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Abstract

The modern offshore petroleum industry with its large number of condition sys-

tems, generates vast amounts of data ready to be exploited. Empowered by advanced

monitoring systems and data analytics, predictive maintenance offers a promising ap-

proach to mitigating potential failures before they occur. A vital role in predictive

maintenance is anomaly detection techniques which identify abnormal behavior or de-

viations from established patterns in sensor data. The main objective of this thesis

focuses on implementing a deep learning-based anomaly detection method for predict-

ive maintenance in the offshore industry, with a specific emphasis on centrifugal pumps

used in water injection systems. These pumps are crucial in maintaining pressure, en-

hancing oil recovery, and optimizing production rates in offshore oil production rigs.

Due to their challenging operating conditions and harsh environments, they are prone

to failures and disruptions, thus necessitating a proactive maintenance strategy.

The thesis addresses the challenges associated with data quality and feature selec-

tion in industrial data, ultimately aiming to develop a robust and reliable anomaly

detection system. In light of the rapid growth of interest in generative artificial intelli-

gence, a variational autoencoder is benchmarked against traditional machine learning

algorithms on synthetic data. Based on domain knowledge of the system, the final

result is an ensemble of anomalies detected by the variational autoencoder in the mo-

tor and the flow rate exiting the centrifugal pump. The proposed framework aims to

reduce maintenance costs, minimize unplanned downtime, and improve overall opera-

tional efficiency in the offshore industry.
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Sammendrag

Den moderne offshore-petroleumsindustrien, med sitt store antall tilstandssystemer,

genererer enorme mengder data som er klare til å utnyttes. Med hjelp av avanserte

overv̊akingssystemer og dataanalyse, tilbyr prediktivt vedlikehold en lovende tilnærm-

ing for å redusere potensielle feil før de oppst̊ar. En viktig rolle i prediktivt vedlikehold

er teknikker for anomalideteksjon som identifiserer unormal atferd eller avvik fra eta-

blerte mønstre i sensordata. Hovedm̊alet med denne avhandlingen er å implementere

en metode for anomalideteksjon basert p̊a dyp læring, spesifikt rettet mot prediktivt

vedlikehold i offshore-industrien, med fokus p̊a sentrifugalpumper som brukes i van-

ninjeksjonssystemer. Disse pumpene har en viktig oppgave med å opprettholde trykk,

forbedre oljeutvinningen og optimalisere produksjonsraten p̊a offshore oljeplattformer.

P̊a grunn av de utfordrende driftsforholdene og de harde miljøene de opererer i, er de

utsatt for feil og forstyrrelser, og krever derfor en proaktiv vedlikeholdsstrategi.

Oppgaven tar for seg utfordringene knyttet til datakvalitet samt ”feature engin-

eering” i industriell data, for å utvikle et robust og p̊alitelig system for anomalide-

teksjon. I kontekst av den økende interessen for generativ kunstig intelligens, blir

en variational autoencoder sammenlignet med tradisjonelle maskinlæringsalgoritmer

p̊a syntetiske data. Basert p̊a domenekunnskap om systemet, er det endelige resul-

tet en samling av anomalier klassifisert av variational autoencoderen i motoren og

strømningshastigheten ut av sentrifugalpumpen. Det foresl̊atte rammeverket har som

m̊al å redusere vedlikeholdskostnader, minimere uplanlagt nedetid og forbedre den

generelle driftseffektiviteten i offshore-industrien.
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Introduction

Chapter 1

1 Introduction

This chapter will provide a thorough overview of the problem at hand and the objectives

of the thesis. The background and context of the problem will be discussed, setting the

stage for a clear understanding of the domain. The problem will be clearly defined and

the main research objectives of the thesis will be outlined. The structure of the thesis will

be presented, providing a roadmap for the chapters to come. By the end of this chapter,

there will be a comprehensive understanding of the problem and its research objectives.

1.1 Background

The offshore industry, with its numerous oil rigs and production platforms situated along

the coasts, stands as a testament to human innovation and our quest for energy resources.

These structures, often located in remote and harsh environments, are subjected to ex-

treme conditions, such as rough seas, corrosive saltwater, and constant exposure to un-

predictable weather patterns [1]. Given the demanding nature of this industry, the main-

tenance of equipment and machinery in this environment is a critical aspect of industrial

operations which accounts for a significant portion of the overall operational expenses. Un-

planned breakdowns and downtime of machinery can result in substantial production losses

and incur substantial financial implications. Hence, the implementation of maintenance

strategies aimed at minimizing unplanned failures and optimizing equipment performance

becomes crucial [2]. Traditional maintenance approaches based on fixed schedules or react-

ive responses are no longer sufficient and the offshore industry has recognized the need for

a more advanced and proactive strategy: predictive maintenance. By utilizing advanced

monitoring systems, data analytics, and artificial intelligence algorithms, predictive main-

tenance empowers offshore operators to anticipate and prevent pump failures before they

occur [3].

A key component in offshore oil production rigs are water injection centrifugal pumps.

The function of these pumps is to deliver high-pressure water into the reservoir to main-

tain pressure, enhance oil recovery, and optimize production rates [4]. Because of their

exposure to the relentless forces of the ocean, they face additional challenges such as salt-

water corrosion, abrasive particles in the fluid, and the constant vibrations caused by the

platform’s movement [1]. These factors accelerate the wear and tear on the pump compon-

ents, increasing the risk of unexpected failures and the subsequent disruption of critical

operations.

In recent years, the industrial landscape has undergone a profound transformation driven

by technological advancements. This paradigm shift entails the widespread adoption of

advanced technologies for automating industrial processes, fundamentally reshaping the

operational practices of industries. Concurrently, the increase of devices and sensors de-

ployed to monitor mechanical equipment in industrial environments has led to a significant
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increase in the generation of real-time data [3]. This abundance of data is systematically

streamed and stored on diverse production data platforms, enabling valuable insights into

the performance and condition of machinery. Exploiting this data for predictive main-

tenance purposes presents substantial prospects for mitigating downtime and optimizing

operational costs [5].

Predictive maintenance relies heavily on the technique of anomaly detection to identify

abnormal behavior or deviations from established patterns in system data. This critical

method empowers maintenance teams to swiftly address potential issues, effectively redu-

cing the risk of significant problems or disruptions to operations [2]. Anomalies within a

system can serve as indicators of faults, wear and tear, or suboptimal operating conditions.

Through the continuous analysis of sensor data streams, these anomalies can be detected

and effectively addressed.

Anomaly detection techniques employed in predictive maintenance encompass a range of

approaches, including both traditional statistical methods and advanced machine learn-

ing algorithms. These techniques leverage historical data, employ pattern recognition, and

utilize statistical models to identify deviations and outliers within the sensor data. By con-

tinuously monitoring and analyzing the data, anomalies can be detected, offering valuable

insights for maintenance decision-making [6]. However, the implementation of anomaly

detection for predictive maintenance presents a whole bundle of challenges. Ensuring high-

quality data is of utmost importance as accurate and reliable sensor data is essential for

effective anomaly detection. Moreover, the process of feature engineering plays a signific-

ant role in extracting meaningful information from the data to enhance the performance

of the anomaly detection models. To address these challenges, proper preprocessing of

sensor data is crucial. This involves cleaning the data, handling missing values, normal-

izing or scaling the features, and selecting relevant variables. A well-preprocessed dataset

lays the foundation for accurate anomaly detection and improve the overall effectiveness

of the predictive maintenance system [7].

This thesis aims to contribute to the field of predictive maintenance in the offshore industry

by developing an effective anomaly detection method specifically tailored for centrifugal

pumps. By harnessing extensive datasets derived from these pumps’ sensors, the approach

proposed in this thesis strives to thoroughly analyze and examine the complex patterns

and trends inherent in the data. This will involve detecting any deviations, abnormalities,

or potential faults in the pumps’ performance. By achieving this, the thesis seeks to estab-

lish a robust and highly effective predictive maintenance system capable of substantially

reducing maintenance costs and minimizing unplanned downtime.

1.2 Problem Definition

Predictive maintenance systems are essential for ensuring the smooth operation and re-

liability of critical equipment in the offshore industry. In the context of water injection

centrifugal pumps, the ability to detect anomalies at an early stage is vital in order to

initiate timely maintenance actions and prevent potential failures [8]. However, achieving

accurate predictions in this domain presents significant challenges due to the harsh oper-
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ating environment and the complexity of errors arising from anomalies in multiple sensors.

This thesis aims to delve into the potential of anomaly detection and discuss the obstacles

posed by data quality, in order to create a functional predictive maintenance system. The

system will utilize a generative deep learning model and leverage a large dataset comprised

of readings from multiple sensors. The ultimate goal is to effectively identify abnormal

behavior and deviations from normal operating conditions.

Traditionally, function-based approaches have been applied. However, these rely on pre-

defined thresholds or rules that may not adequately capture the complexity and variability

of the real world [3]. Given the complexity and size of industrial data, it is imperative

to adopt a model-based approach for anomaly detection. These models can capture in-

tricate relationships and patterns within the data, allowing for a more comprehensive

understanding of system behavior and the detection of non-linear or complex anomalies.

An important requisite for reliable anomaly detection is high-quality data. Industrial

data often face inherent challenges such as noise, inconsistencies, and outliers, which can

significantly impact the accuracy of anomaly detection systems [8]. As a result, achieving

effective anomaly detection in industrial settings necessitates careful consideration of the

magnitude of data cleaning and feature engineering. While extensive data cleaning and

feature engineering can enhance detection performance by mitigating noise and extracting

relevant features, there is a need to balance these efforts to preserve the natural signal and

patterns present in the data [9].

By leveraging deep learning models, predictive maintenance systems gain the ability to

automatically learn and adapt to evolving anomaly patterns, thereby enhancing their ac-

curacy and robustness [6]. However, the effectiveness of these models is dependent upon

the availability of big datasets of high quality, encompassing a wide range of normal and

anomalous behaviors. In the realm of anomaly detection, various algorithms and models

exist, spanning from simple statistical methods to more complex deep learning architec-

tures. Determining the most suitable approach necessitates a careful assessment of specific

needs and requirements. It is crucial to consider the trade-offs associated with increased

complexity in deep learning models during system construction. While machine learn-

ing algorithms are generally simpler in design and well-suited for addressing smaller-scale

problems, deep learning models possess the capacity to capture intricate patterns and

relationships due to their complex architecture [10]. Nonetheless, it is important to ac-

knowledge that deep learning methods typically demand greater computational resources,

making them computationally intensive. Thus, the selection of the optimal approach

must account for the desired level of complexity, available computational resources, and

the availability of labeled data [11].

The goal of this thesis is to design and implement an effective anomaly detection system

specifically tailored for predictive maintenance on centrifugal pumps. To achieve this, a

comprehensive analysis and processing of the sensor data will be conducted. By leveraging

advanced data processing techniques and deep learning, the aim is to develop a robust pre-

dictive model capable of accurately identifying and isolating anomalies while filtering out

redundant and noisy data. The proposed system aims to enhance the overall performance
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and reliability of predictive maintenance for centrifugal pumps by detecting anomalous

behavior.

1.3 Research Objectives

This study aims to address the problem definition and overcome its associated challenges

by focusing on the following objectives:

• Develop a comprehensive understanding of the offshore centrifugal pump

through analysis of its sensors - This objective aims to gain a deep understanding

of the sensor data generated by the offshore centrifugal pump. By analyzing the

sensor readings, the study aims to identify relevant features and parameters that

can provide valuable insights into the pump’s operational behavior. This objective

also involves applying appropriate methods and algorithms to handle various aspects

of data processing and preprocessing, ensuring the data is sufficient for effective

analysis and anomaly detection.

• Create new features that capture sensitive patterns valuable for a pre-

dictive maintenance system – With the goal of capturing sensitive patterns and

characteristics indicative of the pump’s condition and performance, new features

will be derived from the sensor data. These features are essential to ensure accurate

predictions from the anomaly detection models. This will in turn enhance the abil-

ity of the models to effectively detect and identify anomalies, thus enabling reliable

predictive maintenance strategies.

• Design and implement an anomaly detection framework through compar-

ing different models - This objective aims to select the optimal model capable

of effectively utilizing the hidden information in the input data. Through a rig-

orous benchmarking process, the strengths and weaknesses of each model will be

thoroughly assessed, ultimately leading to the development of the most reliable and

effective anomaly detection system. The chosen model will then be employed on the

sensor data in order to validate its performance and applicability in the industry.

By achieving these objectives, this thesis aspires to develop a predictive maintenance sys-

tem that will yield significant benefits, including reduced downtime, minimized operational

disruptions, and optimized maintenance efforts.

1.4 Outline

The outline of this thesis encompasses several key chapters that form a comprehensive

framework for the research study. Section 1 provided a background and motivation for

the study, identified the research questions and objectives, and highlighted the significance

of the research. Section 2 establishes the theoretical background and concepts utilized in

the thesis. Section 3 delves into the data collection process, sources, and characteristics,
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as well as the preprocessing and cleaning techniques employed. Section 4 outlines the

research design and approach, describes the variational autoencoder model architecture,

and explains the anomaly detection methodology employed. Section 5 presents the findings

of the study, accompanied by statistical analysis and visualizations from the benchmarking,

and compares the predicted anomalies with expected patterns. Section 6 provides an

interpretation of the results, relates them to the research objectives and acknowledges any

limitations. Section 7 offers a summary of the key findings, discusses their implications,

highlights the contributions of the study, and suggests aspects with promising potential

for future research. Finally, Appendix A and Appendix B include supplementary data

and code snippets for supporting documentation or references to enhance the reader’s

understanding of the research.
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Chapter 2

2 Theoretical Background

The introduction of this thesis presented the main goals and objectives of the research,

namely designing and implementing an anomaly detection model for the sensors monitor-

ing an offshore centrifugal pump in the context of predictive maintenance. This chapter

aims to establish a strong theoretical foundation by reviewing fundamental concepts and

theories in the areas of centrifugal pumps, predictive maintenance, time series analysis,

data processing, and anomaly detection. The chapter begins with an overview of centrifu-

gal pumps, followed by an exploration of predictive maintenance strategies. Subsequently,

an examination of big data, time series, and anomaly detection techniques, along with

data pre-processing methods, is presented. The focus then shifts to machine learning

and deep learning algorithms specifically tailored for predictive maintenance. Finally, the

chapter discusses evaluation metrics used to assess the performance and effectiveness of

these models. By systematically exploring these subchapters, a solid foundation is laid for

the subsequent chapters, which delve into the empirical analysis and practical applications

of the proposed framework.

2.1 Centrifugal Pump

A centrifugal pump is a hydraulic device that transforms mechanical energy into hydraulic

energy through the application of centrifugal force exerted on the fluid. Figure 1 showcases

this type of pump, emphasizing its key components. These pumps are the most widely

used and favored type for the transfer of fluids. The pump achieves this by utilizing one

or more impellers, also called driven rotors, to transfer rotational energy to a fluid and

thereby causing its motion. The impellers, which are rapidly rotating, receive fluid along

their axis and expel it along their circumference via centrifugal force generated by their

vane tips. The rotation of the impeller elevates both the velocity and pressure of the fluid

while guiding it toward the pump’s outlet. The pump’s casing is specifically constructed

to restrict the fluid flow at the inlet, direct it to the impeller, and subsequently regulate

and stabilize the fluid prior to discharge [12].
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Figure 1: Illustration of a centrifugal pump from two different angles.

2.1.1 Water Injection Pump

In the oil and gas sector, a centrifugal water injection pump is commonly employed in a

process known as Enhanced Oil Recovery (EOR). Here, the pump enhances production

and maintains reservoir pressure. This technique, widely used in both onshore and offshore

developments, involves the drilling of injection wells into a reservoir for water injection

into the reservoir to stimulate oil production. The injected water serves a dual purpose:

it replenishes depleted reservoir pressure and aids in the displacement of oil, facilitating

its movement within the reservoir. This water injection process plays a critical role in

optimizing oil recovery and maximizing overall production efficiency [4].

Figure 2: Illustration of a centrifugal pump connected to an electrical motor.
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In pump applications, electric motors or turbines are commonly employed as the primary

driving force. An electric motor is an electromechanical device that converts electrical

energy into mechanical energy. Figure 2 provides an illustration of a centrifugal pump

connected to an electric motor, demonstrating their typical arrangement. Additionally,

Figure 3 shows a standard electric motor commonly employed in such scenarios, highlight-

ing some of its components.

Electric motors consist of two fundamental mechanical components: the stator, which

remains fixed, and the rotor, which is movable. The motor also incorporates two essential

electrical components: magnets and an armature. These components form a magnetic

circuit, with one set attached to the stator and the other to the rotor. The mechanical

power output is delivered by the rotor as it is moving. In addition, the bearings play a

crucial role by supporting the rotor and enabling it to rotate freely on its axis [13].

In electric motors, a clear distinction is made between the Drive End (DE) and the Non

Drive End (NDE). The components located at the drive end are associated with the in-

put power, where electrical connections are made to provide the necessary current for

motor operation. The non-drive end, positioned opposite to the drive end, encompasses

components related to the mechanical output generated by the motor. Typically, this sec-

tion contains elements essential for coupling the motor to the driven equipment, ensuring

effective power transmission and mechanical functionality [14].

Figure 3: Illustration of an electrical motor with highlighted components.

In centrifugal pumps, the motor drives the rotation of an impeller located within the

pump casing. As the impeller rotates, its curved blades exert a force that propels the fluid

outward, resulting in its expulsion from the center of the impeller. This process is initiated
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as fluid enters the pump through the pump inlet, experiences acceleration by the impeller,

and generates centrifugal force, driving the fluid towards the outer edge of the impeller

[2]. Subsequently, the fluid passes through the volute, a curved chamber that gradually

expands in diameter, and then enters the outlet/exit nozzle. Within the volute and exit

nozzle, the fluid’s velocity decreases, converting its kinetic energy into pressure energy

and raising the fluid’s pressure level. These components are all illustrated in Figure 1 and

Figure 2. Finally, the water exits the pump through the outlet, and in the case of EOR,

is directed to the designated injection site within the oil well [12].

2.2 Predictive Maintenance

Predictive maintenance is an advanced maintenance strategy that aims to mitigate equip-

ment failures by predicting when they are likely to occur [15]. In contrast to conventional

maintenance approaches such as corrective or preventive maintenance, predictive main-

tenance is proactive and aims to execute maintenance tasks only when they are required,

rather than at predetermined intervals or after an equipment failure has already transpired.

The corrective maintenance approach entails addressing equipment issues and performing

repairs solely in response to failures or breakdowns. This strategy aims to minimize unne-

cessary maintenance tasks by deferring actions until they are deemed absolutely necessary.

However, this approach is often considered the most expensive as it requires maintaining a

substantial inventory of spare parts and a skilled workforce capable of promptly replacing

failed components. Moreover, corrective maintenance can result in significant machine

downtime, leading to reduced production output and potentially impacting product avail-

ability [16].

The notion of preventive maintenance involves performing routine maintenance tasks on

equipment in an effort to prevent system failures, based on either some collected data or

a fixed time interval. A specific type of preventive strategy is the Condition Based Main-

tenance (CBM) approach, which executes maintenance tasks based on the equipment’s

current condition [6]. This approach involves monitoring different equipment conditions,

such as vibration and temperature, and performing maintenance tasks when specific trig-

gers or thresholds are met. While this approach can be effective in preventing system

failures and minimizing machine downtime, it can also lead to unnecessary maintenance

tasks and increased costs.

Predictive maintenance leverages data analysis tools and advanced algorithms to detect

abnormalities and potential defects using both historical and real-time data [6]. By identi-

fying these issues, maintenance can be performed proactively, preventing system failures

while minimizing unnecessary maintenance and associated costs. The advent of the In-

ternet Of Things (IoT) has led to the collection of vast amounts of sensor data, enabling

even more sophisticated predictive maintenance strategies [8]. Machine learning and Ar-

tificial Intelligence (AI) are also being utilized to analyze this data and identify patterns

that would be difficult or impossible for humans to detect. One example of this is the

use of deep learning methods for failure prediction, where the system’s past data is auto-

matically learned to estimate the probability of equipment failure [6]. Additionally, the
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increased availability of sensor data has facilitated the development of automated Fault

Detection Diagnosis (FDD) approaches, resulting in more efficient and effective predictive

maintenance strategies [15].

There are three main categories of predictive maintenance methods: model-based, knowledge-

based, and data-driven [6]. Model-based methods can detect equipment faults or anomalies

and enable maintenance scheduling in advance [8]. Data-driven approaches involve mon-

itoring real machinery conditions to detect abnormalities or signs of degradation. Based

on extensive historical data, models can be generated during the training stage and data-

driven models will be generated [6]. A knowledge-based system consists of rules and facts

representing expert domain-specific knowledge to detect, classify, and locate faults [5].

In conclusion, predictive maintenance is a more efficient and cost-effective strategy com-

pared to corrective or preventive maintenance. It enables organizations to optimize main-

tenance activities, minimize downtime, and reduce repair costs [16].

2.2.1 Predictive Maintenance in the Industry

Predictive maintenance can be leveraged in various ways to enhance maintenance strategies

and minimize equipment downtime. One common approach is to develop systems that can

detect equipment faults or anomalies in real-time or near-real-time, enabling maintenance

tasks to be scheduled ahead of time, reducing repair costs, and minimizing equipment

downtime [6]. Another approach involves predicting the remaining useful life of equipment

by monitoring machinery conditions and identifying signs of degradation [17]. Predictive

maintenance can also optimize maintenance schedules and activities by analyzing equip-

ment data to identify trends, patterns, and potential issues. By doing so, organizations

can improve maintenance resource allocation and enhance the efficiency of maintenance

activities [5]. Lastly, predictive maintenance can improve equipment reliability and re-

duce the likelihood of equipment failure by identifying potential issues early and taking

corrective actions before they escalate into more significant problems [8].

2.2.2 Predictive Maintenance of Centrifugal Pumps

Despite their robustness and widespread use in various industries, centrifugal pumps are

susceptible to common failures. One prevalent issue is cavitation, which occurs when

the liquid in the pump experiences reduced pressure, leading to the formation of vapor

bubbles. Cavitation causes erosion, pitting, and damage to the impeller, ultimately com-

promising the pump’s efficiency and performance [18]. Bearings, which play a vital role in

supporting the shaft are prone to wear and damage over time [2]. Bearing problems are not

limited to centrifugal pumps, but also affects motor performance. Factors like insufficient

lubrication, contamination, and excessive loads can contribute to bearing failure, resulting

in noise, vibration, and reduced motor efficiency [19]. The high rotational speeds of the

impellers make them vulnerable to damage from solid particles, including sand and debris,

present in the pumped fluid. To mitigate this, filters are often installed at the pump inlet

to remove unwanted contaminants and particles from the fluid before entering the system
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[20]. Furthermore, the motor can encounter problems such as contamination, corrosion,

and leakages, which can adversely affect its performance [38]. Electrical motor malfunc-

tions and damage may also arise from issues like short circuits, open circuits, or phase

imbalances, posing risks to the motor’s operation [38]. Moreover, inadequate cooling or

excessive loading can result in overheating of the motor, leading to insulation degradation,

winding damage, and ultimately motor failure [19].

These issues can result in downtime, increased maintenance costs, and reduced productiv-

ity. To prevent failures, it is important to detect anomalies in the data as early as possible.

A FDD system can be highly effective in improving process quality [8]. The majority of

these faults can be identified by monitoring the temperature and vibration levels of both

the pump and motor. Monitoring the differential pressure across the filter provides a

valuable indication of its performance, as an increase in pressure drop occurs when con-

taminants accumulate and obstruct the filter [21]. In the case of motors, measuring the

RPM serves as an effective indicator of their health and performance [22]. By closely

monitoring these physical parameters, it is possible to detect signs of equipment degrad-

ation and schedule maintenance activities before a failure occurs [2]. This approach can

help reduce repair costs, minimize equipment downtime, and improve the reliability and

efficiency of centrifugal pumps.

2.3 Big Data

The term ”Big Data” refers to datasets that are characterized by their vast size and

complexity, which surpass the capabilities of conventional database software tools in terms

of storage and analysis. Its emergence can be attributed to the challenges encountered in

managing, storing, analyzing, and visualizing large and intricate data sets that cannot be

processed within a reasonable time frame using traditional systems [23]. The definition

of Big Data is often associated with the ”three Vs” - Volume, Velocity, and Variety [24].

Volume pertains to the immense scale of data, measured in terabytes, petabytes, exabytes,

and beyond. Velocity represents the speed at which data is generated and its input and

output rate. Meanwhile, Variety describes the various types of data generated and their

inherent diversity [25].

The widespread use of technology across multiple industries, coupled with the rapid ex-

pansion of the IoT, has led to a significant increase in data generated by individuals and

organizations [26]. Big Data has the potential to play a crucial role in various domains,

including engineering, healthcare and finance. Analyzing this vast amount of data can

provide valuable insights into customer behavior, market trends, and operational perform-

ance for companies [24]. It can also enable real-time insights and even predictive analytics

to assist companies in making informed decisions. However, analyzing behavior in in-

dustry domains can be a complex and expensive endeavor [27]. Additionally, monitoring

and managing the volume of data collected by organizations can become overwhelming.

Despite these challenges, the potential benefits of utilizing Big Data are enormous for

various industries.

Big Data processing, acquisition, and availability can be classified into two distinct categor-
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ies: batch processing and real-time processing [24]. Batch processing is ideal for handling

large data volumes as it breaks down the data into smaller groups. Because this processing

method collects generated data and stores it until a scheduled time when it is split and

processed, it is said to work with static data. To manage the high volume of data, batch

processing utilizes parallel processing frameworks such as MapReduce [24]. MapReduce

divides large data processing tasks into smaller sub-tasks that can be executed simul-

taneously across multiple servers in a cluster. This model consists of two phases: Map

and Reduce. The Map phase converts input data into key-value pairs, while the Reduce

phase aggregates values associated with each key to generate the final output. This type

of data processing facilitates high scalability. Hadoop, an open-source framework, imple-

ments the MapReduce programming model for processing large data sets across clusters

of computers [27]. Apache Spark is another open source framework for handling big data.

It is a popular alternative to Hadoop and is usually considered to be more efficient than

Hadoop’s MapReduce function because of its in-memory approach. [24]. Real-time pro-

cessing, on the other hand, involves processing data as it is generated or received, and is

a good solution when the velocity of the data is high [24]. This approach requires data

to be processed quickly, as the data must be analyzed and acted upon in real-time. This

approach typically involves using distributed systems, parallel processing, and streaming

platforms, such as Apache Kafka or Apache Storm, to handle large volumes of data in

real-time [24].

Batch processing is typically the most efficient method for processing Big Data, as it can

handle large volumes of data, making it better suited for training and predicting models.

However, it may not be practical for domains that require a rapid response time. Real-time

processing is necessary for many applications that deal with continuous input, processing,

and output of data. Real-time processing offers faster response times, more accurate

insights, and the ability to make quick decisions based on real-time data. However, real-

time processing often comes at the expense of complexity and cost. To take advantage of

the benefits of both methods, a hybrid approach can be generated, which combines the

results of batch processing and real-time processing. This approach makes data acquisition

and analysis more complex [24].

2.4 Time Series and Anomaly Detection

A time series is a sequence of data points or observations collected and recorded over a

period of time t [28]. It represents the values of a variable or a set of variables xt at

different points in time t [29]. Time series data can be generated from any variable that

changes over time and finds applications in various industries [30].

Time series can be classified as either discrete or continuous. In a discrete time series, the

observations are recorded at fixed intervals, creating a set of discrete observation times

denoted by T0. For example, weather temperature may be measured hourly or the heart

rate of a patient may be recorded every minute. On the other hand, a continuous time

series involves observations recorded for every time instance over a given period of time

[31]. Additionally, time series can be either univariate, involving a single variable, or
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multivariate, involving multiple variables.

Time series analysis and modeling are specific methods used to study time series and

extract meaningful insights. Given the typically large size and high dimensionality of time

series data, time series analysis has become an important and challenging topic in machine

learning and data mining [32]. By analyzing a time series, one can identify the factors

that influence a particular variable during a specific time period. One of the most common

applications of time series analysis is forecasting future trends and anomaly detection.

2.4.1 Time Series Components

Time series data exhibit changes over time that can be attributed to various factors or

causes. These factors can be broadly categorized into three major types: seasonality,

trends, and cycles [28].

Seasonality: Seasonal variations refer to short-term changes in the data that exhibit a

consistent pattern over the long-term view of the time series. Seasonality can be observed

at different intervals, such as hourly, daily, weekly, monthly, or quarterly. It represents

recurring patterns that occur within specific time periods.

Trends: The trend of a time series indicates the long-term tendency of the data to

gradually increase or decrease over an extended period. The direction of the data does

not have to be strictly ascending or descending for a time series to exhibit a trend. Even

if the recorded data fluctuates over time, the overall behavior of the time series should

demonstrate a consistent tendency.

Cycles: Cyclic variations refer to fluctuations in a time series that occur within a longer

period, often over a span of one year or more, due to recurring causes. Examples of cyclic

variations include seasonal changes and business cycles. These patterns repeat at regular

intervals and can have a significant impact on the behavior of the time series.

In addition to seasonality, trends, and cycles, time series data may also contain random or

irregular movements. These unpredictable variations are typically caused by unforeseeable

and uncontrollable factors, such as natural disasters or wars [31].

A time series can therefore be decomposed into three components: the trend-cycle com-

ponent (Tt), the seasonal component (St), and the remainder (Rt). The trend-cycle com-

ponent represents the long-term behavior of the data, the seasonal component captures

the repetitive patterns, and the remainder accounts for all the variations that cannot be

explained by the other two components. There are two common approaches to combine

these components: additive decomposition (yt = Tt + St + Rt) and multiplicative decom-

position (yt = Tt · St · Rt) [33]. Figure 4 visually represents the extracted components of

a time series.
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Figure 4: An illustration of components extracted from a time series.

2.4.2 Auto-Correlation and Cross-Correlation

Correlation is a statistical term used to determine the relationship between two variables,

and this concept is also applicable in time series analysis. Since time series data are

chronologically ordered, there is a high likelihood of correlations between observations.

There are two aspects of measuring and analyzing correlations in time series. Cross-

correlation involves comparing two different time series to explain the variations of the

time series. Auto-correlation refers to the correlation between the data points in a time

series and their lags, which shows how the past may affect the future. The auto-correlation

function for a time series Xt at lag h is given by:

ρx(y) =
γx(h)

γx(0)
= Cor(Xt+h, Xt) (1)

where γx(h) = Cov(Xt+h, Xt) represents the autocovariance function [31].

2.4.3 Time Series Derivatives

In many cases, analyzing the derivatives of a time series can provide valuable insights into

the trends exhibited by the series. The derivative of a function f(x) represents the rate at

which the function changes with respect to its independent variable x. Mathematically, it

is defined as the limit of the difference quotient as the change in x approaches zero [34].

The derivative can be expressed using Equation 2.
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f ′(x) = lim
∆x→0

f(a + ∆x) − f(a)

∆x
(2)

The derivative of a function at a specific input value signifies the slope of the tangent

line to the graph of the function at that point. This tangent line serves as the best

linear approximation of the function in the vicinity of the given input value [35]. Figure 5

illustrates three examples of a function f(x) and its corresponding derivative f ′(x).

Figure 5: Three examples of different functions and its corresponding derivative.

When working with discrete data, such as time series, it is common to calculate a dis-

crete derivative as an approximation of the derivative of a function. A discrete derivative

involves using discrete data points instead of an analytical function to estimate the deriv-

ative [35]. The discrete derivative of a time series f with length n is defined in Equation 3,

where f(i) represents the i− th datapoint of a time series.

f ′(i) = f(i) − f(i− 1), i = 1, 2, 3, ..., n (3)

The discrete derivative provides information about the overall shape or trend of the func-

tion rather than specific values at individual points [36]. It reveals what occurs in the

vicinity of each point. In the context of time series, the discrete derivative captures the

behavior of the series before and after a particular ”time” point [36]. Analyzing the dis-

crete derivative of a time series has proven to be effective in reducing noise in industrial

signals, detecting changes in the time series, and contributing to anomaly detection [35].
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2.4.4 Time Series Anomaly Detection

Time series anomaly detection is the process of identifying unusual or abnormal behavior in

time series data. Even though abnormal patterns occur rarely in normal time series data,

they can contain important information [30]. These anomalies may indicate underlying

issues, such as equipment failure, fraudulent activity, or unusual trends that require further

investigation or action [29]. However, there is no universally agreed-upon definition of

abnormal data. In statistics, data points that deviate from the sequence distribution and

are far from other objects are considered abnormal, while in regression models, data points

that significantly diverge from the designated model are deemed abnormal [29].

There are three main categories of time series outlier detection algorithms: statistics-

based, clustering-based, and classification-based [30]. Statistical methods are the most

widely studied and assume that the data follows a specific statistical distribution, such

as normal or Gaussian. They use statistical metrics like mean, standard deviation, and

percentiles to set a threshold for identifying outliers [29]. Clustering-based methods group

similar data points into clusters based on their characteristics, then identify any points

that do not belong to any cluster or belong to a significantly different cluster as potential

outliers [30]. K-means and neural network algorithms are commonly used for clustering.

Classification-based methods involve training a machine learning model to classify data

points as either normal or anomalous based on their features. Decision trees, Support

Vector Machine (SVM), and neural networks are all examples of classification-based outlier

detection methods [30].

Each of these methods has its advantages and disadvantages, and the choice of method

depends on the specific application and characteristics of the time series data.

2.5 Data Pre-Processing

In the context of anomaly detection for industrial time series data, data pre-processing

plays a vital role. This critical step encompasses essential tasks such as identifying and

removing noise, handling inconsistencies, and addressing missing values [37]. One of the

challenges associated with industrial data is the potential for high levels of class imbalance,

where the distribution of normal versus abnormal data varies considerably [38]. In such

cases, it may be difficult to obtain sufficient training data with which to train an anomaly

detection algorithm to identify the rare instances of abnormal data.

Moreover, industrial data that is collected via sensors may exhibit irregular time intervals,

which can pose challenges for analysis and modeling. Many methods require regular time

intervals for prediction or feature engineering, but such regularity may not be present in

the original data. One possible approach to addressing this issue is to resample the data

to a desired frequency, which can be accomplished via either upsampling or downsampling

[38]. Both methods commonly involve taking the minimum, maximum, or average value

of the subset and may involve some data loss.

17



Theoretical Background

2.5.1 Missing Value Handling Techniques

Another issue that can arise in industrial data collected via sensors is the presence of

missing values, which can occur when a sensor fails to provide new data for a certain

period of time. Missing values can be classified into three types: Missing Completely

at Random (MCAR), Missing at Random (MAR), and Missing Not at Random

(MNAR) [37]. In the MCAR scenario, the probability of missing data is unrelated to

any other variables in the dataset, whether observable or unobservable. MAR implies

a systematic connection between missing values and the observed data, indicating that

missing values are dependent on the observed data rather than the missing data itself.

In contrast, MNAR occurs when the missing mechanism is related to the unobserved

data, meaning that the propensity of missing data depends on the missing data itself [39].

Addressing MNAR is particularly important, as it can lead to misleading results if not

handled properly, requiring assumptions to be made about the nature of the missing data

in order to recover it. Such assumptions are not necessary for MCAR or MAR.

There are a lot of different techniques used for recovering missing data in time series. The

most convenient method is to remove observations containing missing values and conduct

the analysis using the remaining available data. However, this method may lead to loss

of data and biased results if the missing mechanism is not MCAR or the percentage

of missing values is high. Typically, if the percentage of missing values are as low as

5% this method might be applicable [37]. Augmentation and imputation are two other

techniques for handling missing values. Augmentation involves incorporating assumptions

into the parameter estimates, while imputation involves filling missing values with mean

or median values or using the last/next observed value [39]. Another approach is to use

the last observed value before the missing value (forward fill) or the next observed value

after the missing value (backward fill) to fill the missing value. Interpolation is a method

that estimates missing values based on neighboring observations. Researchers have also

explored using machine learning models or neural networks to impute missing values [40].

The choice of method ultimately depends on the characteristics of the data, the pattern

and amount of missing values, and the goals of the analysis.

2.5.2 Handling Noisy Data

Noise refers to irrelevant or random fluctuations in the data that do not represent mean-

ingful patterns or information [41]. Industrial data is susceptible to noise due to various

factors such as measurement errors, environmental interferences, or data collection limit-

ations. Noise can obscure the underlying trends or relationships within the data and can

lead to inaccurate analysis or misleading conclusions [7].

To eliminate noise from data, various techniques can be employed [41]. One common

approach is to apply smoothing techniques to the time series data, such as moving averages

or exponential smoothing. These methods help to reduce noise by creating a smoother

representation of the data. An alternative approach is signal normalization, which involves

scaling the data to a standardized range. This technique assists in reducing the impact of
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noise.

In the case of noisy sensor data, applying filters can improve the signal-to-noise ratio

(SNR). Filters are designed to attenuate the amplitudes of high-frequency waves in the

data while preserving the low-frequency components [42]. The underlying assumption is

that high-frequency oscillations in the data are either random errors or not relevant to

the specific analysis being performed after smoothing. By applying a filter, the focus

can be placed on the low frequencies without being distracted by high-frequency noise

and other irrelevant fluctuations. Essentially, smoothing allows for concentration on the

low-frequency components by providing an estimate of the observation values in the time

series without the presence of noise and undesired high frequencies [43].

In the context of digital filters, each sample of the output waveform y is calculated as a

weighted sum of several samples of the input waveform x. The mathematical operation

used for this calculation is called convolution. Equation 4 illustrates the formula for a

digital filter.

y(t) =
N∑

n=0

h(n)x(t− n) (4)

Here t represents the analysis point in time, n ranges from 0 to N , and h(n) denotes the

impulse response [30]. The specific behavior of a filter, i.e., how the output differs from

the input, depends on the values assigned to the impulse response h(n). Different filters

can smooth the input waveform or enhance fast variations, depending on their impulse

response [42]. Figure 6 illustrates four common types of filter: low-pass, high-pass, band-

pass, and band-reject.

1. Low-pass Filter: A low-pass filter selectively permits the passage of low-frequency

components while reducing the amplitude of high-frequency components. Its primary

purpose is to eliminate or attenuate high-frequency noise from a signal while pre-

serving the lower-frequency content [43].

2. High-pass Filter: A high-pass filter allows high-frequency components to pass

through while reducing low-frequency components. This filter helps emphasize the

singal’s high-frequency content, making it suitable for applications where rapid

changes in the singal are of interest [43].

3. Notch Filter (Band-reject Filter): A notch filter is designed to suppress or

attenuate a specific range of frequencies while allowing all other frequencies to pass

through with minimal alteration. It is particularly effective in eliminating noise or

interference that is caused by specific frequencies or a narrow frequency band [42].

4. Band-pass Filter: A band-pass filter allows a specific range of frequencies to pass

through while reducing frequencies outside that range. It is commonly employed

to extract signals within a particular frequency band of interest while suppressing

unwanted frequencies [42].
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Figure 6: The effects of common filter types on an input signal: Low-Pass, High-Pass,

Band-Pass, and Band-Stop.

Besides the four filters discussed in this section, signal processing offers a wide range of

filter types that can be applied to signals for noise reduction and trend enhancement.

The choice of filter depends on the particular requirements of the application and the

characteristics of the signals. Some additional filter types include Gaussian filters, wavelet

filters, and Butterworth filters, among others. Each filter type has its own strengths and

weaknesses, and selecting the most suitable one involves considering factors such as the

nature of the noise, desired frequency response, computational complexity, and real-time

processing constraints. By carefully selecting the appropriate filter type and configuring

its parameters, signal processing practitioners can effectively manipulate and enhance the

signals according to their specific needs [44].

2.6 Machine Learning

In recent years, the increased accessibility to computational power has made data-driven

machine learning algorithms more relevant in multiple domains [45]. The field of tradi-

tional machine learning algorithms can be classified into three categories: supervised-,

unsupervised- and reinforcement learning. In supervised learning, the goal is to learn the

relationship between input and output variables, where the target output is known. Given

a feature input x, the output y is assumed to be a function f plus an error term e, which is

randomly sampled from a normal distribution with zero mean. The objective of machine

learning is to accurately estimate the function f(x) in order to make accurate predictions

for new input data [45]. In contrast, unsupervised learning involves learning without any

explicit supervision or knowledge of the output. Lastly, reinforcement learning differs from

supervised and unsupervised learning by focusing on learning through interaction with an

environment rather than relying on labeled data or discovering patterns in unlabeled data.

It involves an agent making sequential decisions to maximize cumulative rewards, learning

through trial and error to optimize behavior in dynamic environments [46].

An ideal machine learning model would have perfect predictions that match the actual

targets, with zero error. However, in practice, there are two types of errors that affect the
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accuracy of the model: reducible and irreducible errors. Reducible errors can be minimized

through parameter tuning and other statistical techniques, while irreducible errors are due

to inherent noise in the data and cannot be eliminated. The goal of machine learning

is therefore to minimize the reducible error term, which can be addressed, in order to

maximize the accuracy of the model [47].

2.6.1 Isolation Forest

The Isolation Forest (IF) algorithm is a widely used tree-based approach for anomaly

detection. Unlike other methods that rely on distance or density to detect anomalies, the

IF algorithm focuses on isolating them. It operates under the assumption that anomalies

are ”few and different” compared to normal data points, making them easier to identify

[47]. The algorithm constructs an Isolation Forest (iForest) by creating multiple Isolation

Tree (iTree)s. Each iTree recursively divides the dataset until each data point is uniquely

isolated from the others [48]. Anomalous points tend to be closer to the root of the tree,

resulting in shorter average path lengths within the tree structure. Therefore, data points

with shorter average path lengths are more likely to be identified as anomalies [49]. A

high-level overview of this logic is depicted in Figure 7.

Figure 7: Isolation Forest partitions, normal vs anomalous point.

Given a data sample denoted as X, the IF algorithm initiates the construction of an iTree

T by following the subsequent steps:

1. Randomly select an attribute q and split value p

2. Partition the data sample X into two subsets based on the condition q < p. The

resulting subsets represent the left and right subtrees of the current node in T .

3. Repeat steps 1 and 2 recursively until either the current node contains only one

sample or all values at the current node are identical.

In order to produce an iForest, these steps are repeated several times to create multiple

iTrees [50]. The algorithm then calculates an anomaly score for every signle data point x,

based on a sample size n as shown in Equation 5.

s(x,m) = 2
−E(h(x))

c(m) (5)
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In this equation, h(x) represents the path length of the data point x in a given iTree, and

E(h(x)) denotes the expected length of this path across all the trees. c(n) represents the

average value of h(x) given a sample of size n [50]. The path length h(x) is defined as

the number of edges that x traverses from the root node to its leaf node. Based on these

characteristics, the IF algorithm determines whether a data point is an anomaly or not

using the following criteria [50]:

1. If the score s(x,m) is in close proximity to 1, it indicates a high likelihood that the

data point x is an anomaly.

2. Conversely, if the score s(x,m) is less than 0.5, it suggests that the data point x is

likely to be a normal point.

While the IF algorithm is a powerful and effective method for anomaly detection, it is not

without limitations, as is the case with all machine learning models. There are two well-

known challenges associated with this algorithm: masking and swamping [51]. Masking

occurs when there are large and dense clusters of anomalies, making it more difficult for

the algorithm to isolate individual points. As a result, longer path lengths are observed,

reducing the accuracy of anomaly detection. On the other hand, swamping happens when

normal instances are mistakenly identified as anomalies. This can occur when anomalies

are located in close proximity to normal points, leading to longer path lengths and potential

misclassifications [51]. To mitigate these challenges, sub-sampling techniques are often

employed. Sub-sampling helps control the data size and allows the algorithm to focus on

different sets of anomalies in each iTree. By doing so, the algorithm can better isolate

anomalies and improve overall accuracy in detecting anomalies within the dataset [52].

2.6.2 Generalization

In the field of machine learning, the concept of generalization refers to a model’s ability

to accurately estimate unknown test data that was not seen during training [10]. Poor

generalization often leads to either overfitting or underfitting. Figure 8 visually illustrates

these concepts, including underfitting, a good fit, and overfitting. The ideal scenario is

achieving a good fit, where the model most accurately estimates new instances.

Figure 8: Example of underfitting, a good fit and overfitting.

22



Theoretical Background

Overfitting occurs when a model learns patterns that are too specific to the training

data, leading to poor estimation on new, unseen data. In these scenarios, the model is

trained using an overly complex approach, resulting in high variance but low bias in its

estimation. To detect overfitting, it is common to compare out-of-sample (test set) and

in-sample (training set) errors since an increase in out-of-sample error while maintaining

a low in-sample error is an indication of overfitting.

Conversely, underfitting occurs when a model is too simplistic or lacks the necessary

complexity to effectively capture the underlying patterns and relationships in the data.

This leads to low variance and high bias in the model. Underfitting is characterized by the

model’s inability to learn from the training data. It is important to note that underfitting is

also known as over-generalization, as the model may not be able to capture the complexity

of the data and therefore generalize poorly [45]. The causes for under- and overfitting are

summarized in Table 1.

Name Cause

underfitting low variance, high bias and low complexity

overfitting high variance, low bias and high complexity

Table 1: Overfitting and underfitting.

Achieving the optimal balance between overfitting and underfitting is a challenging task

that requires careful consideration of the trade-off between optimization and generalization

[10]. Optimization involves fitting the model to the training data to minimize errors, while

generalization techniques are employed to avoid the pitfalls of overfitting.

2.7 Deep Learning

The field of deep learning represents a promising area within machine learning that fa-

cilitates the analysis of perceptual data. This approach utilizes deep artificial neural

networks, characterized by multiple processing layers, to extract patterns and structures

from large datasets [45]. Each layer in the neural network learns a specific feature from the

data, which is subsequently used by higher-level layers to learn more abstract concepts.

Deep learning has witnessed significant growth in recent years, primarily attributed to its

success in tackling complex artificial intelligence problems through various deep learning-

based frameworks [53]. Notable examples of such frameworks include Autoencoder (AE)s,

which were first introduced by Hinton and the PDP group in the 1980s to address the

issue of ”backpropagation without a teacher” by utilizing input data as the teacher [10].

Deep Learning and its position in the domain of AI is illustrated in Figure 9.
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Figure 9: Artificial Intelligence with its subfields.

2.7.1 Feed Forward Neural Networks

It can be argued that feed forward artificial neural networks, also known as multilayer

perceptrons, serve as the foundational building blocks for deep learning models [10]. The

primary objective of any neural network, much like other machine learning techniques, is

to deduce the underlying function of the data-generating process, denoted as y = f(x),

based on a given set of inputs and outputs x and y, respectively [54]. A feed forward neural

network can be perceived as a series of layered functions that transform input data into

output data, where each link in the chain represents a non-linear function that modifies

the data. The number of layers in the network, represented by the variable L, determines

the depth of the model, while the network’s topology is determined by the composition

and arrangement of these layers [55].

f(x; θ) ≈ ŷ ≈ f(x) = y (6)

f(x; θ) = fL(fL−1(...f2(f1(x; θ1)))) (7)

In order to ensure that the resulting learned model, denoted as f(x; θ), provides the

most accurate estimates of the target function f , the parameters θ of the neural network

are adjusted and optimized. This process can be mathematically expressed as shown in

Equation 6. The learned function f can be represented as described in Equation 7, where

fl denotes the transformation through layer l [10]. The multilayer perceptron can be

understood as a series of successive transformations, where each layer performs a specific
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operation. An illustration of a feed forward neural network with hidden layers is illustrated

in Figure 10.

Figure 10: A Feed forward Neural Network.

A neural network comprises three distinct types of layers, namely the input layer, output

layer, and hidden layer. The input layer is responsible for accepting and transmitting the

input data without making any modifications to it. Subsequently, a series of hidden layers

(l = 1, ..., L− 1) are added, where the data is subjected to specific transformations based

on the activation function [45]. Various activation functions are presented and explained in

Section 2.7.6. Finally, the output layer is connected to the last hidden layer and transforms

the signal to produce the final prediction, denoted as ŷ.

Neural network layers are composed of individual nodes, also known as neurons, where

each neuron in a layer is fully connected to neurons in the subsequent layer via various

weights [10]. These weights are specified by a layer-specific weight matrix denoted as W.

The objective of each neuron is to receive input signals from the neurons in the layer above,

multiply these signals by the neuron’s corresponding weights, add a bias term, and then

apply an activation function denoted as σ to modify the signals before forwarding them

to the subsequent layer [56]. Hence, the computed output of a single neuron is defined in

Equation 8.

zli = Wlhl−1 + bli

ali = σ(zli)
(8)

In the present context, the weight matrix of layer l, denoted by Wl, is defined along

with the output vector of layer l − 1, represented by hl−1. The output of a neuron, I, in

layer l upon activation by the non-linear function σ is denoted by hl
i. Additionally, the

bias term for neuron I in layer l is defined as bl
i [10]. The utilization of these non-linear

transformations in different combinations throughout the layers enables the approximation

of complex and non-linear functions.
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2.7.2 Gradient-based Learning and Backpropagation

Neural networks are capable of learning by adjusting the parameters of the network,

denoted as θ, to correctly map sample inputs to their associated targets. However, given

the potential complexity of the function being approximated, a neural network can have

millions of these parameters, making the task of finding the optimal combination that

minimizes the prediction error appear daunting [45]. Initially, the weights are set to small,

random values resulting in poor initial performance of the model.

In order to assess how well a specific set of parameters θ performs in a neural network,

a loss function: C(f(x; θ), f∗(x)) is employed. This loss function quantifies the difference

between the predicted values ŷ generated by the model and the actual values y associated

with the given input data x [57]. By comparing the predicted values to the true values, the

loss function provides a measure of the dissimilarity or error between them. The purpose

of this evaluation is to determine the effectiveness of the model in accurately estimating

the target function f for various inputs [11]. The neural network iteratively updates the

weights by processing sampled training data, attempting to minimize the loss function.

This is achieved by adjusting the weights for each data point such that the loss score

is reduced. Each round of processing through the sampled data is called an epoch, and

as the number of epochs increases, the better the model will perform on the in-sample

training data. However, increasing the number of epochs comes at a computational cost

and increases the risk of overfitting. Therefore, specifying the number of epochs is a

trade-off between computational resources, achievable accuracy, and generalization.

To update the weights, the backpropagation algorithm and optimization techniques are

used. When the network produces a prediction ŷ, the error of the prediction is calculated

using the loss function. This error is then propagated backward through the network to

determine each weight’s contribution to the error [58]. The weights are then modified

proportionally to their contribution by computing the gradient of the loss function with

respect to each weight in the network, denoted as ∇θC(f(x; θ), f∗(x)). The gradient con-

tains information about all the partial derivatives of the error function with respect to

each weight in the network [57]. An optimization algorithm uses the gradient in combina-

tion with a specified learning rate or step rate to update the weights. The gradient of the

loss function with respect to a specific set of parameters θ0 ∈ θ describes the curvature

of the loss function around this particular set of parameters, and the weights can be up-

dated by moving slightly in the direction where the negative derivative is the largest, i.e.,

θ1 = θ0 − λ · ∇θ0 , where λ is the learning rate [59]. This method is referred to as gradient

descent, which involves moving the weights in the direction where the gradient declines.

2.7.3 Convolutional Layers

Convolutional layers are a core building block in deep neural networks. These layers consist

of a set of learnable filters that perform a sliding window convolution operation on the input

data, extracting features that are critical for accurate classification or prediction [55]. They

specialize in capturing local patterns and spatial dependencies by enforcing weight sharing
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and spatially constraining the convolution operation. This property enables them to learn

spatial invariance, making them robust to variations in input position and orientation [60].

Moreover, convolutional layers can be stacked to form deeper architectures, allowing for the

extraction of higher-level features that capture more abstract and complex concepts. The

depth of convolutional layers can be further increased by using techniques such as residual

connections or attention mechanisms [55]. As a result, convolutional layers have become

an essential tool for deep learning practitioners, enabling state-of-the-art performance on

a wide range of tasks.

Convolutional 1D (Conv1D) layers: One-dimensional convolutional layers apply a set

of filters to a one-dimensional input sequence, which slide over the sequence and extract

local patterns or features. Each filter consists of learnable weights, which are trained

to detect specific patterns in the input data. The output of a convolutional layer is a

feature map, which represents the responses of the filters to the input sequence. A visual

representation of this layer can be observed in Figure 11.

Figure 11: An example of a convolutional 1D layer: the one-dimensional input, filter and

the output feature map.

2.7.4 Padding and Striding

Padding is a technique used to extend the borders of an input tensor to preserve the spatial

resolution of the output feature map after the convolution operation [60]. This technique

is usually applied to the edges of the input tensor, and it can be of two types:

• Valid padding: No padding is added, and the filters only slide over the valid part

of the input tensor, resulting in an output tensor with smaller dimensions than the

input tensor.

• Same padding: Padding is added to the input tensor in such a way that the output

tensor has the same spatial dimensions as the input tensor.

The amount of padding can be calculated as in Equation 9, where k is the size of the filter.

This ensures that the filters can slide over the edges of the input tensor without losing

information.

p =
k − 1

2
(9)
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Striding is a technique used to reduce the spatial dimensions of the output feature map

by skipping some pixels while sliding the filters over the input tensor [55]. The amount of

striding can be controlled by setting the stride parameter, which specifies the number of

pixels that the filters move at each step. This output tensor size O can be calculated with

as in Equation 10, where I is the size of the input sensor, K is the size of the filter, P is

the amount of padding and S is the stride.

O =
I −K + 2P

S
+ 1 (10)

2.7.5 Pooling Layers

Pooling layers help to reduce the spatial dimensions of the feature maps and reduce the

computational complexity of the network by applying a downsampling operation to the

output feature map [60]. They also help to increase the translational invariance of the

network, making it more robust to small variations in the input [10]. However, pooling

layers may also lead to loss of information, especially when the pooling size is large or the

input is small. In such cases, a smaller pooling size or no pooling at all may be preferred.

The most common types of pooling are max pooling and average pooling [60]. s

O =
I −K

S
+ 1 (11)

• Max pooling is a pooling operation that selects the maximum value from a local

region in the feature map. The operation is defined by a pooling size K and a stride

S, which specifies the amount of overlap between adjacent pooling regions. The

output tensor size O can be computed as in Equation 11.

• Average pooling computes the average value of a local region in the feature map.

By using average pooling, the output tensor size is determined by the same formula

as max pooling, Equation 11, except that the maximum operation is replaced with

the average operation within each pooling region.

Figure 12: A ConvNet architecture.

Pooling layers are typically applied after convolutional layers in a convolutional neural

network, and a typical implementation is illustrated in Figure 12.
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2.7.6 Activation Functions

Activation functions play a crucial role in neural networks by introducing non-linearity to

the transformed inputs. Without non-linear activation functions, a neural network would

be limited to learning linear patterns, which would not be sufficient for learning complex

patterns in the input data [56]. This is because the space of linear transformations is

relatively small, and the model cannot capture intricate patterns. Additionally, since

multiple linear transformations of inputs do not increase the hypothesis space, deeper

models with only linear activation functions would not benefit from additional layers [10].

Name Activation Function

ReLU σ(x) = max(0, x)

Linear σ(x) = ax

Sigmoid σ(x) = ex

1+ex

Swish σ(x) = x
1+e−x

Binary step σ(x) =

{
1 if x ≥ 0

0 else

Table 2: Common activation functions.

Table 2 presents a brief overview of several commonly used activation functions.

• Rectified Linear Unit (ReLU) function is a computationally efficient activation

function that sets negative values to zero and allows for backpropagation through

its derivative function [61].

• The Linear function simply scales the input and does not enable backpropagation.

• The Sigmoid function maps any real input value to the range [0,1] using an S-shaped

curve, which makes it particularly useful for modeling probabilities [62].

• The self-gated activation function, Swish is smoother than ReLU since it is con-

tinuous and enhances the expression of input data and weights to be learned. Ad-

ditionally, it is non-monotonic, which allows it to perform well in certain situations

[62].

• In contrast, the Binary step function activates a neuron if its input exceeds a certain

threshold, but it cannot provide multi-value outputs necessary for multi-class classi-

fication problems, and the gradient is zero, making it infeasible for backpropagation.

The choice of which activation function to use in different neural networks is still an active

area of research, and there are currently no solid principles governing their selection [56].

As such, the selection of activation functions may involve a trial-and-error process.
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2.7.7 Optimization of Neural Networks

During the process of optimizing parameters using gradient descent, a crucial aspect in a

neural network is the selection of an appropriate optimization algorithm that determines

how the parameters are updated. In deep learning, a commonly used class of optimization

algorithms is referred to as ”mini-batch methods.” These methods involve dividing the

training data into subsets, typically consisting of more than one data point. This stochastic

approach introduces randomness by sampling small batches of data [57].

Ideally, larger batch sizes are preferred as they leverage more data during the training

process, resulting in more accurate parameter updates and improved gradient estimation

[59]. However, using larger batch sizes comes at the cost of increased computational

requirements. Conversely, smaller batch sizes can have a regularizing effect.

One widely employed optimization method in neural networks is Stochastic Gradient Des-

cent (SGD). SGD falls into the category of stochastic algorithms as it randomly samples

mini-batches from the data. For each mini-batch, the gradient of the loss function with

respect to the specified parameters is computed. Equation 12 illustrates how the gradient

∇L is calculated. L denotes the loss function, θ represents the set of weight parameters,

and A ∈ D refers to a batch of sampled data points from the dataset D. The algorithm

then adjusts the parameters in the direction that yields the most significant improvement

in the loss score [57].

∇L =
1

A
∇θ

A∑
a=1

L(ŷb;θ, yb) (12)

Choosing an appropriate learning rate is crucial to ensure the convergence of the model.

If the learning rate in gradient descent is set too high, it may overshoot the minimum,

fail to converge, or even diverge. On the other hand, setting a lower learning rate leads

to slower convergence but at the cost of increased computational requirements. To ad-

dress this challenge, adaptive learning algorithms adjust the learning rate for each weight

based on the gradients computed in previous iterations [45]. One popular optimization

algorithm is Adaptive Moment Estimation (ADAM). ADAM combines the advantages of

two other algorithms, namely Adaptive Gradient Algorithm (adaGrad) and Root Mean

Square Propagation (RMSProp). adaGrad maintains a per-parameter learning rate that

performs well in scenarios with sparse gradients, while RMSProp adapts per-parameter

learning rates based on recent gradient magnitudes [10]. This adaptive approach helps the

algorithm handle non-stationary or noisy datasets effectively while calculating exponential

moving averages of the gradient and squared gradient.

2.7.8 Autoencoder

AEs are a powerful class of neural networks that address the unsupervised task of dimen-

sionality reduction [63]. They accomplish this by employing an encoder-decoder architec-

ture, as visually depicted in Figure 13. By leveraging this architecture, AEs can learn to
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extract meaningful and compact representations of the input data, capturing its essential

features while discarding redundant or noisy information. This process enables AEs to

compress high-dimensional data into a lower-dimensional latent space [64]. Subsequently,

they can reconstruct the original input from the compressed representation, allowing for

tasks such as data generation, denoising, and anomaly detection. Specifically, the encoder

transforms the input data X into a latent representation Z, which is then reconstruc-

ted by the decoder into a reconstruction with the same dimensionality as X, denoted

as X′ ∈ Rm×d [63]. A high-level description of the architecture of AEs is illustrated in

Figure 13.

Figure 13: Autoencoder architecture with main components, input x, encoder gϕ, latent

representation z, decoder fθ and reconstructed input x′.

In anomaly detection tasks, where the majority of data samples are normal, and anomalous

data samples are rare, training an AE solely on normal data examples results in significant

reconstruction error, thereby rendering the model incapable of reconstructing unusual

input data. Consequently, the model is expected to fail in reconstructing abnormal input

data. For anomaly detection, AEs are often trained semi-supervised on data samples

without anomalies. This strategy is commonly employed since normal instances are usually

much more abundant than abnormal instances [64]. With sufficient training samples,

regular cases will exhibit low reconstruction errors, while anomalous examples will manifest

high reconstruction errors. Despite their simple and efficient architecture for detecting

outliers, AEs’ performance can be adversely affected by noisy training data.

A commonly used type of encoder in AEs is a feed forward neural network comprising

multiple layers [63]. The encoding process is formulated in Equation 13, with the para-

meters denoted as gϕ, Wenc representing the weight matrix associated with the encoder,

and benc corresponding the bias vector.

Z = gϕ(X) = h(WencX + benc) (13)

ϕ = (Wenc,benc) and the activation function is represented by h(·). A separate neural
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network is utilized as the decoder, which reconstructs the original data from Z [10]. This

is formulated in Equation 14 with Wdec representing the weight matrix associated with

the decoder, and bdec corresponding the bias vector.

X’ = fθ(Z) = h(WdecZ + bdec) (14)

The decoding mechanism, denoted as fθ attempts to obtain a meaningful representation

from the latent space, the AE design aims to minimize the loss function, L(·), that quan-

tifies the reconstruction error between X and X ′ [63]. AE usually applies Mean Squared

Error (MSE) as the loss function, explained in Section 2.7.10.

2.7.9 Variational Autoencoder

The Variational Autoencoder (VAE) differs from a regular AE in the way the model

handles the latent space. In a regular AE, the latent space is typically an arbitrary

continuous or discrete vector, and the encoder maps the input data directly to this latent

representation. However, in a VAE, the latent space is probabilistic, and the encoder

instead maps the input data to the parameters of a probability distribution in the latent

space [65]. A more technical definition would be that a VAE is constructed using a directed

probabilistic graph whose posterior is approximated by a neural network, linking neural

network AEs with mean field variational Bayes [66]. An illustration of the architecture is

illustrated in figure 14.

Figure 14: High level architecture of a Variational Autoencoder.

The main goal of the VAE is to maximize the likelihood of the observed data. However,

directly maximizing the likelihood is often computationally intractable, meaning it’s diffi-

cult to calculate. Therefore, the VAE uses a variational lowerbound as an approximation

to the true likelihood. This is defined as the sum of the marginal likelihood of individual

data points, log pθ (x1, . . . , xN ) =
∑N

i=1 log pθ (xi) [65]. The marginal likelihood of a data

point, pθ(xi), is the probability of generating that specific data point given the model’s
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parameters θ. To simplify the calculation of the marginal likelihood, it can be rewritten

using Equation 15.

log pθ (xi) = DKL (qϕ(z | x)∥pθ(z)) + L (θ, ϕ;xi) (15)

Here, qϕ(z | x) is the approximate posterior and pθ(z) is the prior distribution of the latent

variable z. The first term of the right hand side of Equation 15 is the Kullback-Leibler

(KL) divergence of the approximate posterior and the prior [67]. This term serves as a

regularization component, encouraging the approximate posterior to resemble the prior

distribution. This is explained in more detail in section 2.7.10. The KL divergence term

will always be larger than 0, Equation 15 can therefore be rewritten to Equation 16. The

second term of the right hand side of Equation 15 is the variational lowerbound on the

marginal likelihood of the data point i.

log pθ (xi) ≥ L (θ, ϕ;xi)

= Eqϕ(z|xi) [− log qϕ(z | x) + log pθ(x | z)]

= −DKL (qϕ (z | xi) ∥pθ(z)) + Eqϕ(z|xi) [log pθ(x | z)]

(16)

In Equation 16, pθ(x | z) represents the conditional probability of the data point xi given a

specific value of the latent variable z. It indicates the likelihood of generating the observed

data xi from the latent variable z using the parameterized model θ [65]. The first term

still corresponds to the KL divergence between the approximate posterior distribution and

the prior distribution of the latent variable z. The second term in equation 16 relates to

the reconstruction of the input data x using both the posterior distribution qϕ(z | x) and

the likelihood pθ(x | z). The VAE utilizes neural networks to model the parameters of the

approximate posterior distribution qϕ(z | x), which can be considered as the encoder [10].

Additionally, the directed probabilistic graphical model pθ(x | z) serves as the decoder.

It is important to note that the VAE models the parameters of the distribution, rather

than the exact latent variable values. The encoder, represented by the neural network

f(x, ϕ), outputs the parameter of the approximate posterior distribution qϕ(z | x), and

sampling from q(z; f(x, ϕ)) is required to obtain the actual values of the latent variable z.

Hence, the VAE employs probabilistic encoders and decoders, where the reconstruction

x̂ is generated by sampling from the parameterized distribution pθ(x; g(z, θ)) [65]. To

summarize, the VAE focuses on modeling the distribution parameters, allowing for various

parametric distributions to be used in the framework.

2.7.10 Deep Learning Loss Functions

When training deep learning autoencoders, the choice of loss function is crucial for the

learning process, directly affects the reconstruction accuracy, and impacts computational

efficiency. A typical choice of loss function for AEs is the MSE. MSE quantifies the distance

between observed and reconstructed values. Given the reconstructed values ŷ, and true

targets y, MSE is defined as in equation 17 [57].
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MSE(ŷ, y) =
1

N

N∑
n=1

(yi − ŷi)
2 (17)

MSE calculates the average squared difference between the input and output vectors. By

squaring the errors, it amplifies the impact of larger deviations, making it more sensitive to

outliers. This characteristic encourages the model to minimize overall reconstruction error,

resulting in more accurate and precise reconstructions [68]. In contrast, another typical

evaluation metric is Mean Absolute Error (MAE), but this only considers the absolute

differences, which can underestimate the significance of larger errors and hinder the model’s

ability to capture fine-grained details. Therefore, MSE is particularly useful in applications

where exact reconstruction is crucial, as it promotes a more faithful representation of the

input data [68].

VAE introduce an additional term in the loss function when training to enforce regu-

larization and encourage the learned latent space to follow a desired distribution. This

loss function consists of two components: a reconstruction loss, and a regularization loss,

more specifically the KL divergence [67]. The reconstruction loss is identical to the MSE

loss used in the AE for comparability. The regularization loss is measured using the KL

divergence which measures the difference between the learned distribution in the latent

space and a prior distribution, more specifically a standard Gaussian distribution. It acts

as a regularizer, encouraging the learned latent space to conform to the desired prior

distribution. The formula for the KL divergence loss is illustrated in 18

KL divergence = −1

2

∑
(1 + log(σ2) − µ2 − σ2) (18)

In equation 18 the µ represents the mean of the learned distribution and σ represents the

standard deviation of the learned distribution. The sum of the reconstruction loss and

the regularization loss represents the full loss function for the VAE. By minimizing this

combined loss, VAEs learn to reconstruct the input data accurately while regularizing the

latent space to follow a desired distribution [66].

2.8 Evaluation Metrics

Evaluation metrics play a critical role in machine learning classification by providing a

quantitative assessment of model performance. The model’s performance depends on

various factors such as data quality, the choice of algorithm, and hyperparameters [69]. In

order to evaluate the performance of machine learning models with the goal of anomaly

detection, different evaluation metrics can be calculated. The most common metrics for

classification are defined in equation 19 - 22.

Accuracy =
TP + TN

TP + TN + FP + FN
(19)
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Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1score =
(GeometricMean)2

ArithmeticMean
=

(
√
Precision ·Recall)2

Precision+Recall
2

=
2 · Precision ·Recall

Precision + Recall
(22)

In anomaly detection evaluation, True Positives (TP) represent the count of correctly

identified anomalies by the model. False Positives (FP) indicate the count of instances

falsely identified as anomalies by the model. False Negatives (FN) represent the count of

actual anomalies that the model failed to identify. Lastly, True Negatives (TN) refer to

the count of correctly classified normal data points by the model.

Accuracy is a commonly used metric in machine learning classification that measures the

proportion of correctly classified instances among all instances in the dataset. This means

that accuracy evaluates how well a classification model can correctly classify both positive

and negative instances. A high accuracy value indicates that the model is highly accurate

in predicting the class labels of the instances in the dataset, while a low accuracy value

suggests that the model may be misclassifying a significant number of instances. While

accuracy is useful for evaluating the overall performance of a classification model, it may

not be the best metric in certain applications, such as imbalanced datasets, where one

class significantly outweighs the other [69]. Precision is a fundamental metric in machine

learning classification that measures the proportion of correctly classified positive instances

among all instances that are classified as positive. Which results in an evaluation of how

well a classification model can accurately identify true positive instances and minimize

the false positives. A high precision value indicates that the model is highly accurate in

identifying positive instances, while a low precision value suggests that the model has a

high rate of false positives [70]. Recall is a key metric in machine learning classification

that measures the proportion of correctly classified positive instances out of all actual

positive instances in the dataset. In simpler terms, recall evaluates how well a classification

model can correctly identify all positive instances and minimize false negatives. A high

recall value indicates that the model is highly effective in detecting all positive instances,

while a low recall value suggests that the model is likely to miss some actual positives.

One popular way of combining precision and recall is by calculating the F1-score, which

is an evaluation metric that calculates the harmonic mean in order to provide a more

comprehensive assessment of the model’s performance [69], illustrated in 22.

In addition to these standard metrics, the False Positive Rate (FPR) and False False

Negative Rate (FNR), defined Equation 23 and 24 [70], can also contribute with eval-

uating the performance.

FPR =
FP

TP + FN
(23)
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FNR =
FN

Total number of exisitng anomalies
(24)

The FPR indicates the proportion of identified anomalies that are actually not anomalous.

On the other hand, the FNR represents the percentage of missed anomalies on average.

Lower values of these metrics indicate higher precision in the model’s performance.

36



Data

Chapter 3

3 Data

A comprehensive understanding of centrifugal pumps and predictive maintenance has now

been presented, along with the theoretical methods for analyzing time series data and

performing anomaly detection. The purpose of this chapter is to introduce the data

that will be analyzed and utilized in this thesis. The chapter begins by delving into the

intricacies of centrifugal pumps, including their design, operation, and key parameters that

are relevant to our analysis. Furthermore, it provides an in-depth exploration of the specific

data sources available for the study. By offering contextual information and insights into

the data collection process, this chapter establishes a strong foundation for the subsequent

chapters, where the dataset is leveraged to develop robust predictive maintenance models.

3.1 Origin

The data utilized in this thesis is sourced from Aker BP and provided to Aize for the

purpose of creating analytic models for predictive maintenance. Aize is a Software as

a Service (SaaS) company with offices in Norway, Aberdeen and Houston. Their main

product is an interactive digital twin that seeks to transform how people work, lead and

operate. Aize collects, processes, analyzes, and visualizes industry data, enabling stake-

holders to gain comprehensive insights. These insights are used to aid decision-making,

maintenance planning, and production efficiency, all in different scales and magnitudes.

AkerBP is one of Europe’s leading oil and gas producers and is also part of the Aker group

alongside Aize. AkerBP operates on several oil fields in the North Sea, and the primary

data source for this thesis is a centrifugal pump located on one of their fixed platforms.

This specific centrifugal pump, comprising the data foundation for this study, is manufac-

tured by Sulzer, a renowned Swiss company recognized globally for its expertise in fluid

engineering.

3.2 System Description

The centrifugal pump is electrically driven and installed on a platform operated by AkerBP

in the North Sea. The pump is of type Sulzer HPcp 250-405 and has eight stages. This

means that it has eight individual impellers in order to increase the water pressure, and

each of these impellers has a diameter of 397mm. It is used for EOR, as described in

Section 2.1.
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Figure 15: Possible Locations of Water Injection Pump in Subsea Systems.

As mentioned in section 2.1.1, the centrifugal water injection pump injects water into an

oil well to increase production by maintaining pressure in the reservoir. The placement

may vary, but some typical locations are visualized by the blue circles in Figure 15.

On centrifugal pumps, vibration, temperature, and pressure sensors are routinely used

to monitor pump performance, detect anomalies or problems, and provide early warning

of potential failures. The most common sensor types in the centrifugal pump can be

described as follows:

• Vibration sensors are installed on the pump housing or bearing housing to measure

the pump’s vibration levels. They detect mechanical vibrations produced by the

pump’s revolving components and transform them into an electrical signal. The

data can then be used to identify any odd or excessive vibrations that could indicate

a problem with the pump. Common problems that intuitively should impact the

sensor data are misalignments, unbalance, or bearing wear.

• Temperature sensors are used to measure the temperature of the pump’s compon-

ents such as the bearings, shaft, and seals. To measure the temperature and turn it

into an electrical signal, they commonly utilize a thermocouple or a resistance tem-

perature detector. This data is used to detect any excessive temperature increases

that could signalize problems, such as overheating owing to a lack of lubrication or

coolant flow.

• Pressure sensors are used on both the input and output sides of the pump to

detect the pressure of the fluid being pumped. They function by detecting pressure
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changes and turning them into electrical signals. This data can be used to detect

problems related to low pressure, such as blockage or high pressure due to valve

dysfunction.

All of these sensors work together to provide a comprehensive overview of the pump’s

performance and condition, ultimately providing the data foundation for this thesis and

its resulting predictive maintenance system. Allowing operators to properly monitor and

repair the pump, decreasing downtime and minimizing the risk of failure. An overview of

the sensors that monitor the pump is illustrated in figure 16.

Figure 16: The sensor overview.

The dataset analyzed in this study consists of a total of 52 sensors and four start signal

counts, with data collected between late 2016 and March 2023. Figure 17 illustrates the

varying average sampling frequencies of these sensors, ranging from the lowest frequency

of 4.54 seconds to over 5000 seconds. In total, this dataset contains around half a billion

data values. Table 7 in Appendix A provides a more comprehensive view of each sensor’s

average sampling time and unit.
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Figure 17: Average sampling time of each sensor plotted on a logarithmic y-axis.

The categorization of the sensors is shown in Figure 18, where the various sensors are

grouped according to their respective components. The sensors are organized into six

different categories, based on their location and purpose. Some components have multiple

sensors that measure the same values, typically identified as A and B. In such cases, the

redundancy of A/B is known, since they in theory measure identical values.

Within the motor category, various parameters related to the motor’s condition are mon-

itored. This includes the RPM, which is used to measure how fast the machine is operating
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at a given time, and the temperature of the motor windings. In addition, the bearing tem-

perature of the motor is also measured, both for the DE and the NDE. The vibration for

the non-drive end is also measured.
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Figure 18: The categorization of sensors.

The Pump Monitoring category contains critical information regarding the most import-

ant information about the condition of the pump itself. The inlet and outlet temperatures,

as well as shaft vibrations, are measured along with thrust vibration and temperature.

Four different sensors, A, B, C, and D, measure thrust bearing temperature, with A and

B measuring the temperature caused by force pushing the pump towards the motor and

C and D measuring temperature induced by force pulling the pump away from the motor.

Thrust refers to the force that keeps the rotor of the centrifugal pump in position while it

rotates.

The Pump Process category measures values related to the work performed by the

centrifugal pump. It includes sensors for suction and outlet pressure, outlet temperature,

and the differential pressure (dP) in the filter. An inlet filter is important for preventing

contamination from entering the pump and potentially causing damage to the pump. The

differential pressure measures the difference between the upstream and downstream sides

of the filter element. This measure will indicate the degree of clogging in the filter. The

flow meter on the output measures the fluid flow rate, with the values inverted, resulting

in 100 indicating no flow and 0 indicating maximum flow. The manifold temperature
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and pressure are also measured, with the manifold being a pipe or collection of pipes

that connect the pump to other components in the system. The manifold serves as a

distribution point for the fluid being pumped. The last sensor in the pumping process is

the bypass valve, which is used to regulate the system pressure.

The Water Injection Flow Rates refer to the measurement of the flow rates of water

injected into eight distinct oil wells, connected to the pump through a manifold. The

manifold ensures that the injected water is evenly distributed among the connected wells,

allowing for efficient water injection.

The Supply to VSD contains eight sensors that measure the power supplied to the Vari-

able Speed Drive transformer (VSD) which controls the speed of the centrifugal pumps.

three sensors measure the voltage, three measure the current, and the last two are un-

known.

The Start Signals category contains information about all attempted, successful and

unsuccessful starts as well as the total running hours.

Appendix A lists the units for all the sensor measurements provided.

3.3 Maintenance Log

In addition to the dataset, a maintenance log was also provided, containing informa-

tion about the maintenance performed on the system, as well as other collected er-

rors and notifications. The log includes various fields such as externalId, datasetId,

StartTime, type, subtype, description, assetsId, assetsId, id, lastUpdatedTime,

and createdTime. The notifications contained relatively generalized descriptions, not

correlating to specific system components affected by the faults. For this dataset, only the

StartTime and description are relevant for the analysis.
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Chapter 4

4 Method

The thesis has now established the foundation of the research through the introduction,

theoretical background, and data chapters. The purpose of this chapter is to describe the

methodology used for the pre-processing and analysis of the data presented in Section 3.

In addition, the development of the selected anomaly detection model will be presented.

The chapter begins by providing an overview of the pre-processing techniques used to

clean and prepare the data for analysis. This includes the selection of relevant features

and the handling of missing data. Next, the chapter describes the analysis techniques used

to explore the data and identify patterns and trends.

After the data pre-processing and analysis stages, the chapter then focuses on the devel-

opment of anomaly detection models. This includes the selection of evaluation metrics,

model construction, and the process of detecting anomalies. Figure 19 shows the process

illustrated in a flowchart, which can be referred to for a more detailed understanding of

the methodology.

Data Retrieval Data Processing Data Cleaning Data Exploration

Selecting Sensors

Selecting relevant
notifications Defining time periods

Identifying abnormal
behaviour Creating new features Model Construction Anomaly detection

Benchmarking

Data Pre-Processing Analysis Anomaly Detection

Figure 19: A visual representation of the methodology chapter depicted through a flow-

chart.

4.1 Data Pre-Processing

In order to lay a good foundation for feature engineering and anomaly detection, data pre-

processing is a crucial step for cleansing, transforming and enhancing the raw data. The

first step in data pre-processing is the retrieval of the data, ensuring that it is accessible

for analysis. Subsequently, the data is subjected to a cleaning process to identify and

handle missing values, outliers, and noisy data points. This step aims to eliminate errors

and inconsistencies that may adversely affect the accuracy of subsequent analyses.

4.1.1 Data Retrieval

As outlined in Section 3, the dataset available for analysis is extensive, and its size exceeds

the processing capacity of the most popular data processing library, Pandas. Addition-

ally, to take advantage of interactive plotting capabilities for analyzing the sensor data,
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the time series need to be subdivided into smaller segments and scrutinized one by one.

Consequently, PySpark is employed to extract the raw data and select a smaller subset

from the PySpark DataFrame, which is later converted back into a Pandas DataFrame for

further processing. To ensure that the data can be processed within a reasonable time-

frame, a time interval of approximately six months to one year is typically selected for

analysis at any given time.

4.1.2 Data Cleaning

In order to enable comparison across the various sensors, the signals are resampled to

align with a common datetime index. This is done with the pandas resample function.

Due to the data size, there is a tradeoff between sample frequency and the timespan to

satisfy processing limitations. Analyzing the behavior of the system over an extended

period can help identify gradual changes in the system that can be difficult to detect

through short-term monitoring. Therefore, the long-term development trends are of higher

interest in the context of predictive maintenance. Considering these factors and the varying

average sample frequencies for different sensors, a default granularity of 60 minutes is

selected. While this typically results in downsampling for most datasets, it will simplify

the processing for further exploration over larger timespans. Furthermore, setting a lower

sampling frequency can potentially increase the rate of missing values because of the

uneven measurements from the sensor. This is dealt with by using the subset’s average,

and retaining missing values instead of interpolating them, as this approach could also

provide valuable insights.

The dataset utilized for this analysis is derived from an industrial environment that typic-

ally exhibits high levels of measurement noise. To ensure the creation of a robust anomaly

detection system, it is imperative to effectively eliminate this noise without compromising

the insights derived from the data. Such an approach is necessary not only for enabling

meaningful data analysis but also for facilitating compatibility with predictive models.

Thus, it becomes crucial to identify certain patterns in the data that can signify the oper-

ational state of the system. This aids in determining the significance of the measurements

and enables the removal of irrelevant information without compromising any valuable

insights.

4.2 Analysis

Data analysis allows for the discovery of hidden patterns and irregularities within the data,

enabling the development of effective models and algorithms to distinguish between normal

and abnormal instances. This knowledge can facilitate proactive measures and optimiza-

tion of detection systems to ensure their reliability and efficiency in detecting anomalies.

This thesis places particular emphasis on data exploration and feature engineering during

the data analysis process.
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4.2.1 Data Exploration

The initial stage of the data analysis process is to perform data exploration. This step

aims to comprehend the characteristics and properties of the data, with the goal of gaining

insights into the system and its operations.

Identifying Relevant Information

The initial step towards achieving forecasting abnormal behavior in the system is to dis-

tinguish between normal operational data and anomalous behavior. To accomplish this,

the maintenance log mentioned in Section 3.3 will be examined to identify potential no-

tifications that can be recognized in the data. The notifications will then be grouped

into different time spans ranging from three to eight months based on their timestamp to

enable further analysis.

Due to the abundance of data available and the numerous sensors involved, a big part

of the data exploration is identifying which sensors are providing useful information and

which ones are not. To determine which sensors are most relevant for further analysis,

measurements from each sensor will be examined in the context of their corresponding

component, as depicted in Figure 18 in Section 3. The aim is to establish whether it is

feasible to utilize only one sensor per component for system-wide analysis, or whether any

sensor can be deemed redundant due to inconsistent measurements or missing values.

Determining Abnormal Behavior

The absence of well-defined normal data functioning as the ”ground truth” in the dataset

creates challenges regarding identifying periods that can be labeled as anomalous behavior.

To address this issue, a comprehensive analysis is being performed on each of the identified

useful sensors within the context of the selected notifications. The objective is to detect any

anomalies in the data that may explain the recorded notifications and to establish a clear

distinction between anomalous and normal data. This iteration focuses on scrutinizing all

the relevant sensors identified in the preceding chapter.

4.2.2 Feature Engineering

Building upon the insights gained from the previous sections, this step aims to delve deeper

into the analysis of sensors that have proven to be valuable or have strong correlations

with the identified notifications. The focus is on integrating the time series data from these

sensors to derive new features that have the potential to reveal additional information,

such as comprehensive patterns associated with system failure or maintenance.

4.3 Model Construction

This section outlines the design choices and implementation of deep learning models used

to classify anomalies in the centrifugal water injection pump. The thesis aims to ex-

plore the following deep learning frameworks for anomaly detection: Autoencoder and
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Variational Autoencoder. The implementation of the models is presented in Section B.3,

which can be found in Appendix B.

4.3.1 Input and Output

The predictive models in this project take a one-dimensional pandas time series as input,

comprising of continuous values obtained from sensor data. The models then generate

an output time series represented as a boolean array, aligned with the input index. This

array indicates whether each data point in the input sequence is classified as an anomaly

or not. Prior to feeding the data into the models, interpolation is performed to meet the

models’ requirements for consistent dimensions and regular time intervals. Interpolation

ensures that the interpolated data adheres to the temporal relationships between adjacent

data points. This preserves the sequential nature of the time series, enabling the neural

network to capture meaningful patterns and dependencies over time. For the centrifugal

pump, two individual one-dimensional time series containing the derivative of the RPM

from the motor and the derivative of the flow rate out of the pump were used.

4.3.2 Hyperparameters, Architecture and Topology

Like traditional neural networks, autoencoders have adjustable hyperparameters that can

affect their performance. These hyperparameters include activation functions, learning

rates, layer initialization functions, and optimization algorithms. Ideally, one would per-

form an exhaustive grid search to identify the optimal hyperparameters of the neural

network, then train and evaluate a model for each unique configuration, leading to a vast

space of potential models with different parameters. But the computational resources that

are needed to perform such an operation make this type of tuning infeasible in practice.

In addition to the hyperparameters, the topology of the autoencoder must be specified.

This includes types of, and the quantum of layers in the encoder and decoder, as well as

the number of nodes in each layer. The architecture of the model is defined by the joint

result of the hyperparameters and topology. Suitable architectures can be found through

exhaustive searches, but these suffer from the same problem that they are notoriously

computationally expensive to train. Therefore, a more intuitive approach has been taken

regarding finding suitable hyperparameters and design architectures. The result is an iter-

ative manual experimentation with various configurations, based on inspiration gathered

from previous implementations.

4.3.3 General Design Choices

Both the AE and the VAE have some design choices in common which can be generalized

for a wider range of use cases as well:

• Optimizer: ADAM is the choice of optimizer. This is an effective choice with well-

documented results. For comparison, the Momentum optimizer did not provide
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sufficient performance.

• Learning Rate: This is set to 0.001, the default learning rate for the ADAM optimizer

in the Keras library.

• Batch Size: The neural network trains on batches of set lengths instead of the whole

dataset at once.

• Error Metric: AE: Mean Squared Error, VAE: Kullback-Leibler divergence, both

defined in section 2.7.10.

• Activation Function: The ReLU-function is chosen as the activation function in the

convolutional layers.

• Epochs: This is defined as the number of training rounds completed by the network,

and it is set to 100. Ideally, we would like even more epochs but at this level, we

accomplish a good compromise that gives low training error and convergence at a

reasonable computational cost.

• Regularization: Dropout layers are implemented as a regularization measure which

helps with overfitting and speeds up the training process. For both models, a time-

constant dropout is applied with rates between 10%-20% at the end of the encoder.

4.3.4 Model Finalization:

Only the best configurations will be presented because of their relevance, even though mul-

tiple configurations of hyperparameters resulted in multiple candidates. The final models

are the most promising sequence specialized neural networks in the form of autoencoders.

These are time series anomaly detection models with the ability to capture temporal de-

pendencies in the data. Compared to statistical methods for time series analysis where

data points are assumed independent and identically distributed, this presents an improved

approach that is better suited for real-world time series data.

Autoencoders operate in encoder-decoder pairs, with the latent representation being ar-

guably the most critical aspect of the network, as the output of the encoder, and the

input to the decoder. In order to create this low-dimensional representation of the data,

the complexity of the time series must first increase. This is done through Conv1D lay-

ers which apply a set of filters that capture different patterns in the time series. Each

convolutional layer takes as input a sequence of fixed length and applies a set of filters to

produce a set of output feature maps. This output has a greater number of channels than

the input, resulting in an increase in the sequence dimensionality. The Conv1D layers

in the encoder also have a stride of two, explained in section 2.7.4. Once this is done,

the encoder can start iteratively reducing the complex representation from 16 filters, to 8

filters and then finally be sent into a Flatten layer which reshapes the output tensor into

a one-dimensional vector. The tensor is then going through a regularizing Dropout layer,

before being fed into a Dense layer with units matching the desired dimensionality of the

latent space. The encoder and its architecture are visualized in Figure 20.
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Figure 20: The encoder part of the autoencoder with its different layer types.

The decoder is the reconstruction part of the network, which receives the latent repres-

entation, containing compressed and abstract features that characterize the input data,

and outputs the reconstructed time series. The decoder architecture is designed to mirror

the encoder architecture, starting with a Reshape layer that converts the latent represent-

ation back into a suitable shape for the subsequent Conv1DTranspose layers. Compared

to the encoder, the decoder will have three of these Conv1DTranspose layers instead of

the two Conv1D layers in the encoder. This can be explained through the importance

of the decoder, since ”normal” data will vary. The latent representation from the en-

coder must be generalized, while more abstract and complex patterns are wanted in the

reconstruction of the signal, resulting in an additional layer for the decoder. These layers

perform a 1D transposed convolution which is also referred to as a deconvolution, a pro-

cess for upsampling and increasing the dimensionality of the latent representation in order

to reconstruct the original time series. The decoder and its architecture are visualized in

Figure 21.

Dense

Reshape

Conv1DTranspose

Conv1DTranspose
Conv1DTranspose

Output

Figure 21: The decoder part of the autoencoder with its different layer types.

Variational Autoencoder

Compared to the AE, the VAE differs in the way the model constructs the latent repres-

entation and the choice of objective function. In a VAE the encoder outputs a probability
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distribution in the latent space instead of a deterministic representation. This is achieved

by introducing stochasticity through the use of a mean and variance. The mean repres-

ents the most likely value of the latent variable, while the variance controls the level of

uncertainty. This probability distribution is also regularized to adhere to a desired dis-

tribution, more specifically a standard Gaussian distribution. VAE’s therefore encourage

the latent space to have a smooth and continuous structure, facilitating meaningful inter-

polation exploration in the latent space. This stochastic encoding allows VAEs to capture

the inherent variability in the data and generate more diverse samples during decoding,

making it more adaptable to diverse and irregular sensor data. To ensure that the latent

space converges to a standard Gaussian distribution, the KL loss function, explained in

Section 2.7.10, is used. By minimizing the KL divergence between the learned latent dis-

tribution and the desired distribution, VAE encourage a smooth and continuous structure

in the latent space.

This stochastic encoding process combined with the KL divergence regularization should

enable VAEs to capture the inherent variability in the data, leading to the generation of

diverse and realistic samples during decoding. This makes VAEs well-suited for handling

complex and irregular sensor data, surpassing the capabilities of traditional AEs.

4.3.5 Anomaly Classification

The process of anomaly detection with autoencoders is based on training the model on

normal data, capturing its latent space and then reconstructing the signal. Anomalous

data will therefore get a higher reconstruction error since the model will struggle to capture

its latent space and consequently fail in the reconstruction. This makes for the foundation

behind the anomaly threshold. By establishing a threshold relative to the maximum

reconstruction error, the classification process will consider the inherent variability and

distribution of reconstruction errors within the training data. Since industrial data often

lacks explicit labels or ground truth for anomalies, the threshold is set at 80%, providing

a reasonable balance between sensitivity and specificity in identifying potential anomalies.

Adapting to the possibility of small anomalies being present in the training data as well. It

acknowledges that the training data captures a representative range of normal patterns and

allows for a certain level of deviation while still flagging instances that exhibit significantly

higher reconstruction errors as potential anomalies. This adaptive approach provides

a practical and effective means of anomaly classification in deep learning autoencoders

applied to industrial sensor data without a pre-determined ground truth.
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Figure 22: The observed data vs the reconstructed data.

In figure 22, the actual signal in blue is portrayed with the reconstructed signal from the

model in orange, capturing the essence of the signal and ignoring the noise. In figure 23

the reconstruction loss is visualized in blue, being the squared error between the actual

signal and the reconstructed signal. The maximum reconstruction error is pinpointed with

a circle, creating the basis for defining the anomaly threshold at 80%. In figure 24 the

anomaly threshold is shown as a black, straight line, with the reconstruction error on the

test data in blue. Any values crossing the threshold are flagged as an anomaly.

Figure 23: The maximum value of the reconstruction loss on the training data.

Figure 24: The reconstruction loss vs threshold.

Ensemble

The final product of the anomaly detection system will be an ensemble of predictions,

combining individual results on specific time series to get a more comprehensive under-

standing of the system behavior. The magnitude of this ensemble will be tested iteratively
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and based on the intuition of the system and how it operates. This method takes into

consideration fluctuations in the data, not labeling anomalies based on impacts that affect

the whole system, such as planned stops, but rather isolates abnormalities that deviate

from the rest of the system.

4.4 Hardware and Software Packages

The data processing and implementation for this project utilized Python v3.10.8, an open-

source programming language. Python was chosen as the programming language due to

its versatility, extensive libraries and frameworks for machine learning and data analysis,

and its popularity among researchers and practitioners in the field. Data exploration

and model testing was performed using Jupyter Notebooks, combining Python code and

markdown text in a blockwise fashion to facilitate readability and documentation. The

entire codebase for this project can be accessed on the GitHub repository, which includes

thorough documentation, and reproducible results can be obtained using the attached

notebooks.

Key libraries utilized for data processing included numpy v1.24.2 and pandas v1.5.3. The

machine learning models relied on the scikit-learn v1.2.2 library. For the deep learning

VAE’s, the Keras v2.9.0 library with Tensorflow v2.9.0 as the backend was employed.

Keras provided a high-level interface for developing deep learning models, making it an

excellent choice. Its extensibility allowed developers to customize models according to

their specific requirements. Additionally, Tensorflow-metal v0.5.0 was incorporated since

the models were trained on Apple silicon (M2) hardware. This was necessary as the main

TensorFlow package does not support Apple silicon processors. The computer used for

running the models boasted an 8-core CPU with four performance cores and four efficiency

cores, an 8-core GPU, and a 16-core Neural Engine.
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Chapter 5

5 Result and Analysis

This chapter begins with presenting the results and analysis of the centrifugal pump data,

as outlined in Section 4. In addition, the performance of different models is benchmarked

with the proposed architecture and designs. The results are obtained following the meth-

odology of chapter 5.3. Then the best anomaly detection model is utilized for anomaly

detection on derivatives in the sensor data from the pump, of which the results are presen-

ted in section 5.3. The code implemented and used for data pre-processing, anomaly

detection and evaluation of the models are shown in Appendix B

5.1 Finding Needles in a Haystack: Data Exploration and Feature En-

gineering Strategies for Effective Anomaly Detection

In this section, the outcomes of data exploration and feature engineering efforts are presen-

ted. The results of these efforts in uncovering valuable insights from the data and trans-

forming it into meaningful features that contribute to the effectiveness of the anomaly

detection system are examined. Through an analysis of the influence of these exploratory

and engineering processes, a deeper understanding is gained on how they enhance the

performance of the system and its applicability in industrial settings.

5.1.1 Gaining Insight About the Pump
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Figure 25: The Motor RPM signal together with the sample rate.
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The RPM data provides insight into the pump’s speed and power output, which are directly

related to the pump’s performance. Figure 25 depicts the RPM data collected from April

to August 2019. The signal is considerably noisy and drops to zero frequently. On average,

the signal appears to be reasonably stable at around 3300 RPM, with occasional periods

of slight decrease or increase. As described in Section 2.2.2 a drop in the RPM data

may suggest that the pump is experiencing mechanical problems or blockages, while an

increase could indicate compensating for wear or increased demand from the system. When

resampling the signal, the sampling frequency was calculated by counting the number of

data points in each 60-minute subset of the signal. The function used for resampling

the signal and calculating the sampling frequency is shown in Listing 2 in Appendix B.

Figure 25 illustrates the RPM signal alongside the sampling frequency, demonstrating

that the frequency varies significantly. However, when the RPM approaches zero, the

sampling frequency also drops considerably. This observation may indicate that the motor

is turned off during intervals with zero RPM, and thus the sensors do not provide new

data measurements.
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Figure 26: The bearing temperatures and vibration.

The temperatures of the bearings, especially the difference between the DE and NDE

bearings, explained in Section 2.1.1, can also provide valuable insights into the condition

of the pump. A difference in temperature between the two bearings could be indicative

of a problem with the bearing or an imbalance in the motor, which would cause increased

vibration. Figure 26 depicts the temperatures and vibration of the bearings, revealing a

signal with a relatively stable baseline interrupted by some significant drops. Notably, the

outliers in the temperature data mostly align with the outliers in the vibration signals,

suggesting that there may be an issue with the motor. However, upon examining the RPM

plot in Figure 25, it becomes apparent that the outliers correspond with instances when

the RPM is zero. Therefore, some of the outliers are likely noise, as the vibration and

temperature will also decrease when the motor is turned off.
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5.1.2 Cleaning the Data

As discussed in the previous section, the data in the ”Motor” category was extremely noisy

because the motor was turned off for extended periods. This observation remains consist-

ent across all the data in the pump monitoring and pump process categories. Figure 27

depicts the inlet filter dP data from the ”Pump Process” category in conjunction with

the motor RPM. There is a clear correlation between drops in the RPM signal and the

differential pressure. This trend was evident in most of the various sensor data and gave

rise to the notion of cleaning the various sensor signals based on the values in the motor

RPM signal. When the RPM is below a certain threshold, the corresponding signal values

are removed. For this study, the threshold was set at 500, as a RPM value below this can

be deemed as the motor being off. One possible issue with this approach is that a low

RPM could be due to a motor issue rather than it being turned off. However, since there

is no record of any issues coinciding with such low RPM values the motor was presumed

off during these intervals. The analysis focused on identifying abnormal values in intervals

where the motor is operational.
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Figure 27: The Inlet Filter differential pressure together with the motor rpm, showing

clear correlation.

55



Result and Analysis

Apr 14
2019

Apr 28 May 12 May 26 Jun 9 Jun 23 Jul 7 Jul 21
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 28: The Inlet Filter differential pressure with values removed when the motor is

turned off. The red shadow indicates that the motor has been turned off during this time

period.

Figure 28 displays how the proposed method effectively removes the majority of the noise

in the signal. However, there were still outliers present in the signals, occurring just before

or after the values were removed due to the motor being off. For vibration and temperature

readings, this delay is likely due to the time it takes for the motor to reach normal operating

temperature and for the sensors to pick up changes in the motor’s behavior. This delay

could also explain why other sensor readings appear to decrease before the motor RPM

reaches zero and is turned off. To try to identify abnormal behavior in the system, it

was necessary to add some lag before and after the motor was turned off and remove all

corresponding values within this timeframe. Figure 29 illustrates the improvement from

this approach when cleaning the NDE Bearing Temperature signal. The code used for

cleaning the signal is shown in Listing 3, and the intervals when the motor is turned off

were calculated using the function in Listing 4.
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Figure 29: The differences of the NDE Bearing Temperature from the original signal to

being cleaned with an added lag of three hours. The red shadow indicates that the motor

has been turned off during this time period, while the green marks the added lag.

Based on this insight, a lag of three hours both before and after intervals was implemented,

where the motor was turned off to clean all sensor readings. The aim was to enhance the

accuracy of anomaly detection by focusing on the greater picture.

5.1.3 Selection of Relevant Sensors

As mentioned in Section 3, some of the sensors are connected to the same unit and measure

the same values. This is particularly evident in the case of all types of A and B sensors, but

there are also other redundant sensors. In these scenarios, the two sensors measure almost

identical values, as illustrated in Figure 30. The B sensor is most likely included to ensure

the system’s continued operation if the A sensor malfunctions or becomes unavailable.

Additionally, it helps to verify that the abnormal sensor data is not anomalous but rather

a result of sensor misreadings. In each of these cases, sensor A has been chosen for further

exploration and sensor B is deemed redundant. The motor RPM is another example, as

depicted in Figure 31, with two sensors measuring the same values.
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Figure 30: The plot illustrates the measurement values of DE Bearing temp A and B from

the DE of the system. Both variables exhibit a strong correlation, indicating that they

measure the same temperature values.
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Figure 31: The plot displays the measurement values of RPM 1 and RPM 2, representing

the rotational speed of the system. Both variables exhibit a high degree of similarity,

indicating that they measure the same rotational speed values.

Vibration data are measured on different components of the system in both the x- and

y-planes. The vibration characteristics may vary slightly in each plane, and by measuring

both planes a more comprehensive understanding of the system’s behavior can be obtained.

However, in the current case, the two vibration sensors provide very similar readings,

despite slight differences in their values, as shown in Figure 32. Therefore, it is sufficient

to examine the data from only one plane to gain insight into the system’s vibration. Hence,

the analysis is limited to the x-plane values only.
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Figure 32: Shaft vibration for the x- and y-plane provides the same overall picture.

In industrial settings, it is common to measure pressure and temperature using multiple

sensors. In this case, they are abbreviated as PST, PT, TT, and TST, and while their exact

meanings may be unclear, they do measure distinct aspects of pressure and temperature.

The ”S” in PST and TST suggests that they provide supplementary information about

pressure and temperature. Figure 33 shows the measurements of both sensors connected

to the outlet pressure in the pump, highlighting their distinct pressure measurements.

However, to analyze the overall system behavior, PT data did not provide additional

insights, therefore PST was selected for further analysis. For the temperature readings,

both sensors were similar, and TST was chosen for analysis.

Apr 14
2019

Apr 28 May 12 May 26 Jun 9 Jun 23 Jul 7 Jul 21

−0.004

−0.003

−0.002

Apr 14
2019

Apr 28 May 12 May 26 Jun 9 Jun 23 Jul 7 Jul 21

0

100

200

Outlet Pressure (PT)
Outlet Pressure (PST)

ba
rg

ba
rg

Pressure

Title

Figure 33: The plot showcases the measurements of outlet pressure (PT) and outlet pres-

sure (PST), highlighting their distinct characteristics.

Although the motor consists of three separate windings, namely ”U”, ”V”, and ”W”,

the recorded temperatures in all three windings are highly comparable, as illustrated in

Figure 34. Therefore, only the temperature in the ”U” winding is chosen for further

investigation.
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Figure 34: Measurements from the three different windings, namely ’U’, ’V’, and ’W’,

which exhibit a remarkable similarity.

Neglecting sensors

In addition to identifying redundant sensors, it is also important to determine which

sensors do not contribute to understanding the system or detecting anomalies. In this

regard, Figure 35 showcases the chosen sensors for an in-depth examination.
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Figure 35: The selection of sensors for further analysis. The green color denotes the

utilized components, while blue represents the selected sensor among multiple available

options. Red indicates that the sensor or component will not be included in the subsequent

analysis.

In the case of the bypass valve sensor, its measured variable was uncertain, and it was

labeled based on assumed measurement. Notably, the sensor was not included in the

flowchart provided by the domain expert, shown in Figure 16, Section 3. Analysis of the

measurements from the sensor, as illustrated in Figure 36, revealed a high proportion of

missing values when resampled at the chosen granularity and there are no measurements

available before January 2021. Unlike other sensors that correlated with the motor off

state, the bypass valve sensor did not seem to provide any insights into the system’s

behavior. Given the lack of clarity regarding its purpose and the poor quality of its data,

it was deemed unsuitable for further analysis and thus excluded from the study.
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Figure 36: Temporal representation of bypass valve data with red shadows denoting in-

tervals where the motor is turned off.

The flow controller and supply to VSD sensors were also deemed redundant in providing

insights into the system’s behavior. The supply to VSD sensors depicted in Figure 37

were useful in indicating the motor’s operational status with zero power denoting the

motor being off. Despite comprising eight different sensors measuring the power supplied,

they did not provide any additional information beyond what was obtainable from the

RPM. Furthermore, they contained more missing values. The flow controller, illustrated

in Figure 38, represents the pump’s flow rate and also serves as a good indicator of the

motor’s operational status and level. Despite this, in conjunction with the RPM, it did

not provide any further insights and contained more missing values. Considering that the

RPM offers a more detailed aspect of the system’s operational behavior and has a faster

sampling frequency on average, it was deemed a superior option to both the flow controller

and supply to VSD. Therefore, the two components were neglected in favor of the RPM

for further analysis.
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Figure 37: A plot of the supply to the VSD and RPM sensor data showing the relationship

between the power supplied and motor speed.
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Figure 38: The flow controller and RPM sensor data plotted together, showing clear

correlations. It should be noted that the flow measurements are inverted, such that a

value of 100 corresponds to no flow and 0 corresponds to maximum flow.

5.1.4 Identifying Relevant Time Periods

In order to examine and analyze anomalous behavior in the sensor data, a comprehens-

ive examination of logged system notifications was conducted. The goal was to identify

notifications that could be recognized in the sensor data. Notifications regarding initial

corrosion, rust detection, routine cleaning, and component changes were indistinguishable

from the sensor data and consequently excluded from further analysis. In contrast, notific-

ations associated with high-value alarms or component failures were deemed more relevant

for anomaly detection, as their detectability was presumed feasible through inspection.

After a thorough analysis, it was determined that only 28 out of the 73 notifications

in the maintenance log were relevant for identifying potential anomalies in the dataset,

with the majority of them related to pressure errors or other error messages. These

notifications occurred between May 20th, 2019 and October 5th, 2022. The notifications

were not evenly distributed over time, with some occurring in rapid succession while others

had gaps of several weeks or months. Due to the large amount of data involved, it was

necessary to divide the notifications into separate time periods for analysis. Therefore,

eight distinct time periods were defined, with durations ranging from three to eight months.

Figure 39 depicts the relevant notifications and the chosen time periods. To gain insight

into possible abnormal system behavior before the first notification in a given time period,

it was important to include some time before the initial notification.
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Figure 39: The time periods identified based on the relevant notifications. The green

dotted line represents the timestamp of each notification and the red shadows indicate the

different time periods defined for analysis.

5.1.5 Identifying Abnormal Behavior

During each of the identified time periods, all selected sensors from the Motor, Pump

Monitoring, and Pump Process categories were carefully analyzed to detect any abnormal

behavior that may correspond to known performed maintenance or logged notification.

Figure 40 depicts the Motor sensor data and the corresponding logged notifications for

the period May 1st, 2017 to December 31st, 2017. Despite the occurrence of an error in the

frequency converter, which controls the electric motor, it is not possible to identify the error

from the signal due to the high level of noise. Since the motor also is frequently turned off

during this time period, it becomes challenging to differentiate between abnormalities that

are associated with the notifications and those that are not. This issue is also observed in

other time periods.
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Figure 40: The sensor data associated with the motor category for the period between

May 1st, 2017, and December 31st, 2017.

In the period spanning from May 1st, 2019 to August 1st, 2019, both pressure errors and

abnormal vibrations were reported. Figure 41 depicts the pump monitoring data during

this period, along with the relevant notifications. However, the vibration errors cannot be

identified from the measured data, and no other sensors indicate any abnormal behavior

in conjunction with the logged notifications. Similar to the motor data, the signals are

generally noisy with occasional outliers, and there are no obvious patterns observed before

a notification. This trend persisted across the other time intervals as well.
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Figure 41: The sensor data within the pump monitoring category for the duration from

May 1st, 2019, to August 1st, 2019.
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As mentioned in Section 5.1.4, many of the logged notifications were related to pressure

errors, particularly a high difference in pressure in the water injection filter, which may

be relevant to the inlet filter dP data. Figure 42 depicts the Pump Monitoring data

with its associated sensors from March 1st, 2021 to December 1st, 2021, during which six

notifications were received concerning a large pressure difference. The inlet filter dP sensor

revealed a noticeable trend, although this seemed to be independent of the notifications.

The differential pressure increases over time, likely due to clogging, and then drops after

the motor has been shut off before it steadily increases. Even though there is no logged

maintenance work executed on the filter, there is a reasonable basis to suspect that some

action has been taken while the motor was turned off to achieve such a significant reduction

in the differential pressure. This trend can also be observed in other time periods, as

illustrated in Figure 43. Although there appears to be a correlation between some of the

notifications and the monitored inlet filter value, it seems that there is more of a threshold

value that determines when the filter requires maintenance rather than the potential for

identifying anomalies in the data set.
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Figure 42: The sensor data within the pump process category from March 1st 2021 to

December 1st 2021.
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Figure 43: The measurements from the inlet filter dP sensor in the year 2020. It reveals

sporadic changes in the baseline of the sensor readings after the motor has been turned

off.

In general, there is a lack of clear correlation between the collected data and the logged no-

tifications. Although some signals contain outliers and periods that may appear abnormal,

there is no definitive evidence suggesting the potential for detecting a failure and utilizing

anomaly detection for predictive maintenance purposes. The differential pressure in the

inlet filter may be the only sensor data that could serve as an indicator for maintenance

needs, but even this signal poses challenges for anomaly detection.

5.1.6 Creating New Features Based on Correlation Between Data

An alternative method for potentially detecting anomalous behavior in the system is com-

paring the values obtained from different sensors and assessing how they differ from one

another. For instance, examining the distinction between theDE and NDE bearing tem-

peratures in the motor, or the variance between the inlet and outlet temperatures in

the pumps, or vibrations in the two distinct planes may be useful. However, as previously

stated, these measurements consistently exhibited minimal differences and did not provide

any insights into abnormal behavior.
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Figure 44: Water Injection flow rates for all eight wells during 2021.

The main output of the system was the flow rates that went into the oil wells. The vari-

ations in these flow rates across different wells provided a great foundation for comparison.

The distribution of flow rates throughout 2021 is illustrated in Figure 44. Although the

distribution among the wells is uneven, there appears to be some correlation between the

flow rate in certain wells. This led to an investigation of the relationship between the

pressure in the manifold that distributes fluid into the wells and the total flow rate. Fur-

ther in this section, the flow rate would indicate the sum of flow rates for all eight wells.

It was assumed that there would be a strong correlation between the two variables, as

changes in manifold pressure would be expected to impact the total flow rate. However,

Figure 45 indicates that this is not the case, as the manifold pressure remains relatively

stable despite significant fluctuations in the total flow rate. If this was only observed over

a short time period, it could suggest potential leaks or other system issues, but since this

pattern persisted over the entire year of data, it suggests that the correlation between the

total flow rate and the manifold pressure is not as strong as originally expected.
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Figure 45: The relationship between the manifold pressure and total flow rate.
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Figure 46: The relationship between the motor RPM and the total flow rate.

The correlation between the motor RPM and the flow rate is another potential indic-

ator of the system’s performance. Typically, these two variables are expected to have a

positive correlation since an increase in RPM should lead to an increase in flow rate. A

weak correlation may suggest underlying system problems, and monitoring changes in the

correlation over time can also signal changes in system performance or potential issues

requiring attention. Nevertheless, the correlation between the variables is not expected to

be perfect due to other factors that may affect it. Figure 46 illustrates the RPM and flow

rate data for the system in 2021, indicating some correlation between the two variables.

Anomalous behavior is evident when the flow rate decreases over time without a corres-

ponding decrease in RPM, as seen in Figure 47. Conversely, in cases where a drop in RPM

affects the flow rate, such behavior should not be considered anomalous, as depicted in

Figure 48.
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Figure 47: An example of anomalous behavior is demonstrated by a drop in the flow rate

that is not reflected in the RPM measurements.
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Figure 48: An example of normal behavior is observed where a drop in the flow rate

coincides with a change in the RPM measurements.

To further investigate the relationship between RPM and the total flow rate, the slopes

of the two time series were calculated and compared. Figure 49 illustrates the two slopes

together, revealing that although the total flow rate slope is somewhat more erratic, there

are several segments where the two slopes align. A closer look at a shorter interval in

Figure 50 also shows some noticeable similarities between the two slopes, while Figure 51

shows a segment where there are clear changes in the flow rate that is not present in the

RPM. Any abrupt decrease in total flow rate without a corresponding decrease in RPM

may indicate a potential system failure and therefore warrants attention.
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Figure 49: The calculated slopes for the RPM series and the flow rate series.
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Figure 50: Changes in the flow rate that can also be detected in the RPM should not be

considered anomalous.
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Figure 51: Changes in the flow rate that can not be detected in the RPM should be

considered anomalous.

Another way of further assessing the system’s performance and health is by examining

the efficiency factor. This factor indicates the ratio of the pump’s hydraulic power output

to the power input provided by the motor or engine driving the pump. A degradation

in the efficiency factor indicates a decrease in the pump’s performance and the need for

maintenance. The efficiency factor of a centrifugal pump is calculated using Equation 25.

η =
ρgQH

Pm
(25)

This equation factors in the mechanical input power Pm, fluid density ρ, standard acceler-

ation of gravity g, energy head added to the flow H and the flow rate Q. η is the efficiency

of the pump, typically expressed as a decimal. Assuming the system pumps water, the

fluid density is assumed constant. The energy head added to the flow is also considered

relatively constant, although increased flow rates may result in increased friction. As

the energy to the pump is not directly measurable, RPM is considered a relatively good

proxy. Therefore, because of the constant variables, the efficiency factor is defined by the

relationship between the total flow rate and the RPM.

The rotational speed of a motor is a critical factor that significantly influences the overall

operation of a system. Any changes in the rotational speed have a direct impact on the

performance of other system components, particularly the total flow rate out of the pump.

A decrease in RPM signifies a lower intensity of motor operation, resulting in a direct

impact on the measured flow rate. This relationship is clearly illustrated in Figure 46,

where the influence of RPM on the total flow rate is evident. Given this understanding,

it was initially hypothesized that the RPM would remain relatively stable over time, with

any significant decreases or sudden drops serving as potential indicators of underlying

issues. It was also expected that instances where both the RPM and flow rate decreased

would result in a balanced efficiency factor, and not be classified as outliers. However,

upon analyzing the data presented in Figure 52, it became apparent that the efficiency

factor for the year 2021 did not exhibit the expected stability. Contrary to the initial

assumptions, the efficiency factor did not provide any additional information regarding

the logged notifications or its ability to identify abnormal behavior.
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Figure 52: The calculated efficiency factor.

5.1.7 Summary of Findings

This section aimed to identify anomalies in the data and explore approaches for effective

anomaly detection. Extensive efforts were made to clean and prepare the data for further

analysis. A significant finding was the use of RPM data to determine when the motor

was off, and cleaning the other sensors based on this insight. This technique significantly

improved the quality of the signal and allowed for a detailed examination of the system

behavior during motor operation.

During the analysis, it was discovered that many of the sensors used in the study were

redundant or with poor quality data. The decision to exclude these sensors from further

analysis proved advantageous as it led to an enhancement in the overall data quality.

Moreover, it allowed for a more effective study, where the focus was narrowed down to

understanding the overall system performance and identifying potential anomalies.

Due to the absence of labeled data, a major part of the analysis revolved around dis-

tinguishing normal operational data from abnormal behavior. Relevant notifications were

analyzed in conjunction with the sensor signals, but no noticeable correlation was observed.

However, the comparison between motor RPM and total flow rate demonstrated the po-

tential in identifying alarming behavior and potential system failures. It is important to

note, though, that these identified divergences did not align with any logged notifications.

The decision to label them as anomalies were based on a comprehensive understanding

of the system components and an intuitive assessment of how these components should

correlate.

In conclusion, the presence of noise, poor data quality, and the lack of correlation between

measurements and notifications present challenges to effective anomaly detection. How-

ever, by focusing on specific sensor relationships and leveraging domain knowledge, there

is potential to enhance anomaly detection capabilities on the centrifugal pump data.

5.2 Model Benchmarking

Benchmarking machine learning models is crucial for objectively comparing their per-

formance and identifying their strengths and weaknesses. This will serve as a sanity check

where the more complex deep learning models presented in sections 2.7.8 and 2.7.9, have
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to outperform simpler statistical approaches and machine learning algorithms in order to

demonstrate their usefulness. It also helps to determine the feasibility of deploying these

models in real-world scenarios, track research progress, and facilitate their practical de-

ployment by evaluating their performance and identifying potential sources of error. Since

the data in this thesis lack a fundamental component for evaluating unsupervised anomaly

detection models, namely labeled anomalies. A generated, synthetic dataset that includes

labeled anomalies of varying complexity will be used for benchmarking the models. Per-

formance evaluation metrics such as recall, precision, F1 score, FPR, and FNR, presented

in Section 2.8, will be calculated for each algorithm. The function used for calculating the

score of a prediction is shown in Listing 5 in Appendix B. These measures will then lay

the foundation for a comprehensive assessment of the algorithm’s effectiveness in detecting

anomalies.

5.2.1 Model Selection

An extensive range of algorithms exists for anomaly detection, encompassing simple stat-

istical methods, sophisticated machine learning techniques, and complex deep learning

models. Each method possesses its own strengths and weaknesses, necessitating careful

consideration of their relevance to the specific context at hand.

Simple statistical methods, such as moving averages and standard deviations, have limit-

ations regarding anomaly detection in industrial time series data. These methods assume

both linearity and normality, which may not hold true in many real-world scenarios. As

a result, they may fail to identify anomalies that do not conform to these assumptions.

Therefore a more sophisticated method is used as a baseline for the benchmark, namely

the Isolation Forest algorithm, presented in Section 2.6.1. Deep learning autoencoders,

on the other hand, leverage neural network architectures to capture complex temporal

dependencies and can adapt to evolving patterns, and identify anomalies that deviate

from their learned representation. Because of their promising capabilities of capturing

non-linear relationships and handling various data distributions, they make a highly ef-

fective candidate for anomaly detection in time series data. A basic autoencoder will be

tested, presented in Section 2.7.8, and an improved version that incorporates probabilistic

modeling, presented in Section 2.7.9.

5.2.2 Benchmark Data

To obtain a comprehensive evaluation of the proposed model’s performance in anomaly de-

tection, three distinct datasets were generated for benchmarking purposes. These datasets

were intentionally chosen to encompass varying degrees of complexity and different types

of anomalies. The synthetic time series data was generated with the structure presented in

Equation 26, simplified it can be explained as signal+ trend+noise. This ensures expos-

ure to a wide range of anomalous patterns, from simple spikes and dips to more complex

patterns such as seasonality, trends, and sudden shifts. The generation of these datasets

involves incorporating various anomaly-inducing techniques such as additive noise, outlier
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injection, and structural perturbations.

ϕsin(απt)

ρ
+

t

length/2
+ random(µ, σ) (26)

The code snippet provided in Listing 1 demonstrates the generation of training data and

the three distinct time series used for testing purposes. The functions used for data gen-

eration can be found in the code listings presented in Section B.2. Figure 53 illustrates

the three benchmark datasets, and there is a noticeable increase in the complexity of the

anomalies. In Figure 53a, point anomalies are generated with inconsistent periods and

magnitude. Then, in Figure 53b, there is added complexity through incorporating con-

textual anomalies, also with an inconsistent period and magnitude. Lastly, in Figure 53c,

contextual anomalies are combined with a breakpoint. This is a point where the signal

experiences a drop, and the trend changes afterward. This provides a challenge for the

anomaly detection algorithms, especially for the ones with encoder-decoder pairs since

their goal is to mimic and reproduce based on a latent representation. The drops can

be challenging when the underlying pattern is varying and therefore inconsistent. These

different scenarios are created based on patterns in the sensor data of the centrifugal pump

used for water injection, described in section Section 3.2.

Listing 1: Creating synthetic train and test data benchmarking

normal_data = create_normal_data(9000)

train, test = train_test_split(normal_data, test_size=1/3, shuffle=False)

test_point_anomalies = add_point_anomalies(test)

test_contextual_anomalies = add_contextual_anomalies(test)

test_contextual_anomalies_with_breakpoint =

add_contextual_anomalies_with_breakpoint(test)
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(a) Point Anomalies.

(b) Contextual Anomalies.

(c) Contextual Anomalies with Breakpoint.

Figure 53: The three benchmark datasets, representing different types of anomalies with

varying complexity.

These anomalous datasets are variations of a consistent signal with a trend but with added

anomalies. The models will be trained on the original consistent signal, then be tested on

each of the anomalous datasets. For context, all datasets are illustrated in Figure 54

Figure 54: Normal training data with the continuation of different anomalous test data.
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5.2.3 Benchmark: Isolation Forest

The IF algorithm with its unsupervised approach is interesting in the context of anomaly

detection on industrial data since it does not require any prior training data. However,

this is leveled through the contamination parameter, which takes in the percentage of

anomalous data points, and guides the algorithm based on the assumed percentage of

anomalies present in the data. This makes the algorithm a good benchmark for the

more complex deep learning models. The specific IF parameters are summarized in table

Table 3, and the implementation of the model is shown in Listing 11 in Section B.3

Parameter Value

Number of Estimators 100

Max Samples 256

Contamination 6%

Table 3: Isolation Forest model parameters
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Figure 55: Result from Isolation Forest on point anomalies.
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Figure 56: Result from Isolation Forest on contextual anomalies.

76



Result and Analysis

0 500 1000 1500 2000 2500 3000

−2

0

2

4

6

value
true positive
false positive
false negative

Contextual Anomalies with Breakpoint

Figure 57: Result from Isolation Forest on contextual anomalies with breakpoint.

Summarized results:

The score from the benchmarking analysis conducted on the IF algorithm is depicted in

Figure 58. The results highlighted an increase in performance as the complexity of the

dataset increased. This is mainly because of the point anomalies benchmark where all

anomalies were successfully identified, shown in Figure 55, resulting in a perfect recall

score. However, numerous false positives were also detected, leading to a high FPR and

low precision and F1 score. When contextual anomalies were introduced, the algorithm

demonstrated surprisingly proficient detection of abnormal behavior, shown in ??. In this

dataset, the recall, precision, and F1 score were notably high, while the FPR and FNR

remained low, indicating an overall satisfactory performance. Conversely, as depicted in

Figure 57, the algorithm encountered difficulties when faced with the dataset incorporating

a trend with a changepoint, exhibiting decreased effectiveness compared to the contextual

dataset.

The results obtained from the benchmarking analysis indicate that the IF algorithm is

generally effective in detecting anomalies but tends to include a large number of false

positives. It also exhibits limitations when confronted with contextual anomalies featuring

breakpoints. Considering the complexity and the challenges associated with distinguishing

abnormal behavior from normal in the centrifugal pump data, it is possible that the

IF algorithm may prove too simplistic to generate reliable results for integration into a

predictive maintenance system.
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Figure 58: Summarized results of the Isolation Forest algorithm.

Nevertheless, the simplicity, efficiency, and anomaly detection capabilities of the IF al-

gorithm make it an ideal foundation for benchmarking and evaluating the performance
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of more sophisticated models in anomaly detection tasks. This sets the stage for further

advancements and contributes in understanding the incremental gains achieved by more

complex algorithms.

5.2.4 Benchmark: Autoencoder

The Autoencoder (AE) has promising applications in anomaly detection, due to its ability

to learn representations of high-dimensional data. The model parameters are summarized

in Table 4, and the implementation of the model is shown in Listing 12, Appendix B.

Parameter Value

Epochs 100

Kernel Size 10

Latent Dimension 20

Batch Size 256

Strides Encoder 2

Strides Decoder 2

Time Steps 104

Activation Function ReLU

Table 4: AE model parameters

Figure 59 illustrates how the AE reconstructs the training data, with a shade ranging from

yellow to dark orange, signalizing the absolute difference between the actual signal and

the reconstructed signal. As mentioned in Section 4.3.5, the anomaly threshold is set as

80% of the maximum reconstruction error in the training data.

Figure 59: Training data and Reconstructed data from the AE.
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Figure 60: Result from AE on point anomalies.
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Figure 61: Result from AE on contextual anomalies.
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Figure 62: Result from AE on contextual anomalies with breakpoint.

Summarized results:

The performance of the AE model can be seen in Figure 63, revealing important findings

regarding its effectiveness in detecting various levels of complexity and anomalies. One

notable observation is the model’s high recall across all of the different datasets, indicating

its ability to identify a significant portion of true anomalies. This is also reflected in the

low FNR. However, this high sensitivity comes at the cost of a high number of false

positives. As a result, the model exhibits a low precision and F1-score, which take into

account both the true positive and false positive predictions. The low precision signifies

that a considerable proportion of the anomalies classified by the model are actually false.

Figures 60, 61, and 62 reveal that the model tends to be overly sensitive in identifying

anomalies, leading to a large number of false positive predictions. While it effectively

captures most true anomalies, it also flags numerous instances as anomalies that are not
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truly anomalous. When introducing the breakpoint, the model also struggles to adapt,

severely affecting the precision and F1-score compared to the contextual anomalies.
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Figure 63: Summarized results of the Autoencoder model.

The results highlight the autoencoder’s potential for successful anomaly detection, as long

as it produces an accurate representation of the signal trend in the latent space. However,

the model’s performance is notably affected when breakpoints are introduced, underscoring

the need to address this challenge to further enhance its anomaly detection capabilities.

5.2.5 Benchmark: Variational Autoencoder

The Variational Autoencoder (VAE) has promising applications in anomaly detection,

due to its ability to learn representations of high-dimensional data, differing from the

traditional autoencoder by providing a probability distribution in the latent space instead

of a specific point, as explained in Section 2.7.8. The model parameters are summarized

in Table 5, and the implementation of the model is shown in Listing 13, Section B.3

Parameter Value

Epochs 100

Kernel Size 10

Latent Dimension 20

Batch Size 256

Strides Encoder 2

Strides Decoder 1

Time Steps 100

Activation Function ReLU

Table 5: VAE model parameters

Figure 64 illustrates how the VAE reconstructs the training data, with a shade ranging

from yellow to dark orange, signalizing the absolute difference between the actual signal

and the reconstructed signal. For the test data, the anomaly threshold is set as 80% of

the maximum reconstruction error in the training data.
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Figure 64: Training data and Reconstructed data from the VAE.
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Figure 65: Result from VAE on point anomalies.

0 500 1000 1500 2000 2500 3000

−4

−2

0

2

4

6

8

value
true positive
false positive
false negative

Contextual Anomalies

Figure 66: Result from VAE on contextual anomalies.
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Figure 67: Result from VAE on contextual anomalies with breakpoint.
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Summarized results:

Figure 68 illustrates the scores achieved by the VAE across various benchmark datasets,

highlighting its ability to capture the complexity inherent in the data and maintain good

performance overall. Regarding point anomalies, the model successfully detects all anom-

alies, as demonstrated in Figure 65, leading to a perfect recall. However, it does exhibit

some false positives, resulting in a high FPR and lower precision and F1 score. Figure 66

reveals that when contextual anomalies are introduced, the model demonstrates excellent

capability in capturing these changes without missing any anomalies or generating false

positives. Even in datasets featuring trends, as in 67, the model exhibits precise iden-

tification of contextual anomalies. However, it does display a tendency to predict false

anomalies shortly before the actual breakpoint occurs.
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Figure 68: Summarized results of the Variational Autoencoder model.

Overall, the benchmarking results support the potential of the Variational Autoencoder’s

ability to detect anomalies of varying kinds, although it does exhibit limitations in terms

of false positive predictions before breakpoints.

5.2.6 Benchmark Takeaways

After comparing the IF, AE, and VAE, it became evident that the VAE outperformed both

the IF and the AE. The VAE demonstrated remarkable proficiency in capturing trends

across diverse data. Considering the complexity and intricate patterns embedded within

the data analyzed in this thesis, which are often challenging for the human eye to discern,

it is anticipated that the VAE can offer additional insights into detecting changes in the

data and identifying abnormal behavior.
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Table 6: Algorithm Performance across Benchmarks

Benchmark Evaluation Metric
Algorithm

Isolation Forest Autoencoder Variational Autoencoder

Point

Recall 100 100 100

Precision 9 1 13

F1 Score 11 2 23

Contextual

Recall 90 84 100

Precision 99 23 99

F1 Score 94 36 99

Breakpoint

Recall 40 97 99

Precision 23 9 90

F1 Score 29 16 94

Table 6 displays the result from all the algorithms on different benchmarks. The VAE

consistently emerges as the top-performing model across all benchmarks, either matching

or surpassing other models in terms of evaluation metrics. With high expectations, the

outcomes produced by this model on the industrial dataset hold the potential to be valu-

able assets within a predictive maintenance system. The application of the VAE could

significantly enhance the system’s capabilities by facilitating the detection of anomalies

and facilitating timely maintenance actions.

5.3 Variational Autoencoder on Derivatives

Drawing from the insights obtained in Section 5.1, it was observed that anomalous behavior

could be identified when inconsistency arises between the changes in total water injection

flow rates and the motor RPM. When there is a lack of synchronization between these

two variables, it raises suspicion and suggests the presence of abnormal system dynam-

ics. Furthermore, examining the derivatives of both variables helps emphasize significant

changes while reducing the influence of noise.

The ensemble focused on detecting anomalies by examining deviations in the derivative

values, as well as identifying instances where changes in flow rate did not align with cor-

responding changes in RPM readings. Within this ensemble, anomalies were identified

when variations in flow rate occurred independently of the RPM signal, indicating abnor-

mal behavior. On the other hand, deviations in both signals were considered normal as

they were likely attributed to adjustments in the running capacity of the pump, which

intuitively led to corresponding variations in pump performance.

To maximize the effectiveness of the deep learning model, the selection of a high-quality

training dataset is crucial. Given the presence of noisy measurements and rapid changes

in trends, the training data chosen for the model encompassed a duration of two weeks.

This period was identified as the longest timeframe exhibiting a relatively stable signal
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with the presence of some anomalies. By focusing on this specific timeframe, the model

was trained to capture both the normal behavior and some minor anomalous patterns,

enabling it to better generalize and make accurate predictions on unseen data.

The results derived from the application of the VAE to the derivative of RPM sensor data

and water injection flow rate data are presented in Figure 69. The figures exhibit both

the derivative, represented as the slope in the top plot, and the original signal displayed

in the bottom plot. Detected anomalous periods are highlighted by the blue-shaded area.

Notably, the figure demonstrates the model’s ability to detect changes in the total flow

rate that are not apparent in the measured motor RPM.
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Figure 69: Results from VAE on real anomalous data.

In the scenario where a change in the total flow rate can be observed in the RPM signal, it

should not be classified as an anomaly, as depicted in Figure 48, Section 5.1.6. To evaluate

the performance of the model, it was necessary to test it in such situations. Figure 70

presents the results obtained from testing the VAE on a period characterized by substantial

fluctuations in both the RPM and water injection flow rate. In this particular case, the

model does not detect any anomalies because the decrease in the flow rate relates to the

decrease in the RPM signal.
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Figure 70: Results from VAE on real non anomalous data.

Because of the lack of labels in the data, it is difficult to make a comprehensive evaluation

of the performance of the model. Metrics like recall, precision and F1 score that were

calculated when benchmarking the models require a ground truth that was absent in this

real data. Therefore, the performance of the model relies heavily on subjective assessment

and domain expertise. The result from the model is evaluated only based on visually

inspecting the predicted anomalies and comparing them against what is considered an-

omalous behavior. Because the predicted anomalies in Figure 69 and Figure 70 align well

84



Result and Analysis

with the expected anomalous patterns, it is suggested that the VAE model is performing

effectively.
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Chapter 6

6 Discussion

Based on the results obtained in Section 5, this chapter will discuss the findings with

their associated limitations and their potential utilization in a predictive maintenance

system. The chapter begins with an overview of the main takeaways and reflections

derived from the research, highlighting the key contributions and implications of the study.

Subsequently, an exploration of the data potential and limitations is undertaken, assessing

the quality and relevance of the collected data for the research objectives. Finally, the

implications of the findings for future research are discussed, identifying potential avenues

for further investigation and development in the field. By delving into these subchapters,

a comprehensive and critical analysis of the results is provided, linking with the research

objectives and facilitating a deeper understanding of the implications and opportunities

presented.

6.1 Main Takeaways and Reflections

Prior to this study, there was a promising anticipation regarding the application of ma-

chine learning techniques on anomaly detection in order to provide valuable insights for

predictive maintenance. The centrifugal pump presented in Section 3.1, is known for its

susceptibility to multiple failures and substantial downtime, presenting a clear opportun-

ity for optimizing maintenance operations through an effective anomaly detection system.

However, it should be noted that the exploitation of industrial data is challenging, espe-

cially in the context of constructing a predictive maintenance system.

The complexity of industrial data presents a significant challenge in anomaly detection. It

was anticipated that data-driven models would outperform function-based models in this

regard. This hypothesis was confirmed after reviewing the benchmark results, presented

in Section 5.2. It seems that complex data often exhibits intricate patterns and nonlinear

relationships that cannot be effectively captured by simple mathematical functions or

predefined rules. In contrast, the capacity of data-driven models to capture complex

patterns, relationships, and anomalies within the data makes them well-suited for handling

the intricacies and nuances encountered in industrial environments.

Furthermore, the environment in which the sensors operate is often characterized by harsh

conditions, leading to noisy data of poor-quality. This presents a significant challenge for

predictive maintenance systems as data-driven models rely heavily on high-quality data

in order to capture patterns. The lack of labeled data further compounds the difficulty

in distinguishing abnormal behavior from normal operation data. The findings presented

in Section 5.1 illustrate the challenges encountered in extracting meaningful insights from

such a complex system. These challenges pose direct implications for the effectiveness of

deep learning models. However, to harness the full potential of these models, significant

efforts are needed in the areas of data pre-processing and feature engineering.
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6.1.1 Key Findings from Data Analysis

To reduce the impact of noise in the data, a decision was made to filter out sensor signals

during periods when the RPM was near zero, indicating that the motor was off. By

adopting this approach, the analysis focused exclusively on intervals associated with the

normal operational states of the system. This decision was made in light of the observation

that engine shutdowns had a notable impact on the readings of all other sensors, leading

to deviations and outliers in the data. Excluding these periods helped the analysis focus

on detecting subtle deviations in the sensor data without being misguided by artificially

induced anomalies caused by the shutdown events.

Due to the absence of labeled data, it was hypothesized that insights into system behavior

could be gained from the notifications log. However, the analysis revealed that there was

no significant correlation between data outliers and the notifications log, highlighting the

challenges posed by poor data quality. As the notifications were manually logged, various

human-related factors might have influenced the timing and accuracy of the log entries.

In an attempt to address this issue, the data analysis considered a time window before

and after each notification. However, despite thorough observation, no abnormal behavior

was detected in any of the sensors that could account for the received notifications. These

findings highlight the importance of extensive data cleansing and preprocessing techniques

to minimize the impact of unreliable notifications.

The inlet filter dP emerged as the sole sensor that displayed noticeable trends and sensit-

ivity to maintenance activities, as depicted in Figure 43. While the notifications did not

exhibit a clear relationship with the measured differential pressure, it was apparent that

the sensor values underwent changes during engine shutdown periods, indicating main-

tenance activities during these intervals. However, it was determined that relying solely

on this sensor for anomaly detection would not be sufficient. This decision was based on

the understanding that the need for maintenance on the filter was primarily determined

by threshold-based readings from operators, and there was limited potential to detect

anomalies in the data that could provide more insightful information for maintenance re-

quirements. These findings underscore the importance of accounting for the human factor

in anomaly detection systems, as operators and their actions can exert a substantial in-

fluence on data patterns and the overall process of anomaly detection.

6.1.2 Reflections on Feature Engineering Insights

Since individual sensor readings alone were too complex to pinpoint errors, another ap-

proach was performed in order to capture the greater picture of the system state. This

angled the analysis to focus on contrasting the input data, represented by the RPM of the

motor, which is a reasonable proxy for the input data in a centrifugal pump system since it

directly correlates with the rotational speed. The flow rate into the oil wells was chosen as

the output data in the pump system since it directly reflects the pump’s ability to deliver

the required volume of fluid, a crucial parameter for assessing the system’s performance.

This neglected individual sensor anomalies that did not lead to changes in the output and
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treated the inner workings of the system as a black box, focusing solely on the input and

output. Although the calculation of the efficiency factor yielded minor deviations and

captured both the RPM and the flow rate in one feature, a more effective approach was

derived by examining the individual derivatives instead. The derivatives filtered out the

noise and random fluctuations that suppressed the original data. This allowed for clearer

identification of underlying trends since it captured the instantaneous rate of change in

the signal. While this method might not capture sustained abnormal values, its primary

objective was to detect the occurrence and frequency of abnormal changes.

6.1.3 Assessing the Performance of Variational Autoencoders

The careful selection of training and testing data plays a crucial role in the development

and evaluation of data-driven models, as these data intervals directly shape the model’s

understanding of normal operational patterns and consequently establish the boundaries

for anomaly detection. To train the model effectively in distinguishing between normal and

anomalous patterns, precise and accurate labeling of ground truth data is crucial. However,

in the provided dataset, only shorter periods were consistent with normal operational data,

resulting in limited training intervals for the models. This limitation ultimately hinders

the performance of the models, which would have otherwise benefited from a larger and

more diverse dataset.

The results from running the VAE on derivative data, as presented in Section 5.3, demon-

strate the potential of the model in detecting changes and anomalies. Nonetheless, it is

important to note that the predictions were derived from relatively limited and regulated

intervals, both in terms of the training and testing data. In an operative real-time sys-

tem, the model should be trained on historical data containing a diverse range of normal

operational data, allowing it to learn and generalize from various scenarios. However, the

system must also be adaptable to changing conditions and new anomalies that may arise

in the future. Continuous monitoring and regular updates of the training data is there-

fore necessary to account for evolving patterns and potential shifts in what is considered

anomalous behavior. Furthermore, the availability of real-time feedback and ground truth

labeling in an operational setting allows for continuous model refinement and improve-

ment. But this is a luxury not always worth the cost, therefore the most important aspect

in an operative real-time environment is a careful consideration of the initial training and

testing data. This will in turn ensure the most accurate and reliable anomaly detection

capabilities.

When constructing the VAE, the parameters of the model were customized in order to

provide optimal performance. A big challenge lay in the choice of tailoring the character-

istics to the centrifugal pump while also keeping it generalized in order to make it scalable.

The design choices made in this thesis were made based on intuitive reasoning rather than

intensive optimization, as they were expected to have little impact on the final result.

Some of the key parameters along with their priorities were as follows:

• Latent Space Dimension: The dimensionality directly affected the expressiveness
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of the reconstructed samples, and choosing an appropriate dimension that balanced

the capturing of core features while avoiding overfitting was crucial. It was hard to

generalize a value for scalability since this turned out to be quite individual based

on the specific sensor.

• Learning Rate: Since the main focus was on proving that such a system can

be constructed with success, the standard value from the Keras library was chosen.

Avoiding overshooting while maintaining a relatively fast convergence was important

since it is deployed in a real-time maintenance system.

• Regularization: Dropout was chosen as the only regularization layer, but cross-

validating the data or implementing techniques such as grid search could also be

beneficial in order to find the optimal values.

• Activation functions: The choice of ReLU as the activation function between

layers impacted the results by promoting sparsity and reducing the noise in the latent

space representation. One could argue that this contributed to generalization, but

other activation functions could also be beneficial.

The results obtained from Figures 69 and 70 in Section 5.3 demonstrate the effective-

ness of the VAE in capturing the intricate patterns of the signal while exhibiting strong

generalization capabilities. The choice of using the derivative data as input, was based

on the fact that sudden changes were easier for the model to detect, but also easier to

visually confirm its performance. Furthermore, by comparing the model’s predictions on

the derivatives with the actual signal, it was evident that these changes corresponded to

abnormal values in the sensors. Even though this method of visual assessment is highly

effective, it is important to note that this method alone may not provide a comprehensive

evaluation of the model’s liability. It should be used in conjunction with quantitative

evaluation metrics and statistical analyses to ensure a robust assessment. Factors such as

subjectivity and bias most likely affect the visual assessment, as interpretations can vary

among individuals. Acknowledging the limitation of the absence of ground truth data for

calculating evaluation metrics, the results indicate that the predicted anomalies exhibit

a strong alignment with the anticipated anomalous patterns. This alignment serves as

promising evidence of the effective performance of the VAE model.

The results provide strong evidence for the significant potential of developing a predict-

ive maintenance system specifically tailored for centrifugal pumps. Additionally, the ap-

plication of deep learning techniques holds promise in effectively capturing the inherent

complexity of the data. However, challenges arise from the presence of noise, poor data

quality, and the limited availability of labeled data, which hinders the full utilization of

deep learning capabilities. To address these challenges, it becomes crucial to prioritize

investment in data preprocessing techniques aimed at cleansing and improving the quality

of the data. By doing so, the efficiency of deep learning models can be enhanced, leading

to more accurate and reliable predictive maintenance outcomes.
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6.2 There is Potentially More Hiding Behind the Noise

As discussed in Section 6.1, the process of extracting insights from the available data posed

numerous challenges. The proposed solution focused on examining divergences between

the input and output of the system, mainly focusing on the system state as a whole and

ignoring warning signs in individual sensors. However, it is important to note that this

approach did not fully uncover all the potential contained within the data. There may exist

additional readings and measurements that could serve as a basis for detecting anomalies

in the system.

6.2.1 Implications of Excluding Components too quickly

During the exploratory data analysis phase, a crucial aspect was to determine which

sensors would provide valuable insights into understanding the system dynamics. When

multiple sensors measured the same values, a deliberate choice was made to select a single

sensor for further investigation. This decision was motivated by the goal of establishing a

comprehension of the system’s behavior and its diverse operational states. The belief was

that focusing on the examination of various sensors that measured different components

would contribute to achieving this goal.

Furthermore, sensors were excluded from the analysis for two main reasons. Firstly, some

sensors were deemed redundant as they did not provide additional information beyond

what could already be inferred from the RPM readings, which served as a reliable indicator

of the system’s operational state. Thus, including these redundant sensors would not

have contributed further to our understanding. Secondly, the presence of substantial

amounts of missing values in certain sensors. These sensors lacked sufficient data, making

it challenging to draw meaningful conclusions or insights from them. Consequently, these

were not considered for further investigation.

It is important to highlight that only a subset of these signals were examined in order to

determine their inclusion or exclusion. It is plausible that these signals, which were not

thoroughly analyzed, might have contained valuable or suspicious information in different

time intervals. However, due to resource limitations, a comprehensive examination of all

potential time intervals was not feasible within the scope of this thesis.

In the logged notifications data, only those that were deemed recognizable were analyzed

in conjunction with the sensors. However, it is important to acknowledge that there may

be additional notifications that could provide further insights into the system’s issues. It

is possible that these unexamined notifications contain valuable information that, when

combined with the correct measurements, could enhance understanding and provide deeper

insights into the system’s behavior. Therefore, it is worth considering the exploration of

these unexamined notifications to uncover any potential hidden insights related to the

system’s issues.
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6.2.2 Addressing Data Loss: Causes and Remedies

As outlined in Section 4, the signals were resampled to facilitate analysis across different

time series. When determining the granularity for resampling, it was crucial to ensure that

the same function could be applied consistently to all sensors. A finer granularity resulted

in a higher number of missing values due to the diverse range of measurements across

the sensors. Since the objective was to identify anomalous behavior, it was considered

more valuable to examine longer time intervals in order to distinguish between normal

and abnormal behavior. Consequently, a finer granularity did not provide the additional

insights required, therefore a granularity with a datapoint each hour was selected.

The resampling of the time series often resulted in a reduction in the number of data points.

This downsampling process carries the potential risk of losing valuable information, as

rare patterns or significant details may be smoothed out, leading to a less comprehensive

understanding of the data. It is important to acknowledge that these patterns, such as

sudden changes in frequency could potentially offer additional insights that are missed

during the resampling process. Mathematical techniques such as the Fourier Transform

could be used on the raw data in order to analyze and identify trends on specific frequencies

in shorter periods, but this was not done in the analysis since larger emerging trends were

of higher interest.

By calculating the average during the downsampling, a smoother representation of the

data was created, making it easier to identify trends and contextual anomalies. Taking the

average lead to less impact from extreme values on the visual representation compared to

choosing the minimum or maximum values. This method can also help in reducing noise in

the data because the extreme outliers are averaged out. However, it is essential to consider

the biases introduced by this choice and the potential removal of single-point outliers

within the resampled subsets. Additionally, since the RPM was utilized to determine

periods when the motor is off, certain intervals may disappear when only the average value

is considered during resampling. The decision to prioritize the average during the analysis

was driven by the recognition that outliers, which have a higher chance of being mitigated

through averaging, are infrequent and unlikely to significantly impact the identification

of abnormal data. Even though these could be of interest, they may also be a result of

sensor errors rather than actual anomalies.

Resampling the data will also mean that the exact timestamp of every measurement within

the resampling period is lost. As illustrated in Section 5.1.1, the sampling frequency for

one sensor exhibited considerable variation over time, with intervals of rapid measure-

ments followed by long gaps without new measurements. Although the reason for this

fluctuation remains unknown, it was assumed that the sensor only recorded new meas-

urements when the values changed. However, it is possible that changes in the sampling

frequency could indicate issues with the sensor or the system, or reveal patterns related

to the logged notifications. Nevertheless, the main focus of the analysis was to examine

the long-term trends in the data to identify anomalous behavior. Therefore, the specific

timestamp information provided by the original sample frequency was not deemed to hold

significant value in this context. Moreover, considering the computational cost associated
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with analyzing the raw signal, the potential insights gained from examining the resampled

signal were considered more valuable than those obtained from the raw data.

Overall, downsampling was a necessary step in analyzing signals across various time series;

however, it inherently posed the risk of information loss and the potential smoothing of

valuable patterns. The decision to focus on longer time intervals and use the average res-

ampling method was driven by the objective of identifying anomalous behavior. However

it is essential to remain aware of the potential of hidden patterns and biases introduced

by this approach. Remaining open to alternative approaches that may provide further

insights or a different perspective is important, especially when it comes to exploring the

relationship between resampling, notifications, and anomalous behavior.

6.2.3 Time Intervals

Due to computational limitations, a subset of sensor measurements was selected for ana-

lysis, both to identify redundant sensors as well as detecting anomalous behavior. These

selected time intervals typically ranged from six months to one year. Processing and visu-

alizing a larger time series would have been excessively time-consuming. However, there

are certain drawbacks associated with analyzing data over these relatively short inter-

vals. One of the downsides is that the chosen time interval may be too short to capture

the complete behavior of the system, resulting in fragmented insights. By focusing on a

limited timeframe, there is a possibility of missing important contextual information and

patterns that unfold over longer periods. Consequently, the analysis may not fully capture

the dynamics and complexities of the system under investigation. It is worth considering

that some sensors might provide more valuable insights than what was concluded in this

analysis. Moreover, a short time interval may not reveal the underlying trends or gradual

changes in system development. This can make it more challenging to distinguish anom-

alies from normal variations or noise. Therefore, by examining data over longer periods,

a clearer understanding of the system’s evolution and potential issues may have emerged.

To explore the potential correlation between logged notifications and abnormal system

behavior, the notifications logged within a short interval were grouped together, and a

timespan was determined based on the dates of the notifications within the same group.

The selected time intervals are shown in Figure 39 in Section 5.1.4, revealing that there

are several months that have not been thoroughly examined. The reasoning behind creat-

ing these specific time intervals was based on the assumption that it would be interesting

to analyze the system behavior immediately before and after an event or incident. By

grouping the notifications together, computational resources could be conserved, while

still providing a comprehensive overview of the system’s behavior. To capture any po-

tential significant events preceding the first notification of a time interval, a time span

preceding the initial notification was included. However, the size of this time span was

not consistently determined and was simply based on including as many notifications as

possible within a single group. Consequently, the time intervals spanned from the 1st day

in one month to the 1st day in another month. Figure 39 also indicates a considerable

variation in the length of the time intervals and the number of notifications within each
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group. It is important to note that there may be anomalous system behavior related to

specific notifications that could contribute to a more comprehensive understanding of the

time intervals that have not been extensively examined in this study.

The approach of this thesis aimed to balance computational efficiency and capture relevant

system behavior. However, it is important to recognize the limitations inherent in this

approach. The insights obtained from the examined time intervals provide only a partial

view of the system behavior, and there is a possibility that important information and

patterns may have been overlooked. Nevertheless, it was assumed that the selected time

intervals were of sufficient length to capture most of the underlying trends within the time

series. By analyzing all the sensors over several shorter time intervals, each associated with

different notifications, it was anticipated that a broader range of insights could be gained

compared to focusing on a single large time interval with fewer sensors. This approach

allowed for a more comprehensive exploration of the system’s behavior within a specific

horizon. Furthermore, the examination of relevant sensors over different time periods

ensured that no significant information was missed. However, it is worth considering future

investigations that involve examining larger time series or employing alternative methods

to capture a wider range of system dynamics and potential anomalies. This could provide

a more holistic understanding of the system’s behavior and potentially reveal additional

insights. Moreover, exploring additional time intervals and analyzing their associated

anomalous system behavior may uncover valuable information that was missed in this

thesis.

While the chosen approach aimed to balance computational efficiency and capture rel-

evant system behavior, it is essential to recognize its limitations. Further exploration

of larger time series, alternative methods, and additional time intervals can enhance the

understanding of the system’s dynamics and facilitate the discovery of potential anomalies.

6.2.4 Correlation Analysis

While some correlation analysis was done in order to determine anomalous behavior, as

illustrated in Section 5.1.6, there are additional sensor combinations that could provide fur-

ther insights into the system behavior. The examination of logged notifications compared

to measurements from the sensor revealed that the data from the differential pressure in

the inlet filter exhibited the most significant changes over time, with high values observed

before maintenance activities. It was concluded that a high differential pressure indicated

a clogged filter and a sudden drop in pressure after the motor was shut down indicated

that the filter had been cleaned. However, due to the noisy nature of this signal and its

association with a threshold value for maintenance rather than actual anomalies, it was

not neglected for further analysis and anomaly detection.

Nonetheless, comparing the inlet filter differential pressure with other sensors can provide

valuable insights. Specifically, it can reveal how a clogged filter affects system behavior

and how abnormal data in other sensors can be identified. A clogged filter restricts the flow

of fluid into the pump, which in turn affects the flow rate out of the pump. Conducting a

correlation analysis between these two sensors may reveal patterns in the system behavior
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that were not detected in this thesis.

The examination of correlations between different components within a system can yield

valuable insights into its health and performance. In the context of motors, a meaningful

comparison can be made between the measurements of the DE and NDE bearing temper-

atures [71]. These two sensors capture distinct aspects of the motor’s operation, allowing

for a comprehensive understanding of its behavior. Significant disparities in the temper-

ature readings between the DE and NDE bearings may signify potential issues concerning

the bearings or lubrication system. Deviations from the expected correlation or the pres-

ence of unusual temperature patterns could indicate imbalances or abnormalities within

the motor.

Similar correlation analyses can be applied to the pump system. By examining the rela-

tionship between the inlet and outlet bearing temperatures, as well as the shaft vibrations,

presented in Section 3.2, valuable insights into the system’s performance can be obtained.

Correlations between these sensors can provide a deeper understanding of how various

components interact and influence each other inside the pump. Significant correlations or

deviations from expected patterns may point to anomalies or imbalances within the pump

system.

Considering the excluded redundant A/B sensors, it is worth investigating whether they

can provide valuable insights when compared to each other. Although their measurements

were similar during the specified time period examined, there is a possibility that their

similarity may not always hold true. Exploring the correlation between the pairs of re-

dundant sensors could uncover hidden patterns in the system behavior. Nevertheless, it

is important to note that these redundant sensors are assumed to be placed on the same

component and intended to measure the same values. Therefore, a significant difference

in their measurements would likely indicate a problem with the sensors themselves rather

than with the component or the overall system. Utilizing both available sensors for a

particular component can serve as a means to mitigate sensor errors or noise captured

by the sensors, potentially improving the accuracy of the data. As for the A/B-sensors,

the variations between the x-plane and y-plane vibrations can serve as a tool for refining

the signal and distinguishing between noise and actual system abnormalities. However,

it is important to note that unlike the A/B sensors, the x-plane and y-plane vibrations

represent different aspects of the system behavior. Exploring the correlation between

these two measurements can provide a broader understanding of the system’s vibrational

characteristics, and significant differences in the measurements could indicate potential

problems.

Although it was previously determined that some sensors did not offer significant inform-

ation about the system behavior on their own, it is important to consider the potential

value of their correlation with other sensors. By exploring the relationships between these

sensors and conducting correlation analysis, it is possible to gain a deeper understanding

of the system and potentially identify anomalies or issues that may have been overlooked.
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6.2.5 Dealing with Noisy Data

In this study, the signal processing aimed for the bare minimum, primarily involving

resampling and the removal of data points during periods the motor was turned off. While

this helped improve the readability and understandability of the signals, they remained

noisy and uneven, which posed difficulties in the analysis. This noise especially presented

challenges in distinguishing anomalous data from normal operation data.

As presented in Section 2.5.2, various methods could have been employed to address these

challenges. One approach is computing a moving average, which can help reduce high-

frequency noise and make the signal less sensitive to outliers. Normalizing the data by

scaling it to a standard range could also be beneficial in reducing the impact of outliers

and improving comparability between different signals. Furthermore, applying digital

signal filters could have been useful in noise reduction. Filters such as low-pass, high-pass,

or band-pass filters can attenuate specific frequency components in the signal, allowing

for selective noise removal. Given the challenges associated with accurately modeling

and estimating the noise in the data, it became difficult to determine the most effective

method for removing the noise without distorting the underlying signal. As a result, it

was decided to refrain from applying additional filters or functions to avoid introducing

further uncertainties into the analysis.

It is important to note that while removing noise is crucial for effective anomaly detection,

excessive noise reduction can inadvertently remove important signal information or mask

genuine anomalies. Striking the right balance between noise reduction and preserving

relevant features is critical. Moreover, considering the lack of clear trends in the signal

and the anticipated complexity of noise patterns, a single noise reduction method might

not have been sufficient to adequately clean the signal. Additionally, it was assumed that

some noise in the signal was desirable. Some noise components could potentially indicate

problems within the system or contain valuable information. Therefore, preserving some

level of noise in the analysis was deemed necessary for a comprehensive understanding of

the system’s behavior.

Overall, the decision not to apply additional filters or functions to the signal in this study

was driven by the focus on understanding the system as a whole and analyzing long-term

trends. Balancing noise reduction with the preservation of relevant information is a key

consideration in signal processing for anomaly detection.

6.3 Further Work

In order to enhance the anomaly detection system for predictive maintenance of centrifugal

pumps, there are several avenues of further research that can be explored.

As mentioned in Section 6.2, there are potentially many uncovered patterns within the

data that are yet to be explored. By conducting even more data exploration, these hid-

den patterns and relationships within the sensor data can be uncovered. By thoroughly

analyzing the available data, it may be possible to identify a key parameter or combina-
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tion of parameters that strongly correlates with pump anomalies. Especially focusing on

the correlation between some sensors can reveal important clues about potential failures.

Discovering such a feature would significantly improve the accuracy and reliability of the

anomaly detection system.

In addition, generating additional training data through smart techniques can enhance

the performance of the anomaly detection model. Methods such as data augmentation,

where synthetic data is generated by introducing controlled variations or perturbations to

the existing dataset, can help in capturing a broader range of anomalous behaviors [72,

73]. By expanding the training dataset, the model can learn to detect a wider spectrum

of anomalies and improve its generalization capabilities.

Reinforcement learning techniques and generative AI models have gained traction recently

and can be explored for predictive maintenance applications. Reinforcement learning al-

gorithms can optimize maintenance decisions by learning from the system’s response to

different maintenance actions [74]. Other generative AI models, such as Generative Ad-

versarial Network (GAN)s, can be utilized to generate synthetic sensor data that resembles

real-world anomalies, aiding in the training and evaluation of the anomaly detection sys-

tem.

Investigating the relationship between detected anomalies and potential future errors is

crucial for maintenance planning. By mapping anomalies to specific failure modes or

predicting the likelihood of future failures based on historical anomaly patterns, main-

tenance actions can be prioritized and optimized. Developing techniques that establish

a connection between detected anomalies and potential future errors will enable the pre-

dictive maintenance system to anticipate and prevent failures more effectively, minimizing

downtime and optimizing pump performance.

Exploring these areas of further research will contribute to the advancement of predictive

maintenance for centrifugal pumps, leading to improved reliability, reduced maintenance

costs, and enhanced operational efficiency in the offshore industry.
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Chapter 7

7 Conclusion

Centrifugal pumps has, like many types of mechanical equipment, encountered multiple

problems over the years, leading to shutdowns of varying durations. These circumstances

present a prime opportunity for the development of a predictive maintenance system aimed

at minimizing system downtime. Leveraging the available data, it is evident that imple-

menting a robust anomaly detection system holds immense potential. However, further

analysis of the pump is required to uncover hidden patterns and intricate relationships

within the sensor data. Moreover, refining the definition of anomalous behavior will signi-

ficantly enhance the effectiveness of the anomaly detection system. By prioritizing these

challenges, the prospect of a highly reliable and comprehensive predictive maintenance

framework can be realized, offering substantial benefits in terms of system uptime and

efficiency.

The findings of this study demonstrate that the analysis of sensor data yielded inconsistent

patterns that deviated from the initially expected correlations. Only examining trends in

individual sensors proved inadequate for gaining comprehensive insights into the condi-

tion of the components. Furthermore, the maintenance log proved to be of limited value

due to its lack of quality and accuracy, both in terms of descriptions and timestamps.

Despite indications of maintenance activities carried out on various system parts during

the specified period, the absence of proper documentation posed a significant challenge

in differentiating between fluctuations arising from maintenance operations and abnormal

data patterns. The results emphasize the critical role of an intuitive understanding of the

system’s operational mechanisms in preparing data for deep learning models. Notably,

the motor’s state emerged as a prime influencing factor on all other sensors, underscoring

the indispensability of domain knowledge in providing guidance for potential models. This

again presents challenges for making scalable systems that can generalize across industries.

The analysis of the system’s behavior based on the motor state yielded valuable insights

that enabled the implementation of a sophisticated approach for signal cleaning, resulting

in a significant improvement in data quality. However, despite this improvement, resid-

ual noise persisted, posing challenges in accurately defining anomalous behavior. Con-

sequently, attention shifted towards a broader perspective, where a comparison between

the input- and output signals from the system was conducted. Notably, the motor emerged

as the most influential factor affecting the pump state, directly impacting overall perform-

ance. The flow rate measurements from the various wells served as a representation of the

system’s output, and any deviations from the expected values were identified as anomalous

behavior within the system. Transformations applied to these sensor signals proved to be

valuable in facilitating effective anomaly detection, indicating an interesting potential.

The comparative analysis of selected models for benchmarking revealed that the VAE

surpassed its counterparts in terms of performance. The VAE exhibited remarkable profi-

ciency in detecting intricate patterns and trends within the sensor data, while also demon-
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strating superior generalization capabilities when compared to a standard autoencoder.

Given the inherently noisy nature of industrial data, particularly evident in the case of

the centrifugal pump, the utilization of such sophisticated methods becomes imperative

to effectively address their inherent complexity. The model’s predictions exhibited a high

level of precision, thereby contributing valuable insights into the identification of abnormal

activities within the system. It is important to note, however, that due to the scarcity of

high-quality data, the training and testing phases were restricted to limited time intervals.

To harness the full potential of anomaly detection models in a predictive maintenance con-

text, it becomes crucial to leverage the identified anomalies to predict future failures. This

requires a mapping of the anomalies observed in individual sensors to potential failures in

specific components and then acting accordingly.
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Appendix A – Sensor System Description

Appendix A

A Sensor Details

Table 7: The average sampling time and unit for each sensor in the dataset

Sensor Average Sampling Time Unit

Water injection flow rates Well 1 6.06 seconds Sm3/h

Water injection flow rates Well 2 4.99 seconds Sm3/h

Water injection flow rates Well 3 10.52 seconds Sm3/h

Water injection flow rates Well 4 4.68 seconds Sm3/h

Water injection flow rates Well 5 5.53 seconds Sm3/h

Water injection flow rates Well 6 9.57 seconds Sm3/h

Water injection flow rates Well 7 4.54 seconds Sm3/h

Water injection flow rates Well 8 11.89 seconds Sm3/h

Supply to VSD transformer Ext5 1 16.71 seconds Amps

Supply to VSD transformer Ext5 2 16.59 seconds Amps

Supply to VSD transformer Ext5 3 16.58 seconds Amps

Supply to VSD transformer Ext5 4 109.77 seconds kV

Supply to VSD transformer Ext5 5 107.67 seconds Kv

Supply to VSD transformer Ext5 6 110.22 seconds kV

Supply to VSD transformer Ext5 7 3817.66 seconds None

Supply to VSD transformer Ext5 8 15.14 seconds None

Motor Motor RPM 33.97 seconds rpm

Motor rpm2 54.60 seconds rpm

Motor NDE Bearing Temp A 1022.51 seconds °C
Motor NDE Bearing Temp B 906.72 seconds °C

Motor NDE Vibration X plane 12.49 seconds µm pp

Motor NDE Vibration Y plane 19.14 seconds µm pp

Motor Winding ”U” Temperature 204.87 seconds °C
Motor Winding ”V” Temperature 93.03 seconds °C
Motor Winding ”W” Temperature 223.83 seconds °C

Motor DE Bearing Temp A 881.67 seconds °C
Motor DE Bearing Temp B 1016.39 seconds °C

Motor NDE Vibration X plane 12.83 seconds µm pp

Start signals Attempted starts 5057.62 seconds None

Start signals Successful starts 4861.84 seconds None

Start signals un-succesful starts 4863.57 seconds None

Start signals Running Hours total 2288.39 seconds None

Pump Process Suction pressure (PST) 9.28 seconds barg

Pump Process Suction pressure (PT) 14.07 seconds barg

Pump Process inlet filter dP 13.96 seconds barg

Pump Process Flow Controller 35.48 seconds None

Pump Process Outlet Temperature 30.94 seconds °C
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Appendix A – Sensor System Description

Sensor Average Sampling Time Unit

Pump Process Outlet (safety)Temperature 107.15 seconds °C
Pump Process bypass valve? 80.30 seconds %

Pump Process Outlet Pressure (PST) 99.40 seconds barg

Pump Process Outlet Pressure (PT) 47.93 seconds barg

Pump Process Outlet Temperature (TT) 30.94 seconds °C
Pump Process Outlet Temperature (TST) 107.15 seconds °C

Pump Process Manifold Pressure 36.16 seconds barg

Pump Process Manifold Temperature 31.29 seconds °C
Pump Monitoring (BN) Inlet bearing temperature A 997.09 seconds °C
Pump Monitoring (BN) Inlet bearing temperature B 990.78 seconds °C
Pump Monitoring (BN) Inlet shaft vibration X plane 13.11 seconds µm pp

Pump Monitoring (BN) Inlet shaft vibration Y plane 12.77 seconds µm pp

Pump Monitoring (BN) Outlet shaft vibration X plane 12.56 seconds µm pp

Pump Monitoring (BN) Outlet shaft vibration Y plane 13.26 seconds µm pp

Pump Monitoring (BN) Outlet bearing temperature A 921.47 seconds °C
Pump Monitoring (BN) Outlet bearing temperature B 969.88 seconds °C

Pump Monitoring (BN) Thrust Bearing Temperature A 978.34 seconds °C
Pump Monitoring (BN) Thrust Bearing Temperature B 969.22 seconds °C
Pump Monitoring (BN) Thrust Bearing Temperature C 607.21 seconds °C
Pump Monitoring (BN) Thrust Bearing Temperature D 730.07 seconds °C

Pump Monitoring (BN) Thrust vibration A 13.22 seconds µm pp

Pump Monitoring (BN) Thrust vibration B 13.11 seconds µm pp
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Appendix B

B Code

B.1 Data Pre-Processing

Listing 2: Filtering and resampling the signal

def filter_and_resample(df, start_date = '2017-05-01', end_date = '2017-12-31',
granularity = '60min', clean_series = pd.Series(), interpolate = False, lag

= 0):

"""

Filters the spark dataframe based on a time interval, converts it to a

pandas dataframe and resamples it. If clean_series is given it will also

clean the data based on when values in this series are lwo

Parameters

----------

df : Spark dataframe

The dataframe to be resampled

start_date : str, optional

The start date to filter the dataset on, by default '2017-05-01'
end_date : str, optional

The start end date to filter the dataset on, by default '2017-12-31'
granularity : str, optional

The granularity used when resampling, by default '60min'
clean_series : ps.Series, optional

The series used for cleaning the data, by default pd.Series()

interpolate : bool, optional

boolean to inidcate wether to interpolate the datapoints after cleaning

or not, by default False

lag : int, optional

The lag used when cleaning (hrs), by default 0

Returns

-------

new_df: pd.DataFrame

The filtered and resampled dataframe

sample_rate: pd.Dataframe

The number of datapoint 'missed' for each column and datapoint when

resampling the signals

"""

filtered_dates = df.filter((df["timestamp"] >= lit(start_date)) &

(df["timestamp"] <= lit(end_date)))

labels = [row['label'] for row in

sorted(df.select('label').distinct().collect())]

print('Cleaning data' if not utils.empty(clean_series) else 'not cleaning

data')
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for idx, label in enumerate(labels):

print('Filtering through: ', label)

tmp = filtered_dates.filter(filtered_dates['label'] ==

label).toPandas().set_index('timestamp')
tmp['sample_rate'] = 1

tmp = tmp.resample(granularity).agg({'data':"mean", 'sample_rate':"sum"})
tmp['data'] = tmp['data'] .apply(lambda x: None if x > 10000 else x) #

removing clear sensor errors

print(f'Number of NaN values for {label}:{tmp["data"].isna().sum()}')
if not utils.empty(clean_series): tmp['data'] = clean_data(clean_series,

tmp['data'], lag=lag)

if interpolate: tmp = tmp.interpolate()

if idx == 0:

sample_rate = pd.DataFrame(index=tmp.index)

new_df = pd.DataFrame(index=tmp.index)

new_df[label] = tmp['data']
sample_rate[label] = tmp['sample_rate']

return new_df, sample_rate

Listing 3: Cleaning Data

def clean_data(fasit, tbc, threshold = 500, lag = 0):

"""

Cleans tbc series based on when datapoints in fasit gets lower than a

certain threshold

Parameters

----------

fasit : pd.Series

Series that defines if the datapoints should be cleaned

tbc : pd.Series

The series to be cleaned

threshold : int, optional

_description_, by default 500

lag : int, optional

Threshold, by default 0

Returns

-------

pd.Series

The tbc series with values removed based on values in fasit

"""

tmp = fasit.to_frame()

# making the lag number of datapoints before and after a stop also 0, so it

will clean the data even better

tmp = tmp.fillna(0)

for i in range(1,lag+1):
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tmp[f'lag_up_{i}'] = fasit.shift(-i)

tmp[f'lag_down_{i}'] = fasit.shift(i)

result = tmp.join(tbc).apply(lambda row: np.NaN if row[0:-1].min() <=

threshold else row.iloc[-1] , axis = 1)

result.name = tbc.name + ' Cleaned'
return result

Listing 4: Calculating intervals when the motor has been turned off

def get_motor_off_intervals(sensor_series, off_threshold=500, lag=0):

"""

Calculates the intervals when the motor is off based when values in the

sensor_series is below given threshold

Parameters

----------

sensor_series : pd.Series

Series with the data defining when the motor is off

off_threshold : int, optional

threshold defining what value is considered 'off', by default 500

lag : int, optional

how much lag should be added before and after an 'off' interval, by

default 0

Returns

-------

pd.Dataframe

A dataframe containing intervals when the motor is off

"""

minutes_between =

int(sensor_series.index.to_series().diff().median().total_seconds() / 60)

off = sensor_series[sensor_series <= off_threshold].index

off = off.union([off[-1] + pd.offsets.Minute(2 * minutes_between)]) # to

include last date in original series

idx = 0

result = pd.DataFrame(columns=['start','stop', 'type'])
start = off[idx]

stop = None

for idx in range(1, len(off)):

timedelta = (off[idx] - off[idx -1]).total_seconds() / minutes_between

if timedelta > minutes_between:

if lag > 0:

result.loc[len(result)] = {'start':(start -

pd.Timedelta(minutes=lag*minutes_between)),'stop':start,
'type': 'lag'}
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result.loc[len(result)] = {'start':start,'stop':stop, 'type': 'off'}
if lag > 0:

if stop:

result.loc[len(result)] = {'start':(stop),'stop':(stop +

pd.Timedelta(minutes=lag*minutes_between)), 'type': 'lag'}
else:

result.loc[len(result)] = {'start':(start),'stop':(start +

pd.Timedelta(minutes=lag*minutes_between)), 'type': 'lag'}
start = off[idx]

stop = None

else:

stop = off[idx]

result = result.apply(lambda row: shift_single_off_points(row,

minutes_between), axis=1)

return result

def shift_single_off_points(row, minutes_between):

"""

Shifts the start and end of a row with minutes = minutes_between/2. Is used

when the motor has only been off for one singel datapoint and therefor

does not have a 'stop' value

Example:

input:

row =

start: '01-01-2020 10:00'
end: None

minutes_between = 60

result:

row =

start: '01-01-2020 09:30'
end: '01-01-2020 10:30'

Parameters

----------

row : pd.Row

The row to be shifted

minutes_between : int

How many minutes should be between the start and stop variable in the row

Returns

-------

pd.Row

the shifted row

"""

if row.isnull().any():

old_start = row['start']
row['start'] = old_start - pd.offsets.Minute(round(minutes_between/2))

row['stop'] = old_start + pd.offsets.Minute(round(minutes_between/2))
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return row

B.2 Benchmarking Models

Listing 5: Calculating the evaluation metrics

def score(true_anomaly_series, pred_anomaly_series):

"""calcuates the recall, precision, F1-score, FPR and FNR for a predicted

anoamly series.

index of true_anomaly_series and pred_anomaly_series must match

Parameters

----------

true_anomaly_series : pd.Series

A boolean series defining wether the points are anoamlies or not

(0=normal, 1=anomaly)

pred_anomaly_series : pd.Series

Series defining the predicted anomalies (0=normal, 1=anomaly)

Returns

-------

recall, precision, f1_score, false_positive_rate, false_negative_rate : float

the calcualted metrics

"""

eval_df = pd.DataFrame()

eval_df['true_anomaly'] = true_anomaly_series

eval_df['pred_anomaly'] = pred_anomaly_series

eval_df['true_positive'] = eval_df.apply(lambda row : 1 if

(row['true_anomaly'] == 1 and row['pred_anomaly'] == 1) else 0, axis=1)

eval_df['false_positive'] = eval_df.apply(lambda row : 1 if

(row['true_anomaly'] == 0 and row['pred_anomaly'] == 1) else 0, axis=1)

eval_df['true_negative'] = eval_df.apply(lambda row : 1 if

(row['true_anomaly'] == 0 and row['pred_anomaly'] == 0) else 0, axis=1)

eval_df['false_negative'] = eval_df.apply(lambda row : 1 if

(row['true_anomaly'] == 1 and row['pred_anomaly'] == 0) else 0, axis=1)

true_positive = eval_df['true_positive'].sum()
false_positive = eval_df['false_positive'].sum()
false_negative = eval_df['false_negative'].sum()

recall = nan_to_zero(round(true_positive/(true_positive+false_negative), 2))

precision = nan_to_zero(round(true_positive/(true_positive+false_positive),

2))

try :

f1_score = nan_to_zero(round(2*(recall*precision)/(precision+recall),2))

except:

f1_score = 0
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false_positive_rate =

nan_to_zero(round(false_positive/(true_positive+false_positive),2))

false_negative_rate =

nan_to_zero(round(false_negative/eval_df['true_anomaly'].sum(),2))

return recall, precision, f1_score, false_positive_rate, false_negative_rate

Listing 6: Creating data for testing

def create_normal_data(length=9000):

"""generates a synthetic time series dataset with a seasonal pattern, a

linear trend, and random noise.

It provides a way to generate normal data for testing and evaluating anomaly

detection algorithms.

Parameters

----------

length : int, optional

The length of the time series to be created, by default 9000

Returns

-------

pd.Series

A timeseries of given length with seasonal pattern, linear trend and

random noise

"""

t = np.arange(length)

normal_data = 1*np.sin(0.3*np.pi*t/365) + t/(length/2) +

np.random.normal(0.3, 0.5, length)

return pd.Series(normal_data, name='Data')

Listing 7: Labeling anomalies

def label_anomalies(anomaly_indices, length):

"""Creates a series with a boolean value defining if the index is an anomaly

or not

Parameters

----------

anomaly_indices : Array

Index of all datapoints that should be labeled anomalies

length : int

length of the series that will bel abeled

Returns

-------

np.array

An array with boolean values defining if the index is an anomaly or not
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"""

is_anomaly = np.zeros(length)

is_anomaly[anomaly_indices] = [1 for i in range(len(anomaly_indices))]

return is_anomaly

Listing 8: Adding point anoamlies

def add_point_anomalies(series, n_anomalies=10, anomaly_interval=(2,10)):

"""Adds point anomalies to a series

Parameters

----------

series : pd.Series

The series that anoamlies will be added to

n_anomalies : int, optional

The number of anoamlies to be added, by default 10

anomaly_interval : tuple, optional

The range the point anomalies should be within, by default (2,10)

Returns

-------

pd.DataFrame

A dataframe containing the input series with added anoamlies and lables

defining if the datapoints are anomalies or not

"""

anomaly_data = series.to_numpy(copy=True)

anomaly_indices = np.random.choice(np.arange(len(anomaly_data)),

size=n_anomalies, replace=False)

anomaly_data[anomaly_indices] = series.to_numpy()[anomaly_indices] +

np.random.normal(anomaly_interval[1], anomaly_interval[0],

len(anomaly_indices))

is_anomaly = label_anomalies(anomaly_indices, len(anomaly_data))

return pd.DataFrame({'data': anomaly_data, 'is_anomaly': is_anomaly})

Listing 9: Adding contextual anoamlies

def add_contextual_anomalies(series, len_contextual_anomaly=100,

anomaly_interval=(1,3)):

"""

Add contextual anoamlies to a series

Parameters

----------

series : pd.Series

The series that anoamlies will be added to

len_contextual_anomaly : int, optional

The length of the contextual anomalies, by default 100

anomaly_interval : tuple, optional

The range the anomalies should be within, by default (1,3)
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Returns

-------

pd.DataFrame

A dataframe containing the input series with added anoamlies and lables

defining if the datapoints are anomalies or not

"""

anomaly_data = series.to_numpy(copy=True)

anomaly_start = np.random.choice(np.arange(len(anomaly_data) -

len_contextual_anomaly), size=1)[0]

anomaly_end = anomaly_start + len_contextual_anomaly

anomaly_data[anomaly_start:anomaly_end] =

series.to_numpy()[anomaly_start:anomaly_end] +

np.random.normal(anomaly_interval[1], anomaly_interval[0],

len_contextual_anomaly)

anomaly_indices = np.arange(anomaly_start, anomaly_end)

anomaly_start = np.random.choice(np.arange(len(anomaly_data) -

len_contextual_anomaly), size=1)[0]

anomaly_end = anomaly_start + len_contextual_anomaly

while anomaly_start in anomaly_indices or anomaly_end in anomaly_indices:

anomaly_start = np.random.choice(np.arange(len(anomaly_data) -

len_contextual_anomaly), size=1)[0]

anomaly_end = anomaly_start + len_contextual_anomaly

continue

anomaly_data[anomaly_start:anomaly_end] =

series.to_numpy()[anomaly_start:anomaly_end] -

np.random.normal(anomaly_interval[1], anomaly_interval[0],

len_contextual_anomaly)

is_anomaly = label_anomalies(np.concatenate((anomaly_indices,

np.arange(anomaly_start, anomaly_end))), len(anomaly_data))

return pd.DataFrame({'data' :anomaly_data, 'is_anomaly': is_anomaly})

Listing 10: Adding contextual anoamlies with breakpoint

def add_contextual_anomalies_with_breakpoint(series, len_contextual_anomaly=100,

anomaly_interval=(1,3)):

"""

Adds contextual anoamlies and a breakpoint to a series. Also adds some extra

trends

Parameters

----------

series : pd.Series

The series that anoamlies will be added to

len_contextual_anomaly : int, optional

The length of the contextual anomalies, by default 100
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anomaly_interval : tuple, optional

The range the anomalies should be within, by default (1,3)

Returns

-------

pd.DataFrame

A dataframe containing the input series with added anomalies and lables

defining if the datapoints are anomalies or not

"""

t = np.arange(len(series))

anomaly_data = series.to_numpy(copy=True)

breakpoint =

np.random.randint(0+np.floor(len(anomaly_data)/10),len(anomaly_data)-np.floor(len(anomaly_data)/10))

anomaly_data[:breakpoint] += t[:breakpoint] /(len(anomaly_data)/2) #

Increase trend for first 500 data points

anomaly_data[breakpoint:] += -t[breakpoint:] /(len(anomaly_data)/2) #

Decrease trend for remaining data points

anomaly_indices = [breakpoint -1, breakpoint, breakpoint +1]

if breakpoint >= np.floor(len(anomaly_data)/2):

anomaly_start = np.random.choice(np.arange(len(anomaly_data[:breakpoint])

- len_contextual_anomaly), size=1)[0]

anomaly_end = anomaly_start + len_contextual_anomaly

anomaly_data[anomaly_start:anomaly_end] =

anomaly_data[anomaly_start:anomaly_end] +

np.random.normal(anomaly_interval[1], anomaly_interval[0],

len_contextual_anomaly)

else:

anomaly_start = np.random.choice(np.arange(len(anomaly_data[breakpoint:])

- len_contextual_anomaly), size=1)[0] + breakpoint

anomaly_end = anomaly_start + len_contextual_anomaly

anomaly_data[anomaly_start:anomaly_end] =

anomaly_data[anomaly_start:anomaly_end] +

np.random.normal(anomaly_interval[1], anomaly_interval[0],

len_contextual_anomaly)

is_anomaly = label_anomalies(np.concatenate((anomaly_indices,

np.arange(anomaly_start, anomaly_end))), len(anomaly_data))

return pd.DataFrame({'data': anomaly_data, 'is_anomaly': is_anomaly})

B.3 Model Implementation

Listing 11: The Isolation Forest class

from sklearn.ensemble import IsolationForest

class IForest:
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def __init__(self, contamination, random_state=0, n_estimators=100,

max_samples=256):

self.params = { 'contamination' : contamination,

'random_state' : random_state,

'n_estimators' : n_estimators,

'max_samples' : max_samples}

self.clf = IsolationForest(random_state=random_state,

n_estimators=n_estimators, max_samples=max_samples,

contamination=contamination)

def predict(self, test):

result = self.clf.fit_predict(test.dropna())

is_anomaly = pd.Series([ 1 if el == -1 else 0 for i,el in

enumerate(result)], index = test.index)

is_anomaly.name = 'pred_anomaly'

return is_anomaly

Listing 12: The Autoencoder class

from tensorflow import keras

from tensorflow.keras import layers

class Autoencoder:

def __init__(self, **kwargs):

error_functions = {'mae': mae, 'mse' : mse, 'rmse' : rmse}

self.params = { 'learning rate' : 0.01,

'activation function' : 'relu',
'kernel size' : 10,

'time steps' : kwargs['time_steps'] if 'time_steps' in

kwargs else 256,

'epochs': 100, #100

'batch size': 256,

'error function':
error_functions[kwargs['error_function']] if

'error_function' in kwargs else mae

}

def fit(self, train):

# preparing train data

# Normalize and save the mean and std we get,

# for normalizing test data.
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train = train.interpolate()

train = train.fillna(method='ffill')
train = train.fillna(method='bfill')
self.training_mean = train.mean()

self.training_std = train.std()

df_training_value = (train- self.training_mean) / self.training_std

self.x_train = create_sequences(df_training_value.values,

self.params['time steps'])

# build model

self.model = keras.Sequential(

[

layers.Input(shape=(self.x_train.shape[1],

self.x_train.shape[2])),

layers.Conv1D(

filters=32,

kernel_size=self.params['kernel
size'], padding="same", strides=2,

activation="relu"

),

layers.Dropout(rate=0.2),

layers.Conv1D(

filters=16,

kernel_size=self.params['kernel
size'], padding="same", strides=2,

activation="relu"

),

layers.Conv1DTranspose(

filters=16,

kernel_size=self.params['kernel
size'], padding="same", strides=2,

activation="relu"

),

layers.Dropout(rate=0.2),

layers.Conv1DTranspose(

filters=32,

kernel_size=self.params['kernel
size'], padding="same", strides=2,

activation="relu"

),

layers.Conv1DTranspose(filters=1,

kernel_size=self.params['kernel size'],
padding="same"),

]

)

self.model.compile(optimizer=keras.optimizers.Adam(learning_rate=self.params['learning
rate']), loss="mse")

# train model
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self.history = self.model.fit(

self.x_train,

self.x_train,

epochs=self.params['epochs'],
batch_size=self.params['batch size'],
validation_split=0.1,

callbacks=[

keras.callbacks.EarlyStopping(monitor="val_loss",

patience=5, mode="min")

],

)

# Get train MAE loss.

self.x_train_pred = self.model.predict(self.x_train)

self.train_loss = self.params['error function'](self.x_train,
self.x_train_pred)

# Get reconstruction loss threshold.

self.threshold = np.max(self.train_loss) *0.8

print("Reconstruction error threshold: ", self.threshold)

def predict(self, test):

# prepare test data

self.test =

test.interpolate().fillna(method='ffill').fillna(method='bfill')
df_test_value = (self.test - self.training_mean) / self.training_std

#df_test_value, _, _ = prepare_data(test, self.train_mean, self.train_std)

# Create sequences from test values.

self.x_test = create_sequences(df_test_value.values, self.params['time
steps'])

# predict

self.x_test_pred = self.model.predict(self.x_test)

# Get test MAE loss.

self.test_loss = self.params['error function'](self.x_test,
self.x_test_pred)

anomalies = self.test_loss > self.threshold

anomalous_data_indices = []

for data_idx in range(self.params['time steps'] - 1, len(df_test_value) -

self.params['time steps'] + 1):

if np.all(anomalies[data_idx - self.params['time steps'] + 1 :

data_idx]):

anomalous_data_indices.append(data_idx)

predicted_anomaly_subset = test.iloc[anomalous_data_indices]
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anomalies_bool = pd.Series(np.zeros(len(test), dtype=int),

index=test.index)

for idx in predicted_anomaly_subset.index:

anomalies_bool.loc[idx] = 1

anomalies_bool.name = 'pred_anomaly'
print(anomalies_bool.value_counts())

return anomalies_bool

Listing 13: The Variational Autoencoder class

class VAE(keras.Model):

def __init__(self, **kwargs):

print(kwargs)

super(VAE,self).__init__()

self.__dict__.update(kwargs)

error_functions = {'mae': mae, 'mse' : mse, 'rmse' : rmse}

self.epochs = kwargs['epochs']
self.TIME_STEPS = kwargs['time_steps'] if 'time_steps' in kwargs else 256

self.error_function = error_functions[kwargs['error_function']] if

'error_function' in kwargs else mae

self.latent_dim = kwargs['latent_dim']
self.kernel_size = kwargs['kernel_size']
self.TRAIN_BUF = kwargs['TRAIN_BUF']
self.BATCH_SIZE = kwargs['BATCH_SIZE']
self.N_TRAIN_BATCHES = int(self.TRAIN_BUF/self.BATCH_SIZE)

self.encoder = keras.Sequential([

tf.keras.layers.InputLayer(input_shape=(self.TIME_STEPS, 1) ),

tf.keras.layers.Conv1D(

filters=8, kernel_size=self.kernel_size, strides=(2),

padding="SAME", activation="relu"

),

tf.keras.layers.Conv1D(

filters=16, kernel_size=self.kernel_size, strides=(2),

padding="SAME", activation="relu"

),

tf.keras.layers.Flatten(),

tf.keras.layers.Dropout(rate=0.1),

tf.keras.layers.Dense(units=self.latent_dim*2),

])

self.decoder = keras.Sequential([

tf.keras.layers.InputLayer(input_shape=(self.latent_dim,)),

tf.keras.layers.Dense(units=self.TIME_STEPS, activation="relu"),

tf.keras.layers.Reshape(target_shape=(self.TIME_STEPS, 1)),

tf.keras.layers.Conv1DTranspose(

filters=16, kernel_size=self.kernel_size, strides=(1),
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padding="SAME", activation="relu"

),

tf.keras.layers.Conv1DTranspose(

filters=8, kernel_size=self.kernel_size, strides=(1),

padding="SAME", activation="relu"

),

tf.keras.layers.Conv1DTranspose(

filters=1, kernel_size=self.kernel_size, strides=(1),

padding="SAME"

),

])

def encode(self, x):

mu, sigma = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)

return ds.MultivariateNormalDiag(loc=mu, scale_diag=sigma)

def reparameterize(self, mean, logvar):

eps = tf.random.normal(shape=mean.shape)

return eps * tf.exp(logvar * 0.5) + mean

def reconstruct(self, x):

mu, _ = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)

return self.decode(mu)

def decode(self, z):

return self.decoder(z)

def compute_loss(self, x):

q_z = self.encode(x)

z = q_z.sample()

x_recon = self.decode(z)

p_z = ds.MultivariateNormalDiag(

loc=[0.] * z.shape[-1], scale_diag=[1.] * z.shape[-1]

)

kl_div = ds.kl_divergence(q_z, p_z)

latent_loss = tf.reduce_mean(tf.maximum(kl_div, 0))

recon_loss = tf.reduce_mean(tf.reduce_sum(tf.math.square(x - x_recon),

axis=0))

return recon_loss, latent_loss

def compute_gradients(self, x):

with tf.GradientTape() as tape:

loss = self.compute_loss(x)

return tape.gradient(loss, self.trainable_variables)

@tf.function

def train(self, train_x):

gradients = self.compute_gradients(train_x)

self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
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def train_model(self, train_original):

train = create_sequences(train_original, time_steps=self.TIME_STEPS)

train = train.reshape(train.shape[0], self.TIME_STEPS,

1).astype("float32")

train_samples = train.reshape(train.shape[0], self.TIME_STEPS,

1).astype("float32")

train_dataset =

(tf.data.Dataset.from_tensor_slices(train_samples).shuffle(self.TRAIN_BUF).batch(self.BATCH_SIZE))

for epoch in range(self.epochs):

print(f'Epoch {epoch}...')
for batch, train_x in zip(range(self.N_TRAIN_BATCHES), train_dataset):

self.train(train_x)

pred_train = self.reconstruct(np.atleast_3d(train)).numpy()

original_train, train_reconstructed = get_reconstructed_signal(train,

pred_train, time_steps=self.TIME_STEPS)

self.train_loss = self.error_function(train, pred_train)

# Get reconstruction loss threshold.

self.threshold = np.max(self.train_loss)*0.8

print("Reconstruction error threshold: ", self.threshold)

return original_train, train_reconstructed

def predict(self, test):

self.x_test = create_sequences(test, time_steps=self.TIME_STEPS)

self.x_test = self.x_test.reshape(self.x_test.shape[0], self.TIME_STEPS,

1).astype("float32")

self.x_test_pred = self.reconstruct(np.atleast_3d(self.x_test)).numpy()

self.test_loss = self.error_function(self.x_test, self.x_test_pred)

self.original_test, self.test_reconstructed =

get_reconstructed_signal(self.x_test, self.x_test_pred,

time_steps=self.TIME_STEPS)

anomalies = self.test_loss > self.threshold

# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are

anomalies

anomalous_data_indices = []

for data_idx in range(self.TIME_STEPS - 1, self.x_test.shape[0] -

self.TIME_STEPS + 1):

if np.all(anomalies[data_idx - self.TIME_STEPS + 1 : data_idx]):

anomalous_data_indices.append(data_idx)
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predicted_anomaly_subset =

pd.DataFrame(self.original_test).iloc[anomalous_data_indices]

anomalies_bool = pd.Series(np.zeros(self.x_test.shape[0], dtype=int),

index=pd.DataFrame(self.original_test).index)

for idx in predicted_anomaly_subset.index:

anomalies_bool.loc[idx] = 1

print(anomalies_bool.value_counts())

anomalies_bool.name = 'pred_anomaly'

return anomalies_bool
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