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Abstract

In today’s rapidly evolving digital landscape, the preservation of privacy
and security can be a daunting task. Utilizing keystroke dynamics to
enhance authentication and identification techniques is a promising ap-
proach that increases security, but at the same time raises important
privacy considerations to address. Hence, this thesis aims to investigate
whether distortion of Keystroke Dynamics data can hinder the detection
of soft biometric characteristics, such as age and gender.

A program was used to simulate and add distortion to the data in
combination with the Google plug-in tool "Keyboard Privacy". The
data underwent processing and subsequent analysis using the Machine
Learning model Support Vector Machine in order to classify age and
gender. Additional analysis was carried out to determine if it was possible
to detect any distortions within the dataset.

The study revealed that there are distinguishable differences between
distorted and non-distorted keystroke dynamics data. While the patterns
may bear similarities, they are still distinct enough to enable relatively
accurate classification. The performance of the distorted dataset may
vary depending on the classification categories, where gender classification
performed better than age classification. These findings shed a light on
the possibility of developing more sophisticated systems for biometric
identification and authentication.





Sammendrag

Det digitale landskapet utvikles raskt, noe som gjør bevaring av person-
vern og sikkerhet til en kompleks oppgave. Å utnytte Keystroke Dynamics
for å forbedre autentisering og identifikasjon av individer har et stort
potensial for å forbedre sikkerhet, men som samtidig bærer med seg be-
kymring rundt behandling av personvern. Denne oppgaven har som mål
å undersøke om forvrengning av Keystroke Dynamics data kan forhindre
deteksjon av Myke Biometriske kjennetegn, slik som alder og kjønn.

Et program, i kombinasjon med forvreningsverktøyet i Google; KK-
eyboard Privacy", ble brukt for å simulere og legge til forvrengninger
på dataen. Deretter ble dataen kjørt inn i en maskinlæringsalgoritme,
nærmere bestemt Support Vector Machine, for å klassifisere simulert og
forvrengt data på alder og kjønn. I tillegg ble det analysert om det var
mulig å detektere forvrengninger i datasettet.

Arbeidet har avdekket at det er merkbare forskjeller mellom de for-
vrengte og ikke-forvrengte datasettene. Selv om mønsterne bærer likheter,
er de fremdeles ulike nok til å muliggjøre en relativt nøyaktig klassifisering.
Ytelsen av de forvrengte datasettene kan variere på klassifiseringskatego-
rien, der resultatene viser at klassifisering på kjønn har bedre ytelse enn
på alder. Disse funnene belyser mulighetene for å utvikle mer sofistikerte
systemer for biometrisk identifikasjon og autentisering.
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Chapter1Introduction

Keystroke Dynamics has achieved promising results regarding the authentication and
identification of users, using statistical and machine-learning approaches. This thesis
explores the feasibility of classifying soft biometrics, specifically age and gender, even
when the timing information of a user’s keystrokes have been utilized.
The background and motivation behind this research are explained in the first section.
Following, Section 1.2 present the objectives and research questions, including the
hypothesis. Section 1.3 explains an important aspect to keep in mind when evaluating
this study. A summary of contributions is presented in Section 1.4, and the structure
of the thesis is given in Section 1.5

1.1 Background and Motivation

The rapid development of information and communication technology has had a
profound impact on our society and made the intersection of privacy and security a
crucial point of discussion. With the growing popularity of biometrics to enhance
digital security, individuals are increasingly apprehensive about safeguarding their
personal privacy.

The behavioral biometric, Keystroke Dynamics, captures an individual’s unique
typing pattern, where typing speed, duration, and latencies of keypresses are some of
the characteristics that can be collected and analyzed. The technique has emerged as
a promising alternative to traditional biometric solutions such as fingerprint scanning,
particularly for those who seek a cost-effective and less intrusive approach. The
only requirement is a standard computer keyboard; the keystrokes can be collected
through software without the user noticing, not causing any disturbance to the user
experience.

3



4 1. INTRODUCTION

Several studies have achieved low error rates and high accuracy when identifying
and authenticating users, implying a great potential for applications in the need of
methods where efficiency is required. As the study of this proceeds, a more secure
user verification can be established, while simultaneously becoming more user-friendly
and adaptable.

Paradoxically, the capturing of keystroke dynamics of a user’s typing behavior
without the user’s knowledge and consent can be perceived as uncomfortable and
troubling to many. The concern grows increasingly evident, knowing that personal
and sensitive information can be revealed and connected to the user’s profile. With
the enormous amount of data being collected, stored, and analyzed, the potential
aftermath of data breaches increases, ranging from physiological distress to financial
losses.

As a counteract to the privacy concerns, anonymization tools have been developed
with the aim of protecting the users’ data, such as keystroke dynamics data. Key-
boardPrivacy is a browser plug-in that disrupts the typing data of the user, making
it challenging to utilize keystroke dynamics to build a profile of the user. By adding
random delays to the keystrokes, no pattern should be recognized, and the user’s
privacy will be preserved.

Although anonymization tools can enhance privacy protection, they also introduce
new challenges. Users with malicious intents can misuse these tools to hide their
keystroke dynamics data. For example, engaging in harmful activities online, such as
committing financial crimes or cyber grooming, without the fear of being identified
through their typing pattern. Focusing on the latter, different online arenas facilitate
communication between individuals, exchanging knowledge, experience, and opinions.
Some of these arenas have anonymous participation, where individuals have the
opportunity to communicate freely without fear of repercussion. Unwanted and
harmful circumstances can arise if certain sensitive information is shared with the
wrong person. This exemplifies in chat forums for children, where predators can
hide their identity, and thus exploit and manipulate minors for personal gains. By
using an anonymization tool in addition to a fake identity, the predator conceals
their digital footprint of keystroke dynamics, reducing the risk of detection.

The study’s motivation is to identify user’s soft biometrics traits, even when
distortion tools are used, to ensure a safer online environment for children and aims
to classify age and gender based on distorted keystroke dynamics data.
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1.2 Objectives and methodology

The previously stated motives have brought forward the main research question,
maintained from the project report as is [Ple22];

“Is it possible to identify soft biometrics, such as age and gender,
even when the collected keystroke dynamics data is distorted?”

To be able to substantiate the research further and gain a comprehensive under-
standing, the following sub-questions were defined in the project:

1. SQ1: What difference does distorted and non-distorted timing data have when
it comes to performance?
Due to different timing data, it is reasonable to imagine different results in
performance. Are there any indications that prove the difference in values,
and is there a pattern that can be discovered? It is necessary to know the
differences in the statistical values and how the values are affected by a lower
higher grade of distortion.

2. SQ2: How should distorted data be handled?
When the data has been distorted, the techniques used for analysis must be
customized accordingly. Best practice for non-distorted data may not work
for distorted data, while the method for distorted data may be useless for
non-distorted data. Is it possible to find a method that works adequately for
both distorted and non-distorted data?

3. SQ3: Is it feasible to detect whether the timing data collected is distorted? And
if so, what kind of features differ?
It is necessary to determine if there is some kind of correlation between the
distorted datasets. What features of the timing data differ, and how can this
relate to the original data so that better analysis can take place?

Hypothesis:

The hypothesis remains consistent with the one proposed in the pre-project; Soft
biometrics characteristics that can be obtained from Keystroke Dynamics is, to a
certain extent, distinctive. Thus, some level of distortion of the timing information
will not be preventative for identification.
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1.3 Disclaimer

The research presented on Keystroke dynamics and the potential of classification on
gender in this thesis has employed a binary gender model; male or female. This is
due to the available data on these categories. The study acknowledges and respects
the gender identities beyond this and has no intention to invalidate individuals or
cause any harm.

1.4 Contributions

To summarize the findings in this thesis, the contributions with the most significance
are as follows:

– The finding that the use of Interquartile Range (IQR) can potentially serve as
a method for detecting distorted datasets.

– The finding of using mean values of latencies and durations as features when
using distorted datasets in classification. This is due to the averaging of values
tending to out-level noise, leading to improved performance.

– The finding of the potential value in exploring unsupervised machine learning
approaches to the classification of soft biometrics to match real-world scenarios.

1.5 Structure of the thesis

This Master’s Thesis consists of 8 chapters, and is organized as follows:

– Chapter 2: Provides the reader with the necessary background theory sur-
rounding the relevant topics.

– Chapter 3: Provides a State-of-the-Art on user profiling and classification in
Keystroke Dynamics.

– Chapter 4: Presents the GREY-NISLAB Keystroke Dynamics dataset and
the processing and simulation of this.

– Chapter 5: Provides the methodology of the analysis performed and explana-
tions of the metrics.

– Chapter 6: Presents the results retrieved from the analysis.

– Chapter 7: Evaluates the achieved results and discusses the findings with the
research questions in mind.
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– Chapter 8: Conclusion of the thesis with final remarks on the conducted
research, contribution, and further work.





Chapter2Background and State of the Art

2.1 Information Security and the CIA Triad

The CIA triad is commonly considered the center of the entire information security
discipline. Since the beginning, it has been the industry standard to help orga-
nizations identify and prioritize their security needs and measures [Sta15; Osc03].
It is constructed out of the three fundamental objectives in information security;
Confidentiality, Integrity, and Availability.

– Confidentiality: ensuring information protection so that no information is
exposed or disclosed to unauthorized individuals.

– Integrity: ensuring information will not be exposed for unauthorized modifi-
cation.

– Availability: ensuring information is available and accessible for authorized
individuals when necessary.

The field is continuously evolving, and there is a general consensus that these
three terms fall short of fully encapsulating the security concepts. Stallings introduces
the additional concepts of Authenticity and Accountability for a more holistic view.

– Authenticity: ensuring the information comes from a trusted and authorized
source. It is closely connected to the objective of integrity but differs by focusing
on the verification of the origin and not the state of the information.

– Accountability: ensuring an individual, organization, or system takes respon-
sibility for their actions regarding the information they have access to.

This thesis primarily surrounds ensuring user authenticity, typically acquired
through identification and authentification.

9
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2.1.1 Privacy

Our lives are more intertwined with technology than ever, and vast amounts of data
and information are stored in databases worldwide. Some of this data is considered
personal data, and some might be classified as sensitive. With multiple platforms and
stakeholders having the opportunity to collect and store this data, it is vulnerable to
misuse.

According to the definition of personal data by the EU, any information that
pertains to an individual who can be identified, either directly or indirectly, is
considered as personal data. Examples of this include, but are not limited to, name,
social security number, financial information, health information, and biometric data
[GDPR16]. The tolerance and boundaries of required security levels are determined
by the type of information. Some personal data is regarded as sensitive information,
which may cause harm if disclosed. Therefore, handling sensitive information requires
a higher level of security, ensuring that the objectives of privacy and confidentiality
are accomplished.

Privacy is defined as the ability of an individual to manage the gathering, storing,
and utilization of their personal data, as well as the parties with whom it is shared
[Sta15]. A wide range of threats against personal data is present, such as identity
theft, stalking, or surveillance, which makes it essential to protect data. Furthermore,
companies can collect data for analysis and utilize this for their own benefit, such as
improving their products and services, optimizing processes, and creating targeted
and personalized marketing to increase sales and revenue. Some users may view
the utilization of their data as intrusive and manipulative, essentially violating their
privacy. As a result, the awareness and desire to safeguard their data have increased
over the last few years, resulting in law enforcement and policies for data collection,
such as the General Data Protection Regulation (GDPR) in the European Union
and the California Consumer Privacy Act (CCPA) in the United States.

2.1.2 Data distortion through Keyboard Privacy

Keyboard Privacy is an extension in the Google Chrome browser with the goal of
ensuring the user’s privacy of Keystroke Dynamics data [Moo15]. It was created
as a counteract against invasions of privacy and seeks to prevent the profiling of
individuals based on the typing information provided when using the keyboard.
"Keystroke Dynamics will not be useable for authentication purposes, as the input
data won’t match the template data.", Moore states. Testing the plug-in on KeyTrac,
a product that aims for biometric profiling of knowledge-based authentication, the
original recognition rate of 82 % plummeted to 3%.
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When the plug-in is activated, it will intercept the keyboard entry before it
reaches the Document-Object-Model (DOM), adding a randomized delay to the
durations and latencies. The delay added can be customized by the user for their
preferences, but the default settings introduce a random delay of values between 0
and 200 milliseconds for both the duration and the latencies. A further look into the
code reveals that only 50% of the features are added a delay [Moe21b].

2.1.3 Authentication

Authentication refers to the process of verifying that the communication between
entities is authentic and legitimate [SRF19]. Fulfilling this objective ensures that
only authorized parties are given access to information or systems. There are various
ways for authentication, but they can generally be divided into three categories;

– Knowledge-based: based on the knowledge that individuals possess, such as
passwords.

– Possession-based: based on the items an individual possesses, for example,
an access card.

– Biometric-based: based on physiological attributes and behavioral character-
istics of an individual, for example, a fingerprint or voice.

Password-based authentication, a scheme based on knowledge, remains the most
common method, yet has frequently been compromised due to easy-to-guess pass-
words, re-use for multiple services, and poor password management, among others
[For20]. As the technology continues to evolve, basic attacks such as brute force have
been efficient for password cracking. It is not likely that passwords will not disappear
any time soon due to their widespread use. However, the need for stronger authen-
tication schemes has been taken seriously, adding layers of security by combining
different methods, such as Multi-Factor Authentication and Single Sign-On.

Authentication can either be performed statically or continuously [GER11]. Static
Authentication means that the authentication is only done once at the beginning of
the session. The user will remain authenticated for the whole duration of the session
and will not need to prove authenticity later on. Continuous authentication denotes
the approach of authentication where the system will regularly need re-authentication
throughout the session. Passwords or tokens do not come with the possibility of
re-authentication; biometrics is needed in this case.
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2.2 Biometrics

Biometrics is a term referring to the process of quantifying and analyzing individuals’
unique characteristic traits and attributes that can later be used for identification,
verification, or authentication [Nat17; JR08]. These can be categorized into two
systems, physiological biometrics and behavioral biometrics. Physiological biometrics
involves the physical composition of a human being, i.e., DNA analysis, fingerprint
recognition, or facial geometry recognition. Behavioral biometrics involves the be-
havioral patterns of a human, essentially focusing on the distinct ways users perform
and interact with their bodies. Examples include voice recognition, walking gait
recognition, and typing pattern recognition, known as Keystroke Dynamics. Further-
more, the two categories differ in evolution over time, where the behavioral traits
can, to a higher degree, be influenced and trained by the surrounding environment
and external factors, whereas physicological traits evolve at a relatively slow rate
over time.

A certain set of properties should be satisfied when utilizing biometric character-
istics to differentiate users, listed in descending order of priority [DG04; Dor18].

– Universality: The biometric character should be widely available, and its
application should be universal, without significant variations or limitations.

– Distinctiveness: The biometric character should be easily differentiated
between two users.

– Permanence: The biometric character should be persistent and consistent
over time.

– Performance: The biometric character should be recognized rapidly and
accurately.

– Collectability: The biometric character should easily be collected and mea-
sured.

– Acceptability: The biometric character should have a high degree of accep-
tance amongst users, not causing any distress or discomfort.

– Circumvention: The biometric character should be difficult to mimic or
spoof.

Ultimately, the most highly desired characteristics are universality, distinctiveness,
and permanence. Universality is crucial to ensure that the usage won’t be limited to a
smaller set of individuals, distinctiveness is critical to provide accurate identification,
and permanence ensures a reliable and accurate system over time. Utilizing biometric
characteristics that lack a high level of these properties may reduce or compromise
the accuracy and reliability of the biometric system, resulting in an increased number
of false positives and negatives.



2.2. BIOMETRICS 13

Biometrics offers several advantages, such as a seamless and efficient authentication
process, where the user has to provide minimum effort and time to be accepted,
making the technology ideal for situations where time is highly regarded and efficiency
is required, such as financial transactions. Behavioral biometrics can be considered less
intrusive, as it involves observing and analyzing the behavior over an extended period,
which may be achieved without their awareness. Physical biometrics provide a higher
level of accuracy as the traits show more stability over time, and their uniqueness
will provide a more consistent basis for detecting impostors. Ultimately, biometrics
are difficult to replicate and provide a secure and efficient way of identification.

Despite the advantages of accuracy and efficiency, the implementation of biomet-
rics raises concerns regarding data handling, security, and privacy. Several biometrics
can be considered sensitive information, facing risks of misuse and theft. Stored data
is vulnerable to disclosure to unauthorized persons and requires proper management.
In addition to the requirement of security measures, the systems are expensive to
develop and maintain. A key point to consider is the risk of falsely authorizing and
identifying individuals, false positives and negatives may still occur. Ultimately, the
collection and handling of personal data raises ethical questions and concerns.

2.2.1 Soft Biometrics

The attributes contributing to the shaping of the behavioral and physical character-
istics in individuals, such as age and gender, are known as Soft Biometrics [GER11].
These attributes cannot fully distinguish one person from another, resulting in it
being a low discrimination attribute. This implies that the information associated
can remain publicly accessible without compromising privacy. The characteristics will
aid the identification and authentication process, enhancing accuracy and efficiency.
Another advantage is that information collection is less invasive and requires less
direct contact and equipment. However, this poses a privacy concern, where unau-
thorized parties have the ability to collect information without the acknowledgement
or consent of the owner.

2.2.2 Multimodal Biometrics

The combination of two or more biometrics techniques, referred to as multimodal
biometrics, can significantly improve the performance of recognition and authen-
tication of biometric systems. By combining the use of a fingerprint scan with a
face recognition system, the accuracy of correctly identified individuals can increase.
Furthermore, these biometrics are at risk of presentation attacks; however, the com-
plexity of an attack immediately increases when multimodal techniques are taken
into use, hence an increase of security [AYRA21].
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A study from 2017 presented a biometric system predicting age and gender, com-
bining Keystroke Dynamics with Mouse Dynamics. They achieved better predictions
than chance for all the created models, where some of the supervised machine learning
models yielded f-scores up to approx. 0.9, predicting both the age and gender of the
user[Pen17].

There are various methods of how multimodal biometrics can be implemented.
Relevant for this thesis is score fusion and decision fusion. Other methods will not
be mentioned.

– Score fusion: Individual scores from each modality are calculated and later
combined into one single score to determine one final score. There are several
methods, such as weighted average and maximum likelihood estimation [RN09].

– Decision fusion: Decisions taken by each modality are combined into one
single decision by following predefined rules or algorithms [RMT21].

2.3 Keystroke Dynamics

KD is a behavioral biometric that measures and analyzes the typing behavior a user
exhibits on a keyboard, making it possible to build a profile of the individual[MR00;
GER11]. Raw timing information about the press and release of keys are gathered
and later utilized to extract different features, such as latency and duration, which
are the most commonly used [TA20]. Through the implementation of statistical
models and machine learning algorithms, identification of the distinctive typing
patterns of individual users is possible. The algorithms will be able to detect unique
characteristics so that a biometric template can be used for various applications,
such as user authentication and verification.

KD research and usage are gradually growing due to its inexpensiveness, low
computational complexity, and ease of use [RPK+22; Sye14; Bou12]. It does not
require additional hardware beyond a keyboard, and the user does not have to
perform any specific action besides typing on the keyboard. There are diverse
potential application areas for KD, such as data security and access control, where
KD authentication has provided promising results, with accuracies up to 98% [ACB18].
It can contribute to evidence collection and profiling of cybercriminals; it has been
shown that age, gender, and handedness can be predicted with a conventional
keyboard [Sye14]. KD has also been used for the recognition of a user’s emotional
state and has been able to detect emotions such as joy and fear, relevant for the
health sector [NAMH14; Epp10].
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Several challenges with KD-based systems are present. Difficulty with data
acquisition, user variability, and external factors makes KD more unreliable. To
obtain accurate results, data collected must be of high quality, which depends on
hardware and software specifications, method of collection, and environmental factors
such as surrounding noise. Various factors, including physiological and cognitive
conditions, familiarity with the keyboard layout, and personal qualities, can influence
a user’s typing pattern. Typing on the keyboard is not a static trait but rather a skill
that improves precision over time, which can be challenging to capture [RPK+22;
LAS17; Epp10]. These conditions may impact the typing behavior, causing variations
in timing and pressure, leading to reduced quality of results.

2.3.1 Data capturing

A single session can generate thousands of keystrokes, allowing for extracting features
that can subsequently be utilized for profiling [GER11; SCRB14]. Other features can
be calculated and extracted by the raw data, including value, event, and timestamp,
further explained in Section 2.3.2.

– Value: Each key on the keyboard has its own value, also denoted keycode.
It incorporates the key’s location on the keyboard and provides support for
differing keys that have the ability to produce the same characters. It is
commonly represented as an ASCII code, but other formats are possible,
depending on the keyboard, operational system, and language.

– Event: the type of action that has occurred on the keyboard, either press or
release. The timing of a key pressed down is noted as Press Time, or (Key)
Down Time. The timing of a key being released is noted as Release Time, or
(Key) Up Time

– Timestamp: the timing of the occurring event, normally counted with millisec-
onds, but the unit is not enforced.

2.3.2 Feature selection

The features of most significance are the duration and the latencies of the events
[RPK+22]. Other features like force, pressure, and sound might be applied. However,
this is outside of the scope of the thesis, and will not be examined further. The
features are illustrated in Figure 2.1.
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– Duration: The period a key is being held down, also noted as hold time or
dwell time.

– Latency: The time delay between the press of a key and the subsequent key
being pressed, also noted as flight time. Different types of latencies can be
calculated, which can be positive and negative, as one key can be pressed before
the previous key is released.

◦ Press-Press-Latency: Latency between the press of one key and the
subsequent key.

latpp = durcurrentKey + latrp

◦ Release-Release-Latency: Latency between the release of one key and
the subsequent key.

latrr = latrp + durnextKey

◦ Press-Release-Latency: Latency between the press of one key and the
release of the subsequent key.

latpr = durcurrentKey + latrp + durnextKey

◦ Release-Press-Latency: Latency between the release of one key and
the press of the subsequent key.

2.3.3 Fixed/Free Text

KD can be applied to either fixed text or free text [SCRB14].

– Fixed text: Refers to a predefined text that the user will be required to type
several times to be able to be authenticated or identified, such as a password
or passphrase. This text will not change. Hence the system can be trained to
recognize this specific manner of typing for the specific text. This is done using
statistical and machine learning approaches to build a profile of this behavior.

– Free text: Refers to longer portions of text that are not predefined - the user
is able to type anything they desire at any given time. The system extracts
features to build a profile of the user and will later use this to compare the
extracted features from the same or another different text.

Both of these approaches have advantages and disadvantages. The fixed-text
approach requires less storage and resources, and users may have more consistency
in their typing. This facilitates simpler analysis and more accurate results. However,
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Figure 2.1: Illustration of the features in KD. Illustration derived from Morales,
Aythami and Falanga, Mario and Fierrez, Julian and Sansone, Carlo and Ortega-
Garcia, Javier[MFF+15].

it can be found less convenient by the user and may be more vulnerable to attacks
like imitation and forgery.

On the other hand, the free-text approach provides a more natural environment
for the user, and replicating the typing behavior is more challenging. This makes it
a good scheme for situations where a change of behavior must be acted upon, such
as removing access. However, the continuous monitoring of the behavior might feel
like an invasion of the user’s privacy, and the scheme requires more collected data
and more complex analysis.

2.4 Reference Template

For each user to be recognized by its typing behavior, a reference template is created.
This is created by utilizing the extracted features from the KD data that has been
collected during the user’s interaction with the keyboard. To prevent the occurrence
of false admissions or rejections throughout the authentication process, it is essential
that the template accurately represents the typing behavior of the user and is updated
over time.

The reference template creation is divided into an enrolment phase and an authen-
tication phase [Bou12]. The process differs slightly depending on the authentication
type, which can be static or continuous. The authentication types are elaborated
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further in section 3. When initially typing a phrase, such as a password, there
will potentially be significant variations in typing rhythm. This might be due to
the unfamiliarity of typing a new password or other external factors. During the
enrolment phase, the data collected will serve as a reference template until the user
becomes comfortable with typing their password. As a result, initial keystrokes will
not be captured until the typing pattern becomes more stable. Once the typing is
consistent, the data is collected and utilized for the construction of the reference
template. This is somewhat different from other biometrics, such as fingerprints or
iris, where the enrolment phase is immediately established [RPK+22]. More details
about template creation will be provided in the sections 3.2 and 3.1.

2.4.1 Keystroke Dynamics and Soft Biometrics

As mentioned, KD is a behavior-based biometric that uses the individuals’ unique
way of typing to identify or authenticate the user. Soft Biometrics are non-intrusive
biometric traits, easily acquired, and contribute to the same objective. Therefore,
combining these fields can provide essential insights into behavioral biometrics and
the factors influencing the variations in typing behavior. The field is relatively
unexplored, however, there are studies with promising results, providing the potential
to yield more comprehensive and secure biometric methods.

Research suggests that the age group and gender of an individual can be predicted,
based on their vocabulary, stylistics, and personality [Bon21]. Furthermore, it has
been found that the physical patterns differ between the age groups, revealing new
valuable information, and making it possible to predict the age of a user. A study
from 2017, exploring the prediction of age based on KD in combination with mouse
patterns obtained an f-score of 0.62, with a best result of 0.92 in the age group 16-19
[Pen19]. The f1-score is the harmonic mean between the precision and recall, further
explained in Section 5.2.4.

Gender prediction has also been showing promising results. An infographic by
Ratatype claims that boys generally type faster than girls, whereas boys write with
the typing speed of 44 words per minte (wpm), while girls type with a speed of
37wpm [Rat]. A study from 2019 found that the gender of a random user on the
Internet can be identified with an accuracy of 95.6% with a few hundred features
[TA20]. They found that the average value of all digram latencies of males was
373.04ms, and the women’s average value of all digram latencies was 375.71ms,
However, with a standard deviation of 135.26ms for males, and a standard deviation
of 116.86ms for women, it was concluded that women tend to have a more consistent
typing pattern when analyzing the digram latencies, and with machine learning, the
system was able to predict the correct gender 78% of the time. The same study
examined age classification, however, somewhat lower results were achieved with an



2.5. MACHINE LEARNING 19

accuracy of 74.2%, when using a Support Vector Machine model with a Polykernel
and C parameter of 0.5. Using a Radial Basis Function Network, the accuracy
was increased to 89.2%. Another study performed by Roy, Roy, and Sinha in 2018
achieved accuracies of 83%-95% for gender classification using Fuzzy-Rough Nearest
Neighbor with Vaguely Quantified Rough Set (FRNN-VQRS), a machine learning
technique utilizing distance metrics. The same study achieved accuracies on age
classification of the range 75% to 94% [RRS18].

In a study performed by Fairhurst in 2012, a gender prediction accuracy of 80 %
was achieved, and Syed achieved an accuracy of 91.6% for users under the age of 15,
2 years later[FD12; SCRB14]. Syed included prediction of handedness, whether a
user is left- or right-handed, and achieved an accuracy within the range of 85% to
92% by using fixed text KD and fusion.

2.5 Machine Learning

Machine Learning (ML) is a subset within data science where systems and models
are trained to perform specific tasks, for example classification or clustering. Rather
than being explicitly told how to carry out these tasks, the systems identifies patterns
and correlations by ’learning’ from the provided training data.

These tasks, which may include classifications, are performed by these systems
using learning algorithms and training data sets. Rather than being explicitly
programmed to carry out these tasks, these systems ’learn’ to do so by identifying
patterns and making inferences from the provided training data [YLH03; Mag07;
Qin20]. As a result, the machines can more effectively and efficiently interpret large
amounts of data, extract relevant features and information and make decisions based
on this. In the later years, ML has been actively used for KD systems. By learning
the unique typing patterns of individuals, such as latency and duration of keypresses,
the information can be utilized for different purposes, such as user authentication and
verification. ML is commonly divided into three paradigms, unsupervised learning,
supervised learning, and reinforcement learning. The latter will not be discussed
further.

2.5.1 Unsupervised Learning

Unsupervised learning regards the training of a system where labels are not provided
to the features. This way, the machine is forced to find patterns, correlations,
and structures in the data without any kind of guidance. Typical applications are
clustering and association of data.
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2.5.2 Supervised Learning

Supervised learning regards the environments where the system is provided with
features and their corresponding labels during the training phase. The system
will then be able to predict labels when provided with unforeseen data. Known
applications are classification and regression.

2.5.3 Support Vector Machine (SVM)

The supervised learning algorithm Support Vector Machine (SVM) is used for
classification and regression tasks, and has a wide range of deployment, such as text
categorization, bioinformatics, face detection, and more [YLH03]. Not relying on
distance metrics or assuming a specific distribution of the data, including a certain
robustness to outliers, makes the SVM a flexible solution.

The main objective of an SVM is the pattern recognition and separation of two
or more classes during the training phase by determining a surface that divides
them [CGRL20; Kec05]. This surface can be referred to as a hyperplane due to
the possibility of the feature space being in infinite dimensions. The SVM aims
to calculate a surface that maximizes the minimum distance between the classes
while all the data points stay on the right side of the hyperplane relative to their
group. Hence, the nearest data points are referred to as Support Vectors. A kernel
function calculates similarities between different data point pairs and projects these
relationships to a higher-dimensional space, separating these with a hyperplane, thus
classifying the data. Figure 2.2 illustrates the separation of classes by a hyperplane
in 2-dimensional space, with the support vectors creating the maximum distance.

Figure 2.2: Illustration of SVM, fetched from [CKH+19]
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KD information is usually gathered as high-dimensional data containing a large
number of features, which can be challenging to separate linearly. SVM efficiently
handles this by mapping the data to a high-dimensional feature space, making the
data more separable.

2.5.4 Hyperparameter tuning

To achieve the optimal performance, the choice of hyperparameters is crucial. These
are configurations that are not learned from the training process but rather act
as guidelines for how the model should process and learn the information. There
are several different ways of optimizing the choice of hyperparameters, such as grid
search, random search, and Bayesian optimization, all with the purpose of selecting
the combination where the best results are achieved. Grid Search is a method
where all possible combinations of the hyperparameters are used to train the model,
cross-validated, and later compared against each other based on accuracy.

Choice of kernel

The selection of the kernel function has a significant impact on the performance, as
different data require different alterations. The choice depends on the type of data
and how this should be transformed. Two common kernels are:

– Radial Basis Function Kernel (RBF): The similarity between two data
points is calculated as a function of their original distance in the transformed
feature space. This decreases exponentially.

– Polynomial Kernel: Examines the similarity between the data points, in-
cluding different combinations of these [Wik22].

Cost Parameter

The cost parameter is relevant to achieve the lowest error rate while keeping the
model complexity to a minimum. The cost parameter assigns penalties for wrong
predictions, where a high cost strongly encourages the model to accurately classify
the training data by assigning heavy penalties if there is misclassification. This
enhances the performance, however, the complexity of unseen data rise and carries
a risk of overfitting. A lower cost, on the other hand, allows a larger margin for
the toleration of misclassification. This may lead to underfitting, as the underlying
patterns in the KD data won’t be captured.

Gamma parameter

The shape of the decision boundary is controlled by the Gamma parameter and how
much each point influences the drawing of the hyperplane. A low value of gamma
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results in a linear, less complex model, with a broader decision boundary, where the
data points further away is considered. Conversely, a high gamma results in a more
complex, non-linear decision boundary, where the data points closer to the boundary
line have a more significant influence and can capture a more profound, underlying
pattern. However, a higher value increases the risk of overfitting, collecting noise in
addition to the underlying pattern.

2.5.5 Overfitting

When the model learns the data from the training set too well, it begins capturing
noise and random fluctuations [Kec05; YLH03], referred to as overfitting. Figure
2.3 illustrates two instances of a simple classification task, where the two classes are
represented by squares and circles. The left figure shows a perfect classification, where
the training data are separated into their correct class. The right figure has different
hyperparameters, leading to a different separation boundary, causing the model to
overfit. The filled circles and squares are the wrongly classified samples, showing
that the model misinterpret the true pattern of the data and fails to generalize the
data. Underfitting is the case where the machine cannot learn the underlying pattern
in the training data, and hence fails to generalize new test data.

Figure 2.3: Left: The case of perfect classification. Right: The case of overfitting
[Kec05]



Chapter3User Profiling and Classification

This chapter explains the concepts behind the profiling of users for authentication and
classification using KD.

3.1 Keystroke Dynamics for Static Authentication

KD for Static Authentication is the simplest form and compares the keystroke features
of a user once at the beginning of the session [Bou12]. This can be used for access
control as an entry point, for instance, when the user types their username and
password. This scheme considers a fixed text, and the typing is usually determined
with distance metrics, such as Scaled Manhattan Distance. The distance value, d,
will be compared to the threshold value, T . If the distance value is smaller than the
threshold value, d < T , the user will be accepted, and access will be granted.

A distance measure estimates the distance between two data points [Sha20]. In
this context, an entry will be validated against a model, a vector will be built, and
this vector will be used to calculate the distance between the entry and the stored
point.

Some distance measures have shown to be more effective than others in Keystroke
Dynamics Authentication (KDA) [Dor18; Bou12]:

– Manhattan Distance: d(x, y) =
∑n

i=1 |xi − yi|

– Scaled Manhattan Distance: d(x, y) =
∑n

i=1
|xi−yi|

si

– Euclidean Distance: d(x, y) =
∑n

i=1 |xi − yi|

– Canberra Distance: d(x, y) =
∑n

i=1
|xi−yi|

|xi|+|yi|

– Chebyshev Distance: d(x, y) = maxi |xi − yi|

– Mahalanobis Distance: d(x, y) =
√

(x − y)T S−1(x − y)

23
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where,

– x and y are two data points in the n-dimensional space, represented as a vector
– si is the scaling factor for the ith dimension.
– S: the covariance matrix containing the interdependencies between the different

dimensions.

In the authentication phase, a user will try to log in by typing their password
once. From this typing, the relevant features, often durations and latencies, will
be extracted and are represented by t1, t2, t2N−1. Furthermore, these features will
be compared to the reference template, and based on the predetermined criteria,
the user is either rejected or accepted. These decision-making criteria are based on
different thresholds between the distance from reference template T and the new
input, probe I.

d(T, I) =
∑ |ti − µi|

σi
(3.1)

A limitation of the static scheme is that there is no confirmation of true identity
after initial authentication. After the initial user is authenticated, no re-confirmation
of the user’s identity is conducted. If there is a change of user later in time, this will
not be detected, meaning that an unauthorized user can be able to gain access to
systems or perform actions. Furthermore, static authentication is more susceptible
to brute-force and impersonation attacks, as an attacker will have the opportunity
to attempt to impersonate the typing rhythm repeatedly.

3.1.1 Static authentication templates

The reference template can be calculated by averaging the different values of durations
and latencies, either by, for example, finding the mean or the median. Assume we
have a password of N keys, meaning there are N durations and N − 1 latencies. The
reference template will consist of 2N − 1 pairs of (µi, σi). When the µi value is small,
the user is typing with high stability, while a larger value represents less stability
[Bou12]. The mean is considered a better option when regarding central tendency,
while the median is better at handling outliers [Bou12].

3.2 Keystroke Dynamics for Continuous Authentication

It is possible to use KD to continuously monitor the user’s behavior, making it
possible to perform actions if the behavior has noticeably changed. For continuous
authentication, the behavior of the user is monitored over a period of time or
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throughout a session, where the user writes a free text [Bou12]. The comparison will
no longer be with the fixed text but with different combinations of letters, n-graphs.
This way, the identity will be re-confirmed after pre-determined time periods, either
periodically (Periodic Authentication) or after every single keystroke (Continuous
Authentication). However, this requires more storage and resources than static
authentication and is more difficult to process than static KDA.

In continuous authentication KD, the timing of detecting an impostor is more
important than if the impostor is detected at all [Bou12]. It is essential that genuine
users will be kept from being locked out, and simultaneously lock out impostors as
fast as possible, in other words, with the least amount of keystrokes possible. The
later detected, the more damage can be done.

3.2.1 Continuous authentication templates

Continuous authentication is more complex, as it is unknown what the user will
type. Therefore, the enrolment phase will need a time-based period to monitor
typing behavior, e.g., for 1 or 2 days. With the help of di- and tri-graphs and their
characteristics, a reference template can be created [Bou12]. N-graphs are different
combinations of N letters, i.e., di- and tri-graphs, where di-graphs contain two letters,
such as "ke", while tri-graphs contain three letters, such as "key".

The choice of letter combinations is of interest. Not all combinations must be
included in the reference template; the number of times a letter or n-graph is typed
during the enrolment phase needs to be high enough to be able to calculate statistical
values, such as mean and standard deviation.

The continuous authentication scheme evaluates if a user is genuine, and the
decision is re-evaluated after every keystroke. A user cannot be thrown out based on
one single keystroke; however, if their typing pattern is significantly changed, action
must be taken. To examine this, the concept of trust is introduced. After a successful
static authentication procedure, the level of trust, C, will be determined, where
the minimum value 0 represents no trust and the maximum value 100 represents
complete trust. With the use of a penalty-and-reward function, the levels of trust will
be affected. Similarly, as in the static KDA, the distance metrics will be calculated
when the user types a key or a key combination.

Assuming the user types one key, k, the mean, µdur,k, and the standard deviation,
σdur,k, of the duration of the key press will be calculated and used in the reference
table. Given the duration, tdur,k, from the reference table, the distance between the
probe and the reference table, D, can be calculated as:

D = durdur,k = |µdur,k − tdur,k|
σdur,k
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With the calculated distance, D, the user will either receive a penalty or reward,
dependent on the distance from the determined threshold, Tdistance. This can either
be an increase or decrease in the value C, with a constant, such as 1. Other variations
might be to reward the user with a higher value than the penalty, or to introduce a
variability based on the threshold and the distance, ∆ = (Tdistance − D). ∆ will be
either added or subtracted from the trust level, meaning that the higher the accuracy
of the typing, the better reward, and vice versa. Ultimately, if the user obtains a
C-value beneath the determined threshold, the user will be locked out.

3.3 Keystroke Dynamics Classification

Prediction and classification in KD utilize the knowledge-discovery model to predict
the belonging of samples to classes [RPK+22]. The knowledge-discovery model is
a model aiming to extract high-level knowledge from low-level data, by cleaning,
processing and analyzing the data [CSPK07]. They are dependent on the samples of
multiple users to be able to discover underlying patterns for the different classes.

To discover these underlying patterns and characteristics, machine learning is a
commonly used method. Some of these include [RPK+22; NFG+22]:

– Support Vector Machines: A boundary between the classes is made, with
the aim of maximizing the distance between the different classes.

– Tree-based: Include models like Decision Trees and Random Forests. These
models obtain a series of tests or questions and make decisions based on these
in a tree-like path.

– Neural Networks: These models recognize and learn patterns by interpreting
sensory data.

– Fuzzy Logic: Fuzzy meaning ’not clear’, this method is making decisions
based on situations that are ranked based on their ’level of truthness’, or level
of uncertainty.

– K-Nearest Neighbour: The classification is done based on the similarity of
the known data points, usually measured by distance functions.

This thesis utilizes Support Vector Machine, which is a common choice in KD
due to its solid mathematical foundation and efficient classification. It is further
described in Chapter 2.5.



Chapter4Data and data processing

This chapter will provide an overview of the collection of the data used for analysis,
processing, and justification for the choices made. A benchmark dataset from the
University of Caen Basse-Normandie and NISlab Gjøvik have been used. Later, the
processing of the dataset through simulation has been presented. The simulation is not
in the scope of the thesis, thus, only a brief explanation of the approach is included.

4.1 Data Collection

The research of KD data is known to be challenging due to the difficulty of obtaining
enough data to give statistically significant results and providing high-quality data
sets. The process of creating high-quality data sets can be time-consuming and
challenging, as well as privacy and ethical concerns must be considered. The collected
datasets will be run through a simulator to produce new ones with new characteristics.
In addition to the original one, there will be three simulated datasets of each dataset
to be analyzed, where two have been employing the Keyboard Privacy plugin. These
have recieved randomized delay of 0−200ms and 0−300ms distortion in the duration
and latency timing.

– Original dataset: referring to the unmodified dataset directly from the source.
– Simulated dataset: referring to the resulting dataset of the simulation of the

original dataset.
– Distorted dataset: referring to the result of the simulation of the original

dataset with enabled Keyboard Privacy plugin.

◦ Distorted 1: Will also be referred to as Distorted dataset 1 (D1). Added
a random delay of 0 − 200ms in duration and latency.

◦ Distorted 2: Will also be referred to as Distorted dataset 2 (D2). Added
a random delay of 0 − 300ms in duration and latency.
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Analyzing both the original and the simulated dataset is necessary as the simula-
tion might produce artificial noise or variability. This noise must be accounted for
when the comparison with the distorted dataset is carried through, as this will include
both the intentionally added distortion and the distortion added by the simulation.
This enhances the comprehension of the patterns and relationships embedded within
the data, along with a more accurate and robust analysis. Figure 4.1 illustrates the
processing of the datasets.

This enhances the comprehension of the relationships and patterns embedded
within the data, leading to a more precise and resilient analysis

4.2 GREY-NISLAB Keystroke Benchmark Dataset Syed

The GREYC-NISLAB Keystroke Benchmark Dataset dataset contains the collection
of KD data from 110 volunteering individuals, whereas 70 users originated from
France, using the AZERTY keyboard. 40 users originated from Norway and used the
QWERTY keyboard. The participants were students, researchers, faculty members,
administration staff, and others [Sye14]. Table 4.1 shows how the participants were
distributed by age and gender, where the ages range from 15 to 65.

Age Group Men Women Total
(30,65] 37 14 51
[15,30] 41 18 59
Total 78 32 110

Table 4.1: Users in the dataset separated by age group and gender, including totals.

All participants were to type 5 fixed, distinct phrases 20 times, 10 times with
one hand and 10 times with both. The selected phrases were considered appropriate
due to the familiarity of the names so that all participants, regardless of origin,
could easily remember them. The phrases gradually increase in length, starting at 17
characters and up to 24, shown in Table 4.2, designed to capture and measure the
participants’ typing behavior across various difficulty levels.

Metadata such as gender, age, and handedness (left or right-handed) were collected.
However, handedness will not be considered in this thesis; thus, the trials with only
one hand have been removed, resulting in one participant writing the password ten
times.
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Figure 4.1: Flowchart of the simulation of data
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Password Size (char)
leonardo dicaprio 17
the rolling stones 18
michael schumacher 18
red hot chilli peppers 22
united states of america 24

Table 4.2: Passwords in the GREYC-NISLAB dataset

The dataset utilized is structured with the final format of:

– ID: Each participant received an unique ID.
– Gender: Gender of the participant
– Age: Age of the participant
– Duration and Latencies: The last column of the dataset contains the

remaining 2n + 1 values, where the first n + 1 values are duration values,
followed by n latency values.

4.3 Keystroke simulation and collection

Several options are available for the simulation of keystrokes, such as ’pyautogui’
for Python [Al 19], ’java.awt.Robot’ for Java [Oraar]. Within this thesis’s research,
an existing simulation C++ program to simulate keystrokes was adopted. The C++
program was written by Tobias Moe and created for his Master’s thesis with a similar
purpose [Moe21b; Moe21c]. While the other alternatives mentioned are considered
accessible and effective, personal programming experience introduces risks of error,
making the already existing software a safer choice. In addition, by using an existing
solution, a considerable amount of time is saved, making space for a more profound
and comprehensive interpretation and analysis, aligning with the study’s objectives.
Some reformatting of the original datasets had to be done to fit the simulation.

To collect the data from the simulation, a minimalistic webpage was created,
recording keystrokes in an input field. The keystrokes, and their associated timing
information was collected with the use of jQuery in Javascript. This information
was stored in a database using Flask, as this was more lightweight and suitable than
Django[Moe21a].
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The simulated data had a format of:

– user_id: Identifier of a user.
– session_id: Identifier for the session a user is currently typing in.
– repetition: The current repetition that the user is in.
– type: The type of action, either press or release of a key.
– keycode: The keycode of the key that was acted upon.
– clocktime: The clocktime of the action
– lastkey: The time since the last key was acted upon, counted in milliseconds.

For further analysis, the column lastkey is of interest. From this, both duration and
latencies can be extracted, as well as other features like average time of key press,
average time of key release and max time. For some unknown reason, neither
user_id,session_id, or repetition was updated throughout the simulation. There-
fore, this had to be manually added, in addition to the age and gender-attributres
that were merged into the dataset, using a process analogous to the database join-
operation.

4.3.1 Keyboard Privacy Plug-in

The Keyboard Privacy plug-in was enabled in two out of the three simulations. One
simulation was done without, one simulation was done with the default settings,
and the last simulation was done with a higher distortion. The default settings had
a duration and latency delay of 200ms, while the last simulation was run with a
duration and latency delay of 300ms. This way, with a variation in the amount
of distortion, we can examine if the effects can be seen more clearly. This will
help analyze whether the amount of delay added affects the ability to classify soft
biometrics.

4.4 Data Cleaning and Missing Value Handling

After the simulated datasets had been collected, pre-processing and data cleaning
procedures were carried out to ensure quality and suitability for further analysis.
When utilizing machine learning algorithms, it is highly recommended that the
underlying data is normalized beforehand, improving accuracy and reliability. Missing
values, outliers, and inconsistencies were removed. This was achieved by using the
scale() function in R. It subtracts the mean from the data, and divides it by the
standard deviation. This ensures that the input is on a similar scale, and analysis on
the same basis can take place.
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Missing values that, for some reason, are not present or available in the original
dataset are represented as -1000 or N/A, for example, due to a message left unfinished
or sensor malfunctioning. These values are removed from the datasets. Negative
durations were removed from the datasets, as this can not occur in a real-world
context. A threshold for durations and latencies has been set at 500ms, as well
as -500ms for latencies. This is done based on the assumption that typical typing
behavior does not carry values above this point, even though there are possibilities
for the latencies exceeding this for some key combinations. However, looking at
simple, fixed texts, 500 ms is a reasonable value. These durations and latencies will
be considered outliers and non-representative, causing the data to be removed.

Some inconsistencies during the simulation process were identified. It did not
consistently capture all key presses and releases, and in some instances, it failed to
capture the correct sequence of the press and release of the keystrokes. This led to
incomplete data, and to mitigate the potential of this affecting the results, these
instances had to be removed.
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The objectives and research questions require extensive study, making it necessary
to combine several types of research methodologies. To explore and determine if the
proposed problem and its substantiating questions from the previous chapters are
achievable, the methodology and steps taken are described in this chapter.

5.1 Literature Review

A literature review has been performed with the purpose of presenting the background
and evolution of the classification within KD biometrics in Chapter 2 and 3. It aims
to provide context for the work that will be carried out in this thesis and to do so by
highlighting state-of-the-art research as well as popular methods currently used in
the field. Additionally, the contribution of the work conducted in this thesis will be
discussed.

5.2 Evaluation metrics

To assess the quality of predictions calculated by the machine learning models,
different performance evaluation metrics are taken into use. These have a crucial role
in the determination of the effectiveness of the models, as well as their suitability for
particular tasks. The metrics provide a quantitative measure of performance from
different perspectives and will typically involve a comparison of the predicted output
and the actual output.

The choice of metric is dependent on the dataset that is under evaluation and
the context for use. Accuracy is a common choice for classification evaluation but
may not be a good choice for an imbalanced dataset. Here, a dataset may be biased
and give the prediction of the majority class a high accuracy score while performing
poorly on the minority class. Hence, the performance measure used must be nuanced
and account for different error types.
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These rates do not solely determine the percentage of effectiveness. They are
dependent on several factors, including the quality of the data collected, the oper-
ational environment in which the system runs, as well as the performance of the
algorithms used. Reduced quality of the biometric data will inevitably result in an
elevated error rate, causing diminished effectiveness. Similarly, if the environment
holds a high level of noise, the error rate may be affected.

5.2.1 Statistical Background and distance metrics

For the data analysis process, eight different distance metrics were utilized for
comparing the distorted and the original timing data. The chosen distance metrics
were included due to their common use within KD research and their ability to capture
the impact of the distortion. It is worth noting that the primary objective in this
study is not the evaluation and optimization of the performance metrics but rather
capturing the differences between the different datasets and their characteristics.
By including several distance metrics, a more comprehensive understanding of the
similarities and dissimilarities from the datasets can be obtained, assisting further
analysis and conclusions.

A brief explanation of the different distance metrics is provided to make the
findings more clear and informative.

Arithmetic mean

The total number of observations is k, and each observation is noted xi.

x̄ = 1
n

n∑
i=1

xi (5.1)

Standard deviation

The total number of observations is k, each observation is noted xi, and µ is the
mean.

σ =

√√√√ 1
n

n∑
i=1

(xi − x̄)2 (5.2)

The Cosine Similarity

The similarity between two vectors is measured by the cosine angle between them
[Kum20]. The cosine similarity between the vectors A and B is calculated by:
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Cosine Similarity(A, B) = A · B
∥A∥ · ∥B∥

(5.3)

Interquartile Range (IQR)

Interquartile Range (IQR) measures the spread or variability in a dataset and focuses
on the middle 50% of the data. A particular advantage with IQR is that it is
unphased by outliers [Fro21].

IQR = Q3 − Q1 (5.4)

Where Q1 is the first quartile, the middle value of the smallest value and the median.
Q2 is the second quartile, the median. Q3 is the third quartile, the middle value
between the highest value and the median.

Euclidean distance

The Euclidean distance measures the similarity between two vectors or data points,
by calculating the square root of the sum of the squared differences between the
values [Kum20]. Equation 5.5 defines the distance metric of the two input vectors
reference r and probe, p.

dED(r, p) =

√√√√ n∑
i=1

(pi − ri)2 (5.5)

The Python function numpy.linalg.norm is used for the calculation of the Eu-
clidean distance. Another alternative would be the SciPy Euclidean function; however,
it exhibits a relatively slower performance[Moe21b].

Manhattan distance

The Manhattan distance measures the distance between two data points, determined
by geometry in a grid-based system, often known as the city block distance. It is
calculated by the sum of the absolute differences based on their coordinates in the
Cartesian plane [Kum20]. The Manhattan distance is defined as;

dMD(r, p) =
n∑

i=1
|pi − ri| (5.6)

The Manhattan distance metric is implemented in Python, through the numpy.linalg.norm
function, or with the SciPy cityblock-function.
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Scaled Manhattan distance

The Scaled Manhattan distance is based on the Manhattan distance, where the
absolute differences between the data points are divided by the absolute value of the
data points[Bou12]. Scaled Manhattan distance can be defined as:

dSMD(r, p) =
n∑

i=1

|pi − ri|
ai

(5.7)

There is no direct Python function for Scaled Manhattan, thus, must be imple-
mented manually.

Canberra Distance

The Canberra Distance measures the dissimilarity of two data points, by finding
the absolute values of the difference, and each absolute difference is divided by the
sum of the absolute values of the respective data points [Cud]. Canberra Distance is
defined as:

dCaD(r, p) =
n∑

i=1

|ri − pi|
|ri| + |pi|

(5.8)

The Canberra distance can be calculated by using the SciPy canberra function in
Python.

Chebyshev Distance

The Chebyshev Distance calculates the greatest absolute differences between the
values of the data points [Cud]. It can be defined as:

DChD(r, p) = nmax
i=1

|ri − pi| (5.9)

The Chebyshev distance can be calculated by using the numpi.linalg.norm, or SciPy
chebyshev function.

5.2.2 Confusion matrix

In order to compare the various models effectively, the metrics used to evaluate each
technique must be used under the same conditions. Once the classification process
has been carried out, the predictions will be assigned to one out of four categories
represented in the Confusion matrix in Table 5.1. The Confusion Matrix consists
of four entries that compare predicted outcomes with the actual outcomes; true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Ultimately, the accuracy illustrates the ratio between the correctly identified
instances and total instances, as it can be seen in the downright corner in Table 5.1,
and in percentage format in Equation 5.10.
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Predicted
Positive Negative

Actual Positive True Positive (TP) False Negative (FN)
Type I error

Recall

T P
T P +F N

Negative False positive (FP)
Type II error

True Negative (TN)

Specificty

T N
T N+F P

Precision
T P

T P +F P

Negative Predictive Value
T N

T N+F N

Accuracy

T P +T N
T P +T N+F P +F N

Table 5.1: Confusion Matrix containing the four different categories predictions can
belong to. Illustration adapted from Chakravorty[Cha].

Accuracy = TP + TN

TP + FN + FP + TN
(5.10)

Related to KD classification, the prediction of a user’s typing is based on whether
the user is an imposter or genuine. Similarly to the example, two possible errors can
occur, type I - false negative and type II - false positive. The presence of two types
of error results in a trade-off between achieving a higher precision or a higher recall.
A high precision rate will typically have to sacrifice recall and will obtain a higher
percentage of true positives, however, it will also produce an increased amount of
false negatives.

5.2.3 Recall and Precision

The confusion matrix 5.1 shows us the equation for recall in the upper rightmost
corner and the equation for precision in the lower leftmost corner.

Recall is the number of true positives out of the total of true positives and false
negatives. It provides insight into the model’s ability to identify the actual positive
cases, such as classifying actual females as females.

Recall = TP

TP + FN
(5.11)
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Precision is the number of true positives out of the total of true positives and
false positives. It measures the validity of the model’s predictions.

Precision = TP

TP + FP
(5.12)

5.2.4 F1-score

The F1-score measures the harmonic mean between precision and recall. It combines
these values, providing a balanced measure to compare binary classification models
and results.

F1 − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5.13)

The F1-score ranges from 0 to 1, where the value of 0 indicates the worst balance
of precision and recall, while a value of 1 indicates a perfect balance of precision and
recall. It is appropriate for use when the classes to be examined are imbalanced,
as it takes into account the cost of false positives and false negatives. When using
accuracy on imbalanced data, the classifier of the majority of the class will always
obtain higher accuracy, even when performing poorer in the minority class, making
F1-score more reliable in these cases.

5.3 Feature selection

The selection of features provides the base of the learning of the machine. A subset
of relevant data is extracted and utilized. The most relevant features in KD are
latencies and durations, hence used for this study. Initially, only these features were
planned to be utilized, however, due to the data cleaning process removing a portion
of samples, a more effective solution ended up with using the averages of the key
presses and key releases, the averages of durations and average latencies. Additional
features extracted were maximum press time, and count of key rollover, i.e., the
amount of subsequent key presses before the key releases.

80% of the features and corresponding labels were used for training, and 20
% were used for testing, a normal separation for machine learning. This ensures
adequate learning, allowing the machine to capture the underlying structures and
avoid overfitting.

The process and architecture of the methodology is illustrated in Figure 5.1, and
as mentioned, the process of simulation is illustrated in Figure 4.1.
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Figure 5.1: Flowchart of the classification process





Chapter6Results

This chapter presents the statistical results and the machine learning model results.
First, the comparison between the original, simulated, and distorted datasets is
provided. Furthermore, the results from the classification of soft biometrics by machine
learning are provided and presented. Throughout these chapters, the passwords will be
referred to as PWx, where x is the number of the specific password, and the distorted
passwords will be referred to as Dx, specifically D1 and D2. All measurements are
in milliseconds.

6.1 The effect of simulation

6.1.1 Statistical results

The mean of durations and latencies, including the standard deviation, for different
soft biometric groups, are listed in table 6.1. The data has undergone a data-cleaning
process, ensuring no outliers influence the results. Referring to the users in the
"gender"-category in the original dataset, we find that the average duration and
latency for males are, respectively, 83.41ms and 115.56ms, whereas women types
somewhat slower, 90.03ms and 114.59ms.

When dividing the users into age groups, we find that the duration and latency
for age group < 30 are respectively 86.02ms and 105.16, while for the age group
> 30, the values are respectively 84.68ms and 125.20ms.

In the simulated dataset, all the values are slightly added some delay, where it is
found that males obtain a mean duration of 89.91ms and a mean latency of 118.79ms.
Females obtain a mean duration of 100.29ms and a mean latency of 122.53ms. The
age group < 30 shows a mean duration of 90.95ms and a mean latency of 107.19ms.
The age group > 30 obtain a mean duration of 94.72ms, and a mean latency of
132.66ms.
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Durations Latencies
Mean SD Mean SD

Original dataset

Male 83.41 29.16 115.56 89.66
Female 90.03 35.62 114.59 94.29
Under 30 86.02 31.78 105.16 88.08
Over 30 84.68 30.91 125.20 92.67

Simulated dataset

Male 89.91 38.36 118.79 95.47
Female 100.29 40.21 122.53 97.85
Under 30 90.95 42.15 107.19 94.42
Over 30 94.72 25.82 132.66 96.31

Table 6.1: Table of statistical measurements of the passwords combined

6.1.2 Interquartile Range Comparison

Table 6.2 presents the summary of the statistical dispersion in the form of IQR
measurement, subtracting the first quartile (25%) of the data from the third quartile
of data (75%). The mean IQR of the simulated datasets is 62.2, meaning that
50% of the data falls around the range of 61ms and 66ms. For both D1 − IQR

and D2 − IQR, the mean is relatively higher, respectively, 98.15ms and 88.2ms, a
significant shift upwards from the distorted data. Figure 6.1 and Figure 6.2 illustrates
the comparison visually with a graph and a box plot. The box plot emphasize the
different value ranges.

Dataset Simulated IQR Distorted1 IQR Distorted2 IQR
PW1 66 96 67
PW2 54 105 69
PW3 69 98 106
PW4 61 95 99
PW5 61 96.75 100
Mean 62.2 98.15 88.2

SD 5.72 3.98 18.65

Table 6.2: Comparison of IQR Values
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6.1.3 Cosine Similarity

Table 6.3 provides a side-by-side comparison of the cosine similarity between the two
distorted and the simulated dataset. The Cosinue Similarity expresses the similarity
between the datasets, with values closer to 1 meaning nearly alike, while values closer
to 0 express high dissimilarity. The mean cosine similarity of D1 and the simulated
dataset is 0.858, where the lowest and the highest similarity is, respectively, 0.760
and 0.908. The mean cosine similarity of D2 and the simulated dataset is somewhat
lower than D1, with a value of 0.754, where the values range from 0.648 and 0.995.

Dataset Cosine Similarity D1 Cosine Similarity D2
PW1 0.821 0.995
PW2 0.908 0.933
PW3 0.988 0.405
PW4 0.760 0.790
PW5 0.814 0.648
Mean 0.858 0.754

SD 0.089 0.237

Table 6.3: Cosine Similarity of the simulated and distorted datasets

6.1.4 Distance comparison between the datasets

The distorted datasets’ distances from the simulated dataset have been calculated and
presented in Table 6.4. The distances presented are Euclidean, Manhattan, Scaled
Manhattan, Canberra, and Chebyshev distances, and used to provide a quantitive
measure of similarity of the datasets. A heatmap of each distorted password and
their corresponding values can be found in Figure 6.3 and Figure 6.4. The heatmap
provides an illustration of the similarities and dissimilarities. The color palette
represents the magnitude of the distances, where a lighter shade of blue represents a
higher grade of similarity, and a darker shade of blue represents a higher grade of
dissimilarity.

For D1, the Euclidean distance values range from 14.06ms to 24.86ms, with a
mean of 18.86ms and a standard deviation of 3.24. The span is slightly smaller for
D2, which ranges from 13.90ms to 22.11ms, with a mean of 17.89 and a standard
deviation of 42.94ms. The Manhattan distance in D1 ranges from 115.55 to 254.23,
while in D2, it ranges from 93.85ms to 196.34ms. The Scaled Manhattan distance
in D1 has a mean of 57.76ms and a standard deviation of 10.89ms, and ranges from
40.90ms to 69.29ms, while in D2, it ranges from 37.21ms to 85.73ms, obtaining
a mean and standard deviation of respectively 56.68ms and |5.99ms. The table
yields that PW5 in D1 generally has the highest distance value, while in D2, PW2
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generally produces the largest distances. On the other side of the scale, we find that
D1 : PW3 and D2 : PW3 have the lowest distance score.

Euclidean Manhattan S. Manhattan Canberra Chebyshev

D1

PW1 17.05 143.94 45.88 18.05 5.06
PW2 18.66 166.49 62.54 21.72 5.42
PW3 14.06 115.55 40.90 14.09 4.45
PW4 19.68 189.83 69.29 23.50 5.51
PW5 24.86 254.23 69.17 21.29 6.39
Mean 18.86 174.01 57.56 23.46 5.37

SD 3.24 42.94 10.89 3.34 0.59

D2

PW1 15.89 148.14 52.26 20.36 4.87
PW2 19.46 196.34 85.73 25.52 5.48
PW3 13.90 93.85 37.21 10.18 4.90
PW4 18.10 147.81 57.49 15.05 5.69
PW5 22.11 173.57 50.73 17.77 6.62
Mean 17.89 151.94 56.68 17.77 5.51

SD 2.84 34.19 15.99 5.13 0.64

Table 6.4: Summary of the distance statistics performed on the simulated and
distorted passwords

6.2 Classification results

The different datasets are utilizing a 80% training and 20 % testing split. The model
performed with a radial basis kernel function, a cost of C = 100, γ = 2 and ϵ = 0.1.
For both cases, the features of average duration and average latencies were utilized,
and for enhanced performance and increased balance, max press time and a count of
how many times users executed a key rollover were included.

6.2.1 Gender classification

Table 6.5 showcases the results of the classification of gender. The confusion matrix
"calculated" from the simulated dataset with no distortion is presented in Figure
6.5a. This can be interpreted as 67 true positives, showing that these are correctly
identified females, and 16 false positives, male users incorrectly identified as females.
There were 62 true negatives, correctly identified males, while 11 false negatives,
falsely identified as males. This leads to the performance metrics in Table 6.5, where
the attained precision, correctly predicted positive (female) cases out of all cases,
was 80.7%. The recall, the proportion of actual positive cases that were correctly
classified, was 85.9%, and the harmonic mean, F1-score, was 0.832. Recall that the
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Euclidean Manhattan S. Manhattan Canberra Chebyshev
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F1-score represents the trade-off between the precision and the recall of the model.
The overall accuracy of the model achieved was 82.59%, implying that our model
predicted the correct instances approx. 83% of the time.

The confusion matrix of the distorted dataset with 0 − 200ms distortion is
presented in 6.5b, consisting of 69 true positives, 61 true negatives, 7 false negatives,
and 18 false positives. Referring to Table 6.5, a precision of 79.3% and a recall of
90.7% was obtained, leading to an F1-score of 84.7%. The overall accuracy attained
was approx. 84%, achieving a higher performance across all classes compared to the
non-distorted dataset.

The second distorted dataset, with a randomized delay of 0−300ms, obtained the
confusion matrix presented in 6.5c. There were observed 66 true positives, 54 true
negatives, while the false negatives and positives resulted in, respectively, 12 and 24.
Of all the predicted positive cases, 73.3% was correctly identified (precision). The
recall rate demonstrated was 84.6%, producing a recall rate of 78.6%. The overall
accuracy was 76.92%, meaning the gender of the user was predicted correctly approx.
77% of the time, somewhat lower than the simulated and the Distorted 1 datasets.

Precision Recall F1-score Accuracy
Simulated 0.807 0.859 0.832 82.6%
Distorted 1 0.793 0.907 0.847 83.87%
Distorted 2 0.733 0.846 0.786 76.92%

Table 6.5: Results of classification on gender on all the passwords with 80% Training,
20% testing data

Grid Search

Grid search for gender classification was performed, resulting in best results for
Cost = 100, gamma γ = 2, and epsilon ϵ = 0.1

6.2.2 Classification on age

The SVM classification of age achieved worse performance than the model for the
classification on age. The results will be further discussed in the next chapter.

The simulated dataset achieved 63 true positives and 50 true negatives, 20 false
negatives, and 23 false positives, represented in the confusion matrix in Figure 6.6a.
As noted in Table 6.6, the F1-score reached 74.5%, the balance of the precision of
73.2%, and recall of 75.9%. Ultimately, the overall performance of the model in terms
of accuracy was 72.43%.
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Figure 6.5: Confusion Matrices for gender classification on different settings

The Distorted 1 dataset reduced the overall accuracy to 59.63%. The confusion
matrix in Figure 6.6b represents the true positives of 37 and the false negatives of
16. Furthermore, the false positives and true negatives were both equal to 28. Table
6.6 reveals an increase of misclassifications with distorted data, where precision is
reduced to 0.569, recall is reduced to 0.698, and the F1-score is reduced to 0.627.

Lastly, the Distorted 2 dataset, had a slight improvement from D1 in overall
accuracy with a score of 65.4%, also noted in Table 6.6. The Confusion Matrix in
Table 6.6 presents the recall value of 0.614, a precision value of 0.698, and an F1-score
of 0.654. This is derived from 6.6c, where the model predicted 55 true positives, 32
false negatives, 22 false positives, and 51 true negatives.

Precision Recall F1-score Accuracy
PW1 - Simulated 0.732 0.759 0.745 72.43%
PW1 - Distorted 1 0.569 0.698 0.627 59.63%
PW1 - Distorted 2 0.698 0.614 0.654 65.4%

Table 6.6: Results of classification on age on all passwords, with 80% Training, 20%
testing data
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Figure 6.6: Confusion Matrices for age classification on different settings

Grid Search

All models for age classification obtained a cost of c = 100, gamma γ = 2, and ϵ = 0.1.
However, the distorted 1-dataset achieved better results with cost = 1, hence, the
setting was employed for this dataset.





Chapter7Discussion

This chapter interprets and discusses the results that were presented in the earlier
chapter, with the intention of answering the research question: "Is it possible to detect
soft biometrics, such as age and gender, even when the KD data is distorted?"

7.1 The effect of simulation

The simulation of the datasets is necessary to create a reference point for the analysis.
It is to be expected that the simulation itself will produce some noise or delays, as
identical timing values cannot be achieved. One must keep this added noise in mind
when reading these results to attain a valid and reliable analysis. From the results
in Table 6.1, we can confirm that the simulation itself produces some delay in the
durations and latencies, where the mean value and standard deviation have slightly
increased in all measures. The noise can be due to the C++ simulation program,
which implements a sleep function that might be set off before or after the initial
set value. This causes the delay in the keystrokes. In addition, the capturing of the
keystroke timing can be affected by the JavaScript functions on the webpage. The
amount of delay added in the durations ranges from approximately 4 − 10ms, and for
the latencies, the range is approximately 2 − 8ms. It does not constitute a significant
portion of the keystroke timings, however, it is a notable proportion, hence, it must
be kept in mind while examining this work.

7.2 Comparison of simulated and distorted data

Interquartile Range (IQR)

Recall that D1 was added random values from 0-200ms in 50% of the samples, while
D2 was added random values from 0-300ms in 50% of the samples. The range of
where 50% of the timing values in the dataset land, is shown through the measuring
of the interquartile range of the durations, showing that there is a significant upward
shift in the distorted datasets, shown in Table 6.2 and visually in the boxplot 6.2.
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When comparing the simulated IQR with the D1 IQR, we find that the simulated
dataset has a broader spread, implying that the simulated dataset exhibits a higher
variability. This could be due to the noise added from the simulation process, or that
the distortion in D1 reflects the specific nature of the added distortion, which could
have narrowed down the range of value.

When comparing the distorted IQRs, we find that the IQR of D1, that range
from 95 to 98, is smaller than that of D2, ranging from 67 to 100. This indicates
that the distortion with D2 has a larger spread than the distortion in D1, suggesting
a greater measurement error or a greater variability and range of values with a lower
distortion setting. This is consistent with both the delay added from the distortion
plug-in, as well as the simulation delay. This statement is further supported by the
standard deviation, indicating that the data points in D2 are more dispersed around
the mean compared to D1.

In relation to user behavior analysis, wider IQR observed can potentially lead
to more diverse patterns and inconsistencies in the features, posing a challenge for
further analysis. Additionally, a larger standard deviation in D2 indicates a greater
dispersion of keystroke timing information that may require considerations in the
data pre-processing, feature extraction and model.

It is important to recognize that even if it is possible that higher delay values
can be added to D2, the delay is randomized, meaning that the data in D2 can
exhibit less distortion than the data in D1. This observation holds true for both
Password 1 (PW1) and Password 2 (PW2) and the mean IQRs, as evidenced by the
data presented in Figure 6.1.

Ultimately, there are distinctive differences between the distorted datasets, and
the simulated one, hence, using IQR could help indicate if distortion have taken
place. However, it would be difficult to determine whether the data is distorted if
the simulated dataset’s IQR values where removed from the figure, which would be
the case in real-world scenarios.

Cosine Similarity

The cosine similarity, expressing the similarity of the datasets, is relatively high,
implying that the datasets are all close to being parallel, or might even be parallel
in a higher dimensional space. The similarity between the simulated and the D1
dataset is averaging 0.858, which indicates that the distortion in the bigger picture
has not made a significant impact. The cosine similarity of D2 is somewhat lower,
with a value of 0.754, which implies that there is more distortion added. This was
to be expected, as the range of values added is higher. The similarity value is still
relatively high, with 75% of the values corresponding to the simulated ones. With a
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higher standard deviation for D2 than for D1, respectively 0.237 and 0.089, a more
consistent similarity with D1 can be suggested. The keystroke timing information
in D1 has a higher consistency, and lower variability with the simulated dataset,
indicating a higher degree of similarity.

The cosine similarity results, combined with the information on the range of
added values, provide valuable insights into the impact of different distortion levels
on KD analysis. In particular, the additional details regarding the range of added
values in "D1" and "D2" shed light on the extent of distortion and its implications
for the accuracy and reliability of KD systems.

There is a considerable amount of difference in the range of the IQR values,
implying that there might have been some manipulation of the timing information.
Furthermore, the cosine similarities show that there remain fundamental similarities,
making it possible to extract important characteristics from it. It is essential to
keep in mind that all differences can be due to other underlying factors of the user,
as mentioned in Chapter 2, such as emotions, change of environment, familiarity
and skills with the keyboard, as well as natural variability. Our typing patterns are
not solely based on static factors but are influenced by unforeseen and continuous
changes. However, the IQR implies that there is a consistent pattern of change,
suggesting that there is potential for influencing factors beyond natural.

These results may not be enough evidence to prove that distortion has happened
directly. However, it has the potential of implying or suggesting it. Combining the
IQR and the cosine similarity results, the impact of different levels of distortions
on KD can be further examined. As mentioned, when considering if a dataset is
distorted, there is no knowledge about the current user, so the decision must be
taken relative to the expected behavior and the deviation from it. The challenge,
in this case, would be to decide what is the expected behavior. If the chat forum
requires the user to disclose personal information, such as age and gender, to access
the service, expected behavior can be determined. It can be assumed that a chat
service for children would have policy requiring this, but if this is not the case, it
can be challenging to establish a reference behavior. It is also possible to state false
information, causing the reference table to be skewed.

7.2.1 Metric Distances between the datasets

One approach to investigating the impacts of distortion can be through distance
metrics. Recall the results from the distance metrics (explained in Chapter 5.2.1
calculated between the distorted datasets and the simulated dataset from Table
6.4. Gaining an understanding of the underlying metrics can yield valuable insights
regarding their optimal usage in a variety of contexts. This, in turn, serves to enhance
our overall comprehension of distortion.
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Recall that the Euclidean and Manhattan distance metrics employ geometric
and grid-based calculations to determine the shortest path between points [Kum20;
Sha20]. A comparison between the distortion in D1 and D2 reveals that D1 displays
a greater degree of distortion. This observation suggests that the overall distortion,
when considered as a whole, can potentially exert a greater influence than individual
distortions, even if some of the latter are extreme.

Recall that Scaled Manhattan distance metric standardizes the variations between
data points. The findings indicate that the two datasets produced relatively similar
results, implying that the degree of distortion relative to the original data is similar
in both datasets, despite any discrepancies in the actual values. This shows how
distortion behaves in this context.

Although the Canberra distance metric has a lower distortion range, it still
displayed a higher average distance for D1. This suggests that D1 has more significant
relative differences because of distortions compared to D2. Furthermore, points with
very low or high Canberra distances are likely to reflect distortions in the dataset,
emphasizing the importance of considering distance metrics for revealing nuanced
information.

The Chebyshev distance metric is used to measure the maximum coordinate
difference. This metric showed a slightly higher mean for D2, which can be considered
consistent with expectations as D2 has a larger range of possible added values (0-
300ms). This implies that Chebyshev is good at detecting the effects of severe
distortions, and is especially helpful when the maximum difference is more important
than the cumulative or average differences.

7.3 Soft Biometrics Classification

7.3.1 Choice of Machine Learning Classifier

After the initial literature review, the choice of machine learning model fell on SVM
for several reasons. Firstly, the SVM is a well-established and reliable choice in the
field of classification problems. The SVM has the ability to handle high-dimensional
data, like KD data, and find the optimal hyperplane to separate it. Being robust
and effective, with a solid mathematical foundation, it is a widely respected choice
amongst researchers in a wide range of fields.

Secondly, SVM is also a frequent choice amongst studies in KD, providing a
substantial foundation for this work, and a demonstration of viability in this context.
Following the established practices in this field of research, building upon the existing
findings seemed like a reasonable option. A former Master’s thesis by Tobias Moe
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specifically mentioned SVM as a machine learning classifier to be examined, which
played a big role in this decision [Moe21b].

However, throughout the project, the thought of using unsupervised machine-
learning approaches seemed interesting. A real-time application would collect un-
foreseen and unknown data, which is the advantage of unsupervised learning models.
Their flexibility to adapt to new data could be a significant benefit in situations like
real-time scenarios, where the model must learn from unseen data.

The initial choice of utilizing SVM has provided valuable insights and a new
perspective on the complexity of the matter and may be a guide for further research
directions in KD.

7.3.2 Gender classification

Imbalanced dataset

The datasets utilized in this study lack balance in the gender class. The class of
males is significantly overrepresented, which may lead to a bias toward this majority
class during training and testing of the machine, and the classification performance
will then end up suboptimal.

To account for this, the minority class of females was artificially inflated, meaning
that new samples in this class were produced from the already existing ones. This
balance out the dataset, and can improve the performance of the classification.
However, creating new samples from already limited data might result in augmented
data, the model might only recognize these specific instances, overfitting, and limiting
the ability to generalize new, unseen data. Recall that overfitting is when the model
learns the data too well, described in Section 2.5.5.

Alternatively, the majority class can be undersampled, where the majority class
will have random samples removed until a balanced ratio is achieved. However, due to
the already low quantity of data, this risks losing potentially important information
found in the samples. Furthermore, choosing different evaluation metrics might be of
interest, as accuracy might not be reliable when dealing with imbalanced datasets
and biased classifiers. Metrics like precision, recall, and f1-scores embrace both false
positives and negatives, providing a more realistic assessment.
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Interpretation of results

A machine learning model is trained on specific data, with the aim to learn unique
patterns that distinguish the classes and make classification possible, in this case,
male and female. When introducing noise, such as distortion of input data, it is
expected to have an impact on these patterns, making the classification process more
difficult. Thus, a lowered performance of the machine would be a logical assumption,
as the underlying patterns might be harder to detect.

The obtained results suggest otherwise, where both the D1 and D2dataset achieves
higher accuracy than the simulated one. As accuracy can be a biased metric, precision,
f1-score, and recall must be evaluated. However, also these exhibit better performance
than the simulated dataset. These results imply that the model is better at dividing
the males and females into the correct class when distortion is present.

Multiple explanations can be a possible cause for this. One explanation is that
the distortion added to the timing information has amplified the underlying patterns.
This way, features that may have had a subtle effect are now accentuated, and the
hyperplane can maximize the surface further than earlier. In addition, the risk of
overfitting due to excessive training on outliers and noise might have been mitigated
when distortion is present. Thus, facilitating a more accurate classification of the
samples into gender classes. A further possible approach could suggest that there
exists some type of noise or bias in the original dataset, and the distortion added has
unintentionally reduced this noise or bias, making the SVM perform more accurately.

7.3.3 Age Classification

When classifying on age group, it is reasonable to believe that children type slower
than adults. This could be due to the continuous exposure and consistent interaction
with technology and keyboard-based devices amongst adults. Adults have the need
for keyboard device usage in both personal and professional contexts, facilitating
more familiarity, muscle memory, and motor skills with the keyboards. Thus, a
more efficient behavior with the keyboard. On the other hand, children might not
be as exposed to these devices, as well as hand-eye coordination or motor skills
are not as developed as an adult, resulting in a lower average typing speed. It is
important to note that the use of technology from an early age is increasing, which
has the potential to accelerate the learning process of typing on the keyboard, thus
increasing the typing speed. Similarly, some adults lack access to and interaction
with keyboards, lowering the average typing speed.

The dataset is diving the age groups into two; under 30 years old, and over 30
years old. This division is in itself quite broad. When referring to children, it is
reasonable to assume that ages under 18 or 20 are in discussion. In addition, after
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the age of 20, many individuals enter the workforce or start their education, exposing
them to keyboards, thus enhancing their typing skills and increasing their typing
speed. Some elderly individuals have, on the other hand, had no exposure to digital
keyboards throughout their lives, leading to a lower typing speed. This leads to high
variability within the same age groups, as individuals might have severely different
typing patterns. Thus, categorizing age into binary categories can be argued not
to be the most efficient approach. However, the dataset is limited, it contains too
few participants of ages under 20, hence, it would not be possible to obtain reliable
results.

The obtained results show consistently relatively low values in accuracy, precision,
recall, and f1-score. The metric performance can be due to the high complexity and
high-dimensional nature of the KD data, which results in difficulty in the classification
of age. This corresponds with existing literature, showing that age classification
has achieved lower performance with the same dataset [Sye14]. The performance is
slightly increased with the use of average duration and latency features, and even
further enhanced with the distortions. As previously assumed, the introduction of
distortion would predict the performance to worsen. However, as with the gender
category, this was not the case. The overall performance indicates that the SVM is
struggling with both non-distorted and distorted data, but there is some potential to
classify age with a high degree of uncertainty. The feasibility increases slightly with
a distorted dataset.

7.3.4 Difference in performance between age and gender
classification

The variabilities and complexities differ between the age groups, which has an impact
on the performance of the classification task. The results imply that the correlation
between KD and gender is higher than between KD and age. This may be due to
KD embodying underlying patterns and features that align with gender to a higher
degree than with age. Physical attributes such as strength, agility, and finger size
might be underlying factors for the differences.

Furthermore, the variabilities and complexities in the data appear to be more
prominent in the age category, leading to a more challenging classification. Age
covers a broad range of variables, continuously changing, and the variability can turn
out more complex and subtle. Within the same age group can also exhibit significant
differences in typing patterns, based on cognitive abilities, familiarity with devices,
motor skills, and environment, to name a few. The findings suggest that the impact
of distorted data on age and gender differs, demanding a careful consideration of
classification models and hyperparameters. Features that may be effective for gender
classification might not be as effective for age classification. The gender-specific
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patterns might appear more distinct, however, societal and cultural factors might
increase the complexity of this category.

7.3.5 Possible factors for same or better performance with
distorted data

Existing literature within the field of KD and classification has primarily been
performed on data without distortion. An intuitive perception is that the distortion
will hide the characteristics and patterns, making it harder to utilize and analyze the
data. Surprisingly, the findings of this study reveal that distortion can in certain
contexts enhance the performance of machine learning models, particularly Support
Vector Machines (SVM). This counter-intuitive outcome casts doubt on this bias
against distortion.

A possible explanation for these results lies in the distortion’s ability to amplify
the existing patterns in the data, facilitating the model’s capacity to distinguish
complex and subtle variations. Consequently, this enhanced distinctiveness can
possibly lead to an improvement in the model’s ability to correctly classify the data.

Furthermore, existing biases in the data can possibly be mitigated by the addition
of distortion. Outliers and extreme values might be balanced out, providing a more
balanced and impartial representation of data. Hence, a more objective and reliable
classification can take place.

7.4 Hyperparameter tuning

Hyperparameter tuning in KD is a complex task due to the variability of features
which leads to a higher dimensional feature space. Individuals have unique, dynamic
typing patterns, making it difficult to generalize the features. The case of data
imbalance in the gender category also makes the tuning of hyperparameters more
challenging, as the model can be biased towards the majority class. It shows that
there is a need for different hyperparameters for the original dataset and the distorted
dataset.

7.5 Limitations and weaknesses of the research

Both external circumstances and personal oversights have led to limitations regarding
this study. It is important to have in mind that the evaluation metrics represent a
simplified view of the model’s performance. Class imbalance, dataset size, distortion
type and degree, and type of SVM kernel can have a significant impact on the results.
Thus, the generalizability of the model in different contexts is a crucial aspect to
consider.
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The main concern has been the amount and quality of data. The amount of data
may be considered insufficient when training a machine learning algorithm for the
classification of such complex classes as male and female. Risks of overfitting, sampling
bias, and guessing instead of genuinely learning and predicting. The oversampling
poses a risk of overfitting during gender classification. The model’s ability to predict
the minority class is not always good enough to be reliable. Overfitting might be
illustrated through the low recall and f1-scores, hence a risk in the age classification.

The study has been rather intensive and demanding regarding computational
resources and time, resulting in a significant expenditure of time. Several setbacks
were encountered during the simulations and had to be restarted multiple times, and
was more time-consuming than originally expected. The simulation’s loss of entries
would seem to lead to consequential error, where the difficulty of the acquisition of
the wanted features increased, and had to be exchanged with other features.

In the context of this analysis, it is essential to remember that behavioral bio-
metrics is dynamic, and there is individual variability. It is affected by the external
environment as well as correlating with emotions, personality, and skills, which is
challenging to quantify. Thus, the human aspects must be taken into consideration
throughout KD research.





Chapter8Conclusion

This chapter concludes the work undertaken in this thesis in relation to the goal
and research questions introduced in Chapter 1. Following, contributions to the KD
field from this work will be presented, before ultimately proposing potential topics to
further extend and build upon this research.

8.1 Conclusion

The study was executed by utilizing a simulation program, producing three new
datasets, where two were intentionally introduced with varying amounts of delay.
Similarity and distance measures were calculated, and the results indicated that
a sufficient level of similarity was present to be able to classify the characteristics.
Simultaneously, it was revealed that enough distance from the distorted to the
non-distorted data was present to suspect distortion.

The primary concern for the study of KD classification with distorted data has
been the amount of data, which initially was limited. This was further reduced
due to losses encountered during simulation. Furthermore, the gender classes were
imbalanced. To tackle this, oversampling was performed for the minority class, and
different feature combinations were explored. This resulted in the best performance
achieved with the combination of average durations and average latencies. Hence,
this research has a notable contribution to the identification of soft biometrics with
distorted data, with the use of KD.
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The following present a conclusion of the work in the context of the sub-questions
and the overall goal:

Sub-Question 1: What difference do distorted and non-distorted timing data have
when it comes to performance?

The findings from the analysis reveal that KD distortion can, in certain contexts,
enhance the performance of the SVM. Specifically, it enhanced in accuracy, recall,
precision and F1-score, suggesting that the addition of delay in KD data can contribute
to an improved classification outcome. The reasons for this could potentially be
explained by bias mitigation, noise reduction, or enhanced differentiation. However,
it is essential to note that the results depend on the nature of the data used, the
distortion, and the hyperparameters in the SVM.

Sub-Question 2: How should distorted data be handled?

The best results for the distorted datasets were obtained by utilizing averages of
durations and averages of latencies as features in the SVM. The achieved performance
might stem from the mean values reducing the fluctuations in the values, effectively
lowering the overall noise that is created by the distortion. This method leads to a
lower amount of information being available for analysis, yet the increased robustness
in the classification may counterbalance this, advocating for the importance of data
quality over quantity.

Sub-Question 3: Is it feasible to detect whether the timing data collected is
distorted?

The collected timing data has revealed through the measurement of IQR a greater
level of inconsistency and a higher range compared to the simulated dataset. These
findings highlight the need for further research and development in this domain,
particularly in identifying and addressing distorted timing data. Such efforts will
be crucial in improving the accuracy and reliability of timing data analysis and
interpretation in academic and research settings.
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Research Question: Is it possible to identify soft biometrics, such as age and
gender, even when the collected keystroke dynamics data is distorted?

This study concludes that it is, to a certain degree and context, feasible to
detect soft biometrics, particularly age and gender, even when the keystroke timing
data is distorted, consistent with the hypothesis. It is shown through experiments
that the distortion of data can perform relatively well with the machine learning
model Support Vector Machine. Age classification did not reach the same level of
performance and accuracy as gender classification, however, the results were not
significantly reduced by introducing distorted data.

8.2 Contributions

There have not been extensive studies within the field of distorted KD data in prior
literature. The limited availability of directly comparable studies highlights the
uniqueness of our research and its potential to make significant contributions to the
field. Furthermore, this presents new possibilities for future investigations, which
may offer novel perspectives and valuable insights.

This thesis has revealed that the Interquartile Range (IQR) can potentially
serve as a method of detecting distortion within data sets. The IQR provides
a clear visualization of the middle 50% of values, making it an efficient tool for
identifying outliers and measuring the degree of data distortion. This technique
proves particularly advantageous in situations where skewed data or extreme values
may negatively impact the accuracy of classification. The potential for this approach
to be applied to other fields experiencing similar difficulties in identifying distortion
underscores its usefulness and versatility.

The research presented has shown that the use of the mean values of latencies and
durations can be effective features for classification of soft biometrics, particularly for
gender classification with distorted data. By utilizing mean values, it is possible to
effectively eliminate noise in the data, leading to improved accuracy for gender-based
predictions. Furthermore, this method can be applied to other classification tasks
that involve distorted data. Employing this approach can potentially enhance the
reliability and validity of the results obtained from such analyses.

Another contribution from this thesis is the exploration of the potential of unsu-
pervised machine learning techniques for classifying soft biometrics. Unsupervised
learning approaches offer an alternative to traditional supervised methods, espe-
cially when obtaining labeled data is challenging. While initial findings indicate
promise, further research is necessary to comprehensively evaluate the strengths and
limitations of these methods in the context of soft biometric classification.
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8.3 Further work

This section provides several ideas that have been brought to light during the research
within KD.

8.3.1 Unsupervised Machine Learning Classifier

A real-time application analyzing KD data would not be able to know if the user is a
male or female, child or adult. The approaches for theoretical scenarios and real-time
scenarios do not align, as the latter would not have access to a reference table. One
solution would be to create a general reference table from a large number of users.
However, this requires a vast amount of time and resources.

An interesting approach would be to introduce an unsupervised machine learning
classifier. Throughout this study, the potential and increasing importance of unsu-
pervised machine learning methods have been recognized, and it would be beneficial
to examine these strategies further.

8.3.2 Explore other Machine Learning models

This study utilizes SVM to classify gender and age, exhibiting potential. However,
further investigation is necessary to evaluate and verify the provided results. There
are numerous supervised ML models, such as Tree models that have had promising
results for classification with standard KD data. Several models would also con-
tribute to understanding how the classification techniques handle distorted data, the
generalizability, challenges and further development of efficient classification models.

8.3.3 Continuous Classification on distorted Keystroke Dynamics
Data

This study is based on predefined texts, which show potential for the classification of
soft biometrics. Future work should examine the performance and effect distorted
keystroke timing data has when utilizing free text. Comprehension of the effects
of the distortion of the performance of soft biometrics classification in real-world
scenarios with variable and unforeseen text will provide valuable insights for fu-
ture developments. This will further enhance the robustness and applicability of
classification techniques of soft biometrics classification.
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8.3.4 Continuous Detection of distorted Keystroke Dynamics
Data

Continuous detection of distorted KD data could automate the process of handling
distorted KD data for authentication and identification. This is specifically applicable
to real-world scenarios, creating possibilities for proactive error correction, adaptive
modeling, and improved user experiences.
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