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Preface

This research is written as the master’s thesis of our Engineering and ICT degree at the Norwegian

University of Science and Technology (NTNU). The thesis is written in the spring of 2023 within

the subject code TPK4920 Project and Quality Management, Master’s Thesis. Further it counts

for 30 credits.

Over the last years, we have both taken a selection of project management and machine learning

courses. They have provided interesting and valuable knowledge that we wanted to utilize for our

master’s thesis. The project Artificial Intelligence in Projects was therefore a fitting choice as we

could combine these two knowledge areas. Additionally, there is a rapid development within the

machine learning field which we find very engaging as developers.

The selection of the project resulted in being a part of the sustainable value creation by digital

predictions of safety performance in the construction industry (DiSCo) research project. Previously

we have had limited knowledge on safety management in construction projects. This research has

equipped us with new insights within this field, which we see great importance in. We have also

identified a great potential for utilization of new, and better technology to further enhance safety

performance in the construction industry. We hope that this thesis contributes with new knowledge

and inspiration for further investigation of this domain.
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Abstract

This thesis aimed to combine system dynamics and machine learning to give an early warning

of construction projects with a high accident risk. The construction industry is highly accident

prone and there is ongoing research on it’s safety performance. Previous studies have focused on

safety factors, system dynamics models as well as various machine learning predictions. For this

thesis, a system dynamics model was developed in order to simulate construction projects. The

simulation generated datasets which were utilized by machine learning models in order to predict

safety performance.

The system dynamics model was developed based on theoretical findings. This thesis has an em-

phasis on the planning phase, as the model was developed in contribution with another master

thesis Integrating System Dynamics Modelling and Machine Learning to Improve Safety in Con-

struction Projects (Aamlid, 2023). The planning phase part of the model incorporated 53 indicators

which influence each other and the construction phase. The system dynamics model was validated

using extreme condition- and sensitivity tests, which showed reasonable trends towards the number

of accidents. For each simulated project, all indicator data was saved into a dataset. This was done

using two different accident rates; one for serious and one for fatal accidents. Consequently, two

separate datasets were generated — one for serious accidents, which was balanced, and another

for fatal accidents, which was highly imbalanced. Machine learning was applied to both datasets

in order to predict safety performance. The datasets were preprocessed such that the features

would only consist of planning phase data, with the target feature being if there had happened an

accident or not. Five different machine learning models were utilized for this research.

The thesis revealed two primary findings. Firstly, the thesis successfully demonstrated the possib-

ility of combining system dynamics and machine learning for safety predictions in cases where real

project data is unavailable. Secondly, the results showed potential for separating the projects with

higher risk of serious accidents and therefore give an early warning of poor safety performance. The

serious accidents dataset yielded lower accuracies, yet higher recall values. However, the models

struggled to identify fatal accidents. Due to the low values for the fatal accidents dataset, it was

discussed how other safety measurements could be more applicable. Ultimately, the combination

of system dynamics and machine learning has the potential to aid as decision support throughout

construction projects and spread knowledge regarding safety performance.
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Sammendrag

Denne oppgaven utforsket kombinasjonen av systemdynamikk og maskinlæring for å kunne gi en

tidlig advarsel for byggeprosjekter som er spesielt utsatt for ulykker. Byggebransjen er preget av

mye ulykker og det forskes p̊a hvordan man kan forbedre sikkerhetsprestasjonen innen bransjen.

Tidligere forskning har tatt for seg temaer som sikkerhetsfaktorer, systemdynamikk og prediksjon

av sikkerhetsniv̊a. I denne oppgaven er det utviklet en systemdynamikk-modell for å simulere

byggeprosjekter. Simulasjonen genererer datasett som benyttes for maskinlæring til å predikere

sikkerhetsniv̊a.

Systemdynamikk-modellen ble utviklet basert p̊a faglitteratur. Den ble utviklet i to deler; én for

planleggingsfasen og én for byggefasen. Denne masteroppgaven tar for seg planleggingsfasen, mens

byggefasen er implementert og beskrevet i System Dynamics Modelling and Machine Learning

to Improve Safety in Construction Projects (Aamlid, 2023). Planleggingsmodellen inkluderte 53

indikatorer som p̊avirker hverandre og videre utvikling i byggefasen. Modellen ble validert gjennom

ekstreme forhold- og sensitivitetstesting, og resultatene viste rimelige trender i forhold til antall

ulykker. For hvert simulerte prosjekt ble indikatordataen lagret til et datasett. To forskjellige

ulykkesrater ble brukt, en for alvorlige ulykker og en for fatale ulykker. Dette resulterte i to

separate datasett; et for alvorlige ulykker og et for fatale ulykker. Datasettet for alvorlige ulykker

var noks̊a balansert, mens datasettet for fatale ulykker var svært ubalansert. Maskinlæring ble

anvendt p̊a begge datasettene for å predikere sikkerhetsniv̊a. Datasettene ble forbehandlet slik at

attributtene kun inneholdt data fra planleggingsfasen. Attributten som ble predikert var binær og

beskrev om det hadde skjedd en ulykke eller ikke. Fem ulike maskinlæringsmodeller ble benyttet

i studien.

Oppgaven avdekket to hovedfunn. For det første oppn̊adde oppgaven en vellykket integrering av

systemdynamikk og maskinlæring for å predikere sikkerhetsniv̊a. For det andre viser resultatene

potensial for å identifisere prosjekter med høy risiko for ulykker og dermed gi tidlig advarsel om

lavt sikkerhetsniv̊a. Resultatene viste lav nøyaktighet, men høyere evne til å predikere de positive

instansene korrekt for alvorlige ulykker. Maskinlæringsmodellene hadde imidlertid d̊arlig evne til

å identifisere fatale ulykker. P̊a grunn av de lave verdiene for å forutsi fatale ulykker ble det

ogs̊a diskutert hvordan alternative sikkerhetsm̊alinger kan være mer passende. Kombinasjonen av

systemdynamikk og maskinlæring har potensial til å bidra som beslutningsstøtte og spre viktig

kunnskap om sikkerhet i byggeprosjekter.
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1 Introduction

This thesis explores the utilization of system dynamics and machine learning to simulate construc-

tion projects and predict their safety performance. More specifically, the research will investigate

whether machine learning predictions from simulated data can be used as an early warning for

construction projects. The thesis also includes a theoretical background and multiple literature

reviews to provide comprehensive context and background.

1.1 Background and Motivation

The construction industry is widely recognized as one of the most dangerous industries globally

(Mohammadi, Tavakolan and Khosravi, 2018; Feng and Trinh, 2019; Li, Alburaikan and Fátima

Muniz, 2023). This claim is supported by a number of sources, including a study done in 2022 by

Mostue et al. that focuses on the high rate of work-related fatalities and accidents in Norway’s

construction industry. The construction industry is one of the most accident prone industries in

Norway when looking at work related deaths and work related accidents (Mostue et al., 2022).

Nine fatalities were reported in Norway in 2021 (Mostue et al., 2022). The average number of

fatalities since 2012 is eight fatalities per year (Statistisk Sentralbyr̊a, 2022). Falls from heights

and being struck by objects are among the most frequent causes of accidents in the construction

industry (Sadeghi et al., 2020; Aghaei, Asadollahfardi and Katabi, 2021). Additionally, incidents

involving workers being squeezed/trapped are also common (Albrechtsen et al., 2018). Out of

the nine fatalities from 2021 three were from falling and four were from being squeezed/trapped

(Mostue et al., 2022).

Artificial intelligence (AI) is a rapidly developing technology with a wide range of potential ap-

plications that are currently starting to emerge across many industries (Regona et al., 2022). Its

potential applications are vast and continue to emerge as organizations recognize the transform-

ative impact it can have. Machine learning, knowledge-based systems, computer vision, robotics,

and optimization are examples of AI subfields. All of which have demonstrated their effectiveness

in improving multiple aspects of industries. AI is currently transforming sectors like telecommu-

nications, retail, and manufacturing (Abioye et al., 2021). Machine learning, a key component

of AI, enables systems to learn and make predictions or decisions without explicit programming.

The different subfields of AI have been effectively implemented in different industries to boost

profitability, efficiency, security, and safety (Abioye et al., 2021). For organizations looking to

improve their decision-making processes with quantitative support, using artificial intelligence and

machine learning can be valuable. These advanced technologies have the capacity to evaluate

enormous volumes of data and produce actionable recommendations, providing valuable insights

for informed decision-making (Ramachandran et al., 2022).

1



System dynamics leverages computer-based modeling and simulation methodologies to enable the

study, analysis, and enhance decision-making in complex systems, utilizing mathematical modeling

approaches (University of Bergen, 2022). In system dynamics projects, the objectives can vary.

They may aim to develop theoretical understanding, put improvement measures in place, or often,

pursue both goals simultaneously (Dangerfield, 2020). The origins of system dynamics are in

business and organizational issues, but over time the application has spread to many fields such

as healthcare, project management and economics (Dangerfield, 2020). These models have the

capability to incorporate factors like stocks, flows, variables, and feedback loops. This allows for

an examination of how changes in one part of the system can impact other components (Sweetser,

1999).

The construction industry is one the least digitized industries in the world (Abioye et al., 2021).

It’s lack of digitization and highly manual nature makes project management more complicated

and needlessly time-consuming. The insufficient degree of digitization in the construction industry

has been associated with delays, inadequate performance in terms of quality and productivity,

cost inefficiency, poor decision-making, and low performance in terms of health and safety (Abioye

et al., 2021). To address these challenges, the Sustainable value creation by digital predictions of

safety performance in the construction industry (DiSCo) is a project at the Norwegian University

of Science and Technology (NTNU) with the purpose of developing knowledge and methods for

using AI in the early phases of construction projects to predict future safety performance in the

production phase. It can therefore work as decision support for reducing the number of accidents

(NTNU, n.d.). By leveraging technologies such as AI, the DiSCo project seeks to enhance safety

outcomes and contribute to sustainable value creation in the construction industry.

1.2 Problem Description

The ultimate purpose behind this research is to improve the safety performance in the construction

industry. For this purpose, the objective of the thesis is to utilize system dynamics and machine

learning to give an early warning of projects with a high accident risk. The research will include

developing a simulation model for the planning phase of construction projects. Data will be

generated through this simulation and later combined with a range of machine learning models to

predict accidents. The predictions will serve as a leading indicator, enabling warnings for accident-

prone projects. Based on this objective, the following research questions have been formulated;

RQ1: How can system dynamics and machine learning be combined to predict safety performance

in construction projects?

RQ2: What are the safety management implications of utilizing systems dynamics and machine

learning in construction projects?

The first research question concerns the methodology and relation between the system dynamics
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model and machine learning predictions. It aims to explore the feasibility of combining these tech-

nologies to create a predictive model that can accurately forecast safety performance. The second

research question concerns the results of combining system dynamics and machine learning, and

what implications these give towards safety management in construction projects. This includes

evaluating the extent to which safety performance can be predicted with these technologies and

examining other implications resulting from this research.

1.3 Project Scope

The scope of this thesis is limited to the construction industry. However the methodology could

be applied to other industries as well, such as the oil and gas or the manufacturing industry.

Similarities can be drawn between these industries in terms of project data and health, safety,

and environment (HSE) management practices. The scope of the thesis is additionally limited to

the planning phase of construction projects. In the event that the results attains a high level of

prediction accuracy, there is potential for its expansion into later project stages, including real-

time predictions throughout the construction phase. This could allow for continuous monitoring

and assessment of safety performance, enabling timely interventions and adjustments to minimize

risks and ensure the welfare of workers. The system dynamics model is limited to construction

projects of buildings. As the chosen contractual arrangement, the model is limited to projects with

design-build contracts. Furthermore, the contract type was established as fixed price contracts.

1.4 Thesis Structure

Section 1 of this thesis serves as the introduction, exploring the background and motivation behind

the research. It presents the research questions and project scope. In section 2 , the theoretical

background of the thesis is presented. The first two subsections delve into project management

and safety management in the construction industry. The following subsection explains system

dynamics. Sections 2.4 and 2.5 provide important theoretical background on AI and machine

learning in general, as well as specific information about the machine learning algorithms chosen for

this thesis. The last subsection discusses the combination of system dynamics and machine learning.

Section 3 details the methodology, including information about the thesis context, literature review,

implementation of both the system dynamics and the machine learning models, and the evaluation

of the method. Section 4 presents the results, including the tests conducted to validate the system

dynamics model and the machine learning results for both serious accidents and fatal accidents.

Section 5 is the discussion, reflecting on the system dynamics model, the machine learning models,

and their respective results. The applicability of combining machine learning and system dynamics

is also discussed. Lastly, section 6 presents the conclusion, relating the findings to the research

questions, highlights the contributions of the thesis and suggesting possible further work.
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2 Theoretical background

This section presents theoretical background regarding project management, safety management,

system dynamics, AI in projects, machine learning and the combination of system dynamics and

machine learning. The theory serves as a basis for research and development within this thesis.

2.1 Project Management

This section provides theoretical background regarding project management with an emphasis

on construction projects. The roots of project management and several of its techniques can be

traced back to construction projects, which served as the basis for The Project Management Body

of Knowledge in 1987 (Project Management Institute, Inc., 2016). Project management can be

defined as “the application of knowledge, skills, tools, and techniques to project activities to meet

the project requirements” (Project Management Institute, Inc., 2017).

2.1.1 Project Definition

There are different ways to define a project. Tiltnes defines a project as a measure that has

the character of a one-time initiative with a specific goal and a limited scope, carried out by a

temporary organization within a time and cost frame (Tiltnes, 2015). According to the Project

Management Institute “a project is a temporary endeavor undertaken to create a unique product,

service or result” (Project Management Institute, Inc., 2017). Further, Rolstad̊as et al. describe

how projects are often split into several tasks that are dependent on each other (Rolstad̊as et al.,

2020). Lastly, Eikeland describes projects as dynamic systems, as the tasks and demands for

competency and resources change with time (Eikeland, 2001).

2.1.2 Construction Projects

Construction plays a big part of any advanced economy. It is estimated that construction accounts

for 10% of the annual wealth generated in advanced economies, while around 20% in more recently

industrialized nations (Winch, 2010). In Norway, the construction industry is the second biggest

industry measured by value creation (Hansen, 2019).

Construction projects often result in a one-of-a-kind product (Project Management Institute, Inc.,

2016). Hence, a construction project can be classified as a delivery project (Rolstad̊as et al., 2020).

Further, construction projects can be classified as either “green field” or “brown field” projects.

“Green-field” projects are when the construction takes place in a new facility, while “brown-field”

projects describe when projects are carried out in previously developed or abandoned sites (Project

Management Institute, Inc., 2016). Construction projects are often performed in phases to be able
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to review and refine the design and strategy. Construction management, including planning and

scheduling, cost management, risk management, document controls and forensic analysis, has been

proven to increase the success of a project (Project Management Institute, Inc., 2016). Project

success is often measured in time, cost and quality (Winch, 2010).

As construction work is organized in projects, there are fewer long term relations (Kv̊alshaugen

and Swärd, 2018). This often applies to public construction projects, where the actors who offer

the lowest price often win the project and the work is split into sub-contracts (Kv̊alshaugen and

Swärd, 2018). The project organization describes the project owner’s employees and all other

actors, firms and people who hold significant roles within the project (Eikeland, 2001).

Even though construction projects are different and cannot be completely standardized, there are

several similarities (Kv̊alshaugen and Swärd, 2018). Quality and complexity within construction

projects are described below, in addition to typical actors, contractual arrangements, contract

types and phases.

Quality

Quality can be defined as “degree to which a set of inherent characteristics of an object fulfills

requirements” (ISO9000, 2015). In other words, quality describes in what degree the customers’

requirements, needs and expectations are met (Lereim, 2013). Winch presents several aspects of

construction project quality; product integrity regarding concepts, realisation and specification and

conformance to requirements. He also states that quality in construction projects can be described

as not product related, and that high quality processes are those that minimize risk of accidents

(Winch, 2010). There are however different views on the quality term, and generally “high” quality

will depend on the expectations of the user (Hansen, 2019). Further, different actors define quality

depending on their competency (Hansen, 2019).

Complexity

There is no agreed definition of project complexity, but there is a common understanding that it

involves more than just the size of the project (Johansen et al., 2019). A conceptualization of pro-

ject complexity done by Baccarini distinguishes between organization and technological complexity

(Baccarini, 1996). Organizational complexity is determined by the number of organizational units,

their tasks and relations (Johansen et al., 2019). Technological complexity is defined based on the

product itself (Rolstad̊as et al., 2020). The International Centre for Complex Project Management

describe complex projects as “undertakings for which traditional methods, practices and processes

are inadequate in terms of scale, rate of change, heterogeneity, multiple pathways and ambigu-

ous objectives” (International Centre for Complex Project Management, 2012). In addition, the

stakeholders in complex projects are often very diverse (Johansen et al., 2019).

Construction projects are often quite complex, and require different disciplines, technology and

equipment (Kv̊alshaugen and Swärd, 2018). They are therefore prone to significant cost increases.
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They vary widely on types, goals and solutions, and to each goal there can many many solutions

(Project Management Institute, Inc., 2016). In addition, the projects occur in changing and

complex environments (Project Management Institute, Inc., 2016). The project complexity affects

the probability of success (Rolstad̊as et al., 2020). The complexity is not necessarily described by

the project itself, but can be subjective to the project organization’s experiences (Rolstad̊as et al.,

2020).

Stakeholders

Stakeholders are defined as “individuals and organizations who are actively involved in the project,

or whose interests may be positively or negatively affected as a result of project execution or suc-

cessful project completion” (PMI Standards Committee and Project Management Institute, 1996).

Owners and contractors are direct stakeholders in a construction project, as they are directly in-

volved. There can also be many other stakeholders in a construction project. Stakeholders usually

enter a project due to either geographical location or an invitation by the owner (Project Man-

agement Institute, Inc., 2016). Other direct project stakeholders include sponsors and suppliers,

while indirect stakeholders can include regulatory agencies or authorities, professional associations,

land owners and other project affected people. With this categorization, the indirect stakeholders

describe those who are not directly involved, but can influence the project’s execution.

Stakeholders can also be categorized as internal or external (Winch, 2010). Internal stakeholders

are those who are in legal contact with the owner. External stakeholders are other stakeholders

who also holds an interest in the project. Figure 1 shows a project stakeholder categorization by

Winch, where it is distinguished between internal/external stakeholders as well as demand/supply

side and private/public.

Figure 1: Example of stakeholder categorization (Winch, 2010)

The project owner is typically involved in identifying and defining the project (Johansen et al.,

2019). In the context of other actors in the project, the owner is called the client. When the con-

struction project is finished, the result becomes the owners property (Tiltnes, 2015). Even though

the client can delegate tasks, they are responsible of overall decisions, defining the project scope

and changes, as well as picking a contractor and approving the result (Tiltnes, 2015). Examples

of clients are landowners, a municipality or an organization.
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The executing parties in a project are hired by the client to transform resources into a result

(Tiltnes, 2015). In construction projects these are often called the contractors. Contractors are

responsible for the production in the project (Hansen, 2019). Examples of contractors can be firms

offering masonry, carpeting, electrics, plumbing and/or digging. Sub-contractors are contractors

being hired to perform a part of a main contractor’s tasks. In addition to the main, technical

contractors there are executing parties including architects and designers being hired by the client

(Tiltnes, 2015). These work with detailed engineering in the design phase. This includes planning,

forming and describing the product through sketches, models and descriptions (Hansen, 2019).

The users are also an important group within construction projects, as they are the ones who will

utilize the building (Hansen, 2019). The user role will differ from project to project, depending on

the project owner’s purpose of the project. Additionally, one can see the users as a more complex

aspect as they are not always one easily identifiable group (Olsson, Hansen and Blakstad, 2022).

Figure 2 shows the feedback loop between the main actors in a construction project. To create

new facilities, it is important to learn from previous projects. This way, the client can make sure

to meet the users’ needs in a better way. This can be done by investigating previous user feedback

to the client from similar projects. Further, the client will take this into account when working

with the rest of the project organization (Winch, 2010).

Figure 2: Feedback loop between actors (Winch, 2010)

Contractual Arrangements

Contractual arrangements describe the responsibilities of the client when hiring a contractor, espe-

cially regarding engineering and coordination. There are different types of arrangements, including

design-bid-build contracts and design-build contracts. In design-bid-build contracts, the client is

responsible for coordinating the engineering and implementation of the project (Direktoratet for

forvaltning og økonomistyring, 2022b). As a result, the contractor is only responsible for the actual

execution. Consultants and architects are often hired for the engineering. The second arrangement

is design-build contract, also called engineering, procurement and construction (EPC) contract. In

this model, the contractor is responsible for the engineering and implementation of the project

(Hansen, 2019).
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In Norway there has been established a set of standards regarding contractual arrangements. These

are NS8405 for design-bid-build contracts, NS8407 for design-build contracts and NS8401/02 for

engineering consultants (Kv̊alshaugen and Swärd, 2018). These standards regulate circumstances

such as financial conditions, solutions, responsibilities, safety and change management.

Contract Types

There are also different contract types regarding costs. Fee-based contracts are those who provide

goods and services at a certain rate. These contracts are appropriate when the necessary resources

may be easily identified but the amount is not yet known (Winch, 2010). Fixed-price contracts

describe contracts where the sum is set for an agreed amount of work. These are either lump-sum

contracts, where the price is fixed in the contract or unit rate, where the exact amount is not known

until the work is done. Fixed-price contracts are appropriate when a big amount of information is

known beforehand. Incentive contracts are a combination of fee-based and lump-sum. There are

many variants of incentive contracts. However they have a common feature of trying to provide

positive incentives through gainsharing.

Phases

The general phases in a construction project after initiating are planning, construction and delivery

(Direktoratet for forvaltning og økonomistyring, 2022a). The planning consists of strategic defini-

tion, concept development, concept processing and detailed engineering (Tiltnes, 2015). These are

described further in section 2.1.3.

The construction phase is the implementation of the construction work up until possibly the trial

operation and the delivery (Direktoratet for forvaltning og økonomistyring, 2022a). One should

follow up the contract to ensure that the building or facility conforms to the desired objectives. A

kick-off meeting should be held in the beginning of the construction phase to provide a common

understanding for all actors in the project (Direktoratet for forvaltning og økonomistyring, 2022a).

There should also be developed a quality plan such that one can pay special attention to certain

parts during the building process (Tiltnes, 2015).

After the building is completed it is time for a formal delivery. The delivery often consists of

three phases; trial operation, takeover and potential complaints (Direktoratet for forvaltning og

økonomistyring, 2022a). The latter is the follow-up of any deficiencies to make sure that rights are

safeguarded.

After project delivery, Neste Steg additionally defines two more steps to the construction project

life cycle; 1) use and administration and 2) liquidation (Tiltnes, 2015). The objective of the use

and administration step is to secure a good technical and economic operation to satisfy the users’

needs and intended effect (Tiltnes, 2015). Liquidation describes when the use of the building is

being terminated. This occurs when the commercial activity ceases and the owner does not want

to make a new investment. Then the building will typically be sold or demolished (Tiltnes, 2015).
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2.1.3 Planning Construction Projects

Hansen states that one can consider a construction project as an interaction between several

smaller processes of different characters. In this way, the project can be seen as the treatment of

information which should take part in different activities which depend on and influence each other

(Hansen, 2019). Generally, early phase planning consists of reciprocal and intensive dependencies,

while the detailed engineering and building phase will be more sequential (Hansen, 2019).

There has recently been developed a Norwegian standard NS3467 that describes all processes in

construction projects. The standard is based on the framework Neste Steg. It aims to develop

one common norm and industry language to better enhance cooperation between actors (Tiltnes,

2015). According to Neste Steg there are four stages before the construction begins; strategic

definition, concept development, concept processing and detailed engineering (figure 3).

Figure 3: Planning stages in construction projects (inspired by Tiltnes, 2015)

Strategic Definition

The planning of a construction project typically begins with strategic planning. During this step,

an idea is investigated and considered by the owner (Hansen, 2019). This step can either be

initiated by the owner itself or by a user. The processes during this stage includes a gap analysis

and the development of the business case (Tiltnes, 2015).

The gap analysis defines the gap between the current situation and the users’ needs (Tiltnes, 2015).

According to Tidligfase i byggeprosjekter needs will generally change over time (Iversen, Lilleland-

Olsen and Woldseth, 2016). There are several types of needs; stakeholder needs, demand based

needs and normative needs (Iversen, Lilleland-Olsen and Woldseth, 2016). Stakeholder needs can

be when a building is not functionally fitted for the users. Demand based needs are often created

when a business is growing. Normative needs are those that originate from laws and resolutions.

The need that forms the idea in this stage is called the project triggering need (Iversen, Lilleland-

Olsen and Woldseth, 2016). A stakeholder analysis should be conducted, as there are typically

several needs (Iversen, Lilleland-Olsen and Woldseth, 2016). Stakeholder analyses uncover who

gets influenced by a project and its results, who has a positive attitude towards the project and

who is more skeptical (Lereim, 2013). This can display which stakeholders will have the most

influence on the project. An associated stakeholder strategy should also be established (Tiltnes,

2015; Rolstad̊as et al., 2020). This strategy serves as purpose to reduce the negative impact from

the more skeptical stakeholders, while increasing the influence of the positive ones (Lereim, 2013).
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The business case is a document that describes why the project should be realized (Lereim, 2013).

It is developed by the owner and includes goals and ambitions, as well as a commercial framework

(Tiltnes, 2015). Goals serve the purpose of specifying what one wishes to achieve and can be used

afterwards to assess the degree of accomplishment (Hansen, 2019). The business case should list

the objectives and reasons for project initiation (Project Management Institute, Inc., 2017). The

management should examine viability as well as ethical concerns and consequences (Tiltnes, 2015).

The goals that are defined in this stage should express the long-term business effects wanted to

achieve after the project is realized (Iversen, Lilleland-Olsen and Woldseth, 2016). Further, they

should match the strategic goals of the organization (Tiltnes, 2015; Iversen, Lilleland-Olsen and

Woldseth, 2016; Hansen, 2019).

Rolstad̊as et al. presents the following model for business development (figure 4). First, business

opportunities are identified based on a vision. Then the business case is developed based on

opportunities and strategy. The business case should cover what is wanted to do, how it should be

done and how much they expect to profit on the proposal. The business case makes it possible to

estimate a business potential, which serves as the foundation for the establishment of a business

plan (Rolstad̊as et al., 2020). A project idea is developed based on the business case, which further

will take part in the business plan.

Figure 4: Business development (inspired by Rolstad̊as et al., 2020)

During the strategic definition stage, an overall project plan should also be established (Direktor-

atet for forvaltning og økonomistyring, 2022a). The typical output of the strategic definition stage

is an assessment of whether the project should be continued and a review of what possibilities

there are for the project (Tiltnes, 2015).

Concept Development

The second stage of the planning phase is the concept development. The goal of this step is

a determination of whether the project is feasible and to decide a concept for implementation

(Hansen, 2019). Both the business case and the gap analysis from the previous stage is used as
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input for the activities in this stage (Tiltnes, 2015). There are several processes which should

be executed during the concept development. These include developing a financial framework,

alternative analyses and establishing an overall implementation strategy.

Prior to the alternative analysis there should be conducted a feasibility study (Iversen, Lilleland-

Olsen and Woldseth, 2016). The first step should be to identify all solutions which meet the needs

from the gap analysis. Then, each solution should be further analyzed on whether they are realistic

and how well they meet the most important needs. The remaining solutions should be put in a

prioritized list. This list is used as input for the alternative analysis.

An alternative analysis should assess various solutions including the 0-solution, being the current

situation, against the project’s objectives and requirements (Direktoratet for forvaltning og øko-

nomistyring, 2022a). The analysis is both quantitative and qualitative (Iversen, Lilleland-Olsen

and Woldseth, 2016). The purpose is choosing the best possible solution for the owner (Iversen,

Lilleland-Olsen and Woldseth, 2016). The three steps of the alternative analysis are;

1. expanding the descriptions of the different alternatives

2. conducting a cost benefit analysis

3. comparing other effects such as safety, flexibility and environment

The analysis should conclude with a concept recommendation based on the measures above (Iversen,

Lilleland-Olsen and Woldseth, 2016). The final output of this activity is the concept documents.

A financial framework should be established on a higher level. It should include construction costs,

budget and risk assessments (Direktoratet for forvaltning og økonomistyring, 2022a). From the

user perspective, a functional plan together with sketches and illustrations should be developed

(Tiltnes, 2015). Once the concept and sketches are available, an overall implementation strategy

should be established (Direktoratet for forvaltning og økonomistyring, 2022a). In addition to the

deliveries above, the business case should be updated with the new information.

From a management perspective, the concept development step includes expanding the project

plan, establishing a procurement strategy, preparing for contract- and organization structure and

establishing a building information modelling (BIM) strategy (Tiltnes, 2015). A BIM strategy

should contain information on how BIM should be used in the project, how it should be organized

and what standards should be used (Hansen, 2019). A plan for communication and information

handling should also be established during this stage. The concept development stage is also

often where the management document is first established. It contains parts from the processes

above, typically including plans, goals, general conditions, organizing, implementation strategy

and project plan. The final step of this stage is deciding whether one should continue with the

chosen concept (Tiltnes, 2015; Iversen, Lilleland-Olsen and Woldseth, 2016).
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Concept Processing

Next, the chosen concept needs to be further developed. The goal of the concept processing stage

is to analyze more in detail such that the final decisions regarding implementation and finances

are made on the right basis (Tiltnes, 2015). Relevant inputs from previous stages include concept

documents, overall implementation strategy, sketches and illustrations, functional capacities as well

as the management documents.

During this stage the owner should make a financial plan, determine the contract- and organiza-

tional structure and update the business case for the project (Tiltnes, 2015; Iversen, Lilleland-Olsen

and Woldseth, 2016). A sketch project takes place, which is the calculations and sketches that lay

the foundation for architecture and design (Direktoratet for forvaltning og økonomistyring, 2022a).

Further development of the sketch project is the preliminary project, which contains functional

and physical structure (Direktoratet for forvaltning og økonomistyring, 2022a). An implementa-

tion strategy should be developed further, sketches of the building method created and technical

constraints considered (Tiltnes, 2015). The implementation strategy contains contractual arrange-

ments and contract type (Direktoratet for forvaltning og økonomistyring, 2022a). Towards the

public a regulation plan should be made or updated, one should apply for a general permission

and perform a risk assessment (Tiltnes, 2015). A regulation plan is a document to manage the

development of a certain area (Hansen, 2019). It is formed by the owner and needs to be ap-

proved by the local authorities. A general permission covers the frame of the building, such as size,

volume, environmental aspects, looks and neighbours (Hansen, 2019). The risk assessment focuses

on identifying the potential opportunities and risks (Johansen et al., 2019).

Other processes within this stage include updating the procurement strategy and the project plan,

defining roles associated with communication and information handling, verifying BIM strategy

and developing a safety, health and work environment (SHA) plan (Tiltnes, 2015). Before construc-

tion or installation work begins, a written SHA plan that outlines how the project’s risk factors

will be managed is required by the Construction Client Regulations § 7 (Arbeidstilsynet, 2023).

When finishing the concept processing stage, the final decision on whether the project should be

implemented is made.

Detailed Engineering

The final stage before the construction begins is the detailed engineering, also called the design

phase. The purpose of this step is to develop a high quality foundation with enough details for a

safe and correct construction phase (Tiltnes, 2015). The design phase is executed by specialists

within their field, and relevant experience plays a big role (Lereim, 2013). Relevant inputs from

previous stages include the decided concept (concept documents) and the contractual arrangement.

Another input is information regarding suppliers’ systems and products (Tiltnes, 2015). During

this stage, a construction plan and updated business case should be made by the owner. The
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executive parties should establish a production base, with measures on both time, quality and

implementation. Drawings and descriptions based on the preliminary project should be detailed

and finalized (Direktoratet for forvaltning og økonomistyring, 2022a). Most documents are defined

down to a three-digit level according to the building component table (Direktoratet for forvaltning

og økonomistyring, 2022a). The BIM should be fully completed. A building application should

be sent to the associated municipality (Tiltnes, 2015). The SHA plan and procurement strategy

should also be updated.

To summarize, the four main stages during planning are strategic definition, concept development,

concept processing and detailed engineering. Despite the fact that projects live in an uncertain

world (Rolstad̊as et al., 2020), a big amount of planning is usually done before the construction

phase begins. Planning plays a big role for the execution, and is particularly important as projects

are only given one chance (Lereim, 2013). According to several case studies, planning in the early

phases is shown to be one of the most important success factors for construction projects (Hussein,

2016).

2.2 Safety Management in the Construction Industry

This section concerns safety management within the construction industry. As presented in the

introduction (section 1.1), the construction industry suffers from low safety performance. This leads

to an increasing amount of research on the area. Theory regarding different safety measurements

as well as a literature review on safety factors are provided.

2.2.1 Measuring Safety Performance

Safety performance indicators measure an organizations ability to control risk of accidents (Kjellen

and Albrechtsen, 2017). Indicators are commonly used when direct measurements are too intricate.

Sultana, Andersen and Haugen describe an indicator as a “measurable representation of the aspect

of reality” (Sultana, Andersen and Haugen, 2019). For safety performance, one can distinguish

between leading and lagging indicators.

Leading indicators is a term well known within the economy field, utilized by business economists to

forecast the course of the economy in the near future (Stock and Watson, 2008). For safety purposes

Kjellen and Albrechtsen define leading indicators as those which “predict future developments in

safety performance, that is, they change before the safety performance has changed” (Kjellen and

Albrechtsen, 2017). Lagging indicators on the other hand describe safety performance based on

incidents that have already happened. They change after an activity’s safety performance has

changed.
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Loss-based safety performance indicators are categorized as lagging indicators. Two common loss-

based indicators are the lost-time injury (LTI) frequency rate and total recordable injury (TRI)

frequency rate. The LTI rate describes the number of lost-time injuries per one million hours of

work (Rausand, 2013). A lost-time injury can be defined as an injury that happened at work

which results in the worker not being able to meet on the next shift (Kjellen and Albrechtsen,

2017). It used to be the most common measurement of safety performance. The indicator has

however gained some negative attention as it can be considered as easy to manipulate. An example

would be letting the injured person do “lighter” work the next day instead of being absent. The

TRI rate describes the total number of recordable incidents. This term contains a much larger

spectrum of accidents, as recordable incidents include all injuries at work resulting in lost time,

medical treatment (not first-aid), restricted work and fatalities. This makes the TRI rate harder

to manipulate than the LTI rate. Days since last LTI or TRI are also known measurements for

safety performance. They do however not take into account the size of the company.

Other loss-based safety performance indicators include accumulated number of recordable injuries,

severity rate (S-rate), average number of days lost, fatal accident rate (FAR) and accumulated

number of fatalities (Kjellen and Albrechtsen, 2017). Accumulated number of recordable injuries

measure the injuries since the beginning of an activity or project. Similarly to the days since last

LTI or TRI, this indicator does not take into account the size of the company, and is therefore

not as suited for when companies increase or decrease in number of employees. The S-rate is the

number of working days lost as a result of lost-time injuries per one million hours of work (Kjellen

and Albrechtsen, 2017). Fatalities and permanent disabilities corresponds to 7500 workdays. The

S-rate indicator has been criticized for being dominated by long sick leaves. However, it is less

sensitive to inaccuracies than the LTI and TRI. Another measurement is the average number of

lost days, which is the S-rate divided by the LTI rate. The FAR, which describes the fatal accident

rate, measures the number of fatalities per 100 million working hours within a defined population

(Rausand, 2013). It is commonly used to compare different industries. The FAR is however rarely

used within companies due to the low number of fatalities, as it is easier for the company to count

the number directly (Kjellen and Albrechtsen, 2017). At last, the accumulated number of fatalities

measures the accumulated number since the beginning of an activity or a project.

There are also process-based safety indicators. These include measures of both deviations and

incidents. Examples are percentage compliance with regulations, percentage correct behaviour,

number of incidents per period and number of reported unwanted occurrences (RUO) (Kjellen and

Albrechtsen, 2017). The latter can be measured per employee and year.

There are many different ways of measuring safety performance. As mentioned above, these indic-

ators have their strengths and weaknesses. Therefore Kjellen and Albrechtsen recommend using a

combination of several indicators for safety measurements.
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2.2.2 Safety Factors

There has been a large amount of research on what causes bad safety performance and why

accidents occur. In this thesis, these are called safety factors. This section will describe previous

studies and provide information on the factors that has occurred the most within this research

field.

Khalid, Sagoo and Benachi performed an empirical study in order to develop a framework for

improved safety performance in construction projects (Khalid, Sagoo and Benachir, 2021). The

literature findings revealed 63 factors, which were later clustered into six groups. Mohammadi,

Tavakolan and Khosravi conducted a qualitative content analysis to retrieve safety factors (Mo-

hammadi, Tavakolan and Khosravi, 2018). It resulted in 13 factors. In similarity to Khalid, Sagoo

and Benachi they proposed a framework based on these. The framework contains a hierarchy of the

safety factors on several levels. Usukhbayar did a literature review on safety factors which resulted

in 58 factors (Usukhbayar and Choi, 2020). They were grouped into 13 groups using adopting

factor analysis methodology. Muñoz-La Rivera, Mora-Serrano and Oñate performed a systematic

literature review, which led to the identification and classification of 100 factors (Muñoz-La Rivera,

Mora-Serrano and Oñate, 2021). In addition, Yap and Lee did a literature review and question-

naire (Yap and Lee, 2020). This resulted in eight main factors. Abas et al. also conducted a

literature review (Abas et al., 2020).

Further, Asilian-Mahabadi et al. investigated factors contributing to unsafe work behaviours using

field observations, interviews and focus group discussions (Asilian-Mahabadi et al., 2018). This

resulted in fourteen themes within four categories. Sukamani and Wang developed a model based

on a questionnaire to identify factors of critical accidents (Sukamani and Wang, 2020). At last,

Man et al. investigated the effect of factors on risk taking behaviour in construction projects (Man

et al., 2021). They used a combination of a questionnaire and structural equation modeling.

The literature findings revealed the following safety factors;

Organizational factors

Safety culture is an organizational factor that holds significant importance within a company

(Khalid, Sagoo and Benachir, 2021; Muñoz-La Rivera, Mora-Serrano and Oñate, 2021). Moham-

madi, Tavalokan and Khosravi mention attitudes, feedback, safety involvement and effort as safety

factors (Mohammadi, Tavakolan and Khosravi, 2018). Asilian-Mahabadi found that the safety

climate on both the client and contractor side have a big impact (Asilian-Mahabadi et al., 2018).

Additionally, attitude and motivation is highlighted in their study. Attitude was also mentioned

as a safety factor by Man et al. (Man et al., 2021).
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Safety performance is also significantly impacted by economics (Khalid, Sagoo and Benachir, 2021;

Muñoz-La Rivera, Mora-Serrano and Oñate, 2021). Mohammadi, Tavalokan and Khosravi mention

project cost, contract price and project size as influencing factors (Mohammadi, Tavakolan and

Khosravi, 2018). They also state that the company’s revenue and costs are important factors. Ac-

cording to Asilian-Mahabadi, the safety performance is influenced by economic conditions (Asilian-

Mahabadi et al., 2018).

Another aspect covered by previous studies is the structure within the project organization. The

involvement and size of subcontractors are mentioned as factors by several studies (Mohammadi,

Tavakolan and Khosravi, 2018; Muñoz-La Rivera, Mora-Serrano and Oñate, 2021). In addition,

a factor could be whether safety is included when selecting contractors (Sukamani and Wang,

2020). Other organizational factors which are presented in the articles are stakeholder management

(Khalid, Sagoo and Benachir, 2021) and quality (Khalid, Sagoo and Benachir, 2021; Muñoz-La

Rivera, Mora-Serrano and Oñate, 2021).

Managerial Factors

Managerial factors such as safety management systems, safety investments and risk assessments

are found to be important regarding safety performance. The effectiveness of safety management

systems are considered a contributing factor by several studies (Mohammadi, Tavakolan and Khos-

ravi, 2018; Khalid, Sagoo and Benachir, 2021; Muñoz-La Rivera, Mora-Serrano and Oñate, 2021).

Safety investments have also been found to impact safety performance (Mohammadi, Tavakolan

and Khosravi, 2018; Khalid, Sagoo and Benachir, 2021; Muñoz-La Rivera, Mora-Serrano and

Oñate, 2021). Additionally, risk assessment is a factor that was uncovered by Khalid, Sagoo and

Benachir (Khalid, Sagoo and Benachir, 2021).

Further, supervision was highlighted in several studies (Asilian-Mahabadi et al., 2018; Khalid,

Sagoo and Benachir, 2021). Usukhbayar and Choi point out how frequency of inspections can

affect the safety performance (Usukhbayar and Choi, 2020). Abas et al. also highlight how the

implementation of safety inspections are important towards safety management (Abas et al., 2020).

Legislative Factors

Safety policies and rules are legislative factors that affect safety performance (Usukhbayar and

Choi, 2020; Khalid, Sagoo and Benachir, 2021; Muñoz-La Rivera, Mora-Serrano and Oñate, 2021).

The compliance of these rules is listed as a factor by several studies (Mohammadi, Tavakolan and

Khosravi, 2018; Khalid, Sagoo and Benachir, 2021; Muñoz-La Rivera, Mora-Serrano and Oñate,

2021). In connection to this, Abas et al. proposes “safe systems of work”, being safety policies, as

a factor (Abas et al., 2020). Sukamani and Wang proposes “poor enforcement of safety rules and

regulations by the government agencies” as a factor (Sukamani and Wang, 2020).
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Environmental Factors

The reviewed articles demonstrate that the project’s environment significantly influences its safety

performance (Abas et al., 2020; Sukamani and Wang, 2020; Yap and Lee, 2020). Factors such

as weather (Usukhbayar and Choi, 2020; Khalid, Sagoo and Benachir, 2021) and safety hazards

(Khalid, Sagoo and Benachir, 2021) can contribute to poorer safety. Lack of or poorer equipment

is also a factor that contributes to a worse working environment (Mohammadi, Tavakolan and

Khosravi, 2018; Abas et al., 2020; Usukhbayar and Choi, 2020). Further, Sukamani and Wang

found incorrect and defective tools to influence the safety performance of a project (Sukamani and

Wang, 2020).

Personnel Factors

There are several personnel factors that are discovered in the reviewed studies. One factor is the

attitude and motivation of the worker (Mohammadi, Tavakolan and Khosravi, 2018; Khalid, Sagoo

and Benachir, 2021). Further the workers education, experience and training are listed as factors

that influence their safety performance (Usukhbayar and Choi, 2020; Sukamani and Wang, 2020;

Usukhbayar and Choi, 2020; Yap and Lee, 2020; Khalid, Sagoo and Benachir, 2021). This was

also covered in the factor “contractor competency” by Asilian-Mahabadi et al. (Asilian-Mahabadi

et al., 2018). Safety training was listed as one of the most influential factors by Man et al. (Man

et al., 2021). Moreover, age is mentioned as a factor in several studies (Mohammadi, Tavakolan

and Khosravi, 2018; Usukhbayar and Choi, 2020; Yap and Lee, 2020).

Another factor that has been revealed through the studies is pressure. This includes production

pressure and schedule delays (Mohammadi, Tavakolan and Khosravi, 2018). Rework is also men-

tioned as a productivity aspect (Mohammadi, Tavakolan and Khosravi, 2018, Muñoz-La Rivera,

Mora-Serrano and Oñate, 2021). Furthermore, overtime is a factor discovered by Usukhbayar

(Usukhbayar and Choi, 2020). Another factor related to pressure is work stress which was pro-

posed by Man et al. (Man et al., 2021).

As presented above, research has revealed a wide spectrum of factors that contribute to a project’s

safety performance. These form a complex composition of organizational, managerial, legislative,

environmental and personnel factors, in addition to project pressure.

2.3 System Dynamics

System dynamics is a method of mathematical modelling whose goal is to enhance decision-making

and aid in the understanding of complicated dynamic systems. The method is based on feedback

system theory (University of Bergen, 2022).
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2.3.1 Systems Thinking: System Dynamics

Systems thinking is the method for understanding large complex systems and their dynamic beha-

vior. It was developed more than 60 years ago by Jay Forrester at the Massachusetts Institute of

Technology (Forrester, 2007). Forrester said the benefit of system dynamics was its unique ability

to represent the real world (Forrester, 1994). Despite the benefits Forrester also acknowledges the

issues that can occur when converting a real-life situation into a simulation.

System dynamics is way of understanding the change and complexity of a system over time (Bala,

Arshad and Noh, 2017). The focus is on understanding the entire system and how the different

parts interact and affect each other rather than focusing on one part in isolation. System dy-

namics’s methodology is created to handle non-linearity, multiloop and time-lag characteristics

in complex dynamic systems. This is done using feedback concepts. Modelling and simulating

complex dynamic systems can aid in the understanding of dynamics of systems.

There are two types of systems, open and feedback. Open systems have input that affects output

but the output does not affect the input. The system in “unaware” of its performance. In a

feedback system the output is used further to produce new output and gouge the performance

of the system. Feedback systems can be either positive feedback systems or negative feedback

systems.

Figure 5: Basic structure of a feedback loop (University of Bergen, 2022)

In figure 5 an example of a simple feedback loop is shown. The value of the stock will be dependent

on the inflow, but the inflow is also dependent on the stock value, time and other variables. This

loop between the stock and the inflow is a feedback loop as it sends information backwards. The

outflow will be determined by the stock as well as time and other variables. Feedback loops are

an important part of system dynamics and all systems will contain multiple feedback loops.

A causal loop diagram is a method for visualizing the relationships between variables. A positive

causal relationship between two variables indicates that they vary in the same direction, i.e., an

increase in one variable causes an increase in the other. This also means a decrease in the first

variable will lead to a decrease in the second variable. If there is a negative causal relationship

between two variables, then an increase in the first variable will inversely result in a reduction in
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the second variable. The diagram shows variables with arrows between them. An arrow is marked

with either a plus or a minus symbol. This is to indicate if the relationship is positive or negative.

The direction of the arrow indicates the direction of the relationship. This type of diagram was

first formally used in The second cybernetics: Deviation-amplifying mutual causal processes by

Magoroh Maruyama in 1963 (Maruyama, 1963). This diagram is an important aid in visualising

the connections between variables in systems. An example of a causal loop diagram is shown in

figure 6.

Figure 6: Causal loop diagram (Maruyama, 1963)

System thinking and system dynamics are tools to create models that recreate or simulate be-

haviors. A model should resemble the reality as closely as is practical, but be reasonably cheap

to develop and operate (Fellows and Liu, 2003). It is the structure of the system that generates

behavior. Information accessibility, decision-making rules, and other factors may have an impact

on the system’s dynamics (Sterman, 2013).

2.3.2 Project Simulation

Project simulation is a way of imitating real-world conditions and analyzing project performance

outcome or behaviour. Simulations involves some elements of dynamism because it models a

process rather than an object (Fellows and Liu, 2003). One example of this is the Virtual Design

Team (VDT) model which is a computation model of project organizations (Jin and Levitt, 1996).

This was done to identify the needs brought on by various project activities and what additional

activities required to be carried out as a result. The critical path method (CPM) can be used

to show which activities precede other activities, but CPM is unable to show dependencies of

concurring activities and it is also unsuitable for showing dependencies between actors. Therefore

there was need for a new model with more complexity.
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Figure 7: Overview of the VDT model (Jin and Levitt, 1996)

Figure 7 shows the VDT model by Jin and Levitt. The actors, task network, organizational

structure and communication flow are the major elements of the information-processing system

that is depicted. The model is based upon that an actor has activities on their in tray and on

their out tray. The actor based their choice of activity either on time of arrival, by priority or at

random and this again caused different needs throughout the organization. The VDT model has

organization structure, communication tools, description of project team members and descriptions

of activities and their dependencies as inputs. The outputs of the model are project performance,

project duration, project cost and project quality.

Other studies have used system dynamics to simulate projects. Depending on what type of project

is being simulated, the factors change. For example, construction projects will have some differ-

ences from software development projects. In the study System Dynamics Modeling Strategy for

Civil Construction Projects: The Concept of Successive Legislation Periods by Jing et al. system

dynamics was used to simulate construction projects (Jing et al., 2019). The study looked at

a project’s performance in terms of project cost and project schedule during different legislative

periods. The system looked at factors such as the rate of rework, acceptance rate, contract value,

contractor adequacy and owner adequacy. In this project simulation the focus was on rework rate

and errors found.

Xie et al. created a system dynamics model that simulated a construction project in the study

Effects of Payment Delays at Two Links in Payment Chains on the Progress of Construction
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Projects: System Dynamic Modeling and Simulation (Xie et al., 2019). This model concentrated

on cash flow inside a project and payment delays. The study used 66 factors where most of

them were related to the project’s finances. The factors looked at were fund balance, payment

cycle, penalty factor for delay and current penalty amount. The simulation looked at impact of

payment delays. The study Modeling social sustainability in construction projects by integrating

system dynamics and fuzzy-DEMATEL method: a case study of highway project by Rostamnezhad

et al. looked at simulating social sustainability in a highway construction project (Rostamnezhad

et al., 2020). The model looked at 34 factors divided into five different categories. Each category

constitute one subsystem, which are all included in the system dynamics model. The five categories

are shown below;

• Stakeholders’ engagement factors

• Workforce needs consideration

• Safety related factors

• Health related factors

• Management considerations

System dynamics has also been used to simulate software development projects. The study System

dynamics in software project management: towards the development of a formal integrated frame-

work looks at creating a system dynamics project-management integrated model (Rodrigues and

Williams, 1997). Three system dynamic models are used to model the management process. One

for strategic planning and control, one for monitoring, and one for planning. The model illustrates

how the operational plan of the management process is impacted by perceived work progress from

the engineering process and vice versa. The aim of the model is to see how poor strategic manage-

ment and related human factor can lead to failures. A different study by Rodrigues and Williams

looked at how client behavior affects project performance (Rodrigues and Williams, 1998). Clients

can affect the project by imposing schedule restrictions on milestones, high demand on progress

reports, delays in approving documents, and changes in work scope through the life cycle. A

systems dynamics model was created in an attempt to consider and quantify these effects.

There are many methods for simulating projects. The factors selected for the model will change

based on the desired outcome of the model. Some project simulations are generic and not always

related to a specific project type. Still, simulating construction projects will often vary from

simulating software development projects. Depending on the purpose of the simulation, there will

be significant variations even within these project types.
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2.3.3 System Dynamics and Safety Performance

System dynamics has been utilized in different studies to simulate the safety performance of con-

struction projects. There are numerous aspects to take into consideration while modeling a con-

struction project. Both project management factors and pressure-producing factors such as delays,

rework, and lost time are often taken into account. These system dynamic models frequently

consider aspects that are specific to safety, such as hazard awareness, safety training, and risk

assessment. What factors are included in the model is often dependent on what effects the study

is investigating. Table 1 shows some of the most common system dynamics indicators.

Indicator Article(s)

Pressure

Mohammadi and Tavakolan, 2019

Qayoom and HW Hadikusumo, 2019

Jiang, Fang and Zhang, 2015

Han et al., 2014

Sun et al., 2019

Cost Li et al., 2022

Schedule Li et al., 2022

Safety Climate/Culture

Mohammadi and Tavakolan, 2019

Li et al., 2022

Han et al., 2014

Management Commitment to Safety /
Attitude towards safety

Qayoom and HW Hadikusumo, 2019

Li et al., 2022

Han et al., 2014

Mohamed and Chinda, 2011

Supervision

Mohammadi and Tavakolan, 2019

Qayoom and HW Hadikusumo, 2019

Han et al., 2014

Gong et al., 2021

Su et al., 2021

Jiang et al., 2023

Huang et al., 2022

Safety Training

Mohammadi and Tavakolan, 2019

Qayoom and HW Hadikusumo, 2019

Li et al., 2022

Jiang, Fang and Zhang, 2015

Han et al., 2014

Risk Assessment Qayoom and HW Hadikusumo, 2019

Equipment Condition Sun et al., 2019

Incident Learning
Mohammadi and Tavakolan, 2019

Jiang, Fang and Zhang, 2015

Worker Competency Qayoom and HW Hadikusumo, 2019

Table 1: Indicators from the system dynamics and safety performance literature review
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Work Pressure

The relationship between pressure and safety performance has been examined in multiple studies.

A study by Mohammadi and Tavakolan looked at how production pressure affected the safety

performance of a project (Mohammadi and Tavakolan, 2019). Figure 8 illustrates Mohammadi

and Tavakolan’s system dynamics model. The model demonstrates how elements including labour

hours and delays, as well as working speed, human mistake, rework, and lost time, both affect and

are affected by production pressure. Rework has a direct impact on the project’s incident rate. The

model demonstrates how increased production pressure reduces safety through fatigue and rework.

The study Toward an understanding of the impact of production pressure on safety performance

in construction operations identified schedule delays and rework as critical values affecting safety

performance (Han et al., 2014). Han et al. looked at how factors such as work pressure and safety

climate affected the incident rate. Work pressure would affect production rate and the amount of

errors made which could lead to a schedule delay which could lead to more work pressure. Li et

al. looked into how helmet use was affected by productivity pressure among many other things (Li

et al., 2022). The factor productivity pressure is affected by both cost and schedule in Li et al.’s

model. High productivity pressure leads to high workplace stress. Excessive workplace stress is

the main factor preventing construction site workers from wearing helmets. High workplace stress

also leads to a decline in safety awareness which also leads to nonhelmet use behavior (Li et al.,

2022).

Figure 8: System dynamics model (Mohammadi and Tavakolan, 2019)

Safety Climate and Safety Culture

Many studies have looked at how safety climate or safety culture affects safety performance. The

study Multilevel safety culture affecting organization safety performance: a system dynamic ap-

proach looked at safety level on three different levels; strategic, tactical and operational. Com-

bined, these three levels create a multilevel safety culture (Qayoom and HW Hadikusumo, 2019).

The model assumes that the company’s dedication to safety will be passed down from top man-
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agement to middle management and finally to the operational level. Each level is represented with

its own sub-model which are all combined in one system dynamics model. The top management

safety culture affects the middle management safety culture which again affects operational-level

safety culture. This can be seen in figure 9. The middle management safety culture affects risk

levels which affects unsafe conditions. The operational-level safety culture leads to unsafe acts.

The combination of unsafe acts and unsafe conditions determine the incident rate (Qayoom and

HW Hadikusumo, 2019).

The three sub-models contains factors that determine the safety culture for each level of man-

agement. The top management safety culture is centered around finding the balance between

productivity and safety priority. This part of the model contains factors such as focus on safety,

safety policy and risk assessment. Safety policies, goals and targets are set by the top management,

then responsibility is shifted to the middle management. The middle managements safety culture

is dependent on safety related factors such as safety training, safety supervision and hazard identi-

fication. At this level it is the safety manager’s responsibility to take actions such as safety training

to reduce risk levels. The operational level safety culture is where factors such as safety compliance

are located. Factors for determining the safety culture at this level is worker competence, worker

experience and safety supervisor competence (Qayoom and HW Hadikusumo, 2019).

Figure 9: System dynamics model (Qayoom and HW Hadikusumo, 2019)

Project Management

Numerous other studies have also looked at the connection between project management and in-

cident rates. The study Understanding the Causation of Construction Workers’ Unsafe Behaviors

Based on System Dynamics Modeling examined what drives workers to commit unsafe behaviors

(Jiang, Fang and Zhang, 2015). Individual conditions, environmental conditions and management

conditions were looked at. Management conditions include safety communication, safety resources,

incident learning and safety training. Some of the individual conditions were safety awareness and

safety knowledge. These models illustrate that bad safety management leads to unsafe behaviour
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from workers which again leads to an increase in incidents. Additionally, the study System dynam-

ics modelling of construction safety culture investigated five key enablers of construction safety

culture (Mohamed and Chinda, 2011). It was discovered that in order to improve safety culture

in the construction industry the primary focus should be on enhancing leadership attributes.

Supervision

Supervision is an important tool for the management to contribute to a better safety performance.

Gong et al. looked at how the probability of government supervision was affecting the probability

of contractors making sufficient safety investments (Gong et al., 2021). Su et al. created a model

which investigates a construction safety standard system and what is being affected if such a system

was made (Su et al., 2021). It also looked at the probability of obeying construction safety standards

(CSS). Important factors were the probability of supervision, the contractor’s payoff for not obeying

CSS, supervision accuracy and cost of safety supervision. Huang et al. examined how several

factors affected both the unsafe behaviour probability and the positive supervision probability in

construction projects (Huang et al., 2022). The study Using evolutionary game theory to study

construction safety supervisory mechanism in China by Jiang et al. looked at supervision on

Chinese construction projects (Jiang et al., 2023). The model looked at the rate of inspection from

a government supervision agency, the rate of supervision from the supervision engineer and the

safety investments from the general contractor and how this affected the probability of accidents.

Figure 10: System dynamics model (Li et al., 2022)
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Safety Related Indicators

When simulating the safety performance of a project it is often necessary to include factors directly

related to project safety. The study Understanding the influence of safety climate and productivity

pressure on non-helmet use behavior at construction sites: a case study by Li et al. looked at

safety training, number of inspections per day, safety communication and the effects this had on

the safety climate (Li et al., 2022). Their model can be seen in figure 10. Sun et al. looked

at factors such as management influences, pressure accumulation, skills training and equipment

condition (Sun et al., 2019). This study also investigated accident prevention through design and

therefore has additional factors to simulate this. These factors include access limitations, direct

constraints on response, direct constraints on objects and structural boundary of an object imposed

by its environment.

Calibrating and Validating

The system dynamics models were validated in various ways. In some of the studies the simulations

were compared to collected data (Li et al., 2022). In other studies the simulations went through

tests such as sensitivity testing. This means varying the model’s input parameters and tracking

how the output changes as a result. In the study by Qayoom and HW Hadikusumo the simulation

went through an extreme condition test. This was to ensure that the “model should be realistic

regardless of the extreme inputs” (Qayoom and HW Hadikusumo, 2019). They tested if the model’s

output was still realistic after providing it with extreme input values. Mohammadi and Tavakolan

used behavior reproduction and a sensitivity analysis to validate their model. They compared the

simulated results with actual accident data to compare if the simulation produced similar results

(Mohammadi and Tavakolan, 2019).

2.4 AI in Projects

AI is a field of computer science that involves simulating human intelligence processes using ma-

chines. There is no single inventor of AI, the field emerged as a result of the efforts of many

researchers and scientists over several decades. The first mathematical model for a neural net-

work was published by Walter Pitts and Warren McCulloch in 1943 (McCulloch and Pitts, 1943).

This is commonly considered to be the beginning of AI (Mohammed, Khan and Bashier, 2016).

This model demonstrated how a neural network composed of simple elements could have enorm-

ous processing capacity. This model drew from Alan Turings theory of computation (Russell and

Norvig, 2016). Turing was a mathematician and logician and he is one of the earliest pioneers

in AI. In 1950 he asked the question “Can machines think?” in his paper Computing machinery

and intelligence (Turing, 2009). He introduced the concept of testing the intelligence of a machine

(Mohammed, Khan and Bashier, 2016). This intelligence test for machines was called the Turing

test (Russell and Norvig, 2016). John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude

Shannon organized the first summer AI conference in 1956, which was held at Dartmouth College
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(Mohammed, Khan and Bashier, 2016). The conference brought together a group of researchers

who were interested in exploring the potential of artificial intelligence. The actual term artificial

intelligence was first coined at this conference by John McCarthy (Smith et al., 2006). Since 1956,

advances in AI have been made consistently. This combination of improved computational power

and developments in AI means the possibilities of AI are expanding.

AI has many different uses. One example is utilizing AI in projects. To be able to use AI in

projects a challenge is often the collection of data. Good quality data needs to be collected or else

it is unsuitable for AI. The study Use of big data in project evaluations by Olsson and Bull-Berg

looked at how different data from projects could be used for evaluations. They state that despite

the volume of data generally increasing, access to relevant data could still be a challenge. It is the

combination of availability and quality that makes data suitable for evaluating projects (Olsson

and Bull-Berg, 2015). Another challenge when implementing AI is that organizations don’t have

a necessary readiness level to effectively implement AI (Alsheibani, Cheung and Messom, 2018).

A study by Wang looked at why people are sceptical about using AI and identified three main

reasons: people are afraid that AI will take away jobs, people fear AI will cause failures and people

fear the abuse of AI (Wang, 2019). These factors all limit the use of AI.

2.5 Machine Learning

Machine learning is the ability of computers to learn from data (Wade and Glynn, 2020). There are

three types of learning; supervised, unsupervised and reinforcement learning (Russell and Norvig,

2016). Supervised learning describes when the agent receives input-output pairs and learns a

function to map from input to output. Unsupervised learning is when the agent learns patterns

from the input data without getting any feedback, such as clustering. Reinforcement learning

is when the agent learns from punishment and rewards. Within supervised learning there are

two different learning problems; classification and regression. Classification describes the problems

where the input is assigned into predefined categories, while in regression the output is a continuous

value (Jo, 2021).

2.5.1 Synthetic Data

Supervised learning can be performed on both real and synthetic data. Synthetic data is “generated

by a computer program rather than being collected from real-world sources” (Birisci, Gursakal and

Celik, 2023). Edali and Yücel state that machine learning can be used to make inferences from

raw data, which can be gathered through any data generation or collection from sensors, consumer

transactions or simulation models (Edali and Yücel, 2020).

Japkowicz and Shah argue how artificial data can be an advantage to gather insights of the beha-

viour of the algorithms. Even though real data provide valuable information about the real world,
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artificial data has other advantages. It allows for exploration of variabilities which are realistic

but has no available data (Japkowicz and Shah, 2011). Synthetic data can also be simulated in

a controlled manner for specific purposes. This provides more control when conducting experi-

ments (Japkowicz and Shah, 2011). Nevertheless, they highlight how artificial data run the risk of

oversimplifying problems.

Nikolenko describes how many of the problems in AI are caused by insufficient data. Often, the

datasets are too small or the data requires manual labelling, which is very time expensive. A

solution to this is generating synthetic data. An advantage of synthetic data is that it can be

produced during training, which allows for not having to store huge datasets over time (Nikolenko,

2021). A common approach is training the model on synthetic data with the intention of using it

on real data (Nikolenko, 2021).

Synthetic data can also be used to increase the performance of an algorithm. An example is

resampling the training set with artificial data. Here, the artificial data is often a manipulation of

real training samples. This can balance the distribution of the categories and help remove the bias

towards a certain category in classification problems (Jo, 2021). The artificial data is called virtual

training examples. The process of modifying real data is often referred to as data augmentation

(Nikolenko, 2021).

At last, synthetic data is suitable for solving privacy or legal issues (Nikolenko, 2021). In some

fields it can be difficult to use real data, such as within healthcare, finance and other social sciences.

Synthetic data is also appropriate when dealing with privacy guarantees.

2.5.2 Machine Learning Models

There is a wide spectrum of machine learning algorithms to be used to create a model. A model

is an algorithm instantiated with data and parameters (Zhou, 2021). Common machine learning

algorithms are decision trees (DT), random forest (RF), AdaBoost, XGBoost and support vector

machines (SVM). These are described below.

Decision Trees

The decision tree algorithm is a supervised machine learning algorithm (Jo, 2021). The decision

tree is a function that returns a single output from a list of attribute values (Russell and Norvig,

2016). The algorithm creates a model with a tree structure with internal nodes and leaf nodes.

Each internal node serves as a test for an attribute within the function. Each branch becomes an

output of the test and each leaf node represents a class label. The decision tree is built using the

training set and classifies items following its branches from the root node to a leaf node (Jo, 2021).

The class label of this leaf node is the prediction. Figure 11 shows an example of a decision tree

used for deciding whether or not to wait for a table at a restaurant.
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Figure 11: A decision tree for deciding whether to wait for a table (Russell and Norvig, 2016)

As mentioned a decision tree is developed using a test set. Choosing the right attributes is import-

ant in order to get the highest performing decision tree possible. The algorithms employ a greedy

divide-and-conquer strategy in which the attributes deemed to be most significant are tested first

and the remaining sub-problems are then addressed (Russell and Norvig, 2016). For these sub-

problem the most important attribute is again selected and used for testing the subset. This is

how the decision tree is created. It is therefore crucial to select important attributes that create a

balanced tree. The importance of the attributes is measured using information gain. The attribute

with the highest information gain is selected as the root node. Entropy is used in information gain

calculations. Entropy measures the uncertainty of a variable and varies from zero to one where

zero means no uncertainty (Russell and Norvig, 2016). Equation 1 shows that information gain

is calculated by subtracting the attributes expected remaining entropy after the split from the

current entropy previous to the split. Equation 2 shows the calculations for entropy, where V is a

random attribute with values vk and with a probability of P(vk) for each value.

Gain(A) = Entropy −Remainder(A) (1)

Entropy = H(V ) =
∑
k

P (vk) log2
1

P (vk)
= −

∑
k

P (vk) log2 P (vk) (2)

Equation 3 uses a boolean variable that is true with probability q to define entropy. A split

point is determined for continuous variables. This equation can be adjusted to decision trees and

that gives equation 4, with p the number of positive values and n the number of negative values.

This calculates the entropy of an output variable for the entire set. After testing attribute A the

remainder of the expected entropy is calculated using equation 5.
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B(q) = −(q log2 q + (1− q) log2(1− q)) (3)

H(output) = B(
p

p+ n
) (4)

Remainder(A) =

d∑
k=1

pk + nk

p+ n
B(

pk
pk + nk

) (5)

The decision tree model is a tree structured model created by the decision tree algorithm. Decision

trees provide many advantages, including robustness and intuitiveness (Jo, 2021). Still, the greedy

search results in the model does not always obtain the optimal accuracy. Furthermore adding one

more instance can change the structure of the entire decision tree (Russell and Norvig, 2016).

Random Forest

The random forest model is an ensemble machine learning model. An ensemble method combines

the predictions from a collection of hypotheses and creates one prediction based on this collection

(Russell and Norvig, 2016). The ensemble method used in the random forest model is bagging.

The training set is randomly split up into subsets and for each subset a decision tree is created.

The random forest is the collection of these decision trees (Jo, 2021). Since the training set is split

up many of the trees will be trained in a weaker way (Bonaccorso, 2017). Figure 12 shows how the

training set is split into multiple random subsets that are then built into different decision trees.

Figure 12: Splitting up the training set (Borkenhagen and Olsen, 2022)

Each decision tree makes a prediction in order to predict an instance of the test data. These

predictions are done in parallel. The predictions from the subsets are then combined into an
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aggregated result. The most frequent class is then selected for classification. This selection is

called voting. For regression the average of all the predictions is calculated (Jo, 2021). Figure

13 shows how the different predictions are combined into one result. This reduces the risk of

overfitting in comparison to the decision tree model, since the predictions are based on multiple

decision tree models which reduces the variance (Bonaccorso, 2017). This aggregated result is the

result of the random forest model.

Figure 13: Combining the predictions (Borkenhagen and Olsen, 2022)

AdaBoost

AdaBoost is an algorithm that utilizes adaptive boosting. Boosting is the process of converting

weak learners to strong learners (Zhou, 2021). This is done by first training a base learner and then

adjusting the distribution of the training samples according to the results of the hypotheses (Bon-

accorso, 2017). This way, the incorrect samples will be weighted more than the correctly classified

samples and will therefore gain more attention in the next hypotheses (Wade and Glynn, 2020).

This weighting process will continue until the algorithm classifies the remaining samples correctly

or until a predefined value. At last, the hypotheses are weighted based on their performance and

combined in an ensemble for the final prediction. The boosting process is shown in figure 14.

AdaBoost is a boosting algorithm with decision stumps as its hypotheses. Decision stumps are

decision trees containing one root node with two leaves. The training process goes as described

above, with an iterative process of creating new decision stumps. These are based on the weighting

of the samples. Finally, the decision stumps are weighted based on their performance and combined

in order to make the final predictions. Equation 6 shows the linear combination of the base learners,

with x being the input, hi the hypotheses and zi the weights of each hypothesis (Russell and Norvig,

2016). h(x) is the final prediction.
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h(x) =

K∑
i=1

zihi(x) (6)

One of AdaBoost’s qualities is it’s ability to transform a weak learner into a perfect classifier

(Russell and Norvig, 2016). This happens when the original algorithm is a weak learner, meaning

it performs better than random guessing. The result will then be a classifier which classifies the

entire training set correctly.

Figure 14: Boosting (Borkenhagen and Olsen, 2022)

XGBoost

Another boosting algorithm is XGBoost, standing for eXtreme Gradient Boosting (XGB). XGBoost

incorporates the structure of gradient boosting (Wade and Glynn, 2020). Gradient boosting allows

for building a tree ensemble such that a target loss function is minimized (Bonaccorso, 2017). It

uses gradient descent to develop new hypotheses. This means each new tree is focusing on the error

of the previous trees. Then it sums the residuals of each tree, the differences between the predicted

and actual values, to score the model (Wade and Glynn, 2020). Similarly to AdaBoost, gradient

boosting transforms weak learners to strong learners. It does however differ from AdaBoost by

focusing on a global goal instead of re-weighting the data samples.

XGBoost is an advanced version of gradient boosting. It is commonly used as it is faster and delivers

better results than traditional gradient boosting (Wade and Glynn, 2020). XGBoost builds the tree

ensemble by iteratively building decision trees and moving towards the gradient that minimizes the

defined loss function (Russell and Norvig, 2016). The algorithm utilizes regularization, pruning and

parallel computing. Regularization is used to avoid overfitting by penalizing complex hypotheses

to give room for the more simple ones. Pruning is the act of removing certain possibilities without
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having to examine them (Russell and Norvig, 2016). Parallel computing occurs when several units

are working together on the same problem at the same time (Wade and Glynn, 2020). XGBoost

is particularly popular for factored tabular data (Russell and Norvig, 2016).

SVM

The support vector machine (SVM) algorithm attempts to create a hyperplane to classify the data

points (Russell and Norvig, 2016). The algorithm aims to minimize the expected generalization

loss. This is accomplished by selecting the separator that is furthest away from the samples seen

so far. Three candidate separators are shown in figure 15a. The selected separator is called the

maximum margin separator, and shown as the heavy line in figure 15b. The maximum margin

separator serves as the decision boundary that separates the different classes. The circles in the

figures represent the data points, with their classes distinguished by their color. Each sample will

be classified based on their location in regards to the maximum margin separator. The samples

that are closest to the separator are called support vectors (Zhou, 2021). The area between the

dotted lines is called the margin. The maximum margin separator is the one that has the largest

margin (Russell and Norvig, 2016).

(a) Three candidate linear separators (b) The maximum margin separator

Figure 15: SVM (Russell and Norvig, 2016)

The SVM algorithm finds a linear hyperplane, that being the maximum margin separator. When

working with non-linear problems, the algorithm uses the kernel trick. By projecting the data

points into a higher dimensional space, the kernel trick allows for separation of data points which

are not necessarily linearly separable in the original input space (Zhou, 2021). This is an important

property of SVM, as it is then able to solve non-linear problems as well (Bonaccorso, 2017). In

addition, the SVM algorithm is non-parametric, meaning it preserves training samples. However,

it only preserves a small fraction of them, meaning it gains the advantages of both non-parametric

and parametric models (Russell and Norvig, 2016).
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2.5.3 Model Evaluation Metrics

There are many ways to evaluate classification performance. This section will describe confusion

matrices and types of classification predictions with an emphasis on binary classification. Further,

the metrics accuracy, precision, recall and F1-score will be presented.

Confusion Matrix

A confusion matrix can be used to visualize the test-set performance of a classifier. It is an l x l

matrix for a dataset with l classes. The confusion matrix can be denoted C, while the classifier f.

Each element cij in the matrix denotes how many examples of the label i were predicted as label

j. Each test sample is defined as x, while y is its corresponding label. The confusion matrix is

defined in equation 7 (Japkowicz and Shah, 2011);

C(f) =

{
cij(f) =

∑
x∈T

[(y = i) ∧ (f(x) = j)]

}
(7)

From this equation,
∑l

j=1 cij(f) = ci.(f) is the total number of samples of class i in the test set.

Further,
∑l

i=1 cij(f) = c.j(f) is the total number of samples labeled correctly to class j. All the

diagonal entries cii are the correctly classified samples for class i. This means all nondiagonal

entries are misclassified.

Table 2 shows this distribution for binary classification, where there are l=2 number of classes and

Act stands for actual and Pred stands for predicted.

f Pred Negative Pred Positive
Act Negative c11(f) c12(f)
Act Positive c21(f) c22(f)

Table 2: Confusion matrix for binary classification (Japkowicz and Shah, 2011)

Binary Classification

In the binary classification case, all predictions can be classified as one of the following; true negative

(TN), false negative (FN), true positive (TP) or false positive (FP) (Zhou, 2021). Redefining table

2 with respect to this gives the following matrix (table 3);

f Pred Negative Pred Positive
Act Negative TN FP
Act Positive FN TP

Table 3: Confusion matrix for binary classification with prediction labels

With labels being negative (0) and positive (1), this can be translated into what is shown in table

4. In other words, a true positive is when the sample is positive and is predicted accurately. A

true negative is when the sample is negative and predicted accurately. A false positive is when
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the sample is predicted as positive, but predicted incorrectly. At last, a false negative is when the

sample is predicted as negative, but predicted incorrectly.

Predicted label Actual label Definition

1 1 True Positive
0 0 True Negative
1 0 False Positive
0 1 False Negative

Table 4: Binary classification predictions

Japkowicz and Shah state that the most natural way to measure a learning algorithm in the single

class scenario is measuring the true positives. This is also called the sensitivity of the classifier

(Japkowicz and Shah, 2011). This term comes from the healthcare industry, as one would typically

be interested in how many of the patients that has a disease one would be able to detect. The

compliment of this, measuring the true negatives, is referred to as specificity. In the health context,

this would be how many of the healthy patients that tests negative. The formulas for sensitivity

and specificity are defined below (equation 8, equation 9);

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

FP + TN
(9)

Accuracy

Accuracy is the most frequently used evaluation metric for classification performance (Japkowicz

and Shah, 2011; Hossin and Sulaiman, 2015). It measures the fraction of correctly classified

instances. In terms of the entries in the confusion matrix, accuracy can be defines as (equation

10);

Acc(f) =

∑l
i=1 cii(f)∑l
j=1 cij(f)

(10)

Applying this to the binary classification case gives (equation 11);

Acc(f) =
TP + TN

TP+ TN+ FP + FN
(11)

Accuracy is an effective metric in regards to overall performance, but does however have some

shortcomings. It does not take into occurrence that prediction of different classes might be of

different importance and the dataset being imbalanced.
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Precision

Precision, also called the positive predictive value (PPV), measures how many of the predicted

positives that are accurate. Precision is also an important measure in the health context (Japkowicz

and Shah, 2011). The precision on a given class of interest i can be defined as (equation 12);

PPVi(f) = Preci(f) =
cii(f)∑l
j=1 cji(f)

=
cii(f)

ci(f)
(12)

When precision is applied to binary classification it can be defined as (equation 13);

Prec(f) = PPV(f) =
TP

TP + FP
(13)

Hence, precision is the ratio between the true positives and all positive predictions.

Recall

Recall is another name for sensitivity, usually referred to in the context of information retrieval.

Hence, recall measures the fraction of actual positives that are correctly classified (Hossin and

Sulaiman, 2015). The equation for recall is shown below (equation 14), with TPR being the true

positive rate;

Rec(f) = TPR(f) =
TP

TP + FN
(14)

F1-Score

The F measure represents the harmonic mean between recall and precision values (Hossin and

Sulaiman, 2015). There are several variations to the F measure, with one being the F1 score. The

F1 score is a balanced measure that weights recall and precision equally. The F1 score equation is

shown below (equation 15);

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(15)

To summarize, confusion matrices as well as positive and negative prediction outcomes have been

presented. The metrics accuracy, precision, recall and F1-score have also been introduced. Accur-

acy has limitations regarding imbalanced datasets and difference in class importance. Precision

and recall on the other hand focuses on only the class of interest, being the positive class. This

also implies some limitations, as the true negatives are not taken into account. The same goes for

F measures, as they are combinations of precision and recall. Additionally, precision and recall are

contradictory, meaning if the recall is high the precision is often low and opposite (Zhou, 2021).
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As no single metric is enough to encapsulate all relevant aspects of a classifiers performance, these

metrics should be combined (Japkowicz and Shah, 2011). However, utilization of many metrics

makes it more difficult to interpret the results.

2.5.4 Machine Learning for Safety Predictions

There have been several attempts to utilize machine learning for safety predictions. This section

covers previous objectives as well as previous machine learning models that have been used for this

purpose.

Prior Research Objectives

A common objective is predicting accidents before they occur. None of the reviewed articles have

researched whether one can predict safety performance based on only planning data. There has

however been research done on predicting safety performance based on data from both the planning

and the construction phase. Poh, Ubeynarayana and Goh combined data from both phases in their

study (Poh, Ubeynarayana and Goh, 2018). The data was a combination of both safety and project

management factors. A feature selection method was used to identify the 13 most significant factors

that impacts safety. Further, both the number of accidents and their severity was predicted using

machine learning. An accuracy of about 78% was obtained. Jafari et al. also performed machine

learning on a dataset from the planning and construction phase, but focused on project data only

(Jafari et al., 2019). They performed binary classification on whether a project would have an

accident or not. An accuracy of 93.5% was obtained.

Andreassen et al. proposed to use the number of HSE incidents that has already happened in a

project as a leading risk indicator (Andreassen et al., 2020). Koc, Ekmekcioǧlu and Gurgun used

time series for prediction of accidents (Koc, Ekmekcioğlu and Gurgun, 2022). Three different time

intervals were used; one day, seven days and 30 days. Their research uncovered that the most

influential factor was the number of accidents the two previous days, which is in compliance with

Andreassen et al.’s proposal. Gregoriades and Mouskos wanted to estimate an accident rate every

15 minutes in a traffic simulation (Gregoriades and Mouskos, 2013).

The prediction of accidents are not always with a forecasting perspective. Gao, Lu and Ren

predicted whether an accident had occurred or not on a railway crossing (Gao, Lu and Ren, 2021).

This binary classification was done on a dataset containing information until and including the

time of the potential accident, and can therefore not be classified as a leading indicator. Ajayi et

al. predicted accidents and injury frequency based on project data including employee information,

day of the week, time of the incident and type of task (Ajayi et al., 2020). Similarly to Gao, Lu

and Ren, this dataset also contained information including the time of the potential accident.
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The second, and most widely used perspective is predicting the outcome of an accident. This way,

more data is available as the prediction takes place after the accident has already occurred. A

common objective is predicting the severity of an accident. For this purpose, data can include

the time, location and accident type. Recal and Demirel performed both binary and multi-class

classification to predict accident severity (Recal and Demirel, 2021). The binary classification

covered whether an accident was fatal or not, while the multi-class divided severity into three

classes; minor, major and fatal. Choi et al. also wanted to classify which workers might face a

fatality risk based on accident data (Choi et al., 2020). Here, the data included type of construction,

date of the accident and information about the worker. Several other studies were conducted to

predict injury severity (Sarkar et al., 2019; Sarkar et al., 2020; Gangadhari, Khanzode and Murthy,

2022; Kim and Lim, 2022; Zhang et al., 2022). Further, Lee et al. used machine learning to explore

correlations between factors and accident severity (Lee et al., 2020). Zhu et al. also studied factors

together with safety performance in a resilience perspective (Zhu et al., 2020).

Other outcomes have also been predicted, such as number of days away, disability status and the

type of accident. Yedla, Kakhki and Jannesari wanted to predict both the outcome of an accident

together with the predicted number of days away (Yedla, Kakhki and Jannesari, 2020). Kim et al.

predicted the number of days away due to an accident and focused on falling accidents only (Kim

et al., 2022). Kang, Koo and Ryu conducted a feature importance study with the target being

number of lost workdays (Kang, Koo and Ryu, 2022). Koc, Ekmekcioǧlu and Gurgun attempted

to predict the post-accident disability status (Koc, Ekmekcioğlu and Gurgun, 2021). Another

outcome study done by Kang and Ryu was predicting the accident type (Kang and Ryu, 2019).

This was also done by Shin (Shin, 2019). Further, Nayak et al. predicted injury type as well as

casualty class and occupation (Nayak et al., 2022).

A third and less common objective is predicting the phase of an accident. Jiang et al. predicted

tower crane accident phase based on accident data (Jiang et al., 2021). The purpose of predicting

the accident phase is to gather more information such that future accidents can be predicted more

accurately. Overall, the literature review uncovered that there are many different objectives of

applying machine learning for safety predictions. However most research have focused on predicting

the outcomes of accidents based on data until and including the accident time.

Prior Research Machine Learning Models

A big amount of machine learning models have been tested through the research presented above.

Table 5 shows which algorithms were utilized for this. The bold check marks show which algorithm

that gave the best result for a certain article. If only one algorithm was tested, it is not marked in

bold. Further, if the machine learning model with the best performance was a combination of two

algorithms, neither of the algorithms have been marked in bold. At last, if the article had several

top performing algorithms, they were both marked in bold.
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Machine learning models
Article
No.

Author(s) RF DT LR AB XGB CNN ANN KNN BN MARS SVM SGB GBM

1
Koc, Ekmekcioǧlu
and Gurgun (2022)

" " ✓

2 Choi et al. (2020) " ✓ ✓ ✓

3
Kim and Lim
(2022)

✓ ✓ " ✓ ✓

4 Zhu et al. (2020) ✓ ✓ " ✓ ✓ " ✓

5
Koc, Ekmekcioǧlu
and Gurgun (2021)

✓ ✓ "

6 Sarkar et al. (2020) " ✓ ✓ ✓ ✓

7 Lee et al. (2020) ✓ ✓

8
Recal and Demirel
(2020)

✓ "

9
Kang and Ryu
(2019)

✓

10
Gao, Lu and Ren
(2021)

✓ ✓ "

11 Sarkar et al. (2019) ✓

12 Ajayi et al. (2020) ✓ ✓ "

13 Kim et al. (2022) ✓

14
Yedla, Kakhki and
Jannesari (2020)

" ✓ ✓ "

15 Nayak et al. (2022) ✓

16 Shin (2019) ✓ ✓ "

17 Jiang et al. (2021) ✓

18 Jafari et al. (2019) ✓ ✓ " " ✓

19
Kang, Koo and
Ryu (2022)

✓

20
Gregoriades and
Mouskos (2013)

✓

21 Zhang et al. (2022) ✓ ✓ " ✓ ✓

22
Gangadhari, Khan-
zode and Murthy
(2022)

✓ " ✓ ✓ ✓ ✓

Table 5: Machine learning models used in safety prediction articles (Borkenhagen and Olsen, 2022)
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The most widely used algorithms were random forest, decision trees, artificial neural networks

(ANN) and SVM. Random forest was used in 14 out of the 22 articles. It outperformed the others

in three of the articles. Further, the decision tree algorithm was utilized in eight articles. However,

it did not perform the best in any of the articles. ANN was also used in eight articles, whereas it

had the best performance in two of them. Similarly to decision trees, SVM was widely used, but

never a best performing algorithm. An algorithm that stood out was perhaps XGB which was the

best performing algorithm in all the studies it had been tested on. It was however not as widely

used as the random forest, decision trees, ANN and SVM.

2.6 System Dynamics and Machine Learning

There have been several attempts on combining system dynamics models with machine learning. It

has been explored how machine learning can complement traditional modelling to improve system

dynamics models (Chen, Tu and Jeng, 2011; Abdelbari and Shafi, 2017; Duggan, 2020; Edali and

Yücel, 2020; Weng et al., 2022). Research have also focused on how machine learning can be used

on data produced by system dynamics models (Prabhakaran and Martin Jr, 2020; Chen et al.,

2022; Roozkhosh, Pooya and Agarwal, 2022).

In 2016, Barlas stated that system dynamics models can also be handled using a wider set of

approaches, including machine learning (Duggan, 2020). Edali and Yücel developed a simulation

model for influenza epidemics, and explored the model further using machine learning (Edali and

Yücel, 2020). Their motivation for using this combination was a more extensive exploration of the

model to provide more insights on behavioral aspects. They developed a procedure consisting of

three steps;

1. Use random forest to capture input-output relationships on data obtained from the simulation

model

2. Improve the random forest metamodel further by active learning and additional simulation

runs

3. Extract information from the metamodel to form a set of IF-THEN rules

When this procedure was conducted on the epidemic data, new relationships were uncovered and

the results were improved (Edali and Yücel, 2020). Hence, they concluded that their approach

could give a better understanding of the model.

Duggan also proposed to apply a combination of machine learning and system dynamics to different

phases of the model building. An example proposed was applying these methods for infectious

disease outbreaks using Markov Chain Monte Carlo simulation and machine learning approaches

to analyze model output (Duggan, 2020). However, he stated that a possible barrier for these
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applications could be the complexity of machine learning and another focus within the area. Still,

he argues how machine learning could be useful to simulation data and presents a simple example

using the R language. The example consists of the development of a simple simulation model

connected to weather. After a model is developed and a dataset has been simulated, a decision

tree algorithm is used to explore the data. The tree is visualized to show the rules that has been

discovered and the predictions are reasonable. To summarize, Duggan supports Edali and Yüsel’s

perspective and states that the combination of machine learning and simulation models provides

a potential for greater insight into the modelling process (Duggan, 2020).

Chen et al. proposed a design method for simulation models where the selected policies were based

on neural networks (Chen, Tu and Jeng, 2011). First, the policy maker develops a behavioral

pattern. Then an algorithm is used to find the most appropriate model while both the system

and the values are changed during that process. This process consists of using a recurrent neural

network (RNN) to reformulate the policy design into a machine learning task and then using

genetic algorithms (GA) to solve the task. RNN was chosen as it is equivalent to system dynamic

models (Chen, Tu and Jeng, 2011). In order to reformulate policy design into a machine learning

task, Chen et al. proposed the following;

1. Genetic encoding of the policy design or the RNN that represents it

2. Select a fitness function to evaluate the solution

3. Set up the evolution process to produce the individuals

4. Evaluate the generation and use as result or generate again

Chen et al. tested their approach to several cases, including the World Dynamics model developed

by Forrester in 1973 (Chen, Tu and Jeng, 2011). The results showed that this procedure gave as

good or better results. Therefore, they argue that machine learning, and in specific RNNs, is of

good value for policy training. They do not propose to substitute human experts with machine

learning, but use it as an assistant to enhance the model development (Chen, Tu and Jeng, 2011).

In 2017, Abdelbari and Shafi studied how computational methods can be used to form system

dynamic models directly from observed data (Abdelbari and Shafi, 2017). They propose a neural

network based approach to learn causal loop structures. The methodology starts with identification

of the most important variables to a system. Then, data is collected that describes the behavior

of the system. A population of echo state networks (ESN) are designed, and the best model is

selected. An echo state model is a type of RNN. Abdelbari and Shafi suggested that this approach

can complement the conceptual model development. The approach was tested on three case studies,

where the ESN was able to learn the exact structure of only one. However, with further research

and modifications this methodology could possibly be scaled to more complex systems.
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In 2022, Weng et al. studied the utilization of machine learning for modelling chaotic systems

(Weng et al., 2022). They found that reservoir computing provides an alternative way of modelling

these systems, rather than the more traditional dynamic equations. A reservoir computational

model consists of three layers; an input layer, a reservoir network and then the output layer (Weng

et al., 2022). Weng et al. showed that these models provide the same recurrence properties as

dynamical equations, in addition to other benefits. They concluded that reservoir computing can

accurately describe chaotic systems.

System dynamics has also been used to cover well-known flaws of machine learning. While there

has been exponential growth in the application of machine learning, it has been shown that these

techniques might lead to discrimination (Prabhakaran and Martin Jr, 2020). An example is util-

ization of machine learning within healthcare, where it has been shown that some risk-assessment

tools have had racial bias, denying certain groups to special programs and resources. In order to

avoid discrimination in such technologies, Prabhakaran and Martin Jr developed a community-

based system dynamics method. This method was developed to combine diverse sources of causal

series. It was developed by having group sessions with diverse stakeholders and visualizations of

proposed causal theories. In addition, computer simulations were used to expose the dynamics of

complex problems from a feedback perspective. They believe this approach will improve machine

learning fairness and thereby protect human rights (Prabhakaran and Martin Jr, 2020).

Figure 16: System dynamics model for the greenhouse micro-climate (Chen et al., 2022)

Another application of system dynamics and machine learning is within energy. Greenhouse farm-

ing can be considered as a good option in regards to climate change. However, greenhouses do have

some challenges regarding their microclimate and rapid weather changes. Chen et al. developed a

smart microclimate-control system (SMCS) to regulate the micro-environment of the greenhouse
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(Chen et al., 2022). The process began with data collection from Internet of Things (IoT) from

the investigated greenhouse. Based on this data, a system dynamics model was built (figure 16).

The model simulated the micro-climate before and after spraying. Then a back-propagation neural

network model predicted the temperature and humidity one hour ahead. A spray mechanism was

designed to act based on these predictions. The SMCS performed as well as the traditional sys-

tem in regards of environmental control, but additionally comes with other benefits in regards to

sustainability and climate.

In 2022, Roozkhosh et al. proposed a new system dynamics and machine learning method to

investigate blockchain acceptance rate (BAR) in the home appliances supply chain in Iran (Roozk-

hosh, Pooya and Agarwal, 2022). Blockchain technology has become popular in supply chain

management as it provides security, efficiency, and trustworthiness. The BAR was simulated using

system dynamics and will be further developed in the next years based on sensitivity analyses,

policy design and validation. Figure 17 shows a subsystem of the model, consisting of personnel

skills and how this affects the probability of using blockchain technology. After the simulation,

the behavior in the simulated data was further analyzed using machine learning. Multi-Layer

Perceptron (MLP) and support vector regression (SVR) was used to predict the BAR behavior.

The predictions were evaluated on data from 2020-2022. It was shown that policy design can have

beneficial effects for increasing the resilience in the supply chain. They also concluded that the

system dynamics model gave better results when combining with MLP than with SVR.

Figure 17: System dynamics model subsystem of personnel skills (Roozkhosh, Pooya and Agarwal,
2022)
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Table 6 presents an overview of the articles and their associated machine learning algorithms. In

addition to the tree based algorithms decision tree and random forest, it is evident that neural

networks and in specific RNNs are commonly used together with system dynamics. The article by

Prabhakaran and Martin Jr does not have an algorithm as they write about machine learning in

general.

Machine learning algorithms
Author(s) Article name Algorithm(s)

Abdelbari and Shafi
A computational Intelligence-based Method to ‘Learn’
Causal Loop Diagram-like Structures from Observed Data:
Machine-learning of causal-loop diagrams

ESN(RNN)

T.-H. Chen et al.
Develop a Smart Microclimate Control System for Green-
houses through System Dynamics and Machine Learning
Techniques

BPNN

Y.-T. Chen et al.
A Machine Learning Approach to Policy Optimization in
System Dynamics Models

RNN+GA

Duggan
Exploring the opportunity of using machine learning to sup-
port the system dynamics method: Comment on the paper
by Edali and Yücel

DT

Edali and Yüsel
Analysis of an individual-based influenza epidemic model
using random forest metamodels and adaptive sequential
sampling

RF

Prabhakaran and
Martin Jr

Participatory Machine Learning Using Community-Based
System Dynamics

-

Roozkhosh et al.
Blockchain acceptance rate prediction in the resilient sup-
ply chain with hybrid system dynamics and machine learn-
ing approach

MLP+SVR

Weng et al.
Modeling chaotic systems: Dynamical equations vs ma-
chine learning approach

RNN

Table 6: Overview of algorithms which are combined with system dynamics
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3 Methodology

In order to investigate how system dynamics and machine learning can be combined for safety pre-

dictions, a simulation model has been developed and machine learning models have been tested.

Activities and indicators were chosen based on theory and then modelled through influencing dia-

grams. The model was implemented and run to generate datasets which were used for machine

learning predictions. Hence, this section covers information on the thesis context, the conduc-

ted literature reviews, development of the system dynamics model and methodology for machine

learning. Additionally, an evaluation of the method is provided in terms of reliability and validity.

3.1 Thesis Context

This subsection provides more information on the context of this thesis, including the associated

research method, program and order of operations for combining system dynamics and machine

learning. Additionally, a description of how the system dynamics model is developed in collabor-

ation with another master student is presented.

3.1.1 Quantitative Research Method

Generally research is divided into two distinct categories; quantitative and qualitative methods.

Some argue that quantitative methods and qualitative methods are not polar opposites but different

ends of a spectrum (Newman, Benz and Ridenour, 1998). Quantitative research involves examining

the relationship between variables to test objective theories. Measurable variables in quantitative

research allow for the analysis of numerical data using statistical procedures (Creswell, 2009). In

quantitative approaches, measurements are made through gathering data (Fellows and Liu, 2003).

Qualitative research uses methods comprehending and examining the significance that individuals

or groups attribute to a social or human situation (Creswell, 2009). These methods may make

it easier to appreciate and comprehend fundamental causes, ideas, and behaviors (Fellows and

Liu, 2003). If a qualitative research methodology is chosen, then possible methods could include

conducting a case study, a personal interview, or making observations (Lowhorn, 2007). Qualitative

research strives to build a theory that explains observed behavior, whereas quantitative research

seeks to validate a theory through experiments and numerical analysis of outcomes. Therefore, it

is believed that qualitative research is more inductive while quantitative research is more deductive

(Lowhorn, 2007).

The choice between quantitative or qualitative methods will be dependent on the outcome of the

research. The current situation as well as the research questions should be taken into consideration

to make an informed decision (Lowhorn, 2007). In the context of this thesis, the need for numerical

data was identified for both the system dynamics model and for machine learning. However a
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significant amount of relevant project data was qualitative. Creating a simulation of a construction

project meant qualitative data needed to be made quantitative to be used in the model. One

example of this was measuring the quality of a SHA plan with a number from one to ten. Apart from

this adaptation of qualitative data, the remainder of the methods used in this thesis predominantly

followed a quantitative approach. This involved the collection of a large volume of numerical data

from the system dynamics model, which was subsequently utilized for machine learning purposes.

Related to General Data Protection Regulation (GDPR), synthetic data does not pose a GDPR

concern since it does not contain any personal data. It was therefore not necessary to notify the

Norwegian centre for research data.

3.1.2 DiSCo Project

This master thesis is written as a contribution to the Sustainable value creation by digital pre-

dictions of safety performance in the construction industry (DiSCo) project. The research project

is a collaboration between NTNU, Skanska, Sporveien, Norconsult and Safetec. The project is

funded by the Research Council of Norway. It is led by the Department of Industrial Economics

and Technology Management at NTNU.

The purpose behind the DiSCo project is to develop knowledge and methods for utilization of AI in

the early phases of construction projects in order to predict safety performance during production

(NTNU, n.d.). This can be a contribution to an improved decision-making support to reduce the

number of accidents within the industry. The DiSCo project will give a better understanding on

how different machine learning techniques can be used on available data to gain innovative and

proactive safety management methods. The research involves which early factors influence safety

during production, how machine learning can be used to give early warnings, and demonstrates

how this can lead to fewer accidents.

3.1.3 Combining System Dynamics and Machine Learning

This research aimed to combine system dynamics and machine learning to investigate early warn-

ings of projects with a high accident risk. The reasons behind combining these two technologies

were a lack of relevant project data and the opportunity for exploration. The development of

the system dynamics model allowed for creation of synthetic data which could be used for ma-

chine learning predictions. The research would then serve as a proof of concept on how safety

factors influence the number of accidents and how machine learning could be utilized for accident

prediction.

First, the system dynamics model was developed. This model allowed for creating data on all

relevant phases of a construction project, including both planning- and the construction phase

itself. The data was generated into numerous indicators, representing different processes and
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deliveries through the project. These indicators were based on theory and previous work, and

can be difficult to gather real data on. The system dynamics model also allowed for Monte Carlo

simulations with uncertainties such that different variations of outcomes were generated. The

simulations could be run as many times as wanted, such that one would be able to choose the

length of the dataset.

After the dataset had been generated by the simulation model, it was utilized for machine learning

predictions. The features from the construction phase, except from the target feature being number

of accidents, were removed from the dataset. This was in order to examine whether information

from only the planning phase would be enough for accurate predictions of safety performance.

Then machine learning algorithms were used to predict safety performance of the projects in the

dataset. The process is visualized in figure 18.

Figure 18: Utilization of system dynamics and machine learning

3.1.4 Planning- and Construction Phase Models

The development of the system dynamics model was done in collaboration with master student

Josefine Stiff Aamlid. The model was separated into two parts; the planning phase and the con-

struction phase. This thesis focused on the planning phase. Information regarding the construction

phase can be found in System Dynamics Modelling and Machine Learning to Improve Safety in

Construction Projects (Aamlid, 2023).

There was a tight communication through development of the system dynamics model. Weekly

meetings were held in addition to smaller stand-up meetings if needed. The planning and con-

struction phases were developed in parallel. GitHub was used for collaboration and version control.

To be able to connect the models, it was discussed at an early phase which indicators from the

planning phase should be used as input for the construction phase. These are presented in section

3.3.2. Arbitrary values were used as input in the meantime.

When both sub-models had a first draft developed, they were put together. In practice this was

done by generating a file with all indicators from the planning phase. The construction phase

script then read the file and selected the indicators which were used as input for some of its own
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functions. Then the simulation was run for the construction phase as well, and simulated accidents

were produced. A new file, the dataset, was generated from this execution, containing all data from

both the planning and construction. This was done with both serious and fatal accident rates,

producing two separate datasets. The process is shown in figure 19.

Figure 19: Development of the system dynamics model

Despite the simulation model being developed in collaboration, different datasets were used for

machine learning predictions in the two theses. The same algorithms and evaluation metrics

were selected, but implemented with different parameters. This yielded different machine learning

results between the theses.

3.2 Literature Review

Four literature reviews were conducted for the theoretical background. The search engine Oria was

used for the reviews. Oria provides access to the different databases from Norwegian university

libraries. It allows for filtering on the articles that have been peer reviewed, which guarantees

that the papers are authored and reviewed by professionals. Information regarding each review is

provided below.

3.2.1 Safety Factors in Construction Projects

This literature review was done to uncover previous research on which factors influence safety

performance in construction projects. The findings were presented in section 2.2.2. Table 7 shows

the search queries that were used.

Search Query No. of hits

safety AND factors AND performance AND “con-
struction projects”

477

“safety factors” AND performance AND “construc-
tion projects”

25

safety AND factors AND performance AND “con-
struction projects” AND (affecting OR influencing)

134

Table 7: Search queries for safety factors in construction projects
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As the first query gave very many hits, it was decided to narrow it down. Therefore the second

query attempted to underline that safety factors was the point of research. However, some relevant

articles seemed to have disappeared by this change. A third query included the words affecting or

influencing. This gave 134 hits, which was reasonable. The following selection criteria were applied

(table 8);

Id Criteria

IC1 Full text available
IC2 Of type “article”
IC3 The document is in English
IC5 Peer reviewed
EC1 Published before 2018

Table 8: Selection criteria for safety factors

This resulted in 68 articles. They were reviewed on title and nine articles were selected. The

selected articles were the ones that seemed to have their main focus on factors.

3.2.2 System Dynamics and Safety Performance

A literature review was conducted to see how system dynamics had been used previously to simulate

safety performance in construction projects. The findings were presented in section 2.3.3. The

search queries are presented below (table 9).

Search Query No. of hits

system dynamics AND safety performance 22 218
“system dynamics” AND safety performance 972
“system dynamics” AND “safety performance” 57
“system dynamics” AND “safety performance” AND
(project OR construction)

23

Table 9: Search queries for system dynamics and safety performance

In the beginning it was clear that not using the search terms in brackets returned too many results.

Finally, the search resulted in 23 hits where 21 results remained after the inclusion criteria were

applied (table 10).

Id Criteria

IC1 Full text available
IC2 Of type “article”
IC3 The document is in English
IC5 Peer reviewed

Table 10: Inclusion criteria for system dynamics and safety performance
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3.2.3 Machine Learning for Safety Predictions

This literature review was conducted in connection to our specialization report (Borkenhagen and

Olsen, 2022). For the master thesis, several of the articles were reviewed again to elaborate on

their objectives. The literature review done for the specialization project is explained below.

Search Query No. of hits

(“machine learning” OR AI) AND accident 5 046
(“machine learning” OR AI) AND accident AND
construction

496

(“machine learning” OR AI) AND “accident predic-
tion” AND construction

29

Table 11: Search queries for machine learning for safety predictions (Borkenhagen and Olsen, 2022)

Table 11 shows the search queries for safety and machine learning. This search was also conducted

through Oria. Based on the last query (table 12), 29 articles were reviewed on title and abstract.

This resulted in 22 relevant articles.

3.2.4 System Dynamics and Machine Learning

A literature review was conducted for the combination of system dynamics and machine learning.

The search queries and number of hits are shown in table 12.

Search Query No. of hits

“system dynamics” AND ”machine learning” 1236
title: “system dynamics” AND ”machine learning” 44

Table 12: Search queries for system dynamics and machine learning

The first search query resulted in a large number of hits and it became evident that those covered a

very wide spectrum. To narrow it down and make sure the results were mainly focused on system

dynamics and machine learning, another search was conducted where the title had to include

those keywords. This resulted in a more manageable number of hits, while they seemed to be

more relevant. It was detected how Oria’s advanced search on title included all front page titles

including the article title. Next, several selection criteria were applied. These were the same as

presented in table 10.

After the application of the inclusion criteria the remaining hits were 25 articles. These were re-

viewed based on title and abstract. The number of articles were reduced to 22 due to duplicates.

These 22 articles were categorized into seven groups; general, health, energy, operations manage-

ment, food production, transport and climate. The articles were further reviewed categorically,

while 15 of them were considered outside the thesis scope. In many of the cases, this was due to

the “system dynamics” word combination being used to describe other systems and not system
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dynamic models as they are defined in this thesis. This led to seven relevant articles, with one

of them commenting another relevant article which was also added. As a result, 8 articles were

selected.

3.3 System Dynamics Model

As presented in section 3.1.4, this thesis evolves around the planning phase of construction projects.

Hence, this section provides information on how the system dynamics model for the planning

phase was created. This includes selection of stages and activities, selection and dependencies of

indicators and the technical implementation of the model.

For simplification, it was decided to narrow down to a certain type of project; “green-field” con-

struction of buildings. Design-build contracts were chosen as contractual arrangement. Addition-

ally, contract type was set to fixed price contracts.

3.3.1 Planning Activities

When simulating the planning phase of a project the different activities within each stage needed

to be defined. The four main stages seen in figure 20 are based on Neste Steg and are identical

to the ones presented in the theoretical background (figure 3). Further, the activities within each

stage were defined based on the deliveries from the theoretical findings (section 2.1.3). Figure 20

shows how these activities are connected.

Figure 20: Activities in the planning phase
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The first stage is the Strategic Definition which includes the Business Case and the Gap Analysis.

The business case activity is the part of the project where the goals and objectives are defined.

A business plan is created to make sure the construction project is aligned with the goals and

objectives. This includes a thorough examination of the project’s risks and challenges. The gap

analysis activity is focused on identifying the current state and the desired end state. The dif-

ferences between these states is then evaluated to identify the gap. These activities are executed

simultaneously and both must be completed before the project may proceed to the following part

of the planning phase.

The next three activities are Concept Documents, Financial Framework and Functionalities and

Sketches. This part of the planning phase is based around developing the concept further and

is called Concept Development. The concept documents activity is the foundation for creating

more precise planning and design for the construction project. Additionally, it creates a shared

understanding of the goals and methods to be used, which can lower risk and avoidable costs later

on in the project. The guidelines and standards for handling the project’s finances are contained in

the financial framework activity. It includes the budget for the entire project. The functionalities

and sketches activity includes early design concepts and drawings that examine the fundamental

form and layout of a building as well as a description of the functions required to satisfy the

demands and requirements of the structure’s users. This will serve as the foundation for more

detailed design work later on in the project.

The next stage of the planning phase is Concept Processing and includes three activities. These

activities are Regulation Plan, Financial Plan and Preliminary Project. The regulation plan activ-

ity revolves around how the project manages the different regulations from the government. To

ensure that all regulations and standards are accurately understood and adhered to, coordination

with authorities is crucial. The financial plan activity is a more detailed version of the financial

framework activity. This activity includes a more comprehensive budget where detailed cost es-

timates are established. A portion of this more detailed budget will be set aside for safety-related

initiatives. The strategy for the project’s financing and contract structure will also be included.

The preliminary project activity is further development of the project and contains more details

about the chosen concept. Calculations go through quality assurance and drawings are finalized.

Solutions are controlled to ensure that the project can be realized.

The final stage of the planning phase is Detailed Engineering. This stage contains only one activity

and that is Plans for Execution. The plans for execution activity contains thorough technical

drawings and descriptions of how the project will be carried out. This stage of a construction

project is crucial because precision and quality are necessary to ensure that it can be completed

effectively and securely. Technical specifications preparation, equipment and material selection,

and descriptions of work procedures are all included in this activity.
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3.3.2 Indicators

Within each activity different indicators were chosen. Indicators were selected based upon what

indicators people have used previously (section 2.3.3) and from theoretical research (section 2.1

and 2.2). A list of the indicators chosen can be seen in table 13.

Indicator Domain Unit

ProjectSchedule Integer Days

ByggherreCompetency [1,10]

EntreprenørCompetency [1,10]

BusinessCase.ProjectComplexity [1,10]

BusinessCase.ProjectSize [1,10]

BusinessCase.ProjectExpectedStartDate Datetime

BusinessCase.ProjectExpectedEndDate Datetime

PlanningDuration Integer Days

ConstructionDuration Integer Days

BusinessCase.ExpectedDuration Integer Days

BusinessCase.ActualDuration Integer Days

BusinessCase.RiskAssessment [1,10]

BusinessCase.Quality [1,10]

GapAnalysis.ExpectedDuration Integer Days

GapAnalysis.ActualDuration Integer Days

GapAnalysis.StakeholderReq [1,10]

GapAnalysis.Quality [1,10]

ConceptDocuments.ExpectedDuration Integer Days

ConceptDocuments.ActualDuration Integer Days

ConceptDocuments.ProjectStatus Integer Days

ConceptDocuments.Quality [1,10]

FinancialFramework.ExpectedDuration Integer Days

FinancialFramework.ActualDuration Integer Days

FinancialFramework.ProjectStatus Integer Days

FinancialFramework.Budget Integer MNOK

FinancialFramework.Quality [1,10]

FunctionalitiesSketches.ExpectedDuration Integer Days

FunctionalitiesSketches.ActualDuration Integer Days

FunctionalitiesSketches.ProjectStatus Integer Days

FunctionalitiesSketches.Quality [1,10]

RegulationPlan.ExpectedDuration Integer Days
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RegulationPlan.ActualDuration Integer Days

RegulationPlan.ProjectStatus Integer Days

RegulationPlan.CoordinationAuthorities [1,10]

FinancialPlan.ExpectedDuration Integer Days

FinancialPlan.ActualDuration Integer Days

FinancialPlan.ProjectStatus Integer Days

FinancialPlan.SafetyBudget [1,10]

FinancialPlan.Quality [1,10]

PreliminaryProject.ExpectedDuration Integer Days

PreliminaryProject.ActualDuration Integer Days

PreliminaryProject.ProjectStatus Integer Days

PreliminaryProject.SHAPlanQuality [1,10]

PreliminaryProject.Quality [1,10]

PlansExecution.ExpectedDuration Integer Days

PlansExecution.ActualDuration Integer Days

PlansExecution.ProjectStatus Integer Days

PlansExecution.LevelOfDetail [1,10]

PlansExecution.SchedulePressure [1,10]

PlansExecution.SafetyTraining [1,10]

PlansExecution.SafetySupervision [1,10]

PlansExecution.EquipmentLiability [1,10]

PlansExecution.Quality [1,10]

Table 13: Selected indicators

Within each activity different indicators were identified. An influencing diagram was created for

each activity. The diagrams illustrate the interconnections between indicators, represented by

arrows. A plus symbol indicates a positive relationship between the indicators and a minus symbol

indicates a negative relationship. The diagrams are variants of causal loop diagrams as presented

in section 2.3.1, but also contains the red star symbol, which indicates a more complex relationship

between indicators.

In figure 21 the influencing diagram for the business case activity is shown. It can bee seen that the

ExpectedProjectStartDate affects ExpectedProjectEndDate and ProjectSchedule is also affected by

the size and complexity of the project. In this model, the size is a measure of cost, while complexity

describes the tecnical complexity of the project. It is assumed that the PlanningDuration is roughly

half of the duration of the project in total. The indicator BusinessCase.ExpectedDuration was set
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to be one sixth of the total planning duration. The BusinessCase.ActualDuration is the measure

of if an activity finished ahead time, on time or behind schedule. This was based on the expected

duration and the competency level of the owner.

The indicator BusinessCase.RiskAssessment describes the quality of the project’s risk assessment.

This quality is affected by the complexity of the project where it is assumed that higher complexity

makes it more difficult to create a high quality risk assessment. For the risk assessment the

indicator ByggherreCompency is also important. An owner with low competency is assumed to

be more likely to create low quality risk assessments. Lastly the quality of the business case as a

whole is represented in the indicator BusinessCase.Quality. This indicator is affected by the actual

duration and the expected duration. It is also based on the quality of the risk assessment and the

competency of the owner.

Figure 21: Influencing diagram for the Business Case activity

Figure 22 below shows the gap analysis. The indicator GapAnalysis.ExpectedDuration is assumed

to be one eighth of the total planning duration given by the indicator PlanningDuration. GapAna-

lysis.StakeholderReq is on a scale from one to ten, where a low score indicates a small num-

ber of stakeholders with few requirements, and a high score indicates a large number of stake-

holders with numerous requirements. A high GapAnalysis.StakeholderReq is assumed to give a

higher GapAnalysis.ActualDuration. The relationship between GapAnalysis.ExpectedDuration and

GapAnalysis.ActualDuration is assumed to affect the quality of the gap analysis activity. The

GapAnalysis.Quality is therefore based on the difference between the expected and actual dura-

tion together with the competency of the owner.
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Figure 22: Influencing diagram for the Gap Analysis activity

In figure 23 the influencing diagram for the concept documents activity is shown. It has many sim-

ilar indicators with the gap analysis activity with the ConceptDocuments.ExpectedDuration being

set as one third of the total planning duration. The ConceptDocuments.ActualDuration is affected

by the expected duration and the competency of the owner. The difference between expected and

actual duration is given by the indicator ConceptDocuments.ProjectStatus which is the amount of

days an activity finished either behind or ahead of schedule. Similarly to the gap analysis activ-

ity the indicator ConceptDocuments.Quality is based on the difference between the expected and

actual duration and the competency of the owner. However, the quality is also affected by the

quality of the prior two activities. It is assumed that if the indicators BusinessCase.Quality and

GapAnalysis.Quality have high values then the ConceptDocuments.Quality indicator will also have

a higher value.

Figure 23: Influencing diagram for the Concept Documents activity
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The financial framework diagram is shown in figure 24. The diagram has many similarities with the

concept documents diagram. The indicator FinancialFramework.ExpectedDuration is assumed to

be one fourth of the total planning duration. The indicators FinancialFramework.ActualDuration,

FinancialFramework.ProjectStatus,ByggherreCompetency, FinancialFramework.Quality, Business-

Case.Quality and GapAnalysis.Quality affect each other similarly as in the the concept documents

indicator diagram. On the left side of the model it can bee seen that the indicator FinancialFrame-

work.Budget is affected by BusinessCase.ProjectComplexity and ProjectSchedule. It is assumed

that a higher project complexity and a longer project schedule all lead to a larger budget. Addi-

tionally, the project schedule originates from project size, which was an initial measure in terms

of cost. The budget is measured in millions of Norwegian kroner (MNOK) and can vary between

96 MNOK and 1440 MNOK.

Figure 24: Influencing diagram for the Financial Framework activity

The influencing diagram for the functionalities and sketches activity is shown in figure 25. The

FunctionalitiesSketches.ExpectedDuration indicator is assumed to be one ninth of the total plan-

ning duration. The FunctionalitiesSketches.ActualDuration is set based on the expected duration

and the competency of the owner. The relationship between the expected and actual duration is

what determines FunctionalitiesSketches.ProjectStatus. Both GapAnalysis.Quality and Business-

Case.Quality are important in determining the FunctionalitiesSketches.Quality. This quality is

also affected by the expected duration, actual duration and the competency of the owner.
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Figure 25: Influencing diagram for the Functionalities and Sketches activity

Figure 26 shows the regulation plan activity. The indicator RegulationPlan.ExpectedDuration is set

to be one eighth of the planning duration. The indicator RegulationPlan.CoordinationAuthorities is

a measure on how well the contact between the project management and local authorities has been.

A high number for this indicator suggests that all building permits have been granted without fur-

ther delay and that there have been no misunderstandings regarding laws and regulations with the

relevant authorities. It is assumed that a high score on RegulationPlan.CoordinationAuthorities

means a lower chance of a project being delayed. The RegulationPlan.ExpectedDuration indicator is

therefore affected by the coordination with authorities and the competency of the owner. The indic-

ator RegulationPlan.ProjectStatus keeps track of the project’s progress and whether it is currently

behind or ahead of schedule. This indicator therefore needs to consider the indicators ConceptDocu-

ments.ProjectStatus, FinancialFramework.ProjectStatus and FunctionalitiesSketches.ProjectStatus

as well as how this current activity finished according to schedule. It is assumed that one activity

can not begin before the previous activities have finished and therefore the project status with the

most delay will be the one used for determining project status.

Figure 26: Influencing diagram for the Regulation Plan activity
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Figure 27 shows the financial plan activity. The FinancialPlan.SafetyBudget is an indicator of

how much money is set aside for safety-related costs. A high number means a relatively large

safety budget. FinancialPlan.ExpectedDuration is set to be one eighth of the planning duration.

The FinancialPlan.EffectiveRiskManagement is based on ByggherreCompetency and ConceptDoc-

uments.Quality. Effective risk management is a measure of how well risks are analysed and appro-

priate strategies are made to proactively reduce these risks. The FinancialPlan.ProjectStatus is

just like the regulation plan activity based on the project status of previous activities as well as the

actual duration of the financial plan activity. The FinancialPlan.Quality indicator is based on the

FinancialPlan.EffectiveRiskManagement indicator and the FinancialFramework.Quality indicator.

Figure 27: Influencing diagram for the Financial Plan activity

The preliminary project activity can be seen in figure 28. The PreliminaryProject.ExpectedDuration

is set to be one sixth of the planning duration. The PreliminaryProject.ProjectStatus indicator

is set based on the project status of previous activities and how the preliminary project finished

according to schedule. This is done by adding the difference between the expected duration and

the actual duration and adding the largest delay from previous activities. This makes the project

status accumulative through the different parts of the planning phase. The indicator Prelimin-

aryProject.SHAPlanQuality is an evaluation of the SHA plan’s level of quality from one to ten. A

detailed and comprehensive SHA plan will score highly on this indicator. It is assumed that the

competency of the owner and the quality of the concept documents activity will have an impact

on the quality of the SHA plan. The PreliminaryProject.Quality is affected by the quality of the

functionalities and sketches activity, the competency of the owner and the relationship between

the expected and actual duration.
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Figure 28: Influencing diagram for the Preliminary Project activity

Figure 29 shows the influencing diagram for the plans for execution activity. The PlansExecu-

tion.EquipmentLiability indicator is a measure of how good the quality on the project’s equipment

is. Faulty or old equipment will result in a low score. The indicator PlansExecution.SchedulePressure

is a measure of how much pressure the project is experiencing due to its schedule. This indic-

ator is based on the project schedule, the planning duration, the construction duration as well

as the budget and the PlansExecution.ProjectStatus. The PlansExecution.ExpectedDuration is

half of the planning phase. This makes this activity the longest activity in the planning phase.

The PlansExecution.ProjectStatus is calculated based on FinancialPlan.ProjectStatus, Regulation-

Plan.ProjectStatus and PreliminaryProject.ProjectStatus.

The two indicators PlansExecution.SafetyTraining and PlansExecution.SafetySupervision are both

assumed to be based on the FinincialPlan.SafetyBudget and the EntrepenørCompetency. The En-

trepenørCompetency indicator is a measure of the contractor’s competency on a scale from one

to ten. The competency of the contractor is assumed to affect the PlansExecution.LevelOfDetail

indicator. It is assumed that a contractor with a high competency would more often produce

more detailed plans for the execution of the project. It is also assumed that a higher level

of detail could cause the project to use more time and therefore could cause an increase in

PlansExecution.ActualDuration. The PlansExecution.Quality indictor is affected by the Entre-

penørCompetency, the FinincialPlan.Quality and the PreliminaryProject.Quality. It is assumed

that high scores on these indicators lead to a high PlansExecution.Quality score. The relationship

between PlansExecution.ExpectedDuration and PlansExecution.ActualDuration is also assumed to

affect the quality.
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Figure 29: Influencing diagram for the Plans for Execution activity

Eight of the presented indicators were used as input for the construction phase indicators and

therefore connecting the two models. These are shown in table 14. They were selected according

to the research done for the construction phase (Aamlid, 2023).

Indicator Domain Unit

ProjectSchedule Integer Days

EntreprenørCompetency [1,10]

ConstructionDuration Integer Days

PlansExecution.SchedulePressure [1,10]

PlansExecution.SafetyTraining [1,10]

PlansExecution.SafetySupervision [1,10]

PlansExecution.EquipmentLiability [1,10]

PlansExecution.Quality [1,10]

Table 14: Planning indicators as input for construction indicators
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3.3.3 Implementation

The simulation model was developed using the programming language Python. As the model was

to consist of projects with associated activities and safety indicators, it was decided to program

object-oriented. Classes were defined for projects, tasks and indicators. The associated hierarchy

is shown in figure 30. Each box represents a class with associated attributes and operations. As

described in the figure, each project can have multiple tasks and indicators, whereas each task and

indicator can only belong to one project. In order to simulate multiple projects, the MonteCar-

loSimulation function is called which runs the project simulation multiple times with the indicators

being reset between each run. Due to the uncertainty in the real world and the model, several

indicators are set with more random values. When the program is executed, each project iterates

through it’s tasks dictionary. For every task, an action is performed. This is a function that adjusts

certain indicators. When the project has run through the entire planning phase, the indicators are

being reset for the next iteration. This process is repeated a predefined number of times. For the

final simulations, it was decided to generate 10 000 projects per dataset.

Figure 30: Class diagram for the system dynamics model
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The structure described above allows for extension of the model as one can easily develop different

kinds of projects with varying tasks and indicators. As previously described in the methodology,

only one type of project was simulated in this master’s thesis. This was in order to simplify the

model. As there is implemented uncertainty in addition to connections between the indicators,

the project will be simulated with varying values for each run. With this approach, the project

structure remains even though there are varying values being executed.

After the structure was implemented, the selected type of project with its associated tasks and

indicators was instantiated. For the planning phase, this was based on the activities and indicators

represented in section 3.3.1 and 3.3.2. Even though some activities shown in section 3.3.1 can be

executed simultaneously, it was decided to simulate the tasks sequentially. This was decided in

order to simplify the execution. The indicators associated with each task is assumed to not be

affected by other tasks who happen simultaneously, which allows for the sequential execution of

the program.

3.4 Machine Learning

This section covers relevant aspects of the machine learning, including exploration of the datasets,

preprocessing, train test split, selection of the models’ hyperparameters and feature importance.

It was decided to perform classification with the machine learning algorithms presented in section

2.5.2. These are decision trees, random forest, AdaBoost, XGBoost and SVM. All machine learning

related programming was done in Python. Scikitlearn provided the algorithms except for XGBoost

which originated from its own library.

3.4.1 Datasets

Two datasets were created. One dataset was created using an accident rate for serious accidents.

This resulted in a fairly balanced dataset with a similar number of projects with accidents to the

number of projects without accidents. The second dataset was created using an accident rate

for fatal accidents. This caused a dataset with very few projects having fatal accidents. This is

therefore considered an imbalanced dataset. As mentioned in section 3.1.3, the datasets consisted

of only planning indicators and the target feature being the number of accidents. The construction

indicators were removed in order to investigate whether planning data would be enough to predict

future safety performance in the projects. This applied to both datasets; serious accident rate and

fatal accident rate sets. An illustration of a dataset is shown in figure 31.
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Figure 31: Dataset used for machine learning

Each dataset was generated with 10 000 projects, resulting in the same amount of rows. The

number of columns reflects the number of indicators, 53 columns from the planning phase and one

column from the construction phase with the number of accidents in the project. In figure 32 the

balanced dataset is visualized. It is can be seen that around 58% of projects have one or more

serious accidents.

Figure 32: Amount of projects with no accidents and serious accidents
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When visualising the imbalanced dataset the difference between the number of projects with a

fatal accident and the number of projects without a fatal accident is clear. This visualisation can

be seen in figure 33. Around 0.5% of all projects have a fatal accident.

Figure 33: Amount of projects with no accidents and fatal accidents

The total project duration of all the projects is shown in figure 34. The different project durations

have been grouped together. The most common durations are between 1000 and 1499 days, but

durations between 500 and 999 days are also common.

Figure 34: Amount of projects with different durations
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The distribution of different budgets is shown in figure 35. Budgets in the same range have been

grouped together. Most projects have a budget between 250 MNOK and 499 MNOK.

Figure 35: Amount of projects with different budgets

3.4.2 Preprocessing

As the datasets consisted of only integer values, they required a small amount of preprocessing.

The target feature for both datasets was a column stating how many accidents had occurred in a

project, while it was desired to perform binary classification. Hence, this column was transformed

to true/false values, represented by the integers 1 and 0. All projects with one or more accidents

were mapped to 1, while the projects with no accidents were mapped to 0.

3.4.3 Train Test Split

In order to train and test the models, the datasets were separated into two parts. A training set

is necessary in order to train the models, while a test set is used to evaluate the models (Russell

and Norvig, 2016). The final evaluation should be objective and the models should therefore not

be trained on the same samples as it will be tested on. The split percentage was set to 75% for

the training set and 25% for the test set. Shuffle was set to true in order to ensure randomness

to which projects are in which sets. This would be important if only certain parts of the original

dataset contained positive occurrences. Random state was also defined, in order to recreate the

same train and test sets multiple times.
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3.4.4 Selected Hyperparameters

Hyperparameters are parameters of the model class (Russell and Norvig, 2016). Selection of hyper-

parameters can be used to modify the machine learning models. Table 15 shows hyperparameter

values which were used for the models in this thesis.

Model Hyperparameter Value

Decision tree

criterion entropy
splitter best

min samples split 2
min samples leaf 1

Random forest

n estimators 100
criterion entropy

min samples split 2
min samples leaf 1
max features sqrt

AdaBoost
n estimators 50
learning rate 1.0
algorithm SAMME.R

XGBoost

eta 0.3
eval metric logloss
max depth 6

sampling method uniform

SVM
kernel linear
degree 3

Table 15: Selected model hyperparameters

There are many possible hyperparameters for decision trees. Criterion is the function to measure

the quality of a split. Splitter allows to choose between split strategies. Min samples split describe

the minimum number of samples required to split an internal node. Min samples leaf describe the

bare minimum of samples that must be present at a leaf node. For the random forest model, the

number of estimators is also selected. N estimators represent the number of trees in the forest. Ad-

ditionally, max features determine how many features should be considered when finding the best

split. Selecting sqrt results in the max features to equal the square root of number of estimators.

AdaBoost also has the hyperparameters learning rate and algorithm. Learning rate is the weight

applied to each classifier at each boosting iteration, while algorithm is the boosting algorithm.

For XGBoost, eta is the equivalent to learning rate. Eval metric determines the evaluation metric

for validation data. Max depth is the maximum depth of a tree, while sampling method is how

to sample the training instances. At last, some hyperparameters for the SVM model are kernel

and degree. Kernel specifies the kernel type to be used in the model. Degree is the degree of the

polynomial kernel function.
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3.4.5 Feature Importance

Correlation heat maps were generated to explore correlations between the different features. A

correlation describes a mutual relationship or connection between two features. The correlations

towards the target feature may also indicate potential predictive patterns that the algorithms may

look for. The correlations are represented through a matrix. The diagonal of the matrix has 1 as

values, as each feature has a perfect positive correlation to itself. The correlation matrices for our

datasets can be found in appendix A. As each dataset consists of 54 features in total, it was decided

to separate them into several matrices. They were separated based on their planning stage, being

either strategic definition, concept development, concept processing or detailed engineering. The

target feature was included in all correlation matrices. This separation improved the readability,

but also provided some limitations as several correlations were not shown between the stages.

First, correlations within the strategic definition stage were examined. This included indicators

from the business case and the gap analysis activities. Generally, perfect positive correlations are

found where the function of one indicator is directly connected to another. This occurred between

several duration indicators. Further, high correlations were found between complexity/size and

duration. BusinessCase.RiskAssessment had several strong negative correlations towards the fea-

tures concerning duration, size and complexity. With regards to the target feature numberOf-

SevereAccidents, the features concerning duration, size and complexity had the strongest positive

correlations. These were approximately 0.4. Further, negative correlations were found between

BusinessCase.Quality and BusinessCase.RiskAssessment towards the number of accidents.

Secondly, the correlation matrix for the concept development stage was analyzed. It included indic-

ators from the concept documents, financial framework and functionalities and sketches activities.

Similarly to the strategic development correlation matrix, the features describing duration had

strong positive correlations. In addition, the budget was highly correlated to duration. Further,

the quality indicators were highly correlated to each other (0.97). The project status indicators

were negatively correlated to the quality indicators. These correlations were around -0.4. It can

be seen that the features having the highest correlations to the number of accidents were the ones

concerning duration.

For the next planning stage, concept processing, correlations between indicators within the financial

plan, regulation plan and preliminary project were examined. In addition to duration, high cor-

relations were found between FinancialPlan.EffectiveRiskManagement and the quality features.

Negative correlations were found between the project status features and the quality features.

These ranged between -0.38 and -0.58. Even though the strongest correlations towards the target

feature were still associated with duration, one can see that the project status features also had

correlations of 0.11, 0.13 and 0.14.
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Finally, the correlation matrix for the detailed engineering stage was reviewed. This matrix con-

sisted of indicators from the plans for execution activity. All the indicators that were used as

direct input to the construction phase model can be found here. PlansExecution.LevelOfDetail

had a correlation of 0.62 towardsPlansExecution.Quality. Another finding is that the schedule

pressure had a correlation of 0.37 towards the number of accidents. Other features that had signi-

ficant correlations towards the target feature were PlansExecution.EquipmentLiability (-0.1) and

PlansExecution.ProjectStatus (0.12).

For the fatal accident rate dataset, the majority of correlations remained consistent with the ones

for the serious accident rate dataset. The only difference was the correlations towards the target

feature. Here, the values were significantly smaller. This was due to the implementation of the

serious and fatal accident rates being in the construction phase model, rather than in the planning

phase model.

3.5 Evaluation of the Method

Reliability and validity are two important concepts in research methodology that can be used to

assess the quality of the method. These are presented below in the context of this thesis.

3.5.1 Reliability

Fellows and Liu state that “reliability concerns the consistency of a measure” (Fellows and Liu,

2003). For this thesis, reliability can be measured towards both the system dynamics and the

machine learning. Reliability of the system dynamics model regards to what degree the model

can be reproduced. The method provides a clear explanation of the technical implementation,

activities, and indicators, making it highly reproducible. Still, some details regarding the extent of

impact and uncertainties within each indicator is left out of the thesis. Reliability is also a measure

of consistency of the datasets. Due to the implemented uncertainty, the datasets will have small

variations when generated several times. Still, due to the big amount of generated projects, the

dataset will hold very similar information between each run.

Consistency in regards to the machine learning is achieved by using seeds for the train-test-split and

within the machine learning models. This way, the same results will be produced when running the

machine learning models several times. Consistency of which projects belong to the train and test

data also results in more reliable comparisons between the selected machine learning algorithms.

3.5.2 Validity

A measure’s validity refers to how well it captures the concept it is intended to measure (Fellows

and Liu, 2003). For this thesis, validity is based on determining if the findings are accurate
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from the project organizations’ point of view. Qualitative validity in this context refers to the

trustworthiness of the inferences that has been drawn from the theoretical background. Further,

interviews with industrial partners could contribute positively to the validity of the method, but

was not possible for this thesis. Creswell state that validity is one of the strengths of qualitative

research (Creswell, 2009). For the quantitative research, the validity of the system dynamics model

is a measure on whether one can draw meaningful inferences from the tests. The experiments done

in section 4.1 shows validity on how the model has been developed. Still, comparisons to real data

would increase the quantitative validity of the model as well.
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4 Results

This section presents the results obtained by evaluating the system dynamics model and the ma-

chine learning models. The system dynamics model was evaluated based on extreme condition-

and sensitivity tests, while the machine learning predictions were evaluated using several metrics.

Both are tested for serious and fatal accidents.

4.1 System Dynamics Model

To validate the system dynamics model, extreme condition- and sensitivity testing was performed.

Different values of the indicators were used as input from the planning phase to the construction

phase. This was done through two experiments; first varying most indicator values which are

on a range from one to ten, then varying the size and duration of the project. This separation

of experiments was chosen because the correlation heat maps from section 3.4.5 showed a high

correlation between project duration and the number of accidents. Hence, it was assumed that the

impact from duration would overwrite the impact from the other indicators. Further, size is highly

correlated to duration. Size and duration were therefore evaluated through a second experiment.

Each experiment consisted of three different tests. For each of these tests, the simulation was run

1000 times with the same input indicators from planning. Then the target column, being number of

accidents, was averaged. This was done twice per test; first for the dataset with a serious accident

rate and secondly for the dataset with a fatal accident rate.

Experiment 1

The first experiment was to conduct extreme condition tests for the indicator values which were

on a scale from one to ten. For this experiment, size and duration remained the same. The

indicator values which were used are shown in table 16. Test 1 shows the worst case scenario, with

most indicators holding the value 1. SchedulePressure holds the value 10, as a high pressure value

expresses bad performance. Test 2 was done to explore the medium case scenario. The mean value

of these indicators would be 5.5, but 5 was selected as the model only holds integer values. Test 3

tested the best case, and held indicator values of 10. Here, SchedulePressure was set as 1. For all

three tests, size was set to 5 and duration as 500 for consistency.

The results show a trend where the number of accidents decreases as the indicator values improves.

To interpret the results, one could say that the average number of serious accidents would be 1.338

by having the worst possible foundation from the planning phase. If a project has the best possible

foundation from the planning phase, one would on average get 0.664 serious accidents in the project.

The average number of fatal accidents is close to zero, however the trend is also found within the

fatal accident experiment.
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Test 1 Test 2 Test 3

ProjectSize 5 5 5
EntreprenorCompetency 1 5 10
ConstructionDuration 500 500 500
PlansExecution.Quality 1 5 10
PlansExecution.SafetyTraining 1 5 10
PlansExecution.SafetySupervision 1 5 10
PlansExecution.SchedulePressure 10 5 1
PlansExecution.EquipmentLiability 1 5 10
numberOfSeriousAccidents 1.338 0.934 0.664
numberOfFatalAccidents 0.005 0.004 0.002

Table 16: Experiment 1 - indicator values

Experiment 2

The second experiment was conducted in order to see how much duration influences number of

accidents. This shows how sensitive the model is to this specific indicator, making the experiment a

sensitivity test. Size was also included in this experiment as duration and size are highly correlated

in the model. The indicator values which were used are shown in table 17. Test 4 shows the shortest

possible duration of the construction phase measured in days. This was calculated to be 91.25 with

the project size being the smallest possible. Test 5 was done to explore medium long projects. A

duration of 500 was chosen for this test, as it roughly represents the middle duration. Test 6 shows

the longest possible construction duration for the model, being 912.5 days, with its associated size

10. All other indicator values were set as 5 for consistency.

Not surprisingly, the results show that there is a higher average number of serious accidents when

the project goes over a longer time. For the fatal accidents, this trend is not as linear. Here the

medium length projects and the longest projects have the same average number of fatal accidents.

Test 4 Test 5 Test 6

ProjectSize 1 5 10
EntreprenorCompetency 5 5 5
ConstructionDuration 91.25 500 912.5
PlansExecution.Quality 5 5 5
PlansExecution.SafetyTraining 5 5 5
PlansExecution.SafetySupervision 5 5 5
PlansExecution.SchedulePressure 5 5 5
PlansExecution.EquipmentLiability 5 5 5
numberOfSeriousAccidents 0.162 0.927 1.773
numberOfFatalAccidents 0.001 0.006 0.006

Table 17: Experiment 2 - indicator values

These two experiments contribute to the validation of the model. The results which were obtained

provide evidence of the model’s reasonableness. As this thesis contains the planning phase only,

the trends were examined, rather than the actual accident numbers as this was implemented in

the construction phase model.
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4.2 Machine Learning

The machine learning predictions were evaluated based on four metrics; accuracy, precision, recall

and F1-score. These metrics were described in section 2.5.3. Confusion matrices were also gener-

ated for all models in order to visualize classification patterns. This was done for both the balanced

dataset consisting serious accidents and the imbalanced dataset consisting fatal accidents.

4.2.1 Serious Accidents

Table 18 shows the results of the five machine learning models which were tested on the serious

accident dataset. SVM and AdaBoost obtained the best results overall. AdaBoost had the best

accuracy and precision, while SVM had the highest recall. Their F1-scores were equal and higher

than the other models’. The decision tree model performed the worst according to all the selected

evaluation metrics.

Model Accuracy Precision Recall F1

SVM 0.677 0.670 0.861 0.753
XGBoost 0.639 0.661 0.757 0.706
AdaBoost 0.687 0.685 0.836 0.753
RF 0.671 0.676 0.815 0.739
DT 0.572 0.625 0.628 0.626

Table 18: Classification results with serious accidents

All models obtained accuracies below 70%. These values are considered low. Further, all precision

values were also below 70%. The recall values were significantly higher, with SVM deriving 86%.

The F1-scores were found between each model’s precision and recall values. The confusion matrices

below show what predictions these values are based on (figure 36, 37, 38, 39 and 40).

Figure 36: SVM confusion matrix Figure 37: XGBoost confusion matrix
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Figure 38: AdaBoost confusion matrix Figure 39: Random forest confusion matrix

Figure 40: Decision tree confusion matrix

According to the confusion matrices, the models are generally better at predicting the positive

instances than the negatives. For the negative instances are approximately half of the samples

classified correctly. SVM predicts less true negatives than the others (figure 36). It generally

predicts more samples as positives, which also results in more true positives than the other models.

The decision tree model predicts less positive instances correctly than the rest (figure 40).

4.2.2 Fatal Accidents

Table 19 shows the results of the five models which were tested on the fatal accident dataset. The

accuracies were very high while the other metrics were zero. This is also shown in the confusion

matrices (figure 41, 42, 43, 44 and 45), where almost all samples are true negatives. None of the

machine learning models were able to predict true positives, resulting in precision, recall and F1

values of zero. Even though the accuracies were high, the results are considered to have low values

based on the other evaluation metric results.
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Model Accuracy Precision Recall F1

SVM 0.995 0 0 0
XGBoost 0.995 0 0 0
AdaBoost 0.994 0 0 0
RF 0.995 0 0 0
DT 0.988 0 0 0

Table 19: Classification results with fatal accidents

The confusion matrices show that none of the 13 positives were classified correctly. The SVM,

XGBoost and random forest models predicted no samples as positive (figure 41, 42 and 44). Ad-

aBoost predicted one sample as positive (figure 43), while the decision tree model predicted 18 as

positive (figure 45). All of the positive predictions were incorrect.

Figure 41: SVM confusion matrix Figure 42: XGBoost confusion matrix

Figure 43: AdaBoost confusion matrix Figure 44: Random Forest confusion matrix
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Figure 45: Decision tree confusion matrix
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5 Discussion

This section provides a discussion on all the conducted work. This includes the development and

testing of the system dynamics model and the machine learning. Additionally, their applicability

within construction projects and combination of technologies are discussed. The section debates

the methodology and results in connection to the objective of the thesis and the theoretical findings.

5.1 System Dynamics

A system dynamics model was developed to simulate construction projects and generate data

for the machine learning. Further, the model was validated. The development and validation is

discussed below. This covers only the planning phase, while discussions regarding the construction

phase can be found in System Dynamics Modelling and Machine Learning to Improve Safety in

Construction Projects (Aamlid, 2023).

5.1.1 Structure of the Model

As described in section 3.3.3, the model was built with projects, tasks and indicators. Each project

had several tasks which adjusted the indicators during the project. The tasks represented the

activities from section 3.3.1, being Business Case, Gap Analysis, Concept Documents, Financial

Framework, Functionalities and Sketches, Regulation Plan, Financial Plan, Preliminary Project

and Plans for Execution. These were based on the planning stages and deliveries presented in the

theory (section 2.1.3). Other structures could be considered as well, as it is hard to define exact

activities. A potential risk is leaving out certain processes to the model. Japkowicz and Shah

considered oversimplifying as a threat of using artificial data (section 2.5.1). Still, construction

projects are very complex (section 2.1.2) and simplifications have to be made when developing any

system dynamics model. This is in accordance to Fellows and Liu who stated that models should

reflect the reality as closely as is practical, but be reasonably cheap to construct and use (section

2.3.1).

Further, it was decided to execute the activities sequentially. Based on the overall structure

including stages and activities (section 3.3.1) it can be seen that some activities could be executed

in parallel. This applies to the activities within the same planning stage. This is due to the

input coming from a previous stage. In the theory, Hansen stated that the early phase planning

consisted of reciprocal dependencies, while the detailed engineering and building phase is often

more sequential (Hansen, 2019). Still, it was decided to execute the activities sequentially in order

to simplify the implementation. The sequential execution does however limit the possibility of

several activities affecting each other in loops. Hence, there are no feedback loops in between the

activities (section 2.3.1). It can be argued that in the real world certain activities might affect
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each other in a back-and-forth manner. Consequently, executing the activities in parallel could

result in a more accurate representation. However, the sequential structure made it easier to create

separate influencing diagrams and put focus on the interactions between indicators within each

activity (section 3.3.2). Additionally, as mentioned above, the model should be reasonably cheap

to develop and use (Fellows and Liu, 2003). Thus, sequential execution was considered the most

appropriate for this thesis.

The class based implementation of the model allows for easy extension and modification for further

work (section 3.3.3). As mentioned in the methodology section, it was decided to focus on one

type of project (section 3.3). In the future, one could add other types of projects with only small

modifications to the program. This could be done by adding or changing tasks representing the

activities. However, this applies more to the construction phase which is not in the scope of this

thesis. The planning phase has less variations regarding the activities, but the implementation

has left room for easy modification there as well. Another perspective is the ability to add or

change the chosen indicators for the planning stage. The chosen class structure facilitates for this.

Hence, the choices done in regards to implementation provides for expansion and adjustments,

which makes it more suitable for further work. Still, when utilizing the model to provide a dataset,

different sets of indicators between the projects would result in missing values. As it was planned

to use the dataset for machine learning, no missing values and therefore one type of project was

an advantage.

5.1.2 Indicators

Appropriate indicators needed to be selected in order to simulate the different activities. The

chosen indicators were shown in section 3.3.2. These indicators were chosen based on project- and

safety management theory (section 2.1 and 2.2) and indicators used in previous system dynamics

models of safety performance (section 2.3.3).

The literature review on system dynamics and safety performance showed some common indicators.

These indicators were presented in table 1. Pressure was frequently used in other models. It was

also presented as a safety factor in section 2.2.2. For this thesis, the model was given the PlansEx-

ecution.SchedulePressure indicator. Schedule pressure was chosen over productivity/production

pressure since the model is still in the planning phase. Li et al. also included cost and schedule in

their model. FinancialFramework.Budget and ProjectSchedule were selected for this thesis. In the

model by Li et al. cost and schedule affected productivity pressure (Li et al., 2022). Figure 29 shows

how SchedulePressure was affected by FinancialFramework.Budget as well as the schedule related

indicators ProjectSchedule, ConstructionDuration, PlanningDuration and ProjectStatus. While the

assumption is that being behind schedule leads to increased pressure, it is not necessarily the case

that being behind schedule in the planning phase will result in pressure during the construction

phase. It is also assumed that if the project has a high budget relative to duration, there will be
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more pressure. This is due to a high budget being associated with a big amount of work to be

done.

Supervision was the indicator that was included in the most system dynamics models (section

2.3.3). This was also a managerial factor discovered in the safety factors review (section 2.2.2).

Therefore, PlansExecution.SafetySupervision was included as an indicator, being affected by both

EntreprenørCompetency and FinancialPlan.SafetyBudget. Safety related indicators were used in

many of the models. One indicator that was commonly used was safety training. Another safety

related indicator was risk assessment. The model was therefore given the indicators PlansExecu-

tion.SafetyTraining and BusinessCase.RiskAssessment. Both of these were also listed as influential

factors in section 2.2.2. The indicator SafetyTraining is affected by the same indicators as SafetySu-

pervision and they will therefore be quite similar. To improve the complexity of the model these

indicators could be affected by different indicators. Next, equipment was an environmental factor

uncovered in the safety factors review. It was decided to include this in the model through the

PlansExecution.EquipmentLiability indicator. The indicator was additionally based upon equip-

ment condition from Sun et al.’s model. PlansExecution.EquipmentLiability is randomly set as a

number between one and ten in the late stages of the planning phase. For a less random model

this value could be based upon some of the other indicators.

Competency was represented in the model by both ByggherreCompetency and EntreprenørCompetency,

describing the competency of the owner and contractor respectively. Competency was highlighted

by numerous articles in the safety factors review (section 2.2.2). The competency of the owner

is important as they are responsible for overall decisions, defining the project and choosing con-

tractors (section 2.1.2). The competency of the contractor influences the project as they are the

executing parties. Both competency levels were set at random, but further it could be looked into

if the competency of the owner is connected to the competency of the contractor. More compet-

ent owners could be more likely to choose competent contractors. The SHA plan is established

during the preliminary project and is therefore formed by the owner. Thus it is assumed that the

competency of the owner combined with the quality of the concept documents affects the quality

of the SHA plan. Although the indicator PreliminaryProject.SHAPlanQuality was created during

the model development process, it is not utilized further. This could be improved by either having

the SHA plan affect the quality of the preliminary project or having it as one of the indicators

being used further in the construction phase. The quality of the preliminary project itself was set

to affect the level of detail in the plans for execution. It was considered more probable to develop

a detailed plan for execution if the relevant previous work was done thoroughly.

The quality of each activity was deemed to be important, as the quality of a project could minimize

the risk of an accident (section 2.1.2). Therefore each activity, except for the regulation plan, was

given a quality indicator. Quality was not considered an appropriate measure for the regulation

plan, since the application is either approved or declined. Since the regulation plan is formed by the
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owner and approved by the local authorities (section 2.1.3), coordination between these two parties

is required. This resulted in establishing the indicator RegulationPlan.CoordinationAuthorities,

which is used to show that poor coordination between local authorities and the owner could lead

to delays. Other factors which were assumed leading to delays were complexity and stakeholder

requirements. As presented in section 2.1.2 projects with a high level of complexity would require

more complex and varied methods, practises and processes. It was therefore assumed that a longer

duration is needed to finish the project. The complexity of the project was also set to affect the size

of the project in terms of cost, which is considered reasonable due to the requirements mentioned

above. Further, it was assumed that complexity affects the quality of the risk assessment. This is

due to that when there are more factors to consider, high quality risk assessment will be more diffi-

cult to create. Next, stakeholder requirements are considered a risk in terms of delays. Section 2.1.3

states that the gap analysis measures the gap between the current situation and the users needs.

If there are more requirements, there are more aspects to take into consideration during this stage,

which might take a longer time to process. Therefore the indicator GapAnalysis.StakeholderReq is

set to affect the actual duration of the gap analysis activity.

Some indicators were identified in the theory, but not utilized for this model. Many of the studies

that were reviewed had indicators such as safety climate/culture and management’s commitment

to safety. This could have been added to the model to simulate the safety related factors of the

project with even more complexity. However, they were not included in order to simplify the

model. One could potentially argue that FinancialPlan.SafetyBudget represented the manage-

ment’s commitment to safety, as a large safety budget would mean the management prioritizes

safety. Still, this could be implemented as a separate indicator. Further, some indicators were

present in multiple of the system dynamics models from the literature review, but were still not

included in this model. Mohammadi and Tavakolan included indicators such as fatigue, rework

and incident investigation in their model (Mohammadi and Tavakolan, 2019). Jiang, Fang and

Zhang also had incident learning and Li et al. had rework in their model (Jiang, Fang and Zhang,

2015; Li et al., 2022). These indicators were not included because they were deemed to be in the

construction phase and therefore not relevant for the planning phase model.

When looking at what indicators have a high correlation with the number of accidents there are

some unexpected results. As described in section 3.4.5 all the duration indicators have a high level

of correlation with the number of accidents. This is considered reasonable since longer projects are

assumed more likely to experience accidents than short projects. Further it can be seen in the cor-

relation matrices that PlansExecution.SchedulePressure has a relatively high correlation with the

number of serious accidents being 0.37 (appendix A). This is unlike PlansExecution.SafetyTraining

and PlansExecution.SafetySupervision that only have correlations of -0.029 and -0.03. This differs

from the many other studies that had safety training and supervision as indicators closely connected

with the accident rates in their system dynamics models. This discrepancy should be investigated

further, and efforts should be made to establish reasonably high correlations between all indicators
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passed on to the construction part of the simulation and the number of accidents. Lastly, many of

the functions have a degree of randomness in them. This is to account for randomness in the real

world, but the real life level of randomness is unknown.

5.1.3 Validation of the Model

Extreme condition tests were conducted in order to validate the planning model (section 4.1).

The results of Experiment 1 showed a trend where poor indicator values from the planning phase

resulted in more accidents and opposite. This seems reasonable. The average number of serious

accidents for the worst values was approximately twice the number as for the best values. Medium

indicator values gave an average accident number which was closer to the good values than the poor.

This implicates a non-linear relationship between planning indicators and safety performance in

the model. This might reflect the real world, where many projects have decent safety performance,

while some projects with really bad safety performance result in many accidents. The trend for

the fatal accidents was similar, but not of the same proportions as for the serious accidents. This

is probably due to the low number of fatal accidents. Fewer values give more uncertainty as there

are less values to draw the average from.

The sensitivity tests for duration (Experiment 2 ) showed bigger differences in the number of ac-

cidents than for the first experiment (section 4.1). It is obvious how longer projects will have

more accidents than shorter projects on average. This is also shown in the correlation matrices in

section 3.4.5. This could be an argument to choosing another safety measurement or potentially

combining several different measurements as suggested by Kjellen and Albrechtsen (section 2.2.1).

Hence, this experiment shows why it could be beneficial to measure the safety performance as a

rate. In regards to the average number of accidents, that is determined by a number of contributing

factors implemented in the construction phase (Aamlid, 2023). The actual number of accidents is

therefore not taken into account for the experiments and will not be discussed in this thesis, except

for the trend influenced by the planning phase.

The literature review in section 2.3.3 proposes several ways to validate system dynamics models.

Qayoom and HW Hadikusumo used extreme condition testing such as in this thesis (Qayoom and

HW Hadikusumo, 2019). Other studies suggested sensitivity testing or comparing the simulations

to real data. Sensitivity testing was performed in accordance to the theory. However, this was for

the duration and associated size indicator only. This could also be considered for other indicators

in order to evaluate how they influence the number of accidents. Still, correlations between single

indicators and the number of accidents were also explored within feature importance (section 3.4.5).

Real data could also be used for validation and/or calibration of the model. Comparing the simula-

tions with real data was a common approach according to the literature review on system dynamics

and safety performance (section 2.3.3). Additionally, Nikolenko stated that a common approach
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is training the model on synthetic data with the intention of using it on real data (Nikolenko,

2021). For this research, real data was difficult to gain access to and collect. Ideally, one would

have access to project data representing all the indicators and therefore being able to explore and

verify their influence on each other. There are several difficulties regarding this; a lot of this data

is highly qualitative and one would have to define ways to transform them into quantitative data.

Secondly, some data is confidential and can not be accessed due to privacy reasons. Examples

include the competency of the people involved in the construction project. Nikolenko stated that

this is also considered a reason for using synthetic data (section 2.5.1). Lastly, one would need

data from both the project owner and the contractor to cover a project from start to end. This

data gathering requires a lot of time and collaboration between the parties. Hence, calibration of

the model would be useful to make it reflect the real world, but was not possible for this thesis.

Calibration based on feedback from industrial partners was also considered as an option, but no

feedback was available. Calibration of the model could however be an option for further work. A

realistic approach would be to start calibrating the parts of the model where there is available data

or put the focus on the parts which are the most uncertain.

5.2 Machine Learning

Several decisions were taken when creating machine learning models, including selecting classi-

fication, machine learning algorithms, and hyperparameters. These choices and their effects are

discussed below. The results obtained by the machine learning models for both serious and fatal

accidents are also discussed.

5.2.1 Building the Machine Learning Models

For the machine learning, it was decided to perform classification. As the number of accidents

column from the simulation model contained continuous values, one could by definition perform

regression as well (section 2.5). However, classification was considered a more appropriate learning

problem due to two reasons. Firstly, the results from classification are easier to interpret. For

this thesis, it would be easier to evaluate how many projects were classified correctly than to

evaluate how far off the machine learning predictions were in terms of accidents within each project.

Secondly, it was considered more important to predict which projects had the biggest risks of

accidents than predicting the exact number of accidents. This was due to the objective of the

thesis; giving early warnings of projects with a high accident risk. Additionally, there is a lot of

uncertainty which makes the latter less realistic.

Five algorithms were selected to be used in this thesis; decision trees, random forest, AdaBoost,

XGBoost and SVM. This selection was based on both the literature review on machine learning

for safety predictions (section 2.5.4) and the literature review on combining system dynamics
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and machine learning (section 3.1.3). The decision tree algorithm was widely used in the literature

review on machine learning for safety predictions. It was also used to support the system dynamics

method in the paper by Duggan (Duggan, 2020). Random forest was even more widely used in the

first literature review and also outperformed all other models in several of the articles. It was also

combined with system dynamics by Edali and Yücel (Edali and Yücel, 2020). XGBoost was not

as widely used, but did outperform the other algorithms in all the studies it was used for (section

2.5.4). Additionally, XGBoost is a popular algorithm for tabular data (section 2.5.2). It was

therefore considered a good candidate for this thesis. AdaBoost was another boosting algorithm

which was tested. It was only used in two of the other studies. SVM was also widely used and

stands out to the other tree based algorithms. It’s regression version SVR was also used together

with MLP in a previous research by Roozkhosh with data from a system dynamics model (section

3.1.3). One algorithm type which was widely used within the literature was variations of neural

networks. One could have tested this instead of the AdaBoost algorithm, however it was decided

to not test any more algorithms due to the low performance.

Hyperparameters which were used for this thesis are shown in table 15. Selection of hyperpara-

meter values can be used to modify the machine learning algorithms and potentially increase their

performance slightly. Due to the low performance it was decided to not test several configurations.

To increase the performance, attention should rather be put on the dataset itself. If one were to

achieve good results in the future, one could consider testing several hyperparameters in order to

find the optimal model for this purpose.

5.2.2 Results

The machine learning predictions for serious accidents resulted in accuracies among 60-70% and

recall values around 80% (section 4.2.1). These results are considered unsatisfactory. The highest

accuracy and precision were achieved by AdaBoost. This is an interesting aspect as AdaBoost

was not included in many of the previous machine learning for safety predictions studies (section

2.5.4). Despite SVM obtaining less true negatives, the model provided the best recall value of

86%. Both of these models gave equal F1 values. The decision tree model gave the lowest values,

including a recall of 62.8%. This is reflected through significantly less true positives than the other

models, as seen in the confusion matrices. The low values can be a result of too small correlations

between the planning phase indicators and the construction phase indicators. As presented in

section 3.3.2, only eight planning indicators were given as input to the construction model. In the

correlation matrices it is evident that only PlansExecution.SchedulePressure, ProjectSchedule and

ConstructionDuration out of these eight have significant correlations to the number of accidents.

PlansExecution.EquipmentLiability also show some correlation to the number of accidents, while

the rest are very insignificant. For further work one could either include more of the planning

indicators as input to the construction indicators or adjust the functions for the construction
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indicators such that the planning indicators have a greater importance. Better results could also

possibly be achieved by calibrating the model, which was discussed in section 5.1.3.

Despite the low values, the recall value of 86% shows an important perspective. As presented,

recall measures how many of the actual positives that are predicted correctly (section 2.5.3). The

actual positives in this thesis are projects with accidents. Since one is specifically interested in

the positive instances, recall is a fitting measurement. With greater recall values, lower precision

values are tolerable for this type of thesis. This is because even though the machine learning model

predicts more values as positives which are actually negative, the most important aspect would

be to separate those who have a higher probability for accidents. This is similar to within the

healthcare industry, where it is considered better to have false positives than false negatives. As

seen in the confusion matrices, the machine learning models are better at predicting the positive

than the negative instances (section 4.2.1). Still, the recall value does not capture all aspects of

the predictions, and should be combined with other metrics. This is in accordance to Japkowicz

and Shah (Japkowicz and Shah, 2011). Overall, despite the low values a potential is seen in the

higher recall values and even better measurement values seem in reach for further work.

For the fatal accidents, the results are very different than the serious accidents. The accuracies are

extremely high, while the other metrics have values equal to zero (section 4.2.2). This implies a

very imbalanced dataset, which is true for the fatal accidents. As seen in the confusion matrices,

several of the machine learning models predict all values to be negative. This gives the high

accuracy values, as very few of the samples are actually positive. Both AdaBoost and the decision

tree model predicts some positive instances, but they are all actual negatives. Hence, there are no

true positives, resulting in precision, recall and F1 as zero. This shows the difficulties of predicting

fatal accidents. There is insufficient data to learn from as there are very few accidents. There is

also much uncertainty, which might imply that one should put the focus on predicting bad safety

performance in general and not whether a fatal accident will occur or not. This is in accordance

with the correlation matrices that also show very low values from the planning indicators towards

the number of fatal accidents (section 4.2.2). One action that could be considered is trying different

techniques to balance the dataset, as presented by Jo (section 2.5.1). Still, it can be argued how

prediction of fatal accidents is not the most realistic approach. As seen in the literature review

on machine learning for safety predictions (section 2.5.4), the objective of such research is often

either prediction of whether an accident will occur or prediction of the outcome. For further work,

one could predict the probability of accidents or other safety measurements, instead of predicting

whether a certain type of accident will happen. Potential safety measurements include loss-based

indicators such as the TRI rate or process-based indicators such as percentage compliance with

regulations or number of RUO.
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5.3 Applicability

The application of system dynamics and machine learning is discussed below. The first subsection

covers combining these two technologies, whereas the second subsection focuses on how this can

be utilized and bring value to the construction industry.

5.3.1 Combining System Dynamics and Machine Learning

In this thesis, a system dynamics model was used to create two synthetic datasets. These datasets

were then used as input for training multiple machine learning models. As described in section

2.5.1 using simulated data as input for machine learning is nothing new. Many problems of AI

are caused by limited data and synthetic data is a way of handling this. It enables the use of

variables that are possible but lack data (Japkowicz and Shah, 2011). Still, one of the dangers

with synthetic data is the risk of oversimplifying problems (section 2.6).

This approach of utilizing system dynamics to generate data that is used as input for machine

learning has been done in other studies previously. Chen et al. used system dynamics to model

a greenhouse and then machine learning to predict temperature and humidity based on the data

from the system dynamics model (section 2.6). Roozkhosh et al. also used data from their system

dynamics model as input for machine learning that further analysed the data (section 2.6). The

disadvantages and inherent biases of using synthetic data for machine learning should be recognized.

The quality of the system dynamics model has a significant impact on the precision and reliability

of the synthetic dataset. The assumptions made when creating the model will directly impact the

data collected from the model. It is important to take precautions to ensure that the synthetic

data accurately depicts the nuances and complexity of the real-world system.

Other studies have used machine learning as a way of creating and improving the system dynamics

model. An example is Abdelbari and Shafi who looked into using computation methods to create

a system dynamics model directly from data (section 2.6). This way of using machine learning

to improve the system dynamics model is a different approach of combining system dynamics

and machine learning. Here, the focus is on enhancing the system dynamics model, whereas in

other studies system dynamics is used first as a tool to aid or enable machine learning later. As

mentioned in section 2.6 a typical approach is using synthetic data to train a machine learning

model with the aim of using the model on real data in the future (Nikolenko, 2021). The machine

learning models are currently implemented in a way that would make it easy to use them on real

data if this was to become available in the future.
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5.3.2 Applicability Within Construction Projects

The system dynamics model can be used to spread knowledge about safety in construction projects

by demonstrating how various factors impact safety performance. This could be a valuable tool

for various individuals, such as project managers or other personnel within organizations who have

opportunities to influence safety management. The model could be used by itself to run the entire

project simulation or in combination with machine learning to focus on a certain parts of the

project. One option is modifying the model into a game in order to play with different values and

try to avoid any accidents. Another option is making a visual live representation of the model to

be utilized in presentations and other settings. For this to be trustworthy, calibration of the model

is required, and should be considered for further work.

To integrate the technology into ongoing projects, one could train a machine learning model on

historical data and insert real values from the project to predict safety performance. This way,

the safety predictions would serve as a leading indicator as defined by Kjellen and Albrechtsen

in section 2.2.1. It could be integrated into a dashboard that gave a warning if the project was

indicating bad safety performance. Ideally the indicator that affects the bad safety performance

the most could be exposed such that changes could be made within the process. The technology as

it is implemented now does not support uncovering which factor contributes the most negatively

in each project, but this could be a potential for further work. This way, actions could be taken

on the bad delivery or process so that a new and better value is inserted and the performance

indicator changes towards the better. This would serve as decision support during the project and

potentially increase the safety performance in projects. A challenge is how to measure the different

deliveries. For this technology to be effective, it would require automation of the transformation

from documents into indicator values. This requires more research and can be time consuming. A

potential is starting with the indicators that are proven to affect the safety performance the most,

and then expand the automation as new methods are developed.

For the technology to give more accurate predictions, one might have to include data further out

in the projects. This means including indicators from not only the planning phase, but also the

construction phase. The safety performance indicator could still predict future developments and

therefore serve as a leading indicator (section 2.2.1). With this perspective, the dashboard could

be used during the construction phase, providing warnings if the project has a high accident risk.

Including the construction phase data could result in more accurate predictions, as there would be

more information available. There is also more research on machine learning for safety predictions

during the construction phase (2.5.4). Hence there is more previous research to rely on in this

case, which could also lead to higher performance and bring more value into the projects.
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6 Conclusion

The objective of the thesis was to utilize system dynamics and machine learning to give an early

warning of projects with a high accident risk. For this research, a system dynamics model was

developed in order to simulate construction projects and generate datasets. Machine learning

models were trained and tested on these datasets in order to predict safety performance. The

conclusion is separated into three subsections; main findings, contributions and further work.

6.1 Main Findings

The first research question concerns how system dynamics and machine learning can be combined to

predict safety performance in construction projects. Consequently, a system dynamics model was

developed in order to simulate construction projects. It consisted of activities and indicators that

were based on theoretical findings. The model simulates one type of project, but was implemented

for easy extension and modification. Extreme condition- and sensitivity tests were performed and

showed reasonable trends between the planning indicators towards the number of accidents. The

system dynamics model was successful in producing datasets that served as the basis for machine

learning. Both serious and fatal accident rates were used, producing two separate datasets. Further,

the datasets were utilized to accomplish the training and testing of several machine learning models.

This was in accordance with the theory, where it was found that using synthetic data for machine

learning purposes is a common method when having insufficient data. Furthermore, a literature

review on system dynamics and machine learning showed that other studies had integrated these

two technologies in a similar matter. The machine learning predictions formed a leading indicator

which predicts the future safety performance in a project. The conducted approach has limitations

regarding the system dynamics model as it was not calibrated towards real values. Still, it can be

concluded that combining system dynamics and machine learning offers a promising approach to

predicting safety performance, particularly when real project data is not available.

The second research question regards the safety management implications of utilizing system dy-

namics and machine learning in construction projects. For the serious accidents dataset, while

some measurement values could be improved, there were notable positive aspects. In particular,

the recall rate of 86% demonstrated significant potential for identifying accident-prone projects.

It was discussed how lower precision values were tolerable together with higher recall values for

this domain. This is due to the objective of the thesis; giving early warnings for the projects with

a higher accident risk, being the true positives for binary classification. Further, the results of

the fatal accident predictions had low values due to the few occurrences of fatal accidents. This

implicates that other measurements could be more appropriate for assessing safety performance.

Examples are using a probability or rate, instead of predicting whether a certain type of accident

will happen. Moreover, the results imply that data from the planning phase might need to be

87



combined with additional data from later stages in the project to improve the predictions. To

conclude, the results implicate that predicting fatal accidents is less realistic due to the few occur-

rences. Still, the results show a potential of separating the projects with a higher risk of serious

accidents and therefore giving an early warning to improve safety performance within construction

projects.

6.2 Contributions

This thesis offers several contributions to theory. It provides a detailed system dynamics model for

the planning phase of construction projects, based on comprehensive theory and literature reviews.

This model provides understanding of the complex dynamics inherent in construction project

planning. Secondly, the thesis provides evidence that system dynamics and machine learning are

effectively combined for simulations and predictions. This demonstrates the potential for leveraging

these technologies for future research and other practical implications. Moreover, the thesis proves

that accident type is not an appropriate measurement for safety performance predictions, and that

other measurements should be considered. It also showcases how planning data might need to be

combined with construction phase data in order to obtain more reliable forecasts.

In terms of practical contributions, the system dynamics model and machine learning predictions

have potential to provide decision support towards construction projects. The combination of

technologies helps share knowledge about safety in construction projects by demonstrating how

different factors affect safety performance. Further, it has been discussed how the implemented

system dynamics model in combination with machine learning can be applied within construction

projects. This could be implemented as a dashboard to serve as a leading indicator for providing

decision support through the projects. However, to achieve this, the thesis acknowledges the need

to form different project documents into quantitative indicator values.

6.3 Further Work

There are two main perspectives which can be considered for further work; calibrating the model

with real data and extending the dataset for machine learning using parts of the construction

phase. Calibration of the model has been discussed in section 5.1.3. This could be done in order

to make the model more reflective of the real world and therefore producing more accurate data.

However, this type of data for an entire project is difficult to obtain. Hence, for further work it

is suggested to start with selected parts of the model where real data is available. In order to

calibrate the model one would have to collect real data, look for patterns in the data and then

adjust the indicators and how they interact in the model. Another option would be to conduct

interviews with industrial partners to obtain feedback for the model.
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The second aspect which could be considered for further work is including a subset of the construc-

tion phase data into the machine learning. This was discussed in section 5.3.2. For this thesis, the

construction phase data was removed so that the features only consisted in planning indicators.

As several of the evaluation metrics gave relatively low values, one could experiment with how

far into the construction phase one would have to include data from in order to get good results.

This would imply how far into the project one would typically be in order to predict future safety

performance, as the planning phase might be too uncertain. Despite including construction phase

data, the predictions would still serve as a leading indicator and could bring great value into the

project.

In addition to these two propositions, one could consider if more planning indicators should be

given to the construction phase part of the model. Also, the model could be tested more in detail

using sensitivity testing. Consequently, one would be able to examine the singular impact of each

indicator. For the machine learning, other algorithms and hyperparameters could be considered

in the future, if one were to obtain higher prediction values by adjusting the system dynamics

model.

89



References

Aamlid, J. S. (2023). Integrating System Dynamics Modelling and Machine Learning to Improve

Safety in Construction Projects.

Abas, N. et al. (2020). ‘Factors affecting safety performance of construction projects: A literat-

ure review’. In: IOP Conference Series: Materials Science and Engineering. Vol. 713. 1. IOP

Publishing, p. 012036.

Abdelbari, H. and Shafi, K. (2017). ‘A computational intelligence-based method to ‘learn’causal

loop diagram-like structures from observed data’. In: System Dynamics Review 33.1, pp. 3–33.

Abioye, S. O. et al. (2021). ‘Artificial intelligence in the construction industry: A review of present

status, opportunities and future challenges’. In: Journal of Building Engineering 44, p. 103299.

Aghaei, P., Asadollahfardi, G. and Katabi, A. (2021). ‘Safety risk assessment in shopping center

construction projects using Fuzzy Fault Tree Analysis method’. In: Quality & Quantity, pp. 1–

17.

Ajayi, A. et al. (2020). ‘Optimised big data analytics for health and safety hazards prediction in

power infrastructure operations’. In: Safety science 125, p. 104656.

Albrechtsen, E. et al. (2018). Forutseende sikkerhetsindikatorer i bygg-og anleggsbransjen.

Alsheibani, S., Cheung, Y. and Messom, C. (2018). ‘Artificial Intelligence Adoption: AI-readiness

at Firm-Level.’ In: PACIS 4, pp. 231–245.

Andreassen, E. et al. (2020). Forutseende sikkerhetsindikatorer - Digitalisering i bygg og anlegg.

https://prosjektnorge.no/wp-content/uploads/2020/12/Digitalisering-Forutseende-sikkerhetsindikatorer.

pdf.

Arbeidstilsynet (2023). Forskjellen p̊a HMS og SHA. https://www.arbeidstilsynet.no/hms/hms-i-

bygg-og-anlegg/forskjellen-pa-hms-og-sha/pageAsPdf.

Asilian-Mahabadi, H. et al. (2018). ‘A qualitative investigation of factors influencing unsafe work

behaviors on construction projects’. In: Work 61.2, pp. 281–293.

Baccarini, D. (1996). ‘The concept of project complexity—a review’. In: International journal of

project management 14.4, pp. 201–204.

Bala, B. K., Arshad, F. M. and Noh, K. M. (2017). ‘System dynamics’. In:Modelling and Simulation

274.

Birisci, E., Gursakal, N. and Celik, S. (2023). Synthetic Data for Deep Learning: Generate Synthetic

Data for Decision Making and Applications with Python and R. Berkeley, CA: Apress L. P.

Bonaccorso, G. (2017). Machine learning algorithms. Packt Publishing Ltd.

Borkenhagen, I. R. and Olsen, J. S. (2022). ‘Machine Learning as a Leading Indicator for Predicting

Safety Performance in the Construction Industry’.

Chen, T.-H. et al. (2022). ‘Develop a Smart Microclimate Control System for Greenhouses through

System Dynamics and Machine Learning Techniques’. In: Water 14.23, p. 3941.

Chen, Y.-T., Tu, Y.-M. and Jeng, B. (2011). ‘A machine learning approach to policy optimization

in system dynamics models’. In: Systems Research and Behavioral Science 28.4, pp. 369–390.

90

https://prosjektnorge.no/wp-content/uploads/2020/12/Digitalisering-Forutseende-sikkerhetsindikatorer.pdf
https://prosjektnorge.no/wp-content/uploads/2020/12/Digitalisering-Forutseende-sikkerhetsindikatorer.pdf
https://www.arbeidstilsynet.no/hms/hms-i-bygg-og-anlegg/forskjellen-pa-hms-og-sha/pageAsPdf
https://www.arbeidstilsynet.no/hms/hms-i-bygg-og-anlegg/forskjellen-pa-hms-og-sha/pageAsPdf


Choi, J. et al. (2020). ‘Machine learning predictive model based on national data for fatal accidents

of construction workers’. In: Automation in Construction 110, p. 102974.

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches.

Sage publications.

Dangerfield, B. (2020). System Dynamics. Springer.

Direktoratet for forvaltning og økonomistyring (2022a). Byggeprosessen. https://anskaffelser.no/

anskaffelsesprosessen/byggeprosessen/avklare-behov-i-bygg-og-anlegg.

— (2022b). Utførelsesentreprise - BAE. https://anskaffelser.no/hva-skal-du-kjope/bygg-anlegg-og-

eiendom-bae/gjennomforingsmodeller/utforelsesentreprise-bae.

Duggan, J. (2020). ‘Exploring the opportunity of using machine learning to support the system

dynamics method: Comment on the paper by Edali and Yücel’. In: Systems Research and
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Appendix

A Correlation Matrices

Serious Accident Rate Dataset

Figure A.1: Serious accidents correlation matrix for strategic definition stage
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Figure A.2: Serious accidents correlation matrix for concept development stage
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Figure A.3: Serious accidents correlation matrix for concept processing stage
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Figure A.4: Serious accidents correlation matrix for detailed engineering stage
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Fatal Accident Rate Dataset

Figure A.5: Fatal accidents correlation matrix for strategic definition stage
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Figure A.6: Fatal accidents correlation matrix for concept development stage
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Figure A.7: Fatal accidents correlation matrix for concept processing stage
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Figure A.8: Fatal accidents correlation matrix for detailed engineering stage

105




	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Description
	Project Scope
	Thesis Structure

	Theoretical background
	Project Management
	Project Definition
	Construction Projects
	Planning Construction Projects

	Safety Management in the Construction Industry
	Measuring Safety Performance
	Safety Factors

	System Dynamics
	Systems Thinking: System Dynamics
	Project Simulation
	System Dynamics and Safety Performance

	AI in Projects
	Machine Learning
	Synthetic Data
	Machine Learning Models
	Model Evaluation Metrics
	Machine Learning for Safety Predictions

	System Dynamics and Machine Learning

	Methodology
	Thesis Context
	Quantitative Research Method
	DiSCo Project
	Combining System Dynamics and Machine Learning
	Planning- and Construction Phase Models

	Literature Review
	Safety Factors in Construction Projects
	System Dynamics and Safety Performance
	Machine Learning for Safety Predictions
	System Dynamics and Machine Learning

	System Dynamics Model
	Planning Activities
	Indicators
	Implementation

	Machine Learning
	Datasets
	Preprocessing
	Train Test Split
	Selected Hyperparameters
	Feature Importance

	Evaluation of the Method
	Reliability
	Validity


	Results
	System Dynamics Model
	Machine Learning
	Serious Accidents
	Fatal Accidents


	Discussion
	System Dynamics
	Structure of the Model
	Indicators
	Validation of the Model

	Machine Learning
	Building the Machine Learning Models
	Results

	Applicability
	Combining System Dynamics and Machine Learning
	Applicability Within Construction Projects


	Conclusion
	Main Findings
	Contributions
	Further Work

	References
	Appendix
	Correlation Matrices


