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Abstract

Quantifying the state of physical activity among the population is traditionally done through
questionnaires, a method subject to inherent biases. As an alternative, Human Activity Recogni-
tion (HAR) from sensor data streams can potentially o↵er a more accurate approach to assessing
physical activity. This thesis aims to develop a system for accurately recognizing activities under
free-living conditions - a notably more complex task than recognizing activities recorded in-lab
due to the diversity and unpredictability of real-world environments. One significant challenge
with free-living data is the costly process of collecting labeled data. This leads us to explore
whether self-supervised learning methods (SSL) can be utilized for free-living HAR as a way to
reduce the reliance on these labels by creating auxiliary tasks from raw unlabeled data. This
is a methodology that has achieved significant success in various other domains like vision and
speech recognition. For this purpose, we mainly utilize the unlabeled free-living HUNT4 dataset
for self-supervision, which consist of accelerometer recordings from around 35 000 participants
that were recorded for roughly a week. For supervised fine-tuning, the free-living and labeled
HARTH dataset is used, which consists of accelerometer recordings from 22 participants recorded
for around 1-2 hours.

We examine and implement the two prominent SSL methods SimCLR and SimSiam that rep-
resent two domains of self-supervised learning, namely contrastive and non-contrastive learning.
We find that the pretraining stage successfully identifies features valuable for the classification
of certain activities. However, despite the apparent promise of these methods, purely supervised
learning still outperform these methods, with an improvement of as much as 21 % from the
SimCLR. Our findings indicate that certain everyday activities present a much greater challenge
in classification than others. Moreover, SimCLR consistently exceeds SimSiam’s performance
in all experiments, emphasizing the importance of contrasting negatives in SSL for free-living
HAR. We also address the issue of sampling bias in contrastive self-supervised learning by im-
plementing false negative detection using clustering. However, our findings suggest that this
approach does not enhance the training process compared to doing random sampling. Overall,
while SSL demonstrates potential in HAR, our results show there still is considerable room for
enhancement and refinement of its application in free-living environments. We also find that
there is only a minor drop in performance of both SimCLR and SimSiam when pre-training the
model on the much smaller UCI-HAR dataset which consists of a di↵erent sensor setup and
recording environment than HARTH. Lastly, we find that the supervised version outperforms
the best self-supervised method, SimCLR, already at below 1 % of available labeled data.
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Sammendrag

Å kvantifisere befolkningens fysiske aktivitetstilstand gjøres tradisjonelt gjennom spørreskjemaer,
en metode som er underlagt iboende skjevheter. Som et alternativ kan menneskelig aktivitetsg-
jenkjenning (HAR) gjennom datastrømmer fra sensorer potensielt tilby en mer nøyaktig tilnærm-
ing til vurdering av fysisk aktivitet. Denne oppgaven tar sikte p̊a å utvikle et system for nøyaktig
gjenkjenning av aktiviteter under frie leveforhold - en merkbar mer kompleks oppgave enn å
gjenkjenne aktiviteter som har blitt utført i lab-omgivelser p̊a grunn av mangfoldet og uforut-
sigbarheten under frie leveforhold. En betydelig utfordring med frie leveforhold i HAR er den
kostbare prosessen med innsamling av merkede (labeled) data. Dette fører oss til å utforske
om selv-veiledede læringsmetoder (SSL) kan brukes til HAR under frie leveforhold som en måte
å redusere avhengigheten av disse merkene (labels) ved å lage hjelpeoppgaver fra r̊a umerkede
data. Dette er en metodikk som har oppn̊add betydelig suksess i forskjellige andre domener
som datasyn og talegjenkjenning. For dette formålet bruker vi hovedsakelig det umerkede fritt-
livs HUNT4-datasettet for selv-veiledning, som best̊ar av akselerometeropptak fra rundt 35 000
deltakere som ble registrert i omtrent en uke. For veiledet finjustering brukes det fri-livs og
merkede HARTH-datasettet, som best̊ar av akselerometeropptak fra 22 deltakere registrert i
omtrent 1-2 timer.

Vi undersøker og implementerer de to fremtredende SSL-metodene SimCLR og SimSiam som
representerer to domener av selv-veiledet læring, nemlig kontrastiv og ikke-kontrastiv læring.
Vi kommer frem til at forh̊andstreningstrinnet (pre-training stage) identifiserer egenskaper som
er verdifulle for klassifiseringen av visse aktiviteter. Til tross for dette, overg̊ar ren veiledet
læring fremdeles disse metodene, med en forbedring p̊a s̊a mye som 21 % fra SimCLR. Funnene
v̊are indikerer at visse hverdagsaktiviteter utgjør en mye større utfordring i klassifiseringen enn
andre. Videre overstiger SimCLR konsekvent SimSiams prestasjoner i alle eksperimenter, noe
som understreker viktigheten av å kontrastere negativer i SSL for fri-livs HAR. Vi adresserer ogs̊a
problemet med utvalgsskjevhet i kontrastiv selv-veiledet læring ved å implementere falsk negativ
deteksjon ved hjelp av clustering. Imidlertid tyder funnene v̊are p̊a at denne tilnærmingen ikke
forbedrer treningsprosessen sammenlignet med å gjøre tilfeldig utvalg. Samlet sett, selv om SSL
viser potensiale i HAR, viser resultatene v̊are at det fremdeles er betydelig rom for forbedring av
anvendelsen i fri-livsmiljøer. Vi finner ogs̊a at det bare er en mindre nedgang i ytelsen til b̊ade
SimCLR og SimSiam n̊ar vi forh̊andstrener modellen p̊a det mye mindre UCI-HAR-datasettet
som best̊ar av en annen type sensorsoppsett og registreringsmiljø enn HARTH. Til slutt finner
vi at den overv̊akede versjonen overg̊ar den beste selv-veilede metoden, SimCLR, allerede ved
under 1 % av tilgjengelige merkede data.
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Chapter 1

Introduction

Human activity recognition (HAR) from sensor data streams has gained popularity in recent
years due to its potential in domains like healthcare, sports, and entertainment. One criti-
cal application of HAR is monitoring and promoting physical activity, which is important in
maintaining good health and preventing chronic diseases. Inactivity has been linked to various
health risks, which include obesity, cardiovascular diseases, and diabetes [Warburton et al., 2006]
emphasizing the importance of both understanding and promoting physical activity within the
population. Traditionally, questionnaires have been the main source of information to map out
the level of physical activity among individuals. However, these self-reporting methods su↵er
from several drawbacks. This includes subjective interpretation, recall bias, and limited accu-
racy in capturing the true extent of physical activities [Prince et al., 2008]. For this reason, there
is a growing need for more objective and reliable approaches to analyzing human activities.

The HUNT4 study is a large-scale population-based health study that aims to investigate
various aspects of health, including physical activity [Åsvold et al., 2023]. By leveraging modern
technology and data analysis, the HUNT4 study seeks to understand physical activity patterns
and their implications on public health. This provides a strong motivation for the exploration
of novel techniques in HAR. This is particularly relevant when leveraging sensor data streams
from individuals in free-living scenarios, as they enable continuous monitoring of activities and
provide objective sensor data on how these activities are performed in real-life settings.

Artificial intelligence has come a long way since the term was introduced in 1956 at Dart-
mouth college and has in recent years shown tremendous potential in a wide range of applications,
including healthcare, finance, and transportation [Russell, 2010]. In the context of HAR, machine
learning and neural networks have emerged as powerful tools for modeling complex patterns in
sensor data and inferring underlying activities. These techniques have already demonstrated
success in various supervised learning settings [Logacjov et al., 2021; Wang et al., 2019] where
su�cient labeled data is available to train the models. However, collecting labeled data for free-
living HAR datasets can be expensive, time-consuming, and labor-intensive, as it often requires
manual annotation of activities by human experts [Bulling et al., 2014]. This poses a significant
challenge in scaling HAR models to real-world scenarios where labeled data may be limited or
unavailable.

Self-supervised learning, an emerging paradigm in machine learning, o↵ers a promising solu-
tion to this challenge in various fields like computer vision [Chen et al., 2020; He et al., 2020]

1



2 CHAPTER 1. INTRODUCTION

and NLP [Devlin et al., 2018]. By exploiting the inherent structure and relationships within the
data, self-supervised learning enables models to learn useful representations without relying on
explicit labels. This approach can potentially alleviate the need for costly data annotation and
facilitate the development of more robust and scalable HAR models for free-living sensor streams.

This thesis aims to investigate the potential advantages of self-supervised learning for hu-
man activity recognition in free-living sensor streams. We will focus on contrastive- and non-
contrastive self-supervised learning techniques and their applicability to HAR tasks, with the
goal of developing more e↵ective and e�cient models for real-world applications. By bridging
the gap between AI research and public health initiatives such as the HUNT4 study, we hope to
contribute to a better understanding of physical activity patterns.

1.1 Goals and Research Questions

Goal To evaluate the e↵ectiveness and performance of self-supervised learning methods on free-
living sensor data streams for Human Activity Recognition (HAR).

In this research, the primary objective is to assess the potential and performance of self-
supervised learning techniques for Human Activity Recognition tasks specifically with free-living
sensor data streams. This represents a complex multi-class classification challenge occurring
in dynamic, real-world environments. The results of this investigation will shed light on the
strengths and weaknesses of self-supervised learning techniques in this domain, contributing to
the broader goal of building more robust, e↵ective models for real-life HAR tasks.

Research question 1 What are the latest advances and key characteristics of state-of-the-art
supervised- and self-supervised HAR systems?

This question serves to provide a comprehensive overview of the current state of supervised
and self-supervised models used in HAR systems. The intention is to identify the most e↵ective
strategies and methods in practice today and compare them based on their ability to classify a
variety of di↵erent activities and robustness to data variations. The study will inform the choice
of self-supervised methods to be used and evaluated in this study.

Research question 2 Can existing contrastive and non-contrastive self-supervised methods like
SimCLR and SimSiam be exploited or further developed for human activity recognition on
free-living data like HUNT4 and HARTH?

Building upon the insights gained from the first research question, this question explores
the applicability of specific contrastive and non-contrastive self-supervised techniques, namely
SimCLR and SimSiam, to HAR tasks using free-living data from the HUNT4 and HARTH
datasets. Additionally, we want to explore whether the SimCLR can be modified with false
negative detection through clustering and what impact this will have on the results.

Subquestion 2.1 What is the comparative performance of the selected self-supervised methods,
and how well do they perform against purely supervised models?

Subquestion 2.2 How robust are the selected self-supervised methods in scenarios with limited
labeled data, and to what extent do they demonstrate successful transfer learning between
di↵erent types of HAR contexts?
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Subquestion 2.3 How well do the experimental results align with the findings reported in the
literature study?

The first subquestion directly compares the performance of the selected self-supervised learn-
ing methods. The comparison is based on standard metrics such as precision, recall, and f1-score,
providing quantitative insights into their respective strengths and weaknesses in the context of
HAR with free-living sensor data. The second subquestion investigates their performance and
adaptability in less-than-ideal situations, such as when there is a limited amount of labeled data
available and where the environments of the trained model di↵er from the environment of the
HAR problem at hand. Such variations can include types of sensors, sensor positions, and types
of subjects. Robustness to variation is a critical feature for models deployed in diverse real-world
scenarios. The last question aims to compare the experimental results of this thesis with findings
from previous research where self-supervised learning mostly have been applied to data collected
in laboratory conditions.

1.2 Research Method

The first stage of the research method involves a comprehensive literature study. The aim is to
get an overview of the current state-of-the-art in self-supervised learning (SSL), particularly its
application in HAR and various other methods explored within HAR. The goal of the study is
to identify the successful techniques and gaps that exist in the current literature.

The second stage, following the literature study, involves employing an experimental method-
ology based on the presented research questions above and findings from the literature study.
The primary focus of the experimental stage is based on two state-of-the-art self-supervised learn-
ing methods developed in recent years, namely the SimCLR [Chen et al., 2020] and SimSiam
[Chen and He, 2021]. However, the methods will be modified and optimized using a di↵erent
set of (hyper-)parameters to fit the context of HAR. The methods will also be evaluated in a
low-(labeled)data regime and transfer learning environments to assess their general robustness.
Multiple models and setups will be constructed and evaluated using the same datasets for a fair
comparison. The constructed models will also have high similarity in setups and architecture.
This also makes SimCLR and SimSiam a reasonable choice for contrastive and non-contrastive
methods, as they mostly di↵er in how they learn from examples while keeping architectures and
a number of trainable parameters similar.

1.3 Thesis Structure

• Chapter 2: Background theory In Chapter 2, we introduce the theories and previous
research that we directly use or that guide our work in this thesis. It also includes a section
on previous research that are similar or related to the methodology used in this thesis.

• Chapter 3: Methodology In Chapter 3, we provide an in-depth overview of the datasets
that are being used for our study, as well as a detailed description of the architectural design
for the models accompanied with figures. A description of the training- and validation
process will also be given.

• Chapter 4: Experiments This section clearly describes how we carry out our exper-
iments. It includes the step-by-step plan, the setup of the experiment with necessary
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preprocessing, and hyperparameter optimization. Lastly, the results from the conducted
experiments are presented.

• Chapter 5: Discussion Highlights the key findings of the results, what insights they
give, trends, and some limitations with the conducted experiments.

• Chapter 6: Conclusion and future work Finally, in Chapter 6, we wrap up our findings
and point out possible areas for more research.



Chapter 2

Background Theory & Related

Work

This chapter gives an overview of the key theories and research relevant to our work on self-
supervised human activity recognition. First, we’ll cover the main ideas and theories that our
methods rely on. Understanding these will give you a clear picture of how our methods work.
Then, we’ll look at what other researchers have found in this area. By seeing where our work
fits in with other studies, you’ll get a better idea of how our methods could be useful and how it
relates to previous studies. Certain studies uncovered during the literature review process will
not only influence our choice of methods but are also important in order to address the third
subquestion of research question two above later in this thesis. This chapter presumes that the
reader has a strong technical foundation, including a solid understanding of calculus and linear
algebra.

2.1 Background Theory

2.1.1 Machine Learning

Machine learning is as shown in figure 2.1a a sub-field of artificial intelligence (AI) that focuses on
creating computer algorithms that can gradually improve from experience [Mitchell et al., 2007].
In machine learning, the computers are trained on available data to make predictions on some
task, without being explicitly programmed to do so. Deep learning is again a subgroup of ma-
chine learning that uses artificial neural networks with three or more layers to make predictions.
These layers include one input layer, one hidden layer, and one output layer with more details
in section2.1.2 below. Machine learning is typically divided into three categories: Supervised
learning, unsupervised learning, and reinforcement learning. The subgroups of machine learning
are visualized in fig 2.1b. In supervised learning, the algorithms rely on labels to improve their
decision-making. These labels represent the truth and are ideally the output predictions we want
the algorithm to make.

In unsupervised learning, the algorithms must find structure and correlation within the data
and typically group the data without having access to the labels. Clustering is a type of unsuper-
vised learning that focuses on creating subgroups within the data so that each observation in that
group is more similar to each other given some similarity criteria. In dimensionality reduction

5



6 CHAPTER 2. BACKGROUND THEORY & RELATED WORK

algorithms, the goal is to map the data from a high-dimensional space into a low-dimensional
space by maintaining the most important properties of the data. High dimensional data can
make it hard to train a machine learning model as many dimensions might not be valuable for
the model and can therefore be considered as noise. In self-supervised learning, the model is
given an auxiliary task to solve where labels are created from the data itself. Self-supervised
learning is normally combined with supervised training. For this reason, the information learned
when solving the self-supervised task should be valuable for downstream supervised training.
The situation where unsupervised learning is combined with supervised learning is called semi-
supervised learning. This is especially advantageous in situations where a large amount of data is
labeled, but only a small fraction is labeled. A model can first be trained on the large unlabeled
dataset to find patterns or clusters in the data without access to labels.

In reinforcement learning, an agent in the form of a computer program engages in a dynamic
environment and learns optimal decisions through trial and error. The agent receives feedback
on the performed actions and adjusts its actions based on this feedback. This method is mostly
used in situations that include a complex environment, an agent, and a goal and there exist
multiple sub-optimal paths to achieve that goal. The method is therefore widely used within
games and robotics.

(a) AI subgroups (b) Subgroups of machine learning
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2.1.2 Multilayered perceptron

A multilayer perceptron (MLP) is a neural network consisting of several layers of interconnected
neurons. Since all the information goes in the forward direction from the input layer to the out-
put layer, it is also known as a feedforward neural network. This is distinct from the recurrent
neural networks and LSTMs where the layers contain loops. The most simple MLP consists of
an input layer, a hidden layer, and an output layer. However, an MLP can also contain multiple
hidden layers. The first layer in the network, the input layer, takes in raw data and sends its
output to the first hidden layer of the network. Each hidden layer contains multiple neurons and
each neuron in one layer receives input from all neurons in the preceding layer and forwards its
output to all neurons in the next layer, given that the network is fully connected. Most calcu-
lations are carried out in the hidden layers. These layers apply weights, biases, and activation
functions to extract features that are useful for making accurate predictions. The last layer, the
output layer, makes the final prediction based on the features created from the hidden layers.
MLPs can be used both for regression tasks and classification tasks. In regression tasks, the
output layer of the MLP outputs the predicted value(s) for the task. In classification tasks, the
MLP outputs a probability distribution over all the possible classes. In multi-class classification,
there is only one correct class and the predicted class is therefore the class that has been assigned
the highest probability by the model. Thus, the assigned probabilities for each class should nor-
mally sum up to 1. In multilabel classification, however, there can be more than one correct class.

A multilayer perceptron can mathematically be expressed as functions that map input data
to output predictions. The parameters of these functions are a set of weights and biases for each
layer that are learned from training data. Given an input vector x and a set of weights w and
biases b for the first layer, the output from one neuron from the multilayered perceptron can be
calculated as

zi1 = f

 
X

i2I

(xi ⇤ wi1) + ✓1

!
, (2.1)

Where i denotes input i from the input layer. F is called the activation function and is
applied to the sum of the weighted inputs and one bias term theta. The job of the activation
function is to introduce a non-linearity to the network. Common activation functions are the
tanh activation function, the sigmoid activation function and the rectified linear unit activation
function (ReLu) with their respective equations shown below.

tanh(x) =
ex � e�x

ex + e�x

(2.2)

�(x) =
1

1 + e�x

(2.3)

ReLU(x) = max(0, x)
(2.4)

All the activations from the first layer are then passed as inputs to all neurons in the follow-
ing layer where similar operations occur, including summing weighted inputs and applying an
activation function. The function for calculating the output of one neuron is similar to equation
2.1:

zi2 = f

 
X

i2I

(zi1 ⇤ wi2) + ✓2

!
, (2.5)
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where zi2 denotes the output from neuron i in the current layer (layer 2) and zi1 denotes the
output from neuron i in the previous layer (layer 1). Note that there is only one bias term added
to the sum of the weighted inputs, denoted by ✓1 for layer 1 and ✓2 for layer 2.

This process is repeated for each additional layer in the network until the propagation has
reached the output layer of the network. In this layer, the output is passed through an activation
function that produces a vector of predictions or class probabilities. For a classification task with
only one correct class, the softmax activation function is normally used with the formula

softmax(z)i =
eziPn
j=1 e

zj
, i = 1, 2, . . . , n. (2.6)

As seen from the formula, the standard exponential function is applied to each element Zi

which is divided by the sum of these exponentials. This ensures that the sum of the components
for the output vector is 1. During the training of the network, the weights and biases of the
network are adjusted in a way that minimizes the output of the loss function. The loss function
calculates how far o↵ the predictions are from the true values. There are multiple loss functions,
but a common loss function used for classification tasks is the cross entropy loss with the formula

�
MX

c=1

yo,c log(po,c) (2.7)

where yc,o is a binary indicator of whether label c is the correct classification for observation o.
For multiclass classification where the binary indicator is only 1 for the correct class, the formula
now becomes log(po,c) where po,c is the predicted probability of the model for the correct class.
An important characteristic of the cross entropy loss is that the function explodes rapidly when
po,c is close to zero. In backpropagation, the weights are adjusted in a way that minimizes the
loss. By calculating the partial derivative of the loss with respect to the weights, we can adjust
the weight of node i in layer j by the following formula

wi,j,new = wi,j � ↵
@E

@wi,j
. (2.8)

where wi,j,new is the updated weight, wi,j is the old weight and ↵ is a learning rate. When
the derivative of the last term is positive, increasing the weights will increase the loss which is
not what we want. Conversely, if the derivative is negative, increasing the weights will decrease
the loss. Subtracting the last term will therefore give us the desired result. From the chain rule,
the derivative of the loss with respect to the weights involves taking the derivative of the loss
with respect to the output multiplied by the derivative of the output with respect to the weights
by the following formula

@L

@wi,j
=

@L

@zj

@zj
@wi,j

(2.9)

The first derivative is the derivative of the loss concerning the output. As the cross entropy
-log(zj) explodes when the zj becomes small, the derivative of the loss with respect to zj becomes
large. The result is that the weights will be heavily adjusted when zj is very small, i.e. when
the prediction is bad.

2.1.3 Convolutional Neural Network

A convolutional neural network is a neural network that consists of one or more convolutional
layers. A convolutional layer is a layer that consists of a matrix of interconnected neurons that
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most often are arranged in a two-dimensional structure. As with the multi-layered perceptron,
the convolutional neural network uses the backpropagation algorithm to update its weights.
However, instead of having a structure of neurons where each neuron in a hidden layer is fully
connected with all neurons in the previous and preceding layer, the CNN uses a convolutional
filter to extract valuable features. The convolutional filter is applied over the input from the
previous layer by multiplying the weights of the filter with its input and then summing these
products. This is especially advantageous for two reasons: Firstly, there are far fewer weights
associated with a convolutional layer as the same filter is used over again over the entire input. In
comparison, the number of weights to be updated in a fully connected layer grows large quickly
as each connection between two layers is associated with a weight. Secondly, since each neuron
is connected to only a small local region of the data, it allows each layer to focus on specific
spatial regions of the data, which is a desirable characteristic for data like images.

One convolutional layer takes an input I and applies the convolution C = I * K for one area of
the input depending on the filter size. For a two-dimensional image I, the convolutional output
C[i,j] for one specific area of the input image is mathematically defined as

C[i, j] =
kX

u=�k

kX

u=�k

I[u, v]K[i� u, j � v], (2.10)

where K is the kernel (filter) for that layer. This operation is applied over the whole image
by moving the filter S strides to the side after each repetition. As with the MLP, it is normal to
use an activation function after applying the convolutional filter to the input.

2.1.4 Self-Supervised- and semi-supervised learning

Self-supervised learning (SSL) is, as seen from 2.1b, a subgroup of unsupervised learning that fo-
cuses on exploiting large amounts of unlabeled data to train a model and learn valuable features.
In SSL, the model is trained by solving an auxiliary task that can be created from the already
existing unlabeled data. The trained model can afterward be used in a semi-supervised setting
as a pre-trained feature-extractor (encoder) for a downstream model that can be finetuned on
a smaller labeled dataset available. During this transfer, the weights of the encoder are usually
frozen which means that they are not adjustable during backpropagation in supervised training.
This reduces the dependency on a large-scale labeled dataset that can be costly to create. Some-
times, specific parts of the encoder are unfrozen during supervised fine-tuning, which means that
the weights of certain layers will be trainable.

Self-supervised learning has multiple advantages which have contributed to a growing interest
within the field. The most important advantages of using self-supervised learning are

• Cost-e↵ective: The first and most obvious advantage is the reduced need for large-
scale labeled datasets as valuable features. This is important because data can be easy to
acquire, but labeling can be a costly process that involves a human expert for annotation.
Self-supervised learning methods can perform extremely well in a few-shot learning setting
where the model is pre-trained on a large-scale unlabeled dataset and afterward finetuned
on just a few labeled examples [Chen et al., 2020].

• Scalable: Another advantage is the ability to scale the models. In general, more data
is needed as the model-size increases due to the increase in optimizable parameters. A
large amount of unlabeled data allows for bigger models with more parameters that can
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solve more complex tasks. When the performance of supervised methods declines with an
increase in the number of parameters for the backbone encoder, Balestriero et al. [2023]
find that the performance of self-supervised learning (SSL) methods often increases with
the same increase in parameters.

• Generalizable and transferable: Self-supervised models trained on unlabeled data
extract features that can be valuable for a large range of supervised tasks. This is because
it learns the underlying structures of the data [Balestriero et al., 2023]. Related to be-
ing generalizable is the robustness of SSL models in transfer learning settings where the
representation learned from one task is applied to a di↵erent task. More specifically, a
model trained on a specific dataset might be used to solve related tasks on a di↵erent but
related dataset [Ericsson et al., 2021]. For HAR, having these properties mean that we can
more easily use knowledge of previous sensor streams to recognize new activities that share
similar characteristics without collecting a completely new and large labeled dataset.

Generally, self-supervised methods can be either contrastive or non-contrastive. A term that
frequently occurs in self-supervised techniques is energy, which is a single number that reflects
the distance or compatibility between two samples x and y. The energy function is the function
used to compute this compatibility. In contrastive methods, the goal is to produce high energy
for samples of data that are incompatible with each other and at the same time produce low
energy for samples of data that are compatible. In Natural Language Processing (NLP), a com-
mon technique is to mask out certain words of a sentence x to produce a corrupted version y
of that sentence. The pre-training task is to reproduce the original input x by predicting the
corrupted parts of the sentence. Uncorrupted text will have a large reconstruction error while
corrupted text will have a low reconstruction error. Interpreted as energy, the uncorrupted text
will thereby have low energy (similar samples) while corrupted text will have large energy re-
flecting the di↵erence between x and y due to the corruption. The model outputs the probability
distribution over the words in the vocabulary for each masked word.

However, these types of techniques are not as easily applicable in fields like vision because
there exists almost an infinite number of images. This also applies to time-series data from sen-
sors where a signal can exhibit infinite variations. However, siamese networks are a method that
has gained popularity in vision in recent years for its performance when used in self-supervised
learning. Siamese networks are usually composed of two neural networks with similar architec-
tures that share their weights and biases and are applied to two or more inputs. The output
of these two branches of networks are compared and a similarity is calculated. The input to a
Siamese network is di↵erent alterations of the same input. The alterations that originate from
the same sample are called positives, and the pretextual task is to maximize the similarity of
these pairs, i.e. decrease the energy for positive pairs. A phenomenon frequently occurring when
applying this technique directly is collapsing. This happens when the model always outputs the
same constant trivial solution resulting in the same energy for non-compatible input pairs as
for compatible, but altered input pairs [LeCun, 2021]. Various implementations of the Siamese
architecture have been developed that try to address the problem of dimensional collapse. This
includes SimCLR [Chen et al., 2020], BYOL [Grill et al., 2020], SWAV [Caron et al., 2020] and
SimSiam [Chen and He, 2021].
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2.1.5 Siamese architectures

SimCLR

In SimCLR, the issue of collapsing is addressed by including negatives in the calculation of the
loss. Negative pairs are augmented pairs that originate from di↵erent samples. The learning
objective of SimCLR is to attract positive pairs (produce low energy) and at the same time
separate negative pairs (produce high energy) in the latent space. This is called contrastive
learning because both negatives and positives are utilized in the training process. And since
the cost function now includes the similarity of negative pairs, collapsing negative pairs to the
same constant will result in a higher cost which will be penalized during backpropagation. The
SimCLR is visualized in figure 2.3a, and the pseudocode for the method can be found in the
appendix. SimCLR utilizes the infoNCE loss (NCE is short for Noise-Contrastive Estimation)
developed by Oord et al. [2018]. For one positive pair (i,j) in an input batch of size N, the
InfeNCE loss `(i, j) is defined as

`(i, j) = � log

 
exp(sim(zi, zj)/⌧)P2N

k=1 1[k 6=i] exp(sim(zi, zk)/⌧)

!
(2.11)

where sim(zi, zj) is the calculated similarity of the encoded positive pair (i,j) and ⌧ is called
the temperature which is a constant between 0 and 1. Chen et al. [2020] suggests that choosing
a suitable temperature value can assist the model to e↵ectively learn from di�cult negative
examples (hard negatives). Hard negatives are negative samples that might have characteristics
that are related to the positive pair. As seen from equation 3.4 the numerator consists of the
similarity of the positive pair (i,j) while the denominator consists of the sum of the similarities
between sample i and all other pairs. With everything else unchanged, bigger similarities of
positive pairs yield a fraction closer to 1 resulting in a log-loss closer to zero. Conversely, smaller
similarities of negative pairs with else left unchanged also yield a smaller loss due to a decreasing
denominator, such that the fraction also becomes closer to 1. The ideal situation is therefore
big similarities between positive pairs and small similarities between negative pairs. This loss is
calculated for all positive pairs (i,j), and the total loss is the sum of the loss for all positive pairs.
However, since the same sample is augmented in two di↵erent ways, we end up calculating the
similarity of two samples twice; i with j, and j with i. This detail can be seen from the similarity
matrix in 2.2 where a small mini-batch of three samples are augmented in two di↵erent ways;
[x1, x2, x3] and [y1, y2, y3]. The infoNCE begins by concatenating the two augmentations into one
vector of size 2N. The similarity of each combination of two entries in the vector produces the
similarity matrix. The bold entries are the positive samples used in the numerator of equation
3.4 and every other entry on that row are the negative samples used in the denominator, except
for the entries on the diagonal. These similarities between the same augmentation of the same
sample are always 1 and are therefore omitted when calculating the loss. Note how the similarities
below and above the long diagonal are mirrored.

Cosine simularity

There are various options for similarity functions when comparing two vectors. However, cosine
similarity is commonly used in machine learning when calculating the similarity between two
vectors. In cosine similarity, the cosine of the angle between the vectors is used to reflect the
similarity of these vectors. This means that aligned vectors pointing in the same direction produce
a maximum cosine similarity of 1 reflecting that the samples are similar, while vectors pointing
in the opposite directions produce a minimum cosine similarity of -1 reflecting the dissimilarity of
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x1 x2 x3 y1 y2 y3
x1 1 s(x1, x2) s(x1, x3) s(x1,y1) s(x1, y2) s(x1, y3)
x2 s(x2, x1) 1 s(x2, x3) s(x2, y1) s(x2,y2) s(x2, y3)
x3 s(x3, x1) s(x3, x2) 1 s(x3, y1) s(x3, y2) s(x3,y3)
y1 s(y1,x1) s(y1, x2) s(y1, x3) 1 s(y1, y2) s(y1, y3)
y2 s(y2, x1) s(y2,x2) s(y2, x3) s(y2, y1) 1 s(y2, y3)
y3 s(y3, x1) s(y3, x2) s(y3,x3) s(y3, y1) s(y3, y2) 1

(2.12)

Figure 2.2: Similarity matrix for the InfoNCE loss using a batch size of three for simplicity.
Positives are marked in bold.

the samples. The cosine similarity between two vectors v1 and v2 is calculated by the dot-product
of the vectors divided by their absolute lengths as shown in formula 2.13 below.

cos(v1,v2) =
v1 · v2

kv1kkv2k
, (2.13)

(a) SimCLR (b) SimSiam

Figure 2.3: Siamese architectures. The input batch is augmented in two di↵erent ways, the data
is encoded and in the end, the loss is calculated based on the similarity (and dissimilarity) of
positive (and negative samples) samples. Gradient calculations based on this loss are propagated
backward.

SimSiam

SimSiam (Simple Siamese) [Chen and He, 2021] and BYOL (Bootstrap Your Own Latent) [Grill
et al., 2020] are examples of non-contrasive self-supervised learning methods based on siamese
architectures. BYOL avoids the collapsed solutions by using a momentum encoder. In BYOL,
there is no direct weight sharing between the two Siamese networks. However, one network
called the target network, updates its weights based on a moving average of the online network
parameters. In this way, the network representations will always stay di↵erent ensuring that
collapsed solutions are avoided. Chen and He [2021] argues that the momentum encoder in
BYOL is not necessary to avoid collapsed solutions. In SimSiam, collapsed solutions are avoided
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by introducing asymmetric operations to the network. More specifically, the prediction head
ensures that the resulting representation created from both sides of the network is di↵erent and
will therefore not just collapse to the same solution. Additionally, Chen and He [2021] show that
the stop-grad operation is essential for the network to not just find a degenerated solution caused
by collapsing. The stop-grad operation prevents gradients from flowing backward and between
the two branches of the network and thus prevents the network to learn identical functions. The
general SimSiam architecture is visualized in figure 2.3b and the corresponding pseudocode is
attached in the appendix. Unlike the SimCLR, the SimSiam uses the similarity between the
positive samples directly within the loss function, represented by the following formula:

L =
1

2
D(p1, stopgrad(z2)) +

1

2
D(p2, stopgrad(z1)) (2.14)

In this formula, p represents the vector output of the prediction head, z represents the projec-
tion output, their indices represent the branch, D is the similarity function and stopgrad means
that gradients from these variables will not be used to update the model weights and therefore
be treated as constants. The similarity function D used by Chen and He [2021] is the cosine
similarity from formula 2.13

Sampling bias

One issue with contrastive learning is that if the selection of negative pairs is done randomly, it
can create negative pairs of samples that originate from the same class and thereby push these
samples away from each other in the latent space. In a non-contrastive architecture like SimSiam,
this is not a problem as only the positive samples are used during loss calculation. This problem
is highlighted in Chuang et al. [2020], where the sampling bias leads to large performance drops
compared to a completely unbiased negative sampling. For this reason, Chuang et al. [2020]
developed a debiased contrastive objective that accounts for the sampling of data points with
the same labels, even when the true labels are not available. Robinson et al. [2020] investigates
the sampling strategy and shows that sampling hard negatives are the most informative samples
for the self-supervised model. Hard negatives are the samples that have the biggest similarities
to the anchor and ideally belong to a di↵erent class. As formulated by the author, the hard
negatives are the ones that the encoder is currently wrong on. For this reason, Robinson et al.
[2020] proposes a strategy that samples hard negatives in combination with debiasing, and shows
that this can increase the performance of the self-supervised model.

2.1.6 The Human Activity Recognition Chain

In response to the rapid advancements in the field of Human Activity Recognition, Bulling et al.
[2014] introduced the concept of the human activity recognition chain in 2014. This paper
discusses multiple challenges that are associated with HAR and is one of the most cited papers
within the field due to early providing a thorough description of the proposed HAR chain. Among
the challenges mentioned are intraclass variability and interclass similarity. Intraclass variability
underlines the fact that the same activity may be performed di↵erently by di↵erent individuals,
while interclass similarity suggests that distinct activities could be executed in similar ways or
result in comparable sensor outputs. Another notable challenge is the null class, which is all ac-
tivities not included in the predicted classes. Due to the potentially infinite number of irrelevant
activities, tackling the null class can be di�cult. Furthermore, HAR datasets tend to be highly
imbalanced, with a limited number of classes, such as sleeping or sitting, recurring frequently. As
Bulling et al. [2014] suggests, potential solutions to this imbalance might involve oversampling,
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creating artificial data, or accumulating additional data. The requirement for expert annotation
of HAR datasets with ground truth labels is another considerable challenge, as this process is
both costly and time-consuming. While post hoc labeling based on video recordings can fa-
cilitate annotation for stationary or lab-based activities, the complexity increases in free-living
settings, where accelerometers collect the data. Bulling et al. [2014] proposes various techniques
to counter these challenges, including active and semi-supervised learning, the latter of which will
be examined in section 2.2. The paper also points out that, at the time of its writing, HAR was
a developing field lacking standardized, high-quality datasets. However, the situation has since
improved, with a variety of quality datasets now available, such as MotionSense [Malekzadeh
et al., 2018a], HARTH [Logacjov et al., 2021], and WISDM [Weiss, 2019], although most are
recorded in a laboratory setting.

2.1.7 Clustering

Clustering is a fundamental unsupervised learning technique in machine learning and data min-
ing. It aims to group data points (also called instances or samples) based on their similarities
or relationships, such that data points within the same cluster are more similar to each other
than to those in other clusters. Clustering can help reveal the underlying structure of the data,
discover patterns, and reduce the dimensionality of high-dimensional datasets.

Two examples of popular clustering algorithms are BIRCH and K-means clustering which
represent two di↵erent clustering methodologies, namely hierarchical clustering, and partition-
ing. In hierarchical clustering, the clusters are created by iteratively merging or dividing clusters
based on the similarity of the data points. The method creates a dendrogram with di↵erent
hierarchies of clusters, making it flexible to di↵erent cluster sizes as the dendrogram can by
cut at any level to create clusters of di↵erent sizes. In non-hierarchical clustering or partitioning
clustering, the data points are divided into a fixed number of clusters by using a distance measure.

In k-means clustering the dataset is partitioned into K distinct non-overlapping clusters based
on the Euclidean distance between the data points. Iteratively, the algorithm adjusts the cluster
centroids, which is the mean of the data points, until convergence. The algorithm for K-means
clustering proceeds as follows:

1. Initialize K cluster centroids randomly or using a heuristic, C = {c1, c2, . . . , cK}, where K
is the number of clusters to be created.

2. Assign each data point xi to the nearest centroid cj , minimizing the squared euclidean
distance kxi � cjk2. The objective function is given by:

J(C) =
nX

i=1

KX

j=1

zijkxi � cjk2, (2.15)

where zij is a binary indicator variable, zij = 1 if xi belongs to cluster j, and 0 otherwise.

3. Update the centroids by computing the mean of all data points assigned to each centroid:

cj =
1

|Cj |
X

xi2Cj

xi, (2.16)

where Cj denotes the set of data points belonging to cluster j and |Cj | is the number of
data points in cluster j.
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4. Repeat steps 2-3 until the change of the position of the centroid is below a predefined
threshold ✏, i.e. the algorithm converges.

2.1.8 Metrics of performance

Regarding the assessment of a machine learning model, there is a wide array of metrics to choose
from and it is essential to pick a metric that is compatible with the intended results of the model.
Accuracy is the most straightforward metric and reflects the number of correct predictions that
a model makes. Accuracy is quite easy to understand and is suitable for some situations. How-
ever, it does not take into account the associated costs of false positives and false negatives, i.e.
precision and recall, which can be particularly crucial for specific types of problems.

Precision measures the proportion of true positives among all positive predictions made by
a model. Precision is particularly useful for imbalanced datasets, as it takes into account the
rarity of the positive class. However, it does not account for false negatives. Recall measures the
proportion of true positives among all actual positives in the dataset. The recall is also useful
for imbalanced datasets, as it takes into account the rarity of the positive class. However, it does
not account for false positives. Most often, precision and recall are reported together in order to
see the full picture of false positives and false negatives.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

In an ideal scenario, we would aim for both precision and recall to be as high as possible.
However, there is usually a counterbalance between these two parameters. Enhancing precision
could unintentionally result in a decrease in recall. The F� score takes into account both precision
and recall and can weight either of the two higher according to their importance by assigning a
weight �:

F� = (1 + �2) · Precision · Recall
(�2 · Precision) + Recall

(2.17)

For example, for extreme minority classes, it can be of high importance to find the ones that
exist (high recall) at the expense of getting some extra false positives (low precision). The F1
score is a special case of F� where precision and recall are considered to be of equal importance
by assigning � to be 1. The F1 score now becomes

F1 =
2 · Precision ·Recall

Precision+Recall
=

2 · TP
2 · TP + FP + FN

, (2.18)

and is the harmonic mean of the two. Due to the nature of a harmonic mean, the F1 score will
always be closer to the lowest value of precision and recall and therefore punish extreme values.
For example, a classifier that only predicts one of the classes will result in an F1 score of zero.
F1-score can both be calculated for each class and or calculate the average of all classes. The
average F1 score can either be weighted or unweighted (macro), where weighting means that the
F1 score for each class is scaled corresponding to the frequency of that class. When unweighting
the F1 score for each class, classes that do not show up very often will still be as important as
classes that are very frequent. The advantage of using macro F1 is that some classes might be
very important to classify correctly even though they are not very frequent. The choice between
using a weighted or macro F1 score depends on the specific problem being addressed.
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2.1.9 TSNe plots

A t-SNE (t-distributed Stochastic Neighbor Embedding) plot is a machine-learning algorithm
used for visualizing high-dimensional data. It is a non-linear dimensionality reduction technique
that creates a map of the data in two or three dimensions. The t-SNE algorithm finds patterns
in the data by measuring the similarity between data points and then using that information to
reduce the data into a smaller number of dimensions. The resulting plot is a visual represen-
tation of the data with clusters of data points that are close together in the high-dimensional
space being represented as close together in the t-SNE plot. TSNe is an especially popular tool
used to visualize embeddings created by self-supervised algorithms in order to see if the method
manages to create useful features for a downstream supervised task. For SSL it is desirable for
the TSNe plot to show clusters of data corresponding to the actual labels.

2.2 Related Work

A structured literature review (SLR) was conducted in the project thesis preceding this master
thesis and includes details on the process. The SLR protocol followed the guidelines outlined by
Kofod-petersen [2015], which involves the three phases of planning, conducting, and reporting.
The main findings from the literature review are presented in the proceeding subsections.

This literature review examines a range of methods for human activity recognition (HAR)
that have demonstrated impressive performance, specifically focusing on diverse self-supervised
techniques. Recent years have seen a dominance of deep learning techniques such as Recurrent
Neural Networks (RNN), Convolutional Neural Networks (CNN), and attention-based models in
HAR classification. Recent advances suggest that leveraging self-supervised pretraining (SSL)
can deliver impressive results in areas like activity recognition, speech recognition, and natural
language processing. The 2018 Turing Prize winner, Yann LeCun, highlighted SSL’s potential
role in the future of AI, suggesting it as a promising approach in incorporating general knowledge
and common sense into AI systems. Crucially, SSL has proven remarkably e↵ective in situations
where labeled data is sparse or expensive to gather, a condition that particularly applies to HAR
in free-living conditions. As stated by Haresamudram et al. [2022], research in self-supervised
HAR can be grouped into four main strategies: Multi-task SSL, Contrastive Predictive Coding
(CPC), Masked Reconstruction, and Autoencoders. The upcoming sections will discuss the first
three strategies, supplemented with an overview of supervised deep learning methods for HAR
and some conventional machine learning methods, including some findings from related master’s
theses. To provide some context to the reviewed studies, an overview of the most relevant datasets
used in the literature is provided in Table B.1 in the appendix. Furthermore, a summary of the
results reported by state-of-the-art methods on these datasets is available in Table B.2.

2.2.1 Contrastive SSL

Saeed et al. [2021] explore the potential of self-supervised learning with contrastive learning to
enhance the performance of deep learning models in HAR using unlabeled data obtained from
accelerometer sensors. While autoencoders were among the first methods developed for learning
from unlabeled data, the authors note that these models tend to use a significant portion of the
network’s capacity to predict every detail of the low-level input signal, which can be wasteful
and unnecessary for downstream tasks.
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In their research, Saeed et al. [2021] use Scalogram-Signal Correspondence Learning (SSCL)
to pre-train an SCN network for binary classification, aiming to align signal-scalogram pairs.
Figure 2.4 shows a high-level view of the architecture. The SCN, comprised of two sections, pro-
cesses raw sensor data with convolutional neural networks. The top section utilizes each sensor
modality’s signal network, while the bottom uses wavelet transforms to create scalograms. The
outputs serve to determine the alignment of the scalogram with its raw signal. Post-pretraining,
the signal encoder, and the first fusion layer are used for supervised training on labeled data.
The SCN outperforms both a randomly initialized model with the same architecture as the SCN
and a pre-trained autoencoder.

Figure 2.4: Scalogram Contrastive Network (SCN) using the wavelet transform. Each sensor
modality is transformed into a 2D scalogram image.

In Rahimi et al. [2022], a similar model was experimented with. However, an additional net-
work was added that only learns pure signal representations, resulting in two encoders: a signal
encoder and a scalogram encoder. The idea is that the signal encoder will learn relevant features
in the time domain while the scalogram encoder will learn features in the frequency domain.
Both encoders were pre-trained separately and used in a downstream network with a trainable
MLP head. The results showed that using both encoders resulted in a small improvement in F1
score on all datasets compared to using only one encoder. A drawback is that the study does not
experiment with using a signal encoder on both sides of the network, making it hard to conclude
whether the improvement comes from having representations of both domains or just that the
model contains more trainable parameters. Rahimi et al. [2022] experiments with both adapting
the SimCLR solution and the SimSiam for the encoders. As explained in more detail in section
2.1.4, SimCLR and SimSiam consist of similar setups, but di↵er in how the loss is calculated and
propagated backward whereas SimSiam only relies on positive pairs. The authors find that the
inclusion of negative samples in the contrastive pre-training significantly improves the model’s
performance, which is in contrast with the findings of the original paper Chen and He [2021],
where only relying on positive pairs and using stop-gradient on one of the branches results in
slightly improved results over the SimCLR.

Jain et al. [2022] expands on contrastive learning in Human Activity Recognition (HAR) to
include a Time-Synchronous Multi-Device System (TSMDS) via a self-supervised learning model
named Collaborative Self-Supervised Learning (ColloSSL). Unlike Saeed et al. [2021], which re-
quires manual transformations, ColloSSL treats sensor data from varied positions as natural
transformations of each other. Criteria for choosing suitable positive and negative samples for
the anchor are given, prioritizing label similarity, temporal alignment, and device similarity.
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To reduce label overlap, a large batch size is recommended. After self-supervised learning on
unlabeled data, the model, like in Saeed et al. [2019], retains the weights of the convolutional
layers, but allows the final layer to be fine-tuned with the classification head during downstream
training. This method results in an almost 8% average F1 score improvement across all datasets
compared to the supervised baseline.

Haresamudram et al. [2021] employs the unsupervised approach known as contrastive pre-
dictive encoding (CPC) which was originally proposed by Oord et al. [2018]. A core insight
from CPC is that predicting multiple future timesteps based on past ones can increase the
performance in subsequent tasks. Their experimental results indicate that CPC outperforms
three out of four existing unsupervised benchmarks on standard HAR datasets like UCI-HAR.
Furthermore, it surpasses the top-performing supervised model deepConvLSTM, developed by
Ordóñez and Roggen [2016], in three out of four baseline datasets. Haresamudram et al. [2021]
further demonstrates that forecasting multiple future time steps improves the model’s capability
to generate meaningful sensor data representations for activity recognition. This indicates the
importance of carefully choosing an appropriate encoder, ensuring that the pretext task is neither
too simple nor too complex to solve.

Khaertdinov et al. [2021] presents the CSSHAR model, an integration of the contrastive
framework from Chen et al. [2020] and a transformer encoder. CSSHAR stands for ”Contrastive
Self-supervised learning approach to Sensor-based Human Activity Recognition”. As detailed
in the study, CSSHAR uses five signal transformations chosen at random with a probability
p, such as jittering, twice on each signal to produce two unique views. The model’s encoder
is a transformer, which has shown to be successful in previous research like [Zeng et al., 2018]
and [Mahmud et al., 2020]. According to Khaertdinov et al. [2021], CSSHAR outperforms all
other SSL techniques, especially on the UCI-HAR dataset, with a mean F1 score of 91.14. It
surpasses the second-best model, CPC, by 9 percent in the mean F1 score. However, it’s advised
to interpret these results carefully, as the original CPC authors Haresamudram et al. [2021] claim
their model achieves a mean F1 score of 90.24 % on the UCI-HAR dataset.

2.2.2 Multi-Task SSL

The Transformation Prediction Network (TPN) introduced by Saeed et al. [2019] was a pioneering
self-supervised model in HAR, inspired by the multi-task technique in Doersch and Zisserman
[2017]. It uses eight di↵erent signal transformations, with the pretext task of identifying what
transformations that were applied. The network has a shared temporal CNN (encoder) and
task-specific fully-connected networks. However, only the encoder’s frozen weights transfer to
the downstream HAR task after pre-training.

The multi-task pre-training yields more useful features than an autoencoder’s input recon-
struction, with downstream training performance boosted by fine-tuning the pre-trained model’s
last layer. The self-supervised model learns its features in a similar way as a fully-supervised
model, which is evident from TSNe plots, saliency mappings, and SVCCA analysis of unsuper-
vised pre-training and purely supervised learning representations. Ultimately, Saeed et al. [2019]
demonstrates the benefits of solving multiple tasks simultaneously with a common trunk of layers.

The multi-task approach taken by Saeed et al. [2019] is also utilized by Tang et al. [2021],
who merge the technique with a self-training pipeline, naming it SelfHAR. Self-supervised tasks
such as signal transformation discrimination are combined with self-training, according to the
authors, to raise the variety of the data, resulting in more generalizable features created by the



2.2. RELATED WORK 19

model. The self-training part of the method employs the noisy student approach developed by
Xie et al. [2020] which, despite its simplicity, has proven to be highly e↵ective for computer
vision tasks. Tang et al. [2021] show that combination of signal transformation discrimination
with noisy student self-training yields better performances than just using one of the methods
separately. Another finding is that in situations with very little labeled data available, other SSL
methods can be preferable. The reason for this is the amplification of noise and uncertainty in
the teacher-student paradigm when there is a scarcity of labels to learn from. Lastly, Tang et al.
[2021] show that the representations learned from SelfHAR are similar to those learned from a
fully supervised model. The paper also shows that pretraining on a uniformly distributed dataset
that covers all activities on a larger scale is much more beneficial for downstream performance
than imbalanced datasets.

2.2.3 Masked Reconstruction

The study Harish et al. [2020] employs masked reconstruction for pre-training, where a small
part of sensor data is hidden and predicted using a BERT variant encoder [Devlin et al., 2018].
This encoder comprises a 1D convolutional embedding layer and a Transformer encoder with
multiple attention blocks. To address the Transformer’s sequential data processing limitation,
sinusoidal position embeddings from Vaswani et al. [2017] is used. After the encoder, two fully
connected layers make the masked area predictions. Similar to other SSL models, only the en-
coder is repurposed for the downstream task

Rahimi et al. [2021] also use masked reconstruction, but di↵ers from Harish et al. [2020]
by implementing convolutional layers in the pre-training encoder, instead of transformer blocks.
While both methods have the pretext task of predicting masked signal regions, Rahimi et al.
[2021] also masks entire consecutive samples, unlike Harish et al. [2020] which only masks a small
fraction of sensor data. Moreover, Rahimi et al. [2021] introduces cross-dimensional learning,
predicting masked regions in one dimension using unmasked regions from another, which is not
performed in Harish et al. [2020]. They report an F1 score of 90.1 % and 91.0 % on the UCI
HAR and MotionSense dataset, which is an improvement of around 2 % and 10 % respectively
over the method proposed by Harish et al. [2020].

2.2.4 SSL in a low-data regime and transfer learning in HAR

self-supervised learning has recently shown promising results in both HAR and other fields like
vision. However, the benefits of SSL come especially clear in situations with very little labeled
data available or when you only have data for a similar but di↵erent task, and acquiring data
for the new task is expensive or time-consuming. This is especially showcased for vision in Chen
et al. [2020], where other supervised state-of-the-art methods are completely outperformed when
only a small fraction of the data is labeled (1 % and 10 %). In the transfer learning setting when
the models are trained on the ImageNet and afterward finetuned and tested on 12 other datasets,
simCLR outperforms the supervised baseline on 5 datasets while the supervised baseline is only
superior on 2. The rest are tied, i.e. not statistically significant.

Similar results are found within HAR by Saeed et al. [2021] where the self-supervised model
outperforms the supervised baseline when transferring between the two datasets HHAR and
MobiAct. This is the case both with no finetuning on the new dataset, and when finetuning on
the new dataset with very limited labeled data. In the semi-supervised setting, the self-supervised
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model SCN outperforms the supervised baseline on all datasets, with the di↵erence becoming
smaller with an increasing amount of labeled data available. These findings regarding transfer
learning and semi-supervised approaches are also supported in other HAR studies [Rahimi et al.
[2022], Khaertdinov et al. [2021], Haresamudram et al. [2021], Tang et al. [2021], Saeed et al.
[2019]] and it will therefore be interesting to experiment with this in our work as well.

2.2.5 Supervised approaches

Ronao and Cho [2016] demonstrated the e�cacy of regular convolutional neural networks in
accurately di↵erentiating between similar activities. They recommended the use of wider filter
sizes and lower pooling sizes to retain information passed from the input to the CNN layers.
Ordóñez and Roggen [2016] proposed a highly competitive supervised model called DeepCon-
vLSTM, which comprises four convolutional layers with 64 and 128 feature maps, followed by
two dense layers of recurrent units and a softmax layer. The experiments were conducted using
two benchmark datasets, Opportunity [Roggen et al., 2010b] and Skoda [Zappi et al., 2008].
Due to the impressive performance of DeepConvLSTM, their method has been widely used as a
supervised baseline in multiple supervised and self-supervised studies in HAR.

The works of Ordóñez and Roggen [2016] highlight the high performance achieved by both
convolutional neural networks and recurrent neural networks on the Opportunity and Skoda
datasets, surpassing the previous participants in the Opportunity contest. The authors found
that the utilization of long short-term memory (LSTM) cells instead of the traditional fully
connected layers led to an average improvement of 5% and 6% on the Opportunity and Skoda
datasets, respectively. It is noteworthy that the baseline fully connected model involves six times
more parameters than the proposed DeepConvLSTM model, which is attributed to the first
dense layer’s units needing to be linked to each value in the last feature map. The strength of
LSTMs and convolutional neural networks in HAR are also supported by others, like Murad and
Pyun [2017], Jiang and Yin [2015] and Guan et al. [2007], where the latter also explores using
an ensemble of LSTMs. The study conducted by Hammerla et al. [2016] investigates the perfor-
mance of di↵erent supervised models applied to several benchmark datasets for HAR, including
the Opportunity dataset, PAMAP2 dataset, and Daphnet Gait dataset (DG). The models tested
include standard DNNs, CNNs, and various uni- and bi-directional LSTMs. The study concludes
that recurrent neural networks are generally recommended for short-duration activities with a
natural ordering, while CNNs are more suitable for longer, repetitive activities, like every-day
activities in the HARTH dataset utilized in this thesis. The author also found that adjusting the
learning rates has the most significant impact on the model’s performance, with regular DNNs
showing the biggest spread in recognition performance and performing the worst.

Yao et al. [2019] focus on exploring the e�cacy of short-time-Fourier neural networks (short
STFNets) combined with convolutional layers in learning signals from the time-frequency domain.
The authors propose that the underlying physics of a signal is closely related to its frequency
characteristics. Hence, incorporating the short-time Fourier transform of the signal as input to
a deep neural network can enhance its performance by enabling it to directly learn features from
the frequency domain. The transformation of a signal into the frequency domain is known to
cause a loss of information about the time domain. The Short-Time Fourier Transform (STFT)
method allows for the selection of a sample length for Fourier transformation, resulting in a trade-
o↵ between the loss of information in the time and frequency domains. Longer sample lengths
provide better frequency resolution but at the cost of reduced time resolution. The STFNet
building block overcomes this limitation by applying multiple transformations with varying time
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and frequency resolutions. According to Yao et al. [2019], the STFNet outperforms the previ-
ous state-of-the-art DeepSense from Yao et al. [2017] and ComplexNet from Trabelsi et al. [2017].

Some previous master theses at NTNU have tried to tackle the problem of recognizing activ-
ities based on accelerometer sensor data. Hessen and Tessem [2016] developed a convolutional
neural network to train and make predictions on the Trondheim in-lab dataset. Additionally,
experiments with di↵erent kinds of techniques like dynamic windowing, self-training, and hidden
Markov models are conducted. Dynamic windowing where windows are dynamically created
based on some change of energy in the signal did not yield any advantage over using standard
static segmentation. Self-training did not yield any improvement in performance either. The
authors suggest that the reason for this could be the insu�cient quantity of unlabeled data in
comparison to labeled data. They propose that utilizing self-training on the complete HUNT4
dataset, which was made available after the publication of this paper, could be advantageous.
Furthermore, they did not employ the student-teacher self-training technique, which achieved
state-of-the-art outcomes for vision in the study by Xie et al. [2020]. Postprocessing the predic-
tions from the CNN with the use of HMM and the Viterbi algorithm is motivated by the fact
that some activities are naturally followed by others. In Hessen and Tessem [2016], the probabil-
ities of transition were determined by employing dataset statistics to assess the likelihood of one
activity succeeding another, while the emission probabilities were computed using the posterior
probabilities supplied by the classifier. Implementation of the Viterbi algorithm resulted in a
modest increase in accuracy for both the adults and adolescents datasets, specifically 0.6% and
1.71%, respectively. Notably, the sensitivity of all activities improved, as indicated by an increase
in recall, with the most significant enhancement observed in the activity of walking stairs, with
a rise of over 3-5 %. As stated in V̊ageskar [2017], the datasets used during the experiments
are the Trondheim In-Laboratory dataset and do not necessarily represent the performance for
free-living conditions. In fact, V̊ageskar [2017] found that the overall accuracy decreased by 20
% when the model was tested on the Trondheim free living (TFL) dataset.

In the research conducted by Skauge [2021], an XGBoost classifier was utilized to classify
vigorous activities in the domain of HAR. In this context, vigorous activities were defined as
short bursts of incidental physical exertion undertaken during routine daily activities, such as
running, jumping, and skipping. The XGBoost classifier is an ensemble-based model that relies
on hand-crafted features. As part of this study, a total of 95 distinct features were created in both
the time and frequency domains. Of these features, 22 were found to be beneficial in enhancing
the model’s performance.
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Chapter 3

Methodology

In this chapter, we first introduce the datasets that will be utilized for our experiments with
details on the collection process and its contents. Then we introduce the model architectures,
including some reasoning behind various choices made. This includes both the upstream and
downstream models in addition to the pipeline used to train and test the models. The software
used to build the various models are listed in the appendix.

3.1 Datasets

3.1.1 HUNT4 dataset

HUNT4 is the fourth iteration of the Nord-Trøndelag Health Study (HUNT) [Åsvold et al.,
2023] and one of the primary areas of emphasis in the study was examining the activity patterns
within the population. For this reason, 31 295 participants volunteered to wear two sensors
that record their movements for 1 week while doing their regular work and activities, i.e. free-
living environments. Movements were recorded by accelerometers in 3 perpendicular directions.
The accelerometers were mounted on the participant’s back and thigh resulting in 6 channels
of time series data, as shown in figure 3.2. The data are recorded using the small AX3 axivity
accelerometers1.

3.1.2 HARTH dataset

The Human Activity Recognition Trondheim (HARTH) dataset from Logacjov et al. [2021] is
a dataset consisting of accelerometer recordings from 22 participants during regular working
hours. The dataset was acquired due to the lack of existing free-living HAR datasets that use
more than one sensor and have reliable annotations. The setup used by Logacjov et al. [2021] is
of high resemblance with the HUNT4 dataset and uses the same two three-axial sensors with the
same sensor position and was recorded for 1.5-2 hours. The participants were told to live their
everyday life as normal as possible. However, in addition to various sedentary activities, the
participants were instructed to do the activities sitting, walking, standing, lying, and running
for at least two minutes. The participants were equipped with a GoPro.

Data for the study was gathered in two separate sessions, capturing the daily physical ac-
tions of 15 participants, including six women. In the initial session, participants were directed

1https://axivity.com/product/ax3

23



24 CHAPTER 3. METHODOLOGY

to continue their usual activities for 1.5-2 hours, engaging in actions like sitting, standing, lying,
walking, running, and jogging for at least a couple of minutes each. Acceleration data was cap-
tured using two sensors at a sampling rate of 100 Hz. The sensors’ measurement range extended
to approximately 8 g. To align the acceleration and video signals for later use, participants were
asked to execute three heel drops at the start of each recording. In total, the data spanned
around 30 hours, with the average recording time being around 120 +- 21.6 minutes. Video data
was formatted to 25 fps and 640 x 360 pixels, in which every frame was annotated. In addition
to the above activities, participants also performed other tasks like ascending and descending
stairs, standing with leg movements, sitting and standing while cycling and sitting and standing
while in transport.

Recognizing the skewed representation towards light activities and the lack of certain activ-
ities in the dataset collected in the first round, the second data collection session focused more
on activities such as walking, running, and cycling (both sitting and standing), incorporating
flat, uphill, and downhill sections. There were no specific demands about the location or timing
of these activities. Participants also engaged in other activities like sitting, lying down, and
climbing up and down stairs, which were annotated appropriately. This second session resulted
in approximately 7 hours or 417.6 minutes of recorded data, with an average recording duration
of around 60 +- 9 minutes per participant. The ANVIL annotation tool was used to annotate
the recordings, and the distribution of various activities is illustrated in figure 3.1.

3.1.3 UCI-HAR dataset

The UCI-Human Activity Recognition (UCI-HAR) dataset is a dataset recorded by Anguita
et al. [2013]. The data was collected from a cohort of 30 volunteers, all within the age range of
19 to 48 years. These participants performed six distinct activities, namely: walking, walking
upstairs, walking downstairs, sitting, standing, and laying.

During the recordings, the participants were equipped with a Samsung Galaxy S II smart-
phone around their waist. This device is equipped with a built-in 3-axial- gyroscope and ac-
celerometer which record movements using a sampling rate of 50 Hz. All experiments were
recorded using an additional video camera for accurate labeling. The dataset has an almost
perfect distribution of activities. The data was recorded in-lab and the participants were told
what activity to perform at all times. The resulting dataset is a mixture of data from both
the accelerometer and gyroscope, all of which underwent a pre-processing step to reduce noise.
Furthermore, the acceleration signal was split into body acceleration and gravity components
using a Butterworth low-pass filter. This was based on the assumption that the gravitational
force exclusively incorporates low-frequency components. Therefore, a cuto↵ of 0.3 Hz is used
for the filter.

3.1.4 Data preparation

The data is segmented using the sliding window segmentation method described in Bulling et al.
[2014]. Dynamic energy-based segmentation was also an option. In energy-based segmentation,
each new time window is created based on a change in the energy of the signal over a given
threshold. However, this did not yield any benefits over the sliding window technique in Hessen
and Tessem [2016] as described in section 2.2. The sliding window method is visualized in figure
3.3. In the sliding window method, a window of a predetermined length slides over the recorded
signal and creates window segments. Each window will have a label that corresponds to the
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Figure 3.1: Distribution of classes in the harth v1.2 dataset

Figure 3.2: Visualization of sensor positions and recordings. The camera was only included when
recording the HARTH dataset and not during the HUNT4 study. The three sensor streams from
each sensor represent responses in the x, y, and z directions.

performed activity. When one window contains multiple labels, the most frequently occurring
activity is chosen. In the example in figure 3.3, a sliding window of size 6 is chosen for simplicity,
with 50 % overlap between the segments. To prevent a massive overrepresentation of samples
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related to the ”lying” activity during the pretraining phase, we exclude large portions of the
sensor data from HUNT4 recorded during nighttime hours, namely between 12 a.m. and 6 a.m.
We do not convert the windows to spectrograms but rather use the raw data with some additional
preprocessing described in section 4.2.2.

Figure 3.3: Static sliding windowing method.

3.2 Model Architectures

In this thesis, we’re looking at the performance of two key models, SimCLR and SimSiam. They
are known for being top performers in the area of self-supervised learning for vision and are
also composed of convolutional neural networks which have been shown to be highly e↵ective for
HAR, as seen from related work. Contrastive learning, represented by SimCLR in this thesis,
has proved to be e↵ective for HAR as seen from related work. Non-contrastive methods, on the
other hand, represented by SimSiam, are much less explored for HAR. We will also modify the
SimCLR model by incorporating a clustering feature, with the goal of identifying false negatives.

3.2.1 High-level architecture

The high-level process of self-supervised pretraining and supervised fine-tuning is visualized in
figure 3.4. The large unlabeled HUNT4 dataset is utilized to train the encoder by solving the
upstream pretextual task. Subsequently, the encoder is frozen with the idea of working as an
automatic feature extractor (following step 3, feature calculation, of the HAR chain from Bulling
et al. [2014]) for the downstream task prediction in addition to a trainable fully connected MLP
on top. Ideally, the encoder will create clusters from samples originating from the same activity,
where a linear MLP (no hidden layer) will separate these clusters into activities.
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Figure 3.4: High-level architecture.

3.2.2 Pre-training inspired by SimCLR and SimSiam

A more detailed visualization of the architecture of the contrastive and non-contrastive upstream
models is shown in figure 3.5 and is inspired by the SimCLR and SimSiam framework from Chen
et al. [2020] and Chen and He [2021] respectively. Some inspiration is also taken from Saeed
et al. [2021], but without discriminating between the raw sensor signal and its spectrogram. In
our work, a mini-batch of sensor data is subject to two di↵erent augmentations of the same orig-
inal sensor data. Note that the sensor data in these mini-batches are already pre-processed and
segmented into short time windows. This encoder is originally a convolutional neural network
(CNN) [Chen et al., 2020], which specifically for our case consists of three convolutional layers
and two fully connected layers as visualized in figure 3.6. Each convolutional layer n consists of
Cn filters of size kn. As the figure shows, each convolutional layer is followed by one ReLu acti-
vation function and a dropout. The last block is followed by a global max pool for each channel
of the layer to collect the most important features from each channel. This will filter out unnec-
essary noise, decrease the dimension and also thereby decrease the computational complexity of
the fully connected layers that follow. This decrease is also desirable for the clustering applica-
tion introduced in 4.1.2, as high-dimensional data often can be challenging to cluster. This is
especially a problem for algorithms that employ Euclidean distances because each dimension is
treated with the same importance when calculating the distance. The global maxPool is inspired
by ResNet-18 [He et al., 2016], where a global average pool follows the last conv layer of the
network. ResNet-18 is the network used as an encoder for the original SimCLR and SimSiam
from Chen et al. [2020] and Chen and He [2021], respectively. However, ResNet is commonly
used for datasets such as ImageNet, where the images are typically resized to 224x224 pixels.
Applying such a network to 1D sensor signals is excessive and is, for this reason, significantly
scaled down. ResNets use residual (skip) connections to mitigate vanishing gradients, a problem
often seen in very deep feed-forward neural networks and formalized in Glorot and Bengio [2010].
These connections allow gradients to be backpropagated more directly to facilitate more e↵ective
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learning in earlier layers of the network. However, the architecture of the encoder only consists
of three convolutional layers and two fully connected layers, so the risk of vanishing gradients
is significantly reduced. Therefore, we choose to drop residual connections to avoid unnecessary
complexity, still ensuring robust learning with a more e�cient model.

The actual implementation of the encoder, including (hyper)parameters, implementation of
the convolutional filters, and number of neurons for the fully connected layers are discussed in
more detail in section 4.2. Both outputs are flattened into a 1d vector which is input to a projec-
tion layer. The projection layer typically takes the form of a multilayered perceptron (MLP). The
architecture of the encoders and projection heads are largely the same for both the SimCLR and
the SimSiam models. However, there are mainly three di↵erences between the implementation
of the SimCLR and SimSiam: 1) The SimSiam model consists of an additional prediction head
in one of the branches, which will serve as a countermeasure against the dimensional collapse
mentioned in 2.1.4. This prediction head consists of an MLP with a similar architecture as the
projection head. 2) The loss of the SimSiam-implementation is a similarity measure between
the encoded augmentations. For SimCLR, the NTXent loss from formula 3.4 defined in section
2.1.4 is calculated based on the same similarity measure as used in SimSiam, but also includes
similarities between negatives. 3) For SimSiam, one of the branches also employs a stop-grad
which prevents certain gradients from flowing backward. As described in 2.1.4, this is also a vital
component in SimSiam to counter degenerate solutions.

(a) Architecture of the SimCLR-inspired up-
stream model

(b) Architecture of the SimSiam-inspired up-
stream model. Note the extra prediction head,
the stop-grad and the loss calculation

Figure 3.5: Architecture of the semi-supervised model

3.2.3 Augmentation functions

The chosen augmentation(s) is an important factor that should be chosen with care for the
model to learn valuable features for the downstream task. The augmentations performed should
generally represent real variances that might occur from data derived from the same performed
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Figure 3.6: Architecture of the encoder (bottom) and the projection head (top) used during
pretraining. This encoder is the same for both the SimSiam and the SimCLR.

activities. Therefore, the augmentation should generally be challenging enough for the model
to understand the important underlying characteristics for each class, in this case, activity,
but not so hard that it completely transforms the input (signal) characteristics (invariances) as
highlighted in Tian et al. [2020] for vision. The augmentations can change the signal response
by modifying and shifting the signal along the time domain and adjusting and altering the
magnitude of the signal. The augmentation functions chosen for the experiments are defined
below:

• Window slice: Window slicing involves cropping the time series to ↵ % of its original
length. In this case, ↵ is set to 0.85. The starting point of the window is randomly selected.
The time series is interpolated back to its original length to ensure a fair comparison with
other data augmentation methods. This method is the time series equivalent of cropping
images.

• Time warp: The warping path can be described as a smooth cubic spline curve, which
consists of four knots. These knots are given magnitudes that are randomly determined, fol-
lowing a normal distribution with a mean (represented by µ) of 1 and a standard deviation
(denoted by �) of 0.09.

• Permutation: Permutation involves rearranging segments within the time series to create
a new pattern. This results in a di↵erent structured arrangement of the time series data.
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• Jitter: In jittering, random noise is introduced to the time series data in order to
enhance signal variability. The jittering is normally the Gaussian noise N (0,�2) where the
parameter �2 is chosen to be 0.15 in this case. The modified signal x0 is defined as

x0 = x1 + ✏1, x2 + ✏2, ..., . . . , xT + ✏T ; (3.1)

• Magnitude warp:

In magnitude warping, the time series data is augmented by warping the magnitude of the
response using a smooth curve. The resulting signal x0 is defined as

x0 = ↵1x1,↵2x2, . . . ,↵txt (3.2)

where ↵1, . . . ,↵t, . . . ,↵T is a sequence created by interpolating a cubic spline S(u).

• Rotation: Rotating the time series data involves applying an element-wise random
rotation matrix to the signal, denoted as R, where the rotation angle y is drawn from
a normal distribution N (0,�2). As for jittering, this process introduces randomness and
variability to the time series by rotating each element based on the sampled angle.

• Scaling: In scaling, a random scalar value is applied to the signal to alter the overall
magnitude of the time series. The resulting signal x0 after using scaling is defined as

x0 = ↵x1,↵x2, . . . ,↵xt. (3.3)

Scaling alters a time series’s overall magnitude or intensity by applying a random scalar
value. This scalar value is chosen randomly from a gaussian distribution N (0,�2), where
sigma is chosen as 0.4 in this particular case.

3.2.4 Unbiased modification of SimCLR

As explained in section 2.1.4, contrastive learning can su↵er from a sampling bias where created
negative pairs can originate from the same activity. These pairs are called false negatives because
they appear as negatives in the similarity matrix but are, in fact, positives. This problem can
be amplified when the class distribution is highly skewed, as with the HARTH dataset seen from
the distribution of classes in figure 3.1. While pretraining is not done on the HARTH dataset,
assuming a similar or worse distribution on the unlabeled HUNT4 dataset is not unreasonable
due to the nature of free-living environments. When the datasets are skewed, each training batch
will also be skewed towards certain activities, increasing the risk of creating negative pairs of
time series samples originating from the same activity, which in this case will be sitting for the
most part. Consequently, these pairs get pulled apart in the latent space, which is the opposite
of what we want. Thus, it is desirable to modify the proposed architecture shown in figure 3.5a
to prevent this from happening. In the absence of labels, we want to make a qualified guess on
what samples should be chosen as negatives.

The way we address this is to cluster the latent vectors from the mini-batch. By doing this, we
can create negative pairs only from vectors that originate from di↵erent clusters where, ideally,
each cluster represents one performed activity. This is visualized in figure 3.8 where the latent
space consists of 9 di↵erent samples originating from 4 di↵erent activities. The idea is that
SimCLR manages to form clusters of samples originating from the same activity in the latent
space so that the chosen clustering algorithm will have an easier time filtering out these activities
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(a) Similarity matrix without clustering (b) Similarity matrix with clustering

Figure 3.7: Similarity matrix for the SimCLR. In SimSiam, only the green squares (positives)
are utilized for the loss.

from the similarity matrix. Figures 3.8a and 3.7b show the similarity matrix with and without
clustering, respectively. In 3.7b, the false negative pairs are marked as grey. For simplicity,
this example shows a batch with three samples augmented in two di↵erent ways, [x1, x2, x3] and
[y1, y2, y3], and is the same as the one formalized in section 2.1.4. In this example, (x1, x2)
originate from the same cluster and are therefore ignored as negative pairs. Since x2 originate
from the same sample as y2, the pair (x1 y2) is also ignored. The same logic goes for the pairs
(x2, y1) and (y1, y2), resulting in a total of 4 new ignored negative pairs. Also, since the similarity
matrix is symmetric over the red diagonal, the same 4 ignored pairs can be found under the red
diagonal. By modifying the loss function in 3.4 to include the clustering, the loss is now defined
as

`(i, j) = � log

 
exp(sim(zi, zj)/⌧)P2N

k=1 1[k 6=i,C(zk) 6=C(zi)] exp(sim(zi, zk)/⌧)

!
(3.4)

Where C(z) returns the cluster index of the latent vector z.

3.2.5 Downstream supervised fine-tuning and testing

Figure 3.9 shows how the downstream supervised training process is performed. Raw data
is extracted from 21 subjects, pre-processed, and used for supervised model finetuning. The
supervised model utilized is the same as one shown in step 2 in figure 3.4. After each iteration of
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(a) Negative selection without clustering. All
samples that are di↵erent from the anchor are
chosen as negatives.

(b) Negative selection with clustering. All sam-
ples that are in other clusters than the anchor are
chosen as negative.

Figure 3.8: Negative selection with and without clustering from 9 samples of 4 di↵erent activities.

leave-one-subject-out cross-validation (LOSO), the predictions for each test participant are stored
in a list. When all 22 subjects have been tested, the metrics based on this list are calculated.

Figure 3.9: Supervised training and validation process using LOSO



Chapter 4

Experiments and Results

Research Question 2 and its associated sub-questions explore the potential application of existing
contrastive- and non-contrastive self-supervised learning (SSL) methods to free-living data like
HUNT4 and HARTH for human activity recognition. This chapter aims to investigate this issue
through a series of experiments. This involves a detailed description of the experiments to be
conducted and the experimental setup - which encompasses data preprocessing, augmentation
methods, and model hyperparameters. Finally, we will present the results of these experiments.

4.1 Experimental Plan

The experimental plan follows research question 2 and its subquestions from section 1.1. We
will evaluate the contrastive model SimCLR LF, the non-contrastive model SimSiam, the modi-
fication of the SimCLR, and lastly the robustness of the various models in the transfer learning
setting and low-data regime.

4.1.1 Experiment 1: Self-supervised contrastive learning for HAR

In the first experiment, the self-supervised model is trained without using any techniques to
correct for the sampling bias that might occur with contrastive learning. The contrastive model
used is the SimCLR shown in 2.3a. To analyze to what extent pre-training is beneficial for the
downstream task, we propose 7 di↵erent setups in which one of them are the CNN from Hessen
and Tessem [2016], three are di↵erent setups of the SimCLR with pretraining and three are
di↵erent setups of the SimCLR without pretraining. Due to the confusion this might induce, we
will give them names that will be used from here on and throughout the rest of the thesis. Below
are the definitions of the models, preceding some reasoning on what insights these setups might
give. For some additional clarity: LF = Linear Frozen, HF = Hidden Frozen, HU = Hidden
Unfrozen.

1. SimCLR LF: Contrastive model pretrained on the HUNT4 data with frozen weights and
a linear prediction head.

2. SimCLR HF: Contrastive model pretrained on the HUNT4 data with frozen weights and
one hidden layer before the output layer.

3. SimCLR HU: Contrastive model pretrained on the HUNT4 data, one hidden hidden layer
before the output layer and unfrozen weights for the last layer of the encoder.

33
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4. Baseline CNN: CNN proposed by Hessen and Tessem [2016].

5. Random Init LF: Same architecture as (2), but with a randomized (no pretraining) and
frozen encoder.

6. Random Init LU: Same architecture as (2), but with a randomized (no pretraining) and
completely unfrozen encoder.

7. Random Init HU: Same architecture as (3), but with a randomized (no pretraining) and
completely unfrozen encoder.

The model developed by Hessen and Tessem [2016] will serve as a baseline for comparison.
Their model performed well on the TIL dataset, but it’s interesting to see whether this model
still performs well on a free-living dataset like HARTH. The architecture and most of the hy-
perparameters will stay the same for a fair comparison, but small changes will be made to the
learning rate. In (2), the weights of the pre-trained encoder are frozen, and a linear trainable
prediction head with ten neurons corresponding to the number of classes is attached. This model
will insight into the quality of the encoder’s feature representation, using only a linear layer with
minimal trainable parameters for the downstream task. The primary objective of the linear
layer is to distinguish and classify the clusters formed by the encoder into their respective activ-
ity categories. Because minimal help is given by the linear layer, the results from this setup are
the most important and will therefore be utilized in the other experiments as well. In (3), an
extra hidden layer is placed between the encoder and output prediction. This will determine the
e↵ectiveness of incorporating a trainable nonlinear MLP in improving the model’s performance.
In (4), the last layer of the encoder is unfrozen (every other layer stays frozen). This setup aims
to investigate the impact of updating the last layer’s parameters on the model’s performance and
will assess to what extent the encoder learns sub-optimal representations.

In the setups (5-7), no pretraining is done and the weights and biases of the encoder are
randomly initialized. In (5), the encoder is frozen and only the linear prediction head is trained.
This model is expected to perform poorly but will be used to assess the extent to which (2) learns
any features compared to randomly initializing the encoder’s weights. In (6), all the weights of
the encoder are unfrozen. This model will highlight the di↵erences in the learned representation
between contrastive self-supervised pretraining and purely supervised training in terms of F1
scores of the di↵erent activities. The last model (7) is mainly there to see how well a supervised
CNN largely based on the architecture of the encoder of SimCLR can perform in free-living HAR
with optimized hyperparameters.

4.1.2 Experiment 2: Non-contrastive and unbiased contrastive self-

supervised learning for HAR

In this experiment, di↵erent techniques to deal with the sampling bias is going to be implemented
into the contrastive SSL model. The following setups will be implemented:

1. SimCLR LF (without clustering): Contrastive model inspired by the SimCLR archi-
tecture creating negative pairs of samples randomly (same as model 2 in experiment 1) for
comparison.

2. SimCLRCluster LF (with clustering): Contrastive model inspired by the SimCLR
architecture using clustering to filter out false negative pairs of samples during pretraining.

3. SimSiam: Non-contrastive model inspired by the SimSiam architecture.
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The encoded vector produced by the above setups will also be analyzed using TSNe plots,
which will show how well the models manage to create clusters of data with the same activity
label.

4.1.3 Experiment 3: Contrastive and non-contrastive learning within

a low-data regime and transfer learning setting

In the third experiment, it is desired to understand how the model performs in both di↵erent
semi-supervised and transfer-learning settings. In the first case, this means limiting the amount
of supervised training data that will be available for training and seeing how this a↵ects the
supervised performance of the model. To simulate di↵erent semi-supervised scenarios, we vary
the percentage of labeled data available for training, ranging from only 0.05 % to 30% of the
total training dataset. For each scenario, the labeled data will be randomly sampled from the
original training set, ensuring a consistent distribution of classes across all conditions that resem-
ble the full-size dataset. The contrastive model will be compared to a purely supervised model
with no pretraining, with the aim of understanding how pre-training a↵ects the model’s learning
e�ciency when working with a limited amount of labeled data.

In addition, the model’s robustness to transfer learning will be explored by pretraining the
model on di↵erent datasets. This will give us some insight into how transfer learning a↵ects
the performance of the models on the labeled HARTH dataset. In this setup, only half of the
subjects in the HARTH dataset will be available for finetuning, and the rest will be used for
testing. The reason for this is mainly due to LOSO being too time-consuming for the number
of models to be tested. Additionally, half of the subjects are chosen for testing due to the large
di↵erences in the time used to perform various activities between the participants. Hence, the
somewhat unconventional division of train/test data is selected in this part of the experiment to
ensure a more trustable test score.

4.2 Experimental Setup

4.2.1 Models and parameters

The baseline CNN used for the experiments has the exact same architecture as the one used by
Hessen and Tessem [2016]. It consists of two convolutional (conv) layers and ends with two fully
connected layers. The first 1d-conv layer consists of 40 kernels with height = 1 and length = 30.
The second conv layer consists of 80 kernels with height = 1 and length = 30. The first fully
connected layer consists of 1500 nodes and the output layer has ten nodes. The resulting number
of trainable parameters is around 5.2e6. The ReLu activation function is used after both conv
layers and a dropout with a probability of 50 % after the first fully connected layer. Softmax
is used after the last layer to transform the network outputs into a probability distribution for
each class. The cross-entropy loss function is used to calculate the loss and the Adam optimizer
is used for backward propagation to adjust the network weights.

The chosen parameters for the contrastive (SimCLR) and non-contrastive (SimSiam) up-
stream models are shown in table 4.1 and 4.2, respectively. The parameters not mentioned for
the SimSiam, e.g. encoder parameters, remain the same as those used in SimCLR. Note that the
batch size used is 512. Although this is normally considered as a large batch size for a neural
network, Chen et al. [2020] found that the SimCLR benefits from extremely large batch sizes of
up to 4096 with a saturation of performance going above this, and argued that this was due to the
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importance of having enough negative samples per positives. However, we found that batch sizes
of above 512 for the contrastive models did not yield any improved performance. Also, Chen et al.
[2020] found that a nonlinear projection head was important for the learned representations, and
was also employed in our model with 128 and 50 neurons in the hidden- and output layer respec-
tively. For SimSiam however, both layers of the projection head consist of 128 neurons due to the
following prediction head of SimSiam. See figure 3.5b. This prediction head consists of 128 and
50 neurons in its hidden and output layer, respectively. The loss functions used in SimCLR and
SimSiam are adam and SGD respectively, which are the loss functions used in the original papers.

Parameter Value

Input size 6 x 100
Filters in conv layer 1 (conv1) 32
Filters in conv layer 2 (conv2) 64
Filters in conv layer 3 (conv3) 96
Filter size (w x h) 24 x 1
Filter size (w x h) 16 x 1
Filter size (w x h) 8 x 1
N. nodes in the first layer of the projec-
tion head

128

N. nodes in the second layer of the pro-
jection head

50

Dropout after conv1, conv2 and conv3 10 %
Activation function after conv1, conv2
and conv3

ReLu

Optimizer Adam
Batch size 512
Starting learning rate 0.001
Lr scheduler Cosine Decay

Augmentation methods
augx = Scaling, augy = Window
slice

Loss function
NTXent loss (InfoNCE), temper-
ature = 0.1

Total number of trainable param-
eters (encoder + projection head)

86 720 + 18 802 = 105 522

Table 4.1: Hyperparameters for the contrastive (SimCLR) upstream model

The trainable MLP attached to the encoder for finetuning consists of a dropout layer with
a probability of 10 % and a linear fully connected layer of 10 neurons corresponding to the 10
classes. For models 2 and 3 in 4.1.1 a hidden layer of 1024 neurons, dropout of 10 %, and ReLu
before the output layer is also inserted into the downstream model. SGD is used as the optimizer
for finetuning with cosine annealing as a learning rate scheduler and a starting learning rate of
0.01 ending at 0. These parameters are used for all downstream models for a fair comparison.
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Parameter Value

N. nodes in FC1 of projection head 128
N. nodes in FC2 of projection head 128
N. nodes in FC1 of prediction head 128
N. nodes in FC2 of prediction head 50
Optimizer SGD
Batch size 256
Starting learning rate 0.01
Lr scheduler Cosine annealing, min lr = 0.0
Loss function Cosine similarity
Total number of trainable parame-
ters (encoder + projection head + pre-
diction head)

86 720 + 28 928 + 12 978 = 128
626

Table 4.2: Hyperparameters for the non-contrastive (SimSiam) upstream model that are either
di↵erent from or do not exist in the contrastive SimCLR model. The parameters of the encoder
are the same as for the SimCLR in table 4.1 and are therefore omitted here.

Parameter Value
upstream encoders SimCLR and SimSiam
N. nodes in the hidden layer of prediction head 1024
N. nodes in the output layer (corresponding
to num classes)

10

Batch size 128
Epochs 20
Loss CrossEntropy
Starting learning rate 0.01
Lr scheduler Cosine annealing, min lr = 0.0
Total number of trainable parameters
(excluding the hidden layer of the prediction
head)

970

Total number of trainable parameters
(including hidden layer of the prediction head)

99 328 + 10 250 = 109 578

Table 4.3: Hyperparameters for the downstream model

4.2.2 Preprocessing of data

Both the HARTH v1.2 and the HUNT4 datasets are normalized by calculating the mean and
variance of both datasets. A static sliding window of 1 second is used with an overlap of 50 %
between each adjacent time segment. 1 second windows are enough to represent the simple and
repetitive activities we are dealing with, without feeding the model with too much information
at the same time. Also, this window size has been successful in previous works [Logacjov et al.,
2021; Hessen and Tessem, 2016; Skauge, 2021]. Banos et al. [2014] state that a window size of
1-2s yields the best tradeo↵ between speed and accuracy. A sliding window of 1s and sampling
frequency of 100Hz yields a time series window of 100 samples. The labels for each window are
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re-sampled resulting in one activity label for each window. In rare situations where one window
consists of multiple activities, the most frequently occurring activity is chosen as the label for
that window.

It is found that oversampling the minority classes is important for these classes to not be en-
tirely ignored during training. The dataset consists of 44.94% sitting, and a naive classifier that
only predicts sitting will therefore achieve 44.94% total accuracy. However, an assumption made
in this thesis is that all classes are of the same importance and thus, oversampling is considered a
straightforward and e↵ective approach to prevent the classifier from disregarding minority classes.

4.2.3 Hyperparameter tuning, training- and validation method

The model should not be trained and tested on the same subjects. To address this requirement,
the Leave-One-Subject-Out (LOSO) approach is used. LOSO maximizes the available training
data by leaving out one subject from the training set for validation until all subjects are validated.
This approach ensures that the model’s generalizability is assessed across various subjects and
reduces the potential for subject-specific biases or overfitting. During hyperparameter optimiza-
tion, the most important parameters including augmentation methods, batch size, learning rate,
and size of the convolutional and fully connected layers (i.e. number of neurons and size of ker-
nels) are prioritized through a grid-search strategy. This strategy goes through every combination
of parameters in the grid and finds the optimal combination. Due to the number of parameters
to be optimized and the time-consuming process of LOSO, the hyperparameter-optimization is
done by a regular 80/20 split of the data. Di↵erent augmentation types have in previous works
shown to yield highly di↵erent results. Because of this, augmentation methods are tuned first
by employing standard values for the other important parameters that are found in the literature.

The main evaluation metric used for the models is the macro f1 score for each activity, along
with an average (macro) f1-score which combines the unweighted average score for all activities.
The weighted F1 score is an alternative that takes into account class imbalances. However, as
argued by PlÖtz [2021], this method could potentially skew the results towards favoring the ma-
jority classes. In our experiments, we collect the predictions for all subjects in a list and calculate
metrics based on this list. An alternative is to calculate metrics for each subject and take the av-
erage. This method weights each subject and predictions for their performed activities the same
and there is less bias towards subjects with more recorded data. Nonetheless, it is clear from the
HARTH dataset that there are subjects with minimal or even no recorded samples for specific
activities. Consequently, we believe that assigning equal weight to the scores for each activity
of these subjects, as compared to those who have a substantial number of recorded samples for
the same activities, is an unsuitable evaluation strategy that we choose to omit here. We also
examine the precision and recall derived from normalized confusion matrices, which will provide
additional understanding of the areas where the model underperforms.

When it comes to the required duration of pretraining, our findings suggest that extending
the pretraining time beyond 45 hours didn’t significantly enhance the model’s performance. This
observation is shown in Figure A.1 in the appendix. Consequently, a pretraining duration of 45
hours has been selected for all models that are pre-trained on the HUNT4 dataset.
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4.2.4 Data augmentations for the contrastive model

Experiments with di↵erent kinds of augmentation methods are conducted that vary in di�culty
and the combination yielding the best f1-score is used for final testing. The task of performing
one separate augmentation for each side of the contrastive network is experimented with. Ad-
ditionally, only performing one augmentation on one side and leaving the other side untouched
is also performed. Due to the large number of existing augmentation methods to choose from, a
strategy of combining (1) augmentation methods that only alter the signal along the time axis (x)
with (2) augmentation methods that only alter the signal in the response axis (y) is performed.
This is made clear in figure 4.1 and 4.2 below which shows plots of the augmentation functions
defined in 3.2.3. The plots are split into time-domain augmentations and magnitude-domain
augmentations. The original time-series window is chosen randomly from one of the participants
in the HARTH dataset and represents the activity running. Note that only the alteration of one
time-series channel is visualized for simplicity.

(a) Time warp (b) Window slice

(c) Permutation

Figure 4.1: Augmentations in the time domain for one randomly sampled time-series window of
the activity running

The downstream performances after combining di↵erent kinds of augmentations are shown
in table 4.4. As seen from table the table, scaling generally performs well when combined with
other augmentation functions. Combining permutation with scaling yields the best F1 score and
is therefore chosen as the main augmentation during the optimization of the other parameters
and the rest of the experiments. There is a gap in performance from some of the augmentations,
with a gap of 17 % between the worst-performing and best-performing augmentations.
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(a) Jitter (b) Magnitude warp

(c) Rotation (d) Scaling

Figure 4.2: Augmentations in the magnitude domain for one time-series window of the activity
running

4.3 Experimental Results

The results of the experiments are presented below and are grouped corresponding to the ex-
perimental plan. The F1 score is presented for all models. Additionally, we demonstrate the
models’ performance in recognizing various activities in the first two experiments where we pro-
vide normalized confusion matrices, using both precision and recall. This is to get an insight
into which areas the model fails to correctly classify certain activities. t-SNE plots are presented
to provide insight into how e↵ective the di↵erent models are in grouping together or repelling
various instances. For the last experiment involving little labeled data and transfer learning,
only the average F1 score is presented. Be aware that the provided F1 scores are derived from
the aggregated predictions for all subjects, rather than the average of the individual F1 scores
per subject as explained previously. For the second and third experiments, we only present the
results of the linear and frozen (LF) versions of the models. The aim is to investigate the e�-

Jitter Magnitude warp Rotation Scaling None
Window slice 51.40 59.64 45.67 60.20 57.63
Time warp 54.11 56.72 45.23 60.35 56.85
Permutation 58.69 54.42 50.82 62.57 56.33
None 49.50 53.93 49.84 52.09 -

Table 4.4: F1 score, in percent, of downstream classification after combining di↵erent augmen-
tations during pre-training. Augmentations in the time domain are shown on the top rows while
augmentations in the magnitude domain are shown in the leftmost column. None means that
no augmentation is performed for one of the branches.
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ciency of the pre-training process in developing meaningful features, with only marginal support
from the trainable prediction head in separating the encoded samples into various activities.

4.3.1 Self-supervised contrastive learning for HAR

Table 4.5 shows the performance on various activities using di↵erent setups of the contrastive
model (setup 1-3) and table 4.6 shows the performance of the purely supervised setups (4-7).
As seen from the scores marked in bold, the purely supervised model achieves the best F1 score
for all activities with an average F1 score of 81.10 for the Rand. Init HU in addition to having
the smallest standard deviation of f1 scores. The Rand. Init LU beats the SimCLR LF with
20.99 percentage points. The pre-trained SimCLR LF improves over the Rand. Init LF with
27.38 percentage points. However, the SimCLR LF has a big di↵erence in F1 scores for various
activities, with a standard deviation of 27.48 %, the worst F1 score of 13.27 % in stairs (desc),
and the best F1 score of 96.68 % in sitting. Adding an extra hidden layer improves the average
F1 score of the model by 2.01 %, and unfreezing the last layer improves the average f1 score even
further by as much as 6.64 %. Most of these improvements come from initially bad-performing
activities like cycling (standing), stairs (descending), stairs (ascending), and walking with an
improvement of 16.11 %, 12.5 %, 19.9 %, and 16.76 % respectively, going from SimCLR LF to
SimCLR HU.

SimCLR LF SimCLR HF SimCLR HU
Sitting 96.68 96.86 98.15
Walking 56.27 68.38 73.03
Standing 79.76 78.70 80.70
Cycling (sit) 76.27 75.64 80.55
Lying 84.57 87.81 92.99
Running 88.28 87.05 90.04
Shu✏ing 34.13 36.04 38.50
Stairs (Asc) 30.88 40.09 50.78
Stairs (Desc) 13.27 20.27 25.77
Cycling (stand) 39.18 28.60 55.29
Average 59.93 ± 27.5 61.9 ± 26.5 68.6 ± 23.4

Table 4.5: F1 score, in percent, of downstream classification for the self-supervised models cor-
responding to configuration 1-3 in 4.1.2. The average F1 scores also show the standard deviation
of the F1 score for all the activities. The rows are ordered with decreasing frequency of the
activities in the HARTH dataset.

The confusion matrices for the SimCLR LF are depicted in figure 4.3. By analyzing the diag-
onal of the matrix for SimCLR, we observe that it yields a low precision rate of 8%, 23%, and 29%
for activities such as descending stairs, ascending stairs, and shu✏ing, respectively. Furthermore,
for these specific activities, the majority of the predictions (75%, 43%, and 46% respectively)
actually have the ground truth label walking. The easiest activity to classify is sitting, with a
precision of 98 %. The model has a better recall than precision for the aforementioned activities
descending stairs, ascending stairs, and shu✏ing, with 54 % 45 %, and 42 % in recall respectively.

The confusion matrices of the purely supervised model are shown in figure 4.4. The worst
precision is achieved for the activities shu✏ing, stairs(desc), and cycling (stand) with scores of
39 % 55 %, and 54 % respectively. The classifier achieves a precision of 99 % on the activities
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Baseline CNN Rand. Init LF Rand. init HU Rand. Init LU
Sitting 97.91 91.27 98.89 98.89
Walking 79.72 27.62 87.50 87.76
Standing 84.05 54.71 84.49 84.57
Cycling (sit) 66.19 2.83 88.87 90.20
Lying 91.32 55.55 98.87 99.23
Running 89.68 73.19 97.50 97.18
Shu✏ing 45.59 1.02 49.95 50.22
Stairs (Asc) 45.33 2.27 77.29 73.74
Stairs (Desc) 56.94 7.62 66.28 66.09
Cycling (stand) 35.26 9.45 61.30 61.34
Average 69.20 ± 21.22 32.55 ± 31.77 81.10 ± 16.16 80.92 ± 16.33

Table 4.6: F1 score of downstream classification for the purely supervised models corresponding
to configuration 4-7 from 4.1.1. The first column is the results from the CNN of Hessen and
Tessem [2016]. Be aware that Rand. Init HU and LU have all layers unfrozen, while SimCLR
HU only has the last layer unfrozen.

(a) SimCLR LF normalized along the columns
(precision)

(b) SimCLR LF normalized along the rows (recall)

Figure 4.3: Confusion matrices of the SimCLR LF

sitting and lying and a recall of 98 and > 99 % on the same activities. The recall is also better
than the precision for the shu✏ing, stairs(desc), and cycling (stand) with a score of 70 %, 77 %,
and 70 % respectively. 36 %, 25 % and 33 % of the activities predicted as stairs(desc), stairs(asc)
and shu✏ing respectively, are actually walking. 23 % of the activities predicted as shu✏ing are
actually standing and 32 % of the activities predicted as cycle (sit) are cycle (stand).

In Figure 4.5, we observe the t-SNE plots representing the encoded vectors obtained from
a pre-trained SimCLR model without any fine-tuning. Notably, the activity ”running” demon-
strates a highly clustered pattern. Similarly, the activities ”lying,” ”sitting,” and ”standing” also
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(a) Rand Init LU normalized along the columns
(precision)

(b) Rand Init LU normalized along the rows (recall)

Figure 4.4: Confusion matrices of the Rand Init LU

show noticeable clustering. Interestingly, the ”cycling (sit)” activity appears to be divided into
two distinct and well-separated clusters.

4.3.2 Non-contrastive and unbiased contrastive SSL for HAR

In table 4.7 are the results for the experiments with the non-contrastive SimSiam LF and the
contrastive SimCLRCluster LF. Additionally, the Rand Init LF and SimCLR LF (w/o cluster-
ing) from the previous experiments are shown in the two leftmost columns for comparison. Using
clustering for the SimCLR seems to have very small e↵ects on the performance. If anything, clus-
tering for false negative detection worsens the performance by 0.43 percentage points. When we
add clustering, the F1 scores for certain activities remain relatively unchanged. However, for
activities like ’Cycling (sit)’ and ’Running,’ we see a significant drop of 7.2 and 9.02 percent-
age points respectively. Conversely, the F1 scores for ’Lying’, ’Shu✏ing’, and ’Cycling (stand)’
increase by 9.55, 3.29, and 2.98 percentage points, respectively. The SimSiam LF perform the
worst out of all the implemented models, with an average F1 score of 51.25 %. The model only
achieves the highest score in two activities, namely sitting and stairs (descending) with a score
of 97.84 % and 19.84 %, respectively.

The confusion matrices for SimSiam LF and SimCLRCluster LF are shown in figure 4.6 and
4.7. The precision is, just like for the simCLR, worst for stairs (descending), stairs (ascending),
and shu✏ing. However, this phenomenon is even more extreme for SimSiam LF, with 76 %,
82 %, and 65 % of these predictions having the true label walking. The worst precision is seen
in the activity stairs (ascending) where only 8 % of the predicted samples are actually stairs
(ascending). The recall is generally better, with the worst score being 42 % for walking and
stairs (ascending) and the best score being 94 % for sitting. The most extreme misclassification,
however, is that 89 % of the samples that have the true label shu✏ing are classified as standing
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Figure 4.5: t-SNE plot for a pre-trained SimCLR without any finetuning

Random init SimCLR LF
w/o clustering

SimCLR LF w/
clustering

SimSiam LF

Sitting 91.27 96.68 96.44 97.84
Walking 27.62 56.27 56.59 44.83
Standing 54.71 79.76 78.27 70.35
Cycling (sit) 2.83 76.27 69.07 69.99
Lying 55.55 84.57 94.12 93.53
Running 73.19 88.28 79.26 77.63
Shu✏ing 1.02 34.13 37.42 5.88
Stairs (Asc) 2.27 30.88 28.63 12.50
Stairs (Desc) 7.62 13.27 13.25 19.84
Cycling (stand) 9.45 39.18 42.16 20.16
Average 32.55 ± 30.29 59.93 ± 26.20 59.52 ± 25.74 51.25 ± 31.51

Table 4.7: Average F1-scores comparing the randomly initialized and contrastive model from
experiment 1, with a modification of the Contrastive model and the SimSiam LF.
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by the SimSiam LF.
The confusion matrices for the SimCLRCluster LF have a similar structure as the matrices for

SimCLR LF. However, one notable di↵erence is in precision, where 19 % and 11 % of the samples
predicted as stairs (ascending) and stairs (descending) respectively, have true label cycling (sit).

(a) SimSiam LF normalized along the columns (pre-
cision) (b) SimSiam LF normalized along the rows (recall)

Figure 4.6: Confusion matrices of the SimSiam LF

Figure 4.8 showcases the t-SNE plots for the SimSiam LF and the SimCLRCluster LF. Look-
ing at the plot, SimSiam LF creates more dense clusters compared to SimCLRCluster LF for
activities like sitting, standing, and shu✏ing. In contrast, the samples in SimCLRCluster LF dis-
play a more scattered and less organized pattern. Both models e↵ectively cluster samples labeled
as ”running,” although there are some outliers present in SimCLRCluster LF. Furthermore, both
models show the tendency to create two distinct clusters for the ”cycling, sit” activity, with a
significant distance separating them.

4.3.3 Contrastive learning within a low-data regime and transfer learn-

ing setting

The F1 scores obtained from pretraining the models on di↵erent kinds of datasets are shown in
table 4.8. As seen from the results, SimCLR benefits mostly when pre-trained on the HUNT4 (an
increase of 2.07 percentage points from HARTH %) data, and SimCLRCluster benefits most in
pretraining on the HARTH dataset. The amount of HUNT4 and HARTH data used in pretrain-
ing are the exact same, for a fair comparison. UCI-HAR however, is a smaller dataset. Ideally,
the number of samples is the same for all datasets. However, some consideration is taken by
increasing the number of epochs so that the number of training iterations is similar. Pretraining
on the UCI HAR dataset yields the worst performance, with 52.26 %, 43.17 %, and 26.01 % for
the SimCLR, SimSiam LF, and SimCLRCluster, respectively.

In figure 4.9 we see the F1 score of various models when pre-trained on the HUNT4 data
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(a) SimCLR LF with clustering normalized along
the columns (precision)

(b) SimCLR LF with clustering normalized along
the rows (recall)

Figure 4.7: Confusion matrices of the SimCLR w/clustering

(a) Pretrained SimSiam LF without finetuning (b) pretrained SimCLR w/ clustering and without finetuning

Figure 4.8: t-SNE plots
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HARTH ! HARTH HUNT4 ! HARTH UCI HAR ! HARTH
SimCLR 55.69 57.76 52.26
SimSiam 47.56 47.30 43.17
SimCLRCluster 55.74 50.97 26.01

Table 4.8: F1-score, in percent, when pretraining on di↵erent kinds of datasets, freezing the
encoder, and then fine-tuning and testing the models on the labeled HARTH dataset

and finetuned on an increasing amount of labeled data. The chosen percentages of the original
HARTH dataset were chosen as 0.05 %, 1 %, 10 %, and 30 %, which were sampled randomly.
Looking at the plots we see that the pre-trained SimCLR only outperforms the Rand. Init LF
with 3.41 % when less than 0.05 % of labeled data is available. At just 1% of labeled data
available, Rand. Init LU outperforms the pre-trained SimCLR LF, SimCLRCluster LF, and
SimSiam LF by 10.85, 17.52, and 28.38 percentage points, respectively. The disparity becomes
even more significant as the amount of labeled data increases.

Figure 4.9: Plot of the F1 score after training the models using di↵erent amounts of HARTH
data
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Chapter 5

Discussion

The findings from section 4.3.1 reveal noticeable deviations in performance both across di↵erent
setups and for various activities. Certain activities are straightforward to categorize, even for the
most ine↵ective models, whereas some prove significantly more challenging. The performance
disparities between the contrastive and non-contrastive methods become apparent despite their
similar architectures. The modified SimCLR’s performance was underwhelming, and we aim
to provide some explanations for this outcome. Ultimately, we will o↵er explanations for the
outcomes observed in the concluding experiments concerning transfer learning and the acquisition
of knowledge from a limited quantity of labeled data. In essence, we will provide some reasoning
behind the key findings while acknowledging various limitations associated with the executed
experiments. The discussion consists of one section for each experiment. Each section will be
served with a short paragraph containing the main points discussed.

5.1 Self-supervised contrastive learning for HAR

The model initialized with random weights and a frozen encoder was expected to perform badly
and was mainly created for comparison. However, the significant improvement of roughly 27
percentage points in the F1 score, when these weights undergo pretraining, certainly indicates
that the model can learn useful features for the downstream task. Most notable is the increase
in cycling (sit), going from below 3 % to above 76 %. There is a general increase of above 25 %
F1 score for most activities except those where the randomly initialized model already somehow
manages to get a decent score, like sitting, confirming that the model learns valuable features
that benefit all activities, and not just a small subset. The contrastive model struggles with
creating valuable features for stairs (desc). Firstly, this activity is the most challenging to clas-
sify even for the most e↵ective fully supervised model. It suggests this activity remains di�cult
even when labels are available and the dataset has been oversampled. Furthermore, looking at
the class distribution in 3.1, this particular activity has the lowest frequency within the HARTH
dataset, suggesting a similar distribution in the HUNT4 dataset. Since oversampling is not pos-
sible when labels are absent, only a restricted amount of samples representing this activity can
be presented to the model during the pre-training phase, compared to other activities. This is
a problem in general when pre-training on a free-living dataset versus in-lab. Also, pretraining
on more free-living data to increase the number of samples originating from minority activities
does not increase the performance of the contrastive model as seen from Figure A.1. Adding a
hidden layer to the SimCLR during supervised training does increase the average F1 score by 2
%. However, unfreezing the last layer of the SimCLR show a notable increase in performance of
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almost 7 %, indicating that unfreezing pre-trained weights can be beneficial during fine-tuning.
The increase is most notable for less frequent activities like stairs-walking and cycling (stand).

The SimCLR model with entirely unfrozen and randomly initialized weights delivers supe-
rior performance for most activities, except for shu✏ing and cycling (stand). It was anticipated
that this model would outperform a SimCLR model with pre-trained and frozen weights, as the
amount of trainable parameters in the downstream SimCLR LF model (not including the frozen
parameters) is 970 versus 87 690 (encoder + projection head) for the Rand Init LU. This was also
reported in the original SimCLR paper Chen et al. [2020] where the supervised baseline (Resnet-
50) outperform the SimCLR using ResNet-50 as an encoder with frozen weights for finetuning
with around 7 %. However, the di↵erence is much more substantial in our case, where a 21 %
improvement from the frozen SimCLR LF to the randomly initialized SimCLR LU implies that
the encoder of the SimCLR does not learn optimal features during the self-supervised pretraining
stage. The research presented in Saeed et al. [2019], which has a similar setup to ours, demon-
strated that a purely supervised model also often performs better than a self-supervised frozen
model (SCN) of the same design for most datasets. The performance gap typically falls under
5%, with the largest di↵erence observed at 12 % between the supervised and self-supervised
models. However, it’s worth noting that the datasets used in Saeed et al. [2019] for Human Ac-
tivity Recognition (HAR) were collected in a lab setting, and there are some variances in what
activities that are labeled. Additionally, they report a score of over 60% for most datasets, even
when the encoder weights were randomly initialized and frozen, which can suggest that their
data are easier to separate using just a linear classifier on top. This contrasts with our findings,
where we achieved an average F1-score of just 32.55 with randomly initialized weights. Saeed
et al. [2021] also share similar problems of separating stairs ascending and descending from the
activity walking during the pretraining phase. The state-of-the-art CPC from Haresamudram
et al. [2021] also yields similar results regarding the performance of a pre-trained and frozen
encoder vs a randomly initialized and unfrozen encoder trained end-to-end on benchmark HAR
datasets. Harish et al. [2020] however, find that using their masked reconstruction method for
pretraining actually surpasses the F1-score of the supervised version on 2 out of 4 benchmark
HAR datasets recorded in-lab. This is also found in Jain et al. [2022], where their pre-trained
model with a frozen encoder actually outperforms the unfrozen and purely supervised model.

The pre-trained SimCLR model with unfrozen weights for the final layer (SimCLR HU) ex-
hibits comparable performance to the convolutional neural network proposed by Hessen and
Tessem [2016], despite having fewer parameters. Moreover, the results reported by Hessen and
Tessem [2016] exhibit a notable decline of around 20 % when compared to the results obtained
by retraining and evaluating a model built on their architecture in a real-world environment like
HARTH. Generally, activities with the worst F1 score are the least frequent activities in the
HARTH dataset. Looking at the bottom 4 rows of Table 4.5, these activities include shu✏ing,
stairs (ascending), stairs (descending), and cycling (stand). It can also be argued that these ac-
tivities involve the most complex movements resulting in a rather chaotic sensor response, with
examples shown in figure C.1 in the appendix.

The confusion matrices for SimCLR LF depicted in figure 4.3 explicitly highlight the areas
where the model encounters di�culties. Figure 4.3a shows the confusion matrix normalized along
the columns with the precision along the diagonal, proving that most of the samples predicted
as stairs(asc) are actually walking. The same goes for stairs(asc) and shu✏ing. When observing
the activity plots in Figure C.1 found in the appendix, it becomes clear that certain activities
share similar signal traits with the ’walking’ activity. Moreover, oversampling in the downstream
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dataset may lead to a classifier that becomes overly sensitive to rare activities during fine-tuning.
It’s noteworthy that a significant fraction of activities labeled as cycling(stand) have cycling(sit)
as the ground truth. This can be attributed to the fact that both cycling(stand) and cycling(sit)
activities incorporate comparable pedal and side movements. Furthermore, cycling(stand) oc-
curs infrequently and is subject to high oversampling. The second confusion matrix in Figure
4.3a demonstrates similar challenges. However, it is obvious that the recall for most activities is
higher. Especially infrequent activities from the HARTH dataset achieve a significantly better
recall than precision. The aforementioned tendency of classifying walking as other similar activ-
ities is reflected in the reduced precision for the activity walking.

Activities such as walking, sitting, and running obtain both reasonable good recall and pre-
cision. These are activities with more distinct definitions and activity profiles. Comparing the
confusion matrices of the SimCLR LF with the Rand Init LU there is a large upgrade in both
precision and recall for all activities except in recall for ’standing’. The ambiguity that the Rand
Init LU model experiences between walking and similar activities still persists, but at a signifi-
cantly reduced level. Especially shu✏ing, where 33 % of its classifications is walking and 23 % is
standing. This misclassification is to be expected, considering that the activity certainly sounds
like a combination of both, given the vague definition ”movement not as part of walking bout.
Without being able to see the feet, if the movement of the upper body and surroundings indicate
non-directional feet movement, shu✏ing can be inferred” [Logacjov et al., 2021]. The similarity
between the activities ”shu✏ing”, ”walking” and ”standing” can also be seen by comparing the
plots of the shu✏ing and walking segment in Figure C.1. The signal response for these two is al-
most identical, although there might be some additional small fluctuations in the signal response
of shu✏ing. Combining ”shu✏ing” into ”standing” is not unreasonable, given this definition and
an analysis of the signal responses for these activities, either through post- or preprocessing.

Figure 4.5 demonstrates the clustering of samples belonging to the same activities and the
separation from other activities. Certain activities are more easily clustered together than oth-
ers. For example, running and standing are easily clustered together while stairs (asc and desc)
and shu✏ing are much more scattered around. An interesting observation involves cycling (sit),
where two distinct clusters are positioned at a considerable distance from each other. A plausible
explanation is that cycling (sit) actually comprises the sub-activities cycling (sit, inactive) and
cycling (sit, active) as previously mentioned, in which one activity involves pedal movements and
the other does not. This was done due to the extremely low frequency of either of these classes.
In retrospect, the model could potentially have improved its performance if these activities were
combined after the model was trained and the predictions were made, a step that would occur
during the post-processing stage.

It’s important to mention that activities that are more similar to running usually appear
further to the right on the graph. On the other hand, activities that involve no movement, like
lying down, are typically placed on the left side of the plot. Activities like standing and walking
are typically found around the center of the plot. This is a logical outcome considering the
foundational principle of SimCLR, which is based on a similarity measure. In SimCLR activities
that exhibit high similarities tend to attract one another within the latent space, while activities
that are dissimilar repel each other, creating a contrasting e↵ect.

To summarize, pretraining the SimCLR manages to create some valuable features among all
activities for the downstream performance compared to just initializing the weights randomly and
freezing them. Considering that only 970 out of 87 690 parameters of the downstream model are
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adjustable, the performance is impressive. Adding an extra hidden layer and unfreezing the last
layer is beneficial for the performance of the model and doing this achieves a highly comparable
performance to the CNN in Hessen and Tessem [2016] despite still having much fewer parameters.
The model manages to cluster certain activities well as seen from the TSNe plots which are
reflected in the table for the F1 scores. Interestingly, the model clusters samples according to
the similarity of their activity profiles. Unfortunately, the model comes short when compared
to a purely supervised model with all parameters adjustable, and additional pretraining is not
beneficial. This is especially the case for minority activities and activities that are of similar
nature. In retrospect, some activities could have been combined during postprocessing.

5.2 Non-contrastive and unbiased contrastive SSL for HAR

In the second experiment, it is clear that both the non-contrastive SimSiam and the SimCLR-
Cluster perform worse compared to the contrastive SimCLR model. Particularly, the SimSiam
achieves an average F1 score of 51.25 %, which is approximately 9 % lower than the contrastive
model without clustering. This outcome is somewhat surprising since the SimSiam does not
rely on negatives and thus avoids the challenge of sampling false negatives in a highly skewed
dataset. Notably, there is a substantial di↵erence in F1 scores, especially for the activities cycling
(stand), stairs (asc), and shu✏ing. Additionally, the t-SNE plot in Figure 4.8a demonstrates that
the SimSiam achieves better clustering for certain activities than SimCLR, including those just
mentioned. The bigger spread in samples in general for the SimCLR is to be expected given
that SimCLR runs the risk of contrasting false negatives as mentioned in 2.1.4, resulting in a
phenomenon that Wang et al. [2021] term as over-clustering, implying that the model is unable to
e↵ectively extract features from an overly abundant number of negative sample pairs. This leads
to the model mistakenly dividing samples from the same actual class into small separate clusters
with size 1 in the most extreme cases. However, analyzing the t-SNE plot of the SimSiam-
encoded samples, it seems likely that the model could be experiencing the inverse e↵ect, namely
under-clustering. Under-clustering often arises due to a lack of negative samples, especially in
cases where it’s inherent in the algorithm design such as BYOL Grill et al., 2020 and SimSiam
[Chen and He, 2021] which are purely based on similarities between positives. This can cause
di↵erent object categories to overlap. Under-clustering e↵ectively reduces the model’s learning
e�ciency, as it reduces the model’s ability to e�ciently identify the dissimilarities between sam-
ples from di↵erent activities. In general, the importance of including negatives for self-supervised
HAR is also supported by Rahimi et al. [2021].

Combining SimCLR with clustering for false negative detection is not beneficial for training,
at least not with the clustering algorithms used in this thesis, K-means and BIRCH. The in-
tention was to mitigate the contrasting of false negatives and subsequently reduce the distance
between samples within a cluster representing a specific activity. The t-SNE plot in Figure 4.8b
show a more chaotic structure compared to the t-SNE plots shown in Figures 4.5 and 4.8a al-
though the model still manages to cluster activities like running correctly. Although BIRCH and
k-means are widely used, they have like other clustering algorithms some limitations. Firstly,
the output of the encoder is vectors with a length of 96 when flattened. This introduces what
is commonly termed ”the curse of dimensionality”, in which each cluster is equally spread out
over ”less equally important” dimensions. Both algorithms use the Euclidian distance measure
to create clusters, where distance in all 96 dimensions is treated as equally important. And since
sensor data consist of a lot of noise and can be hard to encode, this will seriously a↵ect the
performance of the clustering. An additional limitation is that the initial batches processed by
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the model are clustered based on vector encodings generated by a model that has not really been
trained yet. Consequently, the clustering algorithm might identify clusters inaccurately and filter
out useful true negatives. Lastly, Robinson et al. [2020] argues that hard negatives, i.e. negatives
that lie close to the anchor, are the most informative examples for the model. Creating n clusters
corresponding to n activities increases the risk of filtering out these hard negatives because they
are encoded close to the anchor.

To summarize, the SimSiam seems to cluster activities well and performs much better than a
model with random and frozen weights. However, the model’s performance falls short compared
to the SimCLR, particularly in the tasks where SimCLR already has di�culties in accurate classi-
fication. Its shortcomings can be viewed as an amplified reflection of SimCLR’s limitations. This
underscores the significance of incorporating negatives (contrastive learning) for self-supervised
Human Activity Recognition (HAR) in a free-living context. Applying either BIRCH or K-means
clustering for false negative detection failed to boost the downstream performance of the Sim-
CLR. Looking back, this could be both due to poor handling of large dimensions, or because the
clustering algorithm still tries to group latent vectors coming from an initially untrained model,
and exclude these vectors from the InfoNCE loss even if these vectors might be true negatives.

5.3 Transfer learning and e↵ectiveness in a low-data regime

For the third and last experiment, one of the goals was to simulate training environments where
little labeled data is available. As seen from Figure 4.9, the SimCLR LF surpasses the purely
supervised Rand Init LU approach only in scenarios where a minimal amount of labeled data is
available (less than 1%). 1 % of the data amounts to 919 samples in which the least occurring
activity, cycling(stand) is only observed 9 times. The anticipation was that the SimCLR LF
would demonstrate improved performance in a low data regime. However, it was unexpected
that the Rand Init LU model would outperform the pre-trained SimCLR LF already at 1 % of
available labeled data. The average F1 score already begins to stabilize at 10 % of labeled data
for all models with a modest improvement of 2-3 % in F1 score going from 10 % labeled data
to 30 %. This suggests that only a subset of the HARTH dataset is enough to learn optimal
features, even when training an unfrozen model without any pretraining.

The other goal for the last experiment was to simulate an environment where a pre-trained
model is transferred to another environment (transfer learning). This was done by pretraining
the model on one dataset, and doing downstream supervised training on another. This was done
on three datasets, namely HUNT4, HARTH, and UCI-HAR where the last dataset simulate the
biggest change in environment due to the di↵erence in sensor types and positions. Minor varia-
tions in performance are observed when using the HARTH and HUNT4 datasets for pretraining.
On one side, the HUNT4 dataset has a strong resemblance with the HARTH dataset, hence it’s
logical that pretraining on either dataset would lead to comparable outcomes. However, using
the HARTH dataset for pretraining involves the same data for subsequent supervised fine-tuning.
This finding highlights that pretraining and fine-tuning on identical data can still be beneficial.
This could be attributed to the di↵erence in how the model learns (similarity of samples vs
labels) and the fact that data undergo augmentation, thereby creating new pseudo-data samples
as a by-product.

The worst downstream performance is obtained when pretraining using the UCI-HAR dataset,
which was expected. However, several factors might account for this outcome: Firstly, the UCI-
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HAR dataset consists of fewer samples compared to what is derived from HUNT4 and HARTH
for pretraining. Consequently, even though the count of training iterations remains constant by
increasing the number of epochs, the reduced data volume results in less robustness to variations
in unseen data. Secondly, the UCI-HAR dataset was recorded in-lab and does not catch the di-
verse variations associated with activities carried out in free-living environments. Finally, certain
activities present in the HARTH dataset are absent from the UCI-HAR dataset, which might
complicate the task of the pre-trained encoder in generating meaningful features for these specific
samples during the downstream task. Additionally, the UCI-HAR dataset was recorded using
an accelerometer and gyroscope whereas both HUNT4 and HARTH consist of recordings from
two accelerometers. Yet, the SimCLR and SimSiam models are able to extract some relevant
features that can be shared between the two datasets. However, the SimCLRCluster model does
not perform well and fails to create useful features when it’s pre-trained on the UCI-HAR dataset.

To summarize, both the SimCLR and SimSiam are able to extract some valuable features,
even if the model is pre-trained on a di↵erent type of dataset (UCI-HAR) containing other types
of sensors and sensor positions with some decrease in performance. SimCLRCluster on the other
hand does no better than a model with random and frozen weights. The SimCLR, with its
pre-trained and frozen weights, is the only one that surpasses the performance of the purely
supervised model with unfrozen weights when less than 0.05 percent of labeled data is used.
This implies that the supervised model does not require a substantial amount of HARTH data
to enhance its performance rapidly.



Chapter 6

Conclusion and Future Work

The primary objective of this chapter is to provide direct answers to the main research ques-
tions and associated sub-questions. Subsequently, we will o↵er recommendations for possible
enhancements in the future and suggest potential steps that can be taken to advance the field of
self-supervised Human Activity Recognition (HAR) using free-living data.

6.1 Conclusion

We begin concluding by answering the first research question:

Research question 1 What are the latest advances and key characteristics of state-of-the-art
supervised- and self-supervised HAR systems?

In section 2.2 we presented work related to both self-supervised- and supervised HAR. Ham-
merla et al. [2016] found that supervised approaches such as CNNs are more suited than LSTMs
for longer, repetitive activities such as the ones we are dealing with in this thesis. The combi-
nation of both done in Roggen et al. [2010b] can achieve state-of-the-art results, which is why
their model frequently has been used as one of the supervised baselines in other recent studies
for HAR. Multiple self-supervised methods that have shown great success in other domains like
vision, are also successful in HAR. This includes CPC [Haresamudram et al., 2021], multi-task
learning [Saeed et al., 2021] and masked reconstruction [Harish et al., 2020]. Our decision to im-
plement a variant of SimCLR for human activity recognition was inspired by the state-of-the-art
results obtained by Chen et al. [2020], as well as the e�cacy of using CNNs for our specific task.
This decision was made despite the original development of SimCLR targeting vision applications
rather than time-series data. Also, the finding that sampling bias can harm the performance of
contrastive methods motivated us to both 1) try to fix the problem through clustering and 2)
completely avoid it through a non-contrastive method. Among non-contrastive methods, Sim-
Siam was found to yield state-of-the-art results within vision while having a similar architecture
as the SimCLR based on siamese networks, making it a suitable method for comparison as well.

For the second research question, we begin by answering its associated sub-questions, before
we generalize by answering the main research question:

Subquestion 2.1 What is the comparative performance of the selected self-supervised methods,
and how well do they perform against purely supervised models?
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SimCLR, which utilizes contrastive learning, generally yields the best performance across most
activities, while SimSiam, which employs non-contrastive learning, demonstrates poor perfor-
mance in comparison. False negative detection through clustering did not enhance the perfor-
mance of the SimCLR using either BIRCH or k-means clustering. The fully supervised versions
perform much better than all of the self-supervised methods by a great margin. Distinguishing
between stairs ascending, stairs descending and walking is the biggest challenge for all models.
For all supervised and self-supervised setups, the minority activities are the hardest to classify
even when oversampling is performed.

Subquestion 2.2 How robust are the selected self-supervised methods in scenarios with limited
labeled data, and to what extent do they demonstrate successful transfer learning between
di↵erent types of HAR contexts?

When dealing with limited label availability, the top-performing model, SimCLR, only sur-
passes the supervised model when less than 0.05 % of labels are available. With less than 0.05
% of labels, SimSiam, which generally underperforms, manages to secure less than a 20 % F1
score, further illustrating its struggles in limited data scenarios. Regarding the transfer learning
capabilities, both the SimCLR and SimSiam are still able to extract some meaningful features
on the di↵erent dataset UCI HAR. SimCLRCluster on the other hand does not perform better
than a randomly initialized and frozen encoder (Rand init LF).

Subquestion 2.3 How well do the experimental results align with the findings reported in the
literature study?

In most studies, training an encoder end-to-end without any pretraining performs better than
a trained and frozen encoder, although on a much smaller scale than in our case [Chen et al.,
2020; Saeed et al., 2019, 2021; Chen and He, 2021; Haresamudram et al., 2021]. However, some
studies [Harish et al., 2020; Jain et al., 2022] even report that using a frozen and pre-trained
encoder performs even better than the purely supervised baseline. This does not align with our
findings, where the self-supervised model performs poorly compared to the supervised model of
the same architecture (corresponding to Rand Init LF in the experimental plan). Despite being
a somewhat unexpected outcome as discussed in 5.2, the discovery that SimCLR considerably
outperforms the SimSiam in performance aligns with the research by Rahimi et al. [2021], which
credits the inclusion of negatives as the reason for the improved performance. Similar to our
findings, other research in self-supervised HAR and HAR in general, find the separation of stairs
ascending, stairs descending, and walking to be the hardest activities to distinguish between
[Saeed et al., 2021; Logacjov et al., 2021].

Research question 2 Can existing contrastive and non-contrastive self-supervised methods like
SimCLR and SimSiam be exploited or further developed for human activity recognition on
free-living data like HUNT4 and HARTH?

Both the SimCLR and SimSiam can be utilized for free-living time-series data like HUNT4
and HARTH. However, the results indicate that none of these models manages to learn optimal
representations when comparing them to the purely supervised models. This is especially true for
the non-contrastive method indicating that including negatives in pretraining can be important.
Also, the performance of the SimCLR did not improve when modified by using clustering for
false negative detection.
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6.2 Contributions

In this study, we focused on two prominent self-supervised learning techniques for vision,
namely SimCLR, and SimSiam, and adjusted them for human activity recognition on free-living
time-series data from two accelerometers like HUNT4 and HARTH which have, to our knowledge,
not previously been done before. These specific methods were selected based on their demon-
strated success, the fact that they represent two di↵erent learning paradigms - contrastive and
non-contrastive learning, and the fact that both approaches utilize similar siamese architectures,
thereby making them suitable for comparison. For our specific problem, we optimized the model
parameters, identified the optimal combination of time series augmentation methods for time
series-based human activity recognition, and determined the necessary amount of pretraining for
our model. Our findings revealed that SimCLR outperforms SimSiam significantly, a result we
attribute to the importance of including negatives in the loss function. Furthermore, we inves-
tigated a novel technique of clustering the latent output vectors from SimCLR with the aim of
reducing false negatives but observed that this approach did not enhance SimCLR’s performance.

We discovered that self-supervised methods were successful in identifying useful features for
free-living human activity recognition. However, supervised methods still displayed superior
performance compared to self-supervised ones, more so than indicated in previous studies that
are not based on free-living HAR. We observed that both SimCLR and SimSiam were capable
of extracting meaningful features when pre-trained on a distinct human activity recognition
dataset, UCI-HAR, which employs di↵erent sensors and sensor placements. We also assessed the
performance of various methods in situations with limited labeled data availability. Our results
indicated that, for the HARTH dataset, even a very small fraction of labeled data was su�cient
for the supervised methods to outperform both contrastive and non-contrastive self-supervised
methods.

6.3 Future Work

This section is split into three parts. The first part discusses potential improvements that can be
made for applied methods. The second part discusses improvements that can be made regarding
input data and its preprocessing. The suggestions in these parts are either practical solutions by
focusing specifically on limitations pointed out in the previous chapter, or just further extensions
that can be beneficial for the performance of the models. In the last part, we come up with three
additional suggestions for other interesting applications that can be explored within supervised-
and self-supervised HAR from sensor data streams.

6.3.1 Model improvements

Firstly, there exist numerous other self-supervised methods that are worth exploring other than
the two chosen for this thesis. Some of these can potentially prove to be more fitting to free-living
self-supervised HAR given the underwhelming results of SimCLR and SimSiam compared to the
purely supervised models. Suggestions that are worth exploring are the previous state-of-the-art
methods BYOL [Grill et al., 2020], SwAV [Caron et al., 2020], MoCo He et al. [2020], and CPC
[Robinson et al., 2020]. The relevance of considering these methods lies in their varied adap-
tations of the Siamese architectures and di↵erent strategies for addressing collapsed solutions
compared to SimCLR and SimSiam, thereby potentially providing new insights and solutions
for free-living HAR. MoCo computes the loss by evaluating the similarity between both positive
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and negative pairs, similar to the SimCLR method. Conversely, BYOL and SWAV calculate
the loss considering only the similarity between positive pairs, as with SimSiam. By exploring
these techniques, we expect to broaden the understanding and application of SSL techniques in
the field of free-living HAR, with the potential of enhancing the performance of self-supervised
free-living HAR.

In the pursuit of improved model performance, this thesis employed clustering to filter out
false negatives, though this approach did not yield enhanced results. We, therefore, propose two
alternative techniques for handling false negatives that can be explored for further research. One
promising method is a teacher-student-inspired technique. This approach begins with training a
”teacher” model in a supervised way. The motivation for using this method is that the ”teacher”
can assist a ”student” model by applying pseudo-labels to batches from the unlabeled dataset,
thus strategically selecting negatives with di↵erent pseudo-labels. The second suggestion is the
use of a debiased contrastive objective, as developed in Chuang et al. [2020]. This method can
correct the sampling bias of negative samples, even in the absence of access to labels. This makes
it a potentially valuable tool, especially considering its implementation involves just a few lines
of code. While the authors of the referenced study assume a class distribution close to uniform,
they demonstrated that the debiased objective still improved the baseline even when dealing
with unbalanced datasets. The motivation for applying these methods is that they may help
improve the model’s ability to handle false negatives more e↵ectively, leading to more accurate
and robust pretraining.

While existing studies indicate that convolutional neural networks (CNNs) typically demon-
strate robust performance for Human Activity Recognition (HAR), one limitation is that each
new sample is treated independently, irrespective of previously executed activities when directly
applied to windowed data. However, the probability of executing certain activities isn’t inde-
pendent of prior actions. For instance, it is highly unlikely to transition directly from a lying
position to cycling without transitioning through stages such as standing and walking. Imple-
menting a simple Hidden Markov Model (HMM) can account for this dependence. This approach
e↵ectively combines the simplicity and e�ciency of HMMs in considering previous states with
CNN’s ability to predict activities based on spatial information. The HMM consists of three
components: the initial probability of each class, transition probabilities between classes, and
emission probabilities for each class. In this case, the output predictions (probabilities) of the
CNNs will reflect the emission probabilities, while the transition probabilities will be based on
statistics from the dataset, i.e. how often one activity is followed by another. In other words,
the HMM will be performed in a post-processing step, after the initial predictions are made.
Although not necessarily a method to improve the self-supervised learning step, the justification
for introducing this method lies in its potential to adjust the predictions of samples that can be
perceived as outliers, by incorporating statistics related to transitions between di↵erent activi-
ties. These outliers could, for example, be samples that are labeled as lying but may contain
some movement due to a shift in position.

6.3.2 Improvements in data and preprocessing

There are other experiments and potential improvements that can be made regarding the data
and its preprocessing. First, there is a potential to investigate a wider variety of augmentation
functions for sensor data beyond the subset explored in this thesis. The importance of such
exploration arises from the broad range and diversity of these functions. Exploring various aug-
mentation methods should not be underestimated looking at the performance di↵erences for the
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various augmentations used in this thesis. We have three suggestions for further investigation
that can be explored in this area. The first suggestion is to explore pattern mixing augmentation
functions like SPAWNER [Kamycki et al., 2019] or weighted DBA [Forestier et al., 2017] in which
both methods are based on averaging multiple time-series signals. The second suggestion is to
apply multiple augmentation functions in a series for each branch of the Siamese network. This
will increase the di↵erences and randomness between the two augmented batches in the network,
force the network to look at the invariances for the augmented positive pairs and discard noise
occurring from the augmentations. The last suggestion is that a random augmentation function
can be selected from a pool of augmentation functions for each sampled batch. The idea is to
ensure randomness and variations in signal augmentations, which in turn, is expected to enhance
the model’s robustness through a more realistic reflection of variances found in real-world accel-
eration signals.

The primary focus of the original SimCLR and SimSiam papers is on image recognition, fo-
cusing on optimizing the performance of a dataset like ImageNet. This thesis, however, focuses
on augmenting the raw data and utilizing one-dimensional convolutional layers. A problem is
that this does not explicitly present the frequencies within the response to the model, which is
a defining characteristic of certain activities. A suggestion for improvement involves converting
the raw data into spectrograms prior to its input into the model. This change would reshape the
input to resemble image data, aligning more closely with the techniques utilized in the previously
mentioned self-supervised learning papers. By doing this, the data now contains a more explicit
time-frequency representation that might be beneficial. This is also a technique that has been
successful in domains like speech recognition, like the SpecAugment method proposed by Park
et al. [2019].

In this thesis, we focused mainly on the HUNT4 and HARTH dataset for free-living applica-
tions, as well as included UCI-HAR for transfer learning. However, incorporating other existing
HAR datasets like WISDM, MotionSense, MobiAct, and so on, have multiple applications and
potential benefits. First of all, these datasets can be used to further analyze the transfer-learning
capabilities of the proposed models, as these datasets consist of a wide range of sensor setups,
activities, and subjects. A second suggestion is to pre-train the proposed models on a dataset
that is composed of various other HAR datasets. One of the points made in the discussion
was that the underwhelming performance of the contrastive and non-contrastive might originate
from the skewness that the HUNT4 dataset has towards sedentary activities. After all, a large
portion of the population has jobs that involve sitting in a chair for most of the day at work. By
pre-training the model on a dataset consisting of multiple other datasets from various studies,
we can achieve the benefits of data volume for pre-training but potentially maintain a more
uniform distribution of various activities that the model can learn from. Additionally, the model
might be more robust to minor variations in sensor positions and types of subjects. However, if
the goal is specifically to achieve good performance on the HARTH dataset, the chosen datasets
to be combined for pre-training should have sensor setups that resemble the HARTH dataset
and should preferably use two accelerometers. Some examples include the Opportunity dataset
[Roggen et al., 2010a] the PAMAP2 dataset [Reiss and Stricker, 2012] and WISDM [Weiss, 2019]
which are all given a short description in the appendix among various other HAR datasets.

During supervised training, we utilized a simple random oversampling technique to ensure
that each batch contains a fairly uniform distribution of classes. While this oversampling tech-
nique significantly enhanced the performance of minority classes compared to scenarios without
any oversampling, it’s important to note that such a straightforward oversampling approach
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could potentially increase the risk of overfitting. This is especially true at higher oversampling
rates, as pointed out in Branco et al. [2016]. A suggestion is to utilize some of the existing
created augmentation functions from 4.2 and 4.1 like jittering, timewarp and scaling to increase
the variations of the data and create additional synthetic samples.

6.3.3 Further extensions and applications

One further extension can be in the field of sports analytics. Mounting accelerometers on athletes
can enable the analysis of their activity profiles during events, particularly in sports involving
free-roaming movements such as football and handball. In this case, the desired activities can
be more complex than analyzed in this thesis and include activities such as jumping, walking
backward, jogging, falling and sprinting. Another application is within the medical treatment of
patients with Parkinson’s disease. Patients with Parkinson’s su↵er from freezing of gaits (FOG),
which is one of the least understood, yet disabling symptoms of Parkinson’s. FOG is an episodic
inability to step, often triggered by starting to walk or turning. Its presence can lead to balance
issues, increased falls, and a decreased quality of life [Rahimpour et al., 2021]. By building a
reliable system that detects FOG, the system can provide a rhythmic audio signal that stimu-
lates the patient to resume the performed activity. There is a limited amount of research done
in this exact area, but one existing study is done by [Bachlin et al., 2009] which includes a data
collection process of people su↵ering from FOG. The dataset is publicly available in the UC
Irvine machine learning repository 1.

Federated learning is a machine learning approach where a model is trained across multiple
devices or servers holding local data samples, without exchanging these samples. This allows
for training on a large amount of decentralized data, improving the model’s accuracy and qual-
ity, while also preserving data privacy since raw data does not need to leave its original device.
This makes it highly interesting for HAR, due to the large amount of private activity data that
emerges from devices like smartwatches and smartphones. Also, because only model updates
need to be transmitted rather than large amounts of raw data, federated learning can be more
network-e�cient than traditional cloud-based machine learning approaches. Implementing fed-
erated learning for HAR presents certain challenges. One problem is that data collected from
devices like smartwatches are likely to be non-independent and identically distributed (non-IID).
This means that the data from each device are expected to have unique distributions, influenced
by individual habits, interests, and locations. Additionally, the quantity of data available on
each device is likely to vary, which needs to be taken into account during the update of a global
model. The presence of non-IID data in federated learning can be a challenge as gradient updates
from di↵erent devices may guide the model in di↵erent directions. This can make it di�cult to
achieve a consistent and e↵ective learning process.

1https://archive.ics.uci.edu/dataset/245/daphnet+freezing+of+gait
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PlÖtz, T. (2021). Applying machine learning for sensor data analysis in interactive systems:
Common pitfalls of pragmatic use and ways to avoid them. ACM Computing Surveys (CSUR),
54(6):1–25.

Prince, S. A., Adamo, K. B., Hamel, M. E., Hardt, J., Gorber, S. C., and Tremblay, M. (2008).
A comparison of direct versus self-report measures for assessing physical activity in adults: a
systematic review. International journal of behavioral nutrition and physical activity, 5(1):1–
24.

Rahimi, S., Rainbow, M. J., and Etemad, A. (2021). Self-supervised human activity recognition
by learning to predict cross-dimensional motion. In 2021 International Symposium on Wearable
Computers, pages 23–27.

Rahimi, S. R., Rainbow, M., and Etemad, A. (2022). Self-supervised human activity recog-
nition with localized time-frequency contrastive representation learning. arXiv preprint
arXiv:2209.00990.

Rahimpour, S., Gaztanaga, W., Yadav, A. P., Chang, S. J., Kruco↵, M. O., Cajigas, I., Turner,
D. A., and Wang, D. D. (2021). Freezing of gait in parkinsonâs disease: invasive and noninva-
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Figure A.1: Downstream performance of SimCLR and SimSiam on the HARTH dataset using
various hours of pretraining on the HUNT4 dataset
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Dataset Description

Opportunity
[Roggen et al.,
2010a]

Sensor information was collected from participants performing various tasks
within a mock studio apartment setting. Participants were given a general
script to follow, yet were given the freedom to execute the activities based on
their interpretation whenever they wanted. Each participant was part of six
recording sessions, one of which was specifically tailored to produce a significant
quantity of activity instances.

UCI-HAR [Anguita
et al., 2013]

This data set contains information gathered from 30 voluntary participants,
each engaged in six activities with a smartphone attached to their waist. The
collection process took place within a controlled laboratory environment by
using the smartphone’s accelerometer and gyroscope. The data was captured
at a frequency of 50 Hz. Video recordings of the experiments were utilized to
manually assign labels to the data at each frameshift.

HHAR [Blunck and
Dey, 2015]

The dataset utilized in this study contains sensor data gathered from smart-
phones and smartwatches. This data was used to investigate the influence of
sensor dissimilarities on human activity recognition algorithms. The collected
data represent measurements from nine users executing six predetermined ac-
tivities, while wearing a smartwatch and carrying a smartphone. The sequence
in which these activities were carried out was not defined.

MobiAct [Vavoulas
et al., 2016]

This dataset, accessible to the public, contains data collected from a smart-
phone used by participants engaged in a variety of activities, including doing
a variety of falls. Containing four distinct fall types, twelve various daily rou-
tines, and in excess of 3200 trials from 66 individuals, the chosen activities were
identified considering factors such as the resemblance to fall events, short or
quick movements, and normal everyday tasks.

HAPT

In this study, information was gathered from a cohort of 30 individuals who
performed a variety of tasks while having a smartphone attached to their
waist. The participants utilized the inbuilt accelerometer and gyroscope of
their smartphone, readings were captured at a frequency of 50 Hz, and all the
tasks were video recorded for manual labeling purposes. The actions carried
out by participants included both stationary stances and active movements,
along with transitioning from one stationary position to another.

MotionSense
[Malekzadeh et al.,
2018b]

This dataset comprises time-series data captured in a controlled laboratory set-
ting, using accelerometer and gyroscope sensors. Collected from 24 participants
performing six distinct activities under identical conditions and environments,
the aim of the dataset is to explore if it is possible to predict personal char-
acteristics, including gender and personality traits, from the sensor-acquired
time-series data.

UniMib [Micucci
et al., 2017]

This dataset consists of recordings from 30 participants, ranging from 18 to 60
years of age, who performed a variety of regular activities, including falls. The
data is separated into 17 detailed classes, which are reduced into two broad
categories. The first category consists of data from 9 daily activities, and the
second category comprises data from 8 types of falls. The dataset is arranged
in a way that makes it easy to filter and select of samples based on diverse
parameters like activity category, age, and gender.

PAMAP [Reiss and
Stricker, 2012]

Sensor data were gathered from nine individuals engaging in 18 distinct physical
tasks. The recordings were enabled through wearable technology like inertial
measurement units and a device tracking heart rate. The participants took
part in a diverse set of physical activities including walking, bike riding, and
participation in athletic games.

WISDM [Weiss,
2019]

Data were collected from 51 individuals who were instructed to perform 18
specific activities, each lasting for a duration of three minutes. The participants
were equipped with a smartwatch in their primary hand and a smartphone
tucked into their pockets.

USC-HAD [Zhang
and Sawchuk, 2012]

This dataset contains consist of sensor recordings from 14 individuals engaged
in 12 regular day-to-day activities. It’s tailored to include a broad range of
subjects with a variety of physical attributes, including weight and height, as
well as demographic factors such as gender and age. Data relating to activities
was recorded utilizing a high-grade inertial sensor, as opposed to less expensive
and less accurate alternatives.

Table B.1: Benchmark datasets used by the literature
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Table B.2: Overview of the F1-scores reported by various authors on baseline HAR datasets.
Most of these datasets are data collected in-lab. (m) = macro F1-score, (w) = weighted F1-score.
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Figure C.1: Segments from all 10 activities performed by one participant.
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Appendix D

Pseudocode

Algorithm 1 SimCLR pseudocode

1: procedure SimCLR
2: Initialize base encoder f , projection head g
3: procedure sim(zi, zj) . Similarity function, often cosine similarity
4: Return zTi zj / (kzik · kzjk)
5: end procedure
6: for each batch x in loader do
7: x1, x2 = aug1(x), aug2(x) . Random augmentation
8: z1, z2 = g(f(x1)), g(f(x2)) . Projections
9: for all i in [1, 2N ] and j in [1, 2N ] do

10: si,j = sim(zi, zj) . Pairwise similarity
11: end for
12: for all i, j in [1, 2N ] do

13: `(i, j) = � log
⇣

exp(si,j/⌧)P2N
k=1 1[k 6=i] exp(si,k/⌧)

⌘
. Compute ‘(i, j)

14: end for
15: L = 1

2N

PN
k=1(`(2k � 1, 2k) + `(2k, 2k � 1))

16: Backpropagate L.backward()
17: update f , g . Adam update
18: end for
19: return f . Return the trained encoder network
20: end procedure
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Algorithm 2 SimSiam pseudocode

1: procedure SimSiam
2: Initialize base encoder f , projection head g, and prediction MLP h
3: procedure D(p, z) . Negative Cosine Similarity
4: z.detach() . Stop gradient
5: Normalize p and z along dim = 1
6: Return �(p · z).sum(dim=1).mean()
7: end procedure
8: for each batch x in loader do
9: x1, x2 = aug1(x), aug2(x) . Random augmentation

10: z1, z2 = f(x1), f(x2) . Projections
11: p1, p2 = h(z1), h(z2) . Predictions
12: Compute the loss L = D(p1, z2)/2 +D(p2, z1)/2
13: Backpropagate L.backward()
14: update f , g, and h . SGD update
15: end for
16: return f . Return the trained encoder network
17: end procedure



Appendix E

Software

List of software used and its versions.

Python 3.8.10 Programming language used.

PyTorch 2.0.0 [Paszke et al., 2019]. for implementation of various models.

Weights and Biases 0.13.10 [Biewald, 2020]. Used to keep track of all the experiments by
logging hyperparameters and output metrics from runs. Great visualization tools for losses
and other various metrics.

Numpy 1.23.4 [Harris et al., 2020]. Tool used for handling arrays and matrices.

Pandas 1.5.3 [Wes McKinney, 2010].

Matplotlib 3.7.1 [Hunter, 2007].

Scikit-learn 1.2.2 [Pedregosa et al., 2011].

JetBrains client (pycharm gateway) 2022.2.5. Lightweight IDE for remote development.
Used to connect to the NTNU leia server and get access to the GPU and the required
datasets.

Figma and draw.io Used to create figures to illustrate the various models and setups in the
methodology.
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