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Abstract

The demand for health care in Norway is increasing due to demographic changes, including

a growing and aging population. This increase in demand is expected to result in higher

healthcare spending and increase the pressure on the Norwegian economy. To address these

challenges, the Norwegian government is seeking to utilize digital transformation and big data

to improve the efficiency of the public sector, including the healthcare industry. Municipal

executives and IT professionals believe that the use of machine learning and other technological

solutions can help streamline tasks and improve the quality of processes in the healthcare

sector. However, many municipalities have not yet begun implementing IT projects that

involve machine learning. In general, IT investments have been reported to improve process

quality and efficiency in the public sector, but there is still room for improvement using data

analytics. In light of the background, the objective of this study was to "Make a contribution

to the current literature by investigating the effects of implementing demand forecasting and a

dynamic reorder point policy for Logistics Center Helse Midt-Norge". The following research

questions were introduced to guide the study:

• RQ1: What is the state-of-the-art within demand forecasting for inventory management?

• RQ2: How can the inventory be classified?

• RQ3: How can the AS-IS fixed reorder point be improved through a dynamic reorder

point?

• RQ4: What is the impact of implementing advanced forecasting methods for the dynamic

reorder point?

The research methodology in this study integrated various methods, including a systematic

literature review, an empirical case study, data analysis, and simulation. The systematic liter-

ature review is employed to investigate and address RQ1. On the other hand, RQ2, RQ3, and

RQ4 were addressed through an empirical case study. Within the case study, RQ2 utilized

data analysis, while RQ3 and RQ4 were addressed using simulation methods. The results

show that by categorizing Stock Keeping Unit (SKU) based on demand variability, valuable

insights can be gained to enhance inventory management operations. The implementation

of dynamic reorder point policies proves to be highly effective in reducing average inventory

while maintaining a high service level, resulting in an impressive 42% inventory reduction

while ensuring a service level of 98.9%. However, it was observed that implementing advanced

forecasting methods for the dynamic reorder point policy does not necessarily outperform

basic demand forecasting models in terms of average inventory and service level. This under-

scores the importance of considering the trade-off between complexity and performance when

selecting forecasting methods for the dynamic reorder point policy.

Keywords— hospital warehouse, inventory management, dynamic reorder point, demand forecasting,

machine learning
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Sammendrag

Etterspørselen etter helsetjenester i Norge øker på grunn av demografiske endringer, inkludert

en voksende og aldrende befolkning. Denne økningen i etterspørsel forventes å føre til høyere

helseutgifter og øke presset på norsk økonomi. For å takle disse utfordringene, ønsker den

norske regjeringen å utnytte digital transformasjon og stordata (Big Data) for å forbedre

effektiviteten i offentlig sektor og helseindustrien. Kommunale ledere og fagfolk innen IT-

bransjen mener at bruk av maskinlæring og andre teknologiske løsninger kan bidra til å ef-

fektivisere oppgaver og forbedre kvaliteten på prosesser i helsesektoren. Imidlertid har mange

kommuner ennå ikke startet implementeringen av IT-prosjekter som involverer maskinlæring.

Generelt sett har det blitt rapportert at IT-investeringer forbedrer prosesskvalitet og effektiv-

itet i offentlig sektor, men det er fortsatt rom for forbedring ved bruk av dataanalyse. Med

bakgrunn i dette var målet med denne oppgaven å "Bidra til den nåværende litteraturen ved å

undersøke effektene av å implementere etterspørselsprognoser og dynamisk bestillingspunkt for

Logistikksenteret Helse Midt-Norge". Følgende forskningsspørsmål ble introdusert for å veilede

studien:

• RQ1: Hva er "State-Of-The-Art" for etterspørselsprognoser innen lagerstyring?

• RQ2: Hvordan kan lageret klassifiseres?

• RQ3: Hvordan kan den nåværende faste bestillingspunktet forbedres ved bruk av dy-

namisk bestillingspunkt?

• RQ4: Hva er virkningen av å implementere avanserte prognosemetoder for det dynamiske

bestillingspunktet?

Forskningsmetodikken i denne studien benyttet ulike metoder, inkludert en systematisk gjen-

nomgang av litteratur, et empirisk case-studie, dataanalyse og simulering. Den systematiske

gjennomgangen av litteratur ble brukt for å undersøke og svare på det første forskningspørsmå-

let. Resterende forskiningspørsmål (RQ2, RQ3 og RQ4) ble besvart gjennom en empirisk

case-studie. I det empiriske case-studiet benyttet det andre forskningsspørsmålet dataanalyse,

mens det tredje og fjerde forskningsspørsmålet ble besvart ved hjelp av simulering. Res-

ultatene viser at ved å kategorisere varene til Logistikksenteret Helse Midt-Norge basert på

etterspørselens variabilitet, kan verdifulle innsikter oppnås for å forbedre lagerstyringsoper-

asjoner. Implementeringen av dynamiske bestillingspunkter viser seg å være svært effektivt

for å redusere gjennomsnittlig lagerbeholdning samtidig som en høy servicenivå opprettholdes,

noe som resulterer i en imponerende 42% reduksjon i lagerbeholdning og et servicenivået

på 98,9%. Imidlertid ble det observert at implementering av avanserte prognosemetoder for

de dynamiske bestillingspunktene ikke nødvendigvis presterer bedre enn grunnleggende et-

terspørselsprognosemetoder når det gjelder gjennomsnittlig lagerbeholdning og servicenivå.

Dette understreker viktigheten av å vurdere avveiningen mellom kompleksitet og ytelse ved

valg av prognosemetoder for de dynamiske bestillingspunktene.
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1 Introduction

This section contextualizes the research and presents the rationale and purpose. Section 1.1 outlines the

context and rationale of the research. Section 1.2 describes the literature gap found through the systematic

literature review. The literature gap serves as the basis for the present study. Section 1.3 provides a problem

analysis that includes the research objective and research questions. Section 1.4 outlines the scope of the

research. Lastly, Section 1.5 describes the structure of the thesis.

1.1 Background and Motivation

The Norwegian sector of health and long-term care (HC) is substantial. It employed 310,000 man-years in

2017, representing 13% of total employment (Leknes et al., 2019). The demand for HC is affected by the

size and composition of the population, particularly the age and location. Norway’s population is becoming

more centralized, and the average lifespan is increasing (SSB, 2022). Consumption of HC resources increases

significantly with age. As a result, central locations in Norway are expected to experience the highest

increase in health care employment (Leknes et al., 2019).

Figure 1: The elderly development index in Norway from 2000 to 2020 and the projected future
development to 2040. The year 2020 equals an index of 100 (Mellbye and Gierløff, 2018).

The demographic changes characterized by a constantly growing and aging population is the main driver

of the increasing demand for health services. As seen in Figure 1, in the last 20 years, the number of people

older than 70 years has increased by 30%. The peak is not yet expected to be reached and is predicted

to increase by more than 60% over the next 20 years. Growth is especially strong for age groups 80 – 89

years and older than 90 years (Mellbye and Gierløff, 2018).

The expenditures of elderly people are expected to experience a significant increase in the future, attributed

both to a general increase in specific expenditures for the elderly and to the increase in expenditures

for decedents (Gregersen, 2014). The older population leads to a smaller percentage of the population

working and paying taxes, thus expenses for pensions and health care services are going to increase. At

the same time, the oil and gas industry is not expected to be as an important driver of economic growth

and productivity as it has been in the past (Mellbye and Gierløff, 2018). The government pension fund

(Oljefondet) will not continue to grow as quickly (Meld.St, 2017). With more elderly and lower oil income,
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the effective use of resources in the public sector becomes even more important in the future (Mellbye and

Gierløff, 2018).

In 2018 the real expenditure, adjusted for inflation, of Norwegian long-term care and health (HC) per

inhabitant was 7.9 times the level in the year 1970. Out of these expenditures, 85% were tax-financed,

and 17.5% of total public expenditure was devoted to HC. In 2017 the public "ensure-for-responsibility"

seizure accounted for 14% of all man-years in the Norwegian economy (Holmøy, 2020).

According to the estimation by Mellbye and Gierløff (2018), Norwegian municipalities have the potential

to save over 100 billion NOK through digital transformation between 2018 and 2027, with nearly half of

the savings expected to be achieved within the health and social care sector. The results are based on a

number of reports and analyses from Norway and abroad and the potential within several technological

solutions, such as sensors, algorithms, machine learning, and data analysis.

The Norwegian government is encouraging the utilization of data opportunities to enhance the country’s

GDP and improve the efficiency of the public sector. It is crucial that Norway makes better use of data to

successfully transition to a more sustainable society and economy (Meld.St, 2021). There is a consensus

across political parties that the digital transformation of the public sector has great potential as a vital

tool to address current challenges related to productivity, transformation, and efficiency in society. By

embracing digital transformation, the public sector can achieve significant improvements in productivity,

optimizing the utilization of public resources (Skodbo, 2017).

Increased use of big data will help streamline municipal tasks and change the way employees work (Mellbye

and Gierløff, 2018). Municipalities are now prioritizing the implementation and exploitation of digitization

opportunities. Eight out of ten municipal executive directors, IT directors, and municipal chiefs believe

that machine learning will be important to improve work processes in the future (Mamre et al., n.d.).

However, it is worth noting that nearly 40% of municipalities are yet to initiate machine learning in

their IT projects. Notably, within the public sector, a substantial 89% confirms improved process quality

through IT investments, with an additional 81% reporting efficiency gains (Skodbo, 2017). Consequently,

there arises a critical necessity to conduct research focusing on data analytics and machine learning within

the Norwegian health sector.

By analyzing data and information from Logistics Center Helse Midt-Norge (LC HMN), it is possible to

conduct a more in-depth analysis and contribute to the discussion of the application of machine learning in

the Norwegian healthcare system. The municipal sector depends on the success of digital transformation,

as the trend in the next 10 years is towards higher demand for care services and lower income growth

(Mellbye and Gierløff, 2018). Eivind Moen, Chief Operations Officer for St. Olav’s Operational Service -

Logistics and Supply, said in November 2022 (Midt-Norge-RHF, 2022):

“It is expected that patient treatment in Helse Midt-Norge will increase in the next eight to ten

years. Logistics must not be an Achilles heel but must keep up. We need to be able to increase

volume without necessarily increasing costs"

LC HMN is responsible for the storage, distribution, and management of non-pharmaceutical medical

equipment for Helse Midt-Norge. With a large number of goods stored and distributed from the logistics
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center, storage efficiency is an important part of increasing volume without necessarily increasing costs.

When analyzing large amounts of data, it is possible to identify patterns and trends that can be used

to improve inventory management and decision-making. Historical data can contribute to the efficiency

of inventory levels and order frequency (Omsorgsdepartementet, 2022). This forms the basis for the

theoretical motivation for this project.

1.2 Literature Gap

Existing research has primarily focused on the utilization of statistical methods and machine learning

techniques for forecasting purposes. These studies have explored various applications of forecasting, such

as sales prediction (R. Snyder, 2002), lead time demand distribution anticipation (Willemain et al., 2004),

and demand forecasting for safety stock determination (Harvey and Ralph D. Snyder, 1990). Within the

relevant articles, the primary objective has been to forecast demand in order to determine either the safety

stock or the quantity of the orders.

However, the existing literature lacks sufficient research on the implementation of dynamic reorder points

within a continuous replenishment policy and the potential benefits that can be derived from incorporating

machine learning techniques for demand prediction. Furthermore, there is a notable gap in research when

it comes to considering this combination in conjunction with service-level constraints.

1.3 Research Objective and Questions

As stated in Section 1.1, an analysis of data and information from Logistics Center Helse Midt-Norge

(LC HMN) is an important contribution to the discussion of the application of machine learning in the

Norwegian healthcare system. As visualized in Figure 2, this thesis aims to fill the literature gap stated in

Section 1.2, and provide a contribution to the scientific literature on the intersection of machine learning,

inventory management, and demand forecasting.

Figure 2: Potential contribution area illustrated

The objective of this research involves a contribution to the existing scientific knowledge in the intersec-
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tion field represented in Figure 2, throughout an in-depth analysis of Logistics Center Helse Midt-Norge,

focusing on dynamic reorder point policy. More specifically, the objective is to:

"Make a contribution to the current literature by investigating the effects of implementing demand

forecasting and a dynamic reorder point policy for Logistics Center Helse Midt-Norge"

To achieve the objective and fulfill the purpose of the thesis, a series of research questions will be addressed

and answered throughout the study. These research questions were formulated through an iterative process

of research and discussion. The present study is led by the following research questions:

RQ1: What is the state-of-the-art within demand forecasting for inventory manage-

ment?

This research question aims to explore the established use cases of time series-based forecasting for invent-

ory management. Through conducting a systematic review of the literature, a comprehensive mapping

of the various demand forecasting methods can be achieved. The systematic review of the literature will

be presented in Section 4, supported by the theory presented in Section 2. The research question will be

discussed in Section 6.1.

RQ2: How can the inventory be classified?

In the second research question, the focus will be on investigating relevant methods and measures that can

be utilized for classifying the inventory of Logistics Center Helse Midt-Norge. The research question will

be answered by performing a data analysis, and exploring findings from the systematic literature review

(Section 4). The second research question will be discussed in Section 6.2.

RQ3: How can the AS-IS fixed reorder point be improved through a dynamic reorder

point?

This research question aims to investigate the impact of transitioning from the current fixed reorder point

to a dynamic reorder point. The research will employ a simulation method and rely on basic forecasting

techniques to support the analysis. The results will be discussed in Section 6.4.

RQ4: What is the impact of implementing advanced forecasting methods for the

dynamic reorder point?

The fourth and final research question explores the effects of implementing advanced forecasting methods

on dynamic reorder points using the simulation method. More specifically, it builds upon the third research

question by investigating the impact of machine learning and more advanced forecasting techniques on the

simulation, comparing them to the basic techniques examined in the third research question. The findings

are discussed in Section 6.6.
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1.4 Research Scope

Logistics Center Helse Midt-Norge (LC HMN) provides non-pharmaceutical medical equipment to Helse

Midt-Norge. As visualized in Figure 3, Helse Midt-Norge includes the four healthcare organizations: Helse

Nord-Trøndelag Levanger, St. Olavs Hospital, Helse Møre og Romsdal Molde, and Helse Møre og Romsdal

Ålesund. In terms of health care, Helse Midt-Norge has the responsibility for 732 000 Norwegian citizens

(Asperud, 2020).

Figure 3: Established cooperation structures between municipalities and health care organizations
in Norway (Asperud, 2020)

Given that St. Olav’s Hospital is the largest customer of LC HMN, the flow of goods between these two

parties is likely to be representative of the general flow of goods within LC HMN. For this reason, this thesis

will focus on inventory management exclusively related to outgoing goods delivery to St. Olav’s Hospital,

which includes: St. Olavs Department Øya, St. Olavs Department Orkanger, St. Olavs Department Røros

and satellite units.
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Name Formula Parameters Dependent
on Demand

Safety Stock SS = � · SF � - Standard Deviation

SF - Safety Factor
True

Reorder Point ROP = DDLT+SS

DDLT - Demand During Lead
Time

SS - Safety Stock

True

Target (Maximum)
Inventory Level T = D·(R+L)+SS

D - Demand per unit of time

L - Lead-time Duration

R - Review-period Duration

SS - Safety Stock

True

Order Quantity Q = T � I
Q - Order Quantity

I - Inventory on Hand
True

Economic Order
Quantity EOQ =

r
2 ·A · S
i · c

A - Annual Demand

S - Ordering Cost

i - Carrying Cost

c - Unit Cost

True

Table 1: General Formulas in Inventory Management

Table 1 demonstrates that all the mentioned formulas are directly or indirectly dependent on demand. For

this reason, this thesis will examine how demand as a parameter affects inventory management. The flow of

outgoing goods for Logistics Center Helse Midt-Norge is a key factor that affects inventory levels. Therefore,

the scope of this thesis will include the demand for these goods. For data analysis, a representative sample

of goods will be analyzed in order to draw conclusions about demand patterns and forecasting challenges

for the company as a whole. The sample size will be determined on the basis of statistical considerations

and the specific research goals of the study.

The investigation will involve evaluation of the effects of incorporating insights from demand analysis, by

simulating the warehouse environment. Specifically, the focus will be on experimenting with the reorder

point. However, due to the time constraints of this master’s thesis, the research scope will exclude the

examination of the potential impact on order size resulting from demand insights.

In summary, the scope of this thesis will be limited to inventory management, specifically examining reorder

points at the case company LC HMN. The study will primarily concentrate on the demand for outgoing

goods delivery to St. Olav’s Hospital.
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1.5 Thesis Structure

Table 2: Thesis Structure

Section 1
Introduction

The introduction describes the background and purpose of the project,
research objectives, questions and scope, and the structure of the report.

Section 2
Theoretical
Background

The theory section introduces the theoretical background of the research
context and discusses different theoretical perspectives defined in the relevant
literature. It provides a theoretical overview.

Section 3
Methodo-

logy

The methodology section outlines the rationale for selecting the research
approach, as well as providing details on the process of conducting the
systematic literature review, empirical case study, data analysis, and
simulation.

Section 4
Systematic
Literature
Review

In this section, the results and findings of the systematic literature review are
presented. The systematic literature review is concerned with reviewing
recently published literature in the field of inventory management, demand
forecasting, and machine learning. Relevant articles are utilized for answering
the research objective and research questions.

Section 5
Empirical

Case Study

This section presents the results of an empirical case study, including an
extensive description of how LC HMN operates, a data analysis, and a
multi-scenario analysis.

Section 6
Discussion

The discussion section of this thesis will analyze and interpret the findings
obtained from both the systematic literature review and the empirical case
study. These findings will be discussed in the context of the research
questions.

Section 7
Conclusion

The conclusion summarizes the results, present a step-wise guideline,
highlights research contributions, and present the limitations and potential
further work.
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2 Theoretical Background

This section presents a summary of the established theoretical frameworks found in the existing liter-

ature, which serve as the foundation for the research context. These frameworks will contribute to the

interpretation of the findings obtained from the systematic literature review and the empirical case study.

Theoretical perspectives related to inventory management, demand forecasting, and artificial intelligence

will be presented.

2.1 Inventory Management

Inventory management is the process of managing the supply of materials to ensure that the right amount

of stock is available at the right time (Stevenson, 2021). It involves tracking the movement of goods from

the point of origin to the point of consumption, as well as managing the storage and distribution of goods.

Effective inventory management is essential to ensure that the right amount of stock is available to meet

customer demand and to avoid overstocking or understocking (Arnold, 2017).

This process involves several key considerations, such as deciding what and when to order. While the

quantity of items to be ordered is an important aspect of inventory management, the order quantity

is excluded from the scope of this thesis, as outlined in Section 1.4. Timing plays a critical role in

inventory replenishment to prevent stockouts and minimize the potential for excess inventory, necessitating

the consideration of trade-offs between factors such as holding costs and service level (Stevenson, 2021).

Therefore, this section presents the relevant costs and terms associated with inventory management.

2.1.1 Relevant Costs in Inventory Management

In addition to the initial purchase price, the acquisition of materials encompasses several direct expenses

that necessitate careful consideration. This subsection specifically delves into two primary costs within

this domain: holding costs and ordering costs.

Holding Costs

For inventory management decisions, there are several costs to take into consideration. The price paid for

a purchased item, known as the item cost, includes the cost of the item itself and any additional direct

costs incurred in bringing the item into the facility. The item price is necessary to calculate the holding

costs. The holding cost increases in direct proportion to inventories (Arnold, 2017). Holding costs can be

divided into three types of cost: capital cost, storage cost, and risk costs. Capital expenses can be affected

by interest rates, company credit standing, and possible investment opportunities (Stevenson, 2021). The

location and type of storage needed will affect the storage cost. Risk cost is linked to the risk of carrying

a type of product that can obtain a loss of product value due to technologically aging or perishable goods

that may expire.
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Figure 4: Graphical representation of the holding cost.

The total holding costs can be expressed as shown in Figure 4, where Q equals the order quantity in

units, c equals the unit purchase cost, and h equals the holding cost per year as a fraction of product cost

(S. Chopra, 2016).

Ordering Costs

Ordering costs refer to the expenses associated with the process of placing and fulfilling an order. Ordering

costs are often fixed expenditures, independent of the number of units ordered (Stevenson, 2021). Ordering

costs encompass various expenses involved in the preparation, follow-up, expedition, receipt, approval of

payment, and accounting charges associated with order acceptance and invoice payment (Arnold, 2017).

As the number of orders placed by a company increases, the accumulated ordering expenses also rise.

However, by utilizing order releases within the framework of blanket orders, which are placed in large

quantities and cover extended time periods, it is possible to reduce the overall order cost.

Figure 5: Graphical representation of the order cost.

9



The ordering cost is expressed as shown in Figure 5, where D is the annual demand, Q is the given lot

size, and S is the order cost for each order placed. A warehouse can withstand a higher total ordering

cost if it leads to a decrease in total holding costs. When a company only purchases goods as needed, it

results in more frequent orders but reduces the inventory held. To achieve the right balance between order

quantities and minimize overall costs, a company must carefully monitor its ordering costs and holding

costs (Stevenson, 2021).

Stockout, Safety Stock & Service Level

A stockout is possible if demand during the lead time is higher than anticipated. Due to backorder fees,

lost sales, and perhaps even lost customers, a stockout could be costly. Carrying extra inventory to protect

against situations where demand during lead time is higher than anticipated can help to reduce stockouts

(Stevenson, 2021).

The purpose of safety stock is to mitigate uncertainty in supply and demand and to avoid the possibility of

stockout. Uncertainty may occur in two ways: quantity uncertainty and timing uncertainty. Safety stock

is an additional amount of stock carried and is generally the most commonly used buffer (Arnold, 2017).

The level of safety stock is determined by the variability of demand, the frequency of reordering, the lead

time, and the desired service level (Arnold, 2017). The calculation of safety stock (SS) is expressed as:

SS = � ⇥ SF (1)

Where � represents the standard deviation of demand within a time period, and the safety factor (SF)

represents the number of standard deviations needed for the desired service level. The connection between

safety factor and service level can be seen in Appendix A.

The service level of a warehouse is expressed as the proportion of orders fulfilled without a stockout. A

service level of 95% implies that a stockout is possible only during the time interval between a customer’s

order and the warehouse’s replenishment and that the warehouse is able to supply the customer’s order

95% of the time (Arnold, 2017). The service level is calculated as follows:

Service Level = norders � nstockouts

norders
(2)

2.1.2 Replenishment Policies

This section provides an overview of two replenishment policies in inventory management: the periodic

review policy and the continuous review policy. These policies serve as approaches for maintaining inventory

levels and ensuring efficient replenishment processes.

Periodic Review Policy

In a periodic review policy, the inventory level is evaluated at predetermined intervals and the Order-Up-To

(OUL) is determined as the sum of the existing inventory and the size of the replenishment lot. An order is

initiated when the sum of the current inventory level and the lot size reaches the order-up-to level (OUL)

(S. Chopra, 2016). The period of time between orders is known as the review interval. Each order’s size
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may vary depending on the demand encountered between orders and the inventory level at the time of

ordering.

Figure 6: Example of Periodic Review Policy (S. Chopra, 2016).

Figure 6 shows how an inventory with a periodic review policy would operate. A fixed review interval is

sat, in this example, seven days, and the quantity being ordered equals the Order-Up-To (OUL) minus the

quantity on stock.

Continuous Review Policy

In an inventory management system utilizing a continuous review policy, technology is utilized to constantly

monitor inventory levels. This enables orders to be triggered when the inventory falls below a predetermined

reorder point (Stevenson, 2021). A continuous review policy, often referred to as Reorder Point (ROP)

policy, should take into account the uncertainty of demand during the lead time period.

Figure 7: Example of Continuous Review Policy (Arnold, 2017).

Inventory replenishment must consider reordering points and safety stock levels to guard against stock

out. Mean lead time demand should be taken into account when determining the necessary quantity of

product to be stored (John J. Bartholdi and Hackman, 2019). Incorporating lead time variability into the

fundamental inventory model can improve its accuracy. By combining safety stock levels and lead time

demand, an reorder point, also referred to as ROP, can be determined to mitigate the risk of stockouts
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and minimize the impact of lead time fluctuations (Arnold, 2017). The reorder point is defined as:

Reorder Point = DDLT + SS (3)

Where Demand During Lead Time (DDLT) is the anticipated demand for a Stock Keeping Unit during

the lead time required to replenish the inventory. As explained earlier, the Safety Stock (SS) is the

additional quantity of stock held to mitigate uncertainties in demand and lead time. As for order quantity,

in continuous review policies, the order size is kept fixed between replenishment (S. Chopra, 2016).

2.2 Time-Series Forecasting

In this section, relevant statistical time series forecasting methods are presented. Time-series forecasting

involves analyzing historical data to predict future values based on patterns and trends within the data.

A time series comprises sequentially arranged raw data points, such as monthly sales for a specific product

spanning multiple years. Statistical methods are applicable when sufficient data spanning several years

exist for a product, and when there are clear and relatively consistent relationships and patterns present

(Chambers et al., 1971). Time-series analysis enables the detection and elucidation of various phenomena,

including:

• Seasonality-related patterns or systematic variations within a data series.

• Repetitive patterns occurring at regular intervals of two or more years.

• Analysis of data trends.

• Examination of growth rates associated with these trends.

Wold’s Theory of Decomposition posits that a time series can be deconstructed into four distinct compon-

ents: trend (T), seasonal (S), cyclical (C), and residual (I). This theory suggests that by breaking down a

time series into its constituent components, one can gain a deeper understanding of the underlying patterns

and trends (Chase, 2016, Treyer, 2010). Based on the characteristics of these components, diverse demand

patterns can be generated (Treyer, 2010). Figure 8 illustrates the combination of a trend and a seasonal

component with the corresponding demand patterns.

Figure 8: Demand patterns resulting from trend and seasonal components (Moroff et al., 2021b).
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Time-series analysis models aim to identify recurring patterns within historical observations, enabling the

forecasting of future events. This analysis is valuable to businesses in making informed decisions regarding

product sales, inventory management, staffing requirements, and marketing strategies (Shumway, 2017).

Time-series forecasting approaches can generally be categorized into two main methodologies: machine

learning methods and traditional statistical methods. These methodologies diverge in their approach to

forecasting, with machine learning methods employing algorithms to detect patterns within the data, while

traditional statistical methods rely on mathematical models for prediction (S. Zhang et al., 2017).

Typical Use-cases for Time Series

Time series are commonly used to address various challenges, such as business forecasting, understanding

past behavior, and evaluating current achievements.

• Business forecasting: Common scenarios where predictive analytics is applied involves a retailer

seeking to anticipate future sales volume and a financial investor predicting the future trajectory of

a particular stock.

• Understanding past behavior: By analyzing historical time series data, a supplier can gain

insight into sales patterns over specific months or periods of the year, including fluctuations and

trends. This examination enables the supplier to develop a deeper understanding of seasonal vari-

ations within the market.

• Evaluate current accomplishments: Utilizing time series analysis, one can make predictions re-

garding future events and subsequently evaluate performance by comparing actual outcomes with the

earlier predictions. This allows for an evaluation of progress and performance during the designated

period.

A trend in a time series refers to a noticeable pattern in the data that shows how it changes over time.

Typically, a trend involves either an increase or decrease in the values of the series and lasts for a short

period before fading away. In Figure 9, you can see six different types of trends visually represented.

Figure 9: Common trends of time series
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Time-series forecasting encompasses univariate and multivariate methodologies. Univariate time-series

forecasting leverages a singular attribute from the temporal sequence as an input to predict the subsequent

output. On the contrary, multivariate time series forecasting incorporates a collection of attributes for each

temporal point to generate a single output for the subsequent time step (Vercellis, 2011).

Simple Moving Average

The Simple Moving Average (SMA) is a method that calculates the average value of a variable over a

specified period of time. It is called "simple" because it assigns equal weight to all observations within the

specified period (Wheelwright et al., 1998).

Let Xt be a time series variable at time t, and let n be the number of observations used for calculating the

SMA. The formula for calculating the SMA at time t is as follows:

SMAt =
Xt�n+1 +Xt�n+2 + . . .+Xt�1 +Xt

n

Here, Xt�n+1, Xt�n+2, . . . , Xt�1, Xt are the n observations used to calculate the SMA at time t.

The SMA method is simple to understand and easy to calculate. It provides a quick estimate of the

current trend in the time series. However, it has some limitations. SMA does not consider the weightage

of different observations, and it may not capture sudden changes or outliers in the data. Additionally,

since SMA assigns equal weight to all observations, it may not be suitable for time series data with varying

trends or seasonality.

Holt-Winters Exponential Smoothing

The Holt-Winters exponential smoothing model is a forecasting technique used to analyze and predict time

series data. It is an extension of simple exponential smoothing that takes into account both trend and

seasonality in the data (Vercellis, 2011). The model was proposed by Charles Holt and Peter Winters in

the 1960s. The Holt-Winters model is based on three smoothing components (Wheelwright et al., 1998):

• Level equation: Represents the average value of the series over time. It is denoted by the symbol l.

l(t) = ↵ · (y(t)� s(t� L)) + (1� ↵) · (l(t� 1) + b(t� 1))

• Trend equation: Accounts for the increasing or decreasing pattern in the data. It is denoted by the

symbol b.

b(t) = � · (l(t)� l(t� 1)) + (1� �) · b(t� 1)

• Seasonality equation: Captures the repeating patterns or cycles in the data. It is denoted by the

symbol s.

s(t) = � · (y(t)� l(t)) + (1� �) · s(t� L)
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Where:

• y(t) represents the actual value at time t.

• L denotes the length of the seasonal period (e.g., 12 for monthly data with annual seasonality).

• ↵, �, and � are smoothing parameters that control the weights given to the new observations versus

the existing components. They should be chosen or estimated to optimize forecasting accuracy.

The model uses three equations to update these components at each time step. Once the components

are updated, they are used to make forecasts for future time periods by projecting the level, trend, and

seasonality forward. The Holt-Winters model has different variations, including additive and multiplicative

models, depending on whether the seasonal component is added or multiplied by the other components

(Wheelwright et al., 1998). The choice between the two depends on the characteristics of the data and the

underlying patterns.

2.3 Descriptive Statistics

In this section, relevant descriptive statistics are presented, including univariate analysis, multivariate

analysis, and forecasting performance metrics. Univariate analysis focuses on single variables, while mul-

tivariate analysis explores relationships between multiple variables.

2.3.1 Univariate Analysis

Univariate analysis is a statistical approach employed for utilized to assess the relationship between an indi-

vidual independent variable and a dependent variable. This method entails investigating the distributions,

measures of central tendency, and dispersion of a singular variable in isolation (Vercellis, 2011).

Arithmetic Mean (X̄)

One commonly employed method for quantifying central tendencies in a dataset is the arithmetic mean,

also known as the mean or average. The arithmetic mean is determined by summing all the values within

a sample and dividing the sum by the total number of values in the sample. It is considered the most

appropriate measure of central tendency when the data follow a normal distribution, although it can be

influenced significantly by the presence of large outliers (Vercellis, 2011). The arithmetic mean can be

represented mathematically as follows:

AM(X) =
1
N

NX

i=1

Xi (4)
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Median

The median is defined as the central value within a given sample and is particularly useful when the data

exhibit skewness or contain outliers (Miller, 1993).

M =

8
><

>:

a
⇥
N
2

⇤
if N is even

a[N�1
2 ]+a[N+1

2 ]
2 if N is odd

(5)

The median is a more robust estimator than the mean, as shown in Equation 4 and Equation 5. The

median refers to the statistical measure that identifies the central value within a sorted dataset, while the

mean encompasses all values in its calculation. When the data set contains significant outliers, the median

is preferred to use because it is not affected by extreme values. This attribute makes the median a more

resilient statistic (Vercellis, 2011).

Variance (�2) & Standard Deviation (�)

Variance and standard deviation are statistical indicators that quantify the proximity of individual data

points to the mean of a given dataset. In datasets characterized by a limited dispersion, data points

tend to cluster closely around the mean, leading to lower values for both variance and standard deviation.

Conversely, datasets with a wider range of values that differ from the mean exhibit higher values for

variance and standard deviation. Consequently, when all values within a data set are identical, both

variance and standard deviation assume a value of zero (P. Kaur et al., 2018). Below are the mathematical

representation of the two:

Var(X) =
1

N � 1

NX

i=1

(Xi � X̄)2 (6)

SD(X) =
p

Var(X) =

vuut 1
N � 1

NX

i=1

(Xi � X̄)2 (7)

2.3.2 Bivariate & Multivariate Analysis

Bivariate and multivariate analyses are separate methodologies employed in data analysis to examine

the associations among variables. Bivariate analysis focuses on exploring the relationship between two

variables, whereas multivariate analysis investigates the relationships involving three or more variables.

Both approaches serve the purpose of unveiling underlying patterns and trends within the data, which

may not be evident in its raw form.

Covariance

The computation of covariance involves determining the average of the products derived from the differ-

ences between the values of two variables and their respective means. This computation yields a singular

numerical value capable of spanning from positive to negative values. A positive covariance indicates a

positive association between the variables, implying that an increase in one variable is likely to correspond
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with an increase in the other. Conversely, a negative covariance signifies a negative association, suggesting

that an increase in one variable tends to coincide with a decrease in the other (Vercellis, 2011).

Cov(X,Y ) =

PN
i=1(Xi � X̄)(Yi � Ȳ )

N � 1
(8)

Correlation

Correlation provides a quantitative measure of the linear relationship between two random variables X and

Y within a given dataset. The resulting coefficient resides within the open interval (�1, 1), where values

of 1 or �1 indicate a strong positive or negative correlation, respectively, between the variables, while a

value of 0 signifies no correlation (Vercellis, 2011). The correlation coefficient, denoted as Cor(X,Y ), is

defined as:

Cor(X,Y ) =
cov(X,Y )
�X�Y

if �X�Y > 0, (9)

where cov(X,Y ) represents the covariance, and �X and �Y denote the standard deviation of X and Y ,

respectively. It should be noted that Cor(X,Y ) is only applicable when both standard deviations are finite

and positive.

2.3.3 Forecasting Performance Metrics

This section presents relevant performance metrics to measure the performance of forecasting models.

RMSE

Root Mean Squared Error (RMSE) serves as a widely utilized performance metric for quantifying the

disparity between predicted and actual values in regression problems. The process of computing RMSE

can be outlined into three straightforward steps (Willmott and Matsuura, 2005).

RMSE =

vuut 1
n

nX

i=1

(yi,pred � yi,true)2 (10)

Where:

• n is the total number of observations

• yi,pred is the predicted value for observation i

• yi,true is the true (actual) value for observation i

Firstly, the "total square error" is computed by summing the squared errors of each individual obser-

vation. This method incorporates a weighting scheme that emphasizes the contribution of larger errors

by assigning them greater importance due to their squared magnitude. Consequently, if the total error is

concentrated within a decreasing number of increasingly significant individual errors, the total square error

will consequently increase. Subsequently, the total square error is divided by the number of observations
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(n), yielding the mean square error (MSE). Lastly, the RMSE is derived by taking the square root of the

MSE.

MAE

Mean Average Error (MAE) serves as a performance metric that quantifies the average magnitude of errors

in model predictions, without considering their direction. Unlike RMSE, which assigns greater weight to

larger errors (Hyndman and Koehler, 2006), MAE treats all errors equally, providing a clearer indication

of the model’s accuracy in terms of the absolute difference between predicted and actual values (Chai and

Draxler, 2014).

MAE =
1
n

nX

i=1

|yi,pred � yi,true| (11)

Where:

• n is the total number of observations

• yi,pred is the predicted value for observation i

• yi,true is the true (actual) value for observation i

MASE

Mean Absolute Scaled Error (MASE) proves valuable in comparing the efficacy of diverse forecasting

methods, as it facilitates the standardization of error metrics across varying datasets and time series

(Hyndman and Koehler, 2006). MASE accomplishes this by comparing the absolute errors of a forecast

with those of a naive forecast, which represents a straightforward forecasting approach assuming that

future values of the time series will match the most recent observed value.

MASE =
1
T

PT
t=1 |yt � ŷt|

1
T�1

P
t = 2T |yt � yt�1|

(12)

Where:

• yt represents the actual value of the time series at time t

• ŷt represents the forecasted value at time t

• T represents the total number of time periods

By contrasting the two error sets, the MASE provides a measurement of forecast accuracy that is normal-

ized in relation to the errors of the naive forecast. This normalization facilitates a more straightforward

interpretation and comparison of forecast accuracy, ensuring consistency across distinct time series and

forecasting methodologies.
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The ranges of the MASE statistic can be explained as follows:

• MASE = 1: The evaluated forecasting method is as good as the Naïve method.

• MASE < 1: The forecasting method utilized is better than the Naïve method. The smaller the

MASE, the better the forecasting method is relative to the Naïve method.

• MASE > 1: The forecasting method performs worse than the Naïve method. There’s no point in

using the forecasting method.

2.4 Data Preprocessing

Data preprocessing is a crucial step within the data analysis pipeline. This step encompasses the vital

activities of data cleaning, data transformation, and data reduction, all of which are undertaken to prepare

the dataset for subsequent analyses.

Data Cleaning

Data cleaning is a fundamental procedure in data science, aiming to minimize the presence of noise within

the data and enhance the accuracy and reliability of the dataset (Brownlee, 2022). It is the process of

refining the data into a usable format by locating missing data, correcting incorrect values, removing du-

plicate entries, and standardizing the data, thus ensuring its suitability for analysis (Sattler and Schallehn,

2001).

Data Transformation

Data transformation plays a crucial role in data preparation as it aims to enhance manageability by

reducing the complexity of the data. This process enables the identification of patterns and trends within

the data with greater ease, thereby enhancing the accuracy of the dataset (Chandrasekar et al., 2017).

Figure 10: Syntatic transformation, (Chu and Ilyas, 2019)

Chu and Ilyas (2019) described the underlying method of syntactic transformation as a central part of the

data preparation. Syntactic transformation entails the manipulation of data values to adhere to a specific

format or predefined set of rules, such as a database schema (Abdallah et al., 2017). Figure 10 presents

a demonstrative instance of syntactic transformation, wherein the data undergo processing to enhance

manageability and facilitate subsequent analysis.
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Data Reduction

Data reduction constitutes a critical phase within the data preprocessing workflow, with the aim of reducing

the volume of data while preserving its integrity. By employing data reduction techniques, the amount of

data to be stored and analyzed is reduced, leading to improved efficiency and accuracy in data processing.

The main objectives of data reduction encompass the reduction of storage space, processing time, and the

complexity of data analysis. Various techniques can be employed to achieve data reduction, including data

compression, selection of attribute subsets, aggregation, and data transformation (Namey et al., 2008).

The selection of attributes in subsets involves identifying a subset of attributes in the dataset that are most

relevant to the analysis. Aggregation consolidates similar records or values into a single entry. Lastly, data

transformation techniques facilitate the conversion of data from one form to another, such as from numerical

to categorical or from unstructured to structured representations (Hall and Holmes, 2003).

2.5 Artificial Intelligence

This section provides an overview of the hierarchy of artificial intelligence, machine learning, and deep

learning. Additionally, it explores concepts of time series forecasting, presenting relevant models and

techniques.

Artificial Intelligence is a complex concept that has been difficult to define precisely. Alan Turing proposed

the Turing Test in his seminal work Computing machinery and intelligence (Turing, 2009), which suggests

that a machine may be regarded as intelligent if it is indistinguishable from a human in conversation by

a neutral observer. Artificial Intelligence refers to a machine’s capacity to communicate, think, and act

autonomously in both familiar and unfamiliar environments in a manner comparable to that of a human

(Du-Harpur et al., 2020). AI is a broad field of research that encompasses Machine Learning and Deep

Learning. Figure 11 demonstrates that Deep Learning is an integral part of Machine Learning. The three

technologies, namely Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL), are

observed to be subsets of each other.

Figure 11: Deep learning is a subset of machine learning, which in turn is a subset of artificial
learning.
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2.5.1 Machine Learning

Machine Learning is a subset of Artificial Intelligence (Figure 11) that includes methods to allow machines

to learn from data without being explicitly programmed (Samuel, 1988). By employing algorithms and

statistical models, computers can be trained to analyze data and identify underlying patterns within it.

This enables them to perform specific tasks without explicit guidance from human operators. In Machine

Learning, the algorithm can be trained to improve its accuracy by striving to reduce the error and increase

the probability of its predictions being correct (Jakhar and I. Kaur, 2020).

Supervised & Unsupervised Learning

In the field of machine learning, supervised learning refers to tasks where the objective is to discover an

optimal function that accurately maps a given set of inputs (e.g., images) to their corresponding correct

outputs (labeled data). This process relies on the availability of a predetermined pair of training datasets.

Conversely, unsupervised learning focuses on the identification of latent patterns within data, such as

clusters or groups, in the absence of prior knowledge or explicit labeling (Vercellis, 2011).

Overfitting

Overfitting is a frequently encountered phenomenon in machine learning, characterized by a situation

in which a model demonstrates satisfactory performance when evaluated on training data but fails to

generalize effectively when applied to data from different sources. The primary cause of overfitting is often

attributed to the complexity of the model itself. A highly complex model tends to learn complex functions

that may not be present in other datasets. Consequently, when confronted with new data, the excessively

complex model becomes more prone to overfitting, thereby hindering its ability to generalize accurately

(Hawkins, 2004).

Figure 12: Under- and overfitting examples

Regression Tree

Regression trees are a supervised machine learning technique used to predict numerical outcomes based on

a set of features (Nasteski, 2017). This method of data analysis involves partitioning the data into smaller

subsets and using these subsets to build a model that captures the relationships between the features

and the target variable (Elith et al., 2008). This model can be used to identify linear and non-linear

relationships in the data.
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SARIMAX

Seasonal Autoregressive Integrated Moving Average with Exogenous variables (SARIMAX) is a time series

forecasting model that builds upon the popular Autoregressive Integrated Moving Average (ARIMA)

model. The main difference between SARIMAX and ARIMA is that SARIMAX includes additional vari-

ables, known as exogenous variables, that can help to explain the behavior of the time series (Vagropoulos

et al., 2016). Exogenous variables are variables that are not part of the time series being forecasted but

are believed to influence it.

The SARIMAX model is typically represented as SARIMAX(p, d, q) (P, D, Q)s, where:

• p is the order of the autoregressive term (AR)

• d is the order of differencing required to make the time series stationary (I)

• q is the order of the moving average term (MA)

• P is the seasonal order of the autoregressive term (SAR)

• D is the seasonal order of differencing required to make the time series stationary (SI)

• Q is the seasonal order of the moving average term (SMA)

• s is the number of time periods in a season

The SARIMAX model is fitted to the time series data using maximum likelihood estimation. Once the

model is fitted, it can be used to make forecasts by extrapolating the trend and seasonal components of

the time series, as well as incorporating the effects of any exogenous variables (Williams and Hoel, 2003).

K-Means Clustering

K-Means Clustering is an unsupervised machine learning technique utilized for the purpose of categorizing

data points into a predetermined number (K) of distinct clusters (Morissette and Chartier, 2013). The

algorithm operates by initially assigning each data point to one of the K clusters and subsequently adjusting

the centroid position of each cluster iteratively. The objective is to minimize the distance between the

data points and their respective cluster centroids. This iterative process continues until a local optimum

is reached, where the distance between the data points and centroids is minimized to the greatest extent

possible (Vercellis, 2011).

2.5.2 Deep Learning

Deep learning is a subset of machine learning (Figure 11) that includes computational models and al-

gorithms that mimic the architecture of organic neural networks in the brain.

Artificial Neural Network

An Artificial Neural Network, in contrast to conventional machine learning models, exhibits the capability

to capture and leverage non-linear associations between input and output variables (Yang and X.-J. Wang,

2020). This means that Artificial Neural Network’s can learn complex patterns in data that cannot be

identified by traditional models (Sarker, 2021). They are used in a wide range of applications, including

computer vision, natural language processing, and time series forecasting (Du and Sun, 2006; Baroni, 2020;
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Khashei and Bijari, 2010). Feedforward Neural Network, Convolutional Neural Network and Recurrent

Neural Network are all variations of Artificial Neural Network that have been modified to address specific

problem domains and exhibit improved performance.

Non-linearity

Non-linearity plays a crucial role in the functioning of Artificial Neural Network, serving to modulate or

limit the output produced by linear activation functions (Albawi et al., 2017). Sigmoid and Tanh functions

are commonly used for the non-linear transformation step of ANN (J. Wang et al., 2016). However, as the

complexity of the neural network architecture increases, the gradient signal may decrease, leading to the

"vanishing gradient" problem (Krizhevsky et al., 2017). To address this issue, the Rectified Linear Unit

(ReLU) activation function offers a constant gradient for positive input values Figure 12. Additionally,

ReLU and Softplus, both unsaturated activation functions, provide positive inputs with a constant gradi-

ent. Comparative studies have shown that deep ANN using ReLU activation functions outperform their

counterparts using Tanh units (Krizhevsky et al., 2017).

Figure 13: Graphical representation of four selected activation Functions

Name Sigmoid Softplus ReLU Tanh

Formula 1

1 + e�x
ln(1 + e

x
) max(0, x)

2

1 + e�2x
� 1

Table 3: Formulas of activation functions visualized in Figure 13

Backpropagation

Backpropagation is a fundamental procedure for calculating the gradient of an objective function with

respect to the weights in a multilayer network. It applies the chain rule to determine the gradient by

working backward from the output to the input of each module. By iteratively propagating gradients

through the network, starting from the top and moving down to the bottom, backpropagation allows

for the computation of gradients with respect to the weights. This technique is vital in training neural
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networks, as it allows weight adjustments to minimize the objective function and improve performance

(LeCun et al., 2015).

Gradient Decent

Gradient descent is an optimization algorithm that is used to minimize a function iteratively. In the context

of neural networks, it is commonly used to update the network’s weights during the backpropagation process

(LeCun et al., 2015). The gradient of the loss function signifies the path of greatest ascent, requiring the

update of all parameters in the opposite direction of the gradient, facilitated by an adaptable step size

established by the learning rate (Yamashita et al., 2018).

Figure 14: Gradient descent optimization algorithm (Yamashita et al., 2018).

Training ANNs has posed challenges due to the issue of backpropagated gradients that either amplify

or diminish with each time step. Consequently, over multiple time steps, these gradients tend to either

explode or vanish (LeCun et al., 2015).

Convolutional Neural Network

A type of ANN referred to as Convolutional Neural Network employs layers that apply filters to specific

attributes within localized regions of an image. The CNN architecture typically comprises convolutional

layers, pooling layers, and fully connected layers. Convolutional layers function as input filters, generating

"output images" based on the applied filters. The pixels within the output image are obtained through

a linear combination of neighboring pixels situated at corresponding positions within the output image.

The size of the filter determines the extent of the neighborhood considered. Convolutional layers can

also decrease spatial information by eliminating padding. Pooling layers are utilized to reduce the image

dimensions while preserving the most informative data. The fully connected layers, also known as dense

layers, are responsible for classification tasks. The underlying concept is that convolutional and pooling

layers extract relevant features from the image, which are then utilized by the fully connected layer to

classify the obtained features (Alzubaidi et al., 2021).
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Figure 15: A common CNN architecture form in which convolutional layers are continuously
stacked between ReLus, then passed through a pooling layer, and then passed through one or more
fully connected layers (O’Shea and Nash, 2015).

CNNs can be utilized for time series forecasting by treating the time series as a one-dimensional sequence

and applying the convolutional operation across the temporal dimension (Zhao et al., 2017). This allows

the CNN to automatically learn and extract relevant features from the time series data.

Feed Forward Neural Network

A FNN represents a prominent variant of Artificial Neural Network extensively employed in diverse ma-

chine learning tasks, including pattern recognition and classification. Its architecture comprises multiple

interconnected layers of neurons, with the initial layer receiving input data and the final layer generating

the output. The intermediate layers, referred to as hidden layers, play a crucial role in modifying the data

as it passes through the network, in one direction from the input layer to the output layer (Benardos and

Vosniakos, 2007).

Recurrent Neural Network

A Recurrent Neural Network (RNN) represents a deep learning model widely utilized for the analysis of

sequential data. It finds application in various domains, such as language translation, music generation,

time-series forecasting, and financial prediction (Vathsala and Holi, 2020; Boulanger-Lewandowski et al.,

2012; Qin et al., 2017; Cao et al., 2019).

RNN build upon the fundamental principles of learning employed by FNN, including backpropagation, for

adjusting internal weights. However, as depicted in Figure 16, RNN possess a distinctive characteristic

not found in FNN: the ability to retain a memory of prior inputs and outputs. This memory enables

RNNs to recognize patterns over extended sequences of data. The preservation of this memory is achieved

through recurrent connections, which establish connections between nodes in the network that are reused

when new inputs are processed. Consequently, the network can "remember" past information and utilize

it for making enhanced predictions or decisions (Tu et al., 2019). Notably, Recurrent Neural Networks

incorporate an additional layer that facilitates interconnection among inputs, establishing relationships

between each input and its preceding counterparts.
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Figure 16: Architecture of Feedforward Neural Network (FNN) and Recurrent Neural Network
(RNN)

Long Short-Term Memory

The Long Short-Term Memory (LSTM)) is a variant of RNN that is designed to address the problem of

vanishing and exploding gradients, described in Section 2.5, which can occur when training RNNs for long

sequences (Hochreiter, 1998). Figure 17 visualizes the RNN and LSTM cell, which will be described in

detail.

The LSTM architecture is made up of four interconnected layers (DiPietro and Hager, 2020). The input

vector across the cell is used to generate the cell state, which is not subject to any activation functions and

does not contain any cell keys. This allows information to pass through without interference. To decide

which information is to be removed from the cell state, a sigmoid layer (forget gate) is used to compute

a number between 0 and 1 for each number in the cell state. If the value is 1, it is kept, while if it is 0,

it is forgotten. The input gate and the tanh gate layers are then used to determine what information is

stored in the cell state. The input gate layer determines which values will be updated, while the tanh layer

calculates the new candidate value vector to add to the state. These two parts are combined to make a

state update, which determines the range of candidate values depending on the time the model chooses to

update each value and the number of times each value is updated (Siami-Namini et al., 2019).
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Figure 17: Visualization of the differences in cell structure in an RNN vs. LSTM network (Olah,
2022).

The decision regarding the generated output relies on the passing of the cell state through a sigmoid layer

and a tanh layer, respectively. The results of each layer are then multiplied to restrict the number of

outputs. Although different versions of this method exist, they share the concept of using the cell state to

determine which parts to output. The initial state of the LSTM cell can be set to 0; however, for optimal

accuracy, it is best to treat it as a learned parameter. This can be done by starting with random guesses,

then using backpropagation to update the prediction errors back to the initial state values, and updating

with gradient descent. Once this is done, the parameter should be kept as a learned parameter (Olah,

2022).

Explana-
tion Input Vector

Hidden
Layer
Vectors

Output
Vector Bias Vector Parameter

Matrices
Parameter
Matrix

Activation
Functions

Notation xt ht, Ct
ot b U,W V �, tanh

Table 4: Explanation of notations in Figure 17
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3 Methodology

This section provides an outline of the methodological approach adopted for this thesis. It covers a

justification for selecting the specific research methods used to address the research questions. The methods

presented include a systematic literature review, an empirical case study, data analysis, and simulation.

Lastly, an overview of the research is presented, outlining the overall structure and flow of the thesis based

on the research questions and the corresponding methods used.

3.1 Systematic Literature Review

This study applies a Systematic Literature Review (SLR) approach to answering the first research question

presented in Section 1.3. The method was utilized in the fall of 2022 as a part of a preliminary study prior

to this thesis. The systematic literature review includes a theoretical understanding of how demand

forecasting has been used in connection with inventory control, while also identifying research gaps in the

domain.

Narrative, or traditional, reviews are widely criticized for being a singular, descriptive report of a writer’s

contributions to the field, often selected to be included in the field. The implicit bias of the researcher

is often chosen (Tranfield et al., 2003). Systematic reviews differ from standard narrative reviews in that

they use a procedure that is repeatable, scientific, and transparent. The goal is to reduce bias through

extensive searches in the literature of published and unpublished research, as well as by providing an audit

record of the opinions, methodology, and conclusions (Tranfield et al., 2003).

Systematic reviews of the literature are a means of providing an objective theoretical evaluation of a specific

topic. A systematic review is an effective way to provide an objective theoretical analysis (Hopayian, 2001).

Hence, this type of review makes it easier to identify, evaluate, and interpret research in a particular area, by

first examining existing concepts, practices, and theories, and then summarizing the state of reproducible

research in a specific area. Therefore, this type of review facilitates the identification, evaluation, and

interpretation of studies in a given area, first examining existing concepts, practices, and theories and then

summarizing the state of reproducible research in a particular area (Rowley and Slack, 2004; Seuring and

Muller, 2008).
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Literature Identification and Selection

The relevant literature for the SLR was identified using two databases, Scopus and WebOfScience, respect-

ively. Four different experiments were conducted, as indicated in Table 5. Several subthemes emerged

during the search process. Some keywords are listed below:

• Time series

• Demand forecasting

• Lot sizing

• Reorder point

• Economic order quantity

• Lead time

• Stock level

After experimenting we ended up with the following used search terms: ("time series" OR "timeseries")

AND ("demand" OR "order") AND ("forecast" OR "forecasting") AND ("frequency" OR "lot sizing" OR

"reorder" OR "lead time" OR "leadtime" OR "eoq" OR "economic order quantity") AND ("supply" OR

"inventory" OR "stock"). The search was limited to articles written in the English language, resulting

in a total of 103 articles identified from the two databases, 60 and 43 articles from Scopus and Web of

Science. Table 5 shows a systematic search conducted in the databases Scopus and Web of Science, where

the results of the searches are presented in a step-by-step manner.

Search Searchwords Scopus
Results

Web of
Science
Results

Total

1
("time series") AND ("demand" OR "forecasting")
AND ("reorder" OR "lead time" OR "leadtime"
OR "eoq")

487 238 725

2

("time series" OR "timeseries") AND ("demand")
AND ("forecasting") AND ("dynamic" OR
"reorder" OR "lead time" OR "leadtime" OR
"eoq" OR "economic order quantity" ) AND (
"supply" OR "inventory" OR "stock" )

156 102 257

3

("time series" OR "timeseries") AND ("demand"
OR "order") AND ("forecast" OR "forecasting")
AND ("frequency" OR "lot sizing" OR "reorder"
OR "lead time" OR "leadtime" OR "eoq" OR
"economic order quantity") AND ("supply" OR
"inventory" OR "stock")

137 98 235

4

("time series" OR "timeseries") AND ("demand"
OR "order") AND ("forecast" OR "forecasting")
AND ("frequency" OR "lot sizing" OR "reorder"
OR "lead time" OR "leadtime" OR "eoq" OR
"economic order quantity") AND ("supply" OR
"inventory" OR "stock")

60 43 103

Table 5: The stepwise development of search words.

The 103 resulting articles were exported to the EndNote library, where a duplication removal was per-

formed. This resulted in 92 unique articles. Data from each article were extracted and put into an excel

spreadsheet for systematic reasons. The spreadsheet consisted of one row for each of the 92 articles. For
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each row, information such as reference link, authors, title, year of publication were stored. A systematic

screening process was conducted by pre-defining questions to separate relevant articles from irrelevant ones.

This process included a screening of every abstract and title.

• Is the article related to forecasting?

• Could the objective of the article be relevant in inventory management?

• Does the article and the author seem trustworthy?

The screening resulted in the removal of 53 articles, leaving 60 articles for further analysis. The next

step in the literature selection was a full reading (eligibility) of the remaining 60 articles. The following

questions were used as inclusion criteria:

• Within the scope of this thesis?

• Is the article of sufficient quality to be included in the systematic literature review?

• Is the article in the subject area?

Consequently, 43 papers were removed. After the assessment, a total of 17 articles were selected for

inclusion in the SLR.

With 17 articles remaining, the research topics could be said to have limited available data. As the topic

of review has not been widely studied before, forward and backward snowballing was included to add addi-

tional potentially relevant articles that were not identified in the initial search. In general, snowballing is a

data collection method that uses existing data sources to find additional data sources. Snowballing allows

researchers to identify sources of information that they may not have been able to find through keyword

searches, enabling them to access a wider range of literature. This means that the review can be more

comprehensive and the quality of the results is improved (Wohlin, 2014). The snowballing process involved

the search for additional references through the reference lists of articles already included, resulting in 21

additional articles included for further analysis. The resulting total number of articles after snowballing is

therefore 38 papers. In Figure 18, a Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) flow chart summarizes the literature discovery and selection procedure.
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Figure 18: PRISMA flowchart illustrating the process of the literature selection

3.2 Empirical Case Study

This method was used in answering research questions two, three, and four. Gerring (2004) describes a

case study as an intensive study of a single unit with the aim of generalizing across a larger set of units.

For the purposes of this project, the unit is Logistics Center Helse Midt-Norge (LC HMN). Moreover,

Flyvbjerg (2011) argues that case studies cannot provide reliable information on the broader class, but

may be useful in the early stages of research because they provide hypotheses that can be systematically

tested in more cases.

Baxter, Jack et al. (2008) argues that, following the establishment of research questions best suited for a

qualitative case study and the selection of the case and its boundaries, the study should be executed. The

choice of a particular type of case study design is based on the general purpose of the study. The most

suitable case study type is important to define whether you need to describe the case, investigate the case,

or compare between cases (Baxter, Jack et al., 2008). Yin (2009) states that descriptive case studies are

used to describe the intervention or phenomenon and the real world context in which it occurred. This

makes the case study approach applicable to the research activities in LC HMN related to this project.
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The case study of LC HMN was conducted with a study of second-hand data. This technique tries to

answer questions about the "what," "how", or "why" phenomenon, rather than "how many", or "how

much," which are answered by quantitative methods. When the goal is to understand how a community

or individuals within it perceive a specific issue, qualitative approaches are frequently applicable (Baruch,

1999).

A variety of different approaches were utilized to gather data and gain insight into the case company. Data

were collected through meetings with various personnel from the case company, both at NTNU Trondheim,

the case company’s office in Heimdal, and remotely. The preparations for the meetings were made by email,

specifying the topics of discussion. Relevant questions were prepared in advance of each meeting to initiate

an open discussion on the predetermined topic. Primarily, the section leader or SAP engineer attended

the meetings on behalf of LC HMN. Follow-up discussions were conducted with LC HMN representatives

to guarantee the accuracy of the collected information.

Dodgson (2019) states that all qualitative research is contextual; it occurs within a specific time and place

between two or more people. In qualitative research, the researcher’s identity is assumed to influence the

findings of the study; objectivity is not present. Indeed, often said: “The researcher is the researcher’s

research instrument" (Dodgson, 2019). Reflexivity can serve as a quality indicator to be incorporated into

the process section. Tjora (2021) claims the analysis should be done in collaboration with multiple people.

This is how collective reflexivity is created. Christoffersen and Johannessen (2012) claims that researchers

often have a preconception about the topic being studied and that this has an impact on how data are

interpreted and analyzed. Furthermore, preconceptions influence the information to be highlighted. Two

researchers participating in this study will independently analyze the interview results. This dynamic can

lead to improved reflexivity when compared to a researcher working alone, as opposing preconceptions can

be present in the analysis. However, it should be noted that the presence of shared preconceptions can

lead to a degree of bias, thus potentially decreasing the quality of the results.

3.3 Data Analysis

This section provides an overview of the data analysis process conducted in this study, which consists

of two main parts: data preparation and quantitative analysis. The data analysis method is utilized for

answering the second research question, as a part of the empirical case study. The section highlights the

steps involved in data collection and data preprocessing.

3.3.1 Data Preparation for Case Company Data

As described in Section 2.4, data preparation is an important data analysis process and takes place at an

early stage. The method starts with data collection and is followed by three major steps: data cleaning,

data transformation, and data reduction. This study adapts the described data method as a preparation

for the quantitative analysis described in Section 5.
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Figure 19: Flowchart describing data preparation method used for LC HMN data

As visualized in Figure 19, the preparation of data involves a series of steps, which in turn can be divided

into two main parts: data collection and data preprocessing.

Data Collection

The data collection for this thesis was collected from the Logistics Center Helse Midt-Norge and exported

by their integrated ERP system, called SAP. The withdrawal of data type and quantity was determined

following a series of meetings with LC HMN, including the SAP Head Engineer. The amount of data to be

withdrawn was determined based on what was feasible. Prior to the withdrawal, the data were anonymized

to ensure security. A cloud service, which had been pre-approved for security, was utilized to upload and

transfer data before downloading it onto a local computer.

Data Preprocessing

The data preprocessing was done using Python, with the use of pandas software library (Pandas, 2020).

The first step of data preprocessing was to clean the data. This involved handling missing data, where

columns with a high prevalence of NaN values were removed. The next step was data transformation,

which was a quite complex part of the preprocessing. All data types were checked and converted, if

necessary. Originally, all dates were stored as strings; these were converted to a date-time object. In

addition, aggregation was performed based on weekly demand, before the data were restructured based on

a syntactic transformation. Lastly, a sample set of the data was made, containing 1256 unique materials.

3.3.2 Quantitative Data Analysis

Quantitative data analysis is a method used in the field of statistics to analyze and interpret numerical

data. This type of analysis typically involves the use of mathematical and statistical techniques to identify

patterns, relationships, and trends in data sets and to draw conclusions and make predictions based on

that information.
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Programming Language

Several techniques and theories were used for data analysis. To analyze the data provided, the authors

of this study used Python programming language. Python is an interpreted high-level general-purpose

computer programming language developed by Guido Van Rossum in the late 1980s (Virtanen et al.,

2020). Python is a suitable programming language for data analysis for a number of reasons. First, it is a

high-level interpreted language that makes it easy to write, debug, and maintain. It also has a large and

active community of users, which has resulted in the development of a wealth of high quality open source

libraries and frameworks for data analysis, machine learning, and scientific computing (Fabian Pedregosa

et al., 2011). Through quantitative analysis of the data set, Python has been a valuable tool to produce

quality results more effectively.

Data Structure

To store and process the data, the Pandas Python tool was used. Pandas provide high-level, easy-to-

use data structures and data manipulation tools to work with numerical, tabular, and time-series data

(McKinney, 2010). Some of the key features of Pandas include its DataFrame and Series data structures,

which are designed to store and manipulate tabular data in a way that is similar to a spreadsheet. For

the data analysis performed for this study, large Excel files were exported from SAP and then read as a

DataFrame structure for easy handling.

Figure 20: The architecture for performing data analysis.

Visualization

For presenting visuals, the Python packages Matplotlib and Seaborn were used. The Python package

Matplotlib is a powerful tool for creating visualizations of data. For this study, visualizations such as line

plots, bar charts, and histograms are utilized. It can also be used to customize the appearance of plots,

such as by adding titles, labels, and legends, and applying different styles and color schemes (Hunter,

2007). The Python package Seaborn is a library for creating statistical visualizations. It is built on top

of the popular plotting library matplotlib, and provides a high-level interface for drawing attractive and

informative statistical graphics (Waskom, 2021). For the quantitative data analysis, Seaborn is applied as

a scatterplot and histogram.

Statistic Models

The python package Statsmodels was used for statistical analysis in Python. The key benefit of statsmodels

is its extensive range of statistical tests and regression models (Seabold and Perktold, 2010). For data
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analysis for this study, statistical analysis such as seasonal-trend decomposition, autocorrelation, and

augmented Dickey-Fuller was applied. With its simple and user-friendly interface, statsmodels contributed

to performing complex statistical analyzes and accessing the results in a convenient way.

3.4 Simulation

This method was utilized in order to answer the third and fourth research questions. There are two primary

methods for conducting supply chain analysis: analytical and simulation-based. The analytical approach

involves deriving optimal solutions through calculations, but it heavily relies on assumptions and available

formulas. On the other hand, simulation-based analyses can effectively capture the intricacies of complex

systems, ensuring that any modifications to the input are connected to a corresponding set of outputs

(Holden, 2017).

To be able to visualize and compare the performance of various replenishment policies, simulation was

utilized as a valuable tool. Simulation allows testing of any aspect of a desired change without incurring

significant costs to implement the change (Banks, 1999). As both inbound and outbound logistics can be

represented as a two-step process, it was preferred to code the simulation in the programming language

Python. There are various useful tool kits for simulation, including the utilized Python package Simpy

(2023), which is a process-based discrete-event simulation framework based on Python.

In the context of inventory simulation, Discrete Event Simulation (DES) encompasses the discrete variables

involved, such as order points and inventory levels. These variables are typically expressed as whole

numbers or integers, representing distinct events or states within the simulation model. The process-

oriented nature of DES signifies that each activity in the simulation is modeled as a process. There

are multiple "application-specific threads" and a "general thread" responsible for managing the event set

(Matloff, 2008).

Figure 21: The architecture for the discrete event simulation.

In Figure 21, the architecture for the procedure used to construct the simulation model can be seen. Several

assumptions were made in order to represent the inventory management system. One disadvantage of

building such a simulation model is the complexity of accurately representing the real system, including

factors that are not captured in the data, such as human influence (Banks, 1999).
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Following extensive testing and evaluation of both the data and the simulation model, it will be possible

to monitor the critical performance metrics to evaluate the effectiveness of a replenishment policy. The

resulting inventory levels for a given demand can be used to calculate measures such as the number of

orders for the given period of time, the average inventory level, the unfilled demand, and the service level

for the given replenishment policy.

3.5 Research Overview

The research overview, depicted in Figure 22, outlines the flow of the thesis. It commences by emphasizing

significant motivating factors discussed in Section 1.1. These motivations subsequently give rise to four

interrelated research questions (RQs) formulated through iterative research and discussion.

Different methodologies were employed to address these research questions. The first research question

involved a systematic literature review that explored demand forecasting techniques for inventory man-

agement. The second, third, and fourth research questions employed specific approaches as part of a

comprehensive empirical case study method. The second research question used data analysis through

clustering and categorization techniques to gain insights into demand patterns and identify materials for

improvement. Research questions three and four were centered around conducting multi-scenario analysis

utilizing simulation as the chosen method. The figure presents five strategies for comparison, including

the existing policy, potential improvements, and various forecasting models. Outcome measures such as

inventory level, service level, holding cost, and forecasting accuracy were considered.
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Figure 22: Overview of the research flow
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4 Systematic Literature Review

This section reveals the results of the systematic literature review. The review was performed in the fall

of 2022 as a part of a preliminary study prior to this thesis. Section 4.1 provides a descriptive analysis of

the field under investigation, and the resulting articles from the systematic literature review are presented

in six tables (Appendix B). In Section 4.2 the results of the content analysis are presented, utilized with a

deductive approach, where the categories were taken from existing theories and defined before analyzing

the articles.

4.1 Descriptive Analysis

To obtain a general understanding of the analyzed literature, a primary mapping was conducted based

on a yearly publication analysis, see Figure 23. This approach allowed insight into the distribution and

evolution of research on this topic over time. The graph will show a steady increase in the number of

articles over the course of about 30 years.

The number of published articles on demand-based inventory management, as seen in Figure 23, has

shown an increasing trend in recent years, indicating a growing interest in the topic within the academic

community. This trend is particularly evident from 2015 to 2017, during which a high level of activity was

observed in this field. However, prior to 2006, few significant contributions to this area of research were

made.

Figure 23: Year-wise publication of articles
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As seen in Figure 23 there are many publications in 2021. This is due to the snowballing that was carried

out and which was included in the SLR to add more relevant articles. Figure 24 shows a more detailed

distribution with respect to the different groups. The three different groups are the following;

• Machine Learning - Represents the articles using the machine learning methods exclusively

• Statistical - Represents the articles using the statistical methods exclusively

• Machine Learning \ Statistical - Represents the articles using both machine learning and statistical

methods

Figure 24 shows that the articles based on an Machine Learning (ML) method are represented from 2012

and later. The articles based on both statistical and Machine Learning (ML) methods have a more spread

distribution, going back to 2001. The articles based on statistical methods are spread throughout the

whole scale. For all three groups, there is an increase over the years, but it seems like Machine Learning

is becoming more and more relevant, taking over for statistical methods.

Figure 24: Distribution of machine learning and statistical approach in articles in the publication
year

The cake diagram shown in Figure 25 is a visual representation of the proportions of different groups

of methods used within the selected articles. The groups referred to are Machine Learning (ML) and

statistical methods, along with their intersection. The diagram shows that “Machine Learning" makes up

18% of the total, while “statistical" makes up 58% of the total. The diagram also shows that there is an

intersection between the two categories, which represents 24%.
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Figure 25: Distribution of machine learning, statistical and the two combined

Figure 25 illustrates a cake diagram that provides a visual representation of the proportions of different

methods within the topic. It suggests that while a significant portion of Machine Learning research involves

statistical methods, statistical is the most used method in the selected articles.

4.2 Content Analysis

This section presents the findings of the content analysis conducted as part of the systematic literature

review. The articles categorized and reviewed can be seen in Appendix B. The analysis involved a thor-

ough examination and evaluation of the articles included in the review. Through content analysis, these

articles were systematically categorized and analyzed to enhance our understanding of the research area.

This process involves exploring various aspects of the articles, such as research objectives, methodologies

employed, key findings, and theoretical frameworks used.

4.2.1 Inventory Control & Policies

Determining appropriate procurement lot sizes and buffer inventory levels under uncertain market condi-

tions while guaranteeing a particular degree of leanness and service level is one of the most fundamental

problems in warehousing and manufacturing companies (Piasecki, 2009). In terms of leanness, a previous

study by Hofer et al. (2012) found that increasing inventory leanness via underlying lean initiatives can

result in improved profitability due to lower operational costs. The results of the report demonstrated the

negative correlation between stock levels and the company’s financial performance.

Replenishment policies can either follow a periodic order policy, or restocking can take place when needed,

also called a continuous review policy (Section 2.1.2). The first is characterized by having a specific cycle

time for each raw material bought from each supplier (Santos et al., 2022). According to Bhagwat and

Sharma (2007), the overall order cycle time might affect supply chain response time and thereby directly

influence customer satisfaction. The other restocking strategy, also known as the Order-Up-To (OUL)
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policy, is characterized by periodic stock level reviews, with the quantity ordered equal to the goal level

minus the reorder point. It is seen as a riskier strategy that is more exposed to stock shortages. Clausen

and H. Li (2022) considers an OUL policy and suggests a dynamic inventory model with applications of

big data and machine learning.

While several approaches may be used for optimal replenishment, various sectors frequently demand various

replenishment approaches. Santos et al. (2022) states that large product portfolios in highly dynamic

situations may require flexible order cycles or even non-cyclical restocking practices for businesses to be

adaptable to changing situations.

The authors of S. Chopra (2016) state that periodic review policies require more safety stock than con-

tinuous review policies for the same level of product availability. In addition, whatever forecasting method

is used, Order-Up-To policy will always result in the bullwhip effect (Dejonckheere et al., 2003). In Order-

Up-To policy, the bullwhip phenomenon is unavoidable when forecasting is necessary; it is the price to pay

to forecast unstable demand and to detect trends.

Figure 26: Bullwhip effect

The bullwhip effect, where order fluctuations worsen as they go up the supply chain from retailers to

wholesalers to manufacturers to suppliers, is one result of a lack of supply chain coordination (S. Chopra,

2016). The supply chain’s input on demand is distorted by the bullwhip effect, with each stage’s estimate

of demand being different. Most importantly, smoothing replenishment rules have been recognized as the

most powerful approach to avoid the bullwhip effect (Dejonckheere et al., 2003). However, various studies

have found that mitigating the bullwhip effect can increase inventory volatility, resulting in low service

levels (Costantino et al., 2016).

L. Wang and H. Chen (2022) purposed an algorithm that calculated the optimal OUL for every item

for a given time. They used a periodic review policy to replenish multiple items at the same time. The

inventory status of each item was evaluated once per time unit and the inventory replenishment of each

item is regulated by the item-dependent policy. They also created a policy that combined a continuous

and periodic review strategy. The requirement to trigger the replenishment of this strategy was that the

aggregated total demand for all products from the previous order reaches a given number of units or a

given number of time units have passed.

Due to the challenges in predicting stockouts, incorporating service-level constraints are frequently utilized

for inventory models (Tsai and Liu, 2015). Özsen and Thonemann (2015) took into account an expediting
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policy with service-level requirements and created a successful linear optimization technique to determine

the ideal parameters of the policy.

4.2.2 Demand Forecasting

According to Dolgui and Prodhon (2007), inventory control still presents numerous untapped opportunities,

particularly when demand and time variation are co-evaluated. Accurate forecasting of consumer demands

and procurement lot-sizing plays a crucial role in addressing complex industrial-level stock management

challenges (Dolgui, Louly et al., 2005). The characteristics of demand data significantly influence the choice

of an appropriate forecasting approach (Vercellis, 2011). This section presents the key findings from the

systematic literature review in the domain of demand forecasting.

Classification of Demand

In most occurrences of an inventory, there will be hundreds or thousands of different products. Wenhan Fu

(2018) experienced that if an inventory holds several products, it is not practical to conduct deep research

to fit the demand pattern for each product, which causes a lot of computational costs that are not effi-

cient. Therefore, some categorization methods have been built to group products and invented to identify

suitable forecasting methods for classification results. Syntetos, Boylan et al. (2005) used mathematical

proof to quantify the classification matrix. They proposed two cut-off values to calculate different demand

patterns. The demand intervals are determined by the inter-demand interval (p = 1.32 ), and the other

coefficient is the demand variation (CV2 = 0.49 ). A high value of p indicates a low frequency of demand

and a high value of CV2 indicates a high volatility of demand.

Figure 27: Categorized demand observations based on the Syntetos method (Chuang et al., 2021)

Using these values, the demand pattern of a product can be classified into four types of demand; smooth,

intermittent, erratic, and lumpy. An example of this is Chuang et al. (2021), which classified its demand

series based on the metrics proposed by Syntetos, Boylan et al. (2005). Chuang et al. (2021) categorized
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426 weekly demand series into the four mentioned categories of demand. Figure 27 shows the distribution

of demand types, and clearly one can observe the highly skewed demand distributions that will be difficult

to predict. This distribution violates the assumption in standard inventory formulas, which assumes that

lead time demand is represented by a normal distribution (Van der Auweraer et al., 2019).

Applications of Statistical Models

It is important to be aware of the impact of assumptions that are made when performing research. Pollack-

Johnson et al. (1990) states that it is important to test the assumptions taken, reconcile them with

known theory (e.g. laws of supply and demand), and avoid biases due to one’s affiliation. The study

carried out by Barrow and Kourentzes (2016) investigated whether a weighted combination of forecasts

led to an improvement in the distribution of forecast error with respect to the properties of normality

and unbiasedness. The extent of impact the distribution had on the calculation of the safety stock was

investigated by comparing the one-step ahead average safety stock with a combination of different statistical

forecast methods. The models that were combined were exponential smoothing, AR, ARIMA, Theta

method, and MAPA. By utilizing the empirical distribution of the forecast error, Barrow and Kourentzes

(2016) were able to overcome the limitations of the theoretical inventory calculations, which fail to account

for aberrations from normality and any covariance between forecast errors of cumulative demand over lead

time.

According to R. Snyder (2002) who considered different ways to forecast sales of slow- and fast-moving car

parts, when transactions are small, the discrete nature of demand can become important. The use of a

discrete probability distribution defined across the entire number, as well as exponential smoothing updates

to its mean, is problematic, as the associated simulated data may exhibit weird behavior (Grunwald et al.,

1997). Thus, a skewed distribution may require proper modeling of demand data.

Harvey and Ralph D. Snyder (1990) investigated non-stationary models for exponential smoothing and de-

rived the connected formulas for the variance of lead time demand under different conditions. Exponential

smoothing is often applied for inventory forecasting and the method usually relies on formulas such as the

variance of demand given the lead time. Since the variance depends on the assumption of a stable demand

process, it is inconsistent in applications such as exponential smoothing. Harvey and Ralph D. Snyder

(1990) holds the view that exponential smoothing models have a tendency to underestimate the required

safety stock, and therefore targeted service levels can be at risk.

Kourentzes et al. (2020) claims that reducing the bias of the forecast is more important than accuracy

since forecasts and variance for inventory management are used to make decisions regarding reordering

and safety stock. A prediction that is highly accurate in-sample but skewed out-of-sample might have a

negative impact on inventory performance. On the other hand, even if the forecast function has missing

terms, a less accurate forecast that remains reasonably unbiased in the out-of-sample might be preferred.

Similarly, because it does not minimize the approximation error, this strategy is less likely to overfit, even

when unneeded terms are included in the prediction function.

A way to better understand the distribution of the time-series data is to apply the seasonal-trend decom-

position using STL to decompose the time series into three components; seasonality, trends, and residuals.

The trend component is a long-term pattern that indicates the time series’ growth or decreases during the
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observed period. Seasonality is a pattern of change that repeats itself across time at particularly regular

intervals smaller than a year, such as weekly, monthly, or quarterly. N. Li et al. (2021) states that the main

advantage of performing an STL is the flexibility to handle different kinds of seasonality, strong estimates

of trends and seasonal components that are not affected by outliers, the ability to break down time series

with missing values and perform fast calculations. The rate of seasonal change and the smoothness of

trend cycles can be controlled by two key parameters; the trend cycle window and the seasonal window.

Figure 28: An example of decomposition of a time series.

On the other hand, STL has one critical important drawback: STL depends on its own history. STL is not

capable of capturing structural changes, such as nonlinear patterns, that are associated with explanatory

variables.

Willemain et al. (2004) developed a bootstrapping forecast model that did not require independent and

normal distributed demand. Bootstrapping is a procedure that re-samples the data into many simulated

samples. Willemain et al. (2004) compared the results of bootstrapping with exponential smoothing and

the Cronston method. When the aim was to anticipate the complete distribution of lead-time demand, the

study found that the Cronston method did not give an overall benefit over exponential smoothing. However,

for short lead periods, the bootstrap clearly outperformed exponential smoothing. However, Willemain

et al. (2004) has, on the other hand, not taken into consideration that the bootstrapping method resamples

from the initial sample, thereby outliers may skew the estimates from the resamples.

X. Zhang (2007) considered a Order-Up-To (OUL) level policy and examined the problem of inventory

control when the demand variance reveals temporal heteroskedasticity. They decomposed the forecast error

variance for lead-time demand into two additive components; forecasting-error variance under homogeneous

demand and forecast error variance due to temporal heteroskedasticity. X. Zhang (2007) stated that the

operations management community has paid little attention to variability at higher demand moments. In
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fact, X. Zhang (2007)’s study shows that if a service-level approach is adopted for managing inventory,

the actual service level can deviate from the desired one if the volatility in the demand variability is not

recognized. Furthermore, ignoring temporal heteroskedasticity can increase inventory costs by up to 30%

when demand autocorrelation is highly positive.

Tasdemir and Hiziroglu (2019) performed an experiment to optimize the raw material inventory man-

agement system of a manufacturer of oriented strand board (OSB). OSB does fluctuate in demand as a

seasonal product, driven primarily by the construction sector. Tasdemir and Hiziroglu, 2019 made use

of the Winters Seasonal Multiplicative Forecasting Model (Winters, 1960) and Regression Based Forecast

Modelling (Hyndman and Athanasopoulos, 2018) as a consequence of missing data for specific periods.

Tasdemir and Hiziroglu (2019) proposed a fixed-period quantity dynamic lot size method that resulted

in an 80% reduction in annual ordering cost, a 62% reduction in safety stock holding cost, and a 57%

reduction in the cost of the raw material inventory management system.

Applications of Machine Learning for Demand Forecasting

The goal of the upcoming fifth version of an industrial revolution is to be more human-centric or to

put more emphasis on the interaction between humans and machines, both physically (e.g. robots) and

computationally (e.g. artificial intelligence-based decision support) (Breque et al., 2021). In addition,

two more key pillars of this industrial revolution are industrial resilience and environmental responsibility.

These pillars are frequently exploited by computational strategies. Forecasting is a central objective of

statistical modeling and has been widely used in a variety of domains. It can mitigate the uncertainty of the

future through the use of existing data to project uncertain future (Karimnezhad and Moradi, 2016), and

by exploiting the predictions companies can help themselves choose the most sustainable option (Santos

et al., 2022). Alicke (2022) states that the implementation of AI-enabled supply chain management has

allowed early adopters to improve inventory levels by 35%.

Sillanpää and Liesiö (2018) found that by modeling consumer demand with distributions for replenishment

orders in retail, the accuracy of replenishment order forecasts improved significantly and could result in

substantial cost savings. Similarly, Kim and Jeong (2018) considered a mass-producing factory that had

an excessive amount of material. The factory had products that did not respond to demand, resulting in

high inventory maintenance costs. Kim and Jeong (2018) proposed an ARIMA model that predicted future

demand in the temporal variability or seasonal element and created an EOQ-based demand forecasting

model.

An approach to capture the dynamic behaviors of the underlying processes when analyzing time series

is applying deep learning methods. Pacella and Papadia (2021) did overcome the statistical complexities

by making use of the Long Short-Term Memory (LSTM) network for demand forecasting in supply chain

management. Their results indicated that an LSTM effectively models the non-linearity of time series, and

surpassed the traditional linear forecasting method in performance.

There are many different deep learning algorithms to make use of for forecasting demand. Carbonneau

et al. (2008) applied tools such as Neural Network (NN), Recurrent Neural Network (RNN), and Support

Vector Machines (SVM). The performance of these methods was compared to standard baseline approaches

such as naive forecasting, moving averages, linear regression, and time series models. For their analysis,
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they used two sources of skewed demand data. The first comes from a simulation of the extended supply

chain, while the second comes from the estimated value of the new orders received.

The research of Carbonneau et al. (2008) suggested that RNN and SVM were the most accurate forecasting

techniques compared to moving average and Naive Bayes, which were among the worst performers. How-

ever, statistical analysis of the findings revealed that there were no statistically significant differences in

forecast accuracy between RNN, SVM, NN, and MLR. Hence, for both datasets, the increases in forecast

accuracy of RNN and SVM over MLR were minor. Furthermore, on both datasets, MLR outperformed

neural networks. The result can be explained by the problem of the neural network overfitting. The RNN

performed better due to its ability to detect temporal patterns. SVM performed better on training sets

that did not extend to the testing set. This demonstrates the limits of the SVM in reaching genuine

generalization.

Moroff et al. (2021a) selected six types of models to forecast demand. In terms of forecasting errors, two

models from the fields of statistics, machine learning, and deep learning were studied. Through their study,

Moroff et al. (2021a) showed that the different models have various qualities based on the demand pattern.

The deep learning model Multiplayer Perceptron (MLP) was the best performing model, yet the statistical

models like Holt-Winters were reasonable for specific types of demand. They experienced that the potential

of machine learning and deep learning methods can be increased by including data that highly correlate

with the demand pattern (e.g. weather forecasts).

Hybrid Models

One approach to leveraging the strengths of both deep learning methods and high-performing statistical

methods is to combine the two as a hybrid model. Arunraj and Ahrens (2015) states that there is no

universal forecasting model that can be applied to all kinds of problems. For example, it is unrealistic to

expect a model that forecasts the price of a product with greater accuracy to also predict demand for the

same product. As a result, forecast accuracy can only be enhanced by integrating and using two or more

models with varied capabilities rather than a single unique model with restricted capability.

Integrating and combining several machine learning models is called ensemble learning. Chuang et al.

(2021) studied a semiconductor producer and showed that one aggregated model outperformed many of

the individual time series models. Chuang et al. (2021) combined ensemble learning with cross-validation,

which is a useful technique to assess how the analysis generalizes to the given data set. Applying cross-

validation in any form will mitigate the chance of over-fitting (Makridakis et al., 2020). The combination

of ensemble learning and cross-validation is potentially the new standard within machine learning (Bojer

and Meldgaard, 2021).
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Figure 29: An example of ensemble learning

The study conducted by N. Li et al. (2021) utilized the statistical method STL and extracted the linear

and seasonal components, and then combined this with a machine learning model called eXtreme Gradient

Boosting (XGBoost). This type of hybrid forecasting model handles changes in trends and seasonality,

non-linear patterns, and correlations among predictors. N. Li et al. (2021) had great success in applying

the hybrid model for the ordering strategy, reducing the order frequency by 60% and reducing the level

of inventory by 40%, with a low risk of shortage. Similarly, Hua and B. Zhang (2006) proposed a hybrid

model consisting of two machine learning methods, logistic regression and SVM, to predict the intermittent

demand for car parts. The model worked in such a way that the occurrence of non-zero demand was first

predicted and then the lead time demand was forecasted. The hybrid model outperformed traditional

statistical methods such as exponential smoothing, Cronston’s method, and bootstrapping method for all

lead times.

These results are similar to those reported by Tang and Ge (2021), who proposed a hybrid model consisting

of Convolutional Neural Network (CNN) and an Long Short-Term Memory (LSTM). Tang and Ge (2021)

stated that the CNN has technical defects in terms of gradient disappearance and gradient explosion. The

disadvantages of the CNN model are complemented by the LSTM model, which can handle the problem

of gradient disappearance. In contrast to studies conducted by Hua and B. Zhang (2006), Chuang et al.

(2021) and N. Li et al. (2021), Tang and Ge (2021) discovered that including additional variables such as

transit warehouse inventory and material attributes resulted in better forecasts than the model based on

a single variable. These discoveries are similar to those reported by Moroff et al. (2021a).
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5 Empirical Case Study: Logistics Center Helse Midt-Norge

This section provides an account of the findings obtained from the empirical case study conducted. Ini-

tially, the characteristics of the case company are presented, encompassing an introduction to the company

itself and a detailed examination of the current state (referred to as the AS-IS situation). Subsequently, the

results of the data analysis conducted on the case-company data are presented, which includes data collec-

tion, preparation, and analysis process. Finally, the outcomes of a multi-scenario analysis are presented.

The results presented were derived from a comprehensive analysis of the collected data and a Python-based

simulation model. The simulation was executed extensively, with a total of 62 800 runs. The identified

and selected strategies examined are visually represented in Figure 3.5.

5.1 Characteristics of The Case Company

Logistics Center Helse Midt-Norge (LC HMN) is organized under Helse Midt-Norge (HMN) and is respons-

ible for the storage and supply of all non-medical consumables to hospitals, medical treatment centers, and

doctors’ offices in the Midt-Norge region. Examples of goods in the warehouse are masks, gloves, toilet

paper, etc. These are non-perishable goods, where the goods have a very long shelf life (more than two

years). The rotation of products and the current turnover rate of approximately 6 months ensure that

the expiry date of the goods will never be a concern, as they are managed according to a first-in, first-out

(FIFO) policy.

Located in Heimdal, a municipality in Trøndelag, Logistics Center Helse Midt-Norge serves as a dual-

purpose facility, operating as both a warehouse and a cross-docking station. Throughout the day, goods

are delivered from suppliers to the warehouse, where they are sorted into designated sections based on

criteria such as hygiene. Four times a day, vehicles depart from the warehouse to transport goods to St.

Olav’s Hospital, which is owned by Helse Midt-Norge, a healthcare organization under the ownership of

the Norwegian state. St. Olav’s Hospital serves regional and national roles.

Helse Midt-Norge owns both the hospitals and the warehouse, establishing a shared objective of effective

hospital operations. Given the hospital setting, the definition of successful operations encompasses specific

requirements. The warehouse’s primary focus is not solely on maximizing profit but prioritizing safety and

service at the highest level. Emphasis is placed on delivering the required goods to the hospitals and their

sub-departments promptly.

5.1.1 Control Model

The model visualized in Figure 30 shows how warehouse procurement planning has a large effect on both

the product flow and the information flow of the warehouse. For this reason, the model is of great relevance

for inventory management at LC HMN. The scope of this thesis is marked in red, clarifying what part

of warehouse management is included in the scope of the topic. Due to the stated connection between

procurement planning and the rest of warehouse flow, the entire model is relevant to the thesis.
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Figure 30: Control model describing the AS-IS situation of Logistics Center Helse Midt-Norge

The model flow consists of two components: a product flow component and an information flow component.

The product flow is represented by solid lines, while the information flow is represented by dashed lines.

Following, important aspects of the two components will be analyzed.

5.1.2 Product Flow

Within a warehouse setting, the term "product flow" pertains to the progression of goods and products,

commencing from their arrival at the warehouse and concluding with their departure for delivery to cus-

tomers (Arnold, 2017). The process of product flow in a warehouse is essential for effectively managing

goods and maintaining sufficient inventory levels to meet customer demand. In this section, this study

will examine the various stages of product flow within the LC HMN, including the receipt of goods, stor-

age, organization, and picking and packing for shipment. Understanding the key elements of product flow

in the warehouse is essential to identify potential areas for improvement within our scope of inventory

management.

Supplier

It is important to note that the inbound lead time specified in the supplier agreements should be realistic

and accurately reflect the actual lead time. For LC HMN, it appears that the stated lead time of three

days is not consistent with the actual delivery time, which can range from a few days to several months.

This inconsistency can cause confusion and potentially lead to problems in meeting deadlines and fulfilling

orders. In general, the warehouse receives goods daily, up to many times a day.
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Storage

There are three underlying layers of storage; emergency, rough and sterile. The goods are evenly moved

from the sterile and rough storage to picking storage, from where picking takes place. Items in the

emergency warehouse are not moved to the picking area but are picked directly if necessary. Not all items

are stored in the emergency area. Selection varies depending on factors such as season. The safety stock

is included in the rough storage and sterile storage.

Cross-Docking

In addition to the regular warehouse, LC HMN is also equipped with a cross-docking system where delivered

goods are repacked onto different wagons. There is a unique cart for each department at St. Olav’s Hospital.

There is no storage of goods in this part of the warehouse. The handling of the goods during cross-docking

is continuous, as the goods are received throughout the day. The fully repackaged wagons are collected

and sent twice a day, with departure at 10:00 and 14:00.

Shipping

Within the shipping and coordination department, it is ensured that each pre-picked wagon is sent with

the correct car. To St. Olav’s departments, there are four departures each day, five days a week:

• 08:00 AM

• 10:00 AM

• 12:00 PM

• 14:00 PM

Delivery to St. Olav’s departments goes through a central good reception at the Department of Øya before

being further distributed to the departments. The delivery for the actors marked as "others" in the AS-IS

control model, most deliveries are sent weekly by a courier.

5.1.3 Information Flow

In a warehouse, information flow refers to the movement of data and information related to the warehouse’s

operations and inventory (Arnold, 2017). This includes information about incoming and outgoing goods,

inventory levels, and other critical aspects of the warehouse’s function. Effective information flow is

essential to ensure that the warehouse is able to operate effectively and meet the needs of customers

and other stakeholders. In this section, the various sources and types of information that are relevant to

LC HMN will be explored, as how this information is collected, processed, and disseminated throughout

LC HMN. The understanding of the key elements of information flow in the warehouse is elementary in

identifying potential areas for improvement within the thesis scope.
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Inbound Order Handling

Incoming orders from the departments of St. Olav’s Hospital (outbound orders) are printed on paper. The

following requirements are made from the warehouse to the departments of St. Olav’s Hospital in order to

be able to deliver at the agreed time:

• Order no later than 2 days before shipment departure if shipment leaves at 08:00 am from the

warehouse.

• Order the day before to get delivery with the shipment leaving at 10:00 am or later.

Outbound Order Handling

In order to handle outgoing goods delivery, goods are taken from both cross-docking and normal picking.

As mentioned above, there are four departures every day, Monday through Friday. Cross-docking goods

are shipped with delivery at 10:00 or 14:00. Items picked are sent according to the delivery request received

in the order.

Procurement Planning

LC HMN utilizes a continuous reorder point policy. Every night SAP ERP (system applications and

products, enterprise resource planning) generates new purchase orders for suppliers. Orders are automat-

ically generated for items where the inventory level has dropped below the item’s reorder point.

The orders are then manually transferred by the order manager. Automated orders are double-checked

against the inventory level. Here, additional orders are often added as needed. Potential remaining order

quantities are also taken into account. Additionally, there is made an effort to consider the ordering of

complete pallets, although it is not the top priority. The procurement planning will be further analyzed

in Section 5.1.4

5.1.4 Order Policy

To ensure that the inventory of LC HMN is sufficient, SAP checks every night for potential new orders.

The system is based on the continuous reorder points system, in which an order is placed if the inventory

level of an item is below the Reorder Point (ROP), see Figure 31.

Figure 31: AS-IS order policy at LC HMN
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For LC HMN, the ROP is set to correspond to the safety stock. Indicating that in periods, the inventory

level may drop below the safety stock level (Figure 31).

Each individual material has a fixed order size (Q) that remains constant. This fixed order size is determ-

ined once per year, taking into account the demand from the previous year. Modifications can be made to

the specific order size during the ordering process, driven by economic considerations. For instance, if there

is an opportunity to fill a pallet or if it is advantageous to make minor modifications, these adjustments

can be implemented. It’s worth noting that there are no quantity discounts offered for orders, and as a

result, the order quantity is not influenced by this factor. It is important to mention that the ordering cost

is not taken into account during the determination of the fixed order size (Q) for each individual material.

The lead time (L) is not constant but varies with each order and for each individual material. For most

materials, the typical lead time is stated to be between 3 and 10 days.

Service Level

LC HMN operates with a service level of minimum 97%. This means that LC HMN aims to have 97% of

all orders fulfilled within the expected delivery time or less.

Substitute Products and Unfulfilled Demand

It is common for the product range to be periodically supplemented with new products or new suppliers

of similar products. These products serve as substitutes for existing products in the range and should

be taken into account when calculating the inventory level for LC HMN, as it is a crucial factor in the

inventory management process. If the demand is higher than the inventory level, LC HMN will deliver

substitute products.

5.1.5 Holding Cost

As described in Section 2.1.1, the holding cost consists of capital cost, storage cost, and risk costs, and

increases with inventory levels. Through communication with the contact person at the case company LC

HMN, a holding cost relative to the value of the SKUs could not be stated.

Azzi et al. (2014) conducted a multi-case study to gain insights into how industrial managers currently

calculate the holding cost parameter and to assess the impact of manual versus automated warehousing

systems on defining the structure of inventory costs. Their results stated that inventory holding cost

parameters range between a minimum of 21.9% and a maximum of 32.9% of the inventory value on hand.

For warehouse types with similar levels of automation as LC HMN, the traditional rule of thumb stating

that holding costs amount to 25% of the product value is a reasonable assumption. Thus, a holding cost

of 25% is assumed for LC HMN in this thesis.
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5.1.6 The Supply Chain

As visualized in Figure 32, the LC HMN is part of a three (four)-level supply chain within the scope

derived in Section 1.4. LC HMN has categorized suppliers into "major" and "minor" suppliers. The major

suppliers deliver goods directly to the logistics center using their own trailers. The minor suppliers use a

third party, Posten, to deliver goods to the logistics center.

From the logistics center, goods are sent with their own courier to the central warehouse of St. Olav’s

Department Øya, which further distributes to the departments at St. Olav’s Hospital Department Øya.

For the remaining departments, Orkanger, Satelite Units, and Røros, orders are sent directly from the

logistics center. Of the total number of deliveries, 80.03% goes to the Øya department, 8.91% to Orkanger,

6.99% goes to satellite units, and 0.47% goes to Røros. The remaining 3.61% goes directly to different

doctor offices and private individuals.

In the near future, LC HMN will deliver to hospitals in Levanger and Namsos in Helse Nord-Trøndelag, as

well as Ålesund, Volda, Kristiansund, and Molde in Helse Møre og Romsdal. When LC HMN delivers to all

these healthcare facilities, they will be responsible for ensuring that the healthcare facilities have the goods

they need. As mentioned in Section 1, these healthcare associations are responsible for approximately 732

000 citizens of the Norwegian population.

Figure 32: Illustration of the three echelon supply chain.

Order requests from different departments are sent directly to LC HMN. There is a dedicated team that

checks the buffer stocks at the various departments as well as the central warehouse of St. Olav’s De-

partment Øya, and manually submits orders. The order quantity is determined by this team based on

experience and judgment.
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5.2 Data Analysis

In this section, the results from the performed data analysis is presented. This includes collection of the

data, preprocessing, categorization, time series analysis and aggregation analysis.

5.2.1 Data Collection

For this thesis, three files representing the inbound logistics, purchasing data, and outbound logistics were

extracted from LC HMN’s SAP system by their SAP engineer.

Inbound logistics refers to the transportation and management of goods and materials that are received

from suppliers. Purchasing data represents details such as the supplier, material description, quantity

purchased, price, delivery schedule, and payment terms. Outbound logistics refers to all the orders per-

formed by the different hospitals in the region of LC HMN. The data sources are stored as CSV files

(comma-separated values), with a total size of 147 MB, containing data registered from the years 2017 to

2022.

The three data files were combined into a single table, making it easier to access all the data. As Table

6 illustrates, the combined data table consists of 25 different columns. The data table contains a variety

of different types of data, which can be divided into two main categories, numerical and textual. The

numerical data consist of integers, floats, and other numerical values, while the textual data consist of text

strings.
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Original
Attribute

English Named
Attribute Explanation Format

Innkjøpsordre Purchase order Delivery ID unique pr delivery Float

Posisjon Position Line number of the purchase
order Float

Material Material Item ID unique pr item Float
Batch Batch Batch from production Integer

Materialkorttekst Material short text Description of item, included
size String

Fabrikk Factory Factory ID unique pr factory Integer

Lager Storage
Storage ID. All are the same
and represent Logistic Center
HMN

String

Bevegelsestype Movement type Type of movement of the
material Integer

Bevegelsestype:
Tekst

Movement type:
Text

Extra description of movement
type String

Materialdokument Material document
Identifier for underlying
documents related to the
withdrawal of goods

Integer

Posisjon mat.dok. Position material
document

Position of the product in the
material document Integer

Konteringsdato Posting date
The date on which funds are
taken or added to a checking
account

String

Kvantum i RKE Quantum in RCU Quantum in the Regional
coordinating unit Integer

Reg.kvantumsenhet
Registered unit of
measure Unit of measure String

Basiskvantumsen-
het Base quantum unit Unit of measure String

Kvantum
Inngående Quantum Inbound Quantity of items inbound Integer

Kvantum Utgående Quantum
Outbound Quantity of items outbound Integer

Beløp lok. val. Amount local
currency NOK per material unit Float

Nettopris Unit price Price per material unit Float

Valuta Currency The currency of the "Nettopris"
column String

Bestillingsdato Date of order DD/MM/YYYY String
Leveringsdato Date of delivery DD/MM/YYYY String
Registreringsdato Date of registration DD/MM/YYYY String
Leverandør Supplier Supplier ID. Unique per supplier Integer
Bilagstopptekst Attachment header Name of the supplier String

Table 6: Explanation of attributes of the data set.

In the data table, numerical columns such as Material, Quantum Inbound, Quantum Outbound, and Unit

Price are considered the most important numerical data for this case study. The numerical float Material

is a unique identification for the type of material. The numerical integer Quantum Inbound represents the

amount of a given material that is received from the supplier at a given time, and Quantum Outbound

represents the quantum shipped from the warehouse to a given hospital at a given time, while the decimal

number (float) Unit Price is the price of the material unit.

Textual data can provide more detailed descriptions of the data and can give context to the numbers.

In this data set, textual data such as labels and dates assist describing the numerical data and provide

additional information about the subject of the data set. For this data set, textual columns such as
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Registered quantity unit, Material short text, Date of Order, Date of delivery, and Date of Registration are

considered the most important features for analysis.

It is important to note that Material is the most important attribute. This attribute represents a unique

code for each distinct Stock Keeping Unit (SKU).Hence, in this thesis, the term material specifically refers

to a Stock Keeping Unit (SKU).

5.2.2 Data Preprocessing

This section highlights the essential techniques employed as part of the necessary preprocessing of the

collected data. It encompasses data cleaning, engineering, and filtering.

5.2.2.1 Data Cleaning & Engineering

The initial stage of data cleaning involves performing a fundamental exploration of attributes to gain

insight into the data. As mentioned in Table 6, the given dataset contains 25 columns.

Removing Irrelevant Attributes

The first step was to verify the presence of missing values, commonly referred to as "Not a Number"

(NaN). Table 7 shows the attributes that have missing values. The attributes Batch, Leverandør and

Bilagstopptekst have a share of missing values close to 100% due to the removal of confidential information

described in Section 5.2.1. While the attribute Innkjøpsordre has a share of missing values of 2,3 %.

These attributes were removed, as they will presumably not have an important contribution to upcoming

the time-series analysis. Attributes such as Posisjon, Fabrikk, Lager, Bevegelsestype, Bevegelsestype:Tekst,

Materialdokument, Posisjon mat.dok., Konteringsdato, Kvantum i RKE, and Reg.kvantumsenhet were also

dropped, simply due to not being relevant for the data analysis.

Attributes Innkjøpsordre Batch Leverandør Bilagstopptekst
Percentage
of NaNs 2,3 % 97,2 % 100 % 99,9 %

Table 7: The percentage of missing data.

Ensuring The Right Data Types

Any inconsistent formats should be corrected to ensure that the data is consistent across multiple systems

and possible to utilize for further analysis. For example, columns that describe dates should be stand-

ardized to a format that can be handled by the software used to analyze. The attributes Bestillingsdato,

Leveringsdato, and Registreringsdato describe the date of order, the date of order arrival, and the date of

shipment respectively. These three attributes are of data type String. Converting these attributes to date-

time objects makes it possible to index, measure, and record changes in data points over time, including

seasonality and trends. Date-time objects are also used to set the boundaries of time-series analysis, such

as the start and end of the analysis, and determine the frequency of data points.
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Aggregation of Data to Daily Level

Initially, the data points are at an hourly level. To simplify analysis and predictions, the data were

aggregated on a daily level and grouped accordingly to the type of material. This higher forecast interval

ensures that the analysis and predictions are more simplified. Furthermore, the reduction of data points to

a higher forecast interval helps to smooth out the curve of the time series. Additionally, the reduction of the

dataset’s size makes it more manageable and easier to work with. This also allows for easier identification

of trends and patterns in the data, enabling more informed decision-making.

Lead Time Calculation

Feature engineering was performed to calculate the lead time for each order. This was achieved by extract-

ing the business days between the "Bestillingsdato" and "Leveringsdato" columns. Extracting only the

business days will be more representative than including weekends and vacations since the logistics are on

hold under weekends and vacations. The resulting lead time metric provided insights into the reliability

and consistency of the inbound logistics process. To further analyze the data, the average lead time for

each material was calculated.

Dataframe

After calculating the lead time metrics, a data frame was created for future use. The data frame consisted

of one line per material, with several columns including the lead time mean, as well as other relevant

information such as Korttekst, Lagerkvantumsenhet, Nettopris, and Valuta. This data frame provided a

comprehensive overview of the inbound logistics process for each material and could be used for further

analysis and insights into the replenishment process.

Removing Outliers

Outliers are data points that are significantly different from the other data points in a dataset. It is

essential to remove outliers from a dataset to obtain accurate and reliable results. The SciPy Python

package, as seen in Figure 20 under the Methodology chapter, was utilized to calculate the outliers for

both the outbound logistics (Kvantum ut) and inbound logistics (Kvantum inn) data points in the dataset.

The z-score is a measure of how many standard deviations a data point is away from the mean of the data

set. If a data point has a z-score larger than 4, it is considered an extreme outlier.

Removing outliers with a z-score larger than 4 is important because these values can have a significant

impact on statistical analysis and machine learning algorithms. These values can skew the mean and

standard deviation of the dataset, leading to inaccurate results. In some cases, extreme outliers can also

cause a model to overfit, meaning it performs well on the training data but poorly on new data. By

removing extreme outliers, the dataset is more representative.

Average Inventory Level

Calculating and knowing the average inventory level for all materials in an inventory is crucial for several

reasons. Knowing the average inventory level helps in reducing costs. Maintaining excessive inventory

levels can tie up a significant amount of capital, and the cost of storing excess inventory can quickly add

up.
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The inventory level for all materials at all given times was not retrievable from the LC HMN database, but

they conducted inventory counts three to four times a year. The inventory level was calculated by starting

with a manual inventory count and taking the difference between cumulative demand and cumulative

purchases. This allowed them to see the inventory level for all materials for a year ahead. Then the

average for all these inventory levels was calculated, so that the average inventory level for all materials

for the given time period could be seen.

Unit Price Calculation

The unit cost for each material was calculated by fetching the total tied-up capital for each material,

divided by the total quantity for each material. The unit price of each material can help manage the

inventory more effectively by tracking the most expensive materials and improving the ordering policies

accordingly.

Coefficient of Variation

The coefficient of variation provides a way of understanding the variability of demand relative to the

average level of demand. This measure was calculated by first calculating the standard deviation and

average values of demand for each material, then dividing the standard deviation by the average value. By

comparing the coefficient of variation for different materials, items that are highly volatile can be identified.

Thus, the measure is useful to better understand and manage the demand variability.

Inventory Turnover Ratio

The inventory turnover ratio is a measure of how quickly a company is able to sell and replace its inventory.

The inventory turnover ratio calculated involves dividing the total demand for each material by the average

inventory level. The average inventory level is calculated as described under paragraph Average Inventory

Level.

Average Demand Interval

The average demand interval is a measure that reflects the average time between two consecutive demands

of a material. This measure is calculated by taking the total number of periods, given in days, weeks, or

months, and diving that number by the total number of periods with demand.

5.2.2.2 Data Filtering

Figure 33 visually represents the sequential steps involved in filtering the preprocessed data, ultimately

leading to a subset of data, stated suitable for analysis. The diagram underscores the importance of data

quality and completeness, as well as the significance of data cleaning and preprocessing in obtaining a

reliable and representative dataset for the case study data analysis.
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Figure 33: Data filtering overview

Starting with a raw dataset updated in December 2022, a filtering step is applied to remove materials

that are not included in inbound or received transactions. This initial removal reduces the dataset by

1294 materials. Following the removal of materials not included in transactions, another filtering step is

conducted to identify materials lacking crucial Material Resource Planning (MRP) information for the year

2023. Subsequently, the dataset is carefully examined to identify materials labeled as "ND" (No Data)

in the ERP system. The next step involves data cleaning and preprocessing, described in Section 5.2.2.1,

where materials are filtered out based on criteria such as data inconsistencies or incomplete records. Before

proceeding with the final analysis, a filtering step is conducted to exclude materials lacking sufficient data

for simulation input parameters (Section 5.2.2.2). The resulting subset of 1256 materials represents the

final dataset that is considered suitable for detailed analysis.

5.2.3 Material Categorization

Analyzing all the materials that LC HMN holds is crucial for identifying the materials that have the

greatest potential for improving operational policies and reducing holding costs. In this section, a scientific

approach to material analysis involves using statistical and mathematical tools to quantify and interpret

the data was performed.
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5.2.3.1 K-Means Clustering

In order to classify all the materials in terms of demand and holding inventory, a graph (Figure 35) was

generated to visualize the relationship between the coefficient of variation (CV), which is a measure of

demand variability, and the inventory turnover ratio, which reflects the number of times an inventory is

sold out within a time period.

Figure 34: Elbow method.

Figure 35: A clustering of all the materials, based on CV-value and Inventory Turnover Ratio.

As seen above, Figure 35 shows the clustering of all 1256 materials included in the subset remaining after

the data filtering process in Section 5.2.2.2. All the materials are divided into three clusters, defined

through the use of Elbow Method by the KMeans algorithm, as seen in Figure 34 (F. Pedregosa et al.,

2011). A higher coefficient of variation (CV ) means a higher level of dispersion around the mean, which

means higher volatility in demand in this case. A CV value larger than 2 is considered high, meaning that

the standard deviation is twice as significant as the demand. A high value of inventory turnover ratio will

prove a relatively low average inventory level, compared to the demand (Arnold, 2017).

Each individual material in Figure 35 is assigned to a cluster. Cluster group number one contains materials

with a relatively high inventory turnover ratio (ITR > 7 ), which means that the materials are often selling,

indicating a high demand. The coefficient of variation (CV ) for cluster one is also relatively low (CV <

60



3 ), meaning that the standard deviation of demand is less or equal to third times the average demand.

Materials belonging to cluster group zero represent materials with a relatively lower inventory turnover

ratio. This cluster group account for approximately 50% of the different material types and have slightly

slower demand than the previously mentioned cluster groups 1. The final cluster group, number 2, contains

materials with a high ratio between standard deviation and average demand. This cluster group includes

material types that are rarely ordered or substitute items that have been ordered if the originally preferred

item was unavailable.

5.2.3.2 Syntetos Method

The use of the coefficient of variation and inventory turnover ratio as variables provides some insight

into the variability and efficiency of inventory management, but may not capture the full complexity of

demand patterns or the relationship between demand and inventory. Thus a second type of classification

was performed, to potentially provide a more nuanced and informative view of the data.

As discovered in the systematic literature review in Section 4.2, Syntetos, Boylan et al. (2005) proposed

two cut-off values to calculate different demand patterns. The demand intervals are determined by the

average demand interval (ADI = 1.32), and the other coefficient is the demand variation (CV 2 = 0.49). A

high value of ADI indicates a low frequency of demand and a high value of CV 2 indicates a high volatility

of demand. Squaring the coefficient of variation can help emphasize the impact of high variability, while

the average demand interval can capture the frequency and regularity of demand.

Figure 36: A demand categorization of all the materials.
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Figure 36 shows the ADI - CV 2 plot for all the 1256 materials. The materials are divided into four

categories, based on the two cut-off values. These categories are erratic, lumpy, smooth, and intermittent,

derived by Syntetos, Boylan et al. (2005).

• Smooth Demand (ADI < 1.32 and CV 2 < 0.49): The demand is consistent in quantity and time

intervals between occurrences of demand

• Intermittent Demand (ADI >= 1.32 and CV 2 < 0.49): The demand is consistent in quantity, but

variation in time intervals between occurrences of demand

• Erratic Demand (ADI < 1.32 and CV 2 >= 0.49): The demand has high variation in quantity, but

consistent in time intervals between occurrences of demand

• Lumpy Demand (ADI >= 1.32 and CV 2 >= 0.49): The demand has high variation in quantity and

time intervals between occurrences of demand

Among the selection of materials, there are 37.7% of the items in the erratic category, 57.2% of the items in

the lumpy category, 5.1% of the items in the smooth category, and zero items in the intermittent category.

There is a presence of materials with extreme values. This makes the plot to be rather unrepresentative,

as the large scale of the axes distorts the visual display of the data.

Lead Time Distribution

An analysis of the distribution of the average lead time for all materials was conducted. Sorted by the

demand categories presented earlier in this section, the lead time distribution in days is relatively similar

for each of the demand categories presented in Figure 37.

As can be observed, the majority of materials have an average lead time of between two to five days,

regardless of the demand categories. Thus the graphs presented in Figure 37 provide evidence that the

average lead time in days for all materials has no clear impact on the categorization of the materials based

on demand.
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Figure 37: Lead time distribution within demand categories

5.2.3.3 Combining K-Means Clustering and Syntetos Method

Looking closer at the clustering performed in Figure 35, and combining those three clusters with the

classification of demand performed in Figure 36, Figure 38 is created to see the distribution of the demand

categories within the three clusters. As one can observe, cluster number zero contains the majority of the

materials, measuring 61.5% in total.
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Figure 38: Histogram of the clusters and demand category.

The demand categories within cluster zero appear to be skewed distributed, where 36.6% of the materials

within this cluster have a lumpy type of demand, and 21.8% has a erratic type of demand, while the

remaining 3.1% is a smooth type of demand. This suggests that materials within this cluster may exhibit

a diverse range of demand patterns, which may require customized forecasting and inventory management

strategies. Similar to cluster zero, cluster 1 has a skewed distribution with 15.9% erratic demand, 7.2%

with lumpy demand, and 2% with smooth demand. In contrast, cluster two exhibits a single type of

demand.

As discussed in Section 5.2.3.1, cluster zero has the highest potential in replenishment policy due to its

slow-moving inventory and high demand variability, making it challenging to predict demand and plan

inventory levels accurately. Cluster one has a relatively lower CV value and a higher inventory turnover

ratio, indicating that demand is consistent and inventory levels are not too high throughout the period.

Therefore, the potential for this cluster is lower than for cluster zero. For cluster two, the CV value is so

high that predicting demand becomes very difficult to accomplish.
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A Closer Look At Cluster Zero

Considering that 61.5% of the materials fall under this cluster, characterized by excessive inventory and

a considerable variation in demand, it presents the most significant opportunity for improvement for LC

HMN.

Figure 39: A demand categorization for cluster zero in Figure 38

The ADI - CV 2 plot in Figure 39 provides insights into the demand behavior for the materials within

cluster zero. A single material from each category was selected to represent their respective demand

category. The three selected materials from cluster zero exhibit different demand patterns, with material

4003841 having smooth demand, material 4001095 having erratic demand, and material 4012198 having

lumpy demand. These materials are denoted as red dots in Figure 39, and were chosen as representatives

of their respective demand categories.

5.2.4 Time Series Analysis

This section will cover the execution of three types of time series analysis: seasonal-trend decomposition,

autocorrelation analysis, and augmented Dickey-Fuller test. Seasonal-trend decomposition will be used to

decompose the time series data into seasonal, trend, and irregular components. Autocorrelation analysis

will be used to measure the degree of correlation between a time series and its lagged values. The augmented

Dickey-Fuller test will be used to determine whether a time series is stationary or not, which is a crucial

assumption in many time series models.

5.2.4.1 Decomposition of the Time-Series

Performing a seasonal trend decomposition of time series data is beneficial to better understand the different

components of time series (Cleveland et al., 1990). Seasonal-trend decomposition works by breaking the

data into three components: the trend component, the seasonal component, and the remainder of the

disturbance component. The trend component represents the underlying long-term direction of the data;
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the seasonal component captures the seasonal fluctuations; and the remaining component represents all

the remaining fluctuations in the data that do not fit into either the trend or the seasonal components,

which could be important factors, such as economic cycles or unusual events.

Figure 40 shows a seasonal trend decomposition of three different materials, each representing a demand

category from Figure 39. From the first plot for each material, called Observed, one can examine that the

three materials have completely different demand patterns. Material 4001095 has a pattern with regular

occurrences of demand in time, but the quantity of demand may still vary widely, with some periods

experiencing high demand and others experiencing lower levels.

For material 4012198, the observed demand is characterized by a large variation in time, thus infrequent

orders, but the order quantity is relatively large and consistent. In other words, instead of customers

placing orders at a steady pace, they place them sporadically in large quantities, resulting in "lumps" of

demand. From the observed pattern of the last material, 4003841, one can monitor a pattern with demand

every day throughout the year, but the demand varies to an extent. This pattern provides more data

points, making it easier to predict the such type of demand.

Looking at the trend component (the second plot for each material), materials 4001095 and 4012198 have

a trend line that is similar to some extent. The trend line has a step-wise line of trend, indicating a type

of trend in the data that is characterized by sudden and significant shifts in the values of the data over

time. In other words, instead of exhibiting a smooth or gradual change, the data changes abruptly from

one level to another, creating a "step" pattern. The discrete steps reflect the infrequent demand that these

three materials do represent.

For the third material (4003841), the line of trend is easier to analyze. The trend line remains almost flat

until April 2022, when there is a slight increase, followed by a sharp decline towards May. During the

months leading up to June, there is a notable increase in the material, followed by a subsequent decline

and stabilization towards the end of the year.
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Figure 40: Decomposition of three selected representative materials for each category: Erratic
(4001095), Lumpy (4012198), and Smooth (4003841).

The seasonal component called Seasonal is represented as the third graph for each of the three selected

materials in Figure 40. When comparing the three materials, one can observe that all materials have a

seasonal cycling variation that occurs every month. Thus, all three materials have a monthly repeating

cycle in the time span between September 2021 and September 2022. The residual component is plotted

in the fourth graph. The residuals, also called noise, refers to random fluctuations in time series that do

not follow a systematic pattern. Noise can be caused by random events or measurement errors.
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5.2.4.2 Auto-Correlation

Auto-Correlation is useful to see how time series develop. Past observations of a given time series, often

called lags, are compared with the current value of the time series, which can help in identifying patterns

and determining the order of an autoregressive model (Bollerslev, 1986).

The autocorrelation analysis of material 4001095 indicates an initial sharp decline in autocorrelation values

close to zero, followed by relatively minor fluctuations in autocorrelation over the entire time period,

occurring on both the negative and positive sides. Material 4001095 has no correlations above 0.25 or

below -0.25. This indicates that there is no significant linear relationship between the lags for material

4001095.

The plot for material number 4012198 is somewhat similar to material 4001095, besides the majority of

values are primarily on the negative side. Material 4012198 differs from 4001095 with some values above

0.25, meaning that it exists proof of a positive correlation between the lags for material 4012198.

The analysis of material number 4003841 reveals a significant observation regarding the autocorrelation

behavior. The autocorrelation function exhibits a gradual, linear increase over the considered period, and

the graph appears to have a slightly concave shape. The material has several values of auto-correlations

close to 2.5, indicating that there is a statistically significant positive correlation between the lags for

material 4003841.
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Figure 41: Auto-correlation of three selected representative materials for each category: Erratic
(4001095), Lumpy (4012198), and Smooth (4003841).

69



5.2.4.3 Stationary Test

To verify whether the time series data can be utilized for machine learning demand forecasting, an Aug-

mented Dickey-Fuller test (ADF) (Dickey and Fuller, 1979) was performed. The ADF test is a statistical

test that is commonly used to determine whether a time series is stationary. The stationary state is an

important assumption for many time series analysis methods, so it is often useful to perform the ADF test

to check whether this assumption holds for a given time series.

In Figure 42, the Dickey-Fuller test is performed for the three materials, each representing a demand

category. For each material, the original time series is plotted, in addition to the rolling mean and

standard deviation, where the rolling window is set to 30 days. In each plot the test statistic, p-value,

number of lags used, number of observations used, and the 1%, 5%, and 10% critical values are present.

The test statistic measures the extent to which a unit root is present. A p-value that results from the

augmented Dickey-Fuller test below a threshold suggests rejecting the null hypothesis, which implies that

the observation is stationary and does not have a time-dependent structure (Brownlee, 2021). Otherwise,

a p-value above the threshold indicates that the test failed to reject the null hypothesis, and thus it is

non-stationary.

The number of lags is the number of time intervals that are included in the test. This number is chosen

based on the autocorrelation function and is used to control the potential correlation between successive

observations in the time series. The number of observations utilized represents the number of data points

in the time series. The critical values (1%, 5%, and 10%) represent the threshold that the test statistic

must exceed in order to reject the null hypothesis. The hypothesis test is set as follows:

• Null Hypothesis (p-value > 0.05): It suggests that the time series has a unit root, meaning it is

non-stationary. It has some time-dependent structure.

• Alternate Hypothesis (p <= 0.05): It suggests that the time series does not have a unit root, which

means it is stationary. It does not have a time-dependent structure.

The material 4001095 exhibits a p-value of 0.0, which indicates that the null hypothesis is rejected in favor

of the alternate hypothesis. The test statistic of �15.694, which is substantially less than the critical values

of 1%, 5%, and 10%, implies that the time series of material 4001095 is stationary and lacks any temporal

structure.

For the second material (4012198), the observed p-value of 0.0 implies that the test fails to reject the null

hypothesis and thus accepts the alternative hypothesis. The time series of material 4012198 has no time-

dependent structure and thus is stationary. Examining the test statistic of �16.4621, which is smaller than

all the critical values, implies that the test has strongly rejected the null hypothesis at all the significance

levels. This indicates that the test results are highly significant and provide strong evidence against the

null hypothesis.

Material 4003841 has a p-value of 0.0003, which is smaller than the selected p-value for the null hypothesis.

Thus the null hypothesis is rejected and the alternative hypothesis is accepted. The test statistic of �4.3635

is marginally smaller than the 1% critical value, but significantly smaller than the 5% and 10% critical

values. This means that the test has rejected the null hypothesis at all significance levels.
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Thus all three selected materials do not have a unit root, and their statistical properties remain constant

over time. The time series of the three selected materials is thus stationary and can be utilized for demand

prediction methods such as statistical methods and machine learning methods.

Figure 42: Augmented Dickey-Fuller test for the three selected representative materials for each
category: Erratic (4001095), Lumpy (4012198), and Smooth (4003841).

5.2.4.4 Aggregation Analysis

Sparse data is a common occurrence in many real-world problems. There are multiple possible causes for

sparsity (T. Chen and Guestrin, 2016). It could be the presence of missing values, frequent zero entries in

the statistics, or artifacts of feature engineering.
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The observed data is to some extent sparse due to the absent demand for certain dates with zero values.

The number of zero values also defines the average demand interval (Section 5.2.2.1), determining which

demand category a given item belongs to. If the data is aggregated to a higher level than the base level

(which is daily for the preprocessed data of LC HMN), such as a weekly level, it will naturally reduce the

number of null values.

Figure 43: Sparsity analysis of the selected materials

Forecast Interval Smooth - Material 4003841 Erratic - Material 4001095 Lumpy - Material 4012198
B 5 % 76 % 91 %

1W 0 % 28 % 60 %
2W 0 % 7 % 39 %
3W 0 % 3 % 24 %
4W 0 % 0 % 15 %
5W 0 % 0 % 7 %
6W 0 % 0 % 2 %
7W 0 % 0 % 2 %
8W 0 % 0 % 3 %
9W 0 % 0 % 0 %
10W 0 % 0 % 0 %

Table 8: The resulting representation of zero-values for the different forecast intervals in Figure 43

Figure 43 shows the reduction of zero values when aggregating the time series to a certain level of time.

The x-axis spans from business days (noted as "B") to 10 weeks time ("10W"). For material 4003841,

which is a smooth type of demand, the percentage of zero values in the aggregated data drops from 5% to

0% when going from business days to a weekly aggregation. This reflects that material 4003841 exhibits a

relatively short average demand interval, with demand occurring frequently throughout the representative

year.

Material 4001095 has a more significant drop of zero values when aggregating data. When aggregating

from business days to one week, the drop in zero values goes from 76% to 28%, and when aggregating from

one week to two weeks, the drop in zero values is from 28% to only 7%. The third material, 4012198, has

a more gradual slope of development than the latter material. When aggregating the data from business

days to weekly, material 4012198 has a reduction in zero values from 91% to 60%. From weekly to every

other second week, the reduction is from 60% to 39%.
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Figure 44: Data point analysis of the selected materials

Forecast Interval Smooth - Material 4003841 Erratic - Material 4001095 Lumpy - Material 4012198
B 0 % 0 % 0 %

1W 79 % 39 % 7 %
2W 89 % 60 % 29 %
3W 93 % 72 % 41 %
4W 95 % 78 % 50 %
5W 96 % 83 % 56 %
6W 96 % 86 % 62 %
7W 97 % 88 % 67 %
8W 97 % 89 % 71 %
9W 98 % 90 % 74 %
10W 98 % 91 % 76 %

Table 9: The resulting loss of data points for the different forecast intervals in Figure 44

A downside of aggregating to a higher level (e.g. weekly) is that the number of data points is reduced.

Although small sample sizes are often prevalent, limited data can pose a challenge in recognizing patterns

(Raudys, Jain et al., 1991) and making accurate predictions. Therefore, a trade-off between reducing null

values and having enough data points must be made.

Figure 44 shows the loss of data points when aggregating data. Material 4003841 has a drastic reduction

of data points of 80% when aggregating to weekly time intervals, showing the downside of aggregating

data. Material 4001095 has a reduction of 39%, while material 4012198 has a reduction of 7%. The

forecast interval determines the minimum forecast interval. The answer to which forecast interval is the

most optimal, thus the forecast interval, will be explored and described for all the materials later in

Figure 5.3.3.
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5.3 Multi-Scenario Analysis

In this section, the results from a performed multi-scenario analysis are presented. The following five

identified and selected strategies will be presented and analyzed.

• AS-IS Fixed Reorder Point

• Proposed Fixed Reorder Point

• Basic Dynamic Reorder Point

• Basic Dynamic (OPTIMAL) Reorder Point

• Advanced Dynamic Reorder Point

As depicted in Figure 3.5, the strategies are compared through a multi-scenario analysis. Firstly, the

Python-based simulation model is introduced, including the description of the logic behind dynamic reorder

points. Next, the AS-IS Fixed Reorder Point is presented, providing a detailed analysis of the three selected

representative materials, in addition to a more general overview of all 1256 materials. Moving on, the

Proposed Fixed Reorder Point, Basic Dynamic Reorder Point, and Basic Dynamic (OPTIMAL) Reorder

Point strategies are examined. An analysis of all materials is conducted, comparing these three strategies

based on inventory level, service level, and holding cost. Lastly, the Advanced Dynamic Reorder Point

strategy is investigated. This analysis focuses on the three selected materials and compares this strategy

against the other four mentioned strategies, considering inventory level, service level, and forecasting

accuracy.

5.3.1 Python-based Simulation Model

In this section, the simulation model programmed in Python specifically for this thesis will be presented.

The simulation model is used in order to analyze and compare the five identified and selected strategies

described in Figure 3.5.

In order to simulate different order policies, a number of assumptions and parameters need to be de-

termined. The model used to simulate different policies is a time-slicing, deterministic discrete simulation

model. A time-slicing deterministic discrete simulation model is a type of simulation model that breaks

down a system into discrete time slices but does not introduce random variability or uncertainty into the

model (Banks, 1999).

The simulation model is designed to simulate the behavior of an inventory system, taking into account

factors such as demand, lead time, reorder points, and order size. The SimPy library (Simpy, 2023) is

used to create a discrete-event simulation, which allows the modeling of complex real-world systems in a

controlled and repeatable manner.
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Characteristics of the Simulation Model

The following bullet points outline the main characteristics and aspects of the simulation model, shed-

ding light on its design and functionality. The simulation model incorporates several key features and

considerations to accurately represent the inventory management system under investigation.

• Discrete-event simulation: The model uses the SimPy library to create a discrete-event simulation,

where events occur at discrete points in time.

• The time slice is in business days: There are no gaps between working days in the simulation model.

• The deterministic model assumes that all inputs to the model are known with certainty. In other

words, there is no randomness or variability in the simulation.

• Maximum one replenishment order issued at the time.

• Unfulfilled demand monitoring: The model continuously monitors whether the demand is met or

not.

• Lead time: The model includes lead time, which is the time between placing an order and receiving

it.

• Reorder points: The model uses reorder points to trigger an order when inventory levels fall below

a certain threshold.

• Fixed order size: The model uses a fixed order size, where the same quantity is ordered every time

an order is placed.

• Demand: The model incorporates demand, which is pre-defined.

• Inventory level monitoring: The model continuously monitors inventory levels and triggers an order

if inventory falls below a reorder point.

• Order placement and arrival: The model includes processes for placing and receiving orders, which

involve lead time and a fixed order size.

• Performance metrics: The model does not explicitly calculate performance metrics such as service

level or inventory cost, but they can be derived from the simulated data.

• Initial Stock: The initial stock is calculated using a custom formula.
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5.3.1.1 Simulation Logic

The logic of the simulation model is visually represented in Figure 45. The logic is repeated for each day,

with the number of loops in the simulation determined by the number of business days with demand.

Figure 45: Simplified textual description of simulation algorithm

Initial Inventory Level

This section describes the way the initial inventory level is calculated for the simulation of the Proposed

Fixed ROP and the dynamic ROP strategies. As Table 11 shows, with today’s replenishment policy, the

fixed reorder points and order size are substantially large compared to the initial stock, indicating that LC

HMN seeks to maintain a high level of inventory to ensure that they do not run out of stock.

Using the existing inventory level (AS-IS) as the initial inventory level, a conceptual replenishment policy

will be influenced by the existing inventory level (AS-IS). Therefore, it becomes essential to calculate an

initial inventory level to simulate conceptual strategies, ensuring its relativity and enabling comparisons

with both the AS-IS replenishment policy and other conceptual replenishment policies.

The calculation for determining the initial inventory level involves two components: the initial Reorder

Point (ROP) and the fixed order size. The initial stock is obtained by adding the initial ROP to half of

the fixed order size.

Initial Stock = ROPInitial +
Fixed Order Size

2

The initial ROP represents the reorder point value for the first day of the simulation, which can be either

fixed or dynamic. The fixed order size, determined by LC HMN, corresponds to the specific material being

simulated. The initial inventory level serves as the starting point for the simulation and is calculated in

the manner described to make the initial inventory level relative to the replenishment policy used in the

specific simulation. This facilitates the analysis and simulation of various inventory management policies

for each individual sampled material.
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Calculation of Dynamic Reorder Point

The dynamicReorder Point (ROP) plays a crucial role in the simulation and testing of various inventory

management strategies. It is designed to adapt to changing demand patterns and ensure sufficient inventory

levels, based on theoretical formulas inherent to inventory management.

Figure 46 depicts the parameters involved in the calculation of the dynamic reorder point for a specific

forecast interval, denoted as the period "0". The horizontal lines shown (light blue, orange, and green)

in the figure represent the demand forecasts. These forecasts are obtained using a forecasting model that

relies on historical demand data prior to the specified time period. The demand forecast for the upcoming

period is a single numerical value that represents the total forecasted demand within the forecast interval

of n days. The total forecasted demand is leveled for the n days within the forecast interval. This results

in the forecasted demand remaining constant for the n-days within each forecast interval, regardless of the

specific forecasting model employed.

The figure also includes dotted lines that represent the daily deviations between the observed demand

(represented as a curved blue line) and the forecasted demand. These deviations serve to highlight the

variations or discrepancies between the actual demand experienced and the forecasted values.

Figure 46: Scope of dynamic reorder point calculation for each forecast interval

Overall, Figure 46 provides a visual aid for understanding the dynamic reorder point calculation process,

specifically in relation to the forecasted demand and its deviations. Further on, Table 10 explains the

stepwise calculation of the dynamic reorder point.
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Step Step Description Formula Formula Description

1

Calculation of forecast interval sigma (�FI)
based on the error (deviation) between the
earlier forecasted demand and the actual

demand
�FI =

vuut 1

n

nX

i=1

(DailyDeviation)2

"n" is the number of days in the forecast
interval. "DailyDeviation" is the deviation

between forecasted demand at time "-1" and
actual demand at the nth day, see Figure 46.

2

Calculation of lead time sigma (�LTI) based
on an adjustment made to �FI , to

compensate for differences between lead
time interval (LTI) and forecast interval

(FI).

�LTI = �FI ⇥
r

LTI

FI

"FI" is the number of days in the forecast
interval. "LTI" is the number of days in the

lead time for the given material. The
resulting �LTI is the adjusted forecasting

error sigma.

3 Calculation of safety stock (SS) SS = SafetyFactor ⇥ �LTI

"SafetyFactor" is the number of standard
deviations provided as safety stock,

determined by Appendix A

4 Calculation of demand during lead time
(DDLT) DDLT = ForecastedDemandTime0⇥LTI

ForecastedDemandTime0 is the forecasted
demand at time 0 for the upcoming n forecast

interval days, leveled to daily demand.

5 Calculation reorder point (ROP) ROP = DDLT + SS
This ROP is constant for the upcoming

forecast interval.

Table 10: Stepwise dynamic reorder point calculation

Table 10 outlines the stepwise dynamic reorder point calculation process. It presents a description of each

step, along with the corresponding formulas and their explanations. Step 1 of the calculation involves

determining the forecast interval sigma (�FI). This value is calculated based on the deviations (errors)

between the earlier forecasted demand and the observed demand. The formula for �FI is given as the

square root of the average of the squared daily deviations, divided by the number of days in the forecast

interval (n), see Equation 7 in the theory section. The "Daily Deviation" represents the deviation between

the forecasted demand at forecast interval "-1" and the actual demand on the nth day, as illustrated in

Figure 46.

Step 2 focuses on the calculation of the lead time sigma (�LTI). It involves adjusting �FI to compensate

for differences between the lead time interval (LTI) and the forecast interval (FI). The formula for �LTI

is obtained by multiplying �FI by the square root of the ratio between LTI and FI. Here, "FI" represents

the number of days in the forecast interval, while "LTI" represents the number of days in the lead time

for the given material. The resulting �LTI represents the adjusted forecasting error sigma.

Step 3 focuses on the calculation of the safety stock (SS). The formula for SS involves multiplying the

"Safety Factor" (number of standard deviations) by �LTI (Arnold, 2017). The value of the Safety Factor

is determined by Appendix A.

Step 4 involves calculating the demand during the lead time (DDLT). The formula for DDLT is obtained

by multiplying the forecasted demand (leveled to a daily demand) at time 0 for the upcoming n forecast

interval days by the lead time interval (LTI).

Finally, in Step 5 the Reorder Point (ROP) is calculated. The formula for Reorder Point (ROP) involves

adding DDLT and SS, see Equation 3 in the theory section. The resulting ROP remains constant for the

upcoming number of days in the forecast interval.
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Determination of Key Performance Indicators

As discovered in Section 5.1.4, the service level is highly important for LC HMN, having a lower service

level constraint of 97%. Therefore, the service level is included as a key performance indicator in the

simulation result.

The average inventory level is an important metric used to evaluate the performance of a simulation. It

serves as the second key performance indicator (KPI). This metric measures the quantity of inventory held

during the simulation period for the simulated material and is directly linked to the calculation of holding

cost.

Limitations of the Simulation Model

To ensure accurate result interpretation and informed decision-making, it is crucial to recognize the limita-

tions of the simulation model. The following are the acknowledged limitations of the constructed simulation

model:

• Order Size: The simulation model assumes a fixed order size.

• Demand patterns: The model assumes a predefined demand pattern.

• Fixed lead time: The model assumes a fixed lead time for orders.

• Limited performance metrics: The model focuses on a limited set of performance metrics, such as

service level and average inventory level.

• Simplified supply chain: The model assumes a single-level supply chain, which may not accurately

reflect the complexities of real-world supply chains.

• The simulation does not handle unfulfilled demand: In the event that the demand exceeds the

inventory level for a specific time period, the unmet demand (represented by the negative difference

between the demand and the inventory level) will be tracked, but the demand will not be met.

5.3.2 AS-IS Fixed Reorder Point

In this section, a detailed analysis of the AS-IS Fixed Reorder Point is presented for the three representative

materials selected from Figure 39. Subsequently, the analysis is extended to encompass all 1256 materials.

The first presented detailed analysis is meant to give a deeper understanding of what the analysis includes.

By expanding the examination to include the entire range of materials, a broader perspective is captured.

5.3.2.1 Analysis of The Three Materials

The preprocessed actual demand of the selected materials in the time range of 30/08/2021 to 26/08/2022

was passed as input to the simulation model. The distribution of the preprocessed demand in the given

time range is shown in Figure 47. The time range equals 260 business days, which is visualized on the

x-axis.

The date range differs from the range used in Section 5.2.3, since the dates prior to 30/08/2021 will be

utilized as a training set for predictive algorithms, and the dates post 30/08/2021 will be predicted as
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input for conceptual replenishment policies before the AS-IS replenishment policies will be compared with

the conceptual replenishment policies.

Figure 47: The demand from 30/08/2021 to 26/08/2022 (260 business days) for the three selected
representative materials for each category: Erratic (4001095), Lumpy (4012198), and Smooth
(4003841).

Despite the time interval used for simulation is different from the time interval used for data analysis

(Section 5.2.3), the three materials are assumed to have a similar demand pattern for the two periods,

therefore still belong to the same demand categories assigned and explained in Section 5.2.3.2.

In Table 11, a series of other parameters used in the simulation is presented. The initial stock, reorder

point and order size has been determined through emails and meetings with the head SAP Engineer at LC

HMN. The lead time is, as described in Section 5.2.2.1, calculated based on the historical orderings and

inbound reception of goods.
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Material Initial Stock Lead Time Reorder Point(s) Order Size
4001095 5 000 items 4 business days 3 000 items (fixed) 4 000 items (fixed)
4012198 12 000 items 4 business days 8 000 items (fixed) 8 000 items (fixed)
4003841 144 400 items 12 business days 130 000 items (fixed) 28 800 items (fixed)

Table 11: Inputs to the simulation of the selected materials, excluding demand

Replenishment Policy Result

In Figure 48, the AS-IS Fixed Reorder Point of LC HMN for the selected materials is simulated. The

average inventory level for the materials is represented as the blue line. The gradual descent of the

inventory level is caused by demand, and the shift in the vertical axis represents the arrival of an order to

the warehouse.

As stated in Section 5.3.2, the reorder point is fixed, and is visualized as a red horizontal dotted line.

Once the inventory level drops below the reorder point, an order is placed to replenish the inventory. The

demand for the given material is represented by the orange line. The variation in demand directly reflects

the variation in inventory level.

The light green dotted line represents the average inventory level for the simulated 261 business days. The

green whole line at the bottom of the plot represents the unfulfilled demand. For the selected materials,

this is equal to zero throughout the whole simulation, which indicated a service level of 100% for the time

period.

81



Figure 48: AS-IS reorder point policy for the three selected representative materials for each
category: Erratic (4001095), Lumpy (4012198), and Smooth (4003841).

For material 4001095, there have been made three replenishments during the 261 business days, triggered

by the inventory level crossing the reorder point. The calculated initial stock is 5000 units. As discovered

under Section 5.2.3, material 4001095 has a demand pattern that is categorized as erratic, meaning that

the demand interval and demand quantity vary with time, which results in a high level of uncertainty about

how much inventory is needed to be kept in stock. LC HMN needs to maintain a service level close to

100%, and therefore, they mitigate against this difficult demand pattern by maintaining a high inventory

level.

Material 4012198 exhibits a comparable inventory-level pattern to material 4001095. The calculated initial

stock is 12 000 units. As discussed in Section 5.2.3, the demand pattern of material 4012198 was classified

as "lumpy," indicating that there is variation in the demand interval but not significant variation in the

demand quantity. Thus LC HMN holds a fairly high inventory level for material 4012198 to protect against

demand uncertainty.
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The last material, 4003841, has a quite different stock-level pattern compared to the two latter materials.

The calculated initial stock is 144 400 units. Under Section 5.2.3, the demand pattern of material 4003841

was categorized as smooth. This implies that the demand pattern of material 4003841 is characterized by

lower fluctuations in demand quantity and a stable demand interval.

Cumulative Stock and Demand Level Results

In Figure 49 the cumulative order arrival and the cumulative demand are visualized. The cumulative order

arrival is visualized as a blue line. The vertical shifts in the blue line represent the arrival of materials from

the suppliers to LC HMN. The cumulative demand is represented as the orange line, showing the total

demand for the material through the time span. The green area between the cumulative demand and the

cumulative order arrival represents the inventory level. For each business day, the inventory level is shown

as the distance between the cumulative order arrival line, and the cumulative demand line. The more

linear the cumulative demand is, the more smooth the demand for the material is. As one can observe

from Figure 49, material 4003841 which is categorized as a smooth, has a relatively more linear line of

cumulative demand than material 4012198, which is categorized with a lumpy demand pattern.
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Figure 49: Cumulative stock and demand levels for the three selected representative materials for
each category: Erratic (4001095), Lumpy (4012198), and Smooth (4003841).

The intersection of the blue line and the orange line in Figure 49 indicates the point at which the total

cumulative demand matches the cumulative order arrival. At this point, the inventory level of the material

will be zero, and the LC HMN will need to place additional orders in advance to meet ongoing demand.

Conversely, if the cumulative order arrival line is above the cumulative demand line, it suggests that there

is excess inventory, which could lead to overstocking and increased carrying costs. On the other hand, if

the cumulative demand line is above the cumulative order arrival line, it indicates a potential shortage of

the material, which could lead to lost deliveries.

In that case, the two graphed lines have crossed, and the integral of the lost deliveries will be visualized

with a red color, also noted as "Stockout Integral" in the graphs for all materials. Fortunately, with today’s

replenishment policy, all three materials have excessive inventory for all times through the given time span,

resulting in no stock-outs and a service level of 100%.
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5.3.2.2 Analysis of All Materials

In this section, the analysis of the AS-IS Fixed Reorder Point is extended to encompass all 1256 materials.

By expanding the examination to include the entire range of materials, a broader perspective is captured.

Service Level

Figure 50 displays the AS-IS fixed ROP service level for four different categories: Total, Erratic, Lumpy,

and Smooth, calculated through simulation, where "total" represents the three others combined. The

service level percentage is shown on the y-axis and ranges from 92 to 100%. The x-axis displays the four

categories. Each bar represents the service level percentage for each category, and the exact percentage is

labeled on top of each bar. The plot compares the service levels between the four categories.

Figure 50: Average service level based on AS-IS fixed reorder point

The overall service level for all materials is 99.3%. When considering specific material categories, both

Erratic and Smooth materials exhibit slightly higher service levels compared to Lumpy materials, which

have a service level of 99.1%.

Average Inventory Level

Figure 51 displays the number of materials in different average inventory level buckets for the three demand

categories. The x-axis shows the different average inventory level buckets, which are labeled as ranges of

values, and the y-axis shows the number of materials in each bucket. The data is visualized using a bar

chart, with each category having a different color.
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Figure 51: Average inventory level AS-IS reorder point policy

In the erratic category, the majority of materials are concentrated in the 0-500 average inventory level

range, with some materials distributed across other buckets. For the lumpy category, approximately 85%

of materials are found in the 0-500 bucket, showing a high concentration in this range. Lastly, the smooth

category stands out with the highest number of materials (40) in the > 3000 bucket, indicating a larger

inventory level.

5.3.3 Proposed Fixed ROP & Basic Dynamic (OPTIMAL) ROP

In this section, the simulation outcome for two of the five strategies from Figure 3.5 is presented: Proposed

Fixed ROP and Basic Dynamic (OPTIMAL) ROP. A description of the Basic Dynamic ROP strategy is

included in this section to give an understanding of the relationship between the strategies. For the Basic

Dynamic ROP strategy, the analysis itself will be presented later in Section 5.3.5
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The Proposed Fixed ROP strategy suggests the use of theoretical safety stock and reorder point formulas

from inventory management to calculate a new fixed reorder point. This allows for an investigation into

the potential of improving the AS-IS strategy, without changing the policy type.

Basic Dynamic ROP utilizes a simple moving average demand forecasting method for dynamic reorder

points, involving varying window sizes and forecast intervals. The basic form of demand forecasting

allows for a more comprehensive examination of numerous materials and the impact of factors such as

forecast interval. The Basic Dynamic (OPTIMAL) ROP strategy is based on "Basic Dynamic ROP", with

the optimal combination of window size and forecast interval. It represents a highly comprehensive and

high-performing basic strategy, providing a superior benchmark for the "Basic Dynamic Reorder Point"

strategy.

The Basic Dynamic ROP and Basic Dynamic (OPTIMAL) ROP are based on the dynamic reorder point

calculation as derived in Section 5.3.1.1. SMA was chosen due to the fact of the simplicity and popularity

of the method (Ali and Boylan, 2012), thus the strategies utilizing the SMA forecasting method are referred

to as "Basic".

Safety Factor

As described in Table 10, the safety factor has to be determined in order to calculate the dynamic reorder

point. The case company has set a service level constraint of 97%. To determine the safety factor for

a desired service level of 97%, the normal curve can be used (Arnold, 2017). The safety factor, or z-

value, indicates the number of standard deviations from the mean in a standard normal distribution that

corresponds to a specific service level (Radasanu et al., 2016). A safety factor of 1.88, which corresponds

to 97% service level (Appendix A), is used as as input parameter in the reorder point calculations of the

simulation model.

Search Space & Simulation Runs

The Basic Dynamic ROP and Basic Dynamic (OPTIMAL) ROP strategies involved the following search

space:

• Forecast intervals: Business days (B), weekly (1W), every second week (2W), every third week (3W),

and every fourth week (4W)

• Window Sizes: 1-10 [Forecast intervals]

Where forecast interval refers to the time between each forecast made, and the window size refers to

the number of forecast intervals of historical demand data taken into consideration when predicting the

demand for the upcoming period.

As described in Figure 3.5, the Basic Dynamic Reorder Point strategy involves a variety of window size

and forecast interval parameters. In this thesis, the Basic Dynamic Reorder Point strategy will involve all

parameter combinations in the presented search space. This means 50 (5 forecast intervals x 10 window

sizes) versions of the Basic Dynamic Reorder Point strategy are analyzed. Again, this means 50 unique

Basic Dynamic Reorder Point strategies will be tested for all 1256 materials. This equals 62 800 runs of

the simulation model.
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The Basic Dynamic (OPTIMAL) reorder point strategy is based on one single optimal combination of the

50 parameters in the given search space. This means only one version of the Basic Dynamic (OPTIMAL)

strategy is simulated for each of the 1256 materials.

Optimization Technique Used

For each of the 1256 materials, the optimal combination of parameters in the search space was needed

to be found in order to analyse the Basic Dynamic (OPTIMAL) reorder point strategy. For small search

spaces, a brute force optimization technique can be appropriate (García and Mena, 2013). A brute force

optimization technique was used in this case, with the objective of minimizing average inventory. Due to

the service level constraint found in Section 5.1.4, the constraint of 97% service level was included in the

optimization objective and logic.

Figure 52: Simplified illustration of optimization search algorithm

Figure 52 illustrates the logic of the optimization objective, showing that the main objective is to minimize

the average inventory level for each material, also taking into account the service level constraint of the

case company.

Distribution of Forecast Interval & Window Size Combination After Optimization

As mentioned and analyzed earlier under Section 5.2.4.4, the level of aggregation of the time series data

is connected to the forecast interval and has a great impact on how many data points that is available

for predictive models. In order to determine the best-performing forecast interval, a search was conducted

for the forecast interval and the optimal number of time units of window size to use as the data basis for

the predictive model. Window size is defined as the number of past observations used as a basis for a

prediction (Wheelwright et al., 1998).
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Figure 53: Distribution of optimal forecast interval and window size combination after optimiza-
tion.

As mentioned earlier in this section, a search space of four types of forecast intervals ("B" for business

days, "1W" for weekly, "2W" for every second week, etc.) and 10 time units of window size results in 50

permutations. The figure displayed in Figure 53 illustrates the distribution of number of materials based

on their best-performing parameters for forecast interval and window size. Each y-axis value corresponds

to the number of materials having the given x-axis value (combination of forecast interval and window

size) as their optimal parameter combination.

For the erratic materials displayed in the blue graph, the majority of materials select the daily forecast

interval ("B") as the most optimal and seek the longest window size to determine the predicted day.

No higher forecast interval than weekly ("1W") is significantly popular for erratic materials. For the

lumpy category displayed in the orange graph, one can observe a repeating increase in window size for

all forecast intervals. In other words, regardless of the forecast interval, the majority of materials within

the lumpy category seek the largest window size. The forecast interval that is most frequently chosen is

the daily interval ("B"), although the weekly interval ("1W") is also quite commonly selected. Lastly,

for the demand category Smooth, no higher forecast interval than daily ("B") is significantly represented,

thus making forecast interval at a daily level the most relevant. In terms of window size, the majority of

materials within the smooth category seek the largest window size.
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Service Level Statistics

Figure 54 shows the average service level for the different replenishment policies, divided into the three

demand categories. The AS-IS fixed ROP strategy with fixed ROP is visualized in blue bars, the Proposed

Fixed ROP is visualized in orange bars, and the Basic Dynamic (OPTIMAL) ROP is visualized in green

bars. As mentioned earlier in the paragraph Search Space & Simulation Runs, the Basic Dynamic (OP-

TIMAL) ROP solution consists of parameters such as forecast interval ("B" for daily, "1W" for weekly,

"2W" for bi-weekly, etc.) and window size (number of time units used as a basis for prediction) optimized

for each individual material.

Figure 54: Average service level result of optimal aggregation type

Analyzing one demand category at a time, the performance of all three replenishment policies for the

smooth category do perform well with all service levels above the 97% threshold. For the lumpy demand

category, the AS-IS Fixed ROP strategy and the Basic Dynamic (OPTIMAL) ROP is superior to the

Proposed Fixed ROP strategy, with 99.1% and 99% compared to 96.6%, which is below the threshold of

97%. For the erratic demand category, all the replenishment policies are above the threshold of 97%.

Average Inventory Transition

Figure 55 shows the resulting change in average inventory for all demand categories when transitioning

from one replenishment policy to another replenishment policy. In the bar chart, there are two types

of transitions. The one marked as a dark green represents the percentage change in average inventory

when converting from the AS-IS Fixed ROP to the Proposed Fixed ROP. The light green marked bars

represent the percentage change in average inventory when converting from the AS-IS Fixed ROP to the

Basic Dynamic (OPTIMAL) ROP.
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Figure 55: Percentage change in average inventory by strategy.

One can clearly observe from Figure 55 that going from the AS-IS fixed ROP to the Basic Dynamic

(OPTIMAL) ROP is reducing the average inventory by the greatest amount for the demand categories

erratic and lumpy. In contrast, the greatest decrease in average inventory for the smooth demand category

occurs when transitioning from the AS-IS fixed ROP to the Proposed Fixed ROP.

Holistic View of The Change in Service Level and Average Inventory

The resulting change in average inventory must be seen in combination with the change in service level.

Thus the results shown in Figure 54 and Figure 55 are combined into Table 12. Analyzing the results in

Table 12 by demand category, starting with the erratic category, the greatest reduction in average inventory

level will occur by switching to a Basic Dynamic (OPTIMAL) ROP. This will result in a reduction of

�46.3% in the average inventory level, and consequently, a 98.7% service level.

For the lumpy demand category, the greatest reduction will also occur when switching to a Basic Dynamic

(OPTIMAL) ROP. This will result in a reduction in the average inventory level of �36.5% and a service

level of 99.0%. In contrast to the two previously mentioned demand categories, for the smooth demand

category, the highest reduction in average inventory level will result from choosing the Proposed Fixed

ROP. This will result in a reduction of �64.4% in average inventory level and a service level of 98.5%,

compared to a �63.3% reduction in average inventory level and resulting service level of 98.7% with a

Basic Dynamic (OPTIMAL) ROP. The difference in average inventory reduction between Proposed Fixed

ROP and Basic Dynamic (OPTIMAL) ROP is minor, with a �1,1% difference.

Policy Transition Demand Category % Change in Average
Inventory

Percentage Point
Change in SL

Resulting
SL

AS-IS Fixed ROP ! Proposed Fixed ROP

Erratic �31.3% �1.6% 97.9%
Lumpy �27.7% �2.5% 96.6%
Smooth �64.4% �1% 98.5%
Total �31.1% �2% 97.3%

AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP

Erratic �46.3% �0.8% 98.7%
Lumpy �36.5% �0.1% 99.0%
Smooth �63.3% �0.8% 98.7%
Total �42% �0.4% 98.9%

Table 12: Holistic view of change in service Level and average inventory.
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Materials That Surpasses The Service Level Constraint

Table 13 shows the number of materials that go from under 97% to above 97% when converting from the

AS-IS Fixed ROP strategy to either a Proposed Fixed ROP or a Proposed Dynamic ROP (OPTIMAL)

strategy.

• AS-IS Fixed ROP ! Proposed Fixed ROP: This transition resulted in a total of six materials that

surpassed the service level constraint of 97%. All of these six materials belong to the lumpy demand

category.

• AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP: This transition resulted in 41 materials

that surpassed the service level constraint. Nine of these were of the erratic category, 32 were of the

lumpy category, and zero materials was of the smooth category.

• Proposed Fixed ROP ! Basic Dynamic (OPTIMAL) ROP: This transition led to a total of 260

materials that surpassed the service level constraint of 97%. Splitted into demand categories, 90 of

them were erratic, 166 were lumpy, and four materials were smooth.

Policy Transition Total Erratic Lumpy Smooth
AS-IS Fixed ROP ! Proposed Fixed ROP 6 0 6 0

AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP 41 9 32 0
Proposed Fixed ROP ! Basic Dynamic (OPTIMAL) ROP 260 90 166 4

Table 13: Strategy transition: from under 97% ! over 97%

Materials That Drops Below The Service Level Constraint

Table 14 presents the quantities of materials that transition from having a service level over 97% to below

97% when converting from the AS-IS Fixed ROP strategy to either a Proposed Fixed ROP or a Basic

Dynamic (OPTIMAL) ROP strategy.

• AS-IS Fixed ROP ! Proposed Fixed ROP: This strategy transition resulted in a total of 229

materials that ended up with a service level below the constraint of 97%. Amongst these 229

materials, 83 of them belong to the erratic category, 142 belong to the lumpy category, and four

materials belong to the smooth category.

• AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP: This transition resulted in two materials

that went below the service level constraint. Both instances are of the lumpy category.

• Proposed Fixed ROP ! Basic Dynamic (OPTIMAL) ROP: This transition had only one instance,

and belongs to the lumpy category.

Policy Transition Total Erratic Lumpy Smooth
AS-IS Fixed ROP ! Proposed Fixed ROP 229 83 142 4

AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP 2 0 2 0
Proposed Fixed ROP ! Basic Dynamic (OPTIMAL) ROP 1 0 1 0

Table 14: Strategy transition: from over 97% ! under 97%
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Holding Costs Statistics

Figure 56 presents a graphical representation of the analysis conducted on holding costs. The figure show-

cases a bar chart with three bars representing different st: AS-IS Fixed ROP, Proposed Fixed ROP, and

Basic Dynamic (OPTIMAL) ROP. The x-axis of the chart represents the different categories of inventory,

namely erratic, lumpy, and smooth. These categories are based on the demand patterns of the inventory

items. The y-axis denotes the holding costs in NOK (Norwegian Kroner). The heights of the bars indicate

the magnitude of the holding costs for each category in the respective strategies.

Figure 56: Holding cost analysis

The first strategy, AS-IS Fixed ROP, is represented by the tallest bars for all, indicating the highest holding

costs across all demand categories. This strategy suggests that the current fixed operational strategy results

in substantial holding costs of, in total, 5 565 119 NOK.

The second strategy, Proposed Fixed ROP, exhibits lower holding costs compared to the first strategy. The

bars representing this strategy are shorter, indicating a reduction in holding costs for all three categories.

This suggests that implementing a fixed operational strategy based on the Proposed Fixed ROP approach

has yielded cost savings. In total, this strategy results in a holding cost of 2 568 329 NOK.

The third strategy, Basic Dynamic (OPTIMAL) ROP, is in total depicted by the shortest bar, with a

total holding cost of 2 486 232 NOK, indicating the lowest holding costs among the three strategies. For

the different categories, this strategy indicates a lower holding cost for the lumpy materials, and a higher

holding cost for the erratic and smooth, compared to the Proposed Fixed ROP strategy.

In total, Figure 56 is emphasizing the cost-saving potential of implementing an optimized dynamic oper-

ational strategy. The results suggest that moving from the current fixed operational strategy to a more

dynamic and optimized approach can lead to significant reductions in holding costs for the company.

Description AS-IS Fixed ROP Proposed Fixed ROP Basic Dynamic
(OPTIMAL) ROP

Total 5 565 119 2 568 329 2 429 790
Erratic 3 040 175 1 310 617 1 364 921
Lumpy 1 497 127 991 860 793 142
Smooth 1 027 817 265 851 271 725

Table 15: Replenishment policy impact on holding cost [NOK].
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The table labeled "Replenishment Policy Impact on Holding Cost" (Table 15) provides the numerical data

that corresponds to the previously presented Figure 56. It presents the holding costs in NOK (Norwegian

Kroner) for three different operational strategies: AS-IS Fixed ROP, Proposed Fixed ROP, and Basic

Dynamic (OPTIMAL) ROP, and the given categories.

Policy Transition Demand Category % Change in Holding
Cost

Percentage Point
Change in SL

Resulting
SL

AS-IS Fixed ROP ! Proposed Fixed ROP

Erratic �56.9% �1.6% 97.9%
Lumpy �33.7% �2.5% 96.6%
Smooth �74.1% �1% 98.5%
Total �53.8% �2% 97.3%

AS-IS Fixed ROP ! Basic Dynamic (OPTIMAL) ROP

Erratic �55.1% �0.8% 98.7%
Lumpy �47% �0.1% 99.0%
Smooth �73.6% �0.8% 98.7%
Total �56.3% �0.4% 98.9%

Table 16: Holistic view of change in service level and holding cost.

5.3.4 Safety Factor Impact

As stated in Section 5.3.3, the safety factor used in the reorder point calculations in the simulation is 1.88.

This section investigates the impact of changing the safety factor to corresponding higher service levels.

The safety factors of 1.88, 2.05, and 2.33 correspond to 97%, 98%, and 99% service levels respectively,

which can be seen in Appendix A.

Impact on Service Level - Fixed ROP

Figure 57: Safety factor and the corresponding service level for Proposed Fixed ROP.

The visualization presented in Figure 57 shows the effect of safety factors on service levels for Proposed

Fixed ROP. The analysis is based on all the 1256 materials. The results show that, on average for all

materials, a safety factor of 1.88 will result in a service level of 97.3%. For a safety factor of 2.05, it leads to

an average service level of 97.4%. With a safety factor of 2.33, the service level increases to 97.7%. It can
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be observed that the service level increases with the safety factor, and all values are above the requirement

of 97%.

Impact on Service Level - Basic Dynamic ROP

The analysis conducted in Figure 58, shows the safety factor impact on Basic Dynamic ROP for all 1256

forecast intervals. It can be observed that for all forecast intervals and safety factors, the corresponding

service level is above the requirement of 97%. Additionally, the service level exhibits a linear increase as

the forecast interval increases.

Figure 58: The visualization shows the effect of safety factors on service levels for Basic Dynamic
ROP across all forecast intervals.

5.3.5 Forecasting Interval Impact on Basic Dynamic ROP

This section aims to explore the extent to which the optimal solution can be relaxed and examine the

possibility of generalizing the forecast interval. As described in Section 5.3.3, the optimal solution involves

setting specific forecast intervals and window sizes for each individual material, which leads to complexity

and potentially results in high costs. The different materials were forced to use B, 1W, 2W, 3W, and

4W, and thus it was possible to see how they performed compared to the optimal solution and if a given

forecast interval applied to all materials can perform equally well or close to the fully customized and

optimal solution.

Distributions of Window Size

Figure 59 shows the distribution of the selected window size for all materials, for each "locked" forecast

interval. "locked" meaning the Basic Dynamic ROP is locked to using the given forecast interval, but

chooses the optimal window-size. Note that the scale of the y-axis is different between the plots. Starting

with the erratic demand category, a noticeable observation is that the distribution of window sizes exhibits

an exponential increase towards the largest window size of 10 time units, which applies to all levels of

forecast interval for the erratic materials.

For the lumpy demand category, the distribution of window sizes exhibits a more linear increase towards

the largest window size of 10 time units. The distribution of window sizes is more evenly compared to the

erratic category. In contrast, for the smooth demand category, the distribution of window size is highly

skewed, with window sizes of six and higher the most represented. Moreover, the majority of materials

within the smooth demand category select the 10 time units of window size. In total, looking at all demand
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categories, the pattern of distribution is similar for all the levels of window size. This suggests that for all

demand categories, the majority of materials will tend to opt for the largest window size, regardless of the

forecast interval utilized.

Figure 59: Distributions of window size for each "locked" forecasting interval (Basic Dynamic
ROP)
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Service Level

The impact of the forecast interval on the simulated inventory and its resulting service level is illustrated

in Figure 60. The grouped bar plot shows the different resulting service levels, divided into the demand

categories, and in total as seen to the far left.

It is evident that there exists a positive correlation between the forecast interval and the resulting service

level. This phenomenon is consistent across all demand categories and therefore applies to all materials

in total. Comparing the different forecast intervals with the fully customized and optimal solution ("OP-

TIMAL"), the weekly forecast interval ("1W") results in a better service level for demand categories erratic

and smooth, but not lumpy. In total, the "OPTIMAL" solution, visualized in a brown-colored bar, results

in a 0.4% higher service level than the weekly forecast interval ("1W"), as visualized as a blue-colored bar.

Figure 60: Forecast interval impact on service level

Average Inventory

The impact of the forecast interval on the simulated inventory and its resulting percentage change in

average inventory compared to the AS-IS strategy with fixed ROP is illustrated in Figure 61. The grouped

bar plot shows the resulting change, divided into the demand categories, and summarized to a total as

seen to the far left.

The percentage change in average inventory level must be analyzed in combination with the achieved

service level as visualized in Figure 60. Examining the performance of different forecast intervals for the

three demand categories, and disregarding the optimal solution ("OPTIMAL"), the daily forecast interval,

denoted as "B", outperforms the higher levels of forecast intervals in terms of reducing the average inventory

for all three categories of demand (erratic, lumpy, smooth).

However, as can be seen from Figure 60, daily forecast interval performs the worst in terms of service level

performance for all categories of demand. Here, the daily forecast interval results in a service level of 98.7%

for the smooth category, 97.6% for the lumpy category, and 98.5% in the erratic category. Comparing daily

forecast interval with weekly forecast interval, a weekly forecast interval increases the service level by 0.5

percentage points up to 98.5% in total, while reducing the average inventory by 36.6%. Thus, the reduction

in the average inventory level for the weekly forecast interval is very close to the optimal solution, while

maintaining a service level of 98.5% overall.
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Figure 61: Aggregation impact on average inventory

Materials That Surpasses The Service Level Constraint

As described earlier under section 5.1.4, LC HMN operates with a service level constraint of 97%. Table 17

shows the distribution of materials that have gone from under 97% in service level to equal or above 97%

service level when going from AS-IS fixed ROP to dynamic ROP. Materials going from under 97% in

service level to above 97% in service level is seen as a positive impact on the inventory performance. One

can observe that the "4W" (i.e. every fourth week) will make 36 materials go from under 97% service level

to above, where 30 materials of those belong to the lumpy type of demand. The daily forecast interval

("B") is the worst-performing among them all, with 25 materials in total going from under 97% to above

97%.

When looking at the demand categories in Table 17, it is clear that the majority of materials in the lumpy

category achieve over 97% service level for the most materials, regardless of the forecast interval. The

smooth category has the fewest movements, with zero materials for all the forecast intervals.

Forecast Interval Total Erratic Lumpy Smooth
B 25 4 21 0

1W 27 5 22 0
2W 30 7 23 0
3W 33 7 26 0
4W 36 6 30 0

OPTIMAL 41 9 32 0

Table 17: From under 97% ! over 97%

Materials That Drops Below The Service Level Constraint

Table 17 shows the distribution of materials that goes from over 97% service level to below 97% when going

from the AS-IS fixed ROP to dynamic ROP with the tested forecast intervals. In this case, the "OPTIMAL"

forecast interval, where each material has the optimal forecast interval and window size, performs the best

with only two materials going from over 97% service level to below. Besides the "OPTIMAL" forecast

interval, the "4W" forecast interval is the best performing with only six materials that move under the

limit of 97%. The worst performing forecast interval is the daily forecast interval ("B"), where 44 materials

go from above 97% to under 97%.
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In terms of demand categories, the lumpy demand category is the one with the most materials that go

from over 97% service level to below 97% service level regardless of forecast interval level. In contrast, the

smooth category is the category with the fewest materials that goes from over 97% service level to below

97%.

Forecast Interval Total Erratic Lumpy Smooth
B 44 2 41 1

1W 33 4 28 1
2W 14 2 11 1
3W 9 0 9 0
4W 6 0 6 0

OPTIMAL 2 0 2 0

Table 18: From over 97% ! under 97%

Holding Cost Statistics

The plot titled "Aggregation Impact on Holding Cost" (Figure 62) illustrates the impact of different

aggregations on holding costs for the Basic Dynamic ROP. The plot is presented as a bar chart, with

each bar representing a specific forecast interval: "B," "1W," "2W," "3W," "4W," and "OPTIMAL." The

x-axis of the chart displays the categories of inventory, namely "Erratic," "Lumpy," and "Smooth." The

y-axis represents the holding costs in NOK (Norwegian Kroner). The heights of the bars indicate the

magnitude of the holding costs for each inventory category under the corresponding forecast interval.

Figure 62: Aggregation impact on holding cost for Basic Dynamic ROP

For the total analysis, the bars corresponding to the "B", "1W" and "OPTIMAL" approaches are the

lowest, indicating the lowest holding costs among all the aggregations.

Description B 1W 2W 3W 4W OPTIMAL
Total 2,515,767 2,566,095 2,731,473 2,874,717 3,059,023 2,429,790

Erratic 1,324,185 1,377,541 1,488,888 1,596,022 1,714,509 1,364,921
Lumpy 919,964 901,140 934,408 944,904 990,928 793,142
Smooth 271,616 287,414 308,175 333,791 353,585 271,725

Table 19: Forecast interval impact on holding cost [NOK].

The table labeled "Forecast Interval on Holding Cost" (Table 19) presents the numerical data that cor-

responds to the previously presented Figure 62. It provides a detailed breakdown of the holding costs in

NOK (Norwegian Kroner) for different forecasting interval approaches across three inventory categories:

"Erratic," "Lumpy," and "Smooth."
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5.3.6 Advanced Dynamic Reorder Point

In this section, the fifth strategy presented in Figure 3.5 is analyzed, this being the "Advanced Dynamic

Reorder Point". Advanced Dynamic Reorder Point is a dynamic reorder point strategy utilizing advanced

forecasting models. It enables the investigation of the potential benefits that may arise from implementing

more advanced demand forecasting techniques. The strategy is analyzed of each of the three selected

representative materials for each category found in Figure 39. Firstly, the advanced demand forecasting

(used of the Advanced Dynamic Reorder Point strategy) results are presented. Further on, the simulation

outcome from each analyzed advanced demand forecasting technique is presented.

5.3.6.1 Advanced Demand Forecasting

Several methods from various disciplines, including statistical models, machine learning models, and deep

learning models, were tested to predict the three time series that represent different demand categories.

The time series data is aggregated to weekly data, so for example, 365 daily data points will result in 52

data points of weekly data. All models predicted iteratively One-step-ahead (one aggregated week) ahead

in time for a whole year.

The models were selected based on their different characteristics. The simplest method, the Naive method,

assumes that the predicted interval is the same as the last observed interval (Hyndman and Koehler, 2006).

The naive model will be used as a benchmark for comparison with the other models. The second model

is Holt-Winters (Section 2.2), a version of exponential smoothing with trend and seasonality (added in an

additive way). Holt-Winters is a model from the statistical domain.

The third model, SARIMAX (Section 2.5.1), is a more complex method belonging to the domain of machine

learning, that uses a combination of auto-regression, differencing, and moving average to model the time

series. It also differs from the previously mentioned models in that it can include exogenous variables.

The fourth and final model, LSTM (Section 2.5.2), is designed to handle time series data with long-term

dependencies. LSTM models use a memory cell to remember past observations and a set of gates to control

the flow of information into and out of the cell. LSTM is a type of neural network, making it a part of the

deep learning domain.

All four models represent a domain of time series prediction. By exploring and understanding the strengths

and weaknesses of each model applied to the case study’s data, a selection of the most appropriate method

for a specific time series can be performed. To compare the performance of the selected models, the three

metrics RMSE, MAE, and MASE (Section 2.3.3) were chosen to measure the accuracy of the models.

Erratic Representative Material - 4001095

Figure 63 shows the observed line of demand and the predicted line of demand for the four models applied

for material 4001095. The material is characterized as erratic, indicating that it has high variation in

quantity, but is consistent in time intervals between occurrences of demand. This can also be seen in the

observed demand (plotted as the blue line). The line has high peaks with demand over 1000 units at

periods, but it also has periods with demand close to zero, making it hard to predict.
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Figure 63: Predictions for erratic representative material (4001095)

Looking closer at the performance of the different models, the three metrics RMSE, MAE, and MASE

must be considered together. Looking at the MASE metric, the Holt-Winters does perform worse than

the Naive method, making it irrelevant for further use. The best-performing models are SARIMAX and

LSTM, where LSTM is slightly superior to the SARIMAX model, with a MASE score of 0.68 (as seen in

Table 20). The LSTM model is the best-performing model because it strikes a straight line, with some

exceptions. The prediction thus becomes a kind of horizontal straight line, which aligns itself roughly with

the average of the high and low observed values.
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Model RMSE MAE MASE
Naive 440.93 336.54 1.00

Holt-Winters 467.1 351.02 1.05
SARIMAX 313.86 267.04 0.80

LSTM 287.43 229.06 0.68

Table 20: Forecast performance results for material 4001095

Lumpy Representative Material - 4012198

Figure 64 shows the observed and predicted demand for the lumpy material. As derived under Section

5.2.3, a lumpy material has high variation in quantity and intervals between occurrences of demand. This

can be observed from Figure 64, as the observed quantity varies with 1000 units, and the time interval

between occurrences of demand varies from weeks to several months.

Figure 64: Predictions for lumpy representative material (4012198)
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The lumpy representative material has a high representation of non-existent demand, meaning that the

time series data contains a large number of zeros. With that in mind, the performance of the selected

models is contrasting. The SARIMAX and the LSTM have a MASE score of 1.03, meaning that they

perform slightly worse than a naive prediction. The Holt-Winters Exponential Smoothing is the best

performing among the models, with a MASE of 0.77.

Model RMSE MAE MASE
Naive 832.05 500.00 1.00

Holt-Winters 679.63 394.58 0.77
SARIMAX 631.96 525.85 1.03

LSTM 604.08 526.32 1.03

Table 21: Forecast performance results for material 4012198

Smooth Representative Material - 4003841

The third and last material, 4003831, represents the smooth demand category. Materials in this category

have a low variance in demand size and a consistent time interval between occurrences of demand. It can

be observed that the median demand for this material is around 11,000 units, with maximum demand

reaching up to 16,000 and minimum demand dropping down to 5,000 units. However, the latter values are

individual occurrences and not something that repeats throughout the given year being observed.
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Figure 65: Predictions for smooth representative material (4003841)

Materials that are categorized as smooth have more consistent demand, and therefore more data points

from the data set utilized. This provides a better basis for detecting any seasonal variations and trends,

which can be important inputs for a prediction model. When interpreting the results in Table 25, none of

the selected models perform exceptionally well, but SARIMAX is the best-performing model with a MASE

score of 0.8, meaning it is 20% better than a naive forecast.

Model RMSE MAE MASE
Naive 2671.57 1723.08 1.00

Holt-Winters 2368.98 1715.15 0.98
SARIMAX 1966.23 1398.77 0.80

LSTM 2253.72 1701.19 0.97

Table 22: Forecast performance results for material 4003841
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5.3.6.2 Simulation Results

In this section, the impact of advanced forecasting methods on the dynamic ROP strategy will be explored,

focusing on weekly aggregated data. The comparison will be made against the Basic Dynamic ROP strategy

with one-week forecasting intervals. The specific version of the Basic Dynamic ROP strategy is referred

to as "SMA (1W-10)".

Erratic Representative Material - 4001095

Table 23 shows the simulation results of various demand forecasting models for material 4001095. The

models are evaluated based on three performance metrics: mean absolute scaled error (MASE), service

level (SL), and average inventory.

MASE measures the accuracy of the models in predicting demand, while SL indicates the percentage of

time that the inventory is able to meet the demand as a result of the simulation. Average inventory

describes the resulting average inventory as a result of the simulation.

The models compared in the table include Naive, Holt-Winters, SARIMAX, LSTM, and SMA (1W-10).

The Naive model is used as a baseline, and its performance is shown to have a MASE of 1.00, an SL of

100%, and an average inventory of 3,189. The other models are then evaluated based on how much they

can improve upon the Naive model’s performance.

Model Classification Model MASE SL Average
Inventory

Baseline model Naive 1.00 100 % 3 189

Advanced Models
Holt-Winters 1.05 100 % 2 851
SARIMAX 0.80 99.82 % 2 645
LSTM 0.68 100 % 2 414

Basic Model SMA (1W-10) 1.02 100 % 2 223

Table 23: Simulation results based on demand forecasting model for erratic representative material
(4001095).

The most precise advanced demand prediction model is shown to be LSTM, with a MASE score of 0.68.

This results in the simulation results of service level at 100 % and average inventory at 2414. The SMA

model scores worse in MASE score, although has the lowest simulated average inventory of 2 223.

Figure 66 visualizes the simulation of the most accurate prediction model for material 4001095 based on

the MASE score. The in-stock integral is 627 620 and the stockout integral is 0, indicating no stockouts.

The calculated initial stock is 3407.
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Figure 66: Most accurate model: LSTM - erratic representative material (4001095).

Figure 67 visualizes the simulation of the optimal SMA model for material 4001095 based on the MASE

score. The in-stock integral is 578 020 and the stockout integral is 0, indicating no stockouts. The calculated

initial stock is 2847.
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Figure 67: SMA (1W-10) model - erratic representative material (4001095).

Lumpy Representative Material - 4012198

In Table 24 the most precise advanced demand prediction model is shown to be Holt-Winters, with a MASE

score of 0.77. This results in the simulation results of service level at 96.78 % and average inventory at 5

066. The SMA model scores worse in MASE score, although has the lowest simulated average inventory

of 5 014.

Model Classification Model MASE SL Average
Inventory

Base model Naive 1.00 100 % 5 997

Advanced Models
Holt-Winters 0.77 96.78 % 5 066
SARIMAX 1.03 100 % 5 198
LSTM 1.03 100 % 5 019

Basic Model SMA (1W-10) 0.95 100 % 5 014

Table 24: Simulation results based on demand forecasting model for lumpy representative material
(4012198).

Figure 68 visualizes the simulation of the most accurate prediction model for material 4012198 based on

the MASE score. The in-stock integral is 1 210 212 and the stockout integral is 1 692. The calculated

initial stock is 4452.
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Figure 68: Most accurate model: Holt-Winters Exponential Smoothing - lumpy representative
material (4012198).

Figure 69 visualizes the simulation of the optimal SMA model for material 4012198 based on the MASE

score. The in-stock integral is 1 303 680 and the stockout integral is 0, indicating no stockouts. The

calculated initial stock is 5618.
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Figure 69: SMA (1W-10) model - lumpy representative material (4012198).

Smooth Representative Material - 4003841

In Table 25 the most precise advanced demand prediction model is shown to be SARIMAX, with a MASE

score of 0.80. This results in the simulation results of service level at 99.81 % and average inventory at 23

952. The SMA model scores higher in MASE score with 0.73 and has a lower average inventory of 18 998.

Model Classification Model MASE SL Average
Inventory

Baseline Model Naive 1.00 100 % 24 527

Advanced Models
Holt-Winters 0.98 100 % 27 058
SARIMAX 0.80 99.81 % 23 952
LSTM 0.97 100 % 23 147

Basic Model SMA (1W-10) 0.73 99.35 % 18 998

Table 25: Simulation results based on demand forecasting model for smooth representative material
(4003841).

Figure 70 visualizes the simulation of the most accurate prediction model for material 4003841 based on

the MASE score. The in-stock integral is 6 081 932 and the stockout integral is 952. The calculated initial

stock is 23 952.
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Figure 70: Most accurate model: SARIMAX - smooth representative material (4003841)

Figure 71 visualizes the simulation of the optimal SMA model for material 4003841 based on the MASE

score. The in-stock integral is 4 617 403 and the stockout integral is 9 563. The calculated initial stock is

41679.

Figure 71: SMA (1W-10) model - smooth representative material (4003841)
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6 Discussion

The following section analyzes and interprets the key findings of the study, specifically addressing the

research questions outlined in Section 1.3. It involves a detailed examination of the results, establishing

connections with the existing literature, and exploring the implications of the findings. For the sake of

clarity, this section is divided into six subsections, each dedicated to one or more research questions.

Table 26 illustrates the link between the research questions and the subsections. Section 6.3 addresses the

simulation model, which served as the basis for the findings related to both research question three and

research question four.

Research Questions Discussed in
Section

RQ1: What is the state-of-the-art within demand forecasting for
inventory management? 6.1

RQ2: How can the inventory be classified? 6.2

RQ3: How can the AS-IS fixed reorder point be improved through
dynamic reorder point?

6.3

6.4

6.5

RQ4: What is the impact of implementing advanced forecasting
methods for the dynamic reorder point?

6.3

6.6

Table 26: Research questions and their respective sections for discussion

Within each subsection, the relevant results are briefly summarized before engaging in a comprehensive

discussion that emphasizes their connection to the research questions. Furthermore, unexpected or sur-

prising discoveries are identified and the theoretical and practical implications of the results are explored.

Throughout the discussion, a critical evaluation is conducted, focusing specifically on the limitations and

weaknesses of the study in relation to the research questions.
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6.1 The State-of-The-Art in Demand Forecasting for Inventory Man-

agement

The key to improving inventory performance is to use forecasts as a better anchor point to improve stock

control (Bacchetti and Saccani, 2012). In the systematic review of the literature conducted in Section 3.1,

it was discovered that Barrow and Kourentzes (2016) employed five different weighted statistical models to

forecast the safety stock. The study conducted by R. Snyder (2002) explored various approaches to forecast

sales of slow- and fast-moving car parts. Harvey and Ralph D. Snyder (1990) delved into the investiga-

tion of exponential smoothing for non-stationary time series in order to forecast safety stock. Willemain

et al. (2004) successfully developed a bootstrapping forecasting model, enabling accurate prediction of the

entire distribution of lead-time demand. Additionally, Tasdemir and Hiziroglu (2019) utilized two fore-

casting models to address missing data in specific periods and subsequently forecasted lot sizes, ultimately

proposing a fixed period quantity dynamic lot size method.

The literature review findings (Section 4.2) emphasize the importance of considering the application area

and data characteristics when choosing a forecasting method (Moroff et al., 2021a). It is clear that demand

forecasting plays a crucial role in determining the safety stock and other formulas presented in Table 1.

The content analysis performed in Section 4.2, classified demand forecasting methods into two primary

categories: statistical methods and machine learning methods.

As observed in Figure 25 in Section 4.1, 58% of the articles reviewed in Section 4.2 utilize a statistical

method, while the remaining 42% use machine learning methods or a combination of both. On the other

hand, one can observe from Figure 24 that there is an increased number of articles that apply only the

machine learning method or combine it with statistical methods. On the contrary, there is a decline in

the number of articles exclusively utilizing statistical methods. It is important to note that the resulting

descriptive statistics may be biased, as the articles were selected based on the criteria defined by the

authors in Section 3.1. Thus, the observations should not be generalized to all publicly published articles

within this study research area. However, the growing trend of machine learning model applications can be

attributed to their ability to learn from data and make predictions without relying on assumptions about

the underlying data structure (Karimnezhad and Moradi, 2016)

The utilization of machine learning has been shown to improve demand forecasting by enabling algorithms

to learn from new data and adapt accordingly. This approach considers a broader range of factors and

allows nuanced predictions, leading to a significant improvement in the accuracy of demand forecasts

(Moroff et al., 2021a; Tang and Ge, 2021). Machine learning algorithms can handle large amounts of data

more efficiently than statistical methods, which can be particularly useful for time series data with a large

number of observations. Their capacity to capture complex patterns, including nonlinear relationships,

surpasses that of statistical methods, making them superior in generating accurate predictions (N. Li et al.,

2021; Pacella and Papadia, 2021).

One of the key advantages of employing machine learning in demand forecasting is the ability to incorporate

diverse data sources (Moroff et al., 2021a). Unlike traditional methods that rely on limited datasets, such as

outbound logistics, machine learning methods can leverage additional data such as demographics, clinical

information, and economic indicators. By considering a broader spectrum of influencing factors, machine

112



learning models provide a comprehensive view of demand drivers, leading to more precise forecasts (Tang

and Ge, 2021)

Statistical models are based on the assumption that data have a certain structure, such as linearity or

normal distribution, which may not always be the case (R. Snyder, 2002; Harvey and Ralph D. Snyder,

1990). This can lead to inaccurate predictions if the data do not conform to the assumed structure.

To manage the impact of the data distribution on demand forecast, a weighted combination of different

statistical models can exploit the empirical distribution of forecast errors (Barrow and Kourentzes, 2016),

thus exceeding the statistical assumptions that the data are normally distributed.

In the context of forecasting time series data, it is important to consider that machine learning methods may

not always be the optimal choice. While these methods have gained popularity for their ability to handle

complex patterns and make accurate predictions, they have certain drawbacks that need to be addressed.

Machine learning methods can be challenging to understand and interpret due to their complexity and can

be prone to overfitting if not tuned properly (Carbonneau et al., 2008). Overfitting refers to the scenario

in which a model has attained such a deep understanding of the patterns within the training data that it

struggles to apply that knowledge to unseen data (Section 2.5.1). To avoid overfitting, it is important to

use techniques such as cross-validation, which is a useful technique to assess how the model generalizes to

the given data set (Chuang et al., 2021).

It can be difficult to pre-establish the amount of data needed for a predictive task. The amount of

data required for machine learning tasks depends on factors such as the complexity of the problem and

the complexity of the algorithm (Cerqueira et al., 2019). In general, a larger sample size tends to be

advantageous, as it offers a more comprehensive and diverse range of patterns and relationships for the

machine learning model to learn from. A larger dataset can help mitigate the risk of overfitting. However,

the relationship between sample size and prediction accuracy is not always linear. The objective is to strike

a balance between capturing crucial information for model training and ensuring computational feasibility.

This is achieved by selecting a relatively small, yet statistically significant sample size for the training set,

typically a few thousand observations (Vercellis, 2011).

Thus, the choice of forecasting method is strongly determined by the sample size and the characteristics of

the time series. The characteristics of a time series can be defined as whether the time series is stationary,

skewed in distribution (Syntetos, Boylan et al., 2005; Carbonneau et al., 2008; Kourentzes et al., 2020),

the degree of autocorrelation (X. Zhang, 2007), and the decomposed components (trend, seasonality, and

residuals) (N. Li et al., 2021). However, it is important to note that even with a large amount of data,

there is no guarantee that a machine learning method will outperform a statistical method in terms of

forecasting accuracy (Cerqueira et al., 2019). This argument aligns with the No Free Lunch Theorem

(Wolpert, 1996), which asserts that there is no "one-size-fits-all" learning algorithm that is universally

optimal for every situation. Consequently, a careful evaluation of different methods is essential to identify

the most effective approach.
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6.2 Material Categorization Methods

During the case study (Section 5), it was discovered that LC HMN maintains an inventory of several

thousand materials. As revealed in the systematic literature review (Section 4), it is not practical to

conduct in-depth research to fit the demand pattern for each individual material when dealing with a

large number of materials (Wenhan Fu, 2018). This would result in significant computational costs, which

is economically inefficient. Therefore, in Section 5.2.3, various methods and variables were explored to

classify the SKUs of LC HMN.

6.2.1 An Algorithmic Approach

An algorithmic approach was used to evaluate the demand for a given sample of materials (as seen in

Figure 33) using KMeans classification (Section 5.2.3.1. The analysis incorporated the utilization of two key

variables: the coefficient of variation (CV), calculated as the ratio of the standard deviation of demand to

the average demand, and the inventory turnover ratio. The application of KMeans clustering resulted in the

identification of three distinct clusters, as illustrated in Figure 35. The clusters revealed that the inventory

of LC HMN encompasses a wide range of demand patterns for different materials. Some materials exhibit

a high frequency of orders, indicating a consistently high demand, while others demonstrate infrequent

orders with low demand throughout the analyzed year.

Notably, the findings from the clustering analysis highlight that more than 50% of the items in the inventory

have an inventory turnover ratio below seven. This ratio signifies that the inventory is sold out seven times

or fewer within the analyzed year, indicating a relatively slow-moving inventory for a significant portion of

the items. This finding suggests that there is potential for more frequent replenishment by Logistics Center

Helse Midt-Norge, assuming the lead time for the materials allows such an approach. This observation

highlights the possibility of optimizing inventory management by adopting a more responsive and proactive

replenishment policy.

Furthermore, the clustering of materials revealed considerable demand variation among product groups,

particularly for Cluster 2 (Figure 35). The demand pattern exhibited by materials in Cluster 2 indicated

sparse demand, with some years experiencing no orders at all. The sparsity observed can be attributed

to the presence of substitute materials. This observation aligns with the earlier case study of Logistics

Center Helse Midt-Norge (Section 5.1), which identified a significant number of substitute materials in the

inventory due to logistical and production issues with suppliers in recent years. Consequently, these items

are unlikely to be part of the regular material assortment.

On the other hand, Cluster 1 represented a group with a relatively higher inventory turnover ratio and

low variation in demand. However, it is important to note that this group exhibits a higher turnover

ratio. Thus, it is not necessarily given that this group has significant potential to increase its already

high inventory turnover ratio. The relatively stable and predictable demand pattern suggests that the

inventory turnover ratio for this group may have reached its maximum potential, and additional attempts

at improvement may have limited returns.

In general, the algorithmic approach employed in this study provided valuable insights into the demand
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characteristics of materials within Logistics Center Helse Midt-Norge. The clustering analysis highlighted

the potential for more frequent replenishment for a substantial portion of the inventory and revealed

variations in demand patterns and the presence of substitute materials. These findings can guide decision-

making in enhanced inventory management at Logistics Center Helse Midt-Norge.

6.2.2 A More Nuanced Categorization

Besides the algorithmic approach used for material categorization, an additional method was tested that

accounted for the temporal variation in demand occurrences. During the systematic literature review

conducted in Section 4, an insightful method developed by Syntetos, Boylan et al. (2005) was discovered.

In addition to capturing the variation in demand, the average demand interval (ADI) was also measured

and a classification matrix was plotted utilizing these two variables (Figure 39). The findings revealed that

the inventory of LC HMN encompassed three of the four demand categories (lumpy, erratic, and smooth)

described by Syntetos, Boylan et al. (2005), indicating the efficacy of the method in capturing variations

in demand magnitude and the time intervals between occurrences of demand.

This finding aligns with the research of Dolgui, Louly et al. (2005), who emphasized the existence of

numerous untapped opportunities in inventory control. They highlighted that by considering both demand

and time variation in a co-evaluated manner, practical solutions can be achieved for complex inventory

management. Moreover, X. Zhang (2007)’s study further supports the utilization of such an approach,

demonstrating that failure to recognize the volatility in demand variability can lead to deviations from

the desired service level when adopting a service-level approach in inventory management. Therefore,

accurately measuring and understanding the extent of demand variation becomes crucial, particularly

given the substantial number of materials with high demand variation present in the inventory of LC

HMN.

It is important to note that LC HMN operates under the constraint of maintaining a minimum service level

of 97%. This underscores the importance of precisely assessing and managing demand variability to main-

tain the desired service level, while also enhancing inventory control by enabling targeted replenishment

policies for the different demand categories. The feasibility of this demand classification method will be

discussed later in the context of simulation. Categorizing all materials makes it easier to apply predictive

algorithms to each specific material.

To analyze the distribution of average lead time within each demand category, a distribution graph was

generated, providing a visual representation of the materials in each category. As depicted in Figure 37,

the lead time exhibits a relatively even distribution across all three types of demand: erratic, lumpy,

and smooth. This suggests that lead time does not significantly impact the variation in demand or the

intervals between demand occurrences. As mentioned earlier in this section, more than 50% of the items

from LC HMN have an inventory turnover ratio lower than seven. Keeping this in mind, it should be

noted that the typical lead time for materials (as observed in Figure 37) falls within the range of two to

eight days. The relatively "low" average lead time implies the potential for a higher inventory turnover

ratio, and consequently the possibility of more frequent replenishment. However, the reason for a low

inventory turnover compared to the average lead time could be attributed to the fact that the demand
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for the majority of items that Logistics Center Helse Midt-Norge holds exhibits significant variability in

demand.

It is important to note that the method developed by Syntetos, Boylan et al. (2005) overlooks crucial

factors such as product price, lead time variations for different materials, and information about suppliers.

Unfortunately, the supplier data for all the materials were categorized as sensitive information and were

unavailable to the authors of this study. It would be beneficial to further categorize the materials based

on suppliers to explore potential benefits, thus highlighting a limitation of the dataset and the employed

classification method. Additionally, the method does not consider any temporal dependencies, such as

trend and seasonality, when applying the classification. Regarding material types, LC HMN holds a

certain amount of substitute goods (as discussed in Section 5), which are intended to replace out-of-stock

materials from the preferred supplier. However, these materials have not been mapped or categorized as

the same material.

6.3 The Python-Based Simulation Model

The motivation behind the use of a simulation model was to compare and evaluate different replenishment

policies. The simulation model was implemented in Python with the SimPy library (Section 5.3.1). It

captures the dynamic nature of inventory levels, allowing analysis of Key Performance Indicator (KPI)s

such as average inventory and service level. Using simulations, different scenarios and conditions can

be assessed, adjusting parameters to explore inventory management strategies and their impact. The

model provides a comprehensive view of the inventory management process, tracking events like order

placement, arrival, and fulfillment. This data enables making evidence-based decisions, comparing different

approaches, and quantitatively evaluating their effectiveness in improving average inventory levels while

maintaining high service levels.

Scalability is one of the advantages of utilizing a simulation model implemented in Python with the SimPy

library. This means that the simulation can be easily applied to a wide range of materials and various

parameters, making it possible to simulate different scenarios and conditions. In addition, the scalability

of the simulation model facilitates the analysis of large datasets and the generation of reliable statistical

results. It can handle a significant number of simulation runs, increasing the robustness and accuracy of

the evaluation. With a scalable simulation, it becomes feasible to generate sufficient data points and make

evidence-based decisions regarding inventory management.

Furthermore, the simulation model can incorporate various forecast methods, enhancing its applicability.

Forecasting plays a crucial role in inventory management (Bacchetti and Saccani, 2012), as accurate pre-

dictions of demand can significantly impact inventory levels and service levels. By allowing the flexibility

to choose any forecasting method for the simulation, it becomes possible to explore its effectiveness and

compare its impact on the calculation of reorder points and the resulting average inventory levels.

As revealed in the case study (Section 5), LC HMN follows a fixed order size approach, although the order

size can be modified occasionally. These modifications are made based on factors such as the purpose of

filling the pallets or making minor adjustments if necessary (Section 5.1.4). However, in the simulation

model, the order size remains fixed and no changes can be made to the fixed order size during the simulation.
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With a fixed order size, it becomes challenging to respond quickly to changes in customer demand, supplier

lead times, or unforeseen disruptions in the supply chain. This lack of responsiveness can lead to missed

sales opportunities or excess inventory that become outdated.

Another limitation is the assumption of a fixed lead time for orders. In reality, lead times can vary due to

factors such as supplier performance and shipping delays. This variability is not taken into account in the

simulation model. Furthermore, the simulation model assumes a single-level supply chain, which does not

accurately represent the complexities of real-world supply chains. In practice, supply chains can involve

multiple levels of suppliers and distributors, each with its own lead times and inventory policies. Addition-

ally, the model structure is relatively simple and does not incorporate nuances of inventory management

such as inventory obsolescence and expiration or product substitution.

It is also important to note that the simulation model does not handle unfulfilled demand. If the demand

exceeds the inventory level in a given time slice, the unfulfilled demand will be tracked, but the demand

will not be met. This limitation can affect the accuracy of the results, as unfulfilled demand can have

significant implications for inventory management decisions.

A further limitation of the presented simulation model is the utilization of a custom initial stock formula,

where the initial stock is calculated as the sum of the reorder point at the beginning of the simulation

period and half of the fixed order size (Section 5.3.1.1). A drawback of this approach is that the simulation

does not account for the actual initial stock levels of each simulated material at the beginning of the period.

Consequently, the model fails to capture the potential impact of varying initial stock levels on subsequent

inventory management strategies. However, this simplification offers an advantage by facilitating the

simulation and analysis of different inventory management strategies for each material, thereby enhancing

the ease of experimentation and evaluation.

Despite these limitations, the simulation model implemented in Python with the SimPy library provides

a valuable tool to compare and evaluate different replenishment policies in inventory management. It

captures the dynamic nature of inventory levels and allows the analysis of key performance indicators such

as average inventory and service level.
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6.4 Improving the AS-IS Fixed Reorder Point

This section examines the effectiveness of transitioning from the existing AS-IS Fixed ROP strategy to two

alternative strategies: the Proposed Fixed ROP and the Basic Dynamic (OPTIMAL) ROP. The results

presented in Section 5.3.3 shed light on the impact of these systems on inventory management and service

levels.

The AS-IS Situation

The simulation results, based on the AS-IS data of the case company, provide valuable insights into the

inventory management practices for the 1256 sampled materials. The AS-IS fixed ROP replenishment

strategy for three of the sampled materials, one from each demand category (Figure 39), is visualized

in Section 5.3.2.1. After simulating the AS-IS situation for the three materials, several key observations

can be made. First, inventory levels exhibited a consistent pattern of being significantly higher than the

corresponding demand, as indicated by the blue line in Figure 48, compared to the orange demand line.

This finding challenges the author’s initial expectation that the inventory levels would closely align with

the demand patterns. Furthermore, the cumulative stock and demand levels depicted in Figure 49 reveal

a substantial green area, representing the integral of the stock level surplus. In a perfect scenario, this

green area would be minimal, indicating a close match between stock levels and demand. However, the

considerable surplus of inventory reflected in Figure 49 suggests a discrepancy in the demand and inbound

ordering of goods.

This interpretation aligns with previous research on inventory management, which emphasizes the im-

portance of aligning inventory levels with actual demand to optimize operational efficiency (Gao et al.,

2022). Further analysis of various strategies can have a significant impact on existing inefficiencies, as the

simulation outcomes expose weaknesses in the current inventory management approach.

In terms of service level for the AS-IS situation, the resulting service levels for the various demand categories

vary from 99.1% to 99.5% (Figure 50). This shows that in the simulated warehouse, all categories of

materials exhibit a service level above the constraint of 97%.

The Proposed Fixed ROP & The Basic Dynamic (OPTIMAL) ROP

By analyzing the simulation results presented in Table 12, one can observe the influence of two strategy

transitions on the average inventory and service level (SL). The first strategy transition is from the AS-IS

Fixed ROP strategy to the Proposed Fixed ROP strategy, while the second transition is from the AS-IS

Fixed ROP to Basic Dynamic (OPTIMAL) ROP. The change in average inventory and SL are presented

for the different demand categories: Erratic, Lumpy, and Smooth, as well as all materials in total, expressed

as Total.

Taking into account the service level constraint of 97% for the case company, the simulation results can be

analyzed accordingly. For the transition to the Proposed Fixed ROP, the results indicate a decrease in the

average inventory ranging from 27.7% to 64.4% across the demand categories. However, the SL decreases

by 1.0% to 2.5% compared to the AS-IS system. With the decline in SL, the resulting SL values range from

96.6% to 98.5%, which indicates a drop below the company’s 97% SL constraint for a significant amount
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of materials. According to the findings presented in Table 14, a total of 229 materials are observed to

have transitioned from having an initial service level above 97% to falling below the service level constraint

of 97%. These negative movements primarily affect the erratic and lumpy materials, with 83 and 142

materials, respectively, moving below the service level constraint. However, when considering the smooth

materials, only 4 materials have moved under the service level constraint, which can be considered a

negligible number in this context. This observation is significant due to the higher variability in demand

for erratic and lumpy materials, as stated in Section 5.2.3.2. Consequently, it is also logical to expect that

these materials will exhibit greater sensitivity with the change in fixed ROP value. In total, the Proposed

Fixed ROP shows potential to reduce average inventory levels, but does not maintain an acceptable service

level.

In contrast, the transition to Basic Dynamic (OPTIMAL) ROP demonstrates more substantial improve-

ments. The results of Basic Dynamic (OPTIMAL) ROP calculated using the SMA forecasting model for

demand forecasting indicate significant improvements in average inventory levels without a significant drop

in service level performance. Basic Dynamic (OPTIMAL) ROP utilizes the SMA model with the optimal

combination of window size and forecast interval parameters. As stated in Section 5.3.3, the optimization

process involved a brute-force search of 50 unique parameter combinations for each of the 1256 materials

analyzed.

The findings (as seen in Table 12) show that in different demand categories, implementing the Basic Dy-

namic (OPTIMAL) ROP strategy leads to substantial reductions in average inventory levels. Specifically,

the average inventory reduction ranges from 36.5% to 63.3% across the demand categories, indicating a

better inventory management efficiency. The percentage point change in SL is smaller compared to the

transition to the Proposed Fixed ROP strategy, ranging from 0.1% to 0.8%. Consequently, the resulting

SL values for the Basic Dynamic (OPTIMAL) ROP range from 98.7% to 99.0% for the demand categories,

with an overall SL of 98.9%. This is supported by the results in Table 14, stating that only two SKUs have

moved from having an AS-IS service level above 97% to a service level less than the service level constraint

of 97%. These results suggest that the Basic Dynamic (OPTIMAL) ROP achieves superior inventory

reduction while still meeting the 97% service level constraint. Not only is the service level constraint met,

but as stated in Table 13, 41 materials have moved from having an AS-IS service level of less than 97%,

to a service level higher than the LC HMN service level constraint. These materials represent the demand

categories erratic and lumpy, and as mentioned earlier in the discussion, these categories are sensitive to

changes in the calculated ROP.

When transitioning from Proposed Fixed ROP to Basic Dynamic (OPTIMAL) ROP (Table 13), a signi-

ficant advantage of the Basic Dynamic (OPTIMAL) ROP strategy over the Proposed Fixed ROP strategy

is indicated by the fact that 90 erratic materials and 166 lumpy materials move from below to above the

service level constraint of 97%. Only four smooth materials cross the boundary from below to above 97%

when transitioning from Proposed Fixed ROP to Basic Dynamic (OPTIMAL) ROP. Taking into account

the minimal difference in average inventory reduction between the AS-IS Fixed ROP strategy and both

the Proposed Fixed ROP and Basic Dynamic (OPTIMAL) ROP strategies (Table 12), it is evident that

there are negligible differences between the two suggested policies for smooth materials. Thus, there is

strong evidence to suggest that it is not necessary, from a cost and time perspective, to implement the

Basic Dynamic (OPTIMAL) ROP for materials within the smooth demand category.
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In summary, the simulation results provide valuable insight into the impact of transitioning to different

inventory management strategies. Both the Proposed Fixed ROP and the Basic Dynamic (OPTIMAL)

ROP show considerable reductions in average inventory compared to the AS-IS Fixed ROP. The Proposed

Fixed ROP exhibits a considerable decrease in service level. The Basic Dynamic (OPTIMAL) ROP, on the

other hand, showcases substantial inventory reduction with minimal impact on the service level. Taking

into account the service level constraint and the need for inventory optimization derived in the discussion

of the AS-IS situation (Section 6.4), the case company should carefully evaluate the benefits and trade-offs

associated with implementing either of the proposed inventory management policies.

Analysis of Optimal Combinations of Forecast Intervals and Window Sizes for Differ-

ent Material Types

The distribution of optimal combinations of the forecast interval and window size for the 1256 materials

analyzed is presented in Figure 53. This analysis provides valuable information on the patterns observed

among different categories of materials.

The distribution of optimal combinations for erratic materials exhibits a significant variation. The preferred

forecast interval for these materials is predominantly business days (B) and one week (1W). Interestingly,

these materials tend to require larger window sizes, with 10 being the most common. This supports the

description of erratic materials derived in Section 5.2.3.2, that erratic materials are characterized by high

variation in quantity, but consistent in time intervals between occurrences of demand, requiring relatively

larger window sizes for accurate forecasting.

In contrast, the lumpy materials demonstrate a more dispersed distribution. The forecast intervals of "B"

and "1W" exhibit a more even distribution across various window sizes, including the smaller ones, despite

the dominance of window size 10. However, for forecast intervals of "2W", "3W" and "4W", the larger

window sizes appear to be more dominant. This indicates that there is no clear determination of the best

forecast interval for this category and that lumpy materials require different forecast intervals and window

sizes to effectively capture the underlying fluctuations. This aligns with the description of lumpy materials

in Section 5.2.3.2, where they are described as difficult to predict.

Smooth materials, on the other hand, predominantly favor a forecast interval of "B". Among the available

window sizes, 6 to 10 stand out as the most dominant choice. Among these, window size 10 appears to

be the most frequently selected. This suggests that smooth materials exhibit more stable and predictable

behaviors, where shorter forecast intervals and relatively high window sizes are sufficient for accurate

forecasting.

The correlation between material types and optimal combinations suggests that certain patterns and

relationships exist. For example, erratic materials tend to require shorter forecast intervals and larger

window sizes, possibly due to their unpredictable nature. On the other hand, lumpy materials have a

more diverse distribution, indicating the need for flexibility in choosing forecast intervals and window sizes

based on the specific characteristics of the demand pattern. This highlights the importance of considering

material-specific factors when selecting forecast intervals and window sizes.

Furthermore, the findings contribute to the existing knowledge by showcasing the relationships and de-
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pendencies between the forecast interval, the window size, and the characteristics of the materials. It

becomes evident that for the lumpy materials, there is no one-size-fits-all approach to forecasting. Instead,

a nuanced understanding of demand patterns and characteristics is necessary. On the other hand, for

erratic or smooth materials, the findings suggest that a uniform forecast interval may be applicable, as

indicated by the more concentrated distributions around shorter forecast intervals.

Examining the Potential Savings in Holding Cost of The Analyzed ROP Strategies

The comparative analysis of holding costs for different replenishment strategies, as seen in Section 5.3.3,

reveals significant cost-saving potential by implementing the Proposed Fixed ROP or Basic Dynamic

(OPTIMAL) ROP strategy. The results show that the AS-IS fixed ROP strategy incurs the highest

holding costs, while the Proposed Fixed ROP strategy and the dynamic ROP (OPTIMAL) strategy result

in a holding cost reduction of 53.8% and 56.3% respectively.

The results in Figure 56 and Table 15 must be considered in the context of the resulting service levels

(Figure 54). These results are combined in Table 16. The findings show that when considering individual

demand categories separately, distinct variations arise in terms of which replenishment strategies yield the

lowest holding costs.

Starting with the erratic category, the Proposed Fixed ROP strategy yields the lowest holding costs of 1

310 617 NOK, with a 56.9% reduction compared to the AS-IS Fixed ROP strategy. However, when using

the Proposed Fixed ROP strategy for erratic materials, the service level would be 0.8% lower compared

to the Dynamic ROP(OPTIMAL) strategy.

For lumpy materials, the Basic Dynamic (OPTIMAL) ROP strategy performs significantly better, with a

47% lower holding cost compared to the AS-IS Fixed ROP strategy. The resulting service level for lumpy

materials using the Basic Dynamic (OPTIMAL) ROP strategy would be 99% as opposed to 96.6% with

the Proposed Fixed ROP strategy, which falls below the 97% constraint. Thus, the Proposed Fixed ROP

does not fulfill the requirements of LC HMN for lumpy materials.

For smooth materials, the Proposed Fixed ROP strategy demonstrates better performance compared to

the Basic Dynamic (OPTIMAL) ROP approach, resulting in a 74.1% lower holding cost compared to the

AS-IS Fixed ROP strategy. The service level for Proposed Fixed ROP would be 98.5% compared to 98.7%

for Basic Dynamic (OPTIMAL) ROP. These findings support what was discussed in Section 6.6.3, that

for smooth materials, the Dynamic Reorder Point (ROP) values exhibit a close to straight line similar to a

fixed ROP strategy. This implies that when weighing complexity against performance, the Proposed Fixed

ROP strategy would be the preferred replenishment strategy for smooth materials, as the Basic Dynamic

(OPTIMAL) ROP requires additional computation time.

Lastly, when examining the holding cost for the three demand categories in Table 19 and combining it

with the distribution of average demand buckets in Figure 51, some interesting insights can be derived.

It should be noted that most materials in the erratic and lumpy demand categories are concentrated

within the 0-500 bucket, which also happens to be the bucket with the highest holding cost for both

categories, regardless of the forecast interval (Table 19). On the contrary, the majority of materials in the

smooth demand category are found within the average inventory level bucket of >3000 (Figure 51). This
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observation suggests that the demand categories with the most unpredictable demand patterns, namely

lumpy and erratic, are associated with the most expensive materials held by LC HMN.

Thus, the implications of the analysis suggest that implementing a dynamic operational strategy can

contribute to improved cost efficiency and profitability for the company. However, a dynamic strategy

may not be the best performing for all materials. The demand categorization of the materials reveals

that a dynamic strategy may not necessarily be the optimal choice for all three represented categories of

demand, and the preferred strategy depends on the specific category being considered. When considering

the demand patterns of inventory items and adjusting replenishment strategies accordingly, holding costs

can be significantly reduced. This optimization can lead to better resource allocation and improve overall

supply chain performance.

6.5 Exploring the Impact of Forecast Intervals on Basic Dynamic ROP

Strategy

In Section 6.4, the analysis of the Basic Dynamic (OPTIMAL) ROP strategy was discussed. This strategy

was optimized at a material level, as explained in Section 5.3.3. The analysis focused on each material’s

utilization of the best combination of both forecast interval and window size for the Simple Moving Average

(SMA) model used for demand forecasting. This section examines the extent to which the optimal solution

can be relaxed, in contrast to the analysis conducted on the optimal solution. To accomplish this, the

simulation of materials was carried out using each of the five forecast intervals sequentially, while optimizing

only the window size for each specific material.

The results presented in Section 5.3.5 were obtained by simulating all distinct combinations of the 1256

materials. The analysis utilizes the simple moving average (SMA) demand forecasting technique, consid-

ering a range of window sizes from 1 to 10. The forecast intervals examined include business days (B), one

week (1W), two weeks (2W), three weeks (3W), and four weeks (4W). Simulations were conducted to gain

valuable insight into the trade-off between service levels and average inventory levels, particularly in light

of forecast intervals.

The examination of the service level results reveals a consistent improvement as forecast intervals increase.

In the case of the "Total" category in Figure 60, service levels for the forecast intervals B, 1W, 2W, 3W and

4W are observed to be 98.0%, 98.5%, 99.1%, 99.3%, and 99.4% respectively. These findings demonstrate

that longer forecast intervals contribute to higher service levels. It is important to note that all forecast

intervals exceed the service level constraint of 97%, set by LC HMN.

Upon analyzing the average inventory results, it is evident that the implementation of the Dynamic ROP

strategy has generally led to reductions in average inventory levels across various forecast intervals and

demand categories. As shown in Figure 61, the average inventory levels for forecast intervals B, 1W,

2W, 3W, and 4W in the "Total" category have been reduced by 37.8%, 36.6%, 33.5%, 29.7%, and 26.5%

respectively. These reductions signify improved efficiency and cost savings for the case company. This

finding highlights the negative correlation (Section 2.3.2) between service levels and average inventory

reduction, which can be seen in Figure 60 and Figure 61. Although longer forecast intervals enhance

service levels, they may also lead to less of a reduction in average inventory levels, potentially incurring
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higher holding costs for the company.

As presented in Figure 60, the relationship between service level and forecast interval is examined. As

discussed earlier, there is a positive correlation between the two, indicating that as the forecast interval

increases, the service level also increases. The plot illustrates this relationship, showing that as the forecast

interval extends, the service level tends to rise.

Upon analyzing the various demand categories in light of the forecast intervals, it becomes evident that

the lumpy category shows the sharpest rise in service level, advancing from 97.6% to 99.3%. Subsequently,

the erratic category demonstrates the second-highest increase, while the smooth category exhibits a more

gradual incline. These observations align with the classification of demand (Section 5.2.3.2), which iden-

tified different demand categories based on variations in demand patterns and events (Figure 36). The

lumpy category encompasses materials with the greatest fluctuations in demand and occurrences of events,

which explains its significant improvement in service level. The steep increase in service level for the

lumpy demand category is likely associated with increased uncertainty related to longer forecast intervals,

resulting in higher simulated reorder points.

Comparing the different forecasting strategies, it is observed that the "OPTIMAL" solution achieves a

service level of 98.9%, outperforming strategies "B" (98.0%) and "1W" (98.5%). However, the "OPTIMAL"

solution falls behind the performance of strategies "2W," "3W," and "4W". It is important to consider that

the discrepancy between the service levels of the different forecast intervals is minimal, with the worst-case

scenario being a 0.9% difference compared to the more complex "OPTIMAL" solution. From a statistical

point of view, this difference is practically negligible.

The findings presented in Figure 61 highlight the differences between the OPTIMAL forecast interval and

the other intervals for various categories of material. In particular, the smooth materials category exhibits

the least difference in the average inventory reduction between OPTIMAL and the other forecast intervals,

with a 10.1% difference between the 4W and the OPTIMAL. This suggests that the choice of forecast

interval has a relatively minor impact on inventory reduction for smooth materials.

However, for both the smooth and erratic material categories, the "B" and "1W" forecast intervals perform

nearly as well as the OPTIMAL interval. This indicates that, in terms of reducing average inventory, "B"

and "1W" can be considered viable alternatives to OPTIMAL for these categories. On the other hand,

when it comes to the lumpy material category, OPTIMAL outperforms all forecast intervals by a substantial

margin. The average inventory reduction achieved by OPTIMAL is 36.5%, compared to the range of 28.2%

to 19.4% for the forecast intervals. This result suggests that the lumpy category is particularly sensitive

to the choice of forecast interval and that OPTIMAL proves to be significantly more effective in this case.

In general, OPTIMAL shows the highest reduction in average inventory among all forecast intervals,

achieving a remarkable -42.0%. However, it is worth noting that the lower forecast intervals, such as "B"

and "1W," are not far behind in terms of inventory reduction. These intervals achieve reductions of -37.8%

and -36.6%, respectively. Although OPTIMAL provides the most significant improvement, the relatively

close performance of "B" and "1W" suggests that they can be considered reasonable alternatives, especially

considering their comparable inventory reduction levels.

Table 17 presents the results of the forecast intervals on the movement of materials, focusing on the number
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of materials that transition from below the service level constraint to above it, which is set at 97%. Upon

examining the data in Table 17, it is evident that the forecast intervals have an impact on the movement

of materials. The range of materials moved varies between 25 and 36 when considering different forecast

intervals. It is important to note that the optimal forecast interval results in the movement of 41 materials,

which is the highest number among all alternatives. This suggests that the optimal forecast interval has

the best potential to satisfy the service level constraint.

When analyzing the specific material categories, it is observed that the smooth materials do not exhibit any

movement across the service level constraint for any of the forecast interval options. In contrast, erratic

materials demonstrate a relatively smaller range of materials moved, ranging from 4 to 9. This implies

that forecast intervals have a limited impact on the movement of erratic materials, suggesting that they

may exhibit more consistent demand patterns or have relatively stable inventory levels, making them less

sensitive to changes in forecast intervals.

On the other hand, lumpy materials exhibit a wider range of materials moved, ranging from 21 to 32. This

indicates that forecast intervals have a more significant influence on the movement of lumpy materials.

These materials have more sporadic demand patterns, making them more sensitive to changes in forecast

intervals. Therefore, adjusting the forecast intervals for lumpy materials could potentially lead to a more

accurate forecast and improved inventory management.

Table 18 presents the results of the analysis on the movement of materials from over to under the service

level constraint of 97% for different forecast intervals. The findings reveal a negative correlation between the

forecast interval and the number of materials moved from over to under the service level constraint. As the

forecast interval increases, indicating a longer-term forecast, the number of materials that are transferred

decreases. Examining the subcategories of erratic, lumpy, and smooth, it is observed that the majority of

materials moved from over to under the service level constraint are classified as lumpy, regardless of the

forecast interval. However, as the forecast interval lengthens, the number of lumpy materials transitioning

from over the service level constraint to under decreases, suggesting that a longer-term forecast provides

better insights into managing such lumpy materials. In contrast, the erratic and smooth materials show

minimal movement from over to under the service level constraint, regardless of the forecast interval.

Conversely, smooth and erratic materials, are less impacted by the specific forecast intervals.

The findings contribute to a clearer understanding of the relationship between forecast intervals, service

levels, and average inventory in the dynamic ROP strategy. The results of the study provide empirical

evidence that longer forecast intervals positively influence service levels within the dynamic ROP strategy.

However, longer forecast intervals may result in less reduction in average inventory levels, potentially

leading to higher holding costs. The section also highlighted the significance of demand categories, with the

lumpy category showing the highest increase in service level, followed by the erratic category. The optimal

solution, named "OPTIMAL," outperformed shorter forecast intervals in terms of service level and average

inventory reduction, but the differences were relatively minor. For smooth and erratic materials, forecast

intervals "B" and "1W" were viable alternatives to OPTIMAL, while OPTIMAL performed significantly

better for lumpy materials. The analysis of material movement, which involved investigating the number of

materials that move below or above the service level limitation, revealed that longer forecast intervals have

a more noticeable effect on lumpy materials. In contrast, erratic materials showed limited sensitivity to
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changes in forecast intervals. Furthermore, the findings suggested a negative correlation between forecast

interval length and the number of materials moving from over to under the service level constraint, with

longer-term forecasts providing better insights for managing lumpy materials.

The Relationship Between Forecast Intervals and Window Sizes for Demand Categor-

ies

The results visualized in Figure 59 show the distribution of window sizes for analyzed forecast intervals

across different demand categories. The key findings reveal a positive correlation between the forecast

interval and window size for all three demand categories. It was observed that as the forecast interval

increased, the distribution of window sizes also increased. Among the demand categories, smooth mater-

ials exhibited the most rapid increase in window size, followed by erratic materials with a relatively fast

ascent. Lumpy materials displayed a significantly slower change in the distribution compared to erratic

and smooth materials, but there was still a positive correlation with an increased forecast interval. An

interesting observation was that for a forecast interval of 4 weeks, there was a shift in the correlation, where

smaller window sizes became more frequent. This trend was consistent across all material categories.

The results indicate that as the forecast interval lengthens, there is a tendency for larger window sizes to

be associated with the analyzed forecast intervals. This finding suggests that a longer forecast interval

requires a broader window of historical data to accurately predict demand patterns.

The transition of window size distributions towards higher values occurs most rapidly for smooth materials,

somewhat slower for erratic materials, and slowest for lumpy materials. There is a correlation between the

speed of transition of window size distributions towards higher values and the complexity of the demand

category. As derived in Section 5.2.3, smooth materials are the easiest to predict, erratic materials are

more challenging, and lumpy materials are the most difficult to predict. This finding implies that the

relationship between the optimal window size and forecast interval is affected by the complexity level of

the demand pattern.

Additionally, the shift in correlation observed at a 4-week forecast interval, where smaller window sizes

become more frequent, suggests that the forecast interval is sufficiently large for nearby historical data

to have a greater impact. One possible explanation for this phenomenon is that longer forecast periods

introduce higher levels of uncertainty, which justifies excluding data from the distant past. By focusing on

more recent data within a narrower time frame (utilizing smaller window sizes), the forecast can be more

applicable and reliable. According to this observation, when employing forecast intervals exceeding three

weeks, the importance of recent data increases.

The presented analysis on the distribution of window sizes for forecast intervals has certain limitations that

should be taken into consideration. One important limitation is the given search space of window sizes

and forecast intervals stated in Section 5.3.3. Since the analysis did not consider forecast intervals beyond

4 weeks, it is important to note that the shift in correlation observed at the 4-week forecast interval, where

smaller window sizes became more frequent, may not hold true for even longer forecast intervals.
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Holding Cost - Forecast Interval

In order to examine the effect on holding cost when relaxing the optimal parameters of window size and

forecast interval for the Basic Dynamic ROP, the simulation results from Section 5.3.5 were analyzed.

The results displayed in Figure 60 demonstrate that all forecast intervals produce a service level above

the defined 97% constraint for the erratic materials. The associated holding cost, however, presented

in Table 19, indicates that for erratic materials, the Basic Dynamic ROP strategy with a daily "B" or

one-week ("1W") forecast intervals performs closest to the OPTIMAL solution.

The Basic Dynamic ROP utilizing daily forecasts ("B") results in a holding cost of 1 324 185 NOK, which

is slightly better than the holding cost of 1 364 921 for the Basic Dynamic (OPTIMAL) ROP strategy.

The Basic Dynamic (OPTIMAL) ROP strategy yields a slightly higher service level, with an improvement

of 0.2 percentage points.

In contrast, the resulting service level for the Basic Dynamic ROP (1W) is 98.9%, which is 0.2 percentage

points higher than the Basic Dynamic (OPTIMAL) ROP. However, this improvement comes at a cost.

The holding cost for the Basic Dynamic ROP with a "1W" forecast interval amounts to 1 377 541 NOK,

which is slightly higher (0.9%) compared to the Basic Dynamic (OPTIMAL) ROP strategy. Thus utilizing

either daily ("B") or weekly ("1W)" forecast intervals are preferred for erratic materials.

For the lumpy category in Table 19, the Dynamic ROP utilizing the "1W" forecast interval is the one

performing closest to the one with "OPTIMAL" parameters, resulting in a holding cost of 901 140 NOK

versus the holding cost of 793 142 NOK for the Dynamic ROP (OPTIMAL) strategy. In contrast to

the erratic materials, the service level for lumpy materials decreases from 99% to 98% when utilizing a

one-week ("1W") forecast interval instead of the "OPTIMAL" parameters. Therefore, considering both

holding cost and service level, the best-performing solution for the lumpy materials is the Basic Dynamic

(OPTIMAL) ROP strategy.

In contrast to the erratic and lumpy materials, the Dynamic ROP strategy using days ("B") as the forecast

interval performs best in terms of holding cost for smooth materials. The Dynamic ROP strategy with the

"B" forecast interval yields a 0.04% lower holding cost compared to the Dynamic ROP (Optimal) strategy.

Analyzing the resulting service levels (Figure 60), the "Optimal" parameters and the daily forecast interval

("B") result in an equal service level of 98.7%. Surprisingly, the service level increases to 99.1% when the

weekly forecast interval ("1W") is used.
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6.6 The Effectiveness of Advanced Forecasting Models for The Dynamic

ROP

In this section, the findings from Section 5.3.6 are examined to assess the potential impact of advanced

forecasting models on inventory performance. As mentioned earlier, this analysis was only conducted on

three materials, each representing one of the demand categories smooth, erratic, and lumpy.

6.6.1 Data Aggregation Analysis: Balancing Null Values and The Number of Data

Points

The implications of the analysis on data aggregation (Section 5.2.4.4) and the selection of one-week ag-

gregation for advanced forecasting methods (Section 5.3.6.1) in the dynamic ROP strategy have important

consequences for theory and practice. The aggregation analysis results support the notion that aggregating

the time series data to a higher level, such as weekly aggregation, can effectively reduce the number of null

values in sparse datasets. Reducing null values through aggregation improves the robustness of forecasting

models and enhances their ability to capture demand patterns.

Furthermore, the analysis reveals that one-week aggregation strikes a balance between reducing null values

and maintaining an adequate number of data points. Increasing the aggregation level higher than "1W"

results in a drastic reduction in data points, while one-week aggregation "1W" yields a significant reduction

of zero values compared to daily ("B") data. This finding supports the idea that one-week aggregation

provides a suitable compromise, allowing for accurate demand analysis and prediction while preserving an

acceptable sample size for pattern recognition. Aggregation is directly linked to the forecast interval, as

the level of aggregation determines the shortest possible forecast interval.

6.6.2 Performance Assessment of Advanced Forecasting Models for Different De-

mand Pattern Categories

The demand forecasting analysis conducted in Section 5.3.6.1 offers insights into the effectiveness of various

models when applied to three distinct demand categories: erratic, lumpy, and smooth materials. This

research focuses on three specific materials, namely 4001095, 4012198, and 4003841, which have been

classified as erratic, lumpy, and smooth, respectively (Figure 39). The forecasting time span encompassed

52 weeks, allowing for a comprehensive assessment of long-term trends and patterns. The forecasting

performed was one-step-ahead forecasting, where one data point (aggregated week) was forecasted at the

time, indicating weekly forecasts. Several models were tested during this analysis, each contributing to

the understanding of demand forecasting dynamics and their implications for inventory management and

planning.

For the erratic representative material (4001095), it is evident that predicting demand accurately is a chal-

lenging task due to the high variation in demand quantity and inconsistent intervals between occurrences

of demand. Among the four models evaluated (Table 20), the Holt-Winters model performed worse than

the Naive method, indicating that it is not suitable for this type of demand. On the other hand, both
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the SARIMAX and LSTM models showed promising results, with the LSTM model slightly outperforming

SARIMAX. This finding suggests that deep learning approaches, such as LSTM, can effectively capture the

complex patterns and dynamics present in erratic demand. This result aligns with the findings of Pacella

and Papadia (2021), which experienced that LSTM surpassed the traditional linear forecasting methods

in performance. However, it is important to note that the LSTM model faced the issue of the vanishing

gradient problem (Section 2.5.2) due to limited data points, which may have affected its performance.

Therefore, further investigation and experimentation with larger datasets could potentially improve the

performance of deep learning models to forecast erratic demand.

Turning to the lumpy representative material (4012198), which is characterized by high variation in quantity

and intervals between demand occurrences. Due to the uncertainties, the lumpy category can pose great

challenges for time-series forecasting (Jiang et al., 2017). The results indicate that the Holt-Winters model

performed the best among the selected models (Table 21). This finding aligns with previous research

suggesting that exponential smoothing methods, like Holt-Winters, are well-suited for handling lumpy

demand and can provide accurate forecasts (Kiefer et al., 2021). On the other hand, both the SARIMAX

and LSTM models performed worse than the Naive method, likely due to the high representation of non-

existent demand (zeros) in the time series. It is worth noting that Holt-Winters and SARIMAX models

have an advantage in handling zero values compared to LSTM, which requires preprocessing techniques

like imputation (Che et al., 2018). These findings emphasize the importance of considering the specific

characteristics of demand patterns when selecting an appropriate forecasting model.

For the smooth representative material (4003841), which exhibits low variance in demand and consistent

intervals between demand occurrences, the SARIMAX model demonstrated the best performance among

the evaluated models (Table 22). This result suggests that SARIMAX’s ability to incorporate seasonality,

trends, and exogenous variables, such as week number and month, can improve the accuracy of demand

forecasts for smooth materials. These results are similar to those reported by Tang and Ge (2021) and

Moroff et al. (2021a), which experienced that additional variables included resulted in better forecasts for

inventory management. Although the Holt-Winters model also performed well, it showed a slightly lower

performance compared to SARIMAX. The LSTM model performed similarly to Holt-Winters, indicating

that deep learning approaches may not provide significant advantages for forecasting smooth demand when

compared to statistical models.

In summary, this research provides new insights into the performance of different forecasting models for the

specific demand categories at LC HMN. The findings support existing literature that suggests the suitability

of certain models for different demand patterns. The results highlight the strengths and weaknesses of

each model and provide guidance for selecting the most appropriate method for LC HMN, based on the

characteristics of the time series data.

From a practical perspective, the findings have implications for inventory management. Accurate demand

forecasting is crucial for optimizing inventory levels, reducing costs, and meeting customer demands. By

understanding the performance of different models for different demand categories, practitioners can make

informed decisions regarding the selection and implementation of forecasting methods. For instance, for

erratic demand materials, deep learning models like LSTM can be considered, while for lumpy demand

materials, Holt-Winters or other exponential smoothing methods may be more appropriate. For smooth de-
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mand materials, incorporating seasonality and trends through models like SARIMAX can lead to improved

forecasting accuracy.

6.6.3 Comparative Analysis of Forecasting Techniques for Dynamic ROP strategy

on Three Demand Categories

Section 5.3.6.2 investigated the application of advanced forecasting techniques on three distinct materials,

which corresponded to the three demand categories illustrated in Figure 36. The materials under examin-

ation include Erratic Representative Material (4001095), Lumpy Representative Material (4012198), and

Smooth Representative Material (4003841). To evaluate the performance of these techniques, the simu-

lation results were analyzed using three key metrics: the Mean Absolute Scaled Error (Mean Absolute

Scaled Error (MASE)), Service Level (Service Level (SL)), and average inventory.

Erratic Demand

The simulation results in Table 23 demonstrate the effectiveness of different forecasting models for Erratic

Representative Material (4001095). The Naive model serves as the baseline, with a MASE score of 1.00,

a service level of 100%, and an average inventory of 3189. The advanced models, including Holt-Winters,

SARIMAX, LSTM, and SMA (1W-10), were compared against the Naive model. Among these models,

the LSTM model achieved the lowest MASE score of 0.68, indicating its superior accuracy in predicting

demand. The LSTM model also achieved a service level of 100% and an average inventory of 2414 in the

simulation. On the other hand, the SMA model had a higher MASE score of 1.02 but achieved the lowest

simulated average inventory of 2223.

Several factors can explain the lower average inventory with the SMA (1W-10) method compared to

the LSTM method, despite handling erratic demand. Erratic demand, as derived in Section 5.2.3.2, is

characterized by a high variation in demand quantity and consistent time intervals between the appearance

of demand. Thus, in general, erratic demand patterns make it challenging to accurately forecast future

demand (Jiang et al., 2017). Firstly, it is important to consider the sparsity of the data. As depicted

in Figure 43 and Table 8, the proportion of zero values for the erratic representative material 4001095

decreases from approximately 76% to 28% when aggregating from business days "B" to weekly level

"1W". Furthermore, Figure 44 demonstrates a 40% reduction in data points after aggregation to the

weekly level "1W". Although the use of weekly intervals for forecasting and reducing the number of zero

values, material 4001095, also known as the erratic material, still exhibits a relatively sparse distribution

with approximately 28% zero values.

The SMA model, as shown in Figure 67, might struggle to capture the complexities of such sparse demand

patterns, which could lead to sub-optimal inventory management. On the other hand, the LSTM model

(as seen in Figure 66), a type of recurrent neural network specifically designed to handle sequential data

(Section 2.5.2), achieves a lower MASE score, indicating its superior accuracy in demand forecasting.

Examining the visualizations of the simulated inventory levels based on the LSTM predictions further

supports its effectiveness. Figure 66 illustrates a more fluctuating reorder point (ROP), thus more dynamic,

suggesting that the LSTM model adapts to the erratic demand patterns by adjusting inventory levels
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accordingly. This dynamic ROP enables the system to respond quickly to sudden changes in demand,

ensuring a better balance between stock availability and cost. In contrast, the SMA shown in Figure 67

presents a less fluctuating ROP, indicating that the SMA (1W-10) model is closer to a fixed ROP for the

simulated period.

The performance of the forecasting models should be seen in relation to the resulting average inventory

level and service level. Although LSTM has the lowest MASE score and a service level of 100%, it has a

higher resulting average inventory level compared to SMA(1W-10).

As referenced in Section 5.3.1.1, the dynamic reorder point (ROP) is based on the forecasted demand and

the error between the last forecast and the last observed demand. If there is a forecast high demand,

a substantial error in the previous demand forecast, or a combination of both, the reorder point will be

set at a higher level. Thus, the LSTM demand forecast has a large error, a large forecasted demand, or

both, leading to the periodically high ROPs. This can also be observed in Figure 66, where the calculated

Reorder Point (ROP)s adjusts significantly higher ahead of high spikes in demand. These results show that

the use of the model with the highest forecasting accuracy may not necessarily result in the best-performing

inventory management in terms of reducing inventory levels.

Lumpy Demand

For lumpy Representative Material (4012198), as shown in Table 24, the advanced forecasting models

considered were Holt-Winters, SARIMAX, LSTM, and SMA with a one-week forecast interval and a

window size of 10. The Naive model was again used as the baseline, with a MASE score of 1.00, a SL of

100%, and an average inventory of 5997. In this case, Holt-Winters demonstrated the best performance

among advanced models, with a MASE score of 0.77, a SL of 96.78%, and an average inventory of 5066.

The SMA model achieved the lowest average inventory of 5014, despite having a higher MASE score of

0.95. This highlights the trade-off between forecast accuracy and inventory levels. While advanced models

may outperform the Naive model in terms of forecast accuracy (MASE score), they may not necessarily

result in better simulation outcomes in terms of service level and average inventory.

When comparing the average inventory levels between the SMA (1W-10) and Holt-Winters methods for

lumpy representative material (4012198), it is important to note that the SMA model achieved a lower

average inventory of 5014 units, while Holt-Winters resulted in an average inventory of 5066 units. This

finding raises some considerations given the nature of the analyzed and predicted demand, which is lumpy.

Lumpy demand implies that demand has a high variation in quantity and time intervals between occur-

rences of demand (Section 5.2.3.2), making it the most challenging category to predict. It is important

to recognize that the Holt-Winters method achieved a service level (SL) of 96.78%, which is just below

the service level constraint set by the case company at 97%. Although the difference is relatively small,

it suggests that the Holt-Winters model may not fully meet the desired service level constraint set by LC

HMN. This could be a concern for the company’s operations, as a higher service level is usually preferred.

Furthermore, it is worth mentioning that the data used for analysis contained a significant amount of

sparsity, including many NaN values or zero values. As visualized in Figure 43, the percentage of zero

values was reduced from 91% to 60% when aggregating to a weekly level, and the number of data points

was only reduced with 7% (Figure 44). Thus, a significant number of zero values remained in the dataset.
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This sparsity may have presented challenges to advanced forecasting models, potentially impacting their

ability to accurately capture the underlying demand patterns. In such cases, simpler models like the SMA

with a one-week forecast interval and window size of 10 could have handled sparsity better, resulting in

a more stable and smooth line of Reorder Point (Figure 69) compared to the fluctuating Reorder Point

observed in the Holt-Winters simulation (Figure 68).

Despite SARIMAX, LSTM, and SMA(1W-10) yielding a MASE score close to 1 (Table 24), all three

simulated algorithms achieved a service level of 100% and maintained a similar average inventory level

close to 5000 units. It demonstrates that the three algorithms exhibited comparable performance for the

lumpy material 4012198, with none showing superiority over the others.

Taking these factors into account, it becomes evident that the Holt-Winters alternative has certain limit-

ations when applied to lumpy demand scenarios. The resulting suboptimal service level, its sensitivity to

sparsity in the data, and the fluctuating nature of the ROP all contribute to its less favorable performance

compared to the SMA method. Although the Holt-Winters method excels in terms of forecast accuracy

(MASE score), it does not yield better simulation outcomes in terms of service level, inventory levels,

and thus cost-efficiency. The SMA method could be a more suitable choice for managing lumpy demand,

providing a smoother inventory replenishment process and potentially mitigating the challenges posed by

irregular demand patterns.

Smooth Demand

The performance of the forecasting techniques for Smooth Representative Material (4003841) is presented

in Table 25. Advanced forecasting models considered were Holt-Winters, SARIMAX, LSTM, and SMA

with a one-week forecast interval and a window size of 10. The Naive model served as the baseline, with a

MASE score of 1.00, an SL of 100%, and an average inventory of 24 527. SARIMAX performed the best

among advanced models, with a MASE score of 0.80, a SL of 99.81%, and an average inventory of 23 952.

Surprisingly, SMA (1W-10) achieved the lowest MASE score of 0.73 and the lowest average inventory of

18 998.

The comparison between the SMA (1W-10) and SARIMAX methods for forecasting Smooth Representative

Material (4003841) reveals interesting insights. Despite both methods achieving service levels above the

acceptable threshold of 97%, there are noteworthy differences to consider. Unlike the other materials

analyzed, the data for smooth Material is not sparse, implying consistency in quantity and time intervals

between occurrences of demand.

As shown in Figure 43, material 4003841 transitions from 5% null values to 0% when aggregating from a

daily level ("B") to a weekly level ("1W"). However, the number of data points is reduced by 79% when

transitioning from a daily ("B") to a weekly ("1W") level, as shown in Table 9. Although the data is not

sparse, the reduction of data points makes it challenging for more advanced models to draw conclusions,

as they often perform better with larger available datasets (Y. Zhang and Ling, 2018).

Upon examining Figure 70, which visualizes the simulated inventory levels based on the SARIMAX pre-

diction, it becomes evident that the dynamic reorder point (ROP) exhibits significant fluctuations. This

fluctuating ROP might be unnecessary given the smooth nature of the demand. On the contrary, Figure
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68, representing the simulated inventory levels based on the SMA prediction, displays a more stable and

smoother dynamic ROP. This observation suggests that the SMA model provides a more appropriate and

well-aligned ROP for managing the inventory of the smooth material.

The SMA method, with a MASE score of 0.73, outperforms SARIMAX (MASE score of 0.80) in terms of

forecast accuracy. Moreover, it achieves a lower average inventory of 18 998 units compared to SARIMAX’s

average inventory of 23 952 units. This reduction in average inventory amounts to approximately 20.1%

lower inventory when using the SMA approach.

The lower average inventory obtained with the SMA model shows its effectiveness when utilized for smooth

materials. When exploring the simulation results of the SMA for the smooth material in Figure 71, the line

of ROPs is not far from striking a fixed line of ROP for the simulated period. It indicates that implementing

an alternative approach to the dynamic ROP strategy, such as a fixed ROP strategy, could yield similar

or even better performance. This can be supported by the results in Section 5.3.3, which showed that for

smooth materials, employing the "Proposed Fixed ROP" would reduce the average inventory by utterly

1.1% compared with the "Basic Dynamic (OPTIMAL) ROP" strategy. It is important to note that the

difference could potentially be larger, in favor of the "Proposed Fixed ROP" strategy, when not utilizing

"OPTIMAL" parameters for the Dynamic ROP strategy.

In conclusion, the SMA method demonstrates several advantages over SARIMAX when utilized for smooth

Representative Material (4003841). It produces a more stable and smoother dynamic ROP, indicates lower

average inventory levels, and exhibits similar high service levels. These positive outcomes suggest that

exploring alternative approaches, such as a fixed ROP strategy inspired by SMA, could lead to improved

inventory management and operational efficiency.

Examining the Linkage

Analyzing the correlation between simulation results and the MASE score, it is observed that a lower

MASE score indicates a more accurate forecasting model. However, the relationship between the MASE

score and the service level or average inventory is not straightforward. Although the advanced models

generally outperformed the Naive model in terms of accuracy and average inventory, there were variations

among the advanced models themselves. For example, in the case of Erratic Representative Material

(4001095), the LSTM model had the lowest MASE score and achieved a service level of 100%, while

the SMA model had a higher MASE score, but resulted in the lowest average inventory. In contrast,

for Smooth Representative Material (4003841), the SMA model had a lower MASE score and achieved a

relatively lower average inventory compared to advanced models. Thus, better forecasting accuracy does

not imply better inventory management in terms of simulation results.

The complexity of the models analyzed for different materials plays a crucial role in their performance. In

some cases, LSTM, a deep learning model considered more advanced than SARIMAX and Holt-Winters,

may perform worse than simpler models. For the erratic material 4001095, the LSTM model exhibits

better accuracy in demand prediction but is outperformed by the simpler SMA model in terms of average

inventory. Similarly, for the lumpy material 4012198, the Holt-Winters model outweighs advanced models in

capturing seasonality and trend, although LSTM and SARIMAX underperform in terms of MASE score. In

the case of the smooth material 4003841, SMA(1W-10) performs better than SARIMAX and LSTM in terms
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of the MASE score, indicating that the simpler model can adequately capture the demand patterns. The

choice of the appropriate model should consider the material’s characteristics, the complexity of demand

patterns, and the trade-off between accuracy, simplicity, interpretability, and inventory performance.

From these findings, it is evident that there is no direct correlation between the MASE score and the

simulation results in terms of service level and average inventory. The advanced forecasting models, such

as LSTM and SARIMAX, which are more complex and utilize advanced techniques such as deep learning,

may not consistently outperform simpler models like SMA in the simulation. While the advanced models

show potential to improve forecast accuracy, their superiority in simulation outcomes, such as achieving

higher service levels or lower average inventory, is not guaranteed. These results challenge the assumption

that better accuracy in demand forecasting leads directly to better operational performance.
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7 Conclusion

The motivation for this thesis concerns the increasing demand for healthcare services in Norway due to

demographic changes, including a growing and older population. As the government expects higher demand

for care services and lower income growth, there is a need for efficient resource utilization in the public

sector, particularly in the health sector (Section 1.1). By leveraging data analytics and machine learning,

there is potential to improve inventory management and decision-making.

The existing literature lacks research on applying dynamic reorder points in a continuous replenishment

policy and the potential advantages of integrating machine learning methods for demand prediction. Fur-

thermore, there is a significant research gap in exploring this combination along with service-level restric-

tions. Thus, the primary objective of this study was to:

"Make a contribution to the current literature by investigating the effects of implementing demand

forecasting and a dynamic reorder point policy for Logistics Center Helse Midt-Norge"

The objective was achieved by addressing four specific research questions. The selected research questions,

the methods used to answer them, the key findings, and the corresponding contributions are presented as

follows:

RQ1: "What is the state-of-the-art within demand forecasting for inventory management?"

The first research question focused on established methods and application areas for demand forecasting in

inventory management. By conducting a systematic literature review, the study emphasized the importance

of considering the intended application area and the characteristics of the data when selecting a demand

forecasting method. The reviewed articles highlighted the significance of both statistical and machine

learning-based approaches in determining safety stock and other relevant inventory management formulas.

Although machine learning methods are capable of handling fluctuating demand curves with seasonality

and trends, it is important to note that a large amount of data does not guarantee superior forecasting

accuracy compared to statistical methods. The suitability of a forecasting method depends on factors such

as data characteristics, the number of available data sources, and the sample size. Moreover, conducting

comprehensive research on demand patterns for each product in large inventories can be impractical due

to significant computational costs. Therefore, it is advisable to explore the variables that can classify the

SKUs in the inventory before applying any forecasting model. In addition, incorporating external data,

such as demographic or economic information, has the potential to enhance forecast accuracy. Therefore,

as discussed in Section 6.1, the most appropriate forecast method depends on the data characteristics, the

number of available data sources and the sample size.

RQ2: "How can the inventory be classified?"

The systematic literature review (SLR), used to address RQ1, highlighted the importance of assessing

demand variability and suggested that categorization items could be advantageous. The second research

question aimed to explore the potential this categorization of the inventory of LC HMN. By investigating

the possible categorization of materials within the inventory, this study aimed to uncover potential benefits

and insights that could enhance the efficiency and effectiveness of LC HMN’s operations.
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Initially, the study used an algorithmic approach to categorize materials based on two variables: coefficient

of variation and inventory turnover ratio. The clustering analysis revealed the presence of diverse demand

patterns and highlighted the potential for more frequent replenishment of a significant portion of the

inventory. Additionally, the study also examined the effectiveness of a technique devised by Syntetos,

Boylan et al. (2005), discovered during a systematic literature review. The technique considered both the

demand size and time intervals between demand occurrences. This proved effective in capturing demand

fluctuations and divided the materials of LC HMN into the three categories lumpy, erratic, and smooth.

The three material categories formed the basis for further analysis linked to research questions three and

four.

RQ3: "How can the AS-IS fixed reorder point be improved through a dynamic reorder point?"

In order to answer the third and fourth research questions, a Python-based simulation model was developed,

making it possible to simulate conceptual strategies and make evidence-based decisions. Four reorder

point strategies were identified and selected for simulation related to the third research question. The

AS-IS reorder point strategy was used as a baseline for comparison, while the two proposed dynamic

strategies utilizing simple moving average (SMA) forecasting, namely Basic Dynamic ROP, and Basic

Dynamic (OPTIMAL) ROP, were conceptual strategies intended to challenge the AS-IS method. Lastly,

the Proposed Fixed ROP strategy served as a simple alternative to the more demanding dynamic strategies.

The simulation results demonstrate that both the Basic Dynamic and Basic Dynamic (OPTIMAL) strategies

outperform the Proposed Fixed ROP strategy by significantly reducing average inventory while minimizing

the impact on service level reduction. Specifically, the OPTIMAL proposal achieves an impressive 42%

inventory reduction while maintaining a service level of 98.9%. The results emphasize the significance of

the forecast interval in the Basic Dynamic approach, as the Basic Dynamic ROP approach closely approx-

imates the optimal solution for specific forecast intervals. Within the various demand categories, there

are significant variations in the results, with the dynamic solution demonstrating superior performance

for erratic and lumpy materials compared to smooth ones. Taking into account all demand categories

collectively, the greatest reduction in holding costs for all materials is achieved by implementing the Basic

Dynamic (OPTIMAL) ROP strategy, resulting in a substantial decrease of 56.3%.

In general, the simulation results for both the Basic Dynamic ROP and the Basic Dynamic (OPTIMAL)

ROP indicate favorable results for Logistics Center Helse Midt-Norge. The findings suggest a decrease in

average inventory levels and holding costs while still achieving satisfactory service levels. This demonstrates

an improvement on the AS-IS fixed reorder point strategy.

RQ4: "What is the impact of implementing advanced forecasting methods for the dynamic reorder

point?"

To address research question four, the advanced dynamic ROP strategy was introduced. Four different

versions of this strategy were simulated for the three selected representative materials: erratic (4001095),

lumpy (4012198), and smooth (4003841). The four versions differed in the forecasting model, employing

Naive, Holt-Winters, SARIMAX, and LSTM. Apart from the Naive model, these models are considered

significantly more complex than the simple moving average used to answer research question three.

For erratic, lumpy, and smooth materials, the most accurate forecasting models were LSTM, Holt-Winters,
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and Sarimax, respectively. Despite the more precise forecasting compared to SMA, the simulation results

show that the Basic Dynamic ROP strategy outperforms the Advanced Dynamic ROP strategy in terms

of average inventory and service level for the three selected materials. As discussed in Section ??, this may

be caused by the limited data available. Although Basic Dynamic ROP outperforms Advanced Dynamic

ROP in terms of inventory performance, the difference is minimal for lumpy and erratic categories.

In total, considering the amount of historical data available, the simulation of the three materials shows

that implementing advanced forecasting methods does not have a positive impact on the dynamic reorder

point.

7.1 Implementation Guidelines for Dynamic Reorder Point Based on

Demand Forecasting

This section provides a comprehensive guide for practitioners on the implementation of dynamic reorder

points in a continuous replenishment policy system that is based on demand forecasting for stock-keeping

units (SKUs). The guidelines presented are derived from extensive research conducted through a systematic

literature review and an empirical case study. By following these guidelines, practitioners can effectively

leverage demand forecasting to improve their inventory management processes.

Step 1: Identity Characteristics and Key Performance Indicators

In order to successfully implement a dynamic reorder point policy, a thorough understanding of the in-

ventory operations is crucial. This can be achieved by establishing a control model that outlines the flow

of products and information within the system. Additionally, gaining a clear understanding of the supply

chain, including the roles of different entities and their interactions, is vital.

Identifying potential requirements and constraints is essential. Specifically, it is important to determine if

there are any specific service level constraints that should be considered during the implementation of the

dynamic reorder point policy. To compare the dynamic reorder point policy with the existing policy, it is

necessary to identify relevant Key Performance Indicator (KPI). Service level and average inventory level

are two proposed KPIs in relation to the dynamic reorder point implementation.

Step 2: Data Collection

The second step focuses on data collection. This step involves collecting the necessary demand data for all

SKUs within the inventory. It is crucial to obtain a comprehensive understanding of the data by examining

and explaining all relevant attributes.

During the data collection process, it is essential to identify which attributes can potentially correlate with

demand patterns. These attributes may include factors such as currency, supplier, and unit price. By

recognizing such attributes, practitioners can develop more accurate demand forecasts and make informed

decisions. Additionally, it is crucial to collect information on the lead time for each SKU. If lead time data

are not available, historical records of inbound order placement and order arrival need to be obtained in

order to calculate the historical lead times. Understanding the lead time is vital to determine the reorder

point, as it helps to account for the time required to replenish stock and prevent stockouts.
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Step 3: Data Preprocessing

After collecting the data, the next step is preprocessing. This is essential for preparing the collected data

for further analysis and forecasting. This step encompasses standard procedures such as data cleaning,

filtering, and feature engineering.

When implementing a dynamic reorder points policy, a categorization of the data is found to be essential.

The Syntetos method has been shown to categorize the demand patterns of SKUs effectively and is therefore

strongly recommended. This method classifies demand patterns into categories such as intermittent, erratic,

lumpy, and smooth. Categorizing data based on these patterns helps to understand the nature of demand

variability across different SKUs. This understanding enables practitioners to select appropriate forecasting

models and design effective reorder point policies that align with the specific demand characteristics of

each SKU.

Step 4: Determine The Order Policy to Implement for each category

In this step, the selection of the appropriate order policy for each category is performed. The significance of

accurate and reliable data cannot be overstated when establishing a precise ordering policy for each SKU.

The following models are recommended for each demand category, allowing the practitioner to assess the

most suitable model considering factors such as data quantity, data quality, and the trade-off between

implementation cost and corresponding utility:

• Erratic category: Dynamic ROP utilizing SMA or Dynamic ROP utilizing LSTM (Long Short-Term

Memory)

• Lumpy category: Dynamic ROP utilizing SMA or Dynamic ROP utilizing Holt-Winters Exponential

Smoothing

• Smooth category: Dynamic ROP utilizing SMA or Fixed ROP

Performing time-series analysis, which includes decomposition, autocorrelation, and stationarity tests, is

recommended for implementing order policies that utilize advanced forecasting techniques (LSTM and

Holt-Winters) for dynamic reorder point (ROP). These analyses provide valuable insights into the under-

lying patterns, trends, and stationarity properties of the data, allowing the determination of appropriate

parameters for advanced models.

For both erratic and lumpy SKUs, SMA or an advanced model is proposed. When choosing which of the

two to utilize for the specific dynamic reorder point policy, several factors should be considered. SMA

requires minimal customization and configuration while being computationally lightweight, which makes

the forecasting method suitable to apply for a large number of distinct SKUs. On the other hand, advanced

forecasting methods need to be individually tuned for each SKU, increasing the overall implementation

time and effort. For smooth SKUs, it is not advisable to use advanced forecasting models. Instead, it is

recommended to consider a fixed reorder point as a viable alternative to SMA.
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Step 5: Determine Forecast Interval

The fifth step involves determining the suitable forecast interval for demand forecasting. It is recommended

to customize the choice of forecast interval for each demand category, as determined in the third step.

• In the case of the erratic category, shorter forecast intervals are proposed, such as daily or weekly.

Employing fixed forecast intervals for all SKUs displaying an erratic demand pattern is feasible.

• For the lumpy category, it is recommended to determine the forecast interval individually for each

distinct SKU. This approach takes into account the specific demand behavior of the SKU, leading

to a more customized forecasting strategy.

• Regarding the smooth category, the findings indicate that shorter forecast intervals, such as daily

or weekly, generally produce better outcomes. However, the influence of forecast interval length on

this category is not as evident, allowing for the consideration of longer intervals.

In general, implementing dynamic reorder points benefits from shorter forecast intervals, as they tend to

provide more accurate results. However, it is important to consider that shorter intervals require more

computational resources, which may result in increased costs. Therefore, a careful evaluation and trade-off

must be made beyond the suggestions provided. It is also crucial to consider the impact on service levels

when determining the forecast interval.

Step 6: Calculation of Dynamic Reorder Point

In Step 6, the logic of the dynamic reorder point calculation should be determined. This calculation needs

to be performed for each SKU at each forecast interval period and is therefore computationally heavy.

To facilitate this process, it is recommended to implement a custom algorithm, such as one developed in

Python.

Developing a self-produced algorithm allows for flexibility and customization in calculating the reorder

points based on the specific requirements and characteristics of the inventory system. This approach

enables practitioners to incorporate their own business rules and considerations into the algorithm, leading

to more tailored and accurate reorder point calculations.

To guide the development of the algorithm, Figure 46 and the corresponding formulas in Table 10 can be

utilized as references. These visual representations and formulas provide valuable insights into the factors

and variables that should be considered when calculating the dynamic reorder points.

Step 7: Test and evaluate on historical data

Before the real-time implementation of dynamic reorder points, it is essential to conduct tests and eval-

uations using historical data. This step allows for the identification of potential errors or issues in the

implementation process. By testing the dynamic reorder point calculations on historical data, practition-

ers can gain confidence in the accuracy and effectiveness of the approach before applying it in real-time

inventory management.
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Step 8: Gradually Implementing in Continuous Replenishment Policy System

After successfully testing and evaluating the dynamic reorder point calculations on historical data, the

next step is to gradually implement the approach in the continuous replenishment policy. It is advisable

to start with a small sample size during the initial phase of real-time implementation.

Before increasing the sample size, it is recommended to conduct a thorough analysis to ensure that the

results align with the desired outcomes. This analysis should consider the KPIs determined in Step 1.

By gradually implementing the dynamic reorder point approach and closely monitoring the outcomes,

practitioners can ensure a smooth transition and improved inventory management practices. This stepwise

approach allows for continuous improvement and adjustment based on the observed performance, enabling

practitioners to fine-tune the implementation and achieve the desired inventory management outcomes.

7.2 Contribution

This research makes a significant contribution to the existing literature by exploring the synergies between

three distinct fields: machine learning, inventory management, and demand forecasting. The study focused

on the practical implications for inventory management at the case company, LC HMN.

By employing simulation-based multi-scenario analysis, this study contributes with evidence-based results,

demonstrating the clear advantages and feasibility of implementing a dynamic reorder point policy. The

results highlight the positive outcomes of categorizing materials and emphasize the importance of data

analysis in achieving efficient inventory management. Furthermore, this study makes a valuable contri-

bution by examining the impact of employing machine learning and other advanced demand forecasting

techniques. The research underscores the importance of not undervaluing the use of simpler statistical

models, as they can also yield favorable results.

Therefore, this study contributes to the existing scientific literature by laying the foundations for further

analysis of the effectiveness of dynamic reorder points in inventory management. It provides a detailed

investigation into the advantages and viability of employing data analytics within a particular case com-

pany, serving as the basis for future studies examining the wider implementation of data analytics in the

healthcare sector of Norway. Consequently, the investigation has successfully achieved its objective and

has comprehensively addressed and answered the related research questions.

7.3 Limitations and Further Work

A limitation of this study is that the data set did not take into account the impact of the COVID-19

pandemic on the demand for healthcare services and supplies. As described in Section 5.2.1, the data set

included data in the time range 2020-2022 and therefore does not reflect any changes in demand patterns

that may have occurred as a result of the pandemic. This means that the results of the analysis may not

be fully representative of the current demand for healthcare products and services and may not accurately

reflect the potential benefits and challenges of using dynamic reorder points and demand forecasting in the

current context.
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Another limitation of the study is the lack of consideration and mapping of substitute products. This

exclusion could result in an incomplete assessment of the availability and usage of alternative options,

which could lead to stockouts in real-world scenarios.

The limited amount of data provided by the case company presents a significant limitation when it comes

to advanced demand forecasting. Without sufficient data points, accurate predictions become challenging

to achieve. Limited data restrict the ability to identify patterns, trends, and correlations that are essential

for robust forecasting models. The findings suggest that this limitation specifically affected the fourth

research question.

Further research should explore the possibility of including more data in the analysis. Since historical

demand data is limited, it would be interesting to access consumption data directly from hospitals, which

are one step further in the supply chain. These additional data could be used to evaluate the potential be-

nefits of implementing a Vendor-Managed Inventory (VMI) system (Waller et al., 1999), where the logistics

center takes a proactive approach by initiating deliveries to hospitals based on real-time consumption data.

As mentioned in the scope of the thesis in Section 1.4, the variability in the order size has been excluded

from the study. Further research should explore the effect of including variations in order size.
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