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Abstract

In this masters thesis the possibility of speeding up a pose estimation method
called SurfEmb[8] by using deep learning is investigated, inspired by another
method, the current state of the art GDRNPP. GDRNPP is an improvement
of an earlier method called GDR-Net[21], and of the two only GDR-Net has a
paper available. SurfEmb uses deep learning to find a novel correspondence rep-
resentation by embedding pixels and object points to a shared embedded space,
enabling them to represent symmetries of the object. From the embeddings they
build correspondences as probability distributions and use a PnP-RANSAC[5]
scheme to find a pose, the latter of which is very time consuming. GDR-Net re-
gresses a more traditional one-to-one correspondence representation, and solves
the issue of symmetries by also regressing a separate symmetry map. The sym-
metry map is a less compact way of representing symmetries than SurfEmbs
embeddings. It uses these two as input in a pose regression model to find a pose,
which is orders of magnitude faster than SurfEmbs PnP-RANSAC scheme. In
this thesis, a combination of the two methods is tested by regressing a pose
from SurfEmbs embeddings, which to the best of my knowledge has not been
done before. The results indicate that my method is a 20x speedup over Sur-
fEmb, but the average rotation and translation error are between 2-4x greater
than SurfEmb and GDR-Net. The training process and model architecture in
this thesis likely has multiple short-comings that when fixed will increase the
accuracy. Internal testing on a self-made model indicated that regressing a pose
from SurfEmbs representation performs equally to regressing from traditional
dense correspondences like used in GDR-Net. Whether this holds true for better
tuned and trained models is not clear.



Chapter 1

Introduction

The 6 Degree of Freedom(6D) pose estimation problem is the problem of finding
the rotation and translation of an object in an image. The object of interest
is stored as a 3D object on the computer, and has a defined local coordinate
system. The objective is to find the transformation matrix between the cameras
coordinate system and the objects local coordinate system as configured in the
image.

There are different versions of this problem depending on what data is avail-
able. Some methods are aimed at having multiple views of the object, taken by
a moving camera or different cameras. These are called multiple view methods.
With multiple views of the same scene the depth ambiguity of image formation
can be eliminated by for example triangulation. Depth can also be directly
measured using a depth sensor in addition to a RGB camera. Having depth in-
formation will make the translation estimation easier. Different methods focus
on different versions of the problem. This thesis will focus on the single-view
RGB version, where there is only one RGB image available with no depth infor-
mation. This is the most difficult version since it contains the least information
about the scene.

Methods also differ in their use of deep learning. All current methods use
deep learning to some extent, but the extent of which varies. There are cur-
rently two main categories. Those in the first category use a two stage approach.
They use deep learning to find correspondences between points on the object
surface and pixels in the image. By knowing enough such correspondences it
is possible to mathematically calculate a pose estimate. The problem of find-
ing a pose from 2D-3D correspondences is called a Perspective-n-Point(PnP)
problem, and can be solved in multiple ways, some examples are [13, 14, 24].
Earlier methods, before deep learning, would use algorithms such as SURF[1]
to find a few easily detectable keypoints in the image. These are called sparse
correspondences. With deep learning it is more common to regress dense cor-
respondences, meaning each pixel in the image is correlated to a point on the
object. An image where each pixel has values equal to its corresponding object
point coordinate is called a dense correspondence map.
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Methods in the second category are called end-to-end methods since they
use deep learning from beginning to end. They usually have two networks,
one to transform the input image into a new and simpler image, and a second
network to regress a pose from the simplified image. The simplified image could
be a dense correspondence map, which is what GDR-Net uses, or some other
representation an engineer feels is helpful for the pose regression model. Some
of the end-to-end methods are called correspondence-free methods since they do
not create any correspondences. Only in the last couple years have end-to-end
methods achieved similar accuracy to the ones solving PnP problems.

SurfEmb[8] is a 6D pose estimation method based on using single-view RGB
images. Using deep learning, they find a novel representation of correspon-
dences, a probability distribution over the objects surface. Meaning, for a given
pixel, each point on the objects surface has a probability of corresponding to
that pixel. This means a pixel can correspond to multiple parts of the object,
meaning the model can display uncertainty in the face of symmetry. In order to
find a pose they sample the probability functions in a way where highly prob-
able correspondences are most likely to be picked, and use PnP-RANSAC to
find a pose. SurfEmb was in 2021 the highest scoring method on the BOP web-
site, which is a hub meant to facilitate competition between 6D pose estimation
methods.

Since 2021 SurfEmb has been overtaken by 5 other methods on the BOP
website. The current leader is an end-to-end method called GDRNPP, uploaded
to the BOP website in october 2022. GDRNPP is a improved version of GDR-
Net[21] with some optimizations shortly stated on the BOP website, but uses
the same architecture. There exists only a paper for GDR-Net, published 24.
February 2021.

This thesis will take a look at how SurfEmb and GDR-Net function and
investigate whether the two methods can be combined to create a better method.
Initially, in order to understand these methods, the relevant theory of image
formation, deep learning and Convolutional Neural Networks(CNNs) will be
covered. The relevant parts of SurfEmb and GDRNPP will then be explained
in detail, followed by the motivation for combining them. The method by which
they were combined and tested will then be explained. Finally the experimental
results will be presented and discussed.
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Chapter 2

Motivation

The goal of this work was to use SurfEmb as a basis for an improved pose
estimation method. For my project thesis in the fall semester of 2022 I sped
SurfEmb up by 20-30% by slightly modifying their RANSAC[5] procedure. I
also experimented with hyper-parameters in their RANSAC procedure to try
and optimize them. Modifying the parameters achieved speed-ups with little or
no detriment to accuracy, but did not add anything novel to the method. The
hope for this masters thesis is to achieve a much more significant speed-up by
replacing the RANSAC procedure with a deep learning model. A deep learning
model will utilize the GPU much more efficiently and can regress a pose in
milliseconds, whereas the RANSAC loop runs thousands of iterations on the
CPU, taking somewhere in the area of 10-100x longer. The hope was to get
a significant speed increase with little or no detriment to accuracy. The idea
of using a deep learning model for finding a pose was inspired by the current
state of the art method GDRNPP. Essentially the idea was to combine the
beginning half of SurfEmb with the second half of GDRNPP. How and why will
be discussed in detail in a later chapter.

3



Chapter 3

Theory

In order to understand the various methods discussed in this thesis it is impor-
tant to have a basic understanding of deep learning, projective geometry and
some camera theory. As stated in the introduction, some methods rely solely
on machine learning in order to find a pose. Others use a two stage approach,
first using machine learning to gain an understanding of the image and then for-
mulate a Perspective-n-Point(PnP) problem based on 2D-3D correspondences.
How PnP problems can be solved will not be covered as it is not used in this
thesis. The project thesis I wrote last semester covers this and is found in the
appendix. Projective geometry and camera theory will still be relevant for how
the deep learning model estimates depth, and so is covered.

3.1 Projection and Camera Theory

Section 3.1 is a revised version of the camera theory section in my project thesis,
which is found in the appendix.

Cameras, and their projective transformations, can be explained with dif-
ferent models. The simplest of which is the pinhole model. While it is simple,
it is the most essential and can model the projections of traditional cameras.
For more complicated cameras, like those using a fish-eye lens, other models are
required since the lens has non-linear distortions that a traditional camera does
not.

3.1.1 The Pinhole Model

The pinhole model is so named because of the assumption that every light
ray from the scene goes through an infinitely small hole and projects onto the
image plane, without being distorted. This hole is called the center of projec-
tion(COP). This is shown in figure 3.1. Of course, no real cameras have an
infinitely small aperture. Real cameras use lenses to increase the light received.
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Figure 3.1: The pinhole model. The camera coordinate system is drawn. The
image plane is in reality behind the COP, as shown, and the projected shape
is upside down. It is often flipped and drawn in front of the COP to make the
math more elegant. The focal length is marked f.

However, as long as an object is within the depth of field, or ”in focus”, its pro-
jection can be described by the pinhole model. A real lens will introduce some
distortion, which the pinhole model does not consider. These distortions can be
accounted for, but for the purpose of pose estimation they can be neglected.

Projection geometry is easiest to do using homogeneous coordinates. This a
type of coordinate that adds an extra element and is independent of scale. A
homogeneous coordinate carries information only about the relative differences
between its components. This is useful because the coordinates of a projected
3D point onto a plane is independent of the distance along the ray of projection.
Linear transformations of the homogeneous coordinate can then be carried out
without worrying about the scale. The coordinate can then later be converted
back to real coordinates by dividing it such that its final element is equal to
some defined value, usually 1. A 3D point in the world becomes a 4D homoge-
neous coordinate, and a 2D image coordinate becomes a 3D homogeneous image
coordinate.

The homogeneous image coordinates of a projected point can be calculated
linearly by a projection matrix P . This gives the homogeneous coordinates of
the image point.

q = PQ (3.1)

XY
Z

 = P


X
Y
Z
1

 (3.2)

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (3.3)
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Here q is the 2D homogeneous image coordinate and Q is the 3D homogeneous
real world coordinate. Since q can be scaled by any constant and by definition
still be the same coordinate, it essentially describes a line in 3D space. This is
shown as the blue line in figure 3.1. If the distance to the image plane along the
Z axis is defined to be 1, then by dividing q by a constant such that its third
element is equal to 1, the point of intersection is found.

q =

XY
Z

 =

X 1
Z

Y 1
Z
1

 =

xy
1

 (3.4)

Note that any 3D world coordinate can also be seen as a 2D homogeneous
image coordinate. Simply divide it by its z-component and its projection onto
an image plane with focal length 1 is found. This is very simple but not very
useful for practical purposes when using cameras. It is more useful to know
the pixel coordinates of the projected point, so it can be located in the digital
image.

In reality, the image plane has a specific distance from the COP given in real
world units like millimeters. This distance is called the focal length and varies
from camera to camera. The focal length, along with the pixel density, are
two camera intrinsic parameters that define what the the final pixel coordinates
will be. The matrix transforming the image coordinates to pixel coordinates is
called the intrinsic camera matrix. This matrix is essentially a rescaling and
translation of the camera coordinate system.

K =

fαu 0 u0

0 −fαv v0
0 0 1

 (3.5)

Where αu and αv are the pixel densities along the x and y direction, expressed
in pixels per focal length. These rescale the X and Y axes. u0 and v0 are the
coordinates of the image center, given in pixel coordinates. These move the
origin to the top left of the image. The bottom right element, 1, is the value we
define the focal length to be in our new re-scaled coordinate system. This value
can be chosen freely, but must be respected when converting from homogeneous
to real coordinates. The direction of the y axis is changed to point downwards,
hence the sign before fαv. Multiplying by q gives:

Kq = K

XY
Z

 =

 Xfαu + Zu0

−Y fαv + Zv0
Z

 = Z

uv
1

 (3.6)

[u, v] is then the final pixel coordinate. The result is scaled such that the
third element is 1. This is because that is the defined distance to the image
plane along the Z axis as defined by the intrinsic matrix.

This shows how the projection of 3D point can be calculated if the camera
intrinsic parameters are known. It shows how any 3D point along a line through
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the COP will project to the same pixel values, creating a depth ambiguity.
This is fundamental to all computer vision tasks and relevant for how a neural
network can understand cropped and zoomed images.

3.2 Convolutional Neural Networks

This section assumes some basic knowledge of how machine learning functions.
Specifically how a neural network consists of layers of neurons transforming
inputs with weights, biases and activation functions, and how the parameters
are updated in the backwards pass. To limit the scope of this thesis these
concepts will not be explained here. The project thesis I wrote last semester
covers these basic things and can be found in the appendix. Some aspects, like
convolutions and overfitting, that are especially relevant to this thesis will be
covered. Grander concepts like network architectures will also be covered.

3.2.1 Images as Input

The first version of neural networks was the Multi Layer Perceptron(MLP). It
consists of multiple layers of neurons where each neuron is connected to every
neuron in adjacent layers. Meaning two layers of 4 will have 16 connections.
The number of parameters will increase quadratically with the size of the layers.
This works well when the input and output size is of a small dimension. For
images however this quickly becomes very unefficient. An RGB image has an
input dimension equal to the number of pixels times three, meaning the number
of connections grows very large. This means the model grows large in size and
might use too much memory to fit on a device.

Not only is it memory inefficient but the architecture does not lend itself to
understanding images. Images contain local information that may not always be
in the same location. To understand objects in an image, a neural network must
have what is called translation invariance. That is, it must understand that for
example an airplane is an airplane no matter where in the image it is. An MLP
will learn that airplanes exist only where they exist in the training data. The
airplane may also be closer to the camera, which will confuse the network since
its size has changed. To fix the issue of model size and translation and size
variation, Convolutional Neural Networks(CNN) were introduced.

3.2.2 Convolutions

A convolution in deep learning is a transformation of an image using a filter.
A filter is a quadratic matrix of weights which is sequentially shifted over the
image, multiplying each overlapping value and placing the sum of the products
in a new matrix. The process is shown in figure 3.2. The network will update
the weights of the filters as it learns. As shown in the figure, individual filters
are able to detect low level features like corners and edges. The output of a
convolution is therefore called a feature map. By shifting sequentially over the

7



Source: https://medium.com/analytics-vidhya/convolutional-neural-networks-cnn-a78e78c1ba94

Figure 3.2: A 3x3 filter is convolved with a 6x6 input image. The 3x3 filter
starts in the top left of the original image, overlapping with the top left 3x3
sub-matrix of the 6x6 image. The overlapping values are multiplied together
element wise, similar to a dot product of two vectors. This gives nine products,
which are then summed together. The result is placed in the top left of the 4x4
output image. The filter then shifts until each 3x3 sub-matrix has been covered
once. The filter in this figure is able to detect edges, meaning the output image
has high values where an edge is detected in the original image.

whole image the network can detect shapes anywhere in the image, becoming
translation invariant.

The filter and images shown in figure 3.2 are two dimensional. Usually an
image is three-dimensional, using the extra dimension to store colors. An RGB
image is essentially three images, each storing the levels of red, green and blue
respectively. The images along this dimension are called channels, meaning an
RGB image has three channels. In order to convolve with a three dimensional
image, a filter must also have three dimensions. A filter of spatial size 3x3
would in this case be a 3x3x3 filter, meaning there are 9 overlapping values
as the filter shifts over the image. The sum of all nine products are put in
the output image, meaning the output still only has two dimensions. This is
illustrated for an arbitrary number of channels in figure 3.3. Usually multiple
filters are used on an image, and so the number of channels in the output will
be equal to the number of filters used.

8



Source: https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37

Figure 3.3: A 2D convolution done over multiple channels.

By chaining convolutions, a network can gain higher level feature detec-
tions. With enough layers it can learn to detect entire objects like cats, bikes,
pedestrians etc. Next, the architecture of a typical CNN will be discussed.

3.2.3 CNN Architecture

Figure 3.4 shows a typical architecture of a CNN built to detect objects. Multi-
ple convolutions are chained together, each followed by a sub-sampling process.
Finally the output is small enough to be processed by a fully connected layer,
also called an MLP.

Source: https://www.skyfilabs.com/project-ideas/image-classifier-for-identifying-cats-dogs

Figure 3.4: A typical CNN structure. The feature maps are down-sampled
between each convolution to reduce spatial size. In the end the network has
some fully connected layers to reduce the output dimension.

As shown in the figure, the CNN has a sub-sampling process after each
convolution. This is employed to reduce the spatial dimension of the images
so that subsequent filters can detect larger features and so that the output
eventually can be fed into an MLP. The task of the MLP is to condense the 3D
feature map to, usually, a 1D vector. For detection purposes the final dimension
might be only a single number between 0 and 1 indicating if a certain object is
visible in the image.

9



A widely used sub-sampling method is max-pooling. Similar to convolutions,
a window is slid over an image, but instead of taking the dot product, the
largest value in each channel is selected and stored in the output. The number
of channels stays the same for the input and output, but the spatial size is
decreased based on the size of the filter. Usually a 2x2 filter is used, which will
decrease both spatial dimensions by a factor of 2. Figure 3.4 indicates that the
number of channels increases during sub-sampling, but this does not happen
during pooling. The number of channels can change if a strided convolution is
instead used for sub-sampling, but this wont be used or covered in this thesis.

3.2.4 Encoder-Decoder Architecture

In some situations it is more useful to have the model output be an image
instead of a number. For example if the model is meant to highlight something
in the image. U-Net[18] is a CNN architecture that was developed to segment an
image. The U-Net architecture is shown in figure 3.5. Segmenting means finding
segments of the image that fit into some predefined class, and highlighting them
in the original image. It is used in autonomous driving, where the locations of
objects is very important. Figure 3.6 shows an example of a segmented image.

Source: Taken from [18]

Figure 3.5: A typical U-Net architecture. The network uses convolutions to
encode the image, gradually decreasing its spatial size and increasing the number
of feature maps in order to understand the contents of the image. The decoder
is responsible for up-scaling the information so that the position of features can
be displayed in an output image. The grey arrows are feed-forward connections
meant to help the network up-scale by giving it a view of previous layers.

10



Source: https://medium.com/visionwizard/object-segmentation-4fc67077a678

Figure 3.6: A segmentation of a scene used for autonomous driving. The network
has transformed the original image into a new image which the cars logic system
can use to determine an action.

U-Net has many variations so there is a general term for such architectures:
encoder-decoder network. SurfEmb uses a variation called ResUNet[4], which
uses residual connections as presented in [9] in a U-Net architecture. Residual
connections are skip-connections that append the input of a layer to its output.
These connections provide a path for the gradient to flow through without going
through activation functions which can cause the gradients to explode or vanish.
Exploding and vanishing gradients will be discussed in the next section.

Most methods within pose estimation use a encoder-decoder architecture.
For the ones relying on finding correspondences the encoder-decoder is used to
regress an image where each pixel contains a 3D coordinate. Such images are
called dense correspondence maps, as each pixel is paired to an object point.
For end-to-end methods it is used to find some simplification of the original
image, from which it is easier to regress a pose. The pose regression model
will be similar to the one in figure 3.4, condensing an image to a rotation and
translation prediction.

3.3 Aspects to Consider During Training

How a deep learning model is trained is very important for its performance.
There are many aspects to consider when training a network, some major ones
will be covered here.

3.3.1 Hyperparameters and Optimizers

There are a number of parameters that specify some aspects of the training
loop.

• Model size - The size of the model, measured in the number of parameters,
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determines the complexity it can achieve in the input-output transforma-
tion.

• Batch size - determines the size of each batch during training. This will
influence how stochastic the calculated gradient is. A small batch is likely
to be less representative of the entire training set than a larger batch.
Since the gradients of each item in the batch are summed up before the
network steps, a small batch size means the gradient is more stochastic.
This can actually be a very good trait in optimization in general, as it
means the network is less likely to get stuck on local minima. Having too
much randomness can make it hard for the model to converge. Therefore
batch size must be experimented with. A batch size between 10 and 30 is
usual.

• Learning rate - a constant determining the step size of the parameter
update. The learning rate is a parameter used when creating the optimizer
object. A small learning rate generally yields slower, but more stable
learning.

The optimizer object takes as input the training loss and is responsible for
updating the parameters of the model. Perhaps the most basic optimizer is
the Stochastic Gradient Descent(SGD) optimizer, which simply multiplies the
learning rate with the gradient to determine step size. Other optimizers use
more complicated calculations to find the best step size and direction, such as
Adam[11]. The Adam optimizer takes into consideration the moving average of
the gradients when calculating the step direction.

3.3.2 Overfitting

One of the important things to avoid when training a model is overfitting.
Overfitting is when the model specializes too much on the training images, losing
generality and performance on validation and test images. The model begins
to rely on memorizing the training data, including the noise that should ideally
be ignored. Similar to how a student might memorize a physics formula as a
sequence of letters instead of understanding the physical and logical meaning
behind the formula. This can happen if the model is too complex, that is, it
has more parameters than the task requires, or if the model is trained for too
long on too few training images.

A simple example of this is the following: Consider a model trained to predict
the temperature in Celsius given the temperature in Kelvin. The relation is
obviously linear, but the model does not know this. If the engineer designing
the model does not have the insight to see that the relationship is simple, they
may make a complex model capable of representing high order polynomials.
Given n − 1 2D points, an n-degree polynomial can be found intersecting all
data-points in the training data. Since the training data will contain some
inaccuracies, there will never be a linear line intersecting all the data-points.
Therefore, in order to minimize the loss function, the model may find the high
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order polynomial instead of the linear line. The polynomial will obviously not
give good results outside of the datapoints in the training set. The model is in
that case said to be poor at generalizing and to be overfitting.

There are multiple ways of combatting overfitting. Three of which will be
discussed next.

3.3.3 Data Augmentation, Model Complexity and Dropout

The amount and quality of training data is very important for the performance
of a deep learning model. With a low amount of training data it is harder
for a model to get a general understanding of the inputs. This is especially
the case if the inputs are complex and of high dimension, like images. With
higher amounts of training data it is harder for the model to memorize the
training data, meaning it is forced to generalize. It is also very important that
the training data does not have a bias that is not present in the target data the
model is supposed to be used on. The model may learn to rely on the bias and be
confused by its absence when employed in the real world. The relation between
the amount of training data, its quality and models complexity will determine
if the model overfits or not. A complex model is analogous to a high order
polynomial as used in the above example. For complex problems a complex
model is necessary, so in order to decrease overfitting it may be necessary to
increase the amount of training data or use methods like data augmentation
and dropout.

The optimal way of increasing training data is to somehow get more real, high
quality data. In our case that would mean taking more photos of the objects.
In many situations this is not feasible. Therefore it is normal to simulate a
larger training data by augmenting the existing data. Augmentation can be
any alteration of an existing datapoint. For example for a detection model
it is normal to rotate the training images randomly, or mirror them. Noise
can be added to the images to vary how each neuron is activated, making the
model more robust and less likely to overfit. Augmentations can remove some
of the bias in the training data by introducing randomness. For example in
this thesis the models will be trained on synthetically rendered images, which
will have different lighting, textures and colors than a real image. By randomly
augmenting the colors and introducing some noise, the network hopefully will
be better prepared for real images. The augmented data should still represent
the target data the model is intended to work on, and so how the data should
be augmented can vary from use case to use case.

Another popular way of combating overfitting is to use regularization tech-
niques such as dropout or weight decay. These measures attempt to combat
overfitting by changing how the network functions during training. A dropout
layer will randomly deactivate a percentage of neurons in the following layer.
With dropout, the information flows differently each time, meaning it is less
likely the network falls into the trap of specializing too much on unimportant
details in the training data that are not represented in test data. Dropout is
done only during training. Weight decay is a term added in the loss function
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that penalizes the network for having large weights and biases. The idea is that
having a few large weights and biases that dominate the other parameters gives
poor generalization.

If the model still tends to overfit then the model might be too complex. A less
complex model should be tested. For a CNN this would mean either reducing
the number of convolutional layers, or reducing the number of channels produced
by each convolution. The network is then either made shorter or thinner.

3.3.4 Slow and Unstable Training

Other central problems when training a model are unstable and slow training.
Unstable training could mean the training loss suddenly starts increasing and
spirals out of control. Slow training means the model takes too long to decrease
the loss. One of the first things to check in those cases is the learning rate of
the model. Increasing the learning rate can increase the learning speed, but can
make it more difficult for the network to find the minima in parameter space
due to overshoot. In the worst case it will make the model unstable. Decreasing
the learning rate will make the training more stable, but could slow training
down drastically. If the learning rate is reasonable and there is still slow or
unstable learning, it is more helpful to directly address the cause of the slow
or unstable learning. Often the problem is vanishing or exploding gradients, or
poorly scaled inputs. Luckily there exists solutions that address each of these
issues.

Vanishing Gradient and its Solutions

A vanishing gradient means the gradients becomes close to zero when calculated
in the backwards pass, meaning the network barely updates its parameters each
step, causing slow learning. This can occur if too many of certain activation
functions are chained. For example the sigmoid function will saturate for large
or small inputs as shown in figure 3.7, causing very small derivatives. Multi-
plying many such small derivatives together in the backwards pass will cause
vanishingly small gradients. Because of this the ReLU function is popular in
deep learning. It has a derivative equal to 1 for all positive inputs, meaning the
gradient is retained along paths with positive values. For negative inputs the
derivative is zero, which means for some datapoints many of the ReLU neurons
will be outputting 0 and not updating. This is normal behaviour, but can be
problematic if the networks weights update in such a way that a ReLU neuron
always sees negative inputs, for all training data. Then the neuron is irreversibly
dead since it can never be updated. Despite this one flaw, ReLU is considered
to be the most popular activation function in deep learning and is used in for
example GDRNPP.
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Exploding Gradients

The backwards pass can also result in very large or very small(very negative)
gradients. This happens if many neurons along the gradient path have large
weights. The weights will be multiplied together which causes exponential
growth with respect to the number of layers. ReLU activation functions in
particular can cause this problem as it is unbounded in the positive domain. A
common sign of exploding gradients is an unstable training loss, or a training
loss that grows to infinity. How much a parameter is changed in each iteration
is proportional to its gradient, and so while the model will try to reduce the
training loss by updating the weights, it does so with too large steps, likely
worsening the problem. As previously mentioned when describing ResUNet,
residual connections are also used to combat the issue of vanishing or exploding
gradients.

Poorly Scaled Inputs

For efficient learning it is important that the training data has a good format
and scale. It is often regularized to having zero mean and unit variance. This
is done by calculating the mean and variance of the training data, and then
rescaling it. Say for example a network is to be trained to predict the price of
a car given its age and kilometers driven. The age will be on the scale of ones
and tens, whereas the kilometers driven can be many thousands. Because of the
difference in scale, the network will need to be very sensitive to the number of
years compared to the number of kilometers. The network might overestimate
the importance of kilometers driven because of the larger scale. This can also
make learning slow as the network takes time to increase or decrease its weights
to rescale the inputs. By doing this beforehand, the network does not need to
learn how to rescale the data, which saves a lot of time and makes finding the
loss minima easier.

It turns out it is also helpful to regularize the input between each layer as
well. In deep networks in particular, the scale of the outputs in the deeper
layers can vary between each batch, which means the network is chasing a
moving target. By regularizing between each layer the network is stabilized.
This also helps to combat the exploding gradient problem, as large values are
scaled down. This method is called Batch Normalization[10] and is extremely
popular in deep networks. Since the mean and variance of the entire training
data is unavailable between each layer, Batch Normalization instead calculates
the mean and variance of the current batch between each layer. Of course,
during inference when the batch size is 1, regularization becomes impossible.
Therefore, the Batch Normalization layers keep a running mean and variance
from training which is used during inference.
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(a) (b)

Figure 3.7: (a): The sigmoid function(red) and its derivative(blue). (b): The
ReLU function.

3.4 Pose Estimation of Symmetric Objects

Symmetries can make pose estimation more difficult. Lets say for example the
object of interest is a perfect, textureless cube. Given an image of the cube there
are 32 possible rotations that could yield the same image. The neural networks
used to predict poses only output one single pose, and so it must choose one of
the 32. Getting just one of the 32 poses as output is not the problem. Each
of the 32 predictions are valid and correct for any practical intent and purpose,
as the cubes properties do not change in any way depending on which of the
32 poses it is configured in. The problem instead stems from the issues that
arise during training. If a model guesses one of the 32 correct rotations, it
should not be penalized. If the ground truth for the image specifies only one
of the 32 rotations and the loss function is based on the difference between the
predicted and ground truth pose, the network will be confused. It is being asked
to output different rotations for the same input image. In the training data
provided by BOP there exists just one ground truth pose per image. Therefore
it is necessary to implement a symmetry aware rotation loss, which GDRNPP
does. They simply change the ground truth pose to be the one closest to the
predicted pose.

There is also a problem with regressing dense correspondences. If the model
is asked to identify each corner in the image, there will be eight alternatives.
The model must choose just one. This can for example cause the model to map
multiple corners in the image to the same corner on the object, which obviously
violates the structure of the cube. Regressing a pose from a correspondence map
with such errors can be difficult. GDR-Net solves this by regressing a separate
symmetry aware map which will be covered in the GDR-Net chapter.

Symmetry is a grey area. There are objects that are not truly symmetric,
but very close. For example an eggbox has a notch where the box is opened,
meaning it is not symmetric. However it can be difficult for a CNN to identify
the notch in certain situations, for example under occlusion. This gives large
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discontinuity in the input-output transformation. The model is asked to predict
a completely different rotation based on perhaps just a few pixels. Therefore it
is up to the engineer to determine if the object can be assumed to be symmetric
based on the use case.

3.5 The BOP Challenge

Within the deep learning field there are often public challenges or competitions
for scientists to compete in. Usually these have public leaderboards and are
meant to help advance the various fields within deep learning. For the pose
estimation problem there exists a challenge called the BOP challenge which
holds a yearly competition for the best pose estimation method. The website is
found at: https://bop.felk.cvut.cz/.

The BOP website provides seven different datasets for which the methods
can be scored on. These include the LM, LMO and TLESS datasets which
are discussed in this thesis. The LMO dataset is a variant of the LM dataset
with more occlusion, and will be used for training and testing in this thesis. The
datasets contain somewhere between 5-30 different objects with various amounts
of occlusion and textures. Real or synthetic training images for each dataset can
be downloaded. They consist of RGB and depth images of a scene containing all
or many of the objects randomly scattered on a table or on the ground. Often
objects will occlude each other. If a method uses depth information it will be
labeled RGBD and if it only uses the RGB images it will be labeled RGB. The
organizers then score each method using a hidden test set, unavailable to the
competitors.

In 2021 the most accurate method was SurfEmb. In 2022 it was surpassed
by some other methods, most notably GDRNPP which is a big improvement
on both runtime and accuracy. The decrease in runtime comes from the use of
an end-to-end deep learning model instead of the two stage approach used by
SurfEmb, where deep learning is used to find correspondences which are then
used in a PnP-RANSAC scheme to find a pose. Interestingly there is also an
increase in accuracy by using a deep learning model for pose regression rather
than mathematically from correspondences.

The next chapters will cover the SurfEmb and GDRNPP methods and ex-
plore how the good parts from each of them can be combined for a possibly
better method.
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Chapter 4

SurfEmb

This chapter is a revised version of the SurfEmb chapter in my project thesis
from the fall semester. It is included in this master thesis for the sake of com-
pleteness. The poject thesis can be found in the appendix.

SurfEmb is a 6DOF pose estimation method trained to find the poses of a
set of 3D objects in a scene. It has one version that only uses RGB data and
another that incorporates depth information aswell. The dataset on which it
was trained on by the authors are the datasets found on the BOP website.
When SurfEmb was published in 2021 its RGBD version became state of the
art. Due to the rapid developments in the field, in 2022 some methods have
overtaken it, but SurfEmb’s RGBD version still ranks as tenth place in overall
score, as of june 6th 2023. The RGB and RGBD versions are the same, the
only difference is that the RGBD version refines the final pose translation using
depth information.

4.1 The Basics

SurfEmb is based on finding correspondences between the image and the 3D
object, and then using a modified PnP-RANSAC scheme to find a good pose
estimate. The pose estimate is then refined by local optimization of the pose
score function, which will be explained later. In order to locate the object in
the image they use CosyPose’s[12] maskRCNN model.

What makes SurfEmb special is the representation of correspondences. Where
a traditional correspondence consists of one pixel and one object point, SurfEmb
creates a probability distribution over all object points for a given pixel. The
distribution can be expressed as follows:

p(c|I, u, u ∈ M) (4.1)

Where I is an image, c is an object point, u is a pixel and M is the set of all
pixels in the object mask. Such a distribution can handle symmetries as it can
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represent correspondence to more than just one object point. Taking a perfect,
textureless cube as an example, this would in theory mean each pixel on a corner
gets a 12.5% likelihood score on each of the eight corners. This is a multimodal
distribution, and the authors claim that, to the best of their knowledge, SurfEmb
is the first method to be able to represent such distributions. Figure 4.1 shows
an example of this

Given a pose, a probability score for that pose can be calculated by looking
at all the pixels in the image and how well each correlates to the object point it is
displaying. The method then attempts to find the pose that maximizes the total
probability score. For some objects, the method will have some symmetrical and
some unsymmetrical correspondences. The unsymmetrical correspondences will
pull the solution space towards the unique correct solution, and the symmetrical
correspondences will not cause problems since they agree just as much with
any of their symmetries. Consequently, the unique, correct pose is in theory
guaranteed to be the one with the highest probability score.

In order to search for this pose, SurfEmb uses a P4P solver in a scheme
similar to RANSAC. A P4P problem is a variation of PnP where only 4 cor-
respondences are used. They randomly choose sets of four correspondences,
pixel-object point pairs, in a way where high probability pairs are likely to be
picked. They choose 10.000 such sets before all of them are sent through a P4P
solver to calculate 10.000 poses. Some poses can easily be pruned away as they
are either very far away or one of the four object points used to calculate the
pose is not visible in that pose. The surviving poses are sent through a scoring
function that scores each pose based on their total probability, found by looking
at how much each pixel corresponds to the object point it is displaying. The
highest scoring pose is sent to further pose refinement by local maximization of
the total probability function.

4.2 HowMultimodal Distributions are Achieved

To achieve the distribution over object points, the idea is to create two models.
One query model to transform pixels in the image, and one key model to trans-
form 3D object points sampled from the 3D object. These models will embed
the pixels and object points to a shared embedded space with 12 dimensions. An
embedded pixel is called a query, and an embedded object point is called a key.
The level of correspondence between a pixel and an object point is then mea-
sured as a function of the dot product between their query and key. By training
the models together using a version of constrastive loss called InfoNCE[17], the
key model will learn to map symmetrical object points to the same place in
embedded space. Since a large dot product equals a large correspondence, and
dot products are largest when two vectors have the same orientation, the query
model will learn to orient an embedding towards its corresponding key. If a
query points towards a group of closely positioned keys, it indicates a corre-
spondence with multiple object points, likely symmetrical or close on the 3D
object. The length of the query embedding indicates how sure the model is at
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Source: https://surfemb.github.io/

Figure 4.1: From left to right: The input RGB crop; an RGB visualization of the
query image; and a 3D visualization of the object surface points embedding. By
hovering over the images with the mouse pointer(white circle), the red coloration
shows the probability distribution for a pixel. The image on the left shows
how the symmetrical object results in a multi-modal distribution, indicated by
multiple red dots. The query image shows that symmetries are colored with the
same color. The object surface embedding shows how an object with an axis of
symmetry collapses into a 1D string in embedded space.

distinguishing between closely grouped keys. Why this is will become clearer
when looking at the formulas in the loss section below.

Approximately 75.000 object points are sampled from the object surface be-
fore training and inference. For ease of understanding it is recommended to take
a look at the visualizations given on SurfEmbs website: https://surfemb.github.io/.
They show how symmetries collapse onto the same points in embedded space.
For example objects with a continuous symmetry along an axis, like a cylinder,
will collapse to a one dimensional string in embedded space. An example of this
is TLESS object number 2. Figure 4.1 shows an example from their website.
The distribution for a given pixel can be calculated based on its query and the
75.000 keys. The equations for doing so will be explained later.

4.3 The Query and KeyModels and Their Train-
ing

The establishing of dense correspondence distributions is the most novel part of
SurfEmb. The authors believe they are the first to achieve this. Therefore the
query and key model should be explained. The two models and their relationship
can be seen in figure 4.2

4.3.1 The Query Model

The query model is the most complicated of the two. It has a ResUNet archi-
tecture which means it outputs one or multiple images. By first encoding the
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RGB crop, the model can detect object features and gain a latent understand-
ing of the objects position and rotation. The decoding is then responsible for
upscaling so each pixel in the original image can be transformed to a query.
The output is a three-dimensional image where each pixel is a vector in the
embedded space. SurfEmb chooses to use a shared encoder for all objects, but
use a separate decoder for each object.

4.3.2 The Key Model

The key model is simply a fully connected network trained on a specific object.
It takes as input a 3D object point, and outputs a key in embedded space.
It should be mentioned that the activation function used is the sine function.
This is inspired by a 2020 paper[19] using it to great success for parameterizing
images. That is, training a fully connected model to map pixel coordinates of
a specific image to their RGB values. They showed that the sine function can
give a much better mapping from pixel coordinates to pixel values than other
popular activation functions. This is similar to what the key model is supposed
to do. In our case we want to map the 3D coordinates of object points to their
embedded values, essentially parameterizing our object.

4.3.3 The Loss Function

The two models are trained jointly using contrastive loss. To see why con-
strastive loss is used lets consider a simpler example. Figure 4.3 shows an
example of a CNN embedding MNIST images to a vector space. The CNN
is supposed to map images of the same digit close to each other in embedded
space, and images of different digits should be far away from each other. This is
similar to how the key and query models are supposed to embed object points
and pixels close if they correspond. In the case of the MNIST dataset, each
image is labelled with its class, i.e. digit. In that case, the network can sim-
ply be trained with categorical cross entropy loss. For categorical models the
desired transformation is known beforehand as a vector where the correct class
has maximal value. However, in our case, where in the embedded space a key
and query should land is not known beforehand. This is precisely what we want
the model to learn on its own. This is where contrastive loss comes in.

Contrastive loss[7] was introduced in 2005 as a way to reduce the dimension
of data while keeping as much information as possible. The loss can be used to
learn a new space of a desired dimension where the distance between datapoints
is preserved as much as possible.

While contrastive loss requires no labels to compare the output to, it does
still require some prior knowledge of similarity, or distance, in the input space.
The point of this loss was to preserve some similarity in a lower dimension. The
similarity to be preserved in our case is the correspondence between a pixel and
an object point. Using the ground truth poses for each training image, this
information is accessible. A pixel is considered similar to an object point if
the pixel displays that point when the object is in the ground truth pose. A
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Source: Taken from the SurfEmb paper[8].

Figure 4.2: An overview of how the query and key models are trained. For
a given training image, the key model takes in all the visible object surface
coordinates in the mask, and also some randomly sampled points from the object
surface. These are called positive and negative keys respectively. Contrastive
loss should ensure that a query and its corresponding positive key result in a
large dot product, while a query and a negative keys result in low dot products.

pixel and object point are considered dissimilar if the object point is sampled
randomly from the object. That is, the object point is likely not displayed by
the pixel. Figure 4.2 gives a visualization of this.

Specifically, SurfEmb uses InfoNCE[17] loss, where NCE stands for Noise
Contrastive Estimation. Let an embedded pixel be denoted as the query q and
an embedded object point be denoted as the key k. Let U = {u1, u2, ..., uN}
be a set of pixels sampled uniformly from the object mask in a training image
and S̃ = {c1, c2, ..., cN} be a set of uniformly sampled object points from the
3D model. The InfoNCE loss then looks like this:

Le = − 1

|U |
∑
u∈U

log
exp(qTu ku)∑

ci∈S̃∪cu
exp(qTu ki)

(4.2)

Where ku is the key of the object point cu present at the pixel u. At the core
of this loss function is the dot product between queries and keys. This is used
as a measure of how well a query correlates to a key. A big dot product means
high correlation. While the dot product is dependent on the angle between the
vectors, it is also dependent on their lengths. Therefore the similiarity is not
simply measured by the angle between the two vectors. The consequence of this

22



will be explained shortly.
Also at the core of this loss function is the softmax function that generally

looks like this:

yi =
exi∑N
j=0 e

xj

x = [x0, x1, ..., xN ]

(4.3)

Where x is the input vector and y is the output vector. The softmax function
is a popular way of normalizing a vector such that all elements in y are between
0 and 1, and the sum of all elements is 1. This property makes it popular for
converting the output vectors of classification networks to probabilities. The
softmax function also amplifies the relative differences between the elements.
The larger the elements, the more their relative difference is amplified, as shown
by the following example:

5

5 + 4
= 0.555

e5

e5 + e4
= 0.731

e10

e10 + e8
= 0.881

e100

e100 + e80
= 0.999

(4.4)

The argument taken in by the softmax function is the dot product qT k. The
numerator takes in the dot product of the similar pair qTu ku, and the denomina-
tor iterates through the dissimilar pairs and the similar pair. The function then
gives a normalized measure of how close the similar pair are in relation to how
close the dissimilar pairs are. Since softmax exaggerates the relative difference
more as numbers increase, as shown in equation 4.4, a query with a very large
norm will uniquely identify the key with the most similar angle. As the queries
norm decreases, the softmax function no longer favors their dot product dispro-
portionately above dot products with keys of similar angle, and so the pixel’s
distribution starts to spread over more object points. Essentially, the norm of
the query determines how sure the model is at distinguishing between keys that
are close to each other.

The result of the softmax can be seen as the probability that pixel u corre-
sponds with object point cu. This is a normal way of representing probabilities
in classification models[20]. If the probability for a similar pair is much higher
than the probability for negative pairs, then the loss function should not pe-
nalize the model that much, if at all. If it is close to or lower than some of
the dissimilar pairs then the loss function should penalize it much more. Tak-
ing the logarithm achieves this property of the loss function, making training
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faster([20] pg.180). The negative sign is added to make the loss function strictly
positive. To summarize: The loss function in equation 4.2 is a combination of: a
correspondence measure using dot products, the softmax for converting to prob-
abilities, and the logarithm function for better loss properties. The following is
a mathematical proof that the infoNCE loss yields probability distributions.

[17] showed that minimizing this loss function will result in estimating the
following relation:

exp(qT ki) ∝
p(ci|q)
p(ci)

(4.5)

Where the right side is a probability density ratio. If an object point was rarely
seen as a positive key during training, i.e. low p(ci), the model might hesitate to
give it large probability, so dividing by p(ci) supposedly compensates for this. In
this case though, since ci is sampled randomly and uniformly across the object
surface, p(ci) will be constant. Therefore:

exp(qT ki) ∝ p(ci|q) = p(ci|I, u, u ∈ M) (4.6)

Since they are proportional, it is seen that an estimate of the probability function
in equation 4.1 can be found by normalizing exp(qT ki) over the object surface:

p(ci|I, u, u ∈ M) =
exp(qTu ki)∫∫

cj∈S
exp(qTu kj)

(4.7)

Where S is the surface of the object. It shows that by minimizing the loss
function we are training the query and key models to estimate what we want, a
distribution over the object surface for any given pixel u. The integral in reality
is approximated by a summation over all other pairs (qu, ki) for i ∈ S̃, where S̃
is a discrete set of sampled object surface points, as shown in equation 4.2.

To summarize: for any pair qu and ki their correlation is measured by
exp(qT ki). To find the probability that qu in fact corresponds to ki, one must
know how much it correlates with all other object points as well. This is why
exp(qT ki) must be normalized over all other object points.

Until now we have assumed that all pixels are a part of the object mask.
The query and key models were trained on this assumption, as can be seen from
the loss function in 4.2, which only uses pixels sampled from the object mask.
Consequently, the probability distribution in equation 4.7 also assumes that the
pixel is a part of the object mask. This is of course not the case for all pixels.
Under testing the model must be able to handle pixels outside of the object mask
as well. Pixels outside the object mask should not correspond to any particular
part of the object. Ideally the query produced from these pixels result in a high
entropy distribution, giving essentially zero score to each object point. From
my testing this seems to be the case automatically when using infoNCE loss,
probably because the model learns to produce low norm queries when it finds
no correlation in order to minimize loss. To ensure that such pixels have low
probabilities, SurfEmb adds another channel to their query model responsible
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Source: https://towardsdatascience.com/contrastive-loss-explaned-159f2d4a87ec

Figure 4.3: A CNN transforming MNIST images to a new vectorspace for com-
parison.

for estimating the object mask. The channel will produce a discrete probability
distribution giving the probability that each pixel contains the object:

Pr(u ∈ M |I, u) (4.8)

This is then simply multiplied with the distribution in equation 4.7, creating a
new distribution over correspondences:

p(u, c|I) = Pr(u ∈ M |I, u)p(ci|I, u, u ∈ M) (4.9)

This new channel also needs a loss to learn the object masks, so an average
binary cross-entropy loss is added to the total loss. This type of loss is a rel-
atively simple loss used for classification models with only two categories([20]
pg.187).

4.4 From Distributions to Poses

For this thesis the specifics of the RANSAC procedure is not relevant. It is only
important to note that it takes a lot of time and runs mostly on the CPU. In
short they use inversion sampling to sample the probability functions for 40.000
correspondences. These are grouped to 10.000 groups of four and used to find
10.000 pose candidates using a P3P solver. The pose scoring highest using a
score function based on the probability of each pixel-object point pair is selected
for further refinement.

In the SurfEmb paper they state that in their experiments, inference time
is approximately 2.2s. Of which 20ms are from regressing the query image,
1.2s from the RANSAC procedure and 1.0s from a pose refinement procedure.
The RANSAC procedure is covered in detail in my project thesis found in the
appendix.
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Chapter 5

GDR-Net

When looking at the current top performing methods on the BOP database,
GDRNPP is a clear winner. Unfortunately, the creators have not yet released
a paper, but state that the method is mostly just an improvement of an earlier
version from 2021, for which a paper does exist. This earlier method is called
GDR-Net. GDR-Net stands for Geometry-Guided Direct Regression Network.
GDR-Net is based on finding dense correspondences with an encoder-decoder
architecture and then using a simple convolutional model to regress the pose.
Since the models are consecutive the method is end-to-end trainable. The ar-
chitecture is shown in figure 5.1.

5.1 Model Architecture

The architecture has some intermediate representations which the model is ex-
plicitly trained to produce. While it is possible to exclude these intermediate
representations simply by removing their respective loss terms when training,
they effectively serve as guides making the model learn more easily[21]. The
idea is that these intermediate representations help the model focus on the ob-
ject of interest, and make the job easier for the following Patch-PnP module.
The intermediate maps shown in figure 5.1 consist of:

• Mvis - This is the mask of the visible parts of the object. A pixel is white if
the object is visible at that pixel. This gives the network an understanding
of which pixels belong to the object.

• M2D−3D - This 5 channel image contains the dense correspondences. It
is a combination of a 3D object coordinates image, called M3D, and a
2D pixel coordinate image. The object coordinates are regressed by the
encoder-decoder network and give the object coordinate displayed by a
pixel, given in the objects local coordinate system. If a pixel is outside
the object mask the coordinate is set to (0,0,0). Hence it is a 3xwxh image.
The 2D pixel coordinate image is simply an image where each pixel has a
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Source: Taken from [21]

Figure 5.1: The architecture of GDR-Net, taken from their paper. The original
image is shown on the left. For training, a dynamic and randomized zoom-in
is used to zoom in on the object of interest, as its position is known from the
ground truth information. For testing the zoom-in must be done by a separate
detector. The network first uses an encoder-decoder network to regress some
intermediate images, and then uses the Patch-PnP network to regress a pose.

value equal to its position in the image, i.e. the top left pixel has values
(0,0), the pixel to the right has values (1,0) etc. This map is always the
same and does not need to be regressed. The 2D pixel coordinate image is
often called a positional encoding map, as it encodes the position of each
pixel. While the network functions without this 2D encoding, it has been
shown to give slightly better performance when added in other methods[3],
and a significantly better performance when added in GDR-Net.

• MSRA - This is a 65 channel image and is a novel addition. This is meant
to help the network understand symmetries. Before any learning is done
the object is split into 64 fragments using furthest point sampling. Fur-
thest point sampling samples 64 evenly distributed points on the object
surface. These points serve as the centers of 64 fragments. Each fragment
is represented by one channel in MSRA. Each pixel in MSRA has 64 di-
mensions and contains the probabilities of it belonging to each of the 64
fragments. Meaning if an object is a cube with eight corners, a pixel dis-
playing a corner will ideally have a 1/8 score for each of the eight fragments
containing a corner, and zero probability for all other fragments. M3D−2D

has no way of displaying such uncertainty as it can only assign each pixel
to one 3D coordinate. M3D−2D might therefore be confused by symmetric
points and assign a single object point to multiple pixels, which can make
learning harder for the subsequent pose regression network. Therefore
MSRA is added to give the network an understanding of such ambiguities
before heading into the pose regression. They state ”We utilize MSRA
as a symmetry-aware attention to guide the learning of Patch-PnP”. The
authors also state that MSRA eases the learning of M3D−2D as it learns
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to first regress coarse regions and then finer coordinates.

5.2 Parameterization of Rotation and Trans-
lation

5.2.1 Rotation

There are multiple ways of representing a rotation. Many of them are
not unique, meaning there can be multiple ways of representing the same
rotation. Taking Euler angles as an example, a rotation θ = π about the
x axis yields the same pose as a rotation θ = −π,−3π,−5π... about the
x axis. This is problematic for a regression network since there are multi-
ple correct answers. Therefore most methods use unique representations
where this is never the case.

Another problem is that representations with 4 or fewer dimensions have
discontinuities in Euclidian space. To combat the first issue with multiple
correct answers one might constrain the angles to [0, 2π]. This still has a
problem, which is the discontinuity around zero rotation. A slightly pos-
itive rotation has a value close to 0, whereas a slightly negative rotation
has a value close to 2π. This discontinuity makes it hard for the network
to learn. Therefore it is necessary for a representation which solves both
of these issues. For this purpose [25] introduces a 6 dimensional represen-
tation, which has achieved great success and is used by GDR-Net.

The representation works by letting the network regress a 6 dimensional
vector from which a rotation matrix is constructed. The 6D vector con-
tains the first two columns of the rotation matrix, not necessarily with
unit length.

R6D =
[
r1|r2

]
(5.1)

When given a vector R6D =
[
r1|r2

]
the rotation matrix can be con-

structed as follows:

R1 = ϕ(r1) (5.2)

R3 = ϕ(R1 × r2) (5.3)

R2 = R1 × R3 (5.4)

where ϕ represents vector normalization and Ri is column number i in
the rotation matrix.

5.2.2 Translation

The GDR-Net paper states that directly regressing the translation does
not work well in practice and therefore many methods choose to regress
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the 2D location of the object center (ox, oy) and the distance tz separately.
Where ox and oy are given in pixel coordinates and tz is given in real world
units. The translation can then be calculated as:

t = tzK
−1[ox, oy, 1]

T (5.5)

where K is the camera intrinsic matrix, which when inverted transforms
the pixel coordinates into homogeneous image coordinates. These are
then scaled by the real world value tz to find the translation in world
coordinates.

A separate detector is often used to find a bounding box of the object of
interest, which is then zoomed in on and fed to the network. This can be
seen in 5.1. There is a problem when feeding the network with zoomed-in
images of the object. The network cannot regress the distance tz without
knowing how zoomed in the input image is.

To solve this issue, GDR-Net uses Scale Invariant Translation Estima-
tion(SITE)[15] which is a parameterization meant to help the network
understand zoomed in Regions of Interest(ROIs). It works by letting the
network regress ox and oy normalized with respect to the image size, and
regress tz normalized to the zoom-in amount. Let the height and width
of the bounding box be w and h, given in pixels, and s0 = max(w, h). Let
szoom be the dimension of the zoomed in ROI, which is always square,
given in pixels. The ratio r = szoom/s0 is then a measure of how zoomed
in the ROI is. Let the center of the bounding box be [cx, cy], which are
known values. The network then regresses:

δx =
ox − cx

w
(5.6)

δy =
oy − cy

h
(5.7)

δz =
tz
r

(5.8)

The above three equations are used to find the predicted ox, oy and tz.
The predicted t is then found from equation 5.5 using the intrinsic matrix
of the cropped and zoomed-in image rather than the original image.

5.3 Loss Functions

After constructing the predicted rotation matrix and translation vector,
GDR-Net uses the following loss functions:
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LR = avg
x∈M

||R̃x− R̂x||1 (5.9)

Lcenter = ||(δ̃x − δ̂x, δ̃y − δ̂y)||1 (5.10)

Lz = ||δ̃z − δ̃z||1 (5.11)

Where the tilde and hat symbols represent predicted and ground truth
values, x is a 3D surface coordinate and M is the 3D CAD model. The
rotation loss is the average error of object points when rotated with the
predicted rotation versus the ground truth rotation. The translation losses
are simply the L1 distances of the scale invariant parameters.
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Chapter 6

Combination

The combination will be done by forming query images using SurfEmb,
and then regressing the pose from the query image using a model similar
to Patch-PnP from GDR-Net.

The motivation for combining these two models, and why I thought it to
be a good idea, is that the SurfEmb query image may be able to serve the
same purpose as M3D−2D and MSRA at the same time, while using less
channels. As explained theM3D−2D map is confused by symmetries, which
is why GDR-Net also needs MSRA. SurfEmbs embeddings are already
aware of symmetries and will map symmetric points to the same values
in its embedded space. Meaning there is never a situation where the
subsequent pose regression network can be confused as it is always shown
symmetries in the same consistent way.

The central question is if the pose regression network achieves the same
accuracy when inputted with the query image as opposed to the dense
correspondences. Is the query image as easy to understand as the dense
correspondences of M3D−2D, which for a human at least makes a lot more
sense? On the other hand, they are essentially both just a re-coloration
of the object. The 3D coordinate map gives a smooth coloration of the
object, whereas the query image gives a 12 dimensional coloration with
patterns, both of which shown in figure 7.1. It is difficult to say without
experimentation whether the pose regression model prefers one over the
other. To investigate this I tested four different methods varying the use of
queries and coordinate maps. They will be explained in the next chapter.
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Chapter 7

Method

Coding all the required code from scratch, without experience, would
be far too much work. Since the proposed method essentially is an ex-
tension of SurfEmb, it is much more efficient to use their code. Sur-
fEmb’s data-loader, model class, image augmentations, renderer, embed-
ding loss calculation and training loop are used with some modifications
and additions. The SurfEmb source code was downloaded from GitHub
(https://github.com/rasmushaugaard/surfemb). All code is written in
Python and relies on the PyTorch library. Training and testing is doen on
objects in the LMO dataset.

The IDUN computer cluster at NTNU is used for training and testing the
models.

7.1 Pose Regression Model

The main purpose of this thesis was to use deep learning to speed up Sur-
fEmbs pose estimation. The idea was to regress a pose directly from the
query image. To test if this is possible I created my own pose regression
model, taking inspiration from GDR-Net’s PatchPnP. My model is found
in the appendix. Using the PyTorch library in Python I created a cus-
tom model class. How to create custom models is explained in the book
”Learning with PyTorch”[20]. With a custom model I can have full con-
trol over the forward function, which is needed to condense the output of
the convolutional layers into rotation and translation predictions. It also
enables me to use third party libraries like DropBlock[6] in the forward
function.

I experimented with the architecture of the pose regression model. I chose
to use five convolutional layers, with an input size of 256x256. The num-
ber of channels increases from 12 to 256 during the five convolutions.

32



Since Patch-PnP uses three convolutional layers, with an input of 64x64,
I tried this as well, but found that five layers gave more accuracy using
my specific setup and hyperparameters. Patch-PnP still achieves much
better accuracy than my experimental model, the reason for which is not
entirely clear to me but will be discussed in the discussion chapter.

The specific design I decided upon was using five convolutional layers, each
followed by a batch normalization layer and 2x2 max-pooling similar to
Patch-PnP. To combat overfitting I used a 2D DropBlock[6] layer before
each convolution. A DropBlock layer is similar to a dropout layer, but
is better suited for convolutions since it cancels contiguous 2D blocks of
pixels instead of randomly spread individual pixels. This is better at
restricting the flow of information through convolutional layers since the
whole field of view of some neurons is cancelled[6]. GDR-Net does not use
dropout in their Patch-PnP module. The reason it may be more important
with dropout in my pose regression model is because I in some tests use
pre-rendered query or coordinate inputs, which will not be augmented.
Similar to Patch-PnP I use three separate heads to predict tz, txy and R.

7.1.1 Pose Representation and Loss

For the pose representations I chose to implement the 6D rotation repre-
sentation and SITE used by GDR-Net. These are the same as used by
GDR-Nets successor GDRNPP which is currently the state of the art.

The loss functions I implemented are slightly different. For rotation I
used the Frobenius distance between the ground truth and the predicted
rotation matrix. I chose to use the Frobenius norm because it is easy to
implement when the two rotations are given as matrices. I did a simple
test with calculating the deviation of transformed points instead, similar to
GDR-Net, and found no improvement in accuracy over using the Frobenius
norm. For translation I use L1 distance for z and (x, y) separately, similar
to GDR-Net.

7.2 Preliminary Tests

7.2.1 Sanity Check

First I needed to check if regressing a pose from the query image had any
merit at all. To get high quality query images I downloaded a pre-trained
model from SurfEmbs GitHub. With this model I could loop through the
LMO RGB training images and generate a set of query images. In this
way I created a new training set consisting of thousands of query images.
Then, using my model, I compared regressing a pose from the query image
versus regressing a pose directly from the raw training image. The ”raw
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training image” means the zoomed in crop taken from the RGB images
in the training dataset. The purpose of this experiment was to see if the
query image at the very least is a simpler representation to learn from than
the raw image. To help the network understand where the object is it was
given the object mask as well. Since the query image essentially contain
the information of the object mask, as seen in figure 7.1, I saw it as more
fair to at least give the model trained on raw RGB images the object
mask as well. The expectation is that regression from the raw image
is impossible without an encoder-decoder. The results showed that the
network was not able to learn anything meaningful when inputted with the
raw images, whereas it learned quickly with the query image and achieved
reasonable results. This showed that having an encoder-decoder transform
the raw image into a query image is helpful for the pose regression network.
The next step is to compare it with a dense correspondence image like
M3D−2D on its efficacy as an intermediate representation.

7.2.2 Comparison With Coordinate Map

Due to limited time I chose not to train an encoder-decoder to regress
object coordinates, but rather generated the ground truth coordinates by
using a renderer in SurfEmbs source code. The renderer takes as input
the pose of an object and renders it such that the computer can calculate
the object points present at each pixel, shown in figure 7.1. The output of
the renderer is the ground truth of what a coordinate regression network
would output. Therefore the following tests are done on unrealistically
good coordinates. The model was also tested on images generated by
the renderer. Training the pose regression network on the coordinate
maps gave approximately the same accuracy as the query images, which
indicates that the query image may be able to replace it without affecting
accuracy. There was too much variance in training and testing to say
whether one or the other was more accurate. If what the results indicate
is true, then the next step is to check if the exclusion of MSRA affects
accuracy.

34



(a) (b)

Figure 7.1: (a): An RGB visualization of a premade query image of the go-
rilla object. Query images are in actuality 12 dimensional, so the dimension
is reduced to 3 for visualization by summing together groups of four channels.
(b): A rendered coordinate image of the gorilla object. Both images are formed
from the same training image. In instances where the object is occluded the
rendered coordinate image is altered to only show the visible parts of the object.
Query images are formed from the actual images and so already contain occlu-
sions. The rendered image in this figure has some black artefacts for unknown
reasons.

7.2.3 Exclusion of MSRA

What I was interested in testing is if MSRA increases accuracy outside of
its symmetric guidance. Can it for example increase accuracy on unsym-
metrical objects? If it does not increase accuracy outside of its symmetric
guidance then it should be safe to exclude since the query image already
should cover the issue with symmetries.

Due to limited time I could not implement furthest point sampling and
train a network to regress MSRA. Instead I looked at what the authors
of GDR-Net state is the benefit of MSRA. They never state that pose
accuracy was a reason for its inclusion. They state that it was included
to give ”ambiguity-aware supervision” and that MSRA ”implicitly repre-
sents the symmetries of an object”. Secondly they state that MSRA acts
as an auxiliary task on top of M3D, which ”eases the learning of M3D by
first locating coarse regions and then regressing finer coordinates”. For
unsymmetrical objects it therefore seems MSRA is only beneficial for in-
creasing the accuracy of M3D, which in turn increases the accuracy of the
pose. Therefore MSRA does not necessarily directly affect the final pose of
unsymmetrical objects. Since my tests on coordinate maps versus query
images used the ground truth coordinate maps, there is reason to believe
the addition of MSRA would not increase pose accuracy in those tests. Of
course ground truth coordinates cannot be ambiguous in terms of sym-
metry, and so MSRA should have no effect on any object, symmetric or
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Source: Taken from [21]

Figure 7.2: Results from ablation studies as published in the GDR-Net pa-
per[21]. The lines show what percentage of the test images have an error under
certain rotation and translation thresholds. ADD(-S) is a metric that checks if
the average error of the transformed object points is less than 10% of the objects
diameter(0.1d). The bottom graph shows the mean improvement in accuracy
across the metrics.

asymmetric, in my tests.

Additionally, the GDR-Net authors did some ablation studies on the num-
ber of fragments in MSRA. The studies are done on the LM dataset,
which contains limited symmetries. The results are shown in figure 7.2.
The results show approximately a 1% increase in accuracy when using 64
fragments as opposed to 0 fragments. This shows a limited increase in
accuracy on datasets with little symmetry. This indicates that by exclud-
ing the MSRA image and instead using the symmetry aware query image,
there is likely no decrease in accuracy.

7.3 Combination of Patch-PnP and SurfEmb

So far my model was fed premade query images from a separate query
model without there being any connection between the two models. This
means the query model has no vision of what the final and most important
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output should be, namely a pose. Instead, the query model is trained only
to produce good queries. If the models instead were connected such that
the gradients from the pose loss can be traced all the way back to the
input image, the query model may learn to produce a slightly different
query image better suited for a model to regress a pose from. This is an
important concept in deep learning and pose regression and is discussed
a lot in the literature. For example [2] created a differentiable RANSAC
procedure with the purpose of back-propagating the final loss through
the RANSAC procedure and to the preceding model. The authors of [2]
state that ”Part of this recent success (in deep learning) is the ability
to perform end-to-end training, i.e. propagating gradients back through
an entire pipeline to allow the direct optimization of a task-specific loss
function”. Clearly an important concept in deep learning is to give the
model a view of what the final output should be, not just what some
intermediate representation should be. The intermediate representation
should be there to guide rather than to dictate as it is probably not the
most optimal representation, only a human approximation.

The simplest way of implementing the combined model was to use Sur-
fEmbs source code and modify their query-key model class. SurfEmbs
model class has a step function which is responsible for performing the
forward calculation and the loss calculation. I added my pose regression
model to the class and modified the forward function to also regress a
pose. The step function of the combined model is found in the appendix.
The query images calculated in the forward call are now also fed into a
pose regression model and the pose loss is calculated. The final loss is the
sum of the original SurfEmb embedding loss calculated from the query
images, and the pose losses calculated from the pose prediction.

Ltot = Lnce +Lmask +Lz +Lcenter +LR (7.1)

The first two loss terms are the infoNCE and mask loss from SurfEmb, and
the final three terms are pose losses as implemented by me. I added each
of the models parameters to the same optimizer object so that the model
could be trained end to end as one single unified model. The model was
then trained with a training loop and the Adam optimizer as implemented
in SurfEmb’s source code.
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7.4 Overview of the Tested Models

With the preliminary testing and implementation completed I decided to
test four different models. I give them the following names for convenience:

– Mpre.q - A pretrained query model is downloaded from SurfEmbs
GitHub and its output is fed into a pose regression model.

– Mpre.c - Ground truth coordinate maps are generated and fed into
a pose regression model.

– Mall
e2e - The query and pose regression models are connected and

trained end-to-end with pose losses and SurfEmbs embedding losses.

– Mpose
e2e - The query and pose regression models are connected and

trained end-to-end with only pose losses.

All four methods use the same pose regression model, they are only dis-
tinguished by what happens before the pose regression and what losses
are used. All four methods are also given a 2D positional encoding map,
as covered in the GDR-Net chapter, as it is shown to increase accuracy.

Testing these four different models is a simple ablation study that should
give some insight into the effectiveness of queries versus coordinates and
the benefits of end-to-end training. Looking at Mpre.q versus Mpre.c will
give insight into if coordinates, like used in GDR-Net, are better than
queries as an intermediate representation. Testing this internally using
the same model, data augmentation and training scheme means the re-
sults are comparable. Though it is not a perfect comparison since the
coordinates used in my experiments are generated by a renderer and are
therefore the ground truth coordinates, which are unrealistically good.
Comparing the two end-to-end models should give insight into if using
queries as an intermediate representation is better than having no inter-
mediate representation at all.

I train a separate model for each object. Usually methods on the BOP
website train a separate model for each object. SurfEmb chooses to have
a common encoder, but has different decoders for each object. GDR-Net
experiments with using both one common and spearate models, and find
unsurprisingly that using one model per object performs best.

7.5 Training and Test Data

I chose to train and test on the LMO dataset. This dataset only has syn-
tehtic training images available. These are created by software and can
be downloaded from the BOP website. An example of such an image is
given in figure 7.3. I downloaded all 50.000 synthetic images which each
contains some or all of the dataset’s objects. This is a simple dataset
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to test on since there is little symmetry, meaning I don’t have to imple-
ment a symmetry aware loss for rotation. Implementing symmetry aware
rotation loss like in GDR-Net seemed to be cumbersome and time con-
suming since all symmetries for all objects would need to be manually
found. If I was to implement it, I would not be able to compare it to
GDR-Nets symmetry map MSRA internally without implementing that
as well, which I found to be too time consuming. I instead decided to
use the time to try and improve the accuracy on non-symmetric objects.
Even though the potential benefit of the queries lies in their symmetry
awareness, their accuracy on non-symmetrical objects is still very inter-
esting. The non-symmetrical accuracy will, to the best of my knowledge,
carry over to symmetric objects when a symmetry aware loss function is
used. There is still the chance that the query representation performs
worse than GDR-Net for non-symmetrical objects, but equal or better for
highly symmetrical objects, and so further work should test this.

Figure 7.3: An example of what a synthetic image from the LMO dataset looks
like. The image has dimensions 640x480. A red circle is added to highlight the
glue, and is not a part of the original image. The glue is displayed by 1050
pixels and has a visible fraction of 100%. Most methods use a separate object
detector to zoom in on the object of interest during inference. In this image
the gorilla figurine(red), the cat object(pink behind the screwdriver) and the
stapler object(blue) are shown. These will be used for testing.

The three objects used for testing are the gorilla, cat and stapler objects
and can be seen in figure 7.3. The objects were chosen arbitrarily.

Per object I used approximately 20.000-30.000 images for training and
500-700 for testing. Models are only trained and tested on images where
over 1024 pixels and over 10% of the target object is visible. This is not
necessarily added because of a limitation of the models. These are the
same minimum visibility conditions used by SurfEmb when they trained
their query model. Since I download a pretrained query model for exper-
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imenting I decided to use the same conditions for my own models for a
fairer comparison. I decided to also test them on the very same visibility
conditions. If the model was to be used in conditions where the visibility
often is poorer than this, one should consider lowering these minimums
for training. Figure 7.3 gives an idea of what the minimum pixel count
means in practice. Some objects had more images fulfilling the minimum
visibility criteria available, like the stapler and cat object with around
30.000 each, whereas the gorilla had fewer, around 20.000.

7.5.1 Data Augmentation

I use the same data augmentation as SurfEmb. This includes some aug-
mentations from the Albumentations library: GaussianBlur, ISONOise,
GaussNoise, CLAHE, ColorJitter and CoarseDropout. SurfEmb also uses
some self-implemented transforms called DebayerArtefacts and Unsharpen.
Using the same augmentations means it is easier to compare my method
with SurfEmb. These augmentations are only used in my end-to-end mod-
els, not the ones using pre-made inputs. The reason for this is that the
augmentations were meant to be used on the input RGB images, not in-
termediate representations. This means the models with premade inputs
have less variation in training images. To compensate for this I use Drop-
Block layers when training the pre-rendered models to combat overfitting.

7.5.2 Optimizers and Hyperparameters

The Ranger optimizer is used when training the models with pre-rendered
input, which is the same optimizer used by GDR-Net. The Ranger op-
timizer is a combination of Rectified Adam (RAdam)[16], Lookahead[23]
and Gradient Centralization[22]. When training end-to-end models, the
Adam optimizer is used as it was already used in the SurfEmb code.
Since the pose regression model was appended to the SurfEmb model,
and trained jointly, it was simplest to have a common optimizer. Dif-
ferent optimizers were used because the pre-rendered models were created
before I had the idea to make the end-to-end models. The potential impact
of this difference will be discussed in the discussion chapter. As further
work the optimizers should be investigated further, and perhaps switched
or modified. The learning rate is set to be 3 × 10−5 in both models, and
batch size is set to 16.

7.5.3 Test Metrics

For ease of implementation, the Frobenius norm is used to compare the
difference between the predicted rotation matrix and the ground truth ro-
tation matrix. The Frobenius norm of the difference between two matrices
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has the following mathematical expression:

||A−B||F =

√√√√ n∑
i=0

m∑
j=0

(aij − bij)2 (7.2)

Where A and B are two matrices of dimension m×n containing elements
aij and bij respectively. In tests on real data the angle between the two
matrices are also listed, as I later found it to be a simple calculation. To
get an understanding of the relation between the Frobenius norm and the
angle it is recommended to check table 8.4 in the real data results.

For translation the L2 norm is used, meaning it is the conventional distance
between the predicted and the ground truth translation.
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Chapter 8

Results

8.1 Mpre.q vs Mpre.c

Both models were trained for 20 epochs on 20.000 synthetic images of
the gorilla object, and tested on a synthetic dataset consisting of 417
images. The average frobenius distance between the ground truth and
predicted rotation matrices is listed. For reference, randomly guessing
rotation matrices yields on average around a 2.6 Frobenius error. Objects
are usually positioned between 600-1200 millimeters from the camera. The
L2 distance is used to calculate error in translation.

Rerr terr(mm)
Mpre.q 0.3417 27.06
Mpre.c 0.3330 25.84

8.2 Mall
e2e vs Mpose

e2e

In the tables below the rotation error is measured as the Frobenius norm of
the difference between the ground truth rotation matrix and the predicted
rotation matrix.

Rerr terr(mm)
Mall

e2e 0.3054 23.47
Mpose

e2e 0.3076 31.77

Table 8.1: Average rotation and translation error on the gorilla object. Trained
for 20 epochs on 20.657 images. Tested on 417 synthetic images.
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Rerr terr(mm)
Mall

e2e 0.2451 23.62
Mpose

e2e 0.2652 28.46

Table 8.2: Average rotation and translation error on the cat object. Trained for
20 epochs on 32.612 images. Tested on 698 synthetic images.

Rerr terr(mm)
Mall

e2e 0.2571 31.16
Mpose

e2e 0.2807 32.84

Table 8.3: Average rotation and translation error on the stapler object. Trained
for 20 epochs on 35121 images. Tested on 689 synthetic images.

8.3 ComparisonWith SurfEmb on Real Data

The BOP website has made available the real images used for testing in
previous years. SurfEmb’s GitHub provides some detector bounding boxes
for these images, making it easy to test my models on them. The following
test was conducted on all 133 images of the cat object using an end-to-end
model with all losses. SurfEmb was run on the same images. The average
rotation and translation error are given in table 8.4.

R(◦) R(Frobenius) t(mm)
SurfEmb 6.0 0.150 26.39
Mall

e2e 19.6 0.478 49.40

Table 8.4: Mean rotation and translation error when tested on 133 real images
of the cat object. Rotation error is also given in degrees as they are easier to
understand.

8.4 Runtime

The timing tests were done using an NVIDIA A100 GPU and an Intel(R)
Xeon(R) Gold 6248R CPU. My end-to-end method uses mostly the GPU,
while SurfEmb uses the GPU and the CPU. SurfEmb uses over 95% of its
runtime on the RANSAC procedure, which runs on the CPU.

My end-to-end model using queries has a runtime of 25ms. Running Sur-
fEmb on the same GPU and CPU uses 380ms for estimation and 120ms
for their refinement process, totalling 500ms. This means my proposed
method uses only 5% of the runtime, meaning it could be used in a real-
time system. A time of 25ms per estimation gives 40 frames per second,
which is more than enough for many robots and systems.
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Chapter 9

Discussion

9.1 Pre-Made Coordinate and Query Mod-
els

Mpre.c has a small edge in accuracy in both rotation and translation. This
may be due to the fact that the generated coordinate maps are ground
truth maps, whereas the query image is formed by a model with some
inaccuracy. I believe the results could be improved for both versions with
better training hyper-parameters and model architecture, since the results
are not as good as the ones achieved by GDR-Net. With fine-tuning
it is possible the coordinate based method pulls further ahead, but this
would need to be tested. Nevertheless, the results show that it is possible
to regress a pose directly from the query image and produce reasonable
results, which was not a given.

If the queries also give the same accuracy as coordinate maps for bet-
ter tuned models, then they may serve as a more compact intermediate
representation than GDR-Net’s, using only 12 channels as opposed to 64.

9.2 End-to-End Models

Both end-to-end versions trained on the gorilla object perform better than
the ones using a pre-rendered coordinates or queries, except for the trans-
lation error of Mpose

e2e which was the worst of the four. It is the only
model without any intermediate representation, and so this could be why
translation estimation was more difficult. The results indicate that the
end-to-end model with queries as an intermediate representation performs
better than the one without any intermediate representation. This shows
both that end-to-end training is beneficial and that queries are beneficial as
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an intermediate representation. Some of the reason queries are beneficial
could be because it acts as an object mask, which helps teach the network
to only pay attention to the object of interest. I believe the re-coloration
that queries essentially do is also helpful, especially for textureless objects
like the gorilla object.

The end-to-end models use the Adam optimizer whereas the pre-rendered
models use the Ranger optimizer. The Ranger optimizer is an extension
of Adam and should in theory perform better.

Looking at the accuracy on the gorilla object versus the cat and stapler
objet, it is seen that the rotation error decreases as the number of training
images increases, which is not suprising.

9.3 ComparisonWith SurfEmb on Real Data

My models error doubled on both rotation and translation when tested
on real data. This could mean the augmentations should be amplified
more. The results show that SurfEmb has a very clear edge in accuracy
on real data, especially on rotation. I was not able to reproduce the
same accuracy as GDR-Net, which is similar to SurfEmb in accuracy.
GDR-Net had 95.5% of translation results withing 2cm, and 63.2% of
rotations within 2 degrees on the LM dataset. The LM dataset has less
occlusion than LMO and so it is easier, but since my model fails to achieve
the same accuracy on un-occluded instances within LMO, my model is
likely not as accurate. Interestingly, SurfEmb also performs worse with
a 6 degree average rotation error, which indicates that the test data was
more difficult than the one GDR-Net tested on. My model does best on
translation, where the average error is less than 5cm. It seems rotation
is more difficult to learn, which makes sense since it is a 6 dimensional
prediction with the 6D representation discussed in the theory section,
whereas the disentangled translation is only 1 and 2 dimensions.

Both GDR-Net and SurfEmb are trained on the same training images I
used, and tested on the same test images. The data can therefore not
be the limiting factor. The augmentations used are the same as used by
SurfEmb. I suspect my pose regression model either has a sub-optimal
architecture or was trained with sub-optimal hyper-parameters. I trained
only for 20 epochs which is a lot less than GDR-Net, which trained for
160 epochs. I trained for 20 epochs because the model did not improve
beyond that point, which may indicate I had too large of a learning rate.
I attempted to decrease the learning rate and train for more epochs, but
due to problems with my sessions on IDUN shutting down for unknown
reasons after approximately 12 hours, I could not train for more epochs.

End-to-end methods other than GDR-Net have also achieved similar accu-
racy to SurfEmb. SC6D[3] is an example of such a method, achieving the
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same accuracy for the TLESS dataset. SC6D uses a similar architecture
with an encoder-decoder followed by a pose decoder. They do not use any
intermediate representation except for a mask prediction. Clearly it should
be possible to get better accuracy without having the same intermediate
representations as GDR-Net. I therefore believe the main limiting factors
for my models accuracy is the architecture, training or some overlooked
details, and not the usage of query images as intermediate representation.
The fact that the end-to-end model with queries performed better than
the one with no intermediate representations supports this. The fact that
the pose regression model inputted with pre-rendered coordinates also has
worse accuracy also indicates that the training or architecture is the main
limiting factor.

My model however has a drastic improvement on runtime over SurfEmb,
achieving 20 times faster inference. This was expected as the RANSAC
procedure used by SurfEmb does thousands of iterations on the CPU. The
runtime is similar to GDR-Net which has a 7ms inference on a NVIDIA
2080Ti GPU. My runtime is likely larger than GDR-Net because of my
models larger size, which probably could be reduced.

9.4 Possible Improvements for Better Accu-
racy

In deep learning it can be difficult to know which aspects impact perfor-
mance the most. Below are ten aspects that should be considered when
attempting to increase the accuracy of the presented method.

– Potential bugs - There may have been bugs in my code stemming
from unintended use of SurfEmbs source code. For example an aug-
mentation may have been used for something it was not meant to,
or an optimizer is not functioning properly. I have no specific reason
to believe this, but I would not count it out. My method could be
coded from scratch to have more control over what is happening.

– Learning rate - My end-to-end models were observed to stop im-
provement, even on the training loss, after 15-30 epochs. This could
mean the learning rate is too high, making it difficult for the network
to converge.

– Epochs - The model should be trained over more epochs with a
lower learning rate.

– Data augmentation - My model doubles in error when testing on
real data. Even though SurfEmb uses the same augmentations, my
model relies more on deep learning and so might require stronger
or different augmentations. With stronger augmentations the model
could become more robust.
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– Filter and image size - I used a 7x7 filter followed by four 3x3 filters
in the pose regression network. Since the images it takes as input
have dimensions 256x256, the filters have a relatively smaller size
than GDR-Net’s, which uses 3x3 filters on 64x64 images. I deviated
from GDR-Net on image size and filters because in my testing it gave
better results, but this could change when other aspects like learning
rate and number of epochs are changed.

– Dropout - I observed, especially when training the models with pre-
rendered inputs, that they were prone to overfitting after about 10
epochs. This should not happen after so few epochs. This happened
even though there were DropBlock layers before each convolution
with 0.4-0.5 drop chance, meaning approximately half of pixels were
cancelled out. More dropout could be used. There are also other
methods of decreasing overfitting, like reducing model complexity by
having fewer convolutional layers.

– Model complexity - My model uses 5 convolutional layers since it
increased accuracy in my tests, but this may change when trained
for more epochs. Since the model starts overfitting, and especially
since GDR-Net only uses three convolutional layers, a model with
less layers should be tested. It is possible my larger model seems to
be more accurate only because it learns faster, and that a smaller
model will outperform it when trained for longer.

– Loss function - I use the Frobenius norm when calculating rotation
error, whereas GDR-Net uses the deviation of object points when
transformed with the predicted transformation versus the ground
truth transformation. I use the Frobenius norm because it is the
same metric used when comparing my models, and it is simple to
implement. Small initial tests indicated that the Frobenius norm
performed equally to transforming points, but this should be tested
more thoroughly. If for example the Frobenius norm has a too steep
gradient around zero it may be harder for the model to converge
reliably, or if it is too flat convergence can be too slow.

– Optimizer - The optimizer used is the Adam optimizer, which is
not straightforward to understand. I used the same parameters as
SurfEmb but cannot say for certain that the optimizer is working
as intended. The training log seemed to indicate that the learning
rate never changed during training, but I do not know enough of
the specifics of the optimizer or how SurfEmb logs the learning rate
to know if this is true or intended. A more thorough review of the
optimizer should be done because having an adaptive learning rate
can minimize overshoot and make convergence easier.

– Weighting of the loss terms - The five loss terms in my model,
shown in equation 7.1, are each weighted by a scalar. The weight
determines how much the model prioritizes them during training.

47



My weights were within a factor of 10 of each other. More extreme
weights could be tested.

These are the ten most obvious things that can be experimented with.
There are probably more aspects that more experienced deep learning
engineers can identify.
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Chapter 10

Further Work

The models I present should be tested on truly symmetric objects, such
as in the TLESS dataset. A symmetry aware loss function would need
to be implemented to do so. Other than this, for the most part, further
work should be aimed at refining the model and training as suggested in
the discussion section above.

There may have been bugs in my code stemming from unintended use of
SurfEmbs source code. As further work one should also strongly consider
coding from scratch.
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Chapter 11

Conclusion

This work shows that a Convolutional Neural Network can be trained to
regress poses from symmetry aware query images as presented by SurfEmb,
giving a drastic increase in speed compared to SurfEmb, but with lower
accuracy. To the best of my knowledge this has not been attempted before.
Whether these queries can replace dense correspondences as intermediate
representation without decreasing accuracy is not entirely certain without
testing on better tuned models. The query image is shown to increase
the accuracy when used as an intermediate representation in end-to-end
models, as opposed to not having any intermediate representation. The
exact reason for why the presented method is not as accurate as GDR-
Net is not certain, but there is reason to believe that the accuracy will
improve with longer training, better training- and optimizer parameters,
and better model architecture.
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Appendix A
The step function of the combined end-to-end model and my
pose regression model. The appended step function is a modi-
fication of SurfEmbs source code. The original step function is
found in SurfEmbs surface embedding.py file on their GitHub:
(https://github.com/rasmushaugaard/surfemb).
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In [ ]: def step(self, batch, log_prefix):
        img = batch['rgb_crop']  # (B, 3, H, W)
        if log_prefix=='test':  #Used when testing on synthetic data
            img = batch['rgb_crop_test'] #Just a normal RGB crop with manually added normalization which the pretrained resnet18 cnn expects.
                                        #Normalization happens in the dataloader for normal RGB crops during training

        coord_img = batch['obj_coord'].to(0)  # (B, H, W, 4) [-1, 1]
        obj_idx = batch['obj_idx']  # (B,)
        coords_neg = batch['surface_samples'].to(0) # (B, n_neg, 3) [-1, 1]
        mask_samples = batch['mask_samples'].to(0)  # (B, n_pos, 2)

        device = img.device
        B, _, H, W = img.shape
        assert coords_neg.shape[1] == self.n_neg
        mask = coord_img[..., 3] == 1.  # (B, H, W)
        y, x = mask_samples.permute(2, 0, 1)  # 2 x (B, n_pos)

        if self.separate_decoders:
            with timer("cnn",False):
                cnn_out = self.cnn(img.to(0), obj_idx)  # (B, 1 + emb_dim, H, W)
                mask_lgts = cnn_out[:, 0]  # (B, H, W)
                queries_img = cnn_out[:, 1:]  # (B, emb_dim, H, W)
        else:
            cnn_out = self.cnn(img)  # (B, n_objs + n_objs * emb_dim, H, W)
            mask_lgts = cnn_out[torch.arange(B), obj_idx]  # (B, H, W)
            queries = cnn_out[:, self.n_objs:].view(B, self.n_objs, self.emb_dim, H, W)
            queries_img = queries[torch.arange(B), obj_idx]  # (B, emb_dim, H, W)

        mask_prob = torch.sigmoid(mask_lgts)  # (B, H, W)
        mask_loss = F.binary_cross_entropy(mask_prob, mask.type_as(mask_prob))

        queries = queries_img[torch.arange(B).view(B, 1), :, y, x]  # (B, n_pos, emb_dim)

        # compute similarities for positive pairs
        coords_pos = coord_img[torch.arange(B).view(B, 1), y, x, :3]  # (B, n_pos, 3) [-1, 1]
        coords_pos += torch.randn_like(coords_pos) * self.key_noise
        keys_pos = torch.stack([self.mlps[i](c) for i, c in zip(obj_idx, coords_pos)])  # (B, n_pos, emb_dim)
        sim_pos = (queries * keys_pos).sum(dim=-1, keepdim=True)  # (B, n_pos, 1)

        # compute similarities for negative pairs
        coords_neg += torch.randn_like(coords_neg) * self.key_noise
        keys_neg = torch.stack([self.mlps[i](v) for i, v in zip(obj_idx, coords_neg)])  # (B, n_neg, n_dim)
        sim_neg = queries @ keys_neg.permute(0, 2, 1)  # (B, n_pos, n_neg)

        #Running pose estimation model
        with timer("allPatchPnP",False):
            for key, value in batch.items():  #Moving tensors to cpu to be used in calculations
                if key == 'AABB_crop' or key == 'bbox_visib' or key=='bbox_obj' : continue #These are numpy arrays already on cpu
                batch[key] = batch[key].to(device='cpu')

            with timer("patchpnp", False):
                q = torch.cat((queries_img.to(0),self.pos_encoding.to(0)), dim=1).to(device=device)  
                dtxy, dtz, r6d = self.PnP_model(q)
                dtxy, dtz, r6d = dtxy.to(device='cpu'), dtz.to(device='cpu'), r6d.to(device='cpu')
            gt_R_b = batch['cam_R_obj'].to(device='cpu')
            gt_t_b = batch['cam_t_obj'].to(device='cpu')

            resize = queries_img.size()[2]
            batch_size = img.size()[0]
            s_zoom = resize
            loss_txy = 0
            loss_tz = 0
            loss_R = 0
            loss_R_frob = 0
            tz_diff = 0
            dist_t=0

            for b in range(batch_size):

                #Defining variables for use in SITE calculation
                crop = [_[b] for _ in batch['AABB_crop']]
                w, h = crop[2]-crop[0], crop[3]-crop[1]
                w = w.to(device='cpu')
                h = h.to(device='cpu')
                cx, cy = int(crop[0] + w/2), int(crop[1] + h/2)
                s0 = max(w, h).to(device='cpu')
                r = s_zoom/s0
                batch['K'] = batch['K'].to(device='cpu')

                #Finding ground truth SITE parameters
                o_gt = batch['K'][b]@gt_t_b[b]
                o_gt = o_gt/o_gt[2]
                t_gt = gt_t_b[b]
                dtx_gt = (o_gt[0]-cx)/w
                dty_gt = (o_gt[1]-cy)/h
                dtz_gt = t_gt[2]/r

                #Constructing predicted t
                tz_pred = r*dtz[b]
                ox_pred = w*dtxy[b][0] + cx
                oy_pred = h*dtxy[b][1] + cy
                t_pred = torch.inverse(batch['K'][b]).double()*tz_pred@torch.Tensor([ox_pred,oy_pred,1]).double()
                t_pred = t_pred.detach().numpy()
                dist_t += np.linalg.norm(t_pred-t_gt.numpy()[:,0])

                #Constructing predicted R
                R_gt = torch.Tensor(gt_R_b[b]).double()
                r1, r2 = r6d[b][:3], r6d[b][3:]



                R1 = F.normalize(r1,dim=0)
                R3 = F.normalize(torch.cross(R1, r2), dim=0)
                R2 = torch.cross(R3,R1)
                R_pred = torch.stack((R1,R2,R3), dim=1)

                #Calculating losses and adding to batch total
                loss_tz += torch.abs(dtz[b]-dtz_gt)
                tz_diff += np.abs(t_pred[-1] - t_gt[-1])
                loss_txy += torch.abs(dtxy[b][0]-dtx_gt) + torch.abs(dtxy[b][1]-dty_gt)
                loss_R += torch.linalg.matrix_norm(R_gt - R_pred.double())
                loss_R_frob += torch.linalg.matrix_norm(R_gt - R_pred.double())

        #Calculating SurfEmbs losses
        lgts = torch.cat((sim_pos, sim_neg), dim=-1).permute(0, 2, 1)  # (B, 1 + n_neg, n_pos)
        target = torch.zeros(B, self.n_pos, device=device, dtype=torch.long)
        nce_loss = F.cross_entropy(lgts, target)
        loss = 5*loss_R.to(0) + loss_txy.to(0) + 0.01*loss_tz.to(0) + 10*mask_loss + 10*nce_loss
        return loss, loss_R_frob, dist_t



In [ ]: import torch
from torch import nn
import torch.nn.functional as F
from dropblock import DropBlock2D

class ModelQueries(torch.nn.Module):
    def __init__(self,n_decoders=1):
        super(ModelQueries, self).__init__()
        self.decoders=nn.ModuleList([nn.ModuleDict({
        'bn-1' : nn.BatchNorm2d(14),
        'conv0' : nn.Conv2d(14,16,kernel_size=7,stride=1, padding=3),
        'bn0' : nn.BatchNorm2d(16),
        'conv1' :nn.Conv2d(16, 32, kernel_size=3,stride=1, padding=1),
        'bn1' : nn.BatchNorm2d(32),
        'conv2' : nn.Conv2d(32, 64, kernel_size=3,stride=1, padding=1),            
        'bn2' : nn.BatchNorm2d(64),
        'conv3' : nn.Conv2d(64, 128, kernel_size=3,stride=1, padding=1),           
        'bn3' : nn.BatchNorm2d(128),
        'conv4' : nn.Conv2d(128, 256, kernel_size=3,stride=1, padding=1),
        'bn4' : nn.BatchNorm2d(256),
        'fc1_r' : nn.Linear(256*8*8,1200),
        'fc1_z' : nn.Linear(256*8*8,1200),
        'fc1_xy' : nn.Linear(256*8*8,1200),
        'bn_xy1' : nn.BatchNorm1d(1200),
        'fc2_r' : nn.Linear(1200,256),
        'fc2_z' : nn.Linear(1200,256),
        'fc2_xy' : nn.Linear(1200,256),
        'bn_xy2' : nn.BatchNorm1d(256),
        'fc3_z' : nn.Linear(256,32),
        'fc4_z' : nn.Linear(32,1),
        'fc3_xy' : nn.Linear(256,2),
        'fc3_r' : nn.Linear(256,6)})
        for _ in range(n_decoders)])

    
    def forward(self, x, dec_idx=None, train=False):
        out_all_txy = []
        out_all_tz = []
        out_all_r = []
        dec_idx=0 #Force model to always use first decoder, as I train only on one object
        out = self.decoders[dec_idx]['bn-1'](x)
        out = DropBlock2D(block_size=20, drop_prob=0.5)(out)
        out = F.max_pool2d(F.relu(self.decoders[dec_idx]['conv0'](out)),2)
        out = DropBlock2D(block_size=10, drop_prob=0.5)(out)
        out=self.decoders[dec_idx]['bn0'](out)
        out = F.max_pool2d(F.relu(self.decoders[dec_idx]['bn1'](self.decoders[dec_idx]['conv1'](out))),2)
        out = DropBlock2D(block_size=5, drop_prob=0.4)(out)
        out = F.max_pool2d(F.relu(self.decoders[dec_idx]['conv2'](out)),2)
        out = DropBlock2D(block_size=1, drop_prob=0.4)(out)
        out = self.decoders[dec_idx]['bn2'](out)
        out = F.max_pool2d(F.leaky_relu(self.decoders[dec_idx]['bn3'](self.decoders[dec_idx]['conv3'](out))),2)
        out = F.max_pool2d(F.leaky_relu(self.decoders[dec_idx]['bn4'](self.decoders[dec_idx]['conv4'](out))),2)

        #Converting to 1D for use in MLP
        out_r = out.contiguous().view(out.size(0), -1)
        out_tz = out   #Branching translation predictions from rotation prediction
        out_txy = out

        out_r = F.relu(self.decoders[dec_idx]['fc1_r'](out_r))
        out_tz, out_txy = F.relu(self.decoders[dec_idx]['fc1_z'](out_tz)), F.relu(self.decoders[dec_idx]['fc1_xy'](out_txy))
        out_r = self.decoders[dec_idx]['fc1_dropout'](out_r) 
        out_tz, out_txy = self.decoders[dec_idx]['fc1_dropout'](out_tz), self.decoders[dec_idx]['fc1_dropout'](out_txy)
        out_txy = self.decoders[dec_idx]['bn_xy1'](out_txy)
        out_r = F.relu(self.decoders[dec_idx]['fc2_r'](out_r))
        out_tz, out_txy = F.relu(self.decoders[dec_idx]['fc2_z'](out_tz)), F.relu(self.decoders[dec_idx]['fc2_xy'](out_txy))
        out_txy = self.decoders[dec_idx]['bn_xy2'](out_txy)

        out_tz = F.relu(self.decoders[dec_idx]['fc3_z'](out_tz))
        out_txy, out_tz = self.decoders[dec_idx]['fc3_xy'](out_txy), self.decoders[dec_idx]['fc4_z'](out_tz)
        out_r = self.decoders[dec_idx]['fc3_r'](out_r)
        out_all_txy.append(out_txy)
        out_all_tz.append(out_tz)
        out_all_r.append(out_r)
        return (torch.stack(out_all_txy)[0], torch.stack(out_all_tz)[0], torch.stack(out_all_r)[0])




