putting data into a
specific type of graph [42, p.60]. First Principles of Interaction Design is a popular set of principles
by Tognazzini [44], and describes a duality within the topic of autonomy;

1. Enable users to make their own decisions, even ones aesthetically poor or behaviorally less
efficient

2. Exercise responsible control

3. Use status mechanisms to keep users aware and informed

Whereas the 1st principle allows users the freedom of customizing and interacting with the design
to their liking, to avoid users feeling frustrated and angry, the 2nd states that necessary control
is needed to avoid making fatal mistakes [44]. An example of a disallowed interaction would be
one that will crash the software. One should use the 3rd principle to exercise this control, e.g. by
making options unavailable to the user depending on the state of other options.

To indicate that similar functionality is used for achieving similar tasks, consistency within the
design is key [42]. This applies not only to how functionality looks but also to how users expect
certain actions to be performed. An example of this is how on Windows one usually right-clicks
on an object to open a context menu with additional options for that object. Users of Windows
have come to associate this action with bringing up more options, and creates the expectation that
other software running on the same system adapts the same premise for achieving the same result.
Consistency influences the rate at which users learn to navigate the GUI, due to users being only
required to learn a single mode of operation to operate on similar GUI-elements. Affordance is
a principle that is similar to consistency, where the visual representation of the object makes it
perceptually obvious how one should interact with it. To afford means ”to give a clue” (Norman,
1988) - Sharp et al. [42, p.63]. In practice, this is done by giving GUI-elements distinct looks that
correspond to their functionality, e.g. a button having a border that empathizes contrast against
the environment it resides in, to communicate its ability to be clicked.

2.2.1 Existing GUIs for EBSD

To better understand how existing solutions for EBSD software implement GUI, both OIM DC
[16] and AZtecCrystal [18] from Table 1 are examined. Additionally, a web-based prototype for
EBSD is inspected, which was developed by Ole Natlandsmyr during his master’s thesis in 2021
[45].

12

Oxford Instruments advertises AZtecCrystal as ”the most modern, comprehensive Electron Backs-
catter Diffraction (EBSD) data processing software package on the market today” [18]. AZtecCrys-
tal was launched in 2019, which shows in its modern design that does not utilize GUI-elements
native to the system [Figure 10]. Navigating the different modules of AZtecCrystal is done through
the top-centered menu bar, which consists of buttons with both icons and text [Figure 10]. The text
is short but precise and captures the essence of the functionality of the module it leads to. Each
module offers a different main component, but it is always placed at the center of the screen, where
it takes up the majority of the screen space. Additional details and settings are placed respectably
on the left and right sides of the main component. Because of this consistency throughout the
software, some knowledge can be transferred between modules, contributing to a quicker learning
experience. The different panels can also be undocked from the main application window, and be
displayed on different monitors, utilizing more available screen space to improve visibility.

Figure 10: GUI of AZtecCrystal which shows the inspection of an IPF map.

Source: Demo uploaded to Oxford Instruments’ official channel on YouTube [46].

The first OIM EBSD system on Windows was introduced in 1997, and EDAX has since released
many iterations of the software and other analytical tools related to EBSD [47]. OIM DC, version
7.3.1 from April of 2017, adapts GUI-elements native to Windows [Figure 11]. One may argue
that this makes the software look less modern compared to AZtecCrystal. This style is however
common throughout many different types of software, due to the reason that it achieves a simple
and intuitive design. On the other side, one does get the impression that the design of AZtecCrystal
is carried out with a more professional look. The GUI displays a lot of different controller elements
and information at the same time, which may be seen as cluttered by some users. Information
and actions are grouped together where it makes sense, e.g. all buttons are stacked together,
and progress information resides within its own bordered sub-page. Although the large number of
buttons provides a lot of functionality, it does make navigating to the desired button a bit more
tedious, especially for beginners. There are a lot of actions available to the user through the 3
rows of menu bars at the top, which are always displayed unless toggled off. The software offers
undocking of some menu bars, but not panels at all, making this feature less efficient here than in
AZtecCrystal. Although a great tool with many functionalities for EBSD, the interaction design
of OIM DC seems to leave something to be desired.

13

Figure 11: GUI of TSL OIM Data Collection when indexing a dataset. The image is from the
advanced demo mode of OIM DC v.7.3.1, where a SDSS with a sigma phase is indexed.

The work of Natlandsmyr [45] can in many ways be regarded as the predecessor to the software
developed in this thesis. The prototype also aims to allow access to kikuchipy’s DI implementation
through a GUI, but the chosen approach is web-based instead of a local application on the computer.
This solution introduces the need for a web server, which must either be hosted locally on the
computer or externally. The design of the prototype has a complexity that resembles entry-level,
which it achieves by its simple design [Figure 12]. The menu bar on the left shows different steps
in the indexing process and provides an order to the intended workflow. Consistency can be found
throughout the prototype, where the controller component is always presented on the left, where
users insert inputs, while information and previews are shown on the right. Due to the workflow
only targeting DI, the result resembles more a single tool rather than a toolbox of kikuchipy’s
functionality.

14

Figure 12: GUI of the prototype created by Natlandsmyr, where DI results of a SDSS are presented.

Source: Natlandsmyr [45]

By considering each GUI’s strengths and weaknesses, developing a correctly balanced interaction
design might be achieved. Takeaway ideas are the simple design of Natlandsmyr’s prototype, the
functionality and grouping of information used in OIM DC, and the interface of AZtecCrystal
which provides good visibility.

2.3 Usability testing

Figure 13: GUI displayed on a port-
able device, developed by Xerox
Palo Alto Research Center, which
may be connected to a variety of
workstations.

Source: Weiser [48]

To ensure an interaction design that satisfies the needs of
the users, a usability test may be deployed. This method
of progress already arose in the early 1980s, when computer
scientists designed multiple different User Interfaces (UIs) to
analyze and predict the performance of users carrying out
tasks [42]. The studies were based on cognitive theories in or-
der to determine the best approach for presenting users with
operations, which takes into account humans’ memory limit-
ations [42, p.100]. The work of Weiser [48] in 1991 caused a
significant shift in how these studies were carried out. Weiser
predicts that computers and displays will become embedded
in everyday items, and such require interaction designs that
do not conflict with or interrupt the task being performed by
the user [48]. This has in many ways already been realized,
as computers and displays are now found in everyday house-
hold appliances, e.g. smart fridges, sewing machines, and
light switches. It is especially important that users do not
feel frustrated interacting with these technologies, consider-
ing that they are essential to everyday tasks. As a result,
usability tests shifted from the study of only the human cognitive mind, to also considering the
social context, emotions and environment in which the design is being used [42, p.97].

15

The measuring of usability of the design refers to how effective interaction is to learn, use, and be
enjoyed by the user [42, p.50]. This may be done by directly asking the user questions, or gathering
data related to effectiveness, efficiency, utility, safety, learnability and memorability [42, p.50].
Effectiveness takes into consideration all other aspects and gives an overall indication of whether
the user can fulfill the purpose of the software. Efficiency is about reducing the number of steps
needed to complete tasks, while the utility is concerned with providing enough functionality to do
so. All of this should be carried out safely so that the user is not put in an undesirable situation.
Such situations may cause fears perceived by the user, who want to avoid the consequences of
making mistakes [42, p.51]. Furthermore, how easily functionality can be learned and memorized
is especially important when the design’s target group consists of users who have less experience
with similar designs, e.g. students who are new to EBSD software.

Anticipating the user’s needs requires the designer to have a deep understanding of the task domain
and the user [44]. This includes anticipating what information and tools the user needs for each
step of the process, which can be confirmed by sufficient usability testing. Usability tests should
also be used for discovering what information should be communicated to the user, and should
ideally be used regularly throughout the project to iterate design until the user performs at a
satisfactory level [44].

First, the goal and reasons for gathering data must be established, so that the procedures and
techniques used can be tailored to ensure the desired data is gathered [42, p.324]. Secondly, the
participants must be chosen so that the targeted population represents the user group of the design.
This is called sampling, and saturation sampling is when the whole population includes all types of
members in the user group [42, p.324]. The appropriate relationship between the participants and
the data gatherers must also be defined, which can be done by properly informing the participants
of the cause of the usability test. Depending on what personal information is gathered, and
the rules applied by the country, an informed consent which protects both participants and data
gatherers might be needed. A type of triangulation, investigation of a phenomenon from (at
least) two different perspectives - Sharp et al. [42, p.327], should be used to validate the results to
some extent. Some common types are triangulation of data, meaning data is collected by varying
sources, time, location and people, and methodological triangulation, where different techniques
for gathering data are used [42, p.237]. To make sure that the planned usability test is viable, it
is common to perform a pilot study before the main study [42, p.328].

Conducting a usability test can be done through the use of many different formats. Observations,
review forms, and interviews are appropriate for testing software design. The most flexible tech-
nique for recording data is taking notes of observations done in a controlled environment [42, p.330].
Participating users are placed in the appropriate environment, e.g. a laboratory where research
software is used, and given a set of tasks to perform. The tasks are supposed to highlight key
functionality in the design and are the main source of data in the usability test. The formulation
of the tasks should give just enough information so the user knows what the end goal of the task
is. It is up to the user to figure out where to proceed to reach the end goal, with the only guidance
being the hints provided by the design.

Another strategy, which better highlights the participant’s thoughts, is an interview. These may
be conducted in a structured or unstructured manner and may lead to improved feedback, by
allowing participants to go in-depth on a topic. Unstructured interviews do however produce data
that is not consistent across participants, due to different paths being explored. An alternative to
interviews is a questionnaire, which has the advantage of being easily distributable to participants
online [42, p.345]. These can contain both closed or open questions, but might lack the depth of
data which is obtained by a dialog in an interview. Additional efforts must also be put into precisely
worded questions, but these have the advantage of being more comparable between participants,
due to answering the same structured questionnaire [42, p.346]. A viable option is to use these in
conjunction with interviews, as long as there is an incentive to complete the questionnaire.

16

3 Development and methods

This section describes the continuation of EBSD-GUI dev, the version of the software which resulted
from the work of the pre-study [1]. In addition to describing the iterations that the software went
through during this thesis, the section also includes specifications for the software, how the software
is distributed and published, and the establishment of an open-source community.

3.1 State of the software

Although complete with many features, the state of EBSD-GUI dev was somewhat rough and
unpolished. This was of no surprise, as minor issues and bugs were intentionally given lower
priorities, in order to implement all features within the deadline of the pre-study. These issues
were instead left to be figured out as part of this thesis. Additional issues were also highlighted
by the project’s supervisor, Prof. Hjelen, who had used EBSD-GUI dev on multiple Windows
computers for about a month.

Known issues of EBSD-GUI dev can be summarized by:

• Running the packaged executable on some Windows system can result in an ImportError

when importing the QtCore module [Figure 15].

• Threading of specific tasks on macOS can result in leaked semaphore objects, instantly
crashing the software.

• HI saves a copy of the dataset, taking up unnecessary storage space on the system [1].

• HI performed on lazy loaded dataset results in the following error:
Cannot determine Numba type of <class dask.array.core.Array>

• Using relative paths to locate additional resources like icons, logos, and static text files, might
fail when running the executable on some systems.

• Starting multiple tasks at the same time will result in the terminal being flooded with mes-
sages, making it very difficult to determine the state of the tasks.

• There are no written tests for existing code, meaning there is no automatic quality assurance
for new additions and changes [1].

• Spelling errors and incorrect naming of some features.

Failing to execute the software on some Windows systems was most likely a compatibility issue
with Qt6, which had been overlooked. Therefore a more thorough examination of Qt-supported
platforms was needed. EBSD-GUI dev on macOS was very unstable, as the software would often
crash due to leaked semaphore objects, which are objects shared between threads that need to
be synchronized. Observations implied that this would happen when datasets were loaded, or
maps were saved as images, inside threads. It was already known that the Matplotlib library was
not thread-safe unless under certain conditions [49]. You may be able to work on separate figures
from separate threads. However, you must in that case use a non-interactive backend (typically
Agg), because most GUI backends require being run from the main thread as well - Hunter [49].
Precautions had already been made from this statement but only appeared to be working on
Windows.

Although confirmed to work to some extent in a developer environment on macOS, a portable app
had yet to be exported and tested. The software’s implementation of HI was based on a pre-existing
Jupyter Notebook used at the Electron Microscopy Lab of NTNU, which also included some of
the above issues. This could be improved by basing the code of the HI Notebook provided by
kikuchipy instead [5]. For example, the implementation of HI in EBSD-GUI dev required phases
to be loaded from master patterns, even though the only required information is of the phase’s
microstructure. The user should be able to specify this themselves.

17

The only indication of a task being performed by the software was the print statements from the
method being performed, which appeared in the GUI’s terminal. End users should not be required
to read through a large and unsorted log of messages to see what is happening during each task.
Therefore it was necessary to extend this feature to improve the way information is communicated
to the user. Another possible improvement was writing tests for existing code. The lack of tests
meant a higher probability of functions breaking unnoticed, resulting in a less effective development
process with new issues suddenly appearing. This also emphasized the need to conduct a usability
test.

A development roadmap was created, and would include fixing the above issues, while also imple-
menting the following new features:

• Support for packaging the software into an app structure that can run on macOS.

• Support refinement of orientations in crystal maps produced by HI.

• Support more phase structures when performing DI and refinement of orientations.

• Improve refinement speed by using the optimization algorithm Nealder-Mead [50] from the
Python library NLopt [51], instead of the implementation from SciPy [52].

• Option for users to specify crystal microstructures, instead of being derived from master
patterns, when doing HI [1].

• An improved detector-navigator for inspecting patterns, which can replace the interactive
plot functions from the Python library HyperSpy [53].

• The ability to resize GUI elements inside the main application window, to better fit their
content and adapt to different screen sizes and scaling configurations.

• Window with an overview of the tasks which are being performed, and includes the ability
to cancel tasks.

• Create a user manual that gives a quick overview of the software [1].

Incorporating a proper usability test to take place midway during development, meant there was a
low probability of all features being ready for testing. It was therefore important to distribute the
goals of the roadmap across deployment-ready iterations of the software. This also meant fixing
issues and overhauling existing features would take priority, to ensure a stable experience during
the test. Most importantly, distributions of these updated versions would need to be made for
both Windows and macOS. The planned iterations of the software are shown in Figure 14. Work
would start with overhauling the existing features of EBSD-GUI dev. EBSD-GUI Pre-release was
to become the version deployed in the usability test, and would include the new features that were
ready for testing. User feedback would be taken into account to continue the development of a
public v0.1.0 release of the software, later to be renamed EBSP Indexer. Later fixes for this version
would be released as minor patches. If enough time was available, additional new features and
other enhancements would be implemented as part of a v0.2.0 release.

18

EBSD-
GUI dev

Pre-study

EBSD-GUI
Pre-release

EBSP
Indexer
v0.1.0

Usability test

EBSP
Indexer
v0.1.x

EBSP
Indexer
v0.2.0

Overhaul of existing features,
new features

Error- and bug-fixes,
finish new features

Fixes in the form
of patches

Additional new features and
enhancements

User feedback

Distributions
for Windows
and macOS

Master’s thesis

Figure 14: Flow chart showing the planned development process of the software, which includes
stable iterations of the software as blue boxes. Activities within the area marked with red dashes
are discussed in this thesis. Distributions are made for the usability test, and user feedback is
received. The x in EBSP Indexer v0.1.x indicates the number of patches needed. Version 0.2.0 is
not within the scope of this thesis, but is described as future work in Section 7.

3.2 External packages and libraries

Seeing as some of the issues in EBSD-GUI dev might have been caused by incompatibilities and
lack of support in some dependencies of the software, a re-examination of packages and libraries
was in order. On Windows, the software consists of about 150 third-party Python libraries. Most
of these are dependencies of kikuchipy, some of which are optional. These include PyEBSDIndex,
orix, HyperSpy, diffpy.structure, diffsims, and many more. In addition, PyOpenCL is an optional
requirement for PyEBSDIndex, which enhances indexing speed by utilizing the system’s Graphics
Processing Unit (GPU). The GUI is created using the PySide6 bindings for Qt, and the project
is exported by PyInstaller. It is important to be aware of the licensing terms implied by these
libraries, as they will determine the final licensing of the software when published.

Reasoning behind the specifications of the software was described in the pre-study [1], and can be
summarized as follow:

• Windows and macOS, due to the popularity of these platforms among students.

• Python, because of its large number of available third-party libraries, and easy-to-learn syn-

19

tax, which lowers the barrier for other developers to contribute.

• kikuchipy, as it offers many features, among pattern matching capabilities, and is continually
being supported with new releases.

• Qt, because of the ability to easily create traditional desktop applications, which offers an
OS-native look.

• PyInstaller, due to being the most effective and reliable method for exporting applications
from Python scripts, and has a large open-source community.

3.2.1 kikuchipy

The core idea of this project builds upon the functionality of kikuchipy, a Python library for pro-
cessing, simulating, and analyzing EBSPs [5]. By being open-source, kikuchipy makes a serious
contender to commercially available software like OIM DC [16] and ESPRIT DynamicS [17]. Some
key features of kikuchipy are the implementation of DI, PC-optimization, and refinement of orient-
ations in a crystal map. Analysis of multi-dimensional data is possible through HyperSpy, which
kikuchipy extends upon [5]. Performance-heavy computations are done with the Numba library,
which adds a Just-In-Time (JIT) compiler to Python, accessible through the addition of function
decorators, allowing native machine code speed [54]. The implementation of Numba in kikuchipy
uses automatic parallelization of functions, meaning multiple cores in the Central Processing Unit
(CPU) are utilized to run computations in parallel. Numba also offers the possibility to target
GPU architecture available through the Nvidia CUDA API [54], but this has yet to be utilized
in kikuchipy. To handle the processing of data larger than the system’s available random-access
memory, the Dask library is used in combination with Numba decorated functions. Dask then
handles both the pipelining and the parallelism [55], and the pre-study of Lervik [56] implemented
larger-than-memory dictionary simulation into kikuchipy. The licensing of kikuchipy is determined
by HyperSpy’s more strict licensing, the GNU General Public Licence (GPL) v3.0 [57].

Due to kikuchipy’s many dependencies, importing the library’s classes and functions can take
several seconds. As an example, importing class EBSD from the kikuchipy.signals.ebsd sub-
module might take 5-7 seconds on a 6-year-old Linux system [58], due to the large import list of the
sub-module. To avoid this, both kikuchipy and HyperSpy use lazy imports, meaning the import
statement itself takes less than a second, while the long loading times of underlying libraries are
delayed until they are first needed during runtime [58]. Note that this only applies to cases where
kikuchipy is imported without accessing sub-modules directly, e.g. import kikuchipy as kp.

Development during the pre-study utilized version 0.7.0 of kikuchipy, but in early February 2023
version 0.8.0 was released with many new additions, changes and fixes. The ability to interact
with PyEBSDIndex through kikuchipy’s Application Programming Interface (API) was introduced,
giving access to more convenient methods for performing HI. It was therefore decided to upgrade
the project’s version of kikuchipy to take advantage of these changes when overhauling the existing
HI implementation. During development, kikuchipy would also release a few patches that included
bug fixes and minor changes.

3.2.2 HyperSpy

HyperSpy aims to make it easy to apply analytical procedures that operate on multidimensional
datasets [53]. External packages are able to register their own signals and components to fit their
particular data type. For example, lazy loading of EBSD data in kikuchipy is made possible by
extending HyperSpy’s LazySignal2D class.

There exists a package named HyperSpyUI that introduces a UI component of HyperSpy, similar to
what this project tries to achieve by building upon kikuchipy. The UI even has a built-in interactive
Python console, using the libraries IPython Kernel for Jupyter and Jupyter QtConsole, which
retains the raw power of HyperSpy - Fauske [59]. An interactive Python console was also developed
as part of EBSD-GUI dev but was built without any third-party console libraries. As a result,

20

EBSD-GUI dev offers a less feature-rich console than HyperSpyUI, but one that is compatible with
more libraries, e.g. PySide6, and can easily be maintained for future versions. The UI package is
still being maintained, and version 1.2 was released in March 2023.

For this project, almost all interactions with HyperSpy are done through kikuchipy, meaning direct
references to its API will not be common in the software’s source code. Version 1.7.3 of HyperSpy
is used because it is the minimal requirement for the current version of kikuchipy.

3.2.3 orix

Storing of orientations and phases in a crystal map is handled by the Python library orix, which
implements objects and functions that represents 3D rotation vectors that accounts for crystal
symmetry [60]. The data returned from the indexing procedures of kikuchipy are stored in an
instance of the CrystalMap class from orix. The class includes plotting data by wrapping the
matplotlib.axes.Axes.imshow() method from Matplotlib, which visualizes data as images. This
makes it trivial to save phase- and IPF maps acquired through indexing. The library is lightweight
compared to kikuchipy and HyperSpy, and does not implement lazy imports. Similarly to kikuchipy,
orix follows the terms and conditions of GPL v3.0.

3.2.4 diffpy.structure

Both kikuchipy and orix depend on accurate descriptions of phases present in the dataset, which is
handled by the diffpy.strucutre module [61]. Just like orix, it offers custom objects that store crystal
structure data, such as atomic coordinates, displacement and occupancy. The module includes the
classes Structure, Atom and Lattice, and also includes definitions of all space groups in over
500 symmetry settings - Juhás et al. [61]. The module is part of the larger DiffPy-CMI modeling
framework [61], and inherits the framework’s custom open-source license agreement. The licensee is
granted a royalty-free nonexclusive license, and copies of the source code must include the copyright
notice and the software license agreement itself. Modifying and redistributing the source code is
also allowed, as long as users are notified of the modifications.

3.2.5 PyEBSDIndex

The PyEBSDIndex library includes objects and methods for performing HI on a dataset of EBSPs
[6]. This is done by using an object of the class EBSDIndexer, where the user can specify the
arrangements of phases present, PC coordinates, sample tilt towards the detector, and camera
elevation. In addition, the Hough transform can be customized through a number of parameters,
e.g. what fraction of the pattern should be considered, and also the number of detected bands
used in voting. As of version 0.1.1 of PyEBSDIndex, the Hough-based indexing procedure can
only differentiate between phases with FCC and BCC arrangements and does not take into ac-
count lattice parameters. Consequently, the indexing cannot differentiate between two phases of
a similar arrangement. Future releases of PyEBSDIndex might address these limitations by util-
izing PhaseList from orix, and Structure from diffpy.structure. OIM DC, and other commercial
software, offers HI of multiple phases with different and/or similar arrangements, e.g. indexing
of steel with austenite, ferrite and sigma phases. PyEBSDIndex needs to offer similar indexing
capabilities in order to stay a serious contender.

The library was developed by employees of the US Naval Research Laboratory (NRL) and resides
in the public domain [6]. Licensing is similar to the restrictions of diffpy.structure, and states the
following: This software can be redistributed and/or modified freely provided that any derivative
works bear some notice that they are derived from it, and any modified versions bear some notice
that they have been modified - Rowenhorst [6].

As mentioned above, kikuchipy v0.8 wraps the methods of PyEBSDIndex and makes it possible to
use a sequence of PCs that is equal in size to the number of patterns. Each pattern is then assigned
a PC, which compensates for variations that might be present in PC if the ROI is large. This

21

provides more accurate results than using a single mean PC for all patterns. HI on a dataset that
is lazy loaded through kikuchipy requires PyOpenCL, an optional dependency of PyEBSDIndex.
This is because of a limitation in PyEBSDIndex, which can only handle Dask arrays when they
are computed on the GPU with PyOpenCL. Dask arrays are used for the lazy storing of data. The
CPU implementation uses Numba kernels, which assumes NumPy arrays instead [62].

3.2.6 PyOpenCL

PyOpenCL offers access to OpenCL, an open-source API for parallel computations, through Python
code [63]. The API takes advantage of a system’s available GPUs, which consists of hundreds of
processing units, to do performance-demanding computations in parallel. This is also available for
integrated graphics, a GPU built into the computer’s CPU, which is commonly found on laptops.
The code which defines the actual computations is written in C++, and is passed as Python strings
to PyOpenCL methods. PyOpenCL is open-source under the MIT license and free for commercial,
academic, and private use - Klöckner et al. [63].

PyOpenCL has been available as an optional dependency of PyEBSDIndex since release 0.1.0. It
was however not taken advantage of in EBSD-GUI dev. This could greatly improve the performance
of HI, and would achieve pattern indexing speeds similar to the ones found in commercial software
like OIM DC. It was therefore made a priority to package the software to include PyOpenCL.

3.2.7 Qt and PySide

Development of the GUI of the software, is done with PySide6, a library which offers the official
Python bindings for the Qt6 framework [64]. The Qt framework has become a large and open
solution, titled The Qt Project. Although mainly overseen by The Qt Company, multiple leading
companies, and organizations contribute to its development [65]. The core idea is to offer a toolbox
for developers to create and customize graphical control elements that automatically translate on
a cross-platform level. The framework is written in Qt-extended C++, which before compilation
is parsed to regular C++ code by the Meta-Object Compiler (MOC), a preprocessor, which means
extended features such as signals and slots can be compiled by any standard C++ compiler, e.g.
Clang or the GNU Compiler Collection (GCC) [65].

Different elements can communicate with each other through the Signal and Slot mechanism, a
central feature of Qt. This mechanism is often known as the observer pattern in object-oriented
programming [1]. Objects, known as observers, subscribe to an interactive object, known as the
subject. In Qt, this is done by the class of the subject having a Signal property, which emits
whenever a condition is met. Subscribing is done through observers connecting global or class
methods, marked with a Slot decorator in PySide6, to the Signal of the subject. Emitting the
Signal will then notify all connected observers, and their respectable connected methods will,
as of Qt v4.6, be invoked in the order in which they were connected [66]. As signals are class
properties, multiple instances of the same class might share the same Signal instance. To solve
differentiation between instances, signals can be associated with a datatype that they can emit,
allowing a subject to send messages to the observers.

Qt also has a system that allows developers to utilize threads. Utilizing threads is important to
avoid the GUI becoming unresponsive while running slow and demanding tasks [1]. Threads were
implemented into EBSD-GUI dev at early stages, as indexing can take a considerably long time
due to operations being performed on large amounts of data [1]. Instead of using the QThread

class, a custom Worker class was created, which inherits from QRunnable. The worker object
receives a method when initialized, and is passed to the global instance of QThreadPool by calling
QThreadPool.globalInstance().start(worker). The method is called if a thread is available,
or queued for later execution if none are available. The advantage of using the Worker class instead
of Qt’s QThread, is the ability to add additional code that should always be executed when a thread
is started or finished. The motivation for implementing this in EBSD-GUI dev was to redirect the
standard output stream, so print statements from threads would appear inside the GUI, which is
running in the main thread [Code 1] [1]. Signals and slots were used to convey the print statement

22

from one thread to another, and would else lead to instabilities, eventually crashing without an
error message. One should avoid code that leads to threads directly accessing GUI elements that
live in the main thread, also known as the GUI Thread in Qt [67].

...
@QtCore.Slot()

def run(self):

"""

Initialize the runner function with passed args, kwargs, and redirects the output.

"""

with redirect_stdout(self.threadedStdout), redirect_stderr(self.errorRedirect):

self.fn(*self.args, **self.kwargs)

...

Code 1: Redirecting output from a method that is called in a separate thread. To avoid crashes
and instability issues, redirect_stdout() and redirect_stderr() must be called inside the run
method with the Slot decorator. Taken from the EBSD GUI dev version of utils/worker.py.

Depending on the Qt version, the lists of supported platforms are different [68]. Table 2 gives
an overview of what platforms are supported by the Long-Term Support (LTS) versions of Qt5
and Qt6. In addition, Qt6 only supports x86 64 and arm64 architecture, while Qt5 supports both
x86 64, arm64 and x86. This together with Table 2 implies that Qt6 cannot run on Windows 7
and Windows 8.1, nor a 32-bit based system in general.

Table 2: Overview of supported platforms for Qt 5.15 LTS and Qt 6.5 LTS.

Source: Adapted from Qt Documentation about Supported Platforms [68].

Platform Qt5 LTS Qt6 LTS Compiler/Build Environment
Windows 11 21H2 Yes Yes MSVC 2019-2022, MinGW 11.2
Windows 10 21H2 Yes Yes MSVC 2015-2022, MinGW 8.1

Windows 10 (1809 or later) No Yes MSVC 2019-2022, MinGW 11.2
Windows 7 / 8.1 Yes No MSVC 2017-2019, MinGW 8.1
macOS 11, 12, 13 Yes Yes Xcode 13 - 14
macOS 10.13 Yes No Xcode 11 - 13

Windows on ARM No Yes MSVC 2019-2022

When it was decided during the pre-study to build the project’s GUI with Qt6, the supported
platform versions were not considered to such an extent. The main focus was compatibility between
Windows and macOS, and as a result, the incompatibilities were discovered early in this thesis
when EBSD-GUI dev was tested on multiple versions of Windows. The unhandled exception that
occurred is shown in Figure 15.

Figure 15: Unhandled exception in the script when running Qt6 on an unsupported platform or
one that is missing runtime libraries. The exception is an ImportError.

23

It was also discovered that Microsoft Visual Studio C++ Redistributed 2015-2022 (MSVC) is
required for running the software on Windows. This is a common prerequisite for applications
that have been built using Microsoft C and C++ tools [69], and is necessary to compile and
run Qt applications on Windows [Table 2]. MSVC can be downloaded from Microsoft’s online
documentation, which installs the required runtime libraries [69].

It was decided to continue the work using Qt6, and support for Windows 7 and 8.1 would not be
prioritized. Instead, a way to package MSVC together with the software would be looked into.
Support for Qt5 is currently only available to license holders, while free support for the LTS version
of Qt6 is said to not expire until the 30th of Mars 2026.

3.2.8 PyQtDarkTheme and Linea Iconset

It was decided during development to upgrade the visual style of the software. The previous version
of the software offered only the basic look of Qt, which consists of system-native elements, and
lacked a unique and recognizable modern look.

Part of creating a visually appealing GUI, are the aesthetics and looks of the elements within
it. However designing color pallets, borders, menus, buttons and so on can be a time-consuming
process, and is usually saved for the very end of the development process. One may argue that
aesthetics are outside the scope of this thesis, and one of the principles created by UX pioneer
Bruce ”Tog” Tognazzini states that aesthetic design should be left to those schooled and skilled in its
application: Graphic/visual designers [44]. To maximize aesthetics while spending the least amount
of time doing so, a pre-existing theme in the form of a Python library, named PyQtDarkTheme,
was implemented. PyQtDarkTheme automatically applies a flat and modern theme to all visual
elements of a Qt GUI, by simply importing and calling its setup function [70]. The library can
apply both a dark or light theme QPalette, where the dark theme uses the Qt stylesheet from
QDarkStyleSheet [71]. These two Python libraries use the MIT license.

In addition, icons from the Linea Iconset [72] were downloaded, and compiled to Python binary
code through the Qt resource system. The icon set offers software-related icons, e.g. icons for
trash [Figure 16], and various arrows, and is dedicated to the worldwide public domain through
the Creative Commons Zero v1.0 Universal license [72].

Figure 16: Variations of a trash icon that may be used in different contexts.

Source: Linea Iconset by Ferrando and Sigidi [72]

3.2.9 PyInstaller

PyInstaller is a Python library that bundles a Python project, together with all its associative
dependencies, into a single package that includes an executable specific to the operating system
it was created on. The library is not a cross-compiler, meaning an executable for Windows must
be made by running PyInstaller on Windows, and so on for other systems [73]. PyInstaller is
distributed under a dual-licensing scheme using both the GPL 2.0, with an exception that allows
you to use it to build commercial products, and the Apache License, version 2.0, which only applies
to a certain few files - PyInstaller Manual [[73]].

PyInstaller relies on hooks, which in this case are files that point to other files in libraries needed to
run the application. They are used during the analysis phase of the Python project [73]. PyInstaller
does a suitable job of figuring out which files are needed by analyzing import statements, but for
libraries which makes use of unusual import mechanisms, hooks are needed to reliably find all
needed files. Hooks already exist for many of the major Python packages, such as NumPy and

24

PySide6, but not for less-known libraries like kikuchipy, HyperSpy and PyEBSDIndex, all of which
require hooks to be properly packaged. For example, kikuchipy imports its classes and methods
in a lazy way. Therefore simple hooks were created for these 3 libraries, all of which are defined
similarly to Code 2.

from PyInstaller.utils.hooks import collect_all

datas, binaries, hiddenimports = collect_all('kikuchipy')

Code 2: PyInstaller hook for the kikuchipy. Hooks for HyperSpy and PyEBSDIndex were created
similarly. Taken from hooks/hook-kikuchipy.py

3.3 Distribution of software

Distribution aims to deliver all necessary files of the application to the user’s local system, in
the most intuitive way possible. This includes assuring compatibility with supported operating
systems, and files being unpacked to their intended location, without requiring the user to perform
additional tasks. The application must also be available in the public domain for users to freely
download, which requires distributions to be hosted by an online website, and also to apply the
correct licensing terms. Specifications for recording changes, naming of versions, and honoring
the contributors of the project, are important to preserve consistency throughout a project where
developers come from different projects.

To ensure that the target group of students would be covered during the usability test, distributions
for both macOS and Windows were made. Research conducted in 2019 by Vanson Bourne, a third-
party research firm in the UK, showed that about 40% of students across 2 224 colleges use Mac,
while the other 60% use Windows computers [74]. However, 71% of participants would prefer to
use Mac [74], meaning the proportion of Mac users will most likely increase in the future.

The previously used approach from the pre-study was to use PyInstaller together with auto-py-
to-exe [75]. The latter library implements a GUI where the user can set up parameters that are
passed to PyInstaller. The initial argument for using auto-py-to-exe was the ability to save these
parameters using the JavaScript Object Notation (JSON) format, which future developers could
use to correctly package new versions of the application. However some arguments are system
specific, and some consist of absolute paths that usually will require editing to be correct. To
improve upon this process, it was decided to replace the use of auto-py-to-exe with a Python
script that defines the correct arguments and paths, based on the system it is running on [Code 3].
The only required argument from the user is the target architecture, which can also be detected
automatically by passing ’auto’ to the prompt.

25

import os

import platform

import sys

import PyInstaller.__main__

sys.setrecursionlimit(sys.getrecursionlimit() * 5) # Fix needed for some systems

workdir = os.getcwd()

target_arch = input(

"Specify the target architecture [auto, x86_64, arm64, universal2]: "

).lower().strip()

Different seperators between macOS and Windows

if platform.system().lower() == "darwin":

sep = ":"

else:

sep = ";"

args_list = [

'--noconfirm',

'--onedir',

'--icon', os.path.join(workdir, "resources/ebsd_gui.ico"),

'--name', "EBSD-GUI",

'--add-data', os.path.join(workdir, f"resources{sep}resources/"),

'--add-data', os.path.join(workdir, f"*G.txt{sep}."), # Add COPYING.txt

'--additional-hooks-dir', os.path.join(workdir,"hooks"),

'--hidden-import', "kikuchipy",

'--hidden-import', "hyperspy",

'--hidden-import', "pyebsdindex",

]

Checks target architecture for valid values

if target_arch in ['x86_64', 'arm64', 'universal2']:

args_list.append("--target-arch")

args_list.append(target_arch)

Skips creating application on macOS as it currently do not work

if platform.system().lower() == "darwin":

args_list.append("--console")

else:

args_list.append("--windowed")

args_list.append('main.py')

PyInstaller.__main__.run(args_list) # Runs the command with arguments

Code 3: New approach for exporting the Python scripts into an independent packaged application
that is distributable. Taken from export.py during the transition from EBSD-GUI dev to EBSD-
GUI Pre-release.

The distributable application exported from the Python scripts includes an executable file, denoted
by the .exe extension if exported on Windows, and a runnable Unix file if exported on macOS.
All files needed to run the application are included in the distribution folder. To easily install the
distribution, different methods for Windows and macOS must be used.

26

3.3.1 Inno Setup (Windows)

Inno Setup makes it possible to compile a single EXE file, which can install the created distribu-
tion on any Windows version released since 2006 [76]. This installer can be heavily customized by
writing code in the Pascal Script language, which can be done in Inno Setup’s Integrated Devel-
opment Environment (IDE). The final installer provides a Standard Windows wizard GUI, which
many Windows users will already be familiar with. The wizard allows users to choose language,
installation location, whether or not to associate specific file extensions with the software, and
create shortcuts, among other things.

The customization provided allows for the running of other programs before, during or after the
installation takes place. This provides an opportunity to automatically detect whether MSVC is
already installed, and install the correct version of MSVC if needed. Code 4 shows a solution that
checks whether the version satisfies at least v14.29, which was used during development, and is
based on an answer found on Stack Overflow [77].

[Files]

; VC++ redistributable runtime. Extracted by VC2017RedistNeedsInstall(), if needed.

Source: "C:\EBSP-Indexer\VC_redist.x64.exe"; DestDir: {tmp} ; Flags: dontcopy

...

[Code]

function VCRedistNeedsInstall: Boolean;

var

Version: String;

begin

if RegQueryStringValue(HKEY_LOCAL_MACHINE,

'SOFTWARE\Microsoft\VisualStudio\14.0\VC\Runtimes\x64', 'Version',

Version) then

begin

// Is the installed version at least 14.29 ?

Log('VC Redist Version check : found ' + Version);

Result := (CompareStr(Version, 'v14.29.30139')<0);

end

else

begin

Result := True;

end;

if (Result) then

begin

ExtractTemporaryFile('VC_redist.x64.exe');

end;

end;

[Run]

Filename: "{tmp} \VC_redist.x64.exe"; \

StatusMsg: Installing Microsoft Visual C++ Redistributable 2015-2022; \

Parameters: "/quiet"; Check: VCRedistNeedsInstall; Flags: waituntilterminated

...

Code 4: Solution that automatically installs Microsoft Visual Studio C++ Redistributed 2015-
2022 if needed. The script checks whether MSVC is installed, and only unpacks VC redist.x64.exe
if needed. Taken from setup script.iss, and based on Stack Overflow answer [77].

EBSD-GUI dev is a 64-bit application, something Inno Setup has extensive support for [76]. The
software should also be available on lab computers, and accessed by students. The installer should
therefore be configured for non-administrative installation, as admin privileges are not required.

27

Lastly, Inno Setup provides uninstall and upgrade capabilities that are automatically included in
the installer. The packaged application is given a Globally Unique Identifier (GUID), generated
by the IDE of Inno Setup. The GUID is used by future installers, to recognize whether the same
application is already installed. If the current version is lower than the installer’s version, it will
automatically replace the previous version with the newer one [78]. This is especially useful when
providing LTS, which can be delivered as minor patches through the release of new installers.

3.3.2 Platypus (macOS)

In general, PyInstaller supports packaging Python scripts into files denoted by the .app extension.
Although appearing to be a single file, this type of file contains a hierarchy of other files used
to run the application. It can be seen as a wrapping around the distributed package, that adds
instructions pointing to the file which should be executed to run the application. However, an
issue was encountered when trying to run the distributed app made with PyInstaller, where the
application would immediately close after verifying. Running the app bundle’s Unix file in a
terminal window would work, but the terminal window would stay open in the background which
was not ideal.

Looking into the issue, a discussion thread for PyInstaller was found with users having similar
issues, which proposed some solutions [79]. The issue is most likely caused by the GUI-library
used, however only solutions for Python’s tkinter library are provided. The most viable option
was therefore a workaround, which is to use Platypus [80] to bundle the app distribution from
PyInstaller into a second app [79]. Platypus is a software tool that can create macOS application
bundles from command line scripts or programs in a number of programming languages [80]. It
can be installed via Homebrew and was originally made to ease sharing of scripts without requiring
the use of a command line interface. The app bundle made with Platypus can then include a shell
script with a single command which runs the Unix file within the original app bundle [Code 5].

#!/bin/bash

"./EBSP Indexer.app/Contents/MacOS/EBSP Indexer"

Code 5: Unix command which points to the Unix file within the app bundle.

This is similar to running the Unix file in a terminal, however, Platypus allows defining the interface
type as none, hiding the terminal window with the running shell script. Another option provided
by Platypus is to enable the software to run in the background, keeping the application’s GUI from
immediately closing on startup.

3.3.3 Publication

An important part of publishing software is to anticipate the community of users and developers
that might grow along it [81]. Such a community ensures that the project is maintained in the
future, and avoids degradation of software quality, often referred to as bit rot or software decay
[82]. This refers to the changes that occur in the digital environment where the software persists,
which negatively impacts the software. Major updates to the computer’s OS or hardware drivers,
might cause unexpected errors and bugs in the software. Preparations have already been made
to avoid this, by writing guides on how to set up a development installation and to maintain the
source code. The existing GitHub repository, where the source code resides, functions as a public
space where it is easy to ask and discuss software-related questions. Developers may also contribute
with code themselves, which is inspected and accepted by the repository’s maintainers. With the
project being dependent on a community of developers, a set of rules should be carried out to
ensure quality and consistency.

28

The contribution guidelines were specified as follows:

• All contributions to the project should be properly credited according to the all-contributors
specification [83], adapted from the Contributor Covenant version 1.4 [84].

• Contributors associated with the project are part of the collective known as ”EBSP Indexer
Developers”, which must be credited as the publisher of all associated software releases.

• All contributions must satisfy the terms of the GNU General Public Licence (GPL) v3.0, by
which others can download, share or distribute the software within the licensing conditions.

• Code contributions should follow the Style Guide for Python Code [85] and use The Black
Code Style [86].

• The version number of the software should be incremented according to Semantic Versioning
2.0.0 [87] when a new release is published.

• New releases should be created and compiled according to tutorials and should use PyInstaller
together with Inno Setup (Windows) or Platypus (macOS).

The all-contributors implement specifications for including and crediting people who contribute to
the project in any aspect, not just code [83]. This is done by implementing an all-contributors
Bot into EBSP Indexer’s GitHub repository, which features easy ways to add contributors to be
displayed in a table inside the project’s README file.

The Copyright laws enforced by the Norwegian Government, along with many other countries,
imply that a work is automatically copyrighted the moment it is created [88]. This means that
without including a software license that relaxes these terms, the software cannot be modified,
built upon, or shared by others. Additionally, the software cannot be published without being
made available wholly as open-source, because the software builds upon existing code, kikuchipy
and HyperSpy, which applies GPL [57]. That is why this project must also be licensed under the
terms of GPL, more specifically version 3.0. GPL is the most restrictive open-source licensing
available, where releases of modifications must be documented and employ the same licensing
terms. Limitations state that any type of warranty is not included, which limits the liability of the
creators.

The software includes a copy of GPL version 3 inside the COPYING.txt file, which is required by
the licensing terms. GNU also recommends that a short copyright notice is added to every file
within the project and that the notice is displayed inside the software if possible. Therefore a
notice was added to the top of main.py, and a message is displayed inside the terminal of the
software [Figure 17].

Figure 17: Copyright notice according to GPL v3.0 is displayed inside the application’s Terminal.

The contribution guidelines describe the styling of code using the Style Guide for Python Code [85]
and The Black Code Style [86]. Black has already been in use since the start of the project, however,
the Style Guide for Python Code has only been used to some extent. Still, it is important to
acknowledge these moving forward with development, to avoid unnecessary re-styling of code later.
Semantic Versioning is another convention that is encouraged, where a version number consists
of 3 numbers on the MAJOR.MINOR.PATCH format [87]. Depending on the impact of the change,
different numbers are incremented. API changes which are incompatible with previous versions

29

should increment the MAJOR version, and when functionality is added in a backward-compatible
manner; the MINOR version [87]. Backward-compatible bug- and error-fixes are deployed as part
of a PATCH version [87]. The version number can also include labels, which can specify the type
of release, e.g. Pre-release or Development build. It is also common to start with version 0.1.0 as
part of initial development and increment the MINOR version with each new release [89]. A 1.0.0
release is usually characterized by reliable software that is ready to be used in production, and
built upon a stable API [89]. Releasing version 0.1.0 makes sense in this project, considering that
the software depends on APIs from libraries, e.g. kikuchipy and PyEBSDIndex, which have yet to
release a 1.0 version, indicating that they are still in development.

When publishing research software, it might be useful to register a Digital Object Identifier (DOI).
The DOI can be used to reliably identify the published digital object, compared to Uniform Re-
source Locators (URLs) that might change over time. To make it easy for future authors and
developers to cite the software, a DOI was created for the software by publishing it on Zenodo, a
platform for sharing, curating, and publishing open-source data and software [90].

Another way to increase availability and visibility is to host the software on a website dedicated to
users who want to download it. Ideally, this would be the same website dedicated to the project,
however setting up a website is not part of this work’s scope, and the required resources to do so
have not been accounted for. There do however exist some external third-party websites, dedicated
to hosting open-source software for users to download. SourceForge is such a website and is a
popular platform for developers to publish their software. Although SourceForge is host to some
reputable free software, like Apache OpenOffice and 7-Zip, one should be skeptical of websites
that are advertised as ”free hosting”. The website has had a troubled history of controversial
monetization models, where user’s downloads would be bundled together with closed-source ad-
supported software, often referred to as junkware or Potentially Unwanted Program (PUP) [91].
Although PUPs might not be malicious, they can result in vulnerabilities in a system’s security.
SourceForge was however acquired by a new company named Slashdot in 2016, which immediately
abandoned this monetization model [91]. In 2020 the website was reported as safe to use again [92],
and after inspecting the downloads it was decided to upload the software as a temporary solution.

3.4 EBSD-GUI Pre-release

Development of EBSD-GUI Pre-release, the version to be deployed in the usability test, began by
addressing issues regarding HI code, instability of the macOS version, the static nature of the GUI,
and the lack of feedback regarding a task’s state. Work was also started on an implementation for
refining orientations in a crystal map that was indexed with either DI or HI.

3.4.1 Hough indexing overhaul

Following the possibility of accessing PyEBSDIndex’s API through kikuchipy, introduced by the
release of version 0.8.0, the function which performs HI in the software was completely rewritten.
The new implementation avoids having to save an additional copy of the dataset and is much
more concise. The addition of PyOpenCl greatly enhanced indexing speeds, from approximately 75
patterns/s to 215 patterns/s on a small dataset of 12 Mb with 60x60 patterns, using an old Intel(R)
Core(TM) i3-6100U CPU with integrated HD Graphics 520. Performance boost is expected to
increase with the size of the dataset, due to the constant overhead of sending data to GPU.

The original dialog window was kept, but its content and layout were improved. The parameters
were divided into groups, indicating how parameters affect each part of the indexing process. For
example, binning of signal shape is part of the signal group, and ρ-fraction and number of detected
bands are part of the Hough Transform group. The original list of phases was replaced with a table
instead, which now shows information about the space group and crystal system of the phase, and
also what color will be assigned to the phase [Figure 18].

30

(a) EBSD-GUI dev (b) EBSD-GUI Pre-release

Figure 18: Comparison between the old phase list used in EBSD-GUI dev (a), and the new table
implemented in ”EBSD-GUI Pre-release” (b). The new table also restricts the user from creating
or loading more phases than PyEBSDIndex is capable of, which is a maximum of 2. In EBSD-GUI
Pre-release, it was possible to load 3 phases into HI by first doing DI. This would result in an error,
later discovered by the usability test.

The ability to inspect the crystal system of the phase might be helpful to students, and to does
who are less familiar with the details of a material’s microstructure. Due to the HI implementa-
tion from PyEBSDIndex only supporting CUBIC crystal structures, it is particularly useful when
troubleshooting incompatible phases.

The new table in Figure 18b adds an additional button labeled Create, which allows users to define
the phase without loading it from an existing master pattern. The button opens a new dialog
window, requiring the user to specify a name and a space group number for the phase. Information
about the crystal system is derived from the space group number through the Phase class from orix.
Specifying a custom structure is optional, as it is currently not being used by PyEBSDIndex during
indexing. However, when PyEBSDIndex releases support for this, most if not all necessities for
utilizing structures will already have been made. A custom structure should however be specified,
in order to correctly display geometrical simulations on top of indexed patterns.

An option for editing the direction which specifies the color key used when creating an IPF map
was added. This is useful when the user needs to analyze the orientations relative to a specific
direction or wants to directly compare an IPF map with an existing one that uses a specific color-
key direction.

3.4.2 Mac troubleshooting

In addition to the known issue of leaked semaphore objects, listed in Section 3.1, multiple issues
related to bundling the software on macOS were discovered.

The first attempts of running a bundled version on macOS would result in an error, which occurred
due to an object being of type KeyboardModifier, and a method, invoked when importing the Qt
backend from Matplotlib, expecting the object to be of type String or Integer. The same issue
was discovered on Matplotlib’s official repository, pointing to a new ”Enum system”, introduced
in version 6.4 of PySide6, being the culprit at fault [93, 94]. The new system required Matplotlib’s
Qt backend to adapt to the new system. As a quick solution, it was decided to downgrade PySide6
from v6.4 to v6.3.2, where the error did not exist.

When a bundle, which would open without error, was acquired for macOS, an issue related to
multiprocessing was encountered. Multiple copies of the application kept opening in what seemed to
be an endless loop. A user on Stack Overflow posted a similar issue when using PyInstaller and Qt,

31

who had narrowed down the cause of the problem to happen when importing the sklearn package
from scikit-learn, a dependency of kikuchipy used for multivariate analysis [95]. This library
imports and uses tools from joblib to do parallel computing, which when frozen by PyInstaller
causes an infinite loop on macOS. The user suggests excluding sklearn.externals.joblib from
the bundle [95]. This can however break the functionality of scikit-learn and in turn kikuchipy.
In a different post, a user suggests a fix by importing the multiprocessing library and calling
multiprocessing.freeze_support() right before the main function of the application is called
[96]. This fixed the issue of multiple copies of the GUI being created, however when inspecting the
bundle using the resource tracker, one could see multiple processes still appearing in an endless
loop. The final solution was found in a raised issue on PyInstaller’s GitHub repository, which
specified that freezing of multiprocessing must happen before import statements are called [97].
This fixed the issue, and the memory usage of the bundle finally stabilized.

In an effort to fix the leaked semaphore objects, the loading of datasets was put outside of threads.
This does not affect performance if the dataset is loaded lazy, but will otherwise make the GUI stop
responding for a moment, depending on how large the dataset is. Although it did not completely
fix the leaked semaphores objects, it drastically decreased the frequency of their occurrences.

A specific problem was encountered on Mac computers with Apple silicon, a series of system-on-
chips designed by Apple Inc. that is based on the ARM64 architecture. Using this architecture
often requires custom support from the software to utilize the CPU and GPU properly, which is
not always available seeing as the first Apple silicon was released only 3 years ago. As of January
2023, all new Mac models will be built using Apple silicon [98], making it important to support
the ARM64 architecture to secure this future user group. The problem occurred during the triplet
voting process of HI, where the CPU performs the computations instead of the GPU. The Python
library RAY is responsible for distributed multi-processing, which only experimentally supports
Apple’s ARM64 architecture. The user guide of PyEBSDIndex highlights this, and suggests in-
stalling the base library using the Conda package manager instead of using the package installer
for Python (pip) [6]. The default configured RAY package should be installed separately using pip
[6]. Therefore the solution was to rebuild the virtual Python environment using Conda and use
pip in cases where packages were not available to download.

3.4.3 Customizable GUI

Monitors and laptop screens come in a variety of sizes and resolutions, which affects the size and
readability of GUI-elements being drawn on the display. Laptop screens are often smaller in size
but retain a high-resolution display. In order to make elements appear larger without sacrificing
the resolution of the display, and consequently lose image quality, both Windows and macOS
use scaling. As a result, smaller-sized displays simply have less space to display GUI-elements,
regardless of resolution. A solution would be to develop the software’s GUI with this in mind,
displaying fewer elements and tools at the same time. This would needlessly sacrifice visibility on
larger displays and multi-monitor setups, so instead the solution became to introduce the ability
to let users customize their GUI themselves.

A high level of customization was made possible by using Qt’s QDockWidget class, which are
”secondary windows placed in the dock widget area around the central widget in a QMainWindow”
- Qt Documentation [99] [Figure 19]. The transition from using regular QWidget to QDockWidget

was straightforward, due to the new class acting like a wrapper that contains the original widget.
All widgets which previously resided in the central widget of the main window were moved into
separate dock windows, to take advantage of the docking features.

32

Figure 19: Allowed docking area inside the QMainWindow class from Qt.

Source: The official Qt Documentation [99]

The dock windows can be resized, reordered, unlocked from the main window, maximized and
hidden. The ability to unlock windows, allows widgets to be displayed in full-screen on separate
connected monitors, e.g. for inspecting IPF maps in better detail. This is the same functionality
that AZtecCrystal is capable of, described in Section 2.2.1.

Putting all the widgets into dock windows leaves the central widget empty, which then becomes
a void in the middle of the main window when resizing the dock windows. A workaround was
implemented which removes the central widget by calling QMainWindow.setCentralWidget(None).
This is not a recommended solution according to the official Qt Documentation, which states that
Creating a main window without a central widget is not supported. You must have a central widget
even if it is just a placeholder - official Qt Documentation [100]. On the other hand, the solution
does seem to work fine, with multiple users online reporting so too [101].

3.4.4 Job Manager

To improve the feedback a user receives when they initiate long processes, such as signal-to-noise
improvements or indexing, a new dock window, named Job Manager, was introduced to the main
application window [Figure 20].

The Job Manager gives an overview of all currently running, completed, failed and queued jobs
during the session. Jobs are ordered chronologically, providing a history of what tasks have been
done and in what order, and the number of currently running jobs is shown on the status bar at the
bottom of the main window. Each job shows the elapsed time, the title of the task being performed,
the output path of the results, and a log that is updated in real-time with information about the
tasks being performed. This is the same log that would previously appear in the terminal, and the
same approach for redirecting the output stream described in Section 3.2.7 was used. However, it
is now easier to identify what outputted messages belong to which task, and the complete log is
also saved to the same folder as the results. If the task of a job fails, a short, red-colored message
describing what went wrong is logged, and the full stack traceback of the error is displayed in the
terminal instead.

33

Figure 20: Job Manager containing jobs in different states. Job 1 is completed, while Job 2 is
running, indicated by the timer which updates every second. Job 3 is queued and will not run
until Job 2 is completed. Job 1 and Job 3 are both collapsed, while Job 2 shows additional
information.

The idea and design of the Job Manager were inspired by the video editing software DaVinci
Resolve by Blackmagic Design Pty Ltd. [102], commonly used by both Hollywood professionals
and amateur filmmakers. Similar to indexing procedures, the rendering of a video may take between
a few minutes to several days to complete. DaVinci Resolve implements the Render Queue, which
gives an overview of the current and queued rendering jobs [Figure 21]. The Job Manager extends
this concept with a log, which can be hidden with the Job’s collapse button, to avoid flooding the
list and consequently retain the principle of visibility.

Figure 21: Render Queue of DaVinci Resolve, which became an inspiration when designing the
Job Manager.

In practice, each job displayed in the Job Manager is created using the new class WorkerWidget,
which contains an instance of the previously developed Worker class. To display the state of the
worker, the Worker class was extended with signals that can be emitted from a thread [Code 6].
Because signal properties are globally shared between instances of the class, the worker’s unique
identifier self.id is emitted to make sure the correct instance of WorkerWidget is updated.

34

...
@Slot()

def run(self) -> None:

"""

Initialise the runner function with passed args,

kwargs, and redirects standard output and error.

Raises

Exception

If an error occurs in the `self.fn` method

"""

with redirect_stdout(self.thdout), redirect_stderr(self.error_redirect):

try:

self.isStarted.emit(self.id)

self.fn(*self.args, **self.kwargs)

self.isFinished.emit(self.id)

except Exception as e:

self.thdout.errorwrite(f"{e} (See terminal for traceback)")

self.failed = True

raise e

finally:

if self.failed:

self.isError.emit(self.id)

...

Code 6: The addition of signals to extend the functionality of Code 1. Signals are emitted from
the thread to update whenever the task is started, finished or failed. self.failed is defined inside
the __init__() function of the worker class. Taken from the EBSD GUI Pre-release version of
utils/worker.py.

The new implementation causes an unwanted side effect when running jobs concurrently, because of
how redirect_stdout() and redirect_stderr() act within threads. Even though both methods
are called inside the thread, the latter of the two threads being initiated will also redirect the
former’s output stream. This means that if Job 1 and Job 2 are running concurrently, the output
of Job 1 will appear in the log of Job 2. No solution for this was found, so it was decided to
instead limit the number of allowed active threads to 1. Note that this does not affect the number
of threads used during the indexing procedures, so the loss of performance is negligible to none at
all.

Solutions for interrupting a started job were looked into, but no good or safe option was viable
for this particular use case. Once a thread is spawned in Qt, it is given a set of instructions
and will not terminate until these are completed. One may have communication between threads
by using signals, showcased in Code 6, but the ability to cancel a running method would still
require implementing checkpoints in the code, where the method is allowed to terminate. This
was considered to not be worth the work because the ability to cancel a job during indexing would
require adding checkpoints in the underlying libraries.

3.4.5 Implementing refinement of orientations

Previously, refinement of orientations was only available as an option in the DI routine. It was
decided to add this as a separate tool, similar to how the processing of patterns is separated from
the indexing routine [1]. This makes it possible to first inspect the crystal maps before deciding
whether or not to perform refinement. This also allows refinement of orientations in crystal maps
indexed using HI, given that dynamical simulations are provided as master patterns.

35

A new menu and dialog window for refinement were added, which allows the user to choose the
refinement method and add optional keyword arguments. The optimization algorithm Nealder-
Mead [50] from the Python library NLopt [51] was added in addition to the methods provided by
SciPy [52]. The dialog window has a similar layout to DI and HI, to retain consistency throughout
the different functionalities.

While implementing the functionality, a bug in orix v0.11.0 was encountered, where refining ori-
entations of the second phase in a single multi-phased crystal map would result in a refined crystal
map without information about the phase. The issue was reported on the kikuchipy discussion
forum, and the root of the problem was identified [103]. The issue was resolved and released as
patch v.0.11.1 for orix. Crystal maps containing points that were assigned the not_indexed label,
possible by using HI on low-quality patterns, became another special case to take into account.
Refinement of points that are labeled not_indexed had not been considered a possibility, and
therefore no fail-safe mechanism for this existed in kikuchipy v0.8.3 or prior, resulting in a raised
error. The issue was reported to the kikuchipy discussion forum, where it was stated that the issue
would be fixed in the next patch [104]. To create a workaround before the deadline of the usability
test, a navigation mask was created for the not indexed points [Code 7]. This would however lead
to missing points inside the crystal map, which would appear as black spots in the IPF map and
phase map.

...
Not needed as of Kikuchipy 0.8.4

if not xmap_phase.all_indexed:

nav_mask_phase = ~(

xmap_phase.phase_id == xmap.phases.id_from_name(mp_key)

)

nav_mask_phase = nav_mask_phase.reshape(xmap.shape)

else:

nav_mask_phase = None

...

Code 7: Temporary fix using navigation mask before the release of kikuchipy v0.8.4. Taken from
the EBSD-GUI Pre-release version of scripts/refinement.py

To take full advantage of refinement, each point in the crystal map should contain indexing scores
for all phases present in the ROI. This means that multiple phases are considered when refining
each orientation, which allows refinement to re-assign the phase of points in the crystal map. That
is why during indexing of a multi-phased sample in the current DI implementation, refinement
is performed on each single-phased crystal map before merging the final result, which only keeps
the best scoring orientation in each point. Due to this, the implementation of refinement must
be able to handle both single- and multi-phased crystal maps created both with HI and DI. A
single-phased crystal map from HI is stored similarly to one indexed using DI, giving a total of 3
different scenarios to consider:

1. Single-phased crystal map from HI or DI

2. Multi-phased crystal map from DI

3. Multi-phased crystal map from HI

In addition, due to the new ability to define and use custom phases during HI, described in
Section 3.4.1, these custom phases must match the structure of the phase defined by the dynamical
simulation used during refinement.

Because of the complexity needed for the refinement implementation, and the waiting time for the
release of kikuchipy v0.8.4, it was decided to not include this functionality as part of the usability
test.

36

4 Usability test

The following subsections present how a questionnaire was created, and how the usability test was
conducted. The complete questionnaire that was given to participants can be found in appendix A.
Highlights from gathered data and observations are described, and the full report of all collected
data from the questionnaire can be found in appendix B. The data was used to prepare the first
official release of the application.

4.1 Questionnaire

An online questionnaire was created to be used during the usability test, described in Section 2.3,
in order for the gathered data to be of similar structure, and consequently be efficiently analyzed
[42, p.346]. A questionnaire can be helpful to get an overview of issues that might have been
overlooked during the testing,

It is important to establish why a questionnaire is desirable, in order to motivate the participant
to fill out the form properly [42, p.327]. To make the participants feel safe about what data is
gathered and for what purpose, it should be made obvious that personal information is protected.
The following information and motivation should therefore be communicated to the participant at
the beginning of the questionnaire:

This form is anonymous and all gathered data will be used for improving the software. Note that
the data will be published in our masters’ theses, which will be available to the public.

A questionnaire without any observer or interviewer being present should only be used if the
motivation is high enough [42, p.346], so it would be smart to give the questionnaire during the
lab session to ensure that filled-out forms are received.

In order to put responses into context, and to establish data from different perspectives, it is com-
mon for a questionnaire to gather basic demographic information [42, p.347]. Personal information
may be classified as any type of information that can lead to the identification of the participant
afterward. NTNU’s procedures and tools for data gathering are described in an online guide, which
aims to ensure that the proper information security level is applied [105]. The guide also specifies
that certain tools cannot be used; ”NTNU does not have a data processor agreement with Google,
and this means that researchers and students at NTNU can not use software and tools from Google
when collecting personal data.” - NTNU Knowledge base [105]. For this particular questionnaire,
it is useful to establish the EBSD skill level of the participant, and what OS was used to run
the application. This can highlight compatibility issues that are specific to an OS. Although the
population of participants is small, this should not be enough information to be classified as per-
sonal. To be on the safe side, the questionnaire was created using the Norwegian online tool named
”Nettskjema”, recommended by NTNU, instead of an online Google form.

Figure 22: Questions used to establish the demographic of the participants. The full list of questions
can be found in appendix A.

37

Questions should be formulated in a compact and precise manner, to best communicate to the
participant what data is of interest. Depending on the response format, clear instructions on how
to answer the question should be given [42, p.347]. ”Nettskjema” also makes it possible to use
formats that restrict the user from giving multiple answers, e.g. only allowing one checkbox to be
checked at a time. These can be used to establish what functionality the participants have used.
Rating scales can be used to gain insight into participants opinions, e.g. how easy to understand
or usable a feature is [42, p.348]. This type of rating scale is called a Likert scale and can be
designed by gathering a pool of statements about the features which should be investigated [42].
How participants experience the learning curve of the application, and whether the design and
layout are complex, are some statements that can point design of UX in the correct direction. It
was decided to use a discrete scale with 5 points, ranging from strongly disagree to strongly agree,
to provide users with enough options to express themselves. Participants would also be asked to
rate their complete experience, using a scale from 0 to 10, to give an indication of the overall
experience using the application.

4.2 Lab sessions

The usability test was conducted as part of the teaching plan used in the third module of TMT4166
Experimental Materials Chemistry and Electrochemistry. The module makes up 1/3 of the course
and teaches students to record EBSP using SEM, index patterns using HI and DI, and present
the results using various maps [21]. A total of 11 students were put into groups, and given the
task of using SEM to capture patterns from a Super Duplex Stainless Steel (SDSS), containing
austenite and ferrite, and as it would later turn out, also sigma phase. The next step was to index
the patterns using OIM DC available on the computers in the EM-lab, and EBSD-GUI Pre-release
which was made temporarily available for the students to download through Uninett FileSender.
The students were given an introduction to EBSD-GUI Pre-release in a plenary session where they
had access to the application on their own computers and Macs [Figure 23]. The students could
then mimic the given walk-through themselves, and get assistance with any unexpected issues that
occurred. A small dataset with SDSS patterns, without sigma phase, was given as an example to
practice on, before the students were to index their own captured patterns the next week during the
lab sessions. A manual, created by Relling [2], was also sent to the students. The manual guides
the users through the core functionality of the application, from loading experimental datasets to
inspecting indexed results.

Figure 23: Plenary session with students in TMT4166. After a walkthrough was given, students
would receive help with installing and using the application.

The lab week consisted of 4 days, with one group of students attending each day. Each session
started with making sure the students knew their assigned tasks and answering questions the
students might have. It was made clear to the students that their interaction with the application
would be observed, and that guidance would mainly be given if they were completely stuck or
encountered unexpected issues. This restriction became less strict as students completed their

38

tasks, in order to create discussion about the application. Students would often be asked to think
out loud to better understand their decision-making, giving insight and creating an important
source for data gathering. To speed up dictionary indexing, the students were asked to index
a smaller Region of Interest (ROI) in the lab, and index the complete dataset at home. This
decreased the time spent indexing from 1.5 - 3 hours to 10 - 20 minutes depending on the size
of the chosen ROI and laptop specifications. While waiting for EBSD-GUI Pre-release to finish
indexing, students used OIM DC on the lab computers to experience a more commercial solution
for doing HI. Once their tasks were completed, students answered the questionnaire described in
Section 4.1. The questionnaire took 2-5 minutes for the students to complete.

4.3 Feedback and data

Data was gathered from the questionnaire and from the observations made during the preliminary
session and lab hours are presented. A short summary is given in Figure 24, and an overview of
all issues discovered is given in Table 3. Issues have been assigned a level of severity, depending
on the type and consequence of the issue. The reason is to get a better overview of the general
complexity and seriousness of the occurring issues, which indicates how the application performed
during the test. The levels of severity are defined according to the action that initiated the cause
of the issue, and are as follows:

• Critical: The action cannot be completed.

• High: The action can be completed through adjustments outside of the application.

• Standard: The action can be completed through adjustments inside of the application.

• Low: The action can be completed without requiring adjustments.

Out of the 11 participants, only 1 participant was not able to run the application successfully. An
attempt to fix the problem was made but to no use. A more detailed description of the problem
is given in the entry labeled MAC1 in Table 3. The participant was one out of the three who used
macOS and ended up not participating in the questionnaire, which is why 10 participants answered
the given form instead of 11.

Figure 24: Summary of data gathered from usability test and questionnaire. Overall rating is the
average of how participants rated their overall experience using the application. Out of the 11
participants, 1 was not able to install the application.

39

Table 3: Issues discovered during usability test of EBSD-GUI Pre-release. Each entry has a
unique id depending on which system it was discovered on, a description of the issue, where in the
application it appeared, and the type and severity of the issue. The table is sorted by severity.

Id Description Location Type Severity
MAC1 When loading the Python lib, the

following error may occur:
”Symbol not found: (mkfifoat)
Referenced: ’EBSD-GUI/Python’,
Expected: ’.../libSystem.B.dylib’”

Startup Crash Critical

MAC2 Creating images in threads might
result in 1 or 2 leaked semaphores on
Intel-based Macs.

Pre-indexing maps,
Dictionary indexing

Crash Critical

WIN1 If Dictionary Indexing fails to locate
a phase that is given by one of the
master patterns, it fails when trying
to merge.

Dictionary indexing Error Critical

WIN2 A directory containing a master
pattern requires specific naming for
Signal Navigation to be able to open
the indexed crystal map.

Signal navigation Error High

MAC3 Punctuation in a file path results in
the file not being properly read.

Main window Error High

WIN3 Native scaling set to 150% makes
some dialog windows too large to fit
within the display.

Dictionary indexing Bug High

WIN4 Calibration of Pattern Center cannot
handle phases that have a non-cubic
structure e.g. steel sigma phase.

Pattern refinement Error Standard

WIN5 A specific ROI would make indexing
fail with the message: Unable to
allocate 53.7 MiB for an array with
shape (120, 222, 528) and data type
float32.

Region of interest,
Hough indexing,
Dictionary indexing

Error Standard

WIN6 Renaming of a processed dataset
requires closing the application on
some systems.

Pattern processing Error Standard

WIN7 PyOpenCL appears to not work with
Intel HD graphics GPUs which are
running old drivers from before 2019.

Hough indexing Error Low

WIN8 Updating the number of active jobs
fail after running processing of
patterns.

Pattern processing Bug Low

WIN9 Hough indexing can be started with 3
phases, even though the maximum
allowed is two phases.

Hough indexing Bug Low

WIN10 System manager does not indicate
that GPU is utilized on laptops with
both Nvidia CUDA and Intel HD
graphics, even though pattern speed
is between 400-700 paterns/s.

Hough indexing Bug Low

40

Questionnaire

• All the students considered themselves beginners to EBSD software.

• Majority of students agreed that the features were easy to use and understand.

• Majority of students had no opinion on whether there should be more parameters to adjust.

• 1/3 of students found the design and layout of the application to be complex.

• 2/3 of students found the application slow and unresponsive at times.

• 2/3 of students knew the differences between the Image Viewer and Signal Navigation.

• 1/2 of students thought the different file formats were confusing.

• Majority of students agreed that they were able to easily complete their assigned tasks.

• 3/5 of students had a look at the user manual, which was rated on average 4.8 out of 5 in
terms of usefulness.

• Students rated on average their overall satisfaction with the application an 8.4 out of 10.

• Only 1 student was maybe interested in contributing to the future development of the soft-
ware.

Observations

• The Job Manager scales badly and results in multiple scrollbars, making it difficult for users
to navigate and monitor their jobs. The initial location is awkward and small.

• In the dialog for ROI, some users were confused about the preview buttons, and thought
maybe they would affect the processing.

• Processed datasets are available in the System Explorer while the processing itself is hap-
pening, which confused some users about the file being ready for use.

• Users had trouble finding and inspecting their results and knowing which files contained the
indexed crystal map.

• Some users discovered that logs from Hough Indexing always display the Pattern Center using
the BRUKER convention, regardless of the inputted convention. This is not considered a
bug, but instead a miscommunication between the GUI and kikuchipy.

• When doing Pattern Center calibration, some users would adjust coordinates manually in-
stead of automatically tuning them, resulting in a long and frustrating process for beginners.
They were unsure of what misfit meant, and whether lower or higher values were better.

• The number of files generated from a 3-phased dataset using Dictionary Indexing is over-
whelming for many users.

• One user affected by red-green color blindness struggled to tell when a job was finished, as
he could not distinguish between text switching from red to green when completed.

Suggestions

• A confirmation prompt should be displayed when attempting to exit the application while a
job is still running. One of the participants closed the application by accident and had to
start their indexing from the beginning again.

• It would be helpful if the manual described how the user can move the docked widgets.

41

4.4 EBSP Indexer v0.1.0

This section describes the finalization of the software, based both on feedback received from the
usability test, and the roadmap presented in Section 3.1. This version should not contain large
changes to existing functionality that are outside the scope of the feedback. Such changes would
potentially require another usability test, as functionality can unintentionally worsen.

4.4.1 Software portrayal

Figure 25: New icon for
EBSP Indexer, of an
IPF map originating
from an aluminum
dataset.

From the beginning of development, ”EBSD-GUI” has been considered
a temporary title for the software. To avoid potential confusion around
a later name change, it was decided to do this before version 0.1.0 was
released to the public. The term EBSD includes multiple processes, from
using SEM, to indexing patterns, to generating and analyzing results
[Figure 3]. It was necessary for the new title to better communicate
the purpose of the software, and ”EBSP Indexer” was proposed. This
fits the core of the software, which is to improve and index Electron
Backscatter Patterns (EBSPs), and is why the title was changed.

A new icon was designed to accompany the name change [Figure 25].
The icon should be simple, recognizable, and associated with the title
of the software. Both kikuchipy and OIM DC use an illustration of an
EBSP, so in order to be unique, a fully indexed crystal map represented
as an IPF map was chosen. The color key direction used is [1, 0, 1],
creating a color pallet that is easy to recognize on most desktops. The
IPF map was distorted using a crystallization image technique, to make
it appear more simple and stylized.

4.4.2 Implementing usability feedback

Issue WIN3 from Table 3, observations related to the Job Manager, and the fact that 1/3 of students
found the layout complex, indicate that the layout should be adjusted. The default location of the
Job Manager was moved to the top right of the main application window, sharing the same height
as the Image Viewer instead of the Terminal. The size of the log in each job was also reduced, so
more jobs can be simultaneously displayed in the Job Manager, consequently removing the need
for additional scrollbars. New dialog sizes were tested using a 150% scaling setup, to ensure that
all buttons were accessible and visible, resolving WIN3.

In order to make the layout of the software more friendly to beginners of EBSD software, the main
application window was made less cluttered on startup by hiding the empty Job Manager and
Signal Navigation windows. These features will now automatically be shown when needed, e.g.
when a job is started, or a dataset or crystal map is inspected. The Image Viewer will also now
be focused when a new image is opened by the user, immediately displaying IPF maps and phase
maps without requiring that the user navigates to the Image Viewer window.

Figure 26: Exit confirmation dialog when
trying to exit the application while jobs are
still running.

As suggested by one of the participants, an exit-
confirmation dialog window was added, which ap-
pears when trying to close the application while jobs
are still running [Figure 26]. This should make it so
users avoid unintentionally closing the software in the
middle of indexing, which could have resulted in hours
of lost progress.

42

Both issues WIN4 and WIN9 [Table 3] are due to the lack of restrictions forced on the user, which
allows users to encounter issues like these. Restrictions were added to PC calibration and HI, so
non-cubic phases cannot be used, due to these not being supported by PyEBSDIndex. In addition,
it is no longer possible to start HI with 3 or more phases. Forcing such restrictions upon users must
be communicated properly, in order to avoid users feeling confused and deprived of their freedom
[44]. Therefore phases that are unsupported were implemented to be shaded grey, indicating that
they are disabled and non-selectable. A red message is also displayed in HI with information about
what is wrong, e.g. the phase table displayed in Figure 18b would result in the message:

Structure P42/mnm in steel sigma is currently not supported, only CUBIC Crystal Systems.

Issue WIN6 and the observation of a processed dataset being available in the System Explorer
before being finished, highlighted an overlooked issue in the dialog for signal-to-noise improvement.
Dataset files were loaded in a lazy manner, meaning the processing would happen after the resulting
datasets had been saved to the system, and would be left open after the processing was done. This
was changed so that only the preview of the dataset is loaded lazy, while the processed dataset is
loaded completely beforehand.

Some participants noticed that the log from HI would always display the PC in the BRUKER con-
vention, which lead to some participants being confused about inserting the wrong PC coordinates.
The PC is displayed automatically when doing HI using kikuchipy’s wrapper of PyEBSDIndex,
which always internally uses the BRUKER convention. This would require the print statement to
be changed inside the source code of kikuchipy, which was discussed on the forum of kikuchipy
[106]. This resulted in ”BRUKER” being added to the print statement in the release of patch
v0.8.3 of kikuchipy, which should reduce confusion.

Accessibility which had not previously been considered was highlighted by the usability test. About
1 in 12 males are affected by color blindness, where difficulty differentiating between red and green
is the most common [107]. One should avoid color combinations that are difficult to distinguish
for users who are affected by any type of colorblindness. The previously green ”completed” label
displayed on jobs in the Job Manager, was replaced with one of blue color, and the use of blue
and red in the GUI was made to resemble that of the color charts designed by data visualization
specialist Ivan Kilin [108]. These colors are less saturated, which also makes colored messages
easier to read. Finally, the ability to toggle between a light and dark theme design for the GUI
was added to the settings menu, implemented by using PyQtDarkTheme. This is a very common
feature shipped with most software, as the dark theme inflicts less eye strain when used in a poorly
lit room.

The work of Relling [2] solved issues WIN1 and WIN2, and also addressed the observations related
to ROI and introduced improved sorting and naming of crystal maps generated from DI.

4.4.3 Finalizing refinement of orientations

As mentioned in Section 3.4.5, the development of refinement of orientations was not finished
before the usability test. A generalized dialog window and code had to be developed, in order to
support both single- and multi-phased crystal maps, indexed using HI or DI.

A multi-phased crystal map returned from kikuchipy’s EBSD.hough_indexing() method, is struc-
tured so that each point only keeps information about the most likely solution for that point. It
is however possible to keep all possible solutions for each point, by allowing the method to return
the index data array, in addition to the crystal map, by setting return_index_data = True. The
index data array is a NumPy array, which can be saved as a NumPy file for later use. Keeping
the index data was added as an option to the HI dialog window, which also saves the path of the
data in order to associate the data with the saved crystal map.

The DI implementation differs from HI in how results are handled. While HI saves a single crystal
map, DI saves complete indexed crystal maps for each phase, in addition to the final merged
crystal map. As a refinement of orientations should be done using the separately indexed crystal

43

maps from each phase, the developed dialog window should support the ability to load multiple
crystal maps from different files. Considering the above for HI, the ability for the user to choose
between loading a crystal map from a single file or multiple from different files was implemented
into the dialog window [Figure 27]. If a crystal map is loaded from a single file, and the path of the
associated NumPy data file exists, the option for using index data is enabled and automatically
checked.

Figure 27: Handling of phases from crystal maps and master patterns in refinement dialog. This
approach shows the refinement of a SDSS with sigma phase, with orientations for each phase
covering the whole ROI, shown by the number of orientations in each crystal map. Note that the
figure only shows some of the available options in the refinement of orientations dialog window.

Crystal maps are extracted from each file added, or created from the index data if available. The
name of the phase derived from a master pattern is then matched with the name of the phase in
the crystal map so that the correct master pattern is used to refine the crystal map. This is done
by iterating over each master pattern, crystal map, and the phases in the crystal map [Code 8].
By also using a navigation mask, we can ensure that only one phase is present at a time during the
refinement process, which also makes it possible to refine multiple phases which originate from the
same crystal map. The solution also allows for refining of the same phase from different crystal
maps of the same ROI, which can have been indexed using different parameters, and the highest
scoring solution would be kept after merging.

While developing the solution, kikuchipy released v.0.8.4, which takes not_indexed points into ac-
count when refining orientations. The navigation mask was therefore modified to include not_indexed
points. However, it was discovered that merging crystal maps, which contain these points, would
result in all points being labeled not_indexed. This was fixed later in the release of kikuchipy
v.0.8.5. Unfortunately, this version of kikuchipy was not available before the release of EBSP
Indexer v0.1.0, so a placeholder for the needed code was implemented and labeled TODO [Code
8]. Therefore the same problem described in Section 3.4.5 may occur when refining orientations in

44

a crystal map created using HI. It was decided not to delay the feature due to this minor bug, and
the fix would instead be shipped in a future v0.1.1 patch, once kikuchipy v0.8.5 was released.

...
ref_xmaps: list[CrystalMap] = []

ref_xmaps_navs: list[np.ndarray] = []

for mp_phase_name, mp in master_patterns.items():

print(f"\nRefining with Master Pattern: {mp.phase.name}")

for xmap in xmaps.values():

for phase_id, phase in xmap.phases_in_data:

if phase.name == mp_phase_name:

TODO Switch -2 with -1 when kikuchipy can merge not_indexed

nav_mask_phase = ~np.logical_or(

xmap.phase_id == phase_id,

xmap.phase_id == -2,

)

nav_mask_phase = nav_mask_phase.reshape(xmap.shape)

refined_xmap = s.refine_orientation(

xmap=xmap,

detector=det,

master_pattern=mp,

energy=energy,

navigation_mask=nav_mask_phase,

signal_mask=signal_mask,

trust_region=[1, 1, 1],

method=method,

method_kwargs=ref_kwargs,

compute=True,

)

ref_xmaps.append(refined_xmap)

ref_xmaps_navs.append(nav_mask_phase)

...

Code 8: Solution for refining orientations in single or multiple crystal maps. The navigation
mask should include phases with id == -1 once kikuchipy v.0.8.5 is released. Note that this code
does not contain the extraction of phases, nor the merging of refined crystal maps. Taken from
scripts/refinement.py

To consider cases where the structure of the phase from the crystal map does not match the struc-
ture of the phase from the master pattern, a warning is displayed asking if the user would like
to override conflicting structures [Figure 28]. The warning is displayed for each conflicting couple
and requires confirmation before refinement can begin. Comparisons were done by using a hid-
den/private method of kikuchipy.signals.util._crystal_map named _equal_phase. Without
overriding the structure of the conflicting phase, refinement would result in an error raised by
kikuchipy, and that is why the second option of the warning is to abort refinement [Figure 28].

Figure 28: Warning displayed when there is a conflict between phases. The message stating what
is different is returned from the _equal_phase method.

45

5 Results

This section presents the software and other resources which were produced as a result of the work
of Relling [2], Leth-Olsen [3], and this thesis. The contributions of this thesis are presented in more
detail, where features are based on the released version of the software. A poster and an abstract
description were also made, with the goal of informing potential users of the application. The plan
is to display the poster at the venue of The 20th International Microscopy Congress (IMC20).

5.1 Software

The software developed, titled EBSP Indexer, provides users with a GUI that is capable of inspect-
ing, processing, indexing and analyzing EBSPs acquired by a SEM. EBSP Indexer version 0.1.0
became the first official release of the software and was made available to download from the DOI:
10.5281/zenodo.7925262 provided by Zenodo [4], and SourceForge [7]. The available downloads
include an installer for Windows and an app for macOS. The following OS versions and system
architectures are supported:

• Windows 10/11 and macOS 13 Ventura

• x86 64 based CPU

In addition, support for ARM64 based CPUs is labeled experimental, and currently not available
to download as a packaged app. In the meantime, users of ARM64 may install the software from
the source code. See Section 5.2 for more about this. The software is open-source and licensed
under the terms and conditions of the GNU General Public Licence (GPL) v3.0.

Many core features of kikuchipy are made accessible through the use of GUI-elements, tied together
by the application’s main window [Figure 29]. The software and its feature are the results of the
collective contribution of the EBSP Indexer Developers. Some features are however characterized
by the involvement of certain contributors. Features offered by the GUI with respective authors
are:

• Dictionary Indexing1

• Hough Indexing2 [Figure 32, Figure 33]

• Refinement of Orientations2 [Figure 34]

• Signal-to-noise Improvement1,2 [Figure 31]

• Customizable Region of Interest1

• PC Calibration based on patterns3

• PC Calibration Curve based on Working Distance 3,1

• Signal Navigation1

• Export Pre-indexing maps1

• Image Viewer3

• System Explorer2,1 [Figure 30]

• Interactive Terminal2 [Figure 35, Figure 36]

• Job Manager and Utilities for Threads2 [Figure 35, Figure 36]

• Application Settings3,1

For a more thorough showcase of features, the manual by Relling [2] is recommended.

1Relling, 2Østvold, 3Leth-Olsen

46

Figure 29: The application’s main window has been made customizable by using the docking
functionality provided by Qt. An up-scaled version of the image can be found in appendix C. The
image demonstrates how dock windows may be unlocked from the main window. Any of these
dock windows may be moved to other monitors, resized, hidden, or placed back into the main
window. The added View menu in the toolbar at the top allows hidden windows to be shown or
hidden again. The image shows Image Viewer (top-left corner), Job Manager (top-right corner),
and Terminal (bottom-left corner) being unlocked from the remaining main window. The number
of active jobs running, and allowed to run simultaneously, is shown in the bottom-right corner.

(a) Menu shown for an EBSD dataset (b) Menu shown for a crystal map

Figure 30: The System Viewer has been extended to support additional context menus that are
shown when a file is right-clicked. The options of the menu depend on the type of file selected,
e.g. a dataset has the option to do indexing (a), and a crystal map will show the option to refine
orientations (b). All files have the option to be revealed in the file explorer of the system or be
deleted. Deletion is done through an additional confirmation prompt to avoid users accidentally
deleting files. The top option of the menu can be quickly accessed by double-clicking on the file.

47

Figure 31: User restrictions were introduced to signal-to-noise improvement dialog, to avoid users
applying the same processing to already improved patterns. If processing is applied without removal
of static background, a warning is displayed due to DI relying on relative intensities (Section 2.1).

Figure 32: Final version of the overhauled dialog window for Hough Indexing (HI). The binning
option and phase table were improved to provide more information. The ability to save index data
of the crystal map was added to improve later refinement of orientations of multi-phased samples.
Specifying color key direction is available when IPF map is selected, and a number of restrictions
and checks were implemented to ensure phases are compatible with HI.

48

Figure 33: New functionality for specifying a custom phase which can be used in HI. The image
shows how austenite may be defined, which requires the space group number to be given. Specifying
color is optional, and if none is given the default phase colors defined in the application settings
are used. Defining a custom structure is optional, but is required for geometrical simulations to
be properly displayed in Signal Navigation. Multiple checks are performed to guarantee that legal
arguments are given.

Figure 34: Refinement of orientations dialog supports refinement of orientations from crystal maps
indexed using both HI and DI. Refinement requires the original dataset, one or more crystal maps
derived from the same dataset, and master patterns of the phases which are to be refined. Multiple
refinement methods are available from the drop-down menu located in the Refinement group. If
index data was saved during HI, it will automatically be enabled when choosing refinement for the
crystal map which was derived from the index data.

49

Figure 35: To showcase the flexibility of the Job Manager and the Terminal, a nickel dataset is
downloaded to the current working directory. First, the sendToJobManager method is imported
from the utils module of EBSP Indexer, using the terminal which acts as an interactive Py-
thon interpreter. There exists a method in kikuchipy that can download and save a small nickel
dataset, and this method is passed as an argument to the sendToJobManager method. Calling
sendToJobManager with appropriate arguments, shown in the terminal window, sends the kiku-
chipy method to a thread and adds a new job inside the Job Manager. The job then gives an
overview of the running kikuchipy method. After the method is complete, the nickel dataset is
saved as nickel patterns.h5, which can be viewed in the System Viewer and inspected with Signal
Navigation [Figure 36]. The log is also saved automatically if allow_logging=True.

50

Figure 36: The downloaded nickel dataset from Figure 35 can be inspected using Signal Navigation
to make sure the download was successful. Note that Signal Navigation was implemented by Relling
[2].

5.2 Additional resources

To support an open-source community and future maintenance, a variety of user and developer
resources were created and published. All of these resources, in addition to the source code, are
available in the GitHub repository of the organization EBSP Indexer [109], and can be used free
of charge within the GPL v3.0 terms and conditions. They were also made available on Zenodo [4]
and SourceForge [7], in the same location where the installer and app reside. Users and developers
are first greeted by the README file, found in appendix F, which gives an overview of the
software’s background, features, known issues of the latest release, minimum requirements, where
the application is available to download, and contributing users. The repository was also made to
contain a discussion forum, where users and developers can ask questions and give feedback, and
the support page on SourceForge directs users to the same discussion forum.

Guides directed to developers are updated from the pre-study and include contribution guidelines,
how to set up the development environment, how to update dependencies and distribute new
versions of the application, and a suggested workflow on how to contribute to the project. These
can be respectively found in appendices G, H, I and J.

Documentation of the source code that was contributed by this thesis includes scripts from the
utility module utils, found in appendix K, and from the scripts module, found in appendix L. The
documentation was made using pdoc3, an Auto-generate API documentation for Python projects
[110].

Scripts for exporting the application and for creating the installer can be found in export.py and
setup script.iss, which are included in the root directory of the source code.

51

5.3 IMC20 abstract and research poster

An abstract description of EBSP Indexer was submitted to The 20th International Microscopy
Congress (IMC20), a venue where participants from all over the world present cutting-edge research
in microscopy [111]. The congress is held every four years IMC20, is hosted by the Korean Society of
Microscopy (KSM), and is scheduled to take place 10 - 15 September 2023 at the Busan Exhibition
and Convention Center in Korea. A research poster was also created to be displayed at the venue,
which presents the motivation behind the software, and gives a brief overview of its features.

The submitted abstract and poster can be found respectively in Appendix D and E, and were
written in cooperation with J. Hjelen and H. W. Ånes. At the venue, Y. Yu will be the presenting
author.

52

6 Discussion

This section discusses aspects of the development process, the usability test, the final software, and
the foundation that is to provide an open-source community. The intention is to highlight both
positive and negative aspects to better understand what worked and what did not.

6.1 Development process

The development process has been characterized by multidisciplinary work within materials science,
computer science, design of UX, and publishing of software. The development team has consisted
of members with complementary competence within these disciplines, which has been of great
value.

Figure 37: Contributions to the main branch
of the GitHub Repository during the spring
semester of 2023. The numbers in the graph
on the right specify lines of code and text
that was added and deleted from all contrib-
utors of the project. Note that the graph
does not reflect the number of manually
written lines, but instead, the amount of
data edited.

According to GitHub Insights, the complete pro-
ject, which includes source code, resources and doc-
umentation, consists of 33 144 lines of code and text
[Figure 37]. This is however somewhat misleading,
as icons used in the GUI are converted to binary
code and put into the Python script resources rc.py,
which consists of over 10 000 lines. This most likely
explains the two massive peaks of contributed code
found in Figure 37 during the transition from EBSD-
GUI Pre-release to EBSP Indexer v.0.1.0. The first
peak should instead be closer to the amount of code
deleted in the same period, estimated to be around
2 000 lines. The second peak, which includes an
addition and deletion of the same size, should most
likely be neglected altogether, due to resources rc.py
being edited. Qt UI files are also technically counted
twice, due to also being compiled to Python scripts.
To get a more accurate overview of the work, which
excludes auto-generated files, icons, images and li-
censing, a website named Count LOC [112] can help.
The website states that the source code consists of
11 126 lines of code, where 5 015 lines define the
Qt GUI, which seems to be a much more accurate
estimation.

Software design can be decomposed into three fun-
damental activities; 1. establish and understand re-
quirements of the design, 2. create a design that
aims to satisfy the requirements, and 3. evaluate
the design [42, p.454]. Working in close cooperation
with material scientists at the EM-lab at NTNU,
through the use of weekly meetings, was valuable
to the understanding of EBSD theory, and con-
sequently, what was to be required by the interac-
tion design. Requirements were elaborated on dur-
ing the first weeks of the pre-study when the team
was introduced to OIM DC, and kikuchipy through
the pre-existing Jupyter notebooks used at the EM-
lab. Multiple example datasets were indexed using
these solutions, in order to experience the shortcomings of HI, and the inflexible and cumbersome
editing of notebooks. These hands-on impressions were valuable once the designing process star-
ted, however, it would have been beneficial to study the documentation and examples provided
by kikuchipy in more detail earlier on. This would have made it easier to take advantage of the
structures within the classes of kikuchipy and create a design around them. This would probably

53

not have a large impact on the design of the GUI, due to the focus of GUI usually being on input
and output, but would improve code design. For example, the code implementing HI was rewritten
to take advantage of the Phase and PhaseList classes from orix, and the metadata of the detector
available in the EBSD class of kikuchipy.

The design process considered how functionality from kikuchipy could be made more easily ac-
cessible through interaction with GUI-elements, and how different elements would interact with
each other. For example, a lot of functionality was built around the System Viewer [Figure 30], as
functionality like inspecting, processing and indexing would require easy access to data. The design
of the software is characterized by dividing functionalities into different menus and tools, which
is heavily influenced by being a team project with three contributing members. This encouraged
all members to work in parallel on different functionality that did not overlap, greatly improving
the rate at which code was written. The performance of the code writing was however exposed
to bottlenecks whenever the implementation of new functionality would require other features to
already be in place. Attempts at implementing the fundamental functionality and utilities in the
beginning were made, e.g. the System Viewer and the native File Explorer, for opening directories,
and selecting and saving files. This was very successful, and these utilities were used throughout
many features.

As development continued, the requirement for more utilities and fundamental features became
apparent, e.g. threading of methods, and saving and loading of application settings. This would
delay the production of functionality somewhat, as each member would eventually develop utilities
that were specific to the functionality they were working on. An example of this is the phase lists
shown in different dialog windows throughout the GUI, which is defined similarly in all scripts,
resulting in boilerplate code. Instead, one should define a single generalized phase list that can be
utilized throughout all dialog windows. The consequences of this became apparent when overhaul-
ing the phase list in HI, described in Section 3.4.1, which meant the phase list of DI and pattern
center calibration had to also be overhauled to maintain consistency. Due to time constraints, this
resulted in the phase lists related to pattern center calibration using the old design, while HI, DI
and refinement of orientations use the new and improved one.

It is often difficult to predict what code needs to be generalized to be used throughout the soft-
ware, and it will not be clear before consequences suddenly appear. There is a principle within
programming called D.R.Y code, don’t-repeat-yourself code, which aims to avoid this. This should
definitely be considered in future development, and an effort to reduce and generalize existing code
should be done. This is especially important for an open-source project to reduce the work needed
for contributing, as developers can rely on existing utilities instead of having to develop their own.
One should also keep in mind to extend this philosophy to include don’t-repeat-each-other code, as
the inconsistent phase list example showcases.

Another common concept within programming is the Test-Driven Development (TDD) approach,
which requires developers to always write tests before new functionality is added. This is to ensure
that both new and existing functionality works as intended, which is very useful when editing
code in large open-source projects, e.g. kikuchipy. Unit tests are also useful in large projects,
where tests are written for the smallest amount of code that can logically function on its own.
Neither a TDD approach nor unit tests were implemented, as the project was regarded to be of a
smaller scale considering that a lot of functionality was already provided by kikuchipy. The speed
at which features were developed was probably increased in the beginning due to this decision, as
features could quickly be tested manually by compiling and running the Python scripts. Manually
testing features have however become much more cumbersome and less reliable as the project
has grown. Editing and adding code now may affect existing functionality in unforeseen ways,
which manual testing usually will not uncover. This is a common consequence of basing the final
product on a prototype, which will simply postpone testing and maintenance problems [42, p. 553].
Implementing unit tests before any more features are added, will be beneficial to the project in
the long run.

54

6.2 Usability test approach

As mentioned in the previous section, the last step of the design process is to evaluate what has
been created. It is important to involve users who represent the target group, as these are the
ones who will use the software on a regular basis [42, p.456]. It may also increase the users’ feeling
of ownership of the software, making it more likely that they will also support it in the future
[42, p.458]. This becomes even more important in open-source software, due to it mainly relying
on its users for maintenance and continued support. The usability test was chosen for this very
reason, as it had the potential to also capture students’ interests, who might contribute to the
project in the future. However, only one participant indicated a minor interest in contributing to
the project. Discussions with some of the participants highlighted that the scale of the project
seemed intimidating, thinking it requires a lot of previous experience with software development,
something that is less common among students of material science. This is true to some extent,
however, contributions should be made from a multidisciplinary team, consisting of students who
study both material- and computer science.

Out of the 12 available students, only one was not able to participate in the usability test. Target-
ing students first was of priority, as expensive EBSD software is likely less accessible to students
compared to scientists, professors, and employees in larger organizations. The number of students
who took part in the lab sessions at the same time was between 2 and 4, which was appropriate for
having in-depth discussions. A larger number would most likely reduce the quality of the obser-
vations, but increase the reliability of the data gathered from the questionnaire. Both approaches
are useful, but one can argue that the confirmation of having many participants becomes more
important as the software reaches a production-ready state. Another principle highlighted by First
Principles of Interaction Design [44] is to avoid only testing for learnability. This is to avoid data
gathering which only focuses on the initial learning curve of the software, which ends up saying
nothing about the long-term use or the end-state level of productivity [44].

As mentioned in the results, all participants regarded themselves as beginners, meaning neither
experienced nor advanced users of EBSD software were tested. This might have slightly shifted
the development focus to regard more user-friendly features during the transition from EBSD-GUI
Pre-release to EBSP Indexer v.0.1.0, as described in Section 4.4.2. Future usability tests should
be conducted to ensure that the design also satisfies the requirements and expectations set by
other types of users in the target group. There is however the argument that one should not
trust and support the current behavior of all users, as these may contain bad habits [42, p.463].
The creativity of designers is also affected, as the focus is put on satisfying requirements enforced
by feedback. Instead, one should focus on how to improve the work of users, by implementing
alternative workflows which have previously not been considered. However, one should also consider
that ”users don’t like to deviate from their learned habits if operating a new device with similar
properties (Norman, 2013)” - Sharp et al. [42, p.463]. The impression from conducting the usability
test of this thesis, is that most of the gathered data are very valuable, indicated by the number
of issues discovered [Table 3]. One should however still maintain a balance between following
user-dictated feedback and one’s own creative solutions.

Observing the users interacting with the design and asking them to elaborate on decisions, was
useful when trying to understand their behavior. Investigating behaviors highlights the user’s
priorities, preferences, and implicit intentions [42, p.463]. Because of the plenary session, where
participants were given a walkthrough of the software before the lab sessions, one may argue that
the first impressions of the users were not captured by the usability test. This might be true,
however, the software does require some knowledge of EBSD in order to be usable, making the
software much more advanced than your usual phone app that has no prerequisites. Impressions
say this was the correct decision, especially when considering that participants had been given
tasks, which were to be featured in their final report in TMT4166, and which had to be completed
within the time limit of 2 hours during their lab session.

The questionnaire was mainly used to confirm observations made during the usability test. The
data was easy to analyze, due to the structure of the generated report from Nettskjema. A few
of the statements that used the Likert scale resulted in participants selecting no opinion, giving
the impression that the statement is neither false nor true. For example, most participants had

55

no opinion on whether there should be more parameters to adjust. This is not too surprising,
considering that all participants were students with no previous experience in EBSD, making
it difficult to evaluate this statement. It could also mean that the participant thinks that the
particular statement is correctly balanced. The length of the questionnaire can be regarded as
short, considering that almost all users completed it within 2-4 minutes. This was difficult to
predict, but in retrospect, a pilot test before the usability test could have provided an estimate of
the length of the questionnaire. The opportunity to add more questions for data gathering would
maybe have presented itself then.

Even though all the students considered themselves beginners to EBSD software, their general
computer skills seemed to vary. It appeared as though this also greatly influenced the students’
efficiency when navigating through menus. Uncertain students were less likely to try buttons and
were generally ”clicking” less, worrying it might negatively impact their current work. Only the
most exploratory of students right-clicked files in the system explorer to index and inspect data.
In defense of the uncertain students, the system explorer did not indicate the ability to either left-
or right-click the files shown. Hovering the mouse pointer over a file did not change its appearance
from normal marking to selective marking, a feature overlooked during development. This was
however added in the later version after testing. The detail is minor but important to make a GUI
more intuitive, by giving users correct feedback to their actions. These assumptions are only based
on the observations made during testing and would have benefited from empirical data gathering
through the questionnaire. Considering the short length of the questionnaire, this could have been
achieved by adding a question where participants would rate their computer competence level.

6.3 Software evaluation

The described scope of this thesis included the development of software that utilizes a GUI to ease
interaction between users and kikuchipy, and to provide this in a packaged application that is easy
to install for both Windows and macOS. It is safe to say that a GUI was successfully developed,
and supports interaction with a lot of functionality from kikuchipy. To which extent the interaction
has been made easier is difficult to determine, as expectations may vary from user to user. The
usability test conducted indicates a user-friendly experience for users who are new to EBSD, with
an overall rating of 8.4 out of 10. Meanwhile, advanced users familiar with the features of kikuchipy
will most likely prefer the API-approach instead of a GUI, simply due to being more flexible.

Figure 38: Usability as a function of the
number of features differs depending on
whether the software design is in the form
of a GUI or an API.

There is an interesting balance between a GUI and
an API in terms of usability and flexibility. As a
GUI provides more options and features, the capab-
ilities of the software increase, providing solutions
for problems regardless of shape and size. However
as the number of features approaches that of an API,
the usability of the software will, without precau-
tions, be reduced [Figure 38]. This is because it
becomes more difficult to retain interaction design
principles such as visibility and consistency. The
amount of available visibility is finite within a dis-
play, and each feature will compete for this finite
space. With a large number of different features,
consistency must sometimes be given up in order
for the design to make sense [42, p.64]. An API is
not restricted in the same way, due to features be-
ing available through text-based code or commands,
which is why usability is not affected by the number
of features to the same extent as a GUI.

56

The developed application aims to provide a user experience within the optimal GUI balance
between usability and the number of features [Figure 38]. With the software still in its early
stages, v0.1.0, the GUI mainly supports basic functionalities that are to be expected from an
EBSD-indexing software. Commercial software like OIM DC and AZtecCrystal operate on a much
larger scale, with the support of large companies, and consequently offers many more features,
options and UX improvements. Both of these applications seem to be close to an optimal GUI
balance, with OIM DC arguably losing some usability due to the large number of features available,
described in Section 2.2.1. Although EBSP Indexer is far from such a state, the DI capabilities
offered by kikuchipy make EBSP Indexer a viable alternative to some of these commercial options,
especially when considering the price of these solutions. The GUI also implements a number of
widgets and tools, which aims to make it easier to work with DI and HI, e.g. the System Viewer,
Signal Navigation, and different dialog windows.

An example of where the GUI does not offer the same flexibility as the API of kikuchipy, is
when generating maps from indexed results. Depending on the aspect ratio and resolution of the
resulting crystal maps, generating images of IPF maps and phase maps requires some adaptation
to make labels and titles the correct size, and the user often has a specific preference for how
the resulting images should look. It is difficult to provide the user with enough options in a GUI
to mirror the capabilities of a Python library like Matplotlib, and especially without the user
feeling overwhelmed. The solution should be to make the generation of images more adaptive
using Matplotlib, which takes into account the size and aspect ratio of the image, and also have
default values that users may configure in the application settings.

6.3.1 Design principles

Evaluating the software in terms of design principles can give an indication of how usable the
product is. Functionalities are accessed through menus or windows, which can be moved, hidden
or resized, all of which are actions that improve visibility. One way to make features that are
burrowed in sub-menus more visible is to add a second toolbar with icons, e.g. from the Linea
Iconset described in Section 3.2.8, where these features can be accessed from. This should however
not be prioritized yet, seeing as the number of features offered by the GUI is limited.

The implemented Job Manager greatly improves feedback to users, e.g. by displaying inputted
indexing parameters in the log. There are also minor details that provide user actions with feedback,
e.g. the dialog window for setting up parameters in HI closing after parameters are submitted by
clicking Ok, followed by the Job Manager automatically appearing if hidden. Another example of
feedback is the use of pop-up dialog windows, which are displayed to make sure the user understands
their actions, e.g. the exit confirmation dialog [Figure 26], and the warning displayed about Phase
conflict [Figure 28]. Many constraints and error handling have been implemented to protect the
user from stumbling into unwanted application states. Most of these are related to user input and
actions, e.g. through the adaptive menus in the System Viewer which makes sure indexing is done
using a dataset that has a format compatible with kikuchipy [Figure 30]. On multiple occasions,
feedback about restrictions is given directly to the user, e.g. about PyEBSDIndex only supporting
cubic crystal structures, or when index data is not available when refining orientations. These
detailed messages are however not consistent throughout all features. This should be solved by
implementing a more robust message utility, that can be used across all functions. Utilities are
a great way to retain consistency throughout the application, and also to make editing code in a
single place affecting all implementations of the utility in the application. This also means that
changes made must be compatible with the different implementations of the edited utility.

Looking back on the implementation of refinement of orientations, one could have saved separate
crystal maps instead of the NumPy data array during HI. This would remove the need for the
additional checkbox ”Use Index Data” [Figure 34], as refinement of orientations may be done
the same way as DI, for the sake of consistency. On the other hand, since the availability of
the index data is automatically detected, refinement of orientations requires fewer modifications
when refining multi-phased crystal maps from HI, compared to DI. This highlights how the design
process consists of iterating through alternative approaches, which are discovered by interacting
with the design.

57

The look of the GUI provides details to indicate affordance, such as background colors changing
to indicate that an item is selectable, and the mouse cursor changing appearance when an item is
clickable. The use of PyQtDarkTheme also gives each GUI-element a distinct look to indicate its
function and improve affordance.

Another aspect to consider is the accessibility of the features offered by the GUI. Today it is com-
mon for features to be designed or extended to support users with disabilities, as bad accessibility
may end up excluding these users. Some designs take excessive control over the display, and as a
result make irresponsible human-computer-interface errors, such as restricting text sizes and fonts
to ones that even users with ordinary eyesight cannot read [44]. Many accessibility options are
already configurable inside Windows and macOS, such as larger text sizes, automatic texting for
hearing-impaired users, the ability to talk instead of using the keyboard, and many more. Qt takes
advantage of many of these pre-configured accessibility options, and consequently, EBSP Indexer
does so too, e.g. text sizes and scaling of GUI-elements that follow the user’s pre-configured set-
tings. Additional support was added to the System Viewer to enable the ability to use the keyboard
for navigation, providing accessibility to users who might lack precise and accurate motor functions
in their hands. A keyboard can also be used to navigate through most of the GUI-elements, such as
dialog windows and toolbar menus, however not all features are covered. For example, operating
Signal Navigation only supports the use of a mouse, which is due to this keyboard implement-
ation requiring more effort in terms of programming complexity. Other accessibility issues were
addressed in Section 4.4.2, and include the choice of colors that are beneficial to users affected by
color vision deficiency and the option for using a darker GUI theme. Although mainly directed
toward web applications, The W3C Web Accessibility Initiative [113] offers standards and support
material to make it easier for developers to implement accessibility, which is worth looking into if
the need for other accessibility options arises.

6.4 Source code and resources

The source code is available to download from 3 separate hosts, GitHub, Zenodo and SourceForge,
making it accessible to anyone who would like to contribute to the development. The structure of
the source code is straightforward, with Python scripts residing in folders with appropriate names
that indicate their purpose, e.g. utils for utilities, ui for GUI-elements, and resources for icons
and images. The structure would probably benefit from using more sub-folders, to improve the
grouping of similar features. For example, the scripts folder contains almost all scripts that are
not related to UI or utilities, and should be grouped into indexing, processing, pattern center,
etc. Re-organization of the structure should be done once development has calmed down, to avoid
incompatibilities with any features currently in development.

The quality of the source code is in many places characterized by having to meet deadlines, mean-
ing the code was prioritized to work instead of being ”beautiful”. The approach has in many
ways followed the philosophy of Joseph Leslie Armstrong, co-designer of the Erlang programming
language, who states ”Make it work, then make it beautiful, then if you really, really have to, make
it fast.” [1]. Just like how interactive design is an iterative process, so is the programming of soft-
ware. For example, the code for System Viewer was originally located in main.py, but was moved
to its own class to reduce the size of main.py. This improves the experience for new developers,
who need to find and edit specific functionality within a feature, all of which is contained in its own
dedicated Python script. This did however require the addition of Qt signals, in order for actions
within the System Viewer to update other GUI-elements. This was done for Signal Navigation
and Terminal as well, but the list within the Job Manager dock window is still accessed through
main.py. The list should also be put into its own class and script, even though the code is small
compared to other functionalities, as it maintains consistency for developers. One may argue that
consistency within code design is equally as important as consistency in visual design, especially
when developing an open-source project that should offer easy-to-edit code.

Many functions and classes throughout the source code have been given docstrings, string literals
that are written within code with the purpose of providing documentation. These can then be
used by the pdoc3 library to generate web-based documentation that is easy to navigate locally.
This is meant to be a temporary solution, as the documentation is not available online, and

58

was made to provide at least some documentation with the release of the software. Developers
mainly benefit from basic knowledge of PySide6 and kikuchipy, both of which are already well
documented. The combination of Python scripts and Qt-based GUI-elements are structured in a
consistent way throughout the software, and uphold best practices [114]. Documentation is usually
very important for the survivability of an open-source project and is even more important when
the delivered software is an API. Although documentation is not strictly necessary in a GUI from
a user’s perspective, it is useful for a developer who joins the project mid-development. Something
to also consider is the interactive Terminal with access to the running Python environment, which
requires documentation in order to give users access to all the application’s capabilities, showcased
in Figure 35. In the future, one should look into the Read the Docs project, which both builds and
provides hosting of open-source documentation for free.

While researching existing EBSD software, a similar project to EBSP Indexer was discovered.
The project was part of the master’s thesis of Philippe T. Pinard at McGill (Montréal, Québec,
Canada), who developed an open-source software titled EBSD-Image that aimed to analyze EBSD
diffraction patterns and mappings [115]. The software was written using the Java programming
language, and it featured both a graphical- and a command line interface [Figure 39]. This was
packaged into a Windows installer, and the software’s website even states that a macOS version
was under testing [115]. Unfortunately, the software was discontinued and was last updated in
2011. EBSD-Image appears to no longer be available to download.

Figure 39: The GUI of EBSD-Image. Although the interface looks outdated in terms of today’s
expectations, it does have a similar layout to both EBSP Indexer and other EBSD software.

Source: Pinard [115]

Even though EBSD-Image provided a website, documentation, cross-platform support and many
other features to establish an open-source community, the software was still discontinued. It is
difficult to determine how well the software performed, and what the reason for its discontinuation
was. Although the continuation of EBSP Indexer is not guaranteed either, it is safe to say that many
resources have been created with the purpose of making the software succeed. Developer guides
have been created with the purpose of maintaining the software and giving future developers an
entry point for the project. A poster was also created to engage attendees at the IMC20. Whether
these measures will be enough for the project to survive, remains to be seen.

59

7 Future work

There has already been developed patch v0.1.1, which is planned to release soon. The patch
includes the upgrading of kikuchipy to v0.8.5, which fixes the issue related to the refinement of
orientations resulting in only not_indexed points, described in Section 4.4.3. The release of the
patch was delayed, and not included in this thesis, due to the distribution process of creating a
Windows installer and a macOS app being time-consuming. In case any more issues arise, fixes
for these may also be included in the patch and avoids users having to download new versions too
often.

As stated in the results, the available downloads do not include an app for Macs with ARM64
architecture, even though one was made for the version which was distributed during the usability
test. This is because of the instabilities experienced by Mac users during the usability test [Table 3],
and it was decided to focus on ruling out issues on a single architecture at the time. Leaked
semaphores persist in the macOS x86 64 app, although more rarely than before, and are highlighted
by a known issue in the README file [Appendix F]. Due to time constraints and the availability of
the Apple Silicon Mac in the group being limited in later stages of development, it was decided to
label support for ARM64 as experimental. This version should be close to the stability of the x86 64
app. The development environment is however slightly trickier to set up to work as intended. All
dependencies and their respective versions are stated in requirements macOS arm64.txt, located
in the source code, however automatically installing these using Conda might fail, due to being a
combination of Conda and Pip libraries.

Unfortunately, it was not enough time to develop all the planned features. The release of kikuchipy
v0.8.0 highlighted the possibility of Hybrid Indexing, an approach developed by Ånes [116]. This
is a combination of HI, DI and refinement, and aims to reduce indexing time by using results from
HI when it is sufficient. Badly indexed map points from HI are re-indexed using DI [Figure 40],
and refinement of orientations from both indexing techniques may be done before merging the
results. Considering how much slower DI is than HI, it might be possible to save up to several
hours of indexing time. Considering that GUI-elements already exist for HI, DI and refinement of
orientations, implementing Hybrid Indexing into an EBSP Indexer version 0.2.0 should be straight-
forward. However, before the implementation of such a feature, one should first consider creating
more GUI related utilities, to uphold the concept of D.R.Y code. This should make GUI-elements
from HI and DI more reusable, which will benefit the implementation of Hybrid Indexing.

Figure 40: Re-indexing step in Hybrid Indexing, taken from the kikuchipy documentation. The
maps showcase how many indexed points using HI that should be kept, and how many should
be re-indexed using DI. The patterns are 60x60 pixels and are from a nickel dataset of 200x149
patterns, acquired by using a NORDIF UF-1100 detector. The fraction of points that need to be
re-indexed is 43.18%.

Source: Ånes [116]

60

In addition to the improvements described in the discussion, it might be worth looking into some
abnormalities which were discovered later in development. Optimizing the performance of the GUI
should be prioritized, especially when considering that 2/3 of participants found the software slow
and unresponsive at times, highlighted by the questionnaire. The GUI will stop responding while
loading a dataset into Signal Navigation, and should therefore be loaded using a thread instead.
The application also takes a long time to boot up the first time, about 1-3 minutes, due to many
files being unpacked and loaded into memory. It might be worth taking advantage of lazy imports,
to postpone loading of some libraries until they are needed by the application. The PyInstaller
hooks described in Section 3.2.9 were written to include all files from kikuchipy, HyperSpy and
PyEBSDIndex in the packaged distribution. These may be rewritten to include only required files,
which can potentially reduce the size of the packaged application. On Windows, installing the
application may trigger the firewall, displaying a warning stating that the application cannot be
trusted. To avoid this, one may sign the installer using Microsoft’s SignTool. GitHub Repositories
offers a feature named Dependabot, which is used to detect security vulnerabilities in packages
used by the software. The Dependabot in the EBSP Indexer repository displays 11 alerts related
to security breaches, some of which are labeled as critical and of high priority. All of these are
related to the packages used by the macOS versions, so it is recommended to look at these when
investigating the leaked semaphore issue. Unfortunately, Dependabot is configured to only alert
security breaches in the main repository branch, which is why these alerts were first discovered
after the release of v0.1.0 when the main branch was updated.

Improvements discussed in Section 6, and future work described above, may be ordered in terms
of priority. Some improvements will provide a better foundation for implementing new features
and that is why these should have a higher priority.

1. Fix the known issues that are described in README.md [Appendix F]. The repository of
EBSP Indexer will include an updated list of known issues.

2. Investigate compatibility issues on macOS using the security breaches found by the reposit-
ory’s Dependabot, to fix leaked semaphore objects. If nothing is found, it might be worth
looking into an alternative solution for threading on macOS.

3. Distribute an app version for macOS that uses the ARM64 architecture.

4. Reduce boilerplate code by making more utility classes for reusable GUI-elements. These
utilities should also be implemented in existing classes to provide consistency throughout the
application and the source code.

5. Implement unit tests for existing classes and any new utilities added by point 4.

6. Implement Hybrid Indexing using unit tests and utilities from points 4 and 5. The feature
should be part of the next minor update, v0.2.0 according to Semantic Versioning.

7. Create and host documentation using solutions provided by the Read the Docs project.

8. Improve accessibility by implementing keyboard support for more features, e.g. Signal Nav-
igation.

61

8 Conclusion

Development of the EBSD-GUI dev, which resulted from the pre-study [1], was continued. The
software used a Qt-based GUI to ease interaction with the EBSD processing, indexing and analyzing
tools provided by kikuchipy and PyEBSDIndex. In this thesis, requirements for an EBSD software
were established by understanding the basic theory of EBSD, principles of interaction design, and
by investigating existing software solutions. These requirements, in addition to known issues of
EBSD-GUI dev, were used to improve the software, which resulted in the test-ready version EBSD-
GUI Pre-release. A usability test was conducted to obtain data about the performance of this
version and to uncover issues that had been overlooked. The average participant rated the overall
user experience as 8.4 out of 10. The gathered data and feedback were used to prepare the final
result, which was the release-ready application EBSP Indexer v0.1.0. The software contributions
of this thesis include:

• Overhaul of existing Hough Indexing implementation

• Addition of Refinement of orientations, implemented as a feature instead of an option that
is only available in Dictionary Indexing

• Addition of Job Manager, and extension of utilities used for threading

• Addition of dock windows that may be moved, resized and hidden.

• Overhaul of existing System Viewer implementation

• Addition of user restrictions and feedback throughout multiple features, e.g. Signal-to-noise
Improvement, Pattern Center calibration, Hough Indexing and Refinement of Orientations

• Fixes of issues discovered during the usability test, and improvements based on data from
the questionnaire

• Improvements to the stability of the macOS version, including the possibility of packaging
the software as an app

EBSP Indexer v0.1.0 was made distributable by using PyInstaller, Inno Setup and Platypus, and
licensed using GPL v3. The distribution includes an installer for Windows and an app for macOS
that supports the x86 64 architecture, and was published using Zenodo [4] and SourceForge [7]. The
source code was also made available to download from these websites, in addition to the GitHub
repository [109]. Multiple resources were created to support the establishment of an open-source
community, which is necessary to secure future support for EBSP Indexer. Resources contributed
by this thesis include:

• Publishing of EBSP Indexer v0.1.0

• Contribution guidelines

• Tutorials and guides for developers

• Documentation of the software contributions from this thesis

• Submission of an abstract to The 20th International Microscopy Congress (IMC20), and a
research poster of EBSP Indexer to be presented at the venue.

Patch v0.1.1 of EBSP Indexer will be released soon, which includes fixes to Refinement or orienta-
tions, based on the release of kikuchipy v0.8.5. The stability of the macOS version was improved,
but issues related to leaked semaphore objects still occur. This should be investigated further
before making an attempt at packaging an app for the ARM64 architecture.

62

Bibliography

[1] Erlend Mikkelsen Østvold. ‘Software development of a graphical user interface - Bridging the
gap between electron backscatter diffraction and indexing software’. Unpublished pre-study,
Norwegian University of Science and Technology, Department of Mechanical and Industrial
Engineering. Dec. 2022.

[2] Hallvard Tangvik Tellefsen Relling. ‘EBSP Indexer - using an open-source dictionary in-
dexing software for phase differentiation’. MA thesis. Norwegian University of Science and
Technology, June 2023.

[3] Olav Leth-Olsen. ‘Distinguishing Martensite from Ferrite in Mild Steels with EBSD using
Dictionary Indexing’. MA thesis. Norwegian University of Science and Technology, June
2023.

[4] Erlend Mikkelsen Østvold, Hallvard Tangvik Tellefsen Relling and Olav Leth-Olsen. EBSP
Indexer. Version 0.1.0. May 2023. doi: 10.5281/zenodo.7925262. url: https://doi.org/10.
5281/zenodo.7925262.

[5] H̊akon Wiik Ånes et al. pyxem/kikuchipy: kikuchipy 0.8.4. Apr. 2023. doi: 10.5281/zenodo.
3597646. url: https://doi.org/10.5281/zenodo.3597646.

[6] Dave Rowenhorst and H̊akon Wiik Ånes. PyEBSDIndex. 2022. url: https://pyebsdindex.
readthedocs.io/en/latest/index.html.

[7] Erlend Mikkelsen Østvold, Hallvard Tangvik Tellefsen Relling and Olav Leth-Olsen. EBSP
Indexer. Version 0.1.0. May 2023. url: https://sourceforge.net/projects/ebsp-indexer/.

[8] S Singh and M De Graef. ‘Orientation sampling for dictionary-based diffraction pattern
indexing methods’. In: Modelling and Simulation in Materials Science and Engineering
24.8 (Nov. 2016), p. 085013. doi: 10.1088/0965-0393/24/8/085013. url: https://dx.doi.
org/10.1088/0965-0393/24/8/085013.

[9] H̊akan Hallberg and Mathias Wallin. Microstructure Mechanics in Crystalline Materials.
2023. url: https : / /www . solid . lth . se / research /microstructure - mechanics - in - crystalline -
materials/ (visited on 15/05/2023).

[10] Niels Christian Krieger Lassen, Dorte Juul Jensen and Knut Conradsen. ‘Image processing
procedures for analysis of electron back scattering patterns’. In: Scanning microscopy 6
(1992), pp. 115–121.

[11] Oxford Instruments. Techniques for Electron Backscatter Diffraction (EBSD) Indexing.
2023. url: https ://www.ebsd . com/ebsd - techniques/ techniques - for - indexing (visited on
15/05/2023).

[12] Paul VC Hough. Method and means for recognizing complex patterns. US Patent 3,069,654.
Dec. 1962.

[13] Saransh Singh et al. ‘High resolution low kV EBSD of heavily deformed and nanocrystalline
Aluminium by dictionary-based indexing’. In: Scientific Reports 8 (July 2018). doi: 10.1038/
s41598-018-29315-8.

[14] Marc De Graef et al. EMsoft-org/EMsoft: EMsoft Release 5.0.0. Version v5.0.0. Oct. 2019.
doi: 10.5281/zenodo.3489720. url: https://doi.org/10.5281/zenodo.3489720.

[15] Damavandi and Esmaeil. Why EBSD cannot distinguish the aluminum and silicon in Al-Si
alloy? July 2020. url: https://www.researchgate.net/post/Why-EBSD-cannot-distinguish-
the-aluminum-and-silicon-in-Al-Si-alloy.

[16] AMETEK Materials Analysis Division. OIM Analysis. 2022. url: https://www.edax.com/
products/ebsd/oim-analysis.

[17] Bruker Corporation. Software: ESPRIT Family. 2023. url: https://www.bruker.com/en/
products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-
family.html.

[18] Oxford Instruments Nanoanalysis. AZtecCrystal. 2023. url: https : / / nano . oxinst . com/
azteccrystal.

63

https://doi.org/10.5281/zenodo.7925262
https://doi.org/10.5281/zenodo.7925262
https://doi.org/10.5281/zenodo.7925262
https://doi.org/10.5281/zenodo.3597646
https://doi.org/10.5281/zenodo.3597646
https://doi.org/10.5281/zenodo.3597646
https://pyebsdindex.readthedocs.io/en/latest/index.html
https://pyebsdindex.readthedocs.io/en/latest/index.html
https://sourceforge.net/projects/ebsp-indexer/
https://doi.org/10.1088/0965-0393/24/8/085013
https://dx.doi.org/10.1088/0965-0393/24/8/085013
https://dx.doi.org/10.1088/0965-0393/24/8/085013
https://www.solid.lth.se/research/microstructure-mechanics-in-crystalline-materials/
https://www.solid.lth.se/research/microstructure-mechanics-in-crystalline-materials/
https://www.ebsd.com/ebsd-techniques/techniques-for-indexing
https://doi.org/10.1038/s41598-018-29315-8
https://doi.org/10.1038/s41598-018-29315-8
https://doi.org/10.5281/zenodo.3489720
https://doi.org/10.5281/zenodo.3489720
https://www.researchgate.net/post/Why-EBSD-cannot-distinguish-the-aluminum-and-silicon-in-Al-Si-alloy
https://www.researchgate.net/post/Why-EBSD-cannot-distinguish-the-aluminum-and-silicon-in-Al-Si-alloy
https://www.edax.com/products/ebsd/oim-analysis
https://www.edax.com/products/ebsd/oim-analysis
https://www.bruker.com/en/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family.html
https://www.bruker.com/en/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family.html
https://www.bruker.com/en/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family.html
https://nano.oxinst.com/azteccrystal
https://nano.oxinst.com/azteccrystal

[19] F. Bachmann, Ralf Hielscher and Helmut Schaeben. ‘Texture Analysis with MTEX – Free
and Open Source Software Toolbox’. In: Texture and Anisotropy of Polycrystals III. Vol. 160.
Solid State Phenomena. Trans Tech Publications Ltd, Mar. 2010, pp. 63–68. doi: 10.4028/
www.scientific.net/SSP.160.63.

[20] Thomas Benjamin Britton et al. ‘AstroEBSD: exploring new space in pattern indexing with
methods launched from an astronomical approach’. In: Journal of Applied Crystallography
51.6 (Dec. 2018), pp. 1525–1534. doi: 10.1107/S1600576718010373. url: https://doi.org/
10.1107/S1600576718010373.

[21] Norwegian University of Science and Technology. TMT4166 - Course Content. 2023. url:
https://www.ntnu.edu/studies/courses/TMT4166#tab=omEmnet (visited on 04/04/2023).

[22] Íris Carneiro and Sónia Simões. ‘Recent Advances in EBSD Characterization of Metals’. In:
Metals (2020).

[23] Shoji Nishikawa and Seishi Kikuchi. ‘Diffraction of Cathode Rays by Calcite.’ In: Nature
122.3080 (Nov. 1928), p. 726. doi: 10.1038/122726a0.

[24] Robert Schwarzer et al. ‘Present State of Electron Backscatter Diffraction and Prospective
Developments’. In: Mar. 2010, pp. 1–20. isbn: 978-0-387-88135-5. doi: 10.1007/978-0-387-
88136-2 1.

[25] Gregory S. Rohrer. ‘2.08 - Microstructural Characterization of Hard Ceramics’. In: Com-
prehensive Hard Materials. Ed. by Vinod K. Sarin. Oxford: Elsevier, 2014, pp. 265–284.
isbn: 978-0-08-096528-4. doi: https://doi.org/10.1016/B978-0-08-096527-7.00027-1. url:
https://www.sciencedirect.com/science/article/pii/B9780080965277000271.

[26] Hydrargyrum. Bragg diffraction 2.svg. [Online; accessed 22-May-2023]. Dec. 2011. url:
https://en.wikipedia.org/wiki/Bragg%5C%27s law#/media/File:Bragg diffraction 2.svg.

[27] Richard O Duda and Peter E Hart. ‘Use of the Hough transformation to detect lines and
curves in pictures’. In: Communications of the ACM 15.1 (1972), pp. 11–15.

[28] Johann Radon. ‘Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewis-
sen Mannigfaltigkeiten’. In: Berichte Schsische Akademie der Wissenschaften (Leipzig) 69
(1917), pp. 262–277.

[29] Oxford Instruments. Basics of Automated Indexing. 2023. url: https://www.ebsd.com/ebsd-
explained/basics-of-automated-indexing (visited on 24/05/2023).

[30] Matt Nowell, Stuart Wright and J Carpenter. ‘Differentiating Ferrite and Martensite in
Steel Microstructures Using Electron Backscatter Diffraction’. In: Materials Science and
Technology Conference and Exhibition 2009, MS and T’09 2 (Jan. 2009).

[31] Amir Baghdadchi, Vahid A. Hosseini and Leif Karlsson. ‘Identification and quantification
of martensite in ferritic-austenitic stainless steels and welds’. In: Journal of Materials Re-
search and Technology 15 (2021), pp. 3610–3621. issn: 2238-7854. doi: https://doi.org/
10 .1016/ j . jmrt . 2021 .09 .153. url: https : //www. sciencedirect . com/science/article/pii /
S2238785421010590.

[32] Patrick G. Callahan and Marc De Graef. ‘Dynamical Electron Backscatter Diffraction Pat-
terns. Part I: Pattern Simulations’. In: Microscopy and Microanalysis 19.5 (2013), pp. 1255–
1265. doi: 10.1017/S1431927613001840.

[33] Aimo Winkelmann et al. ‘Many-beam dynamical simulation of electron backscatter dif-
fraction patterns’. In: Ultramicroscopy 107.4 (2007), pp. 414–421. issn: 0304-3991. doi:
https://doi.org/10.1016/j.ultramic.2006.10.006. url: https://www.sciencedirect.com/science/
article/pii/S0304399106001975.

[34] Yu H. Chen et al. ‘A Dictionary Approach to Electron Backscatter Diffraction Indexing’.
In: Microscopy and Microanalysis 21.3 (2015), pp. 739–752. issn: 14358115. doi: 10.1017/
S1431927615000756.

[35] A. Foden et al. ‘Indexing electron backscatter diffraction patterns with a refined template
matching approach’. In: Ultramicroscopy 207 (2019), p. 112845. issn: 0304-3991. doi: https:
//doi.org/10.1016/j.ultramic.2019.112845. url: https://www.sciencedirect.com/science/
article/pii/S0304399118302626.

64

https://doi.org/10.4028/www.scientific.net/SSP.160.63
https://doi.org/10.4028/www.scientific.net/SSP.160.63
https://doi.org/10.1107/S1600576718010373
https://doi.org/10.1107/S1600576718010373
https://doi.org/10.1107/S1600576718010373
https://www.ntnu.edu/studies/courses/TMT4166#tab=omEmnet
https://doi.org/10.1038/122726a0
https://doi.org/10.1007/978-0-387-88136-2_1
https://doi.org/10.1007/978-0-387-88136-2_1
https://doi.org/https://doi.org/10.1016/B978-0-08-096527-7.00027-1
https://www.sciencedirect.com/science/article/pii/B9780080965277000271
https://en.wikipedia.org/wiki/Bragg%5C%27s_law#/media/File:Bragg_diffraction_2.svg
https://www.ebsd.com/ebsd-explained/basics-of-automated-indexing
https://www.ebsd.com/ebsd-explained/basics-of-automated-indexing
https://doi.org/https://doi.org/10.1016/j.jmrt.2021.09.153
https://doi.org/https://doi.org/10.1016/j.jmrt.2021.09.153
https://www.sciencedirect.com/science/article/pii/S2238785421010590
https://www.sciencedirect.com/science/article/pii/S2238785421010590
https://doi.org/10.1017/S1431927613001840
https://doi.org/https://doi.org/10.1016/j.ultramic.2006.10.006
https://www.sciencedirect.com/science/article/pii/S0304399106001975
https://www.sciencedirect.com/science/article/pii/S0304399106001975
https://doi.org/10.1017/S1431927615000756
https://doi.org/10.1017/S1431927615000756
https://doi.org/https://doi.org/10.1016/j.ultramic.2019.112845
https://doi.org/https://doi.org/10.1016/j.ultramic.2019.112845
https://www.sciencedirect.com/science/article/pii/S0304399118302626
https://www.sciencedirect.com/science/article/pii/S0304399118302626

[36] Farangis Ram et al. ‘Error analysis of the crystal orientations obtained by the dictionary
approach to EBSD indexing’. In: Ultramicroscopy 181 (2017), pp. 17–26. issn: 0304-3991.
doi: https://doi.org/10.1016/j.ultramic.2017.04.016. url: https://www.sciencedirect.com/
science/article/pii/S030439911630198X.

[37] D Roşca, A Morawiec and M De Graef. ‘A new method of constructing a grid in the space
of 3D rotations and its applications to texture analysis’. In: Modelling and Simulation in
Materials Science and Engineering 22.7 (2014), p. 075013.

[38] Lars Andreas Hastad Lervik. ‘Orientation and Projection Center Refinement for EBSD
Indexing in Python’. MA thesis. Norwegian University of Science and Technology, June
2021. url: https://hdl.handle.net/11250/2785332.

[39] Saransh Singh, Farangis Ram and Marc De Graef. ‘Application of forward models to crystal
orientation refinement’. In: Journal of Applied Crystallography 50.6 (Dec. 2017), pp. 1664–
1676. doi: 10.1107/S1600576717014200. url: https://doi.org/10.1107/S1600576717014200.

[40] Edward L. Pang, Peter M. Larsen and Christopher A. Schuh. ‘Global optimization for
accurate determination of EBSD pattern centers’. In: Ultramicroscopy 209 (2020), p. 112876.
issn: 0304-3991. doi: https://doi.org/10.1016/j.ultramic.2019.112876. url: https://www.
sciencedirect.com/science/article/pii/S030439911930292X.

[41] AimoWinkelmann. Electron Backscatter Diffraction (EBSD) Pattern Formation. 2022. url:
https://www.ebsd.com/ebsd-explained/pattern-formation (visited on 26/05/2023).

[42] Helen Sharp, Jennifer Preece and Yvonne Rogers. INTERACTION DESIGN, beyond human-
computer interaction, Fifth Edition. John Wiley & Sons, Inc., 2019.

[43] HEAVY.AI. Technical glossary - Graphical User Interface. 2022. url: https://www.heavy.
ai/technical-glossary/graphical-user-interface (visited on 19/05/2023).

[44] Bruce ”Tog” Tognazzini. First Principles of Interaction Design (Revised & Expanded. 2014.
url: https://asktog.com/atc/principles-of-interaction-design/ (visited on 18/05/2023).

[45] Ole Natlandsmyr. ‘Graphical User Interface Implementation for an Indexing Workflow of
Electron Backscatter Diffraction Patterns’. MA thesis. Norwegian University of Science and
Technology, July 2021. url: https://hdl.handle.net/11250/2785344.

[46] Oxford Instruments Nanoanalysis. Effective EBSD data processing using AZtecCrystal. June
2021. url: https://www.youtube.com/watch?v=UwmMC3iBSYg&ab channel=OxfordInstruments.

[47] ©2022 AMETEK Inc. AMETEK EDAX - Abous Us - History. 2022. url: https://www.
edax.com/contact-us/about-us/history (visited on 19/05/2023).

[48] Mark Weiser. ‘The Computer for the 21st Century’. In: SIGMOBILE Mob. Comput. Com-
mun. Rev. 3.3 (July 1999), pp. 3–11. issn: 1559-1662. doi: 10.1145/329124.329126. url:
https://doi.org/10.1145/329124.329126.

[49] J. D. Hunter. ‘Matplotlib: A 2D graphics environment’. In: Computing in Science & Engin-
eering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[50] J.A. Nelder and R. Mead. ‘A simplex method for function minimization’. In: The computer
journal 7.4 (1965), pp. 308–313.

[51] Steven G. Johnson. The NLopt nonlinear-optimization package. 2023. url: http://github.
com/stevengj/nlopt.

[52] Pauli Virtanen et al. ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing in Py-
thon’. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[53] Francisco de la Peña et al. hyperspy/hyperspy: Release v1.7.3. Oct. 2022. doi: 10.5281/
zenodo.7263263. url: https://doi.org/10.5281/zenodo.7263263.

[54] Siu Kwan Lam, Antoine Pitrou and Stanley Seibert. ‘Numba: A llvm-based python jit
compiler’. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC. 2015, pp. 1–6.

[55] Matthew Rocklin. Composing Dask Array with Numba Stencils. 2018. url: https://blog.
dask.org/2019/04/09/numba-stencil (visited on 28/04/2023).

[56] Lars Lervik. ‘Larger than memory dictionaries for EBSD pattern indexing in Python’. In:
(Dec. 2020). Unpublished project thesis, Norwegian University of Science and Technology.

65

https://doi.org/https://doi.org/10.1016/j.ultramic.2017.04.016
https://www.sciencedirect.com/science/article/pii/S030439911630198X
https://www.sciencedirect.com/science/article/pii/S030439911630198X
https://hdl.handle.net/11250/2785332
https://doi.org/10.1107/S1600576717014200
https://doi.org/10.1107/S1600576717014200
https://doi.org/https://doi.org/10.1016/j.ultramic.2019.112876
https://www.sciencedirect.com/science/article/pii/S030439911930292X
https://www.sciencedirect.com/science/article/pii/S030439911930292X
https://www.ebsd.com/ebsd-explained/pattern-formation
https://www.heavy.ai/technical-glossary/graphical-user-interface
https://www.heavy.ai/technical-glossary/graphical-user-interface
https://asktog.com/atc/principles-of-interaction-design/
https://hdl.handle.net/11250/2785344
https://www.youtube.com/watch?v=UwmMC3iBSYg&ab_channel=OxfordInstruments
https://www.edax.com/contact-us/about-us/history
https://www.edax.com/contact-us/about-us/history
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/329124.329126
https://doi.org/10.1109/MCSE.2007.55
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.7263263
https://doi.org/10.5281/zenodo.7263263
https://doi.org/10.5281/zenodo.7263263
https://blog.dask.org/2019/04/09/numba-stencil
https://blog.dask.org/2019/04/09/numba-stencil

[57] GNU. GNU General Public License. 2007. url: https://www.gnu.org/licenses/gpl-3.0.html
(visited on 18/04/2023).

[58] H̊akon Wiik Ånes and Erlend Mikkelsen Østvold. kikuchipy discussions - kikuchipy and
hyperspy with pyinstaller #581. 2022. url: https://github.com/pyxem/kikuchipy/discussions/
581%5C#discussioncomment-4302896 (visited on 30/04/2023).

[59] Vidar Tonaas Fauske. HyperSpyUI - A Graphical interface for HyperSpy. 2023. url: https:
//hyperspy.org/hyperspyUI/index.html (visited on 28/04/2023).

[60] H̊akon Wiik Ånes et al. pyxem/orix: orix 0.11.1. Mar. 2023. doi: 10.5281/zenodo.7732341.
url: https://doi.org/10.5281/zenodo.7732341.

[61] Pavol Juhás et al. ‘Complex modeling: a strategy and software program for combining
multiple information sources to solve ill posed structure and nanostructure inverse prob-
lems’. In: Acta Crystallographica Section A 71.6 (Nov. 2015), pp. 562–568. doi: 10.1107/
S2053273315014473. url: https://doi.org/10.1107/S2053273315014473.

[62] H̊akon Wiik Ånes and Erlend Mikkelsen Østvold. kikuchipy discussions - Hough indexing
and lazy loading of patterns: Cannot determine Numba type of ¡class ’dask.array.core.Array’¿
#596. 2023. url: https://github.com/pyxem/kikuchipy/discussions/596#discussioncomment-
4756310 (visited on 01/05/2023).

[63] Andreas Klöckner et al. ‘PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU
Run-Time Code Generation’. In: Parallel Computing 38.3 (2012), pp. 157–174. issn: 0167-
8191. doi: 10.1016/j.parco.2011.09.001.

[64] © 2023 The Qt Company Ltd. Qt for Python. Documentation. 2023. url: https://doc.qt.
io/qtforpython-6/ (visited on 01/05/2023).

[65] © 2023 The Qt Company Ltd. About Qt. 2022. url: https://wiki.qt.io/About Qt (visited
on 01/05/2023).

[66] Yodan Tauber sepp2k. Order of slots called on QObject. 2015. url: https://stackoverflow.
com/a/1246964 (visited on 01/05/2023).

[67] © 2023 The Qt Company Ltd. Threading Basics. 2023. url: https://doc.qt.io/qt-6/thread-
basics.html (visited on 02/05/2023).

[68] © 2023 The Qt Company Ltd. Supported Platforms. 2023. url: https ://doc.qt . io/qt-
6/supported-platforms.html (visited on 02/05/2023).

[69] Mahmoud Saleh et al. Microsoft Visual C++ Redistributable latest supported downloads.
2023. url: https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=
msvc-170 (visited on 02/05/2023).

[70] Yunosuke Ohsugi. auto-py-to-exe 2.26.0. 2022. url: https://pypi.org/project/pyqtdarktheme/.

[71] Colin Duquesnoy. auto-py-to-exe 2.26.0. 2021. url: https://qdarkstylesheet.readthedocs.io/
en/latest/readme.html.

[72] Dario Ferrando and Benjamin Sigidi. Linea Iconset. 2019. url: https://linea.io/.

[73] David Cortesi et al. PyInstaller Manual. 2023. url: https : / /pyinstaller . org / en/ stable/
(visited on 16/04/2023).

[74] Matt Hanson. 71% of students would prefer a Mac to a PC – if they could afford one. 2019.
url: https://www.techradar.com/news/71-of-students-would-prefer-a-mac-to-a-pc-if-they-
could-afford-one (visited on 06/05/2023).

[75] Brent Vollebregt. auto-py-to-exe 2.26.0. 2022. url: https://pypi.org/project/auto-py-to-exe/.

[76] Martijn Laan Jordan Russell. Inno Setup. 2022. url: https://jrsoftware.org/isdl.php.

[77] Martin Prikryl MSalters. How to install Microsoft VC++ redistributables silently in Inno
Setup? - Answer. 2023. url: https://stackoverflow.com/a/51614652 (visited on 08/05/2023).

[78] Deanna Earley. Creating an installer that will perform an update if an older version is
already installed - Answer. 2013. url: https://stackoverflow.com/a/15639086 (visited on
08/05/2023).

[79] pepperpo. Bundled MacOS App opens and closes immediately. 2019. url: https://github.
com/pyinstaller/pyinstaller/issues/3820/%5C#issuecomment-489502526 (visited on 08/05/2023).

66

https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/pyxem/kikuchipy/discussions/581%5C#discussioncomment-4302896
https://github.com/pyxem/kikuchipy/discussions/581%5C#discussioncomment-4302896
https://hyperspy.org/hyperspyUI/index.html
https://hyperspy.org/hyperspyUI/index.html
https://doi.org/10.5281/zenodo.7732341
https://doi.org/10.5281/zenodo.7732341
https://doi.org/10.1107/S2053273315014473
https://doi.org/10.1107/S2053273315014473
https://doi.org/10.1107/S2053273315014473
https://github.com/pyxem/kikuchipy/discussions/596#discussioncomment-4756310
https://github.com/pyxem/kikuchipy/discussions/596#discussioncomment-4756310
https://doi.org/10.1016/j.parco.2011.09.001
https://doc.qt.io/qtforpython-6/
https://doc.qt.io/qtforpython-6/
https://wiki.qt.io/About_Qt
https://stackoverflow.com/a/1246964
https://stackoverflow.com/a/1246964
https://doc.qt.io/qt-6/thread-basics.html
https://doc.qt.io/qt-6/thread-basics.html
https://doc.qt.io/qt-6/supported-platforms.html
https://doc.qt.io/qt-6/supported-platforms.html
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://pypi.org/project/pyqtdarktheme/
https://qdarkstylesheet.readthedocs.io/en/latest/readme.html
https://qdarkstylesheet.readthedocs.io/en/latest/readme.html
https://linea.io/
https://pyinstaller.org/en/stable/
https://www.techradar.com/news/71-of-students-would-prefer-a-mac-to-a-pc-if-they-could-afford-one
https://www.techradar.com/news/71-of-students-would-prefer-a-mac-to-a-pc-if-they-could-afford-one
https://pypi.org/project/auto-py-to-exe/
https://jrsoftware.org/isdl.php
https://stackoverflow.com/a/51614652
https://stackoverflow.com/a/15639086
https://github.com/pyinstaller/pyinstaller/issues/3820/%5C#issuecomment-489502526
https://github.com/pyinstaller/pyinstaller/issues/3820/%5C#issuecomment-489502526

[80] Sveinbjorn Thordarson. Platypus. 2023. url: https://sveinbjorn.org/platypus (visited on
08/05/2023).

[81] University of Bristol - Advanced Computing Research Centre. How to publish research soft-
ware. 2023. url: http : / /www .bris . ac . uk / acrc / research - software - engineering / software -
howtos/how-to-publish-software/ (visited on 08/05/2023).

[82] Wikipedia contributors. Software rot — Wikipedia, The Free Encyclopedia. 2023. url:
https://en.wikipedia.org/w/index.php?title=Software rot&oldid=1146126798 (visited on
08/05/2023).

[83] Kent C. Dodds et al. All Contributors - Specification. 2022. url: https://allcontributors.org/
docs/en/specification (visited on 08/05/2023).

[84] Coraline Ada Ehmke. A Code of Conduct for Open Source Communities. 2014. url: https:
//www.contributor-covenant.org/ (visited on 08/05/2023).

[85] Guido van Rossum, Barry Warsaw and Nick Coghlan. PEP 8 – Style Guide for Python
Code. 2001. url: https://peps.python.org/pep-0008/ (visited on 09/05/2023).

[86] Carol Willing et al. Black 23.3.0 documentation. 2018. url: https://black.readthedocs.io/
en/stable/authors.html (visited on 09/05/2023).

[87] Tom Preston-Werner. Semantic Versioning 2.0.0. 2013. url: https://semver.org/ (visited
on 08/05/2023).

[88] Digitaliseringsdirektoratet. Start and run Business - Copyright. Nov. 2022. url: https://
www.altinn.no/en/start-and-run-business/planning-starting/protection-of-rights/copyright/
(visited on 08/05/2023).

[89] Matthew Setter. Best Practices When Versioning a Release. Jan. 2018. url: https://www.
cloudbees.com/blog/best-practices-when-versioning-a-release (visited on 09/05/2023).

[90] European Organization For Nuclear Research and OpenAIRE. Zenodo. en. 2013. doi: 10.
25495/7GXK-RD71. url: https://www.zenodo.org/.

[91] Wikipedia contributors. SourceForge — Wikipedia, The Free Encyclopedia. 2023. url: https:
//en.wikipedia.org/w/index.php?title=SourceForge&oldid=1146634359 (visited on 12/05/2023).

[92] Chris Hoffman. Yes, You Can Download Software From SourceForge Again. Jan. 2020. url:
https://www.howtogeek.com/218764/warning-don%5C%E2%5C%80%5C%99t-download-
software-from-sourceforge-if-you-can-help-it/ (visited on 12/05/2023).

[93] Cristián Maureira-Fredes. Qt for Python Release: 6.4 is finally here! Oct. 2022. url: https:
//www.qt.io/blog/qt-for-python-release-6.4-is-finally-here (visited on 12/05/2023).

[94] Antoine Beyeler and srikanthravipati. [Bug]: TypeError: int() argument must be a string, a
bytes-like object or a number, not ’KeyboardModifier’. Oct. 2022. url: https://github.com/
matplotlib/matplotlib/issues/24155/#issuecomment-1279055783 (visited on 12/05/2023).

[95] Mitch. PyQt5/PyInstaller app opens multiple copies in endless loop on OSX. Mar. 2019.
url: https://stackoverflow.com/questions/54942950/pyqt5-pyinstaller-app-opens-multiple-
copies-in-endless-loop-on-osx (visited on 12/05/2023).

[96] Oliver. pyInstaller loads script multiple times. Sept. 2015. url: https://stackoverflow.com/
a/32677108 (visited on 12/05/2023).

[97] Benny T. Pyinstaller exe keeps opening itself. Feb. 2019. url: https://github.com/pyinstaller/
pyinstaller/issues/4067 (visited on 12/05/2023).

[98] Wikipedia contributors. Mac transition to Apple silicon — Wikipedia, The Free Encyclope-
dia. [Online; accessed 27-May-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=
Mac transition to Apple silicon&oldid=1154335221.

[99] © 2023 The Qt Company Ltd. QDockWidget Class. Documentation. 2023. url: https :
//doc.qt.io/qt-6/qdockwidget.html (visited on 27/05/2023).

[100] © 2023 The Qt Company Ltd. QMainWindow Class. Documentation. 2023. url: https:
//doc.qt.io/qt-5/qmainwindow.html#qt-main-window-framework (visited on 27/05/2023).

[101] Ivo. QMainWindow with only QDockWidgets and no central widget. 2010. url: https://
stackoverflow.com/q/3531031 (visited on 27/05/2023).

67

https://sveinbjorn.org/platypus
http://www.bris.ac.uk/acrc/research-software-engineering/software-howtos/how-to-publish-software/
http://www.bris.ac.uk/acrc/research-software-engineering/software-howtos/how-to-publish-software/
https://en.wikipedia.org/w/index.php?title=Software_rot&oldid=1146126798
https://allcontributors.org/docs/en/specification
https://allcontributors.org/docs/en/specification
https://www.contributor-covenant.org/
https://www.contributor-covenant.org/
https://peps.python.org/pep-0008/
https://black.readthedocs.io/en/stable/authors.html
https://black.readthedocs.io/en/stable/authors.html
https://semver.org/
https://www.altinn.no/en/start-and-run-business/planning-starting/protection-of-rights/copyright/
https://www.altinn.no/en/start-and-run-business/planning-starting/protection-of-rights/copyright/
https://www.cloudbees.com/blog/best-practices-when-versioning-a-release
https://www.cloudbees.com/blog/best-practices-when-versioning-a-release
https://doi.org/10.25495/7GXK-RD71
https://doi.org/10.25495/7GXK-RD71
https://www.zenodo.org/
https://en.wikipedia.org/w/index.php?title=SourceForge&oldid=1146634359
https://en.wikipedia.org/w/index.php?title=SourceForge&oldid=1146634359
https://www.howtogeek.com/218764/warning-don%5C%E2%5C%80%5C%99t-download-software-from-sourceforge-if-you-can-help-it/
https://www.howtogeek.com/218764/warning-don%5C%E2%5C%80%5C%99t-download-software-from-sourceforge-if-you-can-help-it/
https://www.qt.io/blog/qt-for-python-release-6.4-is-finally-here
https://www.qt.io/blog/qt-for-python-release-6.4-is-finally-here
https://github.com/matplotlib/matplotlib/issues/24155/#issuecomment-1279055783
https://github.com/matplotlib/matplotlib/issues/24155/#issuecomment-1279055783
https://stackoverflow.com/questions/54942950/pyqt5-pyinstaller-app-opens-multiple-copies-in-endless-loop-on-osx
https://stackoverflow.com/questions/54942950/pyqt5-pyinstaller-app-opens-multiple-copies-in-endless-loop-on-osx
https://stackoverflow.com/a/32677108
https://stackoverflow.com/a/32677108
https://github.com/pyinstaller/pyinstaller/issues/4067
https://github.com/pyinstaller/pyinstaller/issues/4067
https://en.wikipedia.org/w/index.php?title=Mac_transition_to_Apple_silicon&oldid=1154335221
https://en.wikipedia.org/w/index.php?title=Mac_transition_to_Apple_silicon&oldid=1154335221
https://doc.qt.io/qt-6/qdockwidget.html
https://doc.qt.io/qt-6/qdockwidget.html
https://doc.qt.io/qt-5/qmainwindow.html#qt-main-window-framework
https://doc.qt.io/qt-5/qmainwindow.html#qt-main-window-framework
https://stackoverflow.com/q/3531031
https://stackoverflow.com/q/3531031

[102] Blackmagic Design Pty. Ltd. 2023. DaVinci Resolve 18 - Video editing software. 2023. url:
https://www.blackmagicdesign.com/products/davinciresolve (visited on 28/05/2023).

[103] H̊akon Wiik Ånes and Erlend Mikkelsen Østvold. Phase losing name and properties after
refinement from single crystal map #620. Mar. 2023. url: https ://github.com/pyxem/
kikuchipy/discussions/620 (visited on 28/05/2023).

[104] H̊akon Wiik Ånes and Erlend Mikkelsen Østvold. Keeping not indexed dummy phase after
orientation refinement #621. Mar. 2023. url: https : / / github . com / pyxem / kikuchipy /
discussions/621 (visited on 28/05/2023).

[105] Norwegian University of Science and Technology. Data collection. 2023. url: https://i.ntnu.
no/wiki/-/wiki/Norsk/datainnsamling (visited on 21/05/2023).

[106] H̊akon Wiik Ånes and Erlend Mikkelsen Østvold. PC convention / Indexer vendor changes
on detector.getindexer#626. Mar. 2023. url: https : / / github . com / pyxem / kikuchipy /
discussions/626 (visited on 29/05/2023).

[107] National Eye Institute. Color blindness. 2019. url: https://www.nei.nih.gov/learn-about-
eye-health/eye-conditions-and-diseases/color-blindness (visited on 02/04/2023).

[108] Ivan Kilin. The best charts for color blind viewers. 2022. url: https://en.wikipedia.org/wiki/
Mac transition to Apple silicon (visited on 05/05/2023).

[109] Erlend Mikkelsen Østvold, Hallvard Tangvik Tellefsen Relling and Olav Leth-Olsen. EBSP
Indexer Repository. June 2023. url: https://github.com/EBSP-Indexer/EBSP-Indexer.

[110] kernc. pdoc3 0.10.0. 2021. url: https://pypi.org/project/pdoc3/.

[111] Prof. Keesam Shin et al. About IMC20. 2023. url: https://www.imc20.kr/html/about/
welcome.php (visited on 15/04/2023).

[112] Jolav and Ben Boyter. Count LOC. 2023. url: https://codetabs.com/count-loc/count-loc-
online.html.

[113] World Wide Web Consortium. W3C Web Accessibility Initiative (WAI). 2023. url: https:
//www.w3.org/WAI/ (visited on 06/06/2023).

[114] Alan D. Moore. QtDesigner and PyQt5: The right and wrong way to use them together.
Youtube video. 2020. url: https://www.youtube.com/watch?v=XXPNpdaK9WA (visited on
06/06/2023).

[115] Philippe T. Pinard. EBSD-Image. McGill, Montréal, Québec, Canada. 2011. url: https:
//ebsd-image.org/.

[116] H̊akon Wiik Ånes. kikuchipy User guide - Tutorials - Hybrid Indexing. 2023. url: https:
/ / kikuchipy. org / en / stable / tutorials / hybrid indexing . html#Hybrid - indexing (visited on
07/06/2023).

68

https://www.blackmagicdesign.com/products/davinciresolve
https://github.com/pyxem/kikuchipy/discussions/620
https://github.com/pyxem/kikuchipy/discussions/620
https://github.com/pyxem/kikuchipy/discussions/621
https://github.com/pyxem/kikuchipy/discussions/621
https://i.ntnu.no/wiki/-/wiki/Norsk/datainnsamling
https://i.ntnu.no/wiki/-/wiki/Norsk/datainnsamling
https://github.com/pyxem/kikuchipy/discussions/626
https://github.com/pyxem/kikuchipy/discussions/626
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/color-blindness
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/color-blindness
https://en.wikipedia.org/wiki/Mac_transition_to_Apple_silicon
https://en.wikipedia.org/wiki/Mac_transition_to_Apple_silicon
https://github.com/EBSP-Indexer/EBSP-Indexer
https://pypi.org/project/pdoc3/
https://www.imc20.kr/html/about/welcome.php
https://www.imc20.kr/html/about/welcome.php
https://codetabs.com/count-loc/count-loc-online.html
https://codetabs.com/count-loc/count-loc-online.html
https://www.w3.org/WAI/
https://www.w3.org/WAI/
https://www.youtube.com/watch?v=XXPNpdaK9WA
https://ebsd-image.org/
https://ebsd-image.org/
https://kikuchipy.org/en/stable/tutorials/hybrid_indexing.html#Hybrid-indexing
https://kikuchipy.org/en/stable/tutorials/hybrid_indexing.html#Hybrid-indexing

EBSD-GUI 0.1.0 Pre-release - Review

This form is anonymous and all gathered data will be used for the single purpose of improving the
software. Note that the data will be published in our master theses, which will be available to the public.
If you have NOT used EBSD-GUI, please do not answer this form.

Technical
How experienced are you with EBSD software in general?

Beginner

Familiar

Experienced

What operating system and architecture did you use to run the software?
If you are unsure of your system's specifications, check out chiefarchitect.com

Windows 10 / Windows 11 (x64-based)

macOS (Intel-based processor, 64-bit)

macOS (M1 or M2 chip)

Did you encounter any problems when installing or running the software?

Yes

No

Problems
If multiple problems where encountered, please describe as many of them as possible in the questions
bellow.

Briefly describe where the problem appeared. (E.g. during install, start-up, during
indexing, etc.)
This element is only shown when the option ‘Yes’ is selected in the question ‘Did you encounter any problems when installing or running the
software? ’

Briefly describe what the problem was. (E.g. the error message you got.)
This element is only shown when the option ‘Yes’ is selected in the question ‘Did you encounter any problems when installing or running the
software? ’

Was the problem encountered solved?
This element is only shown when the option ‘Yes’ is selected in the question ‘Did you encounter any problems when installing or running the
software? ’

If multiple problems, only select yes if all problems were solved.

Yes

No

Don't Know

User Experience
Which of the following features in EBSD-GUI did you use?
Check multiple boxes.

Calibration of pattern / projection center

Signal-to-noise-improvement (Static or dynamic background removal, or averaging)

Appendices

A EBSD-GUI Pre-release - Questionnaire

Region of interest (Cropping Pattern.dat)

Hough indexing

Dictionary indexing

Creating pre-indexing maps (E.g. image quality, mean intensity, etc.)

Signal navigation (Inspecting pattern.dat or crystal maps)

Image Viewer (Viewing non-interactive images, e.g. *.png)

Terminal command prompt. (Writing/ access python code inside the software)

Settings (Changing settings of the software)

What is your opinion on the following statements?
Check one box in every row.

The software has a steep learning curve.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

The features are easy to use and understand.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

There should be more options / parameters to adjust.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

The design and layout of the software is complex.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

The different file formats are confusing.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

The software is slow and unresponsive at times.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

The differences between the image viewer and signal navigation are clear.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

I was able to easily complete my assigned tasks.

Strongly disagree

Somewhat disagree

No opinion

Somewhat agree

Strongly agree

User manual
Did you have a look at the user manual at some point?

Yes

No

I did not have access to it

How useful did you find the manual?
This element is only shown when the option ‘Yes’ is selected in the question ‘Did you have a look at the user manual at some point?’

Overview
Considering your complete experience with EBSD-GUI (from installation to indexing
to results), how satisfied are you?
Do you have any final comments, ideas or feedback related to EBSD-GUI?
Would you be interested in contributing to future development of the software?
This is just to get an idea if anyone are interested.

Yes

Maybe

No

Generated: 2023-05-29 11:58:17.

EBSD-GUI 0.1.0 Pre-release - Review
Oppdatert: 24. mars 2023 kl. 13:56

This form is anonymous and all gathered data will be used for the single purpose of improving the software. Note that the data will be published in our
master theses, which will be available to the public.
If you have NOT used EBSD-GUI, please do not answer this form.

Technical

How experienced are you with EBSD software in general?

Antall svar:

What operating system and architecture did you use to run the software?

Antall svar:

Did you encounter any problems when installing or running the software?

Antall svar:

Problems

If multiple problems where encountered, please describe as many of them as possible in the questions bellow.

10

10

10

Svar Antall % av svar

Experienced 0 0% 0%

Familiar 0 0% 0%

Beginner 10 100% 100%

Svar Antall % av svar

macOS (M1 or M2 chip) 1 10% 10%

macOS (Intel -based processor , 64-bit) 1 10% 10%

Windows 10 / Windows 11 (x64-based) 8 80% 80%

Svar Antall % av svar

No 4 40% 40%

Yes 6 60% 60%

Side: 1/6

B EBSD-GUI Pre-release - Questionnaire results

Briefly describe where the problem appeared. (E.g. during install, start-up, during indexing, etc.)

kjøring av program for første gang•

Lazy loading did not work for hough indexing•

During Dictionary indexing•

Start-up•

When opening a produced h5 file•

During indexing•

Briefly describe what the problem was. (E.g. the error message you got.)

Mac skjønte ikke at det var punktum i en mappe•

GPU gammel-2018•

The OK button does not appear on the screen, unable to click on it•

File is damaged•

Internal conflict between phase name and pattern name•

one of the phases was not present and the program broke•

Was the problem encountered solved?

Antall svar:

User Experience

6

Svar Antall % av svar

Don't Know 0 0% 0%

No 1 16.7% 16.7%

Yes 5 83.3% 83.3%

Side: 2/6

Which of the following features in EBSD-GUI did you use?

Antall svar: 10

Svar Antall % av svar

Settings (Changing settings of the software) 1 10% 10%

Terminal command prompt . (Writing / access

python code inside the software)
1 10% 10%

Image Viewer (Viewing non-interactive images ,

e.g. *.png)
9 90% 90%

Signal navigation (Inspecting pattern .dat or

crystal maps)
7 70% 70%

Creating pre-indexing maps (E.g. image quality ,

mean intensity , etc.)
8 80% 80%

Dictionary indexing 10 100% 100%

Hough indexing 9 90% 90%

Region of interest (Cropping Pattern .dat) 9 90% 90%

Signal -to-noise -improvement (Static or

dynamic background removal , or averaging)
10 100% 100%

Calibration of pattern / projection center 10 100% 100%

Side: 3/6

What is your opinion on the following statements?

User manual

Did you have a look at the user manual at some point?

Antall svar: 10

Svar
Strongly
disagree

Somewhat
disagree

No opinion
Somewhat

agree
Strongly

agree
Diagram

The software

has a steep

learning curve .

2 2 3 3 0

The features

are easy to use

and

understand .

0 1 1 5 3

There should

be more

options /

parameters to

adjust .

0 2 8 0 0

The design

and layout of

the software is

complex .

2 4 1 3 0

The different

file formats

are confusing .

0 4 1 5 0

The software

is slow and

unresponsive

at times .

2 2 0 5 1

The

differences

between the

image viewer

and signal

navigation are

clear.

1 2 1 2 4

I was able to

easily

complete my

assigned

tasks .

0 1 0 6 3

Strongly disagree Somewhat disagree

No opinion Somewhat agree

Strongly agree

0% 10 20 30 40 50 60 70 80 90 100%

Svar Antall % av svar

I did not have access to it 0 0% 0%

No 4 40% 40%

Yes 6 60% 60%

Side: 4/6

How useful did you find the manual?

Antall svar: Snitt: Median:

Overview

Considering your complete experience with EBSD-GUI (from installation to indexing to results), how
satisfied are you?

Antall svar: Snitt: Median:

6 4.83 5

10 8.40 7

Svar Antall % av svar

5 5 83.3% 83.3%

4 1 16.7% 16.7%

3 0 0% 0%

2 0 0% 0%

1 0 0% 0%

Svar Antall % av svar

10 3 30% 30%

9 2 20% 20%

8 2 20% 20%

7 2 20% 20%

6 1 10% 10%

5 0 0% 0%

4 0 0% 0%

3 0 0% 0%

2 0 0% 0%

1 0 0% 0%

0 0 0% 0%

Side: 5/6

Do you have any final comments, ideas or feedback related to EBSD-GUI?

Mulighet til å ha flere av samme type vinduer åpne, type se på forskjellen om man bruker 1. 6 step size og 4 step size, for så å legge resultatene ved
siden av hverabdre for sammenligning

•

The user guide was very helpful. Accessing of GPU in older computers might need refining as i could not use lazy indexing for hough.•

It was good.•

Good job guys!•

Would you be interested in contributing to future development of the software?

Antall svar: 10

Svar Antall % av svar

No 9 90% 90%

Maybe 1 10% 10%

Yes 0 0% 0%

Side: 6/6

C Image of main application window

EBSP INDEXER, an open-source software for Hough- and Dictionary indexing

Østvold, Erlend1, Relling, Hallvard1, Leth-Olsen, Olav1, Ånes, Håkon W.1, Haugen, Bjørn1, Yu, Yingda1,

Khromov, Sergey1, Hjelen, Jarle1
1Norwegian University of Science and Technology, Norway

Indexing of Electron Backscatter Patterns (EBSPs) has up to now mainly been performed by Hough

indexing (HI) [1]. HI offers reliable indexing results, often at high speeds, but struggles to distinguish

between phases of similar crystal structures and/or if patterns are very noisy. For example, HI usually

fails to distinguish between aluminum and small silicon particles in an alloy since they both have an

FCC structure. Dictionary indexing (DI) compares the experimentally acquired patterns with a dictionary

of simulated patterns projected from a so-called master pattern of each phase, which are theoretically

constructed patterns containing all scattering vectors [2]. Even though the approach of DI is slower

than HI, it is powerful when indexing noisy patterns and/or separation of phases with similar crystal

structures [3,4]. Datasets containing EBSPs with low (or moderate) noise and acquired from multiphase

materials with different crystal structures should still apply HI, since HI is faster than DI.

DI and numerous other features are available through kikuchipy, a Python library for processing,

simulating, and analyzing EBSPs [5]. EBSP Indexer was developed as an open-source software which

aims to ease interaction between users and kikuchipy by implementing a graphical user interface that

is easy to install. Users therefore do not require knowledge of kikuchipy, Python or programming.

EBSP Indexer allows for inspecting patterns in datasets generated by a scanning electron microscope,

improve image quality of patterns, calibrate pattern/projection center, and crop additional regions of

interest (ROI) before indexing the patterns using HI or DI. A number of parameters can be adjusted to

make sure the indexing process fits the particular dataset. Additional refinement of orientations can

also be done by iteratively optimizing the similarity between experimental and simulated patterns in a

controlled manner. The result is a crystal map of the ROI which contains information about orientations,

phases, metrics describing quality of the indexing, and more. Crystal maps can be saved as an .ang file

or using the HDF5 file format for further analysis in other EBSD software.

The software is in early development (version 0.1.0) and will soon be available for Windows 10/11 and

macOS for free. The project and source code are available at https://github.com/EBSP-Indexer.

References

1. N. C. Krieger Lassen, D. Juul Jensen, K. Conradsen. Image processing procedures for analysis

of electron back scattering patterns. Scanning sicroscopy. 1992;6(1):115-21.

2. M. De Graef et al. EMsoft-org/EMsoft: EMsoft Release 5.0.0. Oct. 2019.

doi: 10.5281/zenodo.3489720

3. O. Leth-Olsen et al. The challenge in differentiation between ferrite and martensite in low

carbon steel by use of EBSD Dictionary Indexing, available for this conference

4. H. Relling et al. Differentiation between similar phases in an Al-10%Si alloy by EBSD dictionary

indexing, available for this conference

5. H. W. Ånes et al. pyxem/kikuchipy: kikuchipy 0.8.4. 2023.

doi: 10.5281/zenodo.3597646

D IMC20 abstract submission

EBSP INDEXER, an Open-source Software for
Hough- and Dictionary Indexing
Erlend M. Østvolda, Hallvard T. T. Rellinga, Olav Leth-Olsena, Håkon W. Ånesa, Jarle Hjelena, Bjørn Haugena, Sergey Khromova and Yingda Yua
aDepartment of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Motivation
Hough Indexing (HI) [1] has been considered the standard indexing method for Electron backscatter diffraction (EBSD) mapping of microstructures in
crystalline materials. The limitations of HI becomes apparent when patterns have a low signal-to-noise ratio, or when differentiating between phases of
similar crystal structures. Dictionary Indexing (DI) [2] was developed to provide an alternative in cases where HI fails, which takes advantage of the full
intensity information in a measured Electron Backscatter Pattern (EBSP) by matching experimental patterns with dynamically simulated ones. DI makes it
possible to distinguish between phases of similar structures, e.g. silicon particles in an aluminum alloy [3], or martensite from ferrite in a low carbon steel [4].

Open-source Solution
EBSP Indexer was developed as an open-source solution that aims to ease interaction between users
and the Python libraries kikuchipy [5] and PyEBSDIndex [6], which provides EBSD tools for DI and HI,
by implementing a graphical user interface (GUI) that can be installed on either Windows or macOS.

Figure 1: The main application window consists of widgets that can be resized, hidden, and displayed on multi-monitor setups.
A number of dataset formats are supported, including Bruker, EDAX and NORDIF. EBSPs stored in datasets or crystal maps can
be inspected using Signal Navigation. The running Python environment is accessible through the Terminal.

Dictionary Indexing of Austenite, Ferrite and Sigma phase

(a) Signal-to-noise Improvement (b) PC Calibration

(c) Dictionary Indexing (d) Image Viewer

Figure 2: DI of EBSPs which consists of 96x96 pixels. Steps a and b are performed before DI, to obtain better indexing results.

Features
Users require neither knowledge of Python nor pro-
gramming, making it an entry-level application suit-
able for beginners and students.
▶ Hough- and Dictionary Indexing
▶ Refinement of orientations
▶ Improvement of Signal-to-noise ratio in patterns
▶ Cropping of data, allowing a smaller region of

interest
▶ Calibration of Pattern Center (PC) using either

high quality calibration patterns, a custom
selection of patterns, or a calibration curve based
on different working distances

▶ Interactive inspection of experimental datasets
and indexed crystal maps, using a variety of
maps including Orientation, Phase, Image
Quality, Normalized Cross-correlation and more

Flexible Workflow
The interaction design resembles that of a toolbox,
where users can customize parameters and mix func-
tionalities. Users may for example use dynamical sim-
ulated master patterns to refine orientations which
were indexed using HI.

Figure 3: The Job Manager gives an overview of previously
completed tasks, in addition to current and future tasks. The log
within each job shows information from the current running task.

Available Resources
EBSP Indexer v.0.1.0 is available to download for Win-
dows and macOS from our Zenodo DOI [7]. The
source code, among other developer resources, are
available in the EBSP Indexer repository on GitHub:
https://github.com/EBSP-Indexer/EBSP-Indexer

[1] N. C. K. Lassen, D. J. Jensen, and K. Conradsen, “Image processing procedures for analysis of electron back scattering patterns,” Scanning microscopy, vol. 6, pp. 115–121, 1992.

[2] Y. H. Chen, S. U. Park, D. Wei, et al., “A Dictionary Approach to Electron Backscatter Diffraction Indexing,” Microscopy and Microanalysis, vol. 21, no. 3, 739–752, 2015.

[3] H. T. T. Relling, O. Leth-Olsen, E. M. Østvold, et al., “Differentiation between similar phases in an Al-10%Si alloy by EBSD Dictionary Indexing,”, 2023.

[4] O. Leth-Olsen, H. T. T. Relling, E. M. Østvold, et al., “The challenge in differentiation between ferrite and martensite in low carbon steel by use of EBSD Dictionary Indexing,”, 2023.

[5] H. W. Ånes, L. Lervik, O. Natlandsmyr, et al., pyxem/kikuchipy: kikuchipy 0.8.6, version v0.8.6, DOI 10.5281/zenodo.3597646, 2023.

[6] D. Rowenhorst and H. W. Ånes, USNavalResearchLaboratory/PyEBSDIndex: PyEBSDIndex 0.1.1, version v0.1.1, 2022.

[7] E. M. Østvold, H. T. T. Relling, and O. Leth-Olsen, EBSP Indexer 0.1.0, version 0.1.0, DOI 10.5281/zenodo.7925262, 2023.

E IMC20 EBSP Indexer poster

The poster is also included as an attached pdf for an improved viewing experience.

F EBSP Indexer README.md

G Developer Tutorials - Contribution guidelines

H Developer Tutorials - Installation

I Developer Tutorials - Distribute new versions

J Developer Tutorials - Workflow

K Documentation - Package utils

L Documentation - Package scripts

	[sec:listlistings]List of Source Codes
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background and motivation
	Pre-study and scope of this thesis

	Theory
	Electron backscatter diffraction
	Graphical user interface
	Usability testing

	Development and methods
	State of the software
	External packages and libraries
	Distribution of software
	EBSD-GUI Pre-release

	Usability test
	Questionnaire
	Lab sessions
	Feedback and data
	EBSP Indexer v0.1.0

	Results
	Software
	Additional resources
	IMC20 abstract and research poster

	Discussion
	Development process
	Usability test approach
	Software evaluation
	Source code and resources

	Future work
	Conclusion
	Bibliography
	Appendices
	EBSD-GUI Pre-release - Questionnaire
	EBSD-GUI Pre-release - Questionnaire results
	Image of main application window
	IMC20 abstract submission
	IMC20 EBSP Indexer poster
	EBSP Indexer README.md
	Developer Tutorials - Contribution guidelines
	Developer Tutorials - Installation
	Developer Tutorials - Distribute new versions
	Developer Tutorials - Workflow
	Documentation - Package utils
	Documentation - Package scripts

