
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Kristian Sem

Implementing a Planning-Based
Docking System for ReVolt

Master’s thesis in Subsea Technology
Supervisor: Christian Holden
Co-supervisor: Tom Arne Pedersen
June 2023

Kristian Sem

Implementing a Planning-Based
Docking System for ReVolt

Master’s thesis in Subsea Technology
Supervisor: Christian Holden
Co-supervisor: Tom Arne Pedersen
June 2023

Norwegian University of Science and Technology
Faculty of Engineering

Preface

This thesis concludes my 2-year Master of Science degree in Subsea Technology at the
Norwegian University of Science and Technology (NTNU). The thesis was written in
collaboration with DNV and continues the pre-project submitted in the fall of 2022.

I would like to thank my supervisors, Christian Holden and Tom Arne Pedersen, for their
patience and wise words through the journey of a pre-project and a master thesis, while
a lot of my focus has been on being Deputy Lead at Vortex NTNU.

Furthermore, I want to express my gratitude to my friends, family, and especially my
partner Sofie, who brightened my life as a student and surely for years to come.

Abstract

This thesis proposes a method for path planning utilizing the rasterization of Environmen-
tal Systems Research Institute (ESRI) shapefiles. These files contain geospatial vector
data that gets transformed into a local navigation frame and then into an array through a
rasterization process. This transformation yields a grid of cells symbolizing various obsta-
cles on a spatial map, thereby presenting an effective means of modeling the environment
for navigation tasks.

By using this rasterization, one can adapt the resolution of the grid-based array in align-
ment with the required precision of the path planning task. This flexibility allows for
optimizing the balance between computational load and accuracy in diverse applications,
opening up the possibility for high-precision path planning and navigation tasks.

The approach utilizes the strengths of the A* algorithm, an established and recognized
algorithm for its efficiency and precision in pathfinding tasks. In combination with this,
the Douglas-Peucker algorithm is employed to simplify the path. This approach ensures
the robustness of our method in finding an initial path that is free from obstacles.

To evaluate the feasibility of the proposed path, a simplistic kinematic model is imple-
mented as part of an optimization problem. This process ensures that the planned path
is practically navigable and feasible under closer to real-world conditions.

While developing the scripts for this method, extra attention was paid to writing testable,
maintainable code in line with best practices for software development. The thesis follows
a meticulous development process to ensure the reliability and robustness of the proposed
method. This approach to design and testing ensures the practicality of the method and
provides a robust foundation for future improvements and adaptations.

Sammendrag

Denne oppgaven foreslår en metode for baneplanlegging ved bruk av rasterisering av
formfiler fra Environmental Systems Research Institute (ESRI). Disse filene inneholder
geospatiale vektordata som blir transformert til en lokal navigasjonsramme og deretter
til en matrise gjennom en rasteriseringsprosess. Denne transformasjonen gir et rutenett
av celler som symboliserer ulike hindringer på et romlig kart, og presenterer dermed et
effektivt middel for å modellere miljøet for navigasjonsoppgaver.

Ved å bruke denne rasteriseringen kan man tilpasse oppløsningen til den grid-baserte ma-
trisen i samsvar med den nødvendige presisjonen til baneplanleggingsoppgaven. Denne
fleksibiliteten tillater å optimere balansen mellom beregningsbelastning og nøyaktighet
i ulike applikasjoner, og åpner for muligheten for høypresisjons stiplanlegging og navi-
gasjonsoppgaver.

Tilnærmingen utnytter styrkene til A*-algoritmen, en etablert og anerkjent algoritme
for sin effektivitet og presisjon i banesøkende oppgaver. I kombinasjon med dette brukes
Douglas-Peucker-algoritmen for å forenkle banen. Denne tilnærmingen sikrer robustheten
til metoden vår når det gjelder å finne en første vei som er fri for hindringer.

For å evaluere gjennomførbarheten av den foreslåtte banen, implementeres en forenklet
kinematisk modell som en del av et optimaliseringsproblem. Denne prosessen sikrer at den
planlagte stien er praktisk navigerbar og gjennomførbar under nærmere virkelige forhold.

Under utviklingen av skriptene for denne metoden ble det lagt ekstra vekt på å skrive
testbar, vedlikeholdbar kode i tråd med beste praksis for programvareutvikling. Oppgaven
følger en nitid utviklingsprosess for å sikre påliteligheten og robustheten til den foreslåtte
metoden. Denne tilnærmingen til design og testing sikrer at metoden er praktisk og gir
et robust grunnlag for fremtidige forbedringer og tilpasninger.

Contents

Preface i

Abstract iii

Sammendrag v

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Outline . 2

2 Theoretical background 3
2.1 Notation and reference frames . 3

2.1.1 ECEF . 3
2.1.2 NED . 3
2.1.3 Body frame . 4

2.2 3-DOF Ship Maneuvering Model . 5
2.3 Path finding with A* . 6
2.4 Waypoint reduction . 7
2.5 Optimal Control and Thrust allocation . 8

2.5.1 Integrating System Matrices into the Solver 8
2.5.2 Optimizing for Energy . 9

3 System description 11
3.1 The scale model . 11

3.1.1 The scale model matrices . 11
3.2 Simulator . 12
3.3 Software . 13

3.3.1 Programming language . 13
3.3.2 ROS . 13
3.3.3 Robot Operating System (ROS) . 13

3.4 gRPC . 14

4 Design and implementation 15
4.1 Methodology: Development and Operations 15
4.2 Development . 16

4.2.1 Step 1: Plan . 16
4.2.2 Step 2: Coding . 16

Contents

4.2.3 Step 3: Building/Integrating . 17
4.2.4 Step 4: Test . 17
4.2.5 Step 5-8 . 17

4.3 Path planning . 19
4.3.1 Array extraction from shapefiles . 19
4.3.2 Pathfinding . 19
4.3.3 GUI . 22
4.3.4 Unity . 23
4.3.5 ROS wrapping . 24

4.4 Replanning . 24
4.4.1 Path optimization . 26

5 Discussion 29

6 Conclusion 31
6.1 Recommended further work . 31

viii

List of Figures

1.1 The concept ship ReVolt[4] . 2

2.1 Reference frames and an example relation between them. [5] 4
2.2 Body frame notations. [5] . 5
2.3 Positioning of a vessel in NED. [2] . 5
2.4 A* example, moving to adjacent cells costs 10 and diagonal costs 14. . . . 7
2.5 Douglas-Pucker algorithm applied with different tolerances, [3] 8

3.1 The dimensions of the ReVolt ship model. [1] 11
3.2 Image from the Unity simulator . 13
3.3 simple graph of communication in ROS 14
3.4 simple graph of service in ROS . 14
3.5 gRPC communication . 14

4.1 DevOps process loop [16] . 15
4.2 Upperlevel flowcharts describing the required modules for each part of the

system. 16
4.3 ros-param . 17
4.4 Test flowchart . 18
4.5 Shapefile extraction flowchart . 19
4.6 Different levels of rasterization. One cell is one unit in NED. The blue area

in the upper left subfigure corresponds to the black area in the remaining
subfigures. The white area is obstacle free space. 20

4.7 Astar and path smoothing flowchart . 20
4.8 Plot of time taken based on robot size . 21
4.9 Vessel size acting as a safe barrier when finding a path 21
4.10 Waypoint reduction with Douglas-Peucker 22
4.11 ReVolt in Unity (left) and in RviZ (right) 23
4.12 Body axis marker is the vessel, DP_PID axis marker is the desired end

pose and position for next waypoint. Red spheres are waypoints. Red
arrow is the end position and pose for the vessel 23

4.13 Astar and path smoothing flowchart . 24
4.14 image in Two horizontal . 25
4.15 Flowchart for handling size and resolution when extracting geometries . . . 25
4.16 Path optimized for time usage with the simple model. Path is feasible with

the current waypoints . 27
4.17 Path optimized for time usage with the simple model. The shortest path

found by the solver would have gone over land 28

List of Tables

2.1 Table fo reference frames and their axises [5] 4

3.1 The thruster placement of the vessel [14] 12

4.1 Processing time for extracting arrays at different resolutions 19
4.2 Search times for A* with robot radius acting as a safety radius 21
4.3 Search times for A* with border radius around obstacles instead of robot

safety radius . 22

Abbreviations

ASV = Autonomous Surface Vehicle
CI/CD = Continuous Integration and Continuous Delivery
COLAV = Collision Avoidance
COLREG = Convention on the International Regulations for

Preventing Collisions at Sea
DevOps = Development and Operations
DNV = Det Norske Veritas
DOF = Degrees Of Freedom
DP = Dynamic Positioning
ECEF = Earth Centered Earth Fixed
ESRI = Environmental Systems Research Institute
ENC = Electronic Navigational Chart
GNSS = Global Navigation Satellite Systems
IaC = Infrastructure as Code
IAE = Integral absolute Error
NE = North East
NED = North, East Down
OCP = Optimal Control Problem
PID = Proportional–Integral–Derivative
ROS = Robot Operating System
RPC = Remote Procedure Calls
RPS = Rounds Per Second
SNAME = Society of Naval Architects and Marine Engineers
QP = Quadratic Programming
OS = Operating System

Chapter 1

Introduction

1.1 Motivation
Over the last few decades, there has been a growing interest in developing autonomous
vessels that can perform various tasks with little to no human intervention [11, 9].

This trend has been driven by a combination of factors, where three is summarized here.
(i), the desire to reduce human intervention, meaning that the vessel can operate in
conditions too dangerous for a human crew while also reducing both human errors and
costs. (ii), the potential for increased efficiency, where a computer program can adhere
to predefined schedules and routes, and (iii) the ambition to decrease the environmental
impact of shipping as a computer program can consider reducing fuel consumption to a
greater extent than a human captain. Since autonomous vessels are yet to be implemented
commercially, there exist little research on the operational benefits of such vessels [8].

Even though autonomy is becoming an increasingly mature technology on land based
vehicles, its development on autonomous vessels are still focusing on the fundamental
technology behind its operation. In [7], the authors found that two thirds of the papers
on autonomous vessels still discuss trajectory planning and obstacle avoidence. Trajec-
tory planning is important when developing autonomous vessels, as they mostly do not
operate on fixed roads as land based vehicles. Similarily, obstacle avoidance can be solved
differently for vessels as it often is possible to circumfere obstacles rather than simply
waiting as one would do in a car driving in traffic.

One of the most challenging aspects of developing autonomous vessels is ensuring that
they can safely and effectively navigate in complex environments, such as harbors and
docks. These areas are characterized by tight spaces, high traffic, and a variety of potential
obstacles. This makes them some of the most challenging areas for any vessel to navigate,
while also being the most essential part of an autonomous vessel’s route.

To address the need for environmentally friendly, unmanned cargo ships for short-sea
shipping, DNV GL designed The ReVolt concept ship visualized in figure 1.1. It is a
small, slow-moving vessel that is charged while docked, allowing it to operate without the
need for a crew. This design makes the ship more efficient and cost-effective while also
reducing the risk of accidents and injuries to crew members [4].

Chapter 1 Introduction

Figure 1.1: The concept ship ReVolt[4]

1.2 Problem Description
The aim of this thesis is to take steps toward creating an automated method for maneu-
vering and docking the ReVolt model. The objective is to build a reliable, robust and
energy efficient automated docking system, which will reduce the need for human inter-
vention and minimize the risk of accidents or errors. The contributions of this thesis is
summarized in the following points:

• Develop a trajectory planner

• Obstacle map for planning trajectory

• Use A* to compute a trajectory for starters

• Optimize the trajectory to allow for a smoother trajectory

• GUI to allow for easier operation and testing

• Reschedule if new obstacles appear in the original path

1.3 Outline
The Introduction sets the stage by discussing the broader context of autonomous naviga-
tion and the role of pathfinding algorithms within it.

• Chapter 2 - Theoretical background presents relevant theoretical knowledge for the
thesis.

• Chapter 3 - System description, describes the system and choice of software tools
for the thesis.

• Chapter 4 - Design and implmentation, describes the method for how the scripts
gets devloped and integrated.

• Chapter 5 - The Discussion chapter presents our findings and explores their impli-
cations, demonstrating the algorithm’s efficiency and potential applications.

• Chapter 6 - Conclusion, wraps up the thesis by summarizing our findings and dis-
cussing potential avenues for future research.

2

Chapter 2

Theoretical background

2.1 Notation and reference frames
The three frames described in this section play an important role in autonomous vessel
navigation. The ECEF frame is beneficial for extracting map data and determining
the vessel’s position on Earth. It allows for precise positioning information based on
GNSS coordinates, essential for accurate navigation. The NED frame, on the other hand,
is crucial for local navigation, obstacle avoidance, and pathfinding. This frame allows
the vessel to determine its position relative to its immediate surroundings and navigate
accordingly. Lastly, the Body frame is essential for state estimation and applying the
correct forces to the vessel. With the vessel’s center of gravity as the origin, this frame
provides a reference point for measuring the vessel’s linear and angular velocities and
applying appropriate control actions.

The different frames and their notation is based on the SNAME (1950) [13] notation for
marine vessels. The notations describe the:

• Global frame - Earth-Centered-Earth-Fixed (ECEF) frame

• Local Area frame - North-East-Down (NED) frame

• Vessel frame - BODY frame

2.1.1 ECEF
The ECEF frame {e} represents a point Pe = [xe ye ze]T with respect to the Earth
center and its rotation. This reference system is also commonly represented in terms of
the Global Navigation Satellite System (GNSS) coordinates, which consist of longitude,
latitude, and altitude: Pg = [l µ h]T . The point is fixed in relation to the earth’s rotation.

2.1.2 NED
The North-East-Down (NED) frame {n} is a local frame that is commonly used in nav-
igation. It is defined such that its origin is fixed to a specific ECEF coordinate, and its
axes are aligned with true North, East, and the direction of the normal to the Earth’s

Chapter 2 Theoretical background

Figure 2.1: Reference frames and an example relation between them. [5]

surface at the origin. A point Pn = [xn yn zn]T on the tangent plane can be represented
using this frame.

2.1.3 Body frame
The body reference frame {b} for a vessel is defined by three axes [xb yb zb]T , where
xb is parallel to and aligned with the aft-to-fore line of the vessel, yb is positive on the
starboard side, and zb is normal to the vessel and points downward. The center of the
frame is located at the vessel’s center of gravity (CG).

Body NED
Forces and Linear and angular Positions and

DOF - (Degrees of freedom) moments velocities euler angles
1 Motion in the xb-direction (Surge) X u xn

2 Motion in the yb-direction (Sway) Y v yn

3 Motion in the zb-direction (Heave) Z w zn

4 Rotation in the xb-axis (Roll) K p ϕ
5 Rotation in the yb-axis (Pitch M q θ
6 Rotation in the zb-axis (Yaw N r ψ

Table 2.1: Table fo reference frames and their axises [5]

4

2.2 3-DOF Ship Maneuvering Model

Figure 2.2: Body frame notations. [5]

2.2 3-DOF Ship Maneuvering Model
The full maneuvering model for a vessel is divided into 6 degrees of motion (DOF) as seen
in table 2.1. Due to the size of ReVolt and the goal to control it in the horizontal plane,
the heave, roll, and pitch forces can be assumed to be ϕ = θ = z ≈ 0. This results in a
3-DOF model

Figure 2.3: Positioning of a vessel in NED. [2]

The nonlinear maneuvering model can be written as

η̇ = R(ψ)ν (2.1)
Mν̇ + C(ν)ν + D(ν)ν = τ + τ environmental. (2.2)

Since roll and pitch are neglected, the relation between NED and BODY can be described
through the rotational matrix based on the yaw rotation around the z-axis, where the

5

Chapter 2 Theoretical background

matrices are expressed by

C = CA(ν) + CRB(ν) (2.3)
M = MA + MRB. (2.4)

The Coriolis and centripetal matrices are expressed as:

C(ν) = CRB(ν) + CA(ν) =

 0 −mr −mxgr
mr 0 0
mxgr 0 0

+

 0 0 Yv̇vr + Yṙr
0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

. (2.5)

The system inertia consisting of added mass to the system MA and the rigid body inertia
MRB is expressed as:

M = MA + MRB =

−Xu̇ 0 0
0 −Yu̇ −Yṙ

0 −Nu̇ −Nṙ

 +

m 0 0
0 0 mxg

0 mxg Iz

 . (2.6)

The dampening matrix D(ν)ν

D =

−Xu 0 0
0 −Yν −Yr

0 −Nν −Nr

 . (2.7)

The yaw-dependent rotational matrix from the body frame to the NED frame is given by:

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (2.8)

2.3 Path finding with A*
A popular choice for solving a path-finding problem is the A* algorithm since it finds a
solution if one exists. While it also finds the shortest solution of the options available, it
is also quite quick for even complex and large environments.

To use the A* algorithm, the environment needs to be discretized into a configuration
space, like a grid. The nodes created by A* represent points in the environment and the
lines represent the connections between them. The algorithm starts at the given starting
point and calculates the cost of reaching each node by adding the cost of moving from
the starting node to the current node and the estimated cost of moving from the current
node to the goal. The algorithm then selects the node with the lowest total cost and
continues to search from that node until it reaches the goal or determines that a solution
is not possible.

6

2.4 Waypoint reduction

However, A* can only provide an accurate initial guess if the heuristic is admissible,
meaning that it never overestimates the actual cost of reaching the goal from any position.
If the heuristic is not admissible, A* may not be able to find the optimal path, even if
one exists [15]. The following equation represents the estimated cost f(n) of reaching a
goal from node (n)

f(n) = g(n) + h(n) (2.9)
where g(n) represents the cost of the path, and h(n) represents a problem-specific cost.
In figure 2.4, it can be observed that the algorithm chooses the shortest path in total
cost even though the diagonal steps are more expensive for each iteration. The octile
movement cost in 2.4 is calculated using the following:

heuristic(a, b) = max(∆x,∆y) + (
√

2 − 1) × min(∆x,∆y). (2.10)

Figure 2.4: A* example, moving to adjacent cells costs 10 and diagonal costs 14.

Heuristics

The A* algorithm requires a configuration space to search through to generate an initial
path for the vessel. A two-dimensional grid is the simplest form for a configuration space
since it provides simple cost estimation when the value of the grid cells is either occupied
or unoccupied. A two-dimensional grid will limit the possible direction of movement,
essentially making Euclidean and octile movement the same.

• Manhattan: Manhattan distance, suitable for cardinal movements only

• Octile: Octile distance, suitable for cardinal and diagonal movements

• Euclidean: Euclidean distance, suitable for any direction of movement

2.4 Waypoint reduction
To reduce the number of waypoints the Douglas-Peucker algorithm [3] follows a recursive
approach to divide a line into segments. It keeps the endpoints of the line and creates a

7

Chapter 2 Theoretical background

segment as the first approximation. It then finds the point with the greatest distance to
this segment and divides the existing segment into two new if the point is greater than ϵ
away. It works through the line until all points within the threshold ϵ gets filtered out.
By doing so, the algorithm preserves the most important parts of the line and maintains
the essential shape.

Figure 2.5: Douglas-Pucker algorithm applied with different tolerances, [3]

2.5 Optimal Control and Thrust allocation
Optimal control is a powerful mathematical framework used to determine the best control
inputs over time for a dynamic system, considering specific objectives, constraints, and
system dynamics. It finds application in various fields, including robotics, aerospace,
process control, and energy systems. By formulating an optimization problem, optimal
control algorithms provide solutions that optimize system behavior, improve performance,
and achieve desired goals.

2.5.1 Integrating System Matrices into the Solver
To solve an optimal control problem, it is crucial to incorporate the system dynamics
into the solver. This involves constructing system matrices that represent the state dy-
namics, control inputs, and their relationship over time. The system matrices typically
include the state transition matrix, control input matrix, and possibly additional matrices
representing constraints or performance criteria.

The state dynamics can be represented as

ẋ(t) = A(t)x(t) +B(t)u(t), (2.11)

where x(t) is the state vector, u(t) is the control input vector, and the matrices A(t), B(t)
are the system matrices capturing the time-varying dynamics.

8

2.5 Optimal Control and Thrust allocation

By discretizing the system dynamics using numerical methods, such as Euler’s method
or Runge-Kutta methods, we can approximate the continuous-time dynamics in discrete
time steps. This results in the following system update equation

xk+1 = Akxk +Bkuk, (2.12)
where xk and uk represent the state and control input at time step k, and Ak and Bk are
the system matrices at that time step.

The optimal control problem can then be formulated as an optimization problem, aiming
to minimize an objective function J subject to constraints. The objective function can be
defined based on system performance criteria, such as minimizing energy consumption,
maximizing efficiency, or achieving desired trajectories. Constraints can include physical
limitations, operational bounds, or safety requirements.

By incorporating the system matrices into the solver, optimal control algorithms can
efficiently compute the optimal control inputs that achieve the desired system behavior
while satisfying constraints and performance criteria.

2.5.2 Optimizing for Energy
Energy optimization plays a vital role in surface vessel operations, aiming to minimize
fuel consumption, increase efficiency, and reduce environmental impact. Optimal control
techniques offer a systematic approach to optimize vessel behavior and control inputs to
achieve energy-efficient operation.

In the context of surface vessels, optimal control can be applied to different aspects,
such as propulsion systems, navigation, and route planning. By considering factors such
as vessel speed, load conditions, environmental conditions, and operational constraints,
optimal control algorithms can determine the optimal control actions that minimize energy
consumption while meeting operational requirements.

For propulsion systems, over the operational time period [t0, tf] the energy optimization
problem can be formulated as

min J =
∫ tf

t0
f(x(t), u(t))dt, (2.13)

where x(t) represents the vessel state, u(t) represents the control input (e.g., thrust), and
f(x(t), u(t)) represents the energy cost function. The objective is to minimize the integral
of the energy cost function over the operational time period t0 to tf .

By solving the energy optimization problem using optimal control techniques, surface
vessels can achieve energy-efficient operation. The optimal control algorithm determines
the optimal control inputs, such as the thrust profile, that minimize energy consumption
while considering operational requirements and constraints.

Furthermore, optimal control can also be utilized in navigation and route planning to
optimize energy usage. By considering factors like sea currents, wind conditions, and
vessel characteristics, optimal control algorithms can determine the most energy-efficient

9

Chapter 2 Theoretical background

routes and navigation strategies. This involves optimizing vessel speed, heading, and
trajectory planning to minimize fuel consumption and maximize energy efficiency.

The general form of an OCP, with the objective function to be minimized and the con-
straints to be satisfied:

J = min
u(t)

∫ tf

t0
L(x(t), u(t), t)dt

subject to ẋ(t) = f(x(t), u(t), t)
x(t0) = x0

x(tf) = xf

(2.14)

10

Chapter 3

System description

3.1 The scale model
The test platform version is a 1:20 scale model of the concept idea. DNV ordered the
project keeping in mind that the boat was meant for testing and development. For an
extensive walk-through, the reader should be directed to Alfheim and Muggerud’s thesis
[1]. They examined the physical features, extracted the values needed for the 3-DOF
maneuvering model, and outlined the steps in getting the vessel ready. The authors
thoroughly examine these topics, offering a comprehensive understanding of the vessel’s
components and setup process. In addition, the code base is built to interface with ROS,
which takes care of the communication and the data types used between scripts.

Figure 3.1: The dimensions of the ReVolt ship model. [1]

The scale model, visualized in figure 3.1, is about three meters long and has three
thrusters. Two stern thrusters and one bow thruster. In addition to the original sensors
in Alfheim and Muggerud’s thesis, Radar, Lidar, and a 360◦ camera have been added.
The existing control allocation to the vessel was provided by DNV.

3.1.1 The scale model matrices
The ReVolt scale model matrices and thruster coeeficients found in the thesis by Alfheim
and Muggerud [1] are expressed as:

Chapter 3 System description

Thruster lx[m] ly[m] Azimuth angles
1 -1.12 -0.15 Fully rotatable
2 -1.12 0.15 Fully rotatable
3 1.08 0 (-270◦, 270◦)

Table 3.1: The thruster placement of the vessel [14]

M = MRB +MA =

263.93 0 0
0 306.44 7.00
0 7.03 322.15

 (3.1)

C(ν) = CRB(ν) + CA(ν) =

 0 0 −207.56ν + 7.00r
0 0 250.07u

207.56ν − 7.00r −250.07u 0

 (3.2)

D =

−Xu 0 0
0 −Y v −Y r
0 −Nv −Nr

 =

50.66 0 0
0 601.45 83.05
0 83.10 268.17

 (3.3)

K±1 = K±2 = 2.7 × 10−3 K−3 = 6.172 × 10−4 K+3 = 1.518 × 10−3· (3.4)

3.2 Simulator
The Unity simulator is used to create a 3D visualization of the ReVolt ship and the
surrounding environment. In addition to simulating the environment, the simulator is
also able to simulate LIDAR, Radar, and camera. The data generated from the simulated
sensors is based on the 3D environment and the models existing in the vicinity of the
sensors. It receives position, pose, and speed data from the control system. It sends out
simulated sensor data and positional data.

The environment within the simulator was carefully crafted to reflect real-world mea-
surements and behaviors as described in [19], and a lot of work was done to achieve a
high-fidelity simulation that reflects the real world.

12

3.3 Software

Figure 3.2: Image from the Unity simulator

3.3 Software
The selected software is based on the software already used on the platform and the
authors familiarity with the tools.

The following subsection will introduce the softwares used in this thesis.

3.3.1 Programming language
During offline testing, or in a simulator, you don’t have the need for exceptional perfor-
mance or effective code as it is in the development phase. To exercise faster development
and since it is well supported in ROS the choice fell on Python. The sheer amount of
packages available is also supporting the choice.

3.3.2 ROS
The ReVolt uses ROS to communicate and share data between its various scripts and
modules. ROS is a framework that allows developers to create robot applications by
providing and open-source set of libraries and tools. It has a set of standard Applica-
tion Programming Interfaces (APIs) and services for common robot functionality, such as
controlling hardware, implementing often used functions, and sending messages between
processes. Data transfer can be seastblished with a one way tunnel called a "topic" (figure
3.4) or create a server client relation ship, where every request gets a respons (figure 3.4).
This makes it easier for developers to focus on building their robot applications. ROS
also allows multiple processes to run on different computers and communicate with each
other over a network, enabling the creation of distributed and collaborative robot systems.

3.3.3 Robot Operating System (ROS)
The ReVolt project is developed around ROS, where it is used to handle data streams.
Due to this, it is necessary to keep developing with ROS to have access to previously
developed and implemented software.

13

Chapter 3 System description

Figure 3.3: simple graph of communication in ROS

Figure 3.4: simple graph of service in ROS

3.4 gRPC
gRPC is a framework for Remote Procedure Calls (RPC) that allows you to establish
client-server communication between different programs and services. Unlike ROS, gRPC
does not require a master node to establish communication between server and client.
The request and response message and communication are defined in a Protocol Buffer
file (.proto file). The compiler generates the necessary server and client files to various pro-
gramming languages (C++, Java, Python, etc...) based on what the user requests. How
gRPC communicates is illustrated in fig. 3.5, where it is evident that the communication
process is similar to ROS services.

Figure 3.5: gRPC communication

14

Chapter 4

Design and implementation

4.1 Methodology: Development and Operations
Development and operations (DevOps) is a software development and delivery methodol-
ogy. From the entirety of the DevOps concept, the most important parts for this project
have been continuous integration and Continuous delivery (CI/CD), and Infrastructure
as code (IaC). These parts is strongly connected to the left part of the DevOps process
loop in figure 4.1.

Figure 4.1: DevOps process loop [16]

CI allows for changes to be made frequently and tests if the code compiles and returns
expected messages after receiving input. The CD part acts as a performance check to see
how the changes in the code have affected the returns. The performance measurement is
based on user-defined expectations or previous results.

Keeping IaC in mind while finishing a module allows for standardizing the setup, changing
values and creating repeatable environments. This is important as it is desirable to develop
modules that will be maintained and used by others in the future, making standardization
and reproducability core aspects of development.

Chapter 4 Design and implementation

4.2 Development

4.2.1 Step 1: Plan
The first step was to map out what modules that are necessary to complete the task.
There were some existing packages, but a complete overview of how they performed and
their integration status to the rest of the system needed to be determined. Three different
flowcharts were made in figure 4.2. The top flowchart (figure 4.2a) is a simplified flowchart
showing the different parts of the system. The middle flowchart (figure 4.2b) shows a more
detailed overview of which modules belong to what part of the complete system. The last
flowchart (figure 4.2c) shows the minimum required to complete the flow of data for the
system to work continuously.

Path planning Controller Vessel
TrajectoryUser inputs Commands

(a) Simplified flowchart

Trajectory Commands
Map extraction
A* planner
Waypoint reduction
Optimization

GUI
Waypoint handling

Unity vessel control
Vessel physics
Environmental

 forces

(b) Detailed flowchart

Trajectory Commands
Map extraction
A* planner

Waypoint handling Unity vessel control

(c) Reduced requirements flowchart

Figure 4.2: Upperlevel flowcharts describing the required modules for each part of the
system.

4.2.2 Step 2: Coding
With the general plan in the previous step, it is easier to start programming when there is
an expectancy for what data each module should produce. The procedure can be broken
down into the following steps:

• Sketch up the flow of data

• Describe the process in a few steps

• Create skeleton code based on the bullet points above

16

4.2 Development

• Fill in the skeleton functions

• Get a functioning script and improve code as needed

4.2.3 Step 3: Building/Integrating

ROS
Node(s)

ROS
MASTER

Parameter Server
brattora_ned:
 lat0: 63.4391751633
 lon0: 10.4003291867
 alt0: -2.423

Figure 4.3: ros-param

When adding new modules and scripts to a sys-
tem, keeping all the settings in one place is a
good idea. This usually means using a config
file. It can store initialization variables, which
are the settings the system starts with, in yaml
files. This way, the code can be kept clean, and
changes can easily be changed if needed.

The modules don’t do much good on their own
- they need to be integrated into the larger sys-
tem to be useful. This is especially important when scripts have to run in real-time, as
we often need to change parameters while the script is running. Parameters that more
than one node uses or that change over time should be loaded into the ROS parameter
server. When it needed to change parameters or a server node needs to send new data,
services can be used, as shown in figure 4.3. This way, new data or conditions can trigger
desired functionality.

4.2.4 Step 4: Test
The system gets tested in the loop with the new modules at this stage and if a test passes,
it can move on to the next phase, which is releasing the software to a stage where it gets
used to operate the Digital Twin or real vessel.

This part utilizes the performance evaluation tools for each of the metrics that is desired
to measure. The main parts relevant for this system is:

• Path measures: length, smoothness, precision and tractability

• Energy usage

• Time usage

To streamline the tests they can be structured using the the flowchart in figure 4.4. When
using the Digital Twin vessel in the simulator, the same environmental setup can be
utilized to get a better behaviour comparrsion between runs. If the collected data differs
to much from the desired bahviour the system should call for adjusting the parameters to
se if there is any changes.

4.2.5 Step 5-8
The operate part of the DevOps cycle is not in the scope of this thesis and scripts developed
in this theis won’t be released in the traditional sense (merging the code to the main part
of code stack), it has been prepared to a point where it could be released given further
development and the right environment. The parts can be described as:

17

Chapter 4 Design and implementation

Start test

Initialize Digital Twin vessel

Run simulation

Collect simulation data

Compare simulation data
with desired response

Is the
behaviour
desired?

End test

Yes

Adjust parametersNo

Figure 4.4: Test flowchart

• The Release stage refers to the point at which software is considered ready for
deployment.

• The Deploy stage sees the software configured and merged in to the production
environment.

• In the Operate stage, the software functions within a live environment.

• Finally, the Monitor stage involves continual surveillance of the software’s operation
to identify and rectify any issues, and find potential improvements.

18

4.3 Path planning

Geometries in LLA Geometries in NED Rasterized array Shapefiles

Figure 4.5: Shapefile extraction flowchart

4.3 Path planning

4.3.1 Array extraction from shapefiles
The map extraction from shapefiles follows the process in figure 4.5. The shapefiles get
loaded and combined into one GeoDataFrame using python libraries, GeoPandas [10] and
Pandas [17]. Within this process, certain geometry types can either be filtered out or
included (linestrings, polygons, multipolygons) based on how the different obstacles are
represented in the shapefiles.

The geometries get converted to NED, so they can be applied in pathplanning later or be
loaded as polygons into a optimization problem as obstacles. For visualization purposes
the rasterized map in figure 4.6 is rotated to North-East-Up (NEU) to match the regular
view of a map.

When rasterizing the geometries with the features package from rasterio [6], any grid cell
that a geometry touch is labeled as occupied, no matter how much or little of it is actually
occupied. It is also possible to only return the cells that are fully within the shapes. The
returned array will only reflect the real world as close as the resolution allows. And the
bounds decide how many meters of that get included in the array.

Extracting the array at different resolutions uses the same amount of time even though
the number of cells exponetially grows between the different scenarios 4.1.

Area Cells per meter Time taken (s)
1km2 0.1 8.78
1km2 1 8.83
1km2 10 8.84

Table 4.1: Processing time for extracting arrays at different resolutions

4.3.2 Pathfinding
The pathfinding pipeline was initially planned as:

A* algorithm

The A* algorithm searches through the grid between the vessel’s current position and the
vessel’s desired endpoint. Orientation is not taken into account when finding an initial
path. However, it takes in an argument, robotsize. This forces the A* to find a feasible
path with the size of the robot (or, in this case, vessel) when finding a path. This creates
a virtual boundary that requires all nodes within the set radius to be without obstacles.

19

Chapter 4 Design and implementation

(a) Plot of GeoDataFrames
(b) Rasterized to 0.1 cells per me-
ter

(c) Rasterized to 1 cells per meter
(d) Rasterized to 10 cells per me-
ter

Figure 4.6: Different levels of rasterization. One cell is one unit in NED. The blue area
in the upper left subfigure corresponds to the black area in the remaining subfigures. The
white area is obstacle free space.

Pathfinder Path
Path simplification

and smoothing
Array

Figure 4.7: Astar and path smoothing flowchart

As the robot size increases, the extra cells that get checked for obstacles increase quadrat-
ically. Tabel 4.2 shows the time used as the robot size increases and figure 4.8 gives plots
the time taken for each step. The number of extra checked cells results in the equation

Extra cells checked = (2 ∗ robot_size + 1)2 − 1 (4.1)

Instead of a robot size, an extra border can be added with a chosen "certainty value"
to make the planner check fewer blocks. Regardless of the robot size variable or the
extra border addition, an additional step for planning the trajectory closer to the quay is
needed. The idea is to make all other points except the endpoints outside the border, and

20

4.3 Path planning

Robot size Time taken (s) Path length
0 0.38 209
1 1.72 211
2 4.21 213
3 8.17 215
4 13.39 217
5 20.70 219
6 28.56 221
7 37.71 223
8 50.47 225
9 63.52 227
10 78.65 229

Table 4.2: Search times for A* with robot radius acting as a safety radius

Figure 4.8: Plot of time taken based on robot size

the endpoints can be kept within the border if placed there. A simple and naive method
of completing the path when the end points are in an occupied area is to find the nearest
unoccupied cell and draw the path between it and the endpoint.

(a) Robot size set to 5 cells (b) Border size set to 5 cells

Figure 4.9: Vessel size acting as a safe barrier when finding a path

21

Chapter 4 Design and implementation

Border radius Time taken (s) Path length
0 0.20 174
1 0.20 174
2 0.27 175
3 0.25 179
4 0.26 186
5 0.26 192
6 0.32 200
7 0.28 212
8 0.30 225
9 0.33 241
10 0.35 258

Table 4.3: Search times for A* with border radius around obstacles instead of robot
safety radius

Waypoint reduction

The output from the A* algorithm consists of the nodes it has traversed through in order
to find a path between the start and endpoint. Due to the composition of the configuration
space, the list of waypoints gets quite large for short distances. Many of the waypoints
do not add any extra detail to the path and can be regarded as redundant waypoints.
When reducing the number of waypoints with Douglas-Peucker, it is important to select
a reasonable threshold. In figure 4.10, it is observable that selecting a threshold close to
the resolution of the grid drastically reduces waypoints, while greater thresholds remove
to much of the original shape the waypoints created.

(a) ϵ = None (b) ϵ = 2 (c) ϵ = 10

Figure 4.10: Waypoint reduction with Douglas-Peucker

4.3.3 GUI
The fact that most of Revolt’s codebase interacts with ROS makes the use of various
visualization tools within in the framework convinient. One of these tools, ROS visualiza-
tion (RviZ), has the capability to subscribe to user-defined topics and then display them
according to user preferences. This becomes particularly useful when considering that the
control system was designed to plan most operations within a unified context, specifically
the NED frame. Consequently, this makes the task of presenting live, pertinent data in
RviZ much simpler and more straightforward.

In figure 4.12b the pathplanner gets the start pose from the vessel state and finds the path
from the vessel to the userdefined end. The desired pose given by the DP-PID controller

22

4.3 Path planning

Figure 4.11: ReVolt in Unity (left) and in RviZ (right)

is in addtion shown as a axis marker to show the desired pose.

(a) Without path published (plotted) (b) With path published (plotted)

Figure 4.12: Body axis marker is the vessel, DP_PID axis marker is the desired end
pose and position for next waypoint. Red spheres are waypoints. Red arrow is the end
position and pose for the vessel

4.3.4 Unity
Since Unity is a physics engine it will simulate every unit you enter into the world as often
as you tell it to. The simulated inertial measurement unit (IMU) was set to update at a
higher frequency than necessary (200Hz), which caused the simulator to struggle. Instead
of simulating the IMU at a high rate like this it would be beneficial to base noisy IMU
measurements of the ground truth of the vessel in the simulator and add random noise
and extra measurements with per simulator ground truth message.

Physics

The physics in in Unity is mainly decided by these components [18]:

• Mass

• Drag

• Angular drag

• Use Gravity

23

Chapter 4 Design and implementation

These values are tunable, but hard to match with the physical matrices for the ReVolt
vessel. Another option is to instead control the position and pose through the Is Kinematic
option. This allows for simulating the physics of the vessel outside the Unity game engine.
This will change the object collision from unity-generated physics to a bool-based collision
warning.

The purpose of the simulator is to get a 3D visualization of the vessel and surroundings
while also having the opportunity to gather data from exteroceptive sensors such as lidar
and camera. The collision simulation does not have to be as advanced as the game engine
might provide.

4.3.5 ROS wrapping
With the scripts written, they need to be integrated to the rest of the system. A good
practice is to write the ROS wrapper as compact as possible, since its main purpose is
to allow data transfer between the nodes in the system. In the A* node (figure 4.13),
the three modules A*, Douglas Peucker and Path smoothing are just three lines, while
the rest of the script performs data formatting to standard messages and transformations
between frames if needed.

1 path = astar(array , start , goal , border_size , heuristics =" euclidean ")
2 reduced_wp_path = simplify_path .main(path , epsilon =1)
3 smooth_path = smooth_path .main(path)

Occupancy grid node
(Shapefile Processor)

Control System

RviZ

Douglas
Pecuker

Astar node

A*
Path

smooting
Array

Final waypoint

Figure 4.13: Astar and path smoothing flowchart

4.4 Replanning
Since there might be new or unknown obstacles along the previously found path, the plan-
ner should be able to replan based on data from a collision avoidance (COLAV) module.
The path planner can handle replanning queries based on the risk level determined by
such a system. An example is static unmapped obstacles as seen in figure ??. These are
easier to account for since a predetermined safety radius has been decided.

To reduce computing time and power, the shapefile processor scales resolution and map
size based on direct Euclidean distance between current the start and end position. If
no path is found by the pathfinder, the map resolution and scale should be changed. If

24

4.4 Replanning

(a) replanning no obstacle (b) replanning obstacle

Figure 4.14: image in Two horizontal

the path distance to the final waypoint is withing docking range, the map get scaled to
account for the greater resolution that is needed. This makes it possible to use a lower-
resolution map for larger areas and a higher-resolution map for smaller areas where detail
is necessary.

Figure 4.15: Flowchart for handling size and resolution when extracting geometries

25

Chapter 4 Design and implementation

4.4.1 Path optimization
After the path has been found and waypoints have been reduced, it can be further pro-
cessed in an optimization problem. In Lekkas (2021) [12] a simple kinematic model
attempts to follow the path in order to test its feasibility. The same has been done in
figure 4.16, but to mimic a vessels slow turn rate, the turning rate was reduced drastically
(seen in the defined model in equation 4.2). The solver got a lower threshold for the last
waypoint in regard to position and rotation error. Without obstacles stated in the solver
it could easily move left of the end waypoint where land was an obstacle. In figure 4.17
this is the case. Without obstacles defined in the optimization problem, the solver can
utilize all of the space necessary to achieve the goal.

ẋẏ
ψ̇

 =

cos(ψ) ∗ v
sin(ψ) ∗ v
ψ ∗ 0.05

 (4.2)

In figure 4.16 the optimization problem was setupt to minimize time and do multiple
shooting with Runga-Kutta (RK4):

min
X,U,T

T

subject to
v_min ≤ U(0, :) ≤ v_max
phi_min ≤ U(1, :) ≤ phi_max
xlb

goal ≤ xgoal ≤ xub
goal

T ≥ 0

(4.3)

26

4.4 Replanning

Figure 4.16: Path optimized for time usage with the simple model. Path is feasible with
the current waypoints

27

Chapter 4 Design and implementation

Figure 4.17: Path optimized for time usage with the simple model. The shortest path
found by the solver would have gone over land

28

Chapter 5

Discussion

Since the shapefile extractor is able to use the same NED origin as the rest of the system
when converting from GeoDataFrames to NED, the geometries appear at the expected
area in relation to the origin coordinates. This makes it possible to extract a rasterized
array fairly quickly when a reasonable resolution is selected for the size of the map. In
addition, only the relevant area and its included obstacles get rasterized and made into
an array, which limits the amount of area that needs to be rasterized.

The safety radius around the vessel and the A* algorithm combined created a slow and
ineffective method for searching the space for a feasible path between the start and final
waypoint. Even with grid cells in the array that are quite large (e.g. 10 meters per cell),
it is a feature that scales poorly. Using a border around obstacles creates a path much
quicker as the number of cells it needs to search through is much lower.

The selection of a reasonable epsilon when using Douglas Peucker 4.3.2 is not trivial,
especially for environments where it is important to keep the initial shape of the initial
path. A robust method of selecting the epsilon is to base it on the resolution of the array
produced by the shapefile processor and the border added to the obstacle. How much the
reduced path will deviate from the initial one will then be known due to the cell size.

Since the resolution of the array is selected based on the distance from the vessel to the
final waypoint, it will limit the size of the array that is created. This has a potential
fallback since the selected waypoint might be valid before rasterization, but due to the
way cells get determined whether they are occupied or not, the system might find it
impossible to find a feasible path to the final waypoint. A simple and naive method for
completing the path is to find the nearest unoccupied cell and draw a straight line between
it and the endpoint. To ensure that movement near the quay is safe, exteroceptive data
from lidar and camera would be required.

Without having had the time to define obstacles in the optimization problem, the solver
can find a path in undesired areas. With the geometries extracted to the NED frame
in the previous steps, they could be implemented as constraint for the solver, so that it
has to find another solution to the problem. The solution would then have to avoid the
geometry constraints.

When developing new features and modules for an existing large system, one is essentially
creating a black box that processes data. If a script is time-consuming and hard to
understand it will most likely reduce the chance of it beeing used or maintained in the

Chapter 5 Discussion

future. This is why splitting the data processing code and ROS-relevant code can be
especially important to make it more appealing to maintain and use the scripts.

This is really a highlight of the negative sides of ROS’s structure (nodes and topics) in
larger projects can be seen in the data sent over the topics. The nodes are essentially
black boxes, and the data has to be trusted until you’re getting close to finishing your
own node that will base its measurements or further processing on the received data.

30

Chapter 6

Conclusion

This thesis has proposed using rasterized map data for navigation and path planning in
the quay area to find a feasible path from the vessel’s position and to the desired end
position. The extraction process takes the same time regardless of resolution, which shows
that the extraction time is limited by the utilized packages.

With the GUI functionality for showing the extracted map, found path, and the ability to
set end pose in RviZ. It adds functionality that is easy to utilize even with little familiarity
with ROS. Since the Revolt codebase revolves around ROS it also limits the spread in
different user interfaces and platforms that new developers or students need to familiarize
themselves with.

The methodology for this project fits with the DevOps approach for software development,
where the principles of continuous integration and iterative improvement are important.
While the initial four stages of the DevOps process loop: Plan, Code, Build, and Test,
have been accounted for, the full implementation of the other stages: Release, Deploy,
Operate, and Monitor, is beyond the practical scope of this thesis due to time constraints.

6.1 Recommended further work
The performance of the map extraction process, while consistent across different resolu-
tions, could be improved in terms of speed and efficiency. The bottleneck appears to be
with the utilized packages. Therefore, an investigation into more performant alternatives
or optimizing the current ones could be explored.

The optimization problem should be solved by using the ReVolt vessels system matrices
as dynamics and the thruster configuration. This implementation can aid in solving for
a path and thruster input that gives energy efficiency, a better-suited path for the vessel
or minimize the control input required. In addition, a method for defining geometries
as constraints in the optimization problem is needed to limit the system from finding
infeasible paths.

To improve the evaluation of the vessel’s performance, better measurable evaluation cri-
teria should be developed. These should include measures of energy use and the quality
of the paths it generates. Also, it should consider factors such as the precision of docking,
how the vessel reacts to different environmental conditions, and its compliance with safety

Chapter 6 Conclusion

rules. This would give a more thorough understanding of how the vessel is performing.

Finally, the application could be extended beyond the quay area to other parts of the mar-
itime transportation system. A broader scope might necessitate addressing challenges such
as handling larger and more detailed maps, dealing with dynamic obstacles, and manag-
ing longer distances and more complex routes. This would require further investigation
and development of the underlying algorithms.

32

References

[1] Henrik Alfheim and Kjetil Muggerud. Development of a Dynamic Positioning Sys-
tem for the ReVolt Model Ship. eng. 2017. url: http://hdl.handle.net/11250/
2452115.

[2] Glenn Bitar, Vegard N Vestad, Anastasios M Lekkas, and Morten Breivik. “Warm-
started optimized trajectory planning for ASVs”. In: IFAC-PapersOnLine 52.21
(2019), pp. 308–314.

[3] David H Douglas and Thomas K Peucker. “Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or its Caricature”. eng.
In: Classics in Cartography. Chichester, UK: John Wiley & Sons, Ltd, 2011, pp. 15–
28. isbn: 0470681748.

[4] Sigurd Øygarden Flæten. Dette skipet er utslippsfritt og har ingen mennesker om-
bord. (Visited: 14. Desember 2022). url: https://www.tu.no/artikler/dette-
skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord/231695.

[5] T.I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley-
Blackwell, 2021.

[6] Sean Gillies et al. Rasterio: geospatial raster I/O for Python programmers. Mapbox,
2013–. url: https://github.com/rasterio/rasterio.

[7] Yewen Gu, Julio Cesar Goez, Mario Guajardo, and Stein W Wallace. “Autonomous
vessels: state of the art and potential opportunities in logistics”. In: International
Transactions in Operational Research 28.4 (2021), pp. 1706–1739.

[8] Yewen Gu and Stein W. Wallace. “Operational benefits of autonomous vessels in
logistics—A case of autonomous water-taxis in Bergen”. In: Transportation Research
Part E: Logistics and Transportation Review 154 (2021), p. 102456. issn: 1366-
5545. doi: https : / / doi . org / 10 . 1016 / j . tre . 2021 . 102456. url: https :
//www.sciencedirect.com/science/article/pii/S1366554521002209.

[9] C Jallal. “Rolls-Royce and Finferries demonstrate world’s first fully autonomous
ferry”. In: Maritime Digitalisation & Communications (2018).

[10] Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman,
James McBride, Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia Badaracco,
Carson Farmer, Geir Arne Hjelle, Alan D. Snow, Micah Cochran, Sean Gillies, Lu-
cas Culbertson, Matt Bartos, Nick Eubank, maxalbert, Aleksey Bilogur, Sergio Rey,
Christopher Ren, Dani Arribas-Bel, Leah Wasser, Levi John Wolf, Martin Journois,
Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe, and François Leblanc.
geopandas/geopandas: v0.8.1. Version v0.8.1. July 2020. doi: 10.5281/zenodo.
3946761. url: https://doi.org/10.5281/zenodo.3946761.

http://hdl.handle.net/11250/2452115
http://hdl.handle.net/11250/2452115
https://www.tu.no/artikler/dette-skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord/231695
https://www.tu.no/artikler/dette-skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord/231695
https://github.com/rasterio/rasterio
https://doi.org/https://doi.org/10.1016/j.tre.2021.102456
https://www.sciencedirect.com/science/article/pii/S1366554521002209
https://www.sciencedirect.com/science/article/pii/S1366554521002209
https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.5281/zenodo.3946761

References

[11] S Kongsberg. Autonomous ship project, key facts about YARA Birkeland. 2017.
[12] Andreas Bell Martinsen, Anastasios Lekkas, and Sebastien Gros. “Optimal Model-

Based Trajectory Planning With Static Polygonal Constraints”. In: IEEE Trans-
actions on Control Systems Technology PP (July 2021), pp. 1–12. doi: 10.1109/
TCST.2021.3094617.

[13] Society of Naval Architects, Marine Engineers (U.S.). Technical, and Research Com-
mittee. Hydrodynamics Subcommittee. Nomenclature for Treating the Motion of a
Submerged Body Through a Fluid: Report of the American Towing Tank Conference.
Technical and research bulletin. Society of Naval Architects and Marine Engineers,
1950. url: https://books.google.com.mx/books?id=sZ%5C_bOwAACAAJ.

[14] Simen Sem Øvereng. Dynamic Positioning using Deep Reinforcement Learning.
2020.

[15] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Longman Publishing Co., Inc., 1984.

[16] Red Hat - DevOps. (Visited: 20. May 2023). url: https://internship.technovalley.
co.in/features/redhat-devops-consulting-kochi.html?fbclid=IwAR3v2CJsLxdA2RQlxpbPleRElNPu4u5dstEs7pSBIqJcMJ6ZJe3aDWqD7ks.

[17] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb.
2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.
3509134.

[18] Unity. Rigidbody component reference. (Visited: 03. May 2023). url: https://
docs.unity3d.com/Manual/class-Rigidbody.html.

[19] Kjetil Vasstein. A high fidelity digital twin framework for testing exteroceptive per-
ception of autonomous vessels. eng. 2021. url: https://hdl.handle.net/11250/
2781031.

34

https://doi.org/10.1109/TCST.2021.3094617
https://doi.org/10.1109/TCST.2021.3094617
https://books.google.com.mx/books?id=sZ%5C_bOwAACAAJ
https://internship.technovalley.co.in/features/redhat-devops-consulting-kochi.html?fbclid=IwAR3v2CJsLxdA2RQlxpbPleRElNPu4u5dstEs7pSBIqJcMJ6ZJe3aDWqD7ks
https://internship.technovalley.co.in/features/redhat-devops-consulting-kochi.html?fbclid=IwAR3v2CJsLxdA2RQlxpbPleRElNPu4u5dstEs7pSBIqJcMJ6ZJe3aDWqD7ks
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://hdl.handle.net/11250/2781031
https://hdl.handle.net/11250/2781031

	Preface
	Abstract
	Sammendrag
	Abbreviations
	Introduction
	Motivation
	Problem Description
	Outline

	Theoretical background
	Notation and reference frames
	ECEF
	NED
	Body frame

	3-DOF Ship Maneuvering Model
	Path finding with A*
	Waypoint reduction
	Optimal Control and Thrust allocation
	Integrating System Matrices into the Solver
	Optimizing for Energy

	System description
	The scale model
	The scale model matrices

	Simulator
	Software
	Programming language
	ROS
	Robot Operating System (ROS)

	gRPC

	Design and implementation
	Methodology: Development and Operations
	Development
	Step 1: Plan
	Step 2: Coding
	Step 3: Building/Integrating
	Step 4: Test
	Step 5-8

	Path planning
	Array extraction from shapefiles
	Pathfinding
	GUI
	Unity
	ROS wrapping

	Replanning
	Path optimization

	Discussion
	Conclusion
	Recommended further work

