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Preface

This study uses two machine learning algorithms to predict the hydrogen spill problem. It

was carried out during the spring semester of 2023. This master thesis is written for master

students with similar interests in AI-based surrogate modeling techniques.
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Abstract

Hydrogen is a clean substitute energy for traditional carbon-fuel energy. Since it is the light-

est element, it has low density. Liquid hydrogen becomes a good way of storing and trans-

porting hydrogen. But since its low boiling point (-253°C). When it spills it can cause the sur-

rounding air to liquefy or even solidify. Hydrogen has a wide flammability range(4-75%vol

in the air) and low ignition energy (0.019 mJ),so it is very dangerous when it releases into the

air.In a previous study, Random Forests perform good metrics, In this paper we are trying

to use different machine learning models, for example, XGBoost and deep learning Artificial

Neural Networks for predicting the hydrogen release according to the data we received.
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Chapter 1

Introduction

1.1 Background

Non-renewable fossil fuels has led to a serious environmental crisis, causing widespread pol-

lution and consuming natural resources at an alarming rate (Debe, 2012). To mitigate the

negative impact of these fuels, there has been an increase in research on identifying renew-

able sources of energy. Hydrogen has emerged as a prominent contender for the future of

the energy industry among the various alternatives being investigated, thanks to its distinc-

tive attributes like an inexhaustible supply and exceptional energy efficiency. (Zheng et al.,

2012a).

Hydrogen is a lightweight substance, characterized by a range (4-75%vol in the air) and

an low ignition energy (0.019 mJ) (Aaneby and Hafskjold, 2021). With its potential to provide

a cleaner and more sustainable source of energy, hydrogen has the capacity to bring about a

revolutionary transformation in the energy sector.(Hu et al., 2015). However, the transporta-

tion and storage of hydrogen can pose significant challenges due to its physical properties.

This is where liquid hydrogen (LH2) comes in, as it transports and store hydrogen (Mazzotti

and Bidini, 2020).

Despite the benefits of LH2, it is important to know that there are several safety hazards

associates with its handling and use. The most significant risk is the extremely low boil-

ing point of LH2, which stands at -253°C (O’Connor, 2019; Huang et al., 2019). At such low

temperatures, the condensation or solidification of air (boiling point -192°C, freezing point

2
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-215.2°C) can lead to a potentially dangerous situation. Furthermore, if a flammable mixture

of LH2 and solid oxygen ignites, it can result in an explosion Wang and Yuan (2014).

To gain a deeper understanding of the potential risks associated with large-scale LH2 re-

leases, a series of experiments were recently conducted in both an outdoor facility and a

closed room (Hong et al., 2021). These tests simulated spills that could occur during bunker-

ing operations. The results of these tests were analyzed using advanced machine learning

approaches to gain new insights into the behavior of LH2 under various conditions (Li et al.,

2020). The aim of this research was to develop new safety protocols and guidelines for the

handling and use of LH2, with the goal of ensuring the safe and sustainable use of hydrogen

as a clean energy source (Zheng et al., 2012b).

In summary, hydrogen presents itself as a promising contender for the future of the en-

ergy industry, providing a cleaner and more sustainable alternative when compared to non-

renewable fossil fuels. However, it is important to recognize the potential risks associated

with its transportation and use, especially with regarding to LH2. By conducting rigorous

testing and analysis, we can ensure the safe and sustainable use of hydrogen as a viable

source of energy for generations to come.

1.2 Objectives

The objectives are

1. Investigate different algorithms of machine learning. The primary goals involve con-

ducting a comprehensive exploration of various machine learning algorithms, encom-

passing supervised, unsupervised, and reinforcement learning.

2. Deep understanding of the use case. Moreover, the project strives to enhance both the

metrics and performance of the system. This involves identifying the existing metrics

and analyzing their limitations. The project will then propose new metrics that are

more suitable for the use case and implement them using Python. The new metrics

will be evaluated and compared against the existing ones to demonstrate their effec-

tiveness.
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3. Use Python to build surrogate models. To achieve these objectives, the project will

follow a structured approach that involves data collection and preprocessing, model

development, and evaluation. The data collection process will involve acquiring rele-

vant data from various sources and preparing it for analysis. The model development

stage will involve selecting appropriate algorithms and building models using Python.

The evaluation process will involve comparing the performance of different models

using the identified metrics.

4. Improve the metrics based on the current study. Overall, The project’s objective is to

make a valuable contribution to the field of machine learning by developing a versatile

strategy applicable to a wide range of use cases. The project will also contribute to

the development of more effective metrics for evaluating the performance of machine

learning models.

1.3 Approach

The following is a list of the approaches adopted to address the problem and fulfill the ob-

jectives and tasks at hand.

1. Literature review about different algorithms of Machine Learning (King, 2010; Pedregosa

et al., 2011). As part of the literature review, the project would also have researched dif-

ferent algorithms of machine learning, which are the foundational techniques used to

build AI models. This would have included a broad range of techniques, such as deci-

sion trees, random forests (Breiman, 2001), and deep neural networks, among others.

Then would have evaluated the strengths and weaknesses of each algorithm and iden-

tified the most appropriate techniques to use for the specific use case.

2. Deep understanding of python code. To build effective AI models, it’s essential to have

a deep understanding of the specific problem that needs to be solved. Additionally,

Would have developed a deep understanding of the python code used to build the

models, as this would be critical to understanding how the models work and making

any necessary modifications or improvements.



CHAPTER 1. INTRODUCTION 5

3. Deep understanding Extreme Gradient Boosting(XGBoost) (Tian et al., 2016). XGBoost

is a powerful algorithm for predictive modeling tasks. Then would have developed a

deep understanding of how XGBoost works, including its strengths and weaknesses

and how it can be applied to the specific use case. This would have involved exploring

the various hyperparameters and tuning them to achieve optimal performance.

4. Deep understanding Neural Networks(Goodfellow et al., 2016; Hinton et al., 2012; Le-

Cun et al., 2015): Artificial neural networks are a class of deep learning algorithms that

are particularly effective for tasks. Then, an in-depth comprehension of neural net-

works would have been cultivated, encompassing their workings, such as different lay-

ers and architectures, along with the optimization techniques tailored to the specific

use case.

1.4 Outline

Here is an overview of how the report is organized.

• Chapter 1. Introduction: This chapter offers a comprehensive overview of the prob-

lem addressed by the report, along with the defined objectives and tasks that it aims to

achieve. It also provides some background information on the context of the problem

and explains why it is important to solve it. Finally, this chapter outlines the struc-

ture of the report and provides a brief overview of what the reader can expect in each

chapter.

• Chapter 2. Theoretical Background: This chapter provides a detailed explanation of

the theoretical concepts and principles of the project. This encompasses a review of

pertinent literature, essential definitions and concepts, and a comprehensive explana-

tion of the methodologies and techniques employed to address the problem.

• Chapter 3. Experiment Design: This chapter provides a detailed explanation of the ex-

periment design, including the research methodology, data sources, and experimental

setup. This may include an overview of the data collection and processing methods.



CHAPTER 1. INTRODUCTION 6

Additionally, this chapter may provide details on the specific machine learning models

used, including their parameters and hyperparameters.

• Chapter 4. Results and Discussion: This chapter shows the results of the experiments.This

could involve an examination of the precision and efficiency of the machine learning

models, along with an investigation into the fundamental elements that influence their

accomplishments or shortcomings.

• Chapter 5. Future Work: In this chapter, potential avenues for future research are pre-

sented, building upon the conclusions drawn from the current study. These possibil-

ities encompass deliberations on potential enhancements to the experimental design

or machine learning models, as well as potential expansions or practical implementa-

tions of the research.

• Appendix Acronyms: This appendix offers a comprehensive compilation of acronyms

utilized throughout the report, accompanied by their corresponding full definitions.

• Bibliography: This section provides a list of all the references cited in the report, orga-

nized according to the citation style specified by the authoring institution or publisher.

This may include academic papers, industry reports, and other relevant sources.



Chapter 2

Theoretical Background

We present the theoretical framework for hydrogen production methods, as well as introduce

two machine learning techniques: XGBoost and Artificial Neural Networks (ANNs).

2.1 Methods of hydrogen production

Hydrogen gas can be produced through various methods, including:Steam Methane Reform-

ing (SMR): In this process, natural gas (primarily methane) reacts with high-temperature

steam in the presence of a catalyst, typically nickel. The reaction produces hydrogen gas and

carbon dioxide as byproducts. Electrolysis: Electrolysis involves passing an electric current

through water (H2O) to split it into hydrogen gas (H2) and oxygen gas (O2). This process

requires a source of electricity and can be achieved using renewable sources like solar or

wind power. Partial Oxidation: Partial oxidation involves reacting a hydrocarbon fuel, such

as methane or propane, with a limited supply of oxygen. This reaction produces hydrogen

gas, carbon monoxide, and some carbon dioxide. The resulting gas mixture can be further

processed to purify the hydrogen. Biomass Gasification: Biomass, such as agricultural waste

or wood chips, can be converted into hydrogen gas through gasification. The biomass is

heated in a low-oxygen environment, producing a mixture of hydrogen, carbon monoxide,

methane, and other gases. The gas can be further processed to extract and purify the hy-

drogen. Photoelectrochemical (PEC) Water Splitting: PEC utilizes a semiconductor material

that absorbs sunlight to facilitate the water splitting process. The absorbed photons gener-

7
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ate electron-hole pairs, which drive the electrochemical reactions to produce hydrogen gas

and oxygen gas. These are just a few examples of methods used to produce hydrogen gas.

The choice of method depends on factors such as availability of feedstock, energy source,

cost, and environmental considerations.

2.2 General Machine Learning Algorithms

Machine learning algorithms are to use statistical techniques to learn from data and improve

performance on a specific task.

2.2.1 Definition of Machine Learning Algorithms

Machine learning (Pedregosa et al., 2011; Tian et al., 2016; Bishop, 2006) has garnered sub-

stantial interest and recognition in recent times. Its appeal stems from its capacity to learn

from data and generate predictions or make decisions without the need for explicit program-

ming. Now AI has evolved into a complex field involving many different categories such as

Machine Learning, Neural Networks, Deep learning, and so on see figure2.1. The term "ma-

chine learning" was first coined in 1959 by Arthur Samuel, an IBM scientist who developed

a checkers-playing program that improved its performance through self-play and learning

from its mistakes. Since then, machine learning has evolved into a complex field that in-

cludes a range of techniques and approaches for solving a variety of problems in many do-

mains.

Machine learning and AI have made a profound impact across various sectors of soci-

ety, encompassing healthcare, transportation, education, and more. Notably, personalized

medicine has advanced through machine learning, leading to improved patient outcomes.

Additionally, machine learning aids in the detection of fraud and prevention of financial

crime. It also optimizes transportation systems, mitigating traffic congestion. Furthermore,

machine learning contributes to personalized education, enhancing learning outcomes for

individuals. However, there are also concerns about the ethical and societal implications of

machine learning, such as bias in algorithms, job displacement, and privacy concerns.
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Figure 2.1: Relation between AI ML DL

2.2.2 General Types of Machine Learning Algorithms

There are 3 main categories of machine learning:

• Supervised Learning. Supervised learning is a type of machine learning in which a

model is trained on labeled data, known as the training set (Hastie et al., 2009; Bishop,

2006; Ng, 2018). Supervised learning is often used for two main types of problems:

classification and regression. Classification involves predicting which category or class

a new piece of data belongs to, while regression involves predicting a continuous nu-

merical value. For example, a supervised learning model might be used to predict

whether an email is spam or not (classification), or to predict the price of a house

based on its features (regression) (Mitchell, 1997; Bengio et al., 2016; Hastie et al.,

2015). Supervised learning algorithms include linear regression, logistic regression,

decision trees, random forests, and support vector machines, among others.

• Unsupervised Learning. Unsupervised learning is another type of machine learn-

ing in which the data in the training set is unlabeled. This means that the model is

not given any specific target or output to predict, but rather it must learn the un-

derlying structure or patterns in the data itself. This makes unsupervised learning

more challenging than supervised learning, as there is no "correct" output to compare

the model’s predictions against. To extract useful information from unlabeled data,

unsupervised learning algorithms use techniques such as clustering, dimensionality

reduction, and association rule learning. Clustering involves grouping similar data

points together into clusters, while dimensionality reduction involves finding a lower-
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dimensional representation of the data that preserves its important features. Asso-

ciation rule learning involves discovering relationships or patterns between different

variables in the data. Unsupervised learning algorithms use mathematical reasoning

processes or similarity measures to identify patterns or structures in the data, without

the need for labeled examples. The applications of unsupervised learning are numer-

ous, including anomaly detection, recommendation systems, and natural language

processing. Unsupervised learning can also be used as a preprocessing step for su-

pervised learning, by identifying important features or reducing the dimensionality of

the data.

• Reinforcement Learning. Reinforcement learning (Sutton and Barto, 2018; Goodfel-

low et al., 2014; Karypis, 2004) is a type of machine learning that is different from su-

pervised and unsupervised learning.The goal of the machine is to learn a policy or

strategy that will maximize the total reward it receives over time. A classic example

of reinforcement learning is playing a game, where the machine learns to make the

best moves based on the rewards it receives. For example, in a game of chess, the ma-

chine may receive a positive reward for capturing an opponent’s piece, but a negative

reward for losing its own piece. Over time, the machine learns which moves lead to

the highest total reward, and develops a strategy for winning the game. Reinforce-

ment learning algorithms use a technique called "trial and error" to learn the optimal

policy. The machine explores different actions in the environment and observes the

resulting rewards, and then updates its policy based on the rewards it received. Over

time, the machine learns to associate certain actions with positive rewards and others

with negative rewards, and adjusts its behavior accordingly. Reinforcement learning

has applications in a variety of fields, such as robotics, game playing, and autonomous

systems. It has been used to teach robots to perform complex tasks such as assembling

objects, and to develop algorithms for self-driving cars. Reinforcement learning is also

being used to develop intelligent agents for video games, which can learn to play and

win against human players.
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2.3 Two algorithms of machine learning

We elaborate on the following two models, primarily utilized for experimentation purposes:

2.3.1 Extreme Gradient Boosting-XGBOOST

XGBoost, short for Extreme Gradient Boosting, is a powerful gradient boosting framework

that leverages decision trees as its foundational components. It is renowned for its excep-

tional performance in various machine learning tasks. This powerful tool is widely acclaimed

for its exceptional speed, accuracy, and exceptional handling of large and complex datasets.

One of the key features of XGBoost is the use of a gradient descent optimization algorithm

that repeatedly improves the model’s predictive ability by minimizing a loss function.

Due to its unmatched accuracy and remarkable speed, XGBoost has emerged as one of

the most sought-after and extensively employed machine learning algorithms in the indus-

try. Its popularity stems from its ability to deliver impressive results across a wide range of

applications. This framework can effectively handle a wide range of applications, including

regression, classification, and ranking problems.

Furthermore, XGBoost incorporates several advanced techniques that make it stand out

from other machine learning algorithms. For instance, it includes a regularization parameter

that helps prevent overfitting and ensures better generalization of the model. Additionally,

XGBoost supports parallel computing, which significantly reduces the training time and im-

proves performance.

Overall, XGBoost is an incredibly powerful and versatile tool that has revolutionized the

field of machine learning. Its ability to handle large datasets, speed, and accuracy make it an

ideal choice for solving real-world problems in a wide range of industries.

2.3.2 Artificial Neural Network-ANN

Artificial neural networks (ANNs) are a powerful class of machine learning algorithms that

have transformed the field of artificial intelligence. They are loosely based on the structure

and function of the human brain.
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Artificial Neural Networks (ANNs) are composed of interconnected layers of nodes or

neurons that handle and transmit information. Each neuron receives inputs from other neu-

rons in the preceding layer and generates an output, which is then passed on to the subse-

quent layer. This layered structure makes ANNs particularly well-suited for processing intri-

cate data inputs, such as images, sounds, or text. ANNs have demonstrated their efficacy in

various tasks, including pattern recognition, classification, and regression.

One of the key strengths of ANNs is their ability to learn and adapt to new data. They can

be trained using large datasets.

In recent years, there have been significant advances in the design and training of ANNs,

with the development of new techniques. These advanced architectures have significantly

improved the performance of ANNs on a wide range of tasks.

Artificial Neural Networks (ANNs) are indeed a powerful and versatile class of machine

learning algorithms that are revolutionizing problem-solving across diverse fields. Their im-

pact spans domains like computer vision, natural language processing, robotics, and more.

As research in this field progresses, ANNs are poised to assume an even more significant role

in the advancement of intelligent systems and applications. Their ability to learn from data,

adapt to new information, and make complex decisions has the potential to drive transfor-

mative innovations in the future.



Chapter 3

Experiment Design

3.1 Two situations of Liquid hydrogen release

3.1.1 Outdoor Leakage

The collection of atmospheric data, such as atmospheric pressure, humidity, wind speed,

and direction, is crucial in understanding the behavior of a cryogenic fluid spill. These fac-

tors can affect the formation and propagation of a gas cloud and the safety measures needed

during refueling operations (Gavelli et al., 2016; Jia et al., 2019). The use of thermocouples

to measure the temperature is essential in evaluating the safety of cryogenic fluid spills. The

thermocouples were placed on the test pad and in the field to measure the temperature of

the liquid hydrogen and the surrounding area.This information is important in understand-

ing the heat transfer during the spill and the potential for ignition. Thermocouples were

used to measure the temperature. Oxygen sensors were used to measure the amount of hy-

drogen in the air, and the hydrogen concentrations were calculated based on the amount of

oxygen in the air (Zhang et al., 2019; Chi et al., 2018). The measurement of gas concentration

using oxygen sensors is also essential in evaluating the safety of cryogenic fluid spills. This

information is crucial in establishing safety distances for personnel and equipment during

refueling operations involving cryogenic fluids (Hasanzadeh and Abbassi, 2017; Zeng et al.,

2018). The wind’s direction and speed were monitored using sensors inserted in a pole near

the pad. This information is important in understanding the behavior of the gas cloud and

13
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the potential for ignition during refueling operations. The wind’s direction and speed can

affect the gas cloud’s propagation and the safety measures needed to protect personnel and

equipment(Ferrari, 2022; Zhu et al., 2017).

The results of the outdoor leakage testing of liquid hydrogen showed that the liquid pool’s

development on the ground was dependent on the orientation of the release, whether it was

pointed vertically down or horizontally. The liquid pool only extended 0.5 meters from the

release point, which is an important safety factor to consider during refueling operations

involving cryogenic fluids. Due to the extremely low boiling point of hydrogen (20 K), the

release of a cryogenic fluid may cause condensation and freezing of air components on the

ground. This phenomenon can increase the likelihood that the flammable mixture will ex-

plode in the event of an ignition. Therefore, safety measures need to be taken into account

during refueling operations to prevent such occurrences. This information is important for

establishing safety distances for personnel and equipment during refueling operations in-

volving cryogenic fluids. No spontaneous ignition was seen in any of the tests. However,

the information gathered during the testing can help improve safety measures and prevent

accidents in the future. The use of multiple sensors and thermocouples provided a compre-

hensive analysis of the experimental results, allowing for a more precise evaluation of the

safety measures needed during refueling operations. Overall, the outdoor leakage testing of

liquid hydrogen was an important step in evaluating the safety of cryogenic fluid refueling

operations. The results provided valuable insights into the behavior of liquid hydrogen spills

and gas cloud formation, which can help improve safety measures and prevent accidents in

the future.

3.1.2 Closed room and Ventilation mast studies.

The emission of liquid hydrogen from the bottom has been studied extensively in laboratory

simulations of cryogenic fluid leaks. Confined rooms and ventilation derricks have been

used to investigate the behavior of liquid hydrogen in different environments. In these stud-

ies, the storage tank is connected to the TCS (tank connection space), as shown in Figure

3.1. The environmental conditions during the tests are recorded, including measurements
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of the ambient pressure, humidity, wind speed, and direction. The wind speed and direc-

tion measurements are particularly important in understanding the behavior of the liquid

hydrogen in different wind conditions. Near the launch pad, sensors are positioned on a

mast to measure the temperature and gas concentration during the tests. In the closed-room

research environment, 10 thermocouples and 15 thermocouples were installed on the TCS

floor to measure the temperature during the liquid hydrogen emission. Additionally, 3 ther-

mocouples were installed within the ventilation mast, and a thermocouple was positioned

in the TCS, as shown in Figure 3.2, to provide more detailed temperature measurements.

The use of multiple thermocouples and sensors in laboratory simulations of cryogenic fluid

leaks provides a more comprehensive understanding of the behavior of liquid hydrogen in

different environments. The data gathered from these tests can be used to develop more ac-

curate models and simulations of liquid hydrogen emissions, improving safety measures in

the handling and transport of cryogenic fluids.

In total, 8 tests were carried out to study the behavior of liquid hydrogen in different

environments. One of the tests involved decontaminating a sealed area first to avoid the

production of nitrogen-containing combustible mixtures that could explode upon ignition.

During the test, it was observed that the hydrogen concentration in the room reached 100%

in less than 30 seconds after the start of the release. However, there was no pressure build-

up in the room due to its not being completely airtight. The release of liquid hydrogen led to

its evaporation, and accumulation was seen in the room. Interestingly, the ventilation mast

did not become clogged due to condensation or solidification of air components inside of it.

The test also provided evidence that airborne particles either condensed or froze in the pres-

ence of liquid hydrogen. It was observed that the liquid hydrogen settled on the ground and

evaporated quickly, but the floor surface remained wet for a considerable amount of time.

These findings are important for understanding the behavior of liquid hydrogen in enclosed

spaces and developing safety protocols for handling and transporting cryogenic fluids. The

data obtained from these tests can be used to refine existing models and simulations of liq-

uid hydrogen emissions in enclosed spaces, ultimately leading to improved safety measures

for the handling and transport of cryogenic fluids.
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Figure 3.1: Illustration of a ColdBox, which is connected to a ventilation mast(Aaneby et al.,
2021).

Figure 3.2: Ventilation mast studies conducted by (Aaneby et al., 2021) involved the place-
ment of thermocouples and oxygen sensors at specific locations. In the top view of the setup,
with the floor of the Thermodynamic Control System (TCS) to the left, the following place-
ments were made.
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Figure 3.3: Event tree of releases from liquid hydrogen tank.(Li et al., 2012).

3.2 Liquid Hydrogen Release Consequences

Hydrogen storage and transportation present significant safety challenges. In addition to

the potential hazards of high pressure and flammability, cryogenic hydrogen storage and

release also introduce cold effects that need to be considered in safety assessments. The low

boiling point of hydrogen (-252.87°C) means that it is stored and transported in a cryogenic

liquid state at extremely low temperatures, and any leakage could cause rapid cooling of the

surrounding area, creating a hazard for personnel.

In summary, the safety issues associated with cryogenic liquid hydrogen storage and re-

lease are complex and multifaceted, requiring a comprehensive approach to hazard iden-

tification, risk assessment, and safety management. Further research is needed to better

understand the safety risks associated with hydrogen storage and transportation, and to de-

velop more effective safety strategies and technologies to reduce these risks.

• Criteria for cold effects: The harm criterion for cold effects, as outlined in IGC Doc

(Doc, 2007), is a temperature below -40°C, which corresponds to a 1% probability of

fatality to the general population. This criterion is crucial to prevent cryogenic burns

and other cold-related injuries in the event of a release from liquid hydrogen tanks.

Proper safety measures and precautions must be taken to ensure that individuals are

not exposed to such low temperatures, as they can cause severe harm or even death.

• Criteria for overpressure effects: Overpressure effects from hydrogen explosions can
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Figure 3.4: The harm criteria for the three types of harmful effects resulting from releases
from liquid hydrogen tanksLi et al. (2012).

cause severe injuries and fatalities. A high lethality value of 30 kPa is recommended

as the criterion for lethal effects, indicating that individuals are at risk of immediate

death if exposed to overpressure levels of this magnitude. Proper safety measures and

precautions must be taken to prevent or mitigate the risks associated with overpres-

sure effects from hydrogen explosions. As for harmful effects, according to IGC75/07E,

7 kPa is suggested as the harm criterion, corresponding to a 1% probability of fatality.

This criterion indicates that individuals are at risk of significant harm or injury if ex-

posed to overpressure levels of this magnitude, but immediate death is not expected.

Proper safety measures and precautions must be taken to prevent or mitigate the risks

associated with harmful overpressure effects from hydrogen explosions. It is crucial

to implement appropriate safety measures to prevent overpressure effects from occur-

ring and to ensure the safety of individuals in the vicinity of liquid hydrogen tanks.

Figure 3.4 summarizes the harm criteria for the three types of harmful effects resulting

from releases from liquid hydrogen tanks. It is important to note that all effects are calculated

at a height of one meter, rather than ground level, as this is considered to be a good average

height for exposure to both adults and children. By using these criteria and considering the

height of exposure, appropriate safety measures can be taken to prevent or mitigate the risks

associated with releases from liquid hydrogen tanks.
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3.3 Database

3.3.1 Data Used

Three different databases have been developed:

• The data used to develop machine learning algorithms for predicting hydrogen re-

leases and their potential effects were organized into three databases. The first database

was focused on predicting the condensation or freezing of air components in outdoor

leakage studies. The data for this database was collected from thermocouples located

within 30 meters of the release point, and those installed within the test pad were not

included due to the lack of air beneath the surface.

• The second database focused on predicting hydrogen concentration within the gas

cloud in outdoor leakage studies. The data for this database was collected from all

oxygen sensors located at 30, 50, and 100 meters from the release point in the wind

direction.

• The third database, also referred to as indoor leakage studies, focused on predicting

the condensation or freezing of air components in closed room studies. This database

exclusively used data from the 25 thermocouples installed within the test chamber.

To develop machine learning algorithms for predicting hydrogen releases and their potential

effects, three databases were created. The first database excluded thermocouples located

more than 30 meters from the release point and those installed inside the test pad due to

the lack of air beneath the surface. This database was used to forecast the condensation or

freezing of air component parts. The second database included all oxygen sensors located

at 30, 50, and 100 meters from the release point in the wind direction. This database was

used to determine if the concentration of hydrogen in the gas cloud had reached the lower

flammability limit or not. The third database focused on examining the production of liquid

or solid oxygen inside the TCS and conducting a comparison with the outdoor example. This

database was exclusively constructed using the 25 thermocouples installed inside the TCS.

All databases were created by taking into account a row for each temperature or concentra-
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tion value measured by each thermocouple or sensor for each instant of time throughout

the entire experimental test. The data gathered from each test was combined to create the

databases, and this data can be used to train machine learning algorithms to predict hydro-

gen releases and their potential effects. In all three databases, a row was created for each

temperature or concentration value measured by each thermocouple or sensor for each in-

stant of time throughout the entire experimental test. The data gathered from each test was

combined to create the databases, which can be used to train machine learning algorithms

to predict the effects of hydrogen releases.

3.3.2 Labels

In the first and third databases, the focus is on predicting whether or not there will be the

deposition of liquid or solid oxygen for each point on the pad. For this purpose, two labels

have been investigated. If the thermocouple’s measurement after 200 seconds is less than

either the melting point or the boiling point of pure oxygen, a label of "1" is assigned, indi-

cating that air oxygen will condense or solidify. If not, the label assigned is 0. It should be

noted that this method is not applicable in one case of the indoor studies where the enclosed

chamber had already been purged with nitrogen, thus there was no oxygen present when the

release began. Therefore, each thermocouple has a label of 0 for this particular case. In the

second database, the focus is on predicting whether or not there will be hydrogen concen-

trations in the air that are higher than the lower flammability limit (LFL) after 200 seconds,

depending on the location on the pad. A single label has been taken into account for this

purpose. If the hydrogen concentration is higher than the LFL, a label of 1 is assigned, other-

wise, the label assigned is 0. At atmospheric pressure, hydrogen’s LFL is 4% vol. The chosen

200-second time window for assigning the labels is based on the response time of water sys-

tems following a hydrogen release, as hydrogen sensor-activated systems have been studied

in this thesis as mitigation strategies for the effects of liquid hydrogen leakage.

Based on the information provided, it appears that the study investigated the melting

and boiling points of oxygen at an average pressure of 0.96 bar. The boiling point (Tb) was

found to be -183.5 °C, while the melting point (Tm) was found to be -218.79 °C. Addition-
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ally, the study examined the response time necessary to forecast the condensation, freezing,

or development of an atmosphere that is combustible. The chosen response time was 200

seconds, and the models were able to forecast the label that would correlate to a specific

thermocouple after this time period. The reason for selecting the 200-second interval was

based on the response time of water systems following a hydrogen release. The study also

investigated the use of hydrogen sensors as mitigation strategies for the effects of liquid hy-

drogen leakage.

The study involves three databases. In the first and third databases, two tags are allo-

cated. If oxygen condenses, the label assigned is 1; otherwise, the allocation label is 0. The

boiling temperature of oxygen is -183.5 °C, and its melting point is -218.79 °C at a pressure of

0.96 bar. In the second database, two labels are assigned as well. After 200 seconds, if the con-

centration of hydrogen is zero, the label will be higher than the LFL; otherwise, the allocation

label will be 0. The LFL for hydrogen is 4% vol at atmospheric pressure. The 200-second time

window was selected based on the response time of water systems after a hydrogen release

reaction. The models in the study used this time frame to forecast the label that would cor-

relate to a specific thermocouple. In summary, the study examined the properties of oxygen

and hydrogen under specific conditions and utilized a 200-second time window to forecast

the label that would correspond to a specific thermocouple in the three databases studied.

Each of the five experimental tests in the first database uses 96 thermocouples in total.

A total of 60 concentration sensors are used in each of the four experimental experiments

in the second database. Ten experimental tests totaling 50 thermocouples, all of which were

placed within the container, are included in the third database. Since some of the experi-

mental experiments were not long enough to make a reliable prediction or were carried out

in different wind conditions than the others, not all of them have been taken into account

in the databases. Therefore, only the experiments that meet the criteria for inclusion have

been included in the databases. The increase in the number of thermocouples and concen-

tration sensors in the databases will enable more accurate measurements and predictions

to be made. This, in turn, will lead to better understanding and control of the experimental

conditions, which is crucial for the success of any scientific research.
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3.4 Exploratory Data Analysis

3.4.1 First Database

The first database in our study includes a dataset with the following features: time, ambi-

ent pressure, release rate, humidity, release orientation, wind direction high, wind direction

low, wind speed high, wind speed low, liquid oxygen, and solid oxygen. The objective of this

dataset is to predict the distribution of liquid oxygen and solid oxygen based on the given

features. Specifically, the positive samples in the liquid oxygen class constitute 42.54% of the

total, while the negative samples account for 57.46%. For the solid oxygen class, the posi-

tive samples constitute 8.48% of the total, while the negative samples account for 91.52%,

indicating a significant class imbalance.

The dataset does not contain any missing values, except for the release orientation fea-

ture, which is a categorical variable with two possible value: horizontal and vertical.Only

vertical means hydrogen release.

Due to the significant class imbalance observed in the dataset, Our analysis revealed that

the distribution of the dataset had become significantly more uniform following the outlier

removal process as shown in Fig 3.5. This allowed us to gain a better understanding of the

relationships between the features and the distribution of liquid oxygen and solid oxygen.

As shown in the graphs, the distribution of the features exhibited a more balanced spread

across the different values of liquid oxygen and solid oxygen. This indicates that the outlier

removal process was effective in improving the uniformity of the dataset and enabled us

to more accurately assess the relationships between the features and the target variables.

Overall, our findings suggest that outlier removal is an effective technique for improving the

uniformity of datasets and can lead to a better understanding of the relationships between

features and target variables.

3.4.2 Second Database

The objective of this study is to predict the distribution of Hydrogen concentration based

on these indicators. Specifically, the dataset consists of a highly imbalanced sample distri-



CHAPTER 3. EXPERIMENT DESIGN 23

Figure 3.5: Boxplot of p01 to p04, pt_01 to pt_04 by liquid oxygen and solid oxygen in the first
database before (a) and after (b) removing outliners.

bution, with positive samples accounting for only 1.25% and negative samples accounting

for 98.75% . None of the indicators have missing values, and all indicators except for release

orientation are numerical features.

To address the issue of non-uniform distributions of certain features, including ’p01’,

’p02’, ’p03’, ’p04’, ’pt_01’, ’pt_02’, ’pt_03’, and ’pt_04’, we performed outlier removal and re-

examined their relationships with the distribution of liquid oxygen and solid oxygen as shown

in Fig. 3.6. Our analysis showed that the outlier removal process effectively improved the

uniformity of the distributions of these features, which allowed us to gain a better under-

standing of the relationships between the features and target variables. Overall, our findings

suggest that outlier removal is an effective technique for improving the uniformity of feature

distributions in datasets, and can lead to a more accurate assessment of the relationships

between the features and target variables. Additionally, our analysis highlights the signif-

icant differences in the distributions of certain features between the positive and negative

samples of liquid oxygen, which underscores the need for appropriate techniques, such as

oversampling or undersampling, to address the class imbalance issue during model training.
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Figure 3.6: Boxplot of p01 to p04, pt_01 to pt_04 by liquid oxygen in the second database
before (a) and after (b) removing outliners.

3.4.3 Third Database

The third database in our study contains a dataset with several features, including time, am-

bient pressure, release rate, humidity, purge, obstacles, vent panel, sealing, p01, p02, p03,

p04, pt_01, pt_02, pt_03, pt_04, wind direction high, and wind direction low. The objective

of this dataset is to predict the distribution of liquid oxygen and solid oxygen based on the

given features of time, ambient pressure, release rate, humidity, release orientation, wind

direction high, and wind direction low.

The positive samples in the liquid oxygen class constitute 52.85% of the total, while the

negative samples account for 47.18%. The positive samples in the solid oxygen class con-

stitute 24.05% of the total, while the negative samples account for 75.95%. This indicates a

class imbalance issue in the dataset. There are no missing values in the dataset. Our analysis

reveals that the class imbalance issue in the dataset requires appropriate techniques such

as oversampling or undersampling to address this issue during model training. Moreover,

our findings highlight the significant differences in the distributions of categorical features

between the positive and negative samples of liquid oxygen and solid oxygen. Therefore,

careful consideration must be given to these features during model training and analysis.
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Figure 3.7: Boxplot of p01 to p04, pt_01 to pt_04 by liquid oxygen and solid oxygen in the
third database before (a) and after (b) removing outliners.

To address the issue of non-uniform distributions of certain features, including ’p01’,

’p02’, ’p03’, ’p04’, ’pt_01’, ’pt_02’, ’pt_03’, and ’pt_04’, we performed outlier removal and re-

examined their relationships with the distribution of liquid oxygen and solid oxygen as shown

in Fig. 3.7. Our analysis revealed that the outlier removal process effectively improved the

uniformity of the distributions of these features, which allowed us to gain a better under-

standing of the relationships between the features and the target variables. Our findings

suggest that outlier removal is an effective technique for improving the uniformity of feature

distributions in datasets, which can lead to a more accurate assessment of the relationships

between the features and target variables. Furthermore, our analysis highlights the signifi-

cant differences in the distributions of continuous variables between the positive and neg-

ative samples of liquid oxygen and solid oxygen, which should be taken into consideration

during model training and analysis.

3.5 Model and Training details

In this study, we aimed to explore the physical properties of liquid and solid oxygen by con-

structing two separate training and testing datasets for each database. The datasets were
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divided into a 3:1 ratio for training and testing, respectively. We used two machine learn-

ing algorithms, including XGBoost and Artificial Neural Networks (ANN), to build predictive

models for liquid and solid oxygen properties.

For XGBoost, we optimized the model parameters within the range of learning rates of

0.1, and maximum depth of 9. For ANN, we used a four-layer dense network with shapes

of 64, 32, 8, and 1. We applied ReLU activation functions for all layers in the network. In

addition, we identified the top five important features using feature importance ranking and

used these features for building our models. To evaluate the performance of the models, we

used confusion matrices and ROC curves.



Chapter 4

Results and Analysis

This section is dedicated to the assessment of the performance of two distinct models: XG-

Boost and Artificial Neural Network (ANN). To compare the effectiveness of these methods

on various datasets, several evaluation metrics including confusion matrix, accuracy, recall,

precision, F1 score, and ROC curve are utilized. The primary objective of this evaluation is

to determine the superior machine learning model for each dataset and label. By examin-

ing the outcomes of these evaluations, valuable insights regarding the proficiency of these

machine learning models in handling the larger database1,2,3 dataset can be obtained. The

findings from these evaluations will be presented through a comprehensive comparison of

the different methods and their respective metrics across each dataset and label.

4.1 Experiment Scenario 1-Outdoor leakage prediction

4.1.1 Xgboost

Liquid oxygen.

Liquid oxygen is a critical industrial material that requires accurate monitoring and con-

trol to ensure safe and efficient operations. In this study, we evaluated the performance of

the XGBoost model in predicting the distribution of liquid oxygen in the database1 dataset.

The results are shown in Table 4.1, Fig 4.1, and Fig 4.2. The results of the evaluation demon-

strate that the XGBoost model achieved excellent performance in predicting the distribu-

27
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Figure 4.1: ROC curve modelled by XGBoost for the first database for liquid oxygen

tion of liquid oxygen, with high precision, recall, and F1-score for both positive and negative

samples. The precision, recall, and F1-score for class 0 were 0.99627, 0.99685, and 0.99656,

respectively, indicating that the model is highly accurate in predicting negative samples of

liquid oxygen. For class 1, the precision, recall, and F1-score were 0.99575, 0.99497, and

0.99536, respectively, indicating that the model is highly accurate in predicting positive sam-

ples of liquid oxygen. In terms of overall performance, the model achieved an accuracy of

0.99605 on the test data, indicating that the model can accurately distinguish between pos-

itive and negative samples of liquid oxygen in the database1 dataset. The confusion matrix

further supports the model’s high performance, with 100,000 correctly predicted samples for

class 0 and 76,481 correctly predicted samples for class 1.

In conclusion, the XGBoost model demonstrated exceptional performance in predicting

the distribution of liquid oxygen in the database1 dataset. The model’s high accuracy, pre-

cision, recall, and F1-score, along with its perfect discriminatory power as demonstrated by

the AUC score, make it a powerful tool for predicting the distribution of liquid oxygen in

industrial settings.

Solid oxygen.

In this analysis, we evaluated the performance of the XGBoost model in predicting the

distribution of solid oxygen in the database1 dataset. The results showed that the XGBoost

model achieved high precision, recall, and F1-score for both the positive and negative classes.
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Figure 4.2: Confusion Matrix modelled by XGBoost for the first database for liquid oxygen

The precision of the model for the negative class was 0.99936, while the recall and F1-score

were 0.99988 and 0.99962, respectively. For the positive class, the precision was 0.99875, the

recall was 0.99305, and the F1-score was 0.99589. The results are shown in Table 4.2, and

Fig 4.3. The overall accuracy of the model was high, with an accuracy of 0.99930. The confu-

sion matrix showed that the model classified the majority of the observations correctly, with

only a small number of false negatives and false positives. Specifically, the model predicted

164476 true negatives and 15136 true positives, while misclassifying only 19 observations as

false negatives and 106 observations as false positives. These results suggest that the XG-

Boost model is highly effective in predicting the distribution of solid oxygen in the database1

dataset. The high precision and recall values for both classes demonstrate that the model is

accurate in predicting both positive and negative classes. The high accuracy of the model

Table 4.1: Performance of XGBoost for the first database for liquid oxygen

Class precision recall f1-score support

0 0.99627 0.99685 0.99656 103271
1 0.99575 0.99497 0.99536 76466

accuracy - - 0.99605 179737
macro avg 0.99601 0.99591 0.99596 179737
weighted avg 0.99605 0.99605 0.99605 179737
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Figure 4.3: Confusion Matrix modelled by XGBoost for the first database for solid oxygen

indicates that it is reliable and can be used for predicting the distribution of solid oxygen in

similar datasets. The results have important implications for the development of more accu-

rate predictive models and could potentially inform the design of more effective monitoring

and control systems for solid oxygen distribution in industrial settings. Further research is

needed to evaluate the model’s performance on other datasets and explore its potential for

industrial applications. In summary, the analysis of the XGBoost model’s performance in

predicting the distribution of solid oxygen in the database1 dataset demonstrated that the

model achieved high accuracy, precision, and recall. The results suggest that the model is ef-

fective in predicting both positive and negative classes, making it a potentially valuable tool

for predicting the distribution of solid oxygen in similar datasets.

Table 4.2: Performance of XGBoost for the first database for solid oxygen

Class precision recall f1-score support

0 0.99936 0.99988 0.99962 164495
1 0.99875 0.99305 0.99589 15242

accuracy - - 0.99930 179737
macro avg 0.99905 0.99647 0.99775 179737
weighted avg 0.99930 0.99930 0.99930 179737
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4.1.2 ANN

Liquid oxygen.

The accurate prediction of the distribution of liquid oxygen is essential for ensuring safe

and efficient industrial operations. In this study, we evaluated the performance of the Ar-

tificial Neural Network (ANN) model in predicting the distribution of liquid oxygen in the

database1 dataset. The results of the evaluation demonstrate that the ANN model achieved

reasonable performance in predicting the distribution of liquid oxygen, with good precision,

recall, and F1-score for both positive and negative samples. The results are shown in Ta-

ble 4.3, Fig 4.5, and Fig 4.6. The precision, recall, and F1-score for class 0 were 0.98331,

0.98025, and 0.98178, respectively, indicating that the model is highly accurate in predict-

ing negative samples of liquid oxygen. For class 1, the precision, recall, and F1-score were

0.97343, 0.97753, and 0.97548, respectively, indicating that the model is reasonably accu-

rate in predicting positive samples of liquid oxygen. In terms of overall performance, the

model achieved an accuracy of 0.97909 on the test data, indicating that the model can accu-

rately distinguish between positive and negative samples of liquid oxygen in the database1

dataset. The confusion matrix further supports the model’s performance, with 100,000 cor-

rectly predicted samples for class 0 and 74,748 correctly predicted samples for class 1. How-

ever, compared to the XGBoost model, the ANN model has lower performance in predict-

ing the distribution of liquid oxygen. The precision, recall, and F1-score for both positive

and negative samples of liquid oxygen are lower in the ANN model compared to the XG-

Boost model. The results suggest that XGBoost may be a better model choice for predicting

the distribution of liquid oxygen in the database1 dataset. In conclusion, the ANN model

demonstrated reasonable performance in predicting the distribution of liquid oxygen in the

database1 dataset. The model’s performance was satisfactory, with good accuracy, precision,

recall, and F1-score. However, compared to the XGBoost model, the ANN model had lower

performance in predicting the distribution of liquid oxygen. Further research is needed to

improve the performance of the ANN model or explore alternative models that can achieve

better performance on this dataset.

To further understand the performance of the Artificial Neural Network (ANN) model in
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predicting the distribution of liquid oxygen in the database1 dataset, we analyzed the loss

and accuracy of the model over time. The loss and accuracy are essential metrics that can

provide insights into the model’s performance and its ability to learn from the data as shown

in Fig 4.4. The analysis showed that the ANN model’s loss decreased steadily over time, in-

dicating that the model is effectively learning from the data. In the first epoch, the loss was

0.221312, and the accuracy was 0.903711. Over the subsequent epochs, the loss decreased

significantly, with the lowest loss achieved in the tenth epoch (0.102877). The model’s ac-

curacy also increased over time, reaching its highest value of 0.956448 in the tenth epoch.

The validation loss and accuracy of the model also showed a similar trend, with the valida-

tion loss decreasing over time and the validation accuracy increasing. The validation loss

was highest in the first epoch (0.190881) and lowest in the tenth epoch (0.101776), while the

validation accuracy was lowest in the first epoch (0.918529) and highest in the tenth epoch

(0.953747). These results suggest that the ANN model is learning effectively from the data

and achieving high accuracy in predicting the distribution of liquid oxygen in the database1

dataset. The decreasing loss and increasing accuracy over time demonstrate that the model

is improving its performance with each epoch, indicating that it has a high potential to per-

form well on other datasets. In summary, the analysis of the ANN model’s loss and accuracy

over time demonstrates that the model is learning effectively from the data and achieving

high accuracy in predicting the distribution of liquid oxygen in the database1 dataset. The

results have important implications for the development of more accurate predictive models

and could potentially inform the design of more effective monitoring and control systems for

liquid oxygen distribution in industrial settings. Further research is needed to evaluate the

model’s performance on other datasets and explore its potential for industrial applications.

Solid oxygen.

The ANN model was applied to predict the label for solid oxygen in database1. The pre-

cision, recall, and F1-score were reported as 0.99439, 0.99393, and 0.99416, respectively, for

label 0 and 0.93484, 0.93944, and 0.93714, respectively, for label 1. The accuracy of the model

was reported as 0.98931, indicating a relatively good performance. The confusion matrix

for the model showed that out of 164,495 instances of label 0, 163,497 were correctly clas-
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Figure 4.4: Loss in the first database by ANN for liquid oxygen

Figure 4.5: ROC curve modelled by ANN for the first database for liquid oxygen
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Figure 4.6: Confusion Matrix modelled by ANN for the first database for liquid oxygen

sified, while out of 15,242 instances of label 1, 14,319 were correctly classified. The results

are shown in Table 4.4, and Fig 4.8. In conclusion, the ANN model achieved relatively good

performance in predicting the label for solid oxygen in database1.

In this section, we present the loss and accuracy trends of the Artificial Neural Network

(ANN) model for solid oxygen prediction in database1 as shown in Fig 4.7. As we can see, the

training loss and accuracy improve significantly in the first few epochs. The model achieved

an accuracy of 98.7% after only 10 epochs. The validation accuracy also improves with each

epoch, indicating that the model generalizes well to unseen data. However, the validation

loss increases significantly in the third epoch, indicating that the model may be overfitting to

the training data. This is further supported by the drop in validation accuracy in the fourth

epoch. To prevent overfitting, we can apply regularization techniques such as dropout or

Table 4.3: Performance of ANN for the first database for liquid oxygen

Class precision recall f1-score support

0 0.98331 0.98025 0.98178 103271
1 0.97343 0.97753 0.97548 76466

accuracy - - 0.97909 179737
macro avg 0.97837 0.97889 0.97863 179737
weighted avg 0.97911 0.97909 0.97910 179737
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Figure 4.7: Loss in the first database by ANN for solid oxygen

Figure 4.8: Confusion Matrix modelled by ANN for the first database for solid oxygen

early stopping. In summary, the ANN model achieved a high accuracy of 98.7% in predicting

solid oxygen in database1. The loss and accuracy trends indicate that the model general-

izes well to unseen data but may be prone to overfitting. Regularization techniques can be

applied to improve the model’s performance further.

In our comparison of xgboost and ANN, we found that xgboost consistently outperformed

ANN in terms of accuracy, recall, precision, and f1 score for both liquid oxygen and solid

oxygen as shown in Fig 4.9 and Fig 4.10. The difference was particularly noticeable for solid

oxygen. This suggests that xgboost is a better choice when high accuracy is a priority. One

possible reason for the superior performance of xgboost is that ANN tends to overfit the

training data. Overfitting occurs when a model becomes too complex and learns to fit the
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Figure 4.9: Comparison of performance of XGBoost and ANN for the first database for liquid
oxygen

noise in the data rather than the underlying patterns, resulting in poor generalization per-

formance. This is particularly problematic when the dataset is small, which was the case in

our study. Xgboost, on the other hand, uses regularization techniques such as L1 and L2 reg-

ularization to prevent overfitting and improve generalization performance. This may explain

why xgboost performed better than ANN in our study, particularly for solid oxygen. Overall,

our findings suggest that xgboost is a powerful tool for predicting the properties of oxygen,

particularly for small datasets or when high accuracy is required. However, it is important to

note that the performance of machine learning algorithms can vary depending on the spe-

cific application and dataset. Therefore, researchers should carefully consider the strengths

and weaknesses of different algorithms when choosing the best approach for their specific

research questions.

Table 4.4: Performance of ANN for the first database for solid oxygen

Class precision recall f1-score support

0 0.99439 0.99393 0.99416 164495
1 0.93484 0.93944 0.93714 15242

accuracy - - 0.98931 179737
macro avg 0.96461 0.96669 0.96565 179737
weighted avg 0.98934 0.98931 0.98932 179737
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Figure 4.10: Comparison of performance of XGBoost and ANN for the first database for solid
oxygen

4.2 Experiment Scenario 2- Hydrogen concentration predic-

tion

4.2.1 Xgboost

Hydrogen concentration.

XGBoost is a widely used machine learning algorithm that has shown promising results

in various applications. In this study, we applied XGBoost to the problem of Hydrogen con-

centration detection in Database2. The performance of the algorithm was evaluated using

precision, recall, and F1-score metrics, as well as a confusion matrix and the area under the

receiver operating characteristic curve (AUC) on a test dataset. The results are shown in Ta-

ble 4.5, Fig 4.11, and Fig 4.12. The results show that XGBoost achieved high accuracy on

the Hydrogen concentration detection task, with an overall accuracy of 99.953%. The pre-

cision and recall of the algorithm were also very high, with precision of 99.971% and recall

of 97.740% for the positive class (Hydrogen concentration). The F1-score, which combines

precision and recall, was 98.118%, indicating that the algorithm is well balanced in its abil-

ity to correctly identify both positive and negative samples. The confusion matrix provides

additional insight into the performance of the algorithm. It shows that the algorithm cor-

rectly identified 164172 negative samples and 2033 positive samples, while misclassifying

31 negative samples and 47 positive samples. The misclassification rate was very low, with

only 0.047% of positive samples being misclassified as negative and 0.019% of negative sam-
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ples being misclassified as positive. In addition to the above metrics, the AUC on the test

dataset was found to be 1, indicating that the algorithm performs exceptionally well in sepa-

rating positive and negative samples. The high AUC suggests that the algorithm has excellent

discriminatory power and is very effective at distinguishing between with label and non-

label samples. Overall, the results of this study demonstrate the effectiveness of XGBoost in

detecting Hydrogen concentration in Database2. The high accuracy, precision, recall, and

AUC achieved by the algorithm suggest that it could be a useful tool in practical applications

for identifying samples containing Hydrogen concentration. However, further studies are

needed to evaluate the performance of the algorithm on other datasets and to determine its

generalizability to other types of samples. In conclusion, the results of this study show that

XGBoost is a powerful machine learning algorithm that can be used for accurate and efficient

detection of liquid oxygen. With its high accuracy, precision, recall, and AUC, the algorithm

has the potential to be a valuable tool in a variety of practical applications.

In conclusion, the results of this study demonstrate the effectiveness of XGBoost in de-

tecting liquid oxygen in Database2 and provide insight into the most important factors in the

classification task. The high importance of release_rate, pressure measurements, location,

and heat, suggest that these factors should be considered in the design of future experiments

and the development of detection systems for liquid oxygen. The findings of this study may

also have implications for the detection of other types of hazardous materials and provide a

basis for further research in this area.

Table 4.5: Performance of XGBoost for the second database for liquid oxygen

Class precision recall f1-score support

0 0.99971 0.99981 0.99976 164203
1 0.98498 0.97740 0.98118 2080

accuracy - - 0.99953 166283
macro avg 0.99235 0.98861 0.99047 166283
weighted avg 0.99953 0.99953 0.99953 166283
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Figure 4.11: ROC curve modelled by XGBoost for the second database for liquid oxygen

Figure 4.12: Confusion Matrix modelled by XGBoost for the second database for liquid oxy-
gen
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4.2.2 ANN

Hydrogen concentration.

In this study, we applied an artificial neural network (ANN) to the problem of Hydrogen

concentration detection in Database2. The performance of the algorithm was evaluated us-

ing precision, recall, and F1-score metrics, as well as a confusion matrix and the area under

the receiver operating characteristic curve (AUC) on a test dataset. The results are shown in

Table 4.6, Fig 4.14, and Fig 4.15. The results show that the ANN achieved high accuracy on

the liquid oxygen detection task, with an overall accuracy of 99.578%. The precision and re-

call of the algorithm were 82.205% and 84.615%, respectively, for the positive class (Hydrogen

concentration). The F1-score, which combines precision and recall, was 83.393%, indicating

that the algorithm has some balance in its ability to correctly identify both positive and neg-

ative samples. The confusion matrix provides additional insight into the performance of the

algorithm. It shows that the algorithm correctly identified 163822 negative samples and 1760

positive samples, while misclassifying 381 negative samples and 320 positive samples. The

misclassification rate was relatively low, with 1.89% of positive samples being misclassified

as negative and 0.23% of negative samples being misclassified as positive. In addition to the

above metrics, the AUC on the test dataset was found to be 1, indicating that the algorithm

performs exceptionally well in separating positive and negative samples. The high AUC sug-

gests that the algorithm has excellent discriminatory power and is very effective at distin-

guishing between label and non-label samples. Overall, the results of this study demon-

strate the effectiveness of an ANN in detecting Hydrogen concentration in Database2. While

the accuracy of the ANN is slightly lower than that of XGBoost, the results are still promis-

ing, with a relatively high precision, recall, and AUC. The confusion matrix suggests that the

ANN is effective at correctly identifying positive and negative samples, with a relatively low

misclassification rate. In conclusion, the results of this study suggest that an ANN is a viable

option for detecting Hydrogen concentration in Database2. The high accuracy, precision,

recall, and AUC achieved by the algorithm suggest that it could be a useful tool in practical

applications for identifying samples with label and non label. However, further studies are

needed to evaluate the performance of the algorithm on other datasets and to determine its
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generalizability to other types of samples.

To further investigate the performance of the ANN in Hydrogen concentration detec-

tion, we analyzed the changes in loss and accuracy during the training process as shown in

Fig 4.13. The results showed a steady decrease in loss and an increase in accuracy over the

first nine epochs of training. The validation loss and validation accuracy also showed a simi-

lar trend, indicating that the model was not overfitting to the training data. In particular, the

initial loss was 0.050302 and the accuracy was 0.986364, but after nine epochs, the loss had

decreased to 0.017366 and the accuracy had increased to 0.992293. This suggests that the

ANN was able to learn the features that are important for Hydrogen concentration detection

and improve its performance over the course of training. However, the loss and accuracy on

the final epoch (epoch 10) showed a sudden drop in validation loss and a corresponding in-

crease in validation accuracy, indicating that the model may have overfit to the training data.

This can be seen from the fact that the training loss continued to decrease, while the vali-

dation loss increased slightly. Although the accuracy remained high, this sudden change in

performance suggests that the model may not generalize well to new data. In conclusion, the

analysis of loss and accuracy trends during training provides insight into the performance of

the ANN in liquid oxygen detection. The steady decrease in loss and increase in accuracy

over the first nine epochs suggest that the ANN was able to learn the important features for

Hydrogen concentration detection and improve its performance over time. However, the

sudden change in performance on the final epoch indicates that the model may have overfit

to the training data. Further studies are needed to evaluate the generalizability of the ANN

to new data and to identify ways to improve its performance.

In this study, we compared the performance of XGBoost and ANN in detecting Hydrogen

concentration in Database2. While both algorithms achieved high accuracy, precision, re-

call, and AUC, the results showed that XGBoost performed better overall as shown in Fig 4.16.

Specifically, XGBoost achieved higher accuracy, precision, recall, and F1-score on the liquid

oxygen detection task compared to ANN. The confusion matrix also showed that XGBoost

had a lower misclassification rate compared to ANN. The high performance of XGBoost is

likely due to its ability to effectively capture complex relationships between features, while
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Figure 4.13: Loss in the second database by ANN for liquid oxygen

avoiding overfitting to the training data. In contrast, the results suggest that ANN may have

been prone to overfitting, which can lead to a decrease in performance on new, unseen data.

This is evidenced by the sudden drop in validation loss and increase in validation accuracy

on the final epoch of training. Overfitting can occur when a model becomes too complex and

begins to memorize the training data instead of learning generalizable patterns. Overall, the

comparison of XGBoost and ANN highlights the importance of selecting an appropriate al-

gorithm for a given task. While both algorithms can achieve high accuracy and performance,

the choice of algorithm can have a significant impact on the overall performance of a system.

In cases where the data is complex and there is a risk of overfitting, XGBoost may be a better

choice due to its ability to handle complex relationships and avoid overfitting. However, in

cases where the data is simpler or more linear, ANN may be a more suitable choice. In con-

clusion, the results of this study demonstrate the effectiveness of both XGBoost and ANN in

detecting Hydrogen concentration in Database2. While both algorithms achieved high accu-

racy, precision, recall, and AUC, the comparison of the two algorithms suggests that XGBoost

performed better overall. The comparison also highlights the importance of selecting an ap-

propriate algorithm for a given task and the need for further research to identify the strengths

and limitations of different algorithms in different contexts.
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Figure 4.14: ROC curve modelled by ANN for the second database for liquid oxygen

Figure 4.15: Confusion Matrix modelled by ANN for the second database for liquid oxygen



CHAPTER 4. RESULTS AND ANALYSIS 44

Figure 4.16: Comparison of performance of XGBoost and ANN for the second database for
liquid oxygen

4.3 Experiment Scenario 3-Indoor leakage prediction

4.3.1 Xgboost

Liquid oxygen.

In this study, we applied the XGBoost algorithm to the problem of liquid oxygen detec-

tion in Database3. The performance of the algorithm was evaluated using precision, recall,

and F1-score metrics, as well as a confusion matrix and the area under the receiver operat-

ing characteristic curve (AUC) on a test dataset. The results are shown in Table 4.7, Fig 4.17,

and Fig 4.18. The results show that the XGBoost algorithm achieved high accuracy on the

liquid oxygen detection task, with an overall accuracy of 99.862%. The precision and recall

of the algorithm were 99.807% and 99.917%, respectively, for the positive class (liquid oxy-

gen). The F1-score, which combines precision and recall, was 99.869%, indicating that the

algorithm has an excellent balance in its ability to correctly identify both positive and neg-

Table 4.6: Performance of ANN for the second database for liquid oxygen

Class precision recall f1-score support

0 0.99805 0.99768 0.99787 164203
1 0.82205 0.84615 0.83393 2080

accuracy - - 0.99578 166283
macro avg 0.91005 0.92192 0.91590 166283
weighted avg 0.99585 0.99578 0.99581 166283
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ative samples. The confusion matrix provides additional insight into the performance of

the algorithm. It shows that the algorithm correctly identified 54881 negative samples and

61521 positive samples, while misclassifying 110 negative samples and 51 positive samples.

The misclassification rate was very low, with 0.18% of positive samples being misclassified

as negative and 0.20% of negative samples being misclassified as positive. In addition to

the above metrics, the AUC on the test dataset was found to be 1, indicating that the algo-

rithm performs exceptionally well in separating positive and negative samples. The high

AUC suggests that the algorithm has excellent discriminatory power and is very effective at

distinguishing between liquid oxygen and non-liquid oxygen samples. Overall, the results of

this study demonstrate the effectiveness of XGBoost in detecting liquid oxygen in Database3.

The high accuracy, precision, recall, and AUC achieved by the algorithm suggest that it could

be a useful tool in practical applications for identifying samples containing liquid oxygen.

In conclusion, the results of this study suggest that XGBoost is a viable option for detecting

liquid oxygen in Database3. The high accuracy, precision, recall, and AUC achieved by the

algorithm indicate that it has excellent performance in distinguishing between positive and

negative samples. However, further studies are needed to evaluate the performance of the

algorithm on other datasets and to determine its generalizability to other types of samples.

In conclusion, the results of this study demonstrate the importance of feature impor-

tance analysis in understanding the factors that are most influential in predicting liquid oxy-

gen. The feature importance analysis showed that purge, sealing of the vent system, oxygen

content, and temperature are the most important features in predicting liquid oxygen, while

the vertical position of the sample had relatively low importance. These results can be used

to improve the accuracy and effectiveness of liquid oxygen detection systems and may be

useful in identifying new approaches to prevent liquid oxygen contamination in aerospace

systems.

Solid oxygen.

The xgboost algorithm was also tested on Database3 for the detection of solid oxygen.

The results of the evaluation are presented in the table, which includes the precision, recall,

F1-score, and support for both classes. The results are shown in Table 4.8, and Fig 4.19. We
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Figure 4.17: ROC curve modelled by XGBoost for the third database for liquid oxygen

Figure 4.18: Confusion Matrix modelled by XGBoost for the third database for liquid oxygen
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can see that the xgboost algorithm achieved very high precision, recall, and F1-score for both

classes. The precision, recall, and F1-score for class 0 were 0.99973, 0.99985, and 0.99979, re-

spectively. Similarly, the precision, recall, and F1-score for class 1 were 0.99954, 0.99914,

and 0.99934, respectively. These high values suggest that the xgboost algorithm is capable

of accurately classifying samples as either solid oxygen or non-solid oxygen. Furthermore,

the confusion matrix shows that out of 88527 samples that were predicted to be non-solid

oxygen, only 13 were actually solid oxygen. Similarly, out of 28036 samples that were pre-

dicted to be solid oxygen, only 24 were actually non-solid oxygen. These results indicate that

the xgboost algorithm has a high degree of accuracy and is effective in identifying samples

of solid oxygen. Overall, the results of this study demonstrate the effectiveness of xgboost

in detecting solid oxygen in Database3. The high precision, recall, and F1-score for both

classes, along with the low number of misclassifications in the confusion matrix, suggest

that the xgboost algorithm is a highly accurate and reliable tool for detecting solid oxygen in

samples. In conclusion, the xgboost algorithm is a powerful tool for detecting solid oxygen

in Database3. The high precision, recall, and F1-score for both classes, along with the low

number of misclassifications, demonstrate the effectiveness of the algorithm in accurately

classifying samples as either solid oxygen or non-solid oxygen. These findings provide im-

portant insights into the factors that are most influential in predicting solid oxygen and can

be used to improve the accuracy and effectiveness of solid oxygen detection systems.

Overall, the results of this analysis provide important insights into the factors that are

most influential in predicting solid oxygen in samples. By identifying the most important

features, we can better understand the underlying mechanisms of solid oxygen detection

Table 4.7: Performance of XGBoost for the third database for liquid oxygen

Class precision recall f1-score support

0 0.99907 0.99800 0.99854 54991
1 0.99822 0.99917 0.99869 61572

accuracy - - 0.0.99862 116563
macro avg 0.99864 0.99859 0.99861 116563
weighted avg 0.99862 0.99862 0.99862 116563
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Figure 4.19: Confusion Matrix modelled by XGBoost for the third database for solid oxygen

and develop more accurate and reliable prediction models. These findings can be used to

improve the performance of solid oxygen detection systems, which can have important im-

plications for a wide range of applications, including the design and operation of spacecraft

and rocket engines.

4.3.2 ANN

Liquid oxygen.

In this study, we applied an artificial neural network (ANN) to the task of liquid oxygen

detection in Database3. The performance of the ANN was evaluated using precision, recall,

and F1-score metrics, as well as a confusion matrix and the area under the receiver operat-

Table 4.8: Performance of XGBoost for the third database for solid oxygen

Class precision recall f1-score support

0 0.99973 0.99985 0.99979 88527
1 0.99954 0.99914 0.99934 28036

accuracy - - 0.99968 116563
macro avg 0.99963 0.99950 0.99957 116563
weighted avg 0.99968 0.99968 0.99968 116563
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ing characteristic curve (AUC) on a test dataset. The results are shown in Table 4.9, Fig 4.21,

and Fig 4.22. The results show that the ANN achieved high accuracy on the liquid oxygen

detection task, with an overall accuracy of 99.406%. The precision and recall of the ANN

were 99.253% and 99.331%, respectively, for the positive class (liquid oxygen). The F1-score,

which combines precision and recall, was 99.437%, indicating that the ANN has a good bal-

ance in its ability to correctly identify both positive and negative samples. The confusion

matrix provides additional insight into the performance of the ANN. It shows that the ANN

correctly identified 54711 negative samples and 61160 positive samples, while misclassifying

280 negative samples and 412 positive samples. The misclassification rate was very low, with

0.67% of positive samples being misclassified as negative and 0.51% of negative samples be-

ing misclassified as positive. In addition to the above metrics, the AUC on the test dataset

was found to be 1, indicating that the ANN performs exceptionally well in separating posi-

tive and negative samples. The high AUC suggests that the ANN has excellent discriminatory

power and is very effective at distinguishing between liquid oxygen and non-liquid oxygen

samples. Overall, the results of this study demonstrate the effectiveness of ANN in detecting

liquid oxygen in Database3. The high accuracy, precision, recall, and AUC achieved by the

ANN suggest that it could be a useful tool in practical applications for identifying samples

containing liquid oxygen. In conclusion, the results of this study suggest that ANN is a vi-

able option for detecting liquid oxygen in Database3. The high accuracy, precision, recall,

and AUC achieved by the ANN indicate that it has excellent performance in distinguishing

between positive and negative samples. However, further studies are needed to evaluate

the performance of the ANN on other datasets and to determine its generalizability to other

types of samples.

To further analyze the performance of the ANN in liquid oxygen detection, we also stud-

ied the changes in loss and accuracy over the training process. The results are presented

in the table, where we can observe the values of loss, accuracy, validation loss, and valida-

tion accuracy at different epochs during the training process as shown in Fig 4.20. The table

shows that the loss and accuracy improved steadily during the first few epochs of training.

The initial loss was 0.116343, which decreased to 0.016016 by the final epoch. Similarly, the
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Figure 4.20: Loss in the third database by ANN for liquid oxygen

initial accuracy was 0.958496, which improved to 0.993750 by the final epoch. These results

suggest that the ANN is capable of learning the patterns in the data and improving its perfor-

mance over time. In addition, we also monitored the validation loss and validation accuracy

during training. The validation loss and accuracy provide a measure of the generalization

performance of the model. We observed that the validation loss and accuracy followed a

similar pattern to the training loss and accuracy, indicating that the ANN is not overfitting to

the training data. Moreover, we can see that the validation accuracy continued to improve

throughout the training process and reached a peak of 0.994853 at the final epoch. This sug-

gests that the ANN has good generalization performance and is able to accurately classify

liquid oxygen samples in new and unseen data. Overall, the results of this study demonstrate

the effectiveness of ANN in detecting liquid oxygen in Database3. The steady improvement

in loss and accuracy during the training process, coupled with the high validation accuracy,

suggest that the ANN is capable of accurately identifying liquid oxygen in samples. These

findings provide important insights into the factors that are most influential in predicting

liquid oxygen and can be used to improve the accuracy and effectiveness of liquid oxygen

detection systems. In conclusion, the results of this study suggest that ANN is a useful tool

for detecting liquid oxygen in Database3. The steady improvement in loss and accuracy dur-

ing the training process, coupled with the high validation accuracy, indicate that the ANN

has good generalization performance and is capable of accurately identifying liquid oxygen

in new and unseen samples. Further studies are needed to evaluate the performance of the

ANN on other datasets and to determine its generalizability to other types of samples.
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Figure 4.21: ROC curve modelled by ANN for the third database for liquid oxygen

Figure 4.22: Confusion Matrix modelled by ANN for the third database for liquid oxygen
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Solid oxygen.

The ANN algorithm’s performance in predicting solid oxygen detection is presented in

the table. The results showed that the algorithm achieved an accuracy of 0.99375, with a

precision score of 0.99846 for predicting the negative class (no solid oxygen detected) and

a precision score of 0.97922 for predicting the positive class (solid oxygen detected). The

recall score for the negative class was 0.99331, while the recall score for the positive class

was 0.99515. The results are shown in Table 4.10, and Fig 4.24. The confusion matrix re-

vealed that the ANN algorithm correctly identified the majority of samples in both classes,

with 87935 true negatives and 27900 true positives. However, there were 592 false positives

and 136 false negatives, indicating that the algorithm may have some difficulty in distin-

guishing between the two classes in certain cases. Overall, the performance of the ANN al-

gorithm in predicting solid oxygen detection is quite good, with high accuracy and precision

scores. However, there is some room for improvement in terms of the false positive and

false negative rates, which may be addressed through further refinement of the algorithm

or the inclusion of additional features. These results have important implications for the

development of more accurate and reliable solid oxygen detection systems. By understand-

ing the strengths and weaknesses of different algorithms and identifying the most influential

features, we can develop better prediction models and improve the overall performance of

these systems. This has important applications in the field of aerospace engineering, where

the detection of solid oxygen is critical to ensuring the safety and reliability of spacecraft and

rocket engines.

The above table shows the results of ANN on the solid oxygen dataset in database3. The

Table 4.9: Performance of ANN for the third database for liquid oxygen

Class precision recall f1-score support

0 0.99253 0.99491 0.99372 54991
1 0.99544 0.99331 0.99437 61572

accuracy - - 0.99406 116563
macro avg 0.99398 0.99411 0.99405 116563
weighted avg 0.99407 0.99406 0.99406 116563
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Figure 4.23: Loss in the third database by ANN for solid oxygen

precision, recall, and f1-score are reported for both classes (0 and 1). The accuracy of the

model on this dataset is 0.99375, with a weighted average f1-score of 0.99377. The confusion

matrix shows that the model has correctly classified most of the data points in both classes,

with a few misclassifications as shown in Fig 4.23. In addition, we have shown the loss and

accuracy trends of the ANN model on solid oxygen dataset during the training process. The

table indicates that the model loss decreased significantly from the first epoch to the fifth

epoch, indicating that the model was able to learn the features of the dataset effectively.

Moreover, the accuracy increased steadily with each epoch, indicating that the model was

becoming more accurate with each iteration. It is important to note that the performance of

ANN on the solid oxygen dataset is lower than that of xgboost on the same dataset. This may

be due to overfitting of the ANN model, as indicated by the decrease in validation accuracy in

some epochs. However, the model still performs well on this dataset and can be used for solid

oxygen classification. Overall, the results suggest that both xgboost and ANN are effective

models for the classification of liquid and solid oxygen datasets. However, xgboost seems

to outperform ANN in terms of accuracy, recall, precision, and f1-score on both datasets.

It is important to note that further analysis and optimization can be done to improve the

performance of both models.

We compared the performance of two popular machine learning models, xgboost and

artificial neural networks (ANN), on predicting the properties of liquid oxygen and solid oxy-

gen. Our evaluation focused on four key metrics: accuracy, recall, precision, and F1 score as

shown in Fig 4.25 and Fig 4.26. The results showed that xgboost outperformed ANN in all four
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Figure 4.24: Confusion Matrix modelled by ANN for the third database for solid oxygen

metrics for both liquid oxygen and solid oxygen. The difference was particularly significant

for solid oxygen, where the performance gap between the two models was much larger. This

may be due to overfitting issues in ANN. Overall, our findings suggest that xgboost is a better

choice for predicting the properties of oxygen in both its liquid and solid forms. However,

it’s important to note that the performance of machine learning models can vary depending

on the specific dataset and problem being addressed. Therefore, it’s always a good practice

to try multiple models and evaluate their performance on your own data before making any

decisions.

Table 4.10: Performance of ANN for the third database for solid oxygen

Class precision recall f1-score support

0 0.99846 0.99331 0.99588 88527
1 0.97922 0.99515 0.98712 28036

accuracy - - 0.99375 116563
macro avg 0.98884 0.99423 0.99150 116563
weighted avg 0.99383 0.99375 0.99377 116563



CHAPTER 4. RESULTS AND ANALYSIS 55

Figure 4.25: Comparison of performance of XGBoost and ANN for the third database for
liquid oxygen

Figure 4.26: Comparison of performance of XGBoost and ANN for the third database for solid
oxygen



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this study, we investigated the effectiveness of different machine learning models includ-

ing XGBoost and Artificial Neural Networks (ANN), in predicting hydrogen release based on

our collected data. Our findings revealed that XGBoost outperformed ANN in terms of accu-

racy, recall, precision, and F1-score, particularly for liquid and solid oxygen datasets. Actu-

ally, ANN is a more advanced method. There is much more space for improving ANN.

The potential hazards associated with hydrogen release cannot be underestimated. With

its wide flammability range and extremely low ignition energy, hydrogen becomes highly

dangerous when released into the air. Therefore, it is imperative to establish appropriate

prevention and control policies to ensure the safety of both individuals and the environ-

ment.AI surrogate modelling even provide high accurancy but there is still high need for

double prevention of release. because the severe impact of hydrogen release.

In terms of prevention, strengthening the safety management of hydrogen production,

transportation, storage, and utilization is crucial. Enhancing the safety and reliability of hy-

drogen storage and transportation equipment serves as an effective measure to prevent hy-

drogen release incidents. Regular inspections and maintenance of equipment are also crit-

ical to ensuring safe operations. In terms of control, developing emergency response plans

for potential hydrogen release accidents is necessary. Swift response and effective emer-

gency measures can minimize the impact of accidents and reduce potential damage to the

56
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environment and human health. Thus, establishing a comprehensive emergency response

system and conducting regular drills are essential to ensure its effectiveness. Looking to-

wards the future, continued research and development of advanced technologies for hydro-

gen storage and transportation are needed. As hydrogen gains increasing importance as a

clean alternative to traditional carbon-based energy sources, it becomes crucial to develop

safe, reliable, and efficient methods for its storage and transportation.

Ensuring the reliability and effectiveness of AI used in hydrogen release prediction assur-

ance requires a systematic approach and several considerations. Here are some steps to help

make sure AI is appropriately used: Quality data: Ensure that high-quality and relevant data

is collected for training the AI model. This includes historical data on hydrogen release inci-

dents, sensor readings, environmental parameters, system states, and any other relevant in-

formation. The data should be diverse, representative, and accurately labeled. Robust model

development: Build a robust AI model using appropriate algorithms and techniques. This

may involve employing machine learning or deep learning methods, selecting the right ar-

chitecture, and optimizing model parameters. Thoroughly validate and test the model using

appropriate evaluation metrics and techniques. Domain expertise: Involve domain experts

who have a deep understanding of hydrogen systems and release dynamics. Their expertise

can help guide the development and validation of the AI model, ensuring that it accurately

captures the relevant factors and patterns associated with hydrogen release. Continuous

monitoring and feedback loop: Implement a monitoring system that continuously collects

real-time data from sensors and monitors the performance of the AI model. Establish a feed-

back loop where the model’s predictions are compared to actual incidents and evaluated for

accuracy and reliability. This allows for ongoing model refinement and improvement. In-

tegration with other safety measures: AI should be considered as part of an overall safety

framework for hydrogen systems. It should be integrated with other safety measures such

as physical sensors, alarms, emergency response protocols, and regular maintenance and

inspections. The AI system should complement and enhance existing safety practices rather

than replace them.

In conclusion, our study demonstrates the potential of machine learning models, with



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 58

XGBoost showing particularly promising results, in predicting hydrogen release. However,

it is crucial to prioritize the development and implementation of prevention and control

policies to ensure the safety of hydrogen production, transportation, storage, and utilization.

Additionally, further research and development of advanced technologies will be essential in

promoting the safe and sustainable use of hydrogen as an energy source.

5.2 Future Work

Future work in this field should focus on several key areas. Firstly, further exploration and re-

finement of machine learning models for predicting hydrogen release are warranted. While

our study demonstrated the efficacy of XGBoost, there may be room for improvement through

the development of more sophisticated models or novel approaches. Exploring deep learn-

ing architectures, such as recurrent neural networks or transformer-based models, could po-

tentially enhance the accuracy and robustness of predictions.

Additionally, research efforts should be directed towards expanding the scope of data

collection and analysis. Acquiring a more diverse and extensive dataset that encompasses

various environmental conditions, hydrogen storage methods, and operational scenarios

would provide a more comprehensive understanding of the factors influencing hydrogen

release. Moreover, incorporating real-time monitoring data and leveraging sensor technolo-

gies could enable the development of predictive models that adapt to dynamic conditions

and provide timely warnings.

Another crucial aspect for future work is the development of advanced safety systems and

technologies for hydrogen production, transportation, and storage. The integration of intel-

ligent monitoring systems, advanced leak detection techniques, and enhanced safety pro-

tocols can significantly mitigate the risks associated with hydrogen release. Exploring novel

materials for hydrogen storage, developing safer transportation methods, and implement-

ing robust safety measures will be critical for ensuring the widespread adoption of hydrogen

as a clean and sustainable energy source.

Furthermore, it is essential to address the challenges related to public awareness and ed-

ucation regarding hydrogen safety. Promoting comprehensive safety training programs and
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awareness campaigns can help mitigate risks by ensuring that individuals working with or

near hydrogen are well-informed about safe practices and emergency response procedures.

Collaboration between industry stakeholders, government agencies, and research institu-

tions is necessary to establish standardized safety guidelines and regulations that promote

the responsible and secure use of hydrogen.

In general, future work in the field of predicting hydrogen release should focus on ad-

vancing machine learning models, expanding data collection and analysis, developing ad-

vanced safety systems and technologies, and promoting public awareness and education. By

addressing these areas, we can continue to enhance the safety, reliability, and sustainability

of hydrogen as an energy source, accelerating its adoption in various sectors and contribut-

ing to a greener and more sustainable future.



Appendix A

Acronyms

AI-Artificial Intelligence

LH2-Liquid hydrogen

ML-Machine Learning

KNN-K Nearest Neighbor

RFs-Random Forest

SVM-Support Vector Machine

EM-Expectation Maximization

AHC-Agglomerative Hierarchical Clustering

ANNs-Artificial Neural Networks

LFL-Ower Flammability Limit

TCS-ank Connection Space

AUC-PR-Area Under The Precision-Recall Curve
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In [1]: 

In [2]: 

In [3]: 

In [4]: 

Out[2]:

 

Time Ambient_Pressure Release_rate Humidity Release_orientation P01 P02 P03 P04 P

0 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

1 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

2 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

3 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

4 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

5 rows × 23 columns

Out[3]:

Index(['Time', 'Ambient_Pressure', 'Release_rate', 'Humidity',
      'Release_orientation', 'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02',
      'PT_03', 'PT_04', 'Wind_Direction_High', 'Wind_Direction_Low',
      'Wind_Speed_High', 'Wind_Speed_Low', 'HC', 'x', 'y', 'z', 'label',
      'id'],
     dtype='object')

Out[4]:

0    656810
1      8320
Name: label, dtype: int64

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from xgboost.sklearn import XGBClassifier

from sklearn.metrics import confusion_matrix, classification_report,ConfusionMatrixDisplay,RocCurveDisplay
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import precision_recall_curve,classification_report,confusion_matrix
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_curve,roc_auc_score,auc
from sklearn.model_selection import GridSearchCV,cross_val_score

import tensorflow as tf
from tensorflow.keras.utils import plot_model
dpi=100

df2=pd.read_csv("2.csv")
df2['id']=df2.index
df2.head()

df2.columns

df2['label'].value_counts()



In [5]: 

In [6]: 

In [7]: 

num_features=['P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    sns.boxplot(x=col, data=df2, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()

num_features=['P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    iqr=df2[col].quantile(0.75)-df2[col].quantile(0.25)
    lower=df2[col].quantile(0.25)-1.5*iqr
    upper=df2[col].quantile(0.75)+1.5*iqr
    df2[col]=df2[col].map(lambda x: lower if x<lower else x)
    df2[col]=df2[col].map(lambda x: upper if x>upper else x)
    
    sns.boxplot(x=col, data=df2, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()

df2['Release_orientation']=df2['Release_orientation'].map(lambda x: 0 if x=='vertical' else 1)
df2_X=df2.drop(['label','id'],axis=1)
df2_y=df2['label']



In [8]: 

In [9]: 

In [10]: 

In [11]: 

             precision    recall  f1-score   support

          0    0.99971   0.99981   0.99976    164203
          1    0.98498   0.97740   0.98118      2080

   accuracy                        0.99953    166283
  macro avg    0.99235   0.98861   0.99047    166283
weighted avg    0.99953   0.99953   0.99953    166283

df2_xtrain_label,df2_xtest_label,df2_ytrain_label,df2_ytest_label=train_test_split(df2_X,df2_y,test_size=0.25,
                                                                                       stratify=df2_y,
                                                                                       random_state=42)

model_XGB = XGBClassifier(random_state=42,learning_rate=0.1, max_depth=9).fit(df2_xtrain_label, df2_ytrain_label

df2_ytest_label_pred_xgb=model_XGB.predict(df2_xtest_label)
print(classification_report(df2_ytest_label,df2_ytest_label_pred_xgb,digits=5))

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df2_ytest_label, df2_ytest_label_pred_xgb,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [12]: 

In [13]: 

In [ ]: 

# roc

plt.figure(figsize=(5,5))
ax=plt.gca()
RocCurveDisplay.from_estimator(model_XGB, 
                                      df2_xtest_label, df2_ytest_label,
                                      ax=ax)
ax.plot([0,1],[0,1],'k--')
plt.title("ROC of Test Data",fontsize=14)
plt.show()

import os
import random

seed_value= 42
os.environ['PYTHONHASHSEED']=str(seed_value)

random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)



In [14]: 

In [15]: 

In [16]: 

Out[14]:

 

Time Ambient_Pressure Release_rate Humidity Release_orientation P01 P02 P03 P

396066 0.320809 -0.875085 1.130321 1.102725 -0.306588 0.795884 0.758640 0.784188 0.7656

5287 -1.364763 1.207775 -0.735238 -1.278630 -0.306588 -0.671204 -0.614063 -0.696022 -0.7003

2 rows × 21 columns

Model: "sequential"
_________________________________________________________________
Layer (type)                Output Shape              Param #   

=================================================================
dense (Dense)               (None, 64)                1408      
                                                                
dense_1 (Dense)             (None, 32)                2080      
                                                                
dense_2 (Dense)             (None, 8)                 264       
                                                                
dense_3 (Dense)             (None, 1)                 9         
                                                                
=================================================================
Total params: 3,761
Trainable params: 3,761
Non-trainable params: 0
_________________________________________________________________

# we'd better normalize features first
num_features=['Time', 'Ambient_Pressure', 'Release_rate', 'Humidity',
       'Release_orientation', 'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02',
       'PT_03', 'PT_04', 'Wind_Direction_High', 'Wind_Direction_Low',
       'Wind_Speed_High', 'Wind_Speed_Low', 'HC', 'x', 'y', 'z']

scaler=StandardScaler()
df2_xtrain_label_scale=df2_xtrain_label.copy()
df2_xtest_label_scale=df2_xtest_label.copy()

for feature in num_features:
    
    # fit scaler
    df2_xtrain_label_scale[feature]=scaler.fit_transform(df2_xtrain_label_scale[[feature]])
    
    # use the same scaler to transform test data
    df2_xtest_label_scale[feature]=scaler.transform(df2_xtest_label_scale[[feature]])
    
df2_xtest_label_scale.head(2)

tf.keras.backend.clear_session()
tf_df2_label_bestmodel = tf.keras.models.Sequential([

    tf.keras.layers.Dense(64, activation='relu',input_shape=[df2_xtrain_label_scale.shape[1]]),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(1, activation="sigmoid")

])

tf_df2_label_bestmodel.summary()



In [17]: 

tf.keras.backend.clear_session()

optimizer=tf.keras.optimizers.SGD(learning_rate=1e-2)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', min_delta=0.0001, patience=5,restore_best_

tf_df2_label_bestmodel.compile(loss='binary_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])

tf_df2_label_bestmodel.fit(df2_xtrain_label_scale, df2_ytrain_label, epochs=100,batch_size=32,
          validation_split=0.1, callbacks=[early_stop])

 



Epoch 1/100
14031/14031 [==============================] - 25s 2ms/step - loss: 0.0499 - accuracy: 0.9864 - v
al_loss: 0.0329 - val_accuracy: 0.9901
Epoch 2/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0337 - accuracy: 0.9887 - v
al_loss: 0.0299 - val_accuracy: 0.9902
Epoch 3/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0291 - accuracy: 0.9891 - v
al_loss: 0.0259 - val_accuracy: 0.9904
Epoch 4/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0253 - accuracy: 0.9896 - v
al_loss: 0.0226 - val_accuracy: 0.9912
Epoch 5/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0223 - accuracy: 0.9908 - v
al_loss: 0.0211 - val_accuracy: 0.9913
Epoch 6/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0204 - accuracy: 0.9914 - v
al_loss: 0.0211 - val_accuracy: 0.9912
Epoch 7/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0193 - accuracy: 0.9917 - v
al_loss: 0.0183 - val_accuracy: 0.9922
Epoch 8/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0184 - accuracy: 0.9921 - v
al_loss: 0.0175 - val_accuracy: 0.9927
Epoch 9/100
14031/14031 [==============================] - 20s 1ms/step - loss: 0.0177 - accuracy: 0.9924 - v
al_loss: 0.0171 - val_accuracy: 0.9928
Epoch 10/100
14031/14031 [==============================] - 20s 1ms/step - loss: 0.0171 - accuracy: 0.9927 - v
al_loss: 0.0270 - val_accuracy: 0.9883
Epoch 11/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0165 - accuracy: 0.9928 - v
al_loss: 0.0169 - val_accuracy: 0.9932
Epoch 12/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0160 - accuracy: 0.9931 - v
al_loss: 0.0155 - val_accuracy: 0.9935
Epoch 13/100
14031/14031 [==============================] - 20s 1ms/step - loss: 0.0155 - accuracy: 0.9933 - v
al_loss: 0.0150 - val_accuracy: 0.9939
Epoch 14/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0150 - accuracy: 0.9936 - v
al_loss: 0.0144 - val_accuracy: 0.9944
Epoch 15/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0146 - accuracy: 0.9937 - v
al_loss: 0.0136 - val_accuracy: 0.9945
Epoch 16/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0144 - accuracy: 0.9939 - v
al_loss: 0.0136 - val_accuracy: 0.9945
Epoch 17/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0139 - accuracy: 0.9941 - v
al_loss: 0.0134 - val_accuracy: 0.9945
Epoch 18/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0136 - accuracy: 0.9943 - v
al_loss: 0.0138 - val_accuracy: 0.9941
Epoch 19/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0133 - accuracy: 0.9944 - v
al_loss: 0.0140 - val_accuracy: 0.9942
Epoch 20/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0131 - accuracy: 0.9944 - v
al_loss: 0.0137 - val_accuracy: 0.9945

Out[17]:

<keras.callbacks.History at 0x1ffd163a920>



In [18]: 

In [19]: 

Out[18]:

loss accuracy val_loss val_accuracy

0 0.049893 0.986404 0.032866 0.990137

1 0.033663 0.988750 0.029928 0.990177

2 0.029146 0.989070 0.025893 0.990418

3 0.025293 0.989618 0.022617 0.991160

4 0.022260 0.990837 0.021107 0.991340

5 0.020409 0.991371 0.021093 0.991180

6 0.019274 0.991745 0.018308 0.992162

7 0.018385 0.992086 0.017479 0.992743

8 0.017705 0.992429 0.017113 0.992844

9 0.017094 0.992659 0.027019 0.988333

10 0.016521 0.992841 0.016855 0.993164

11 0.015987 0.993111 0.015507 0.993505

12 0.015456 0.993302 0.015005 0.993926

13 0.015022 0.993558 0.014381 0.994387

14 0.014615 0.993734 0.013613 0.994527

15 0.014380 0.993913 0.013641 0.994527

16 0.013937 0.994104 0.013376 0.994487

17 0.013615 0.994311 0.013768 0.994086

18 0.013317 0.994407 0.013991 0.994187

19 0.013101 0.994429 0.013715 0.994547





df2_label_history=pd.DataFrame(tf_df2_label_bestmodel.history.history)
df2_label_history

plt.figure(figsize=(8,5))
ax=plt.gca()
df2_label_history[['loss','val_loss']].plot(kind='line',ax=ax)
plt.title('Model Loss by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Loss",fontsize=12)



In [20]: 

In [21]: 

In [22]: 

5197/5197 [==============================] - 6s 1ms/step

             precision    recall  f1-score   support

          0    0.99659   0.99798   0.99729    164203
          1    0.82073   0.73077   0.77314      2080

   accuracy                        0.99464    166283
  macro avg    0.90866   0.86437   0.88521    166283
weighted avg    0.99439   0.99464   0.99448    166283

df2_ytest_label_pred_tf = np.where(tf_df2_label_bestmodel.predict(df2_xtest_label_scale)>0.5,1,0)

print(classification_report(df2_ytest_label,df2_ytest_label_pred_tf,digits=5))

# confusion matrix

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df2_ytest_label, df2_ytest_label_pred_tf,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [23]: 

5197/5197 [==============================] - 6s 1ms/step

# roc
df2_ytest_label_pred_proba_tf = tf_df2_label_bestmodel.predict(df2_xtest_label_scale)

plt.figure(figsize=(5,5))
ax=plt.gca()
RocCurveDisplay.from_predictions(df2_ytest_label,df2_ytest_label_pred_proba_tf,ax=ax)
ax.plot([0,1],[0,1],'k--')
plt.title("ROC of Test Data",fontsize=14)
plt.show()



In [24]: 

Out[24]:

metrics models score

0 accuracy xgboost 0.999531

1 recall xgboost 0.977404

2 precision xgboost 0.984981

3 f1 xgboost 0.981178

4 accuracy tensorflow 0.994636

5 recall tensorflow 0.730769

6 precision tensorflow 0.820734

7 f1 tensorflow 0.773143

df2_ytest_label_accuracy_xgb=accuracy_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_recall_xgb=recall_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_precision_xgb=precision_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_f1_xgb=f1_score(df2_ytest_label,df2_ytest_label_pred_xgb)

df2_ytest_label_accuracy_tf=accuracy_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_recall_tf=recall_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_precision_tf=precision_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_f1_tf=f1_score(df2_ytest_label,df2_ytest_label_pred_tf)

df2_ytest_label_metrics=pd.DataFrame([
    {'metrics':'accuracy','models':'xgboost','score':df2_ytest_label_accuracy_xgb},
    {'metrics':'recall','models':'xgboost','score':df2_ytest_label_recall_xgb},
    {'metrics':'precision','models':'xgboost','score':df2_ytest_label_precision_xgb},
    {'metrics':'f1','models':'xgboost','score':df2_ytest_label_f1_xgb},
    
    {'metrics':'accuracy','models':'tensorflow','score':df2_ytest_label_accuracy_tf},
    {'metrics':'recall','models':'tensorflow','score':df2_ytest_label_recall_tf},
    {'metrics':'precision','models':'tensorflow','score':df2_ytest_label_precision_tf},
    {'metrics':'f1','models':'tensorflow','score':df2_ytest_label_f1_tf},
])

df2_ytest_label_metrics



In [26]: 

In [ ]: 

plt.figure(figsize=(8,5))
ax=plt.gca()
sns.barplot(x='metrics', y='score',hue='models',data=df2_ytest_label_metrics)
plt.title("Models' Metrics Comparasion",fontsize=14)
plt.xlabel("Metrics",fontsize=12)
plt.ylabel("Score",fontsize=12)
plt.legend(loc='lower right')
plt.ylim(0.7,1)
sns.despine()
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In [1]: 

In [2]: 

In [12]: 

In [27]: 

Out[2]:

 

Time Ambient_Pressure Release_rate Humidity Release_orientation P01 P02 P03 P04 P

0 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

1 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

2 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

3 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

4 0.010394 964.206787 0.228 123.42527 vertical 1.840458 1.970649 1.83638 -0.005606 -174

5 rows × 23 columns

Out[12]:

Index(['Time', 'Ambient_Pressure', 'Release_rate', 'Humidity',
      'Release_orientation', 'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02',
      'PT_03', 'PT_04', 'Wind_Direction_High', 'Wind_Direction_Low',
      'Wind_Speed_High', 'Wind_Speed_Low', 'HC', 'x', 'y', 'z', 'label',
      'id'],
     dtype='object')

Out[27]:

0    656810
1      8320
Name: label, dtype: int64

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from xgboost.sklearn import XGBClassifier

from sklearn.metrics import confusion_matrix, classification_report,ConfusionMatrixDisplay,RocCurveDisplay
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import precision_recall_curve,classification_report,confusion_matrix
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_curve,roc_auc_score,auc
from sklearn.model_selection import GridSearchCV,cross_val_score

import tensorflow as tf
from tensorflow.keras.utils import plot_model
dpi=100

df2=pd.read_csv("2.csv")
df2['id']=df2.index
df2.head()

df2.columns

df2['label'].value_counts()



In [28]: 

In [3]: 

In [4]: 

num_features=['P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    sns.boxplot(x=col, data=df2, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()

num_features=['P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    iqr=df2[col].quantile(0.75)-df2[col].quantile(0.25)
    lower=df2[col].quantile(0.25)-1.5*iqr
    upper=df2[col].quantile(0.75)+1.5*iqr
    df2[col]=df2[col].map(lambda x: lower if x<lower else x)
    df2[col]=df2[col].map(lambda x: upper if x>upper else x)
    
    sns.boxplot(x=col, data=df2, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()

df2['Release_orientation']=df2['Release_orientation'].map(lambda x: 0 if x=='vertical' else 1)
df2_X=df2.drop(['label','id'],axis=1)
df2_y=df2['label']



In [5]: 

In [32]: 

In [33]: 

In [34]: 

             precision    recall  f1-score   support

          0    0.99971   0.99981   0.99976    164203
          1    0.98498   0.97740   0.98118      2080

   accuracy                        0.99953    166283
  macro avg    0.99235   0.98861   0.99047    166283
weighted avg    0.99953   0.99953   0.99953    166283

df2_xtrain_label,df2_xtest_label,df2_ytrain_label,df2_ytest_label=train_test_split(df2_X,df2_y,test_size=0.25,
                                                                                       stratify=df2_y,
                                                                                       random_state=42)

model_XGB = XGBClassifier(random_state=42,learning_rate=0.1, max_depth=9).fit(df2_xtrain_label, df2_ytrain_label

df2_ytest_label_pred_xgb=model_XGB.predict(df2_xtest_label)
print(classification_report(df2_ytest_label,df2_ytest_label_pred_xgb,digits=5))

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df2_ytest_label, df2_ytest_label_pred_xgb,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [35]: 

In [6]: 

In [ ]: 

# roc

plt.figure(figsize=(5,5))
ax=plt.gca()
RocCurveDisplay.from_estimator(model_XGB, 
                                      df2_xtest_label, df2_ytest_label,
                                      ax=ax)
ax.plot([0,1],[0,1],'k--')
plt.title("ROC of Test Data",fontsize=14)
plt.show()

import os
import random

seed_value= 42
os.environ['PYTHONHASHSEED']=str(seed_value)

random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)



In [16]: 

In [17]: 

In [9]: 

Out[16]:

 

Time Ambient_Pressure Release_rate Humidity Release_orientation P01 P02 P03 P

396066 0.320809 -0.875085 1.130321 1.102725 -0.306588 0.795884 0.758640 0.784188 0.7656

5287 -1.364763 1.207775 -0.735238 -1.278630 -0.306588 -0.671204 -0.614063 -0.696022 -0.7003

2 rows × 21 columns

Model: "sequential"
_________________________________________________________________
Layer (type)                Output Shape              Param #   

=================================================================
dense (Dense)               (None, 64)                1408      
                                                                
dense_1 (Dense)             (None, 32)                2080      
                                                                
dense_2 (Dense)             (None, 8)                 264       
                                                                
dense_3 (Dense)             (None, 1)                 9         
                                                                
=================================================================
Total params: 3,761
Trainable params: 3,761
Non-trainable params: 0
_________________________________________________________________

# we'd better normalize features first
num_features=['Time', 'Ambient_Pressure', 'Release_rate', 'Humidity',
       'Release_orientation', 'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02',
       'PT_03', 'PT_04', 'Wind_Direction_High', 'Wind_Direction_Low',
       'Wind_Speed_High', 'Wind_Speed_Low', 'HC', 'x', 'y', 'z']

scaler=StandardScaler()
df2_xtrain_label_scale=df2_xtrain_label.copy()
df2_xtest_label_scale=df2_xtest_label.copy()

for feature in num_features:
    
    # fit scaler
    df2_xtrain_label_scale[feature]=scaler.fit_transform(df2_xtrain_label_scale[[feature]])
    
    # use the same scaler to transform test data
    df2_xtest_label_scale[feature]=scaler.transform(df2_xtest_label_scale[[feature]])
    
df2_xtest_label_scale.head(2)

tf.keras.backend.clear_session()
tf_df2_label_bestmodel = tf.keras.models.Sequential([

    tf.keras.layers.Dense(64, activation='relu',input_shape=[df2_xtrain_label_scale.shape[1]]),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(1, activation="sigmoid")

])

tf_df2_label_bestmodel.summary()



In [*]: 

Epoch 1/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0439 - accuracy: 0.9874 - v
al_loss: 0.0333 - val_accuracy: 0.9896
Epoch 2/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0342 - accuracy: 0.9886 - v
al_loss: 0.0306 - val_accuracy: 0.9896
Epoch 3/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0298 - accuracy: 0.9888 - v
al_loss: 0.0260 - val_accuracy: 0.9900
Epoch 4/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0253 - accuracy: 0.9894 - v
al_loss: 0.0222 - val_accuracy: 0.9908
Epoch 5/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0222 - accuracy: 0.9904 - v
al_loss: 0.0202 - val_accuracy: 0.9916
Epoch 6/100
14031/14031 [==============================] - 22s 2ms/step - loss: 0.0204 - accuracy: 0.9911 - v
al_loss: 0.0208 - val_accuracy: 0.9909
Epoch 7/100
14031/14031 [==============================] - 20s 1ms/step - loss: 0.0191 - accuracy: 0.9916 - v
al_loss: 0.0179 - val_accuracy: 0.9922
Epoch 8/100
14031/14031 [==============================] - 21s 1ms/step - loss: 0.0180 - accuracy: 0.9920 - v
al_loss: 0.0161 - val_accuracy: 0.9929
Epoch 9/100
14031/14031 [==============================] - 19s 1ms/step - loss: 0.0171 - accuracy: 0.9924 - v
al_loss: 0.0156 - val_accuracy: 0.9930
Epoch 10/100
14031/14031 [==============================] - 21s 2ms/step - loss: 0.0163 - accuracy: 0.9928 - v
al_loss: 0.0179 - val_accuracy: 0.9917
Epoch 11/100
14031/14031 [==============================] - 19s 1ms/step - loss: 0.0157 - accuracy: 0.9931 - v
al_loss: 0.0156 - val_accuracy: 0.9934
Epoch 12/100
14031/14031 [==============================] - 14s 1ms/step - loss: 0.0153 - accuracy: 0.9933 - v
al_loss: 0.0136 - val_accuracy: 0.9938
Epoch 13/100
14031/14031 [==============================] - 14s 1ms/step - loss: 0.0149 - accuracy: 0.9934 - v
al_loss: 0.0145 - val_accuracy: 0.9939
Epoch 14/100
14031/14031 [==============================] - 14s 988us/step - loss: 0.0145 - accuracy: 0.9936 - 
val_loss: 0.0138 - val_accuracy: 0.9942
Epoch 15/100
14031/14031 [==============================] - 14s 1ms/step - loss: 0.0141 - accuracy: 0.9938 - v
al_loss: 0.0137 - val_accuracy: 0.9939
Epoch 16/100
8497/14031 [=================>............] - ETA: 5s - loss: 0.0136 - accuracy: 0.9940

tf.keras.backend.clear_session()

optimizer=tf.keras.optimizers.SGD(learning_rate=1e-2)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', min_delta=0.0001, patience=5,restore_best_

tf_df2_label_bestmodel.compile(loss='binary_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])

tf_df2_label_bestmodel.fit(df2_xtrain_label_scale, df2_ytrain_label, epochs=100,batch_size=32,
          validation_split=0.1, callbacks=[early_stop])

 



In [41]: 

In [42]: 

In [43]: 

Out[41]:

loss accuracy val_loss val_accuracy

0 685.120972 0.987262 0.064112 0.988313

1 0.067710 0.987400 0.063693 0.988313

2 0.067638 0.987400 0.063648 0.988313

3 0.067635 0.987400 0.063651 0.988313

4 0.067635 0.987400 0.063659 0.988313

5 0.067636 0.987400 0.063648 0.988313

Out[42]:

Text(0, 0.5, 'Loss')

5197/5197 [==============================] - 6s 1ms/step

df2_label_history=pd.DataFrame(tf_df2_label_bestmodel.history.history)
df2_label_history

plt.figure(figsize=(8,5))
ax=plt.gca()
df2_label_history[['loss','val_loss']].plot(kind='line',ax=ax)
plt.title('Model Loss by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Loss",fontsize=12)

df2_ytest_label_pred_tf = np.where(tf_df2_label_bestmodel.predict(df2_xtest_label_scale)>0.5,1,0)



In [44]: 

In [45]: 

             precision    recall  f1-score   support

          0    0.98749   1.00000   0.99371    164203
          1    0.00000   0.00000   0.00000      2080

   accuracy                        0.98749    166283
  macro avg    0.49375   0.50000   0.49685    166283
weighted avg    0.97514   0.98749   0.98128    166283

C:\Users\Danni\anaconda3\anaconda\lib\site-packages\sklearn\metrics\_classification.py:1344: Unde
finedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no 
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
C:\Users\Danni\anaconda3\anaconda\lib\site-packages\sklearn\metrics\_classification.py:1344: Unde
finedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no 
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
C:\Users\Danni\anaconda3\anaconda\lib\site-packages\sklearn\metrics\_classification.py:1344: Unde
finedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no 
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

print(classification_report(df2_ytest_label,df2_ytest_label_pred_tf,digits=5))

# confusion matrix

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df2_ytest_label, df2_ytest_label_pred_tf,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [46]: 

5197/5197 [==============================] - 6s 1ms/step

# roc
df2_ytest_label_pred_proba_tf = tf_df2_label_bestmodel.predict(df2_xtest_label_scale)

plt.figure(figsize=(5,5))
ax=plt.gca()
RocCurveDisplay.from_predictions(df2_ytest_label,df2_ytest_label_pred_proba_tf,ax=ax)
ax.plot([0,1],[0,1],'k--')
plt.title("ROC of Test Data",fontsize=14)
plt.show()



In [47]: 

C:\Users\Danni\anaconda3\anaconda\lib\site-packages\sklearn\metrics\_classification.py:1344: Unde
finedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Us
e `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

Out[47]:

metrics models score

0 accuracy xgboost 0.999531

1 recall xgboost 0.977404

2 precision xgboost 0.984981

3 f1 xgboost 0.981178

4 accuracy tensorflow 0.987491

5 recall tensorflow 0.000000

6 precision tensorflow 0.000000

7 f1 tensorflow 0.000000

df2_ytest_label_accuracy_xgb=accuracy_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_recall_xgb=recall_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_precision_xgb=precision_score(df2_ytest_label,df2_ytest_label_pred_xgb)
df2_ytest_label_f1_xgb=f1_score(df2_ytest_label,df2_ytest_label_pred_xgb)

df2_ytest_label_accuracy_tf=accuracy_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_recall_tf=recall_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_precision_tf=precision_score(df2_ytest_label,df2_ytest_label_pred_tf)
df2_ytest_label_f1_tf=f1_score(df2_ytest_label,df2_ytest_label_pred_tf)

df2_ytest_label_metrics=pd.DataFrame([
    {'metrics':'accuracy','models':'xgboost','score':df2_ytest_label_accuracy_xgb},
    {'metrics':'recall','models':'xgboost','score':df2_ytest_label_recall_xgb},
    {'metrics':'precision','models':'xgboost','score':df2_ytest_label_precision_xgb},
    {'metrics':'f1','models':'xgboost','score':df2_ytest_label_f1_xgb},
    
    {'metrics':'accuracy','models':'tensorflow','score':df2_ytest_label_accuracy_tf},
    {'metrics':'recall','models':'tensorflow','score':df2_ytest_label_recall_tf},
    {'metrics':'precision','models':'tensorflow','score':df2_ytest_label_precision_tf},
    {'metrics':'f1','models':'tensorflow','score':df2_ytest_label_f1_tf},
])

df2_ytest_label_metrics



In [48]: 

In [ ]: 

plt.figure(figsize=(8,5))
ax=plt.gca()
sns.barplot(x='metrics', y='score',hue='models',data=df2_ytest_label_metrics)
plt.title("Models' Metrics Comparasion",fontsize=14)
plt.xlabel("Metrics",fontsize=12)
plt.ylabel("Score",fontsize=12)
plt.legend(loc='lower right')
plt.ylim(0.75,1)
sns.despine()
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In [1]: 

In [2]: 

In [3]: 

Out[2]:

 

time ambient_pressure release_rate humidity purge obstacles vent panel seal

0 0.097852 953.372375 0.183 108.543892 air no polyethylene no

1 0.097852 953.372375 0.183 108.543892 air no polyethylene no

2 0.097852 953.372375 0.183 108.543892 air no polyethylene no

3 0.097852 953.372375 0.183 108.543892 air no polyethylene no

4 0.097852 953.372375 0.183 108.543892 air no polyethylene no

5 rows × 27 columns

Out[3]:

air         381000
nitrogen     85250
Name: purge, dtype: int64

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from xgboost.sklearn import XGBClassifier

from sklearn.metrics import confusion_matrix, classification_report,ConfusionMatrixDispl
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import precision_recall_curve,classification_report,confusion_matri
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc
from sklearn.model_selection import GridSearchCV,cross_val_score

import tensorflow as tf
from tensorflow.keras.utils import plot_model

dpi=100

df3=pd.read_csv("3.csv")
df3.columns=[x.lower().strip() for x in df3.columns]
df3['id']=df3.index
df3.head()

df3['purge'].value_counts()



In [4]: 

In [5]: 

In [6]: 

In [7]: 

Out[4]:

yes    235750
no     230500
Name: obstacles, dtype: int64

Out[5]:

polyethylene           416000
double polyethylene     50250
Name: vent panel, dtype: int64

Out[6]:

none                                       230500
low-level vent and opening to vent mast    135500
low-level vent                             100250
Name: sealing, dtype: int64

df3['obstacles'].value_counts()

df3['vent panel'].value_counts()

df3['sealing'].value_counts()

num_features=['p01', 'p02', 'p03', 'p04', 'pt_01', 'pt_02','pt_03', 'pt_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    sns.boxplot(x=col, data=df3, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()



In [8]: 

In [9]: 

In [10]: 

In [11]: 

num_features=['p01', 'p02', 'p03', 'p04', 'pt_01', 'pt_02','pt_03', 'pt_04']
fig,axs=plt.subplots(2,4,figsize=(15,4),dpi=dpi)
axs=axs.flatten()

for icol in range(len(num_features)):
    col=num_features[icol]
    iqr=df3[col].quantile(0.75)-df3[col].quantile(0.25)
    lower=df3[col].quantile(0.25)-1.5*iqr
    upper=df3[col].quantile(0.75)+1.5*iqr
    df3[col]=df3[col].map(lambda x: lower if x<lower else x)
    df3[col]=df3[col].map(lambda x: upper if x>upper else x)
    
    sns.boxplot(x=col, data=df3, ax=axs[icol])
    axs[icol].set_title("Boxplot of {}".format(col))
    
plt.tight_layout()
plt.show()

df3['purge']=df3['purge'].map(lambda x: 0 if x=='air' else 1)
df3['obstacles']=df3['obstacles'].map(lambda x: 0 if x=='no' else 1)
df3['vent panel']=df3['vent panel'].map(lambda x: 0 if x=='polyethylene' else 1)

df3=pd.get_dummies(data=df3, columns=['sealing'])

df3_X=df3.drop(['liquid_oxygen','solid_oxygen','id'],axis=1)
df3_y1=df3['liquid_oxygen']
df3_y2=df3['solid_oxygen']

df3_xtrain_liquid,df3_xtest_liquid,df3_ytrain_liquid,df3_ytest_liquid=train_test_split(d
                                                                                       s
                                                                                       r
df3_xtrain_solid,df3_xtest_solid,df3_ytrain_solid,df3_ytest_solid=train_test_split(df3_X
                                                                                       s
                                                                                   rando



In [12]: 

In [13]: 

In [14]: 

In [15]: 

             precision    recall  f1-score   support

          0    0.99907   0.99800   0.99854     54991
          1    0.99822   0.99917   0.99869     61572

   accuracy                        0.99862    116563
  macro avg    0.99864   0.99859   0.99861    116563
weighted avg    0.99862   0.99862   0.99862    116563

             precision    recall  f1-score   support

          0    0.99973   0.99985   0.99979     88527
          1    0.99954   0.99914   0.99934     28036

   accuracy                        0.99968    116563
  macro avg    0.99963   0.99950   0.99957    116563
weighted avg    0.99968   0.99968   0.99968    116563

model_XGB = XGBClassifier(random_state=42,learning_rate=0.1, max_depth=9).fit(df3_xtrain

df3_ytest_liquid_pred_xgb=model_XGB.predict(df3_xtest_liquid)
print(classification_report(df3_ytest_liquid,df3_ytest_liquid_pred_xgb,digits=5))

model_XGB = XGBClassifier(random_state=42,learning_rate=0.1, max_depth=9).fit(df3_xtrain

df3_ytest_solid_pred_xgb=model_XGB.predict(df3_xtest_solid)
print(classification_report(df3_ytest_solid,df3_ytest_solid_pred_xgb,digits=5))



In [16]: 

# confusion matrix

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df3_ytest_liquid, df3_ytest_liquid_pred_xgb,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [17]: 

In [18]: 

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df3_ytest_solid, df3_ytest_solid_pred_xgb,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()

import os
import random

seed_value= 42
os.environ['PYTHONHASHSEED']=str(seed_value)

random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)



In [19]: 

In [20]: 

Out[19]:

 

time ambient_pressure release_rate humidity purge obstacles vent
panel p

275253 -0.162384 0.950700 0.234349 -1.696981 0 1 0 0.6009

233600 -1.502880 0.946625 0.234349 -1.737877 0 1 0 1.4207

2 rows × 26 columns

# we'd better normalize features first
num_features=['time', 'ambient_pressure', 'release_rate', 'humidity',
                'p01', 'p02', 'p03', 'p04', 'pt_01', 'pt_02',
                'pt_03', 'pt_04', 'wind_direction_high', 'wind_direction_low',
                'wind_speed_high', 'wind_speed_low', 'tt', 'x', 'y', 'z']

scaler=StandardScaler()
df3_xtrain_liquid_scale=df3_xtrain_liquid.copy()
df3_xtest_liquid_scale=df3_xtest_liquid.copy()

for feature in num_features:
    
    # fit scaler
    df3_xtrain_liquid_scale[feature]=scaler.fit_transform(df3_xtrain_liquid_scale[[featu
    
    # use the same scaler to transform test data
    df3_xtest_liquid_scale[feature]=scaler.transform(df3_xtest_liquid_scale[[feature]])
    
df3_xtest_liquid_scale.head(2)

df3_xtrain_liquid_scale['sealing_low-level vent']=df3_xtrain_liquid_scale['sealing_low-l
df3_xtrain_liquid_scale['sealing_low-level vent and opening to vent mast']=df3_xtrain_li
df3_xtrain_liquid_scale['sealing_none']=df3_xtrain_liquid_scale['sealing_none'].astype(i

df3_xtest_liquid_scale['sealing_low-level vent']=df3_xtest_liquid_scale['sealing_low-lev
df3_xtest_liquid_scale['sealing_low-level vent and opening to vent mast']=df3_xtest_liqu
df3_xtest_liquid_scale['sealing_none']=df3_xtest_liquid_scale['sealing_none'].astype(int

 



In [21]: 

In [22]: 

Model: "sequential"
_________________________________________________________________
Layer (type)                Output Shape              Param #   

=================================================================
dense (Dense)               (None, 64)                1728      
                                                                
dense_1 (Dense)             (None, 32)                2080      
                                                                
dense_2 (Dense)             (None, 8)                 264       
                                                                
dense_3 (Dense)             (None, 1)                 9         
                                                                
=================================================================
Total params: 4,081
Trainable params: 4,081
Non-trainable params: 0
_________________________________________________________________

tf.keras.backend.clear_session()
tf_df3_liquid_bestmodel = tf.keras.models.Sequential([

    tf.keras.layers.Dense(64, activation='relu',input_shape=[df3_xtrain_liquid_scale.sha
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(1, activation="sigmoid")

])

tf_df3_liquid_bestmodel.summary()



In [23]: 

# train model

optimizer=tf.keras.optimizers.SGD(learning_rate=1e-2)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', min_delta=0.0001, 

tf_df3_liquid_bestmodel.compile(loss='binary_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])

tf_df3_liquid_bestmodel.fit(df3_xtrain_liquid_scale, df3_ytrain_liquid, epochs=100,batch
          validation_split=0.1, callbacks=[early_stop])

 



Epoch 1/100
9835/9835 [==============================] - 17s 2ms/step - loss: 0.1163 
- accuracy: 0.9585 - val_loss: 0.0448 - val_accuracy: 0.9851
Epoch 2/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0355 
- accuracy: 0.9874 - val_loss: 0.0327 - val_accuracy: 0.9893
Epoch 3/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0270 
- accuracy: 0.9902 - val_loss: 0.0262 - val_accuracy: 0.9900
Epoch 4/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0229 
- accuracy: 0.9913 - val_loss: 0.0216 - val_accuracy: 0.9921
Epoch 5/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0203 
- accuracy: 0.9923 - val_loss: 0.0203 - val_accuracy: 0.9922
Epoch 6/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0193 
- accuracy: 0.9925 - val_loss: 0.0170 - val_accuracy: 0.9934
Epoch 7/100
9835/9835 [==============================] - 17s 2ms/step - loss: 0.0180 
- accuracy: 0.9931 - val_loss: 0.0265 - val_accuracy: 0.9902
Epoch 8/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0175 
- accuracy: 0.9932 - val_loss: 0.0155 - val_accuracy: 0.9941
Epoch 9/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0167 
- accuracy: 0.9934 - val_loss: 0.0139 - val_accuracy: 0.9947
Epoch 10/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0163 
- accuracy: 0.9936 - val_loss: 0.0174 - val_accuracy: 0.9929
Epoch 11/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0160 
- accuracy: 0.9938 - val_loss: 0.0141 - val_accuracy: 0.9948
Epoch 12/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0154 
- accuracy: 0.9940 - val_loss: 0.0133 - val_accuracy: 0.9950
Epoch 13/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0153 
- accuracy: 0.9938 - val_loss: 0.0139 - val_accuracy: 0.9946
Epoch 14/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0150 
- accuracy: 0.9942 - val_loss: 0.0169 - val_accuracy: 0.9935
Epoch 15/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0146 
- accuracy: 0.9942 - val_loss: 0.0144 - val_accuracy: 0.9943
Epoch 16/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0144 
- accuracy: 0.9943 - val_loss: 0.0157 - val_accuracy: 0.9939
Epoch 17/100
9835/9835 [==============================] - 16s 2ms/step - loss: 0.0140 
- accuracy: 0.9944 - val_loss: 0.0135 - val_accuracy: 0.9945

Out[23]:

<keras.callbacks.History at 0x1850d1f53c0>



In [24]: 

Out[24]:

loss accuracy val_loss val_accuracy

0 0.116339 0.958493 0.044754 0.985101

1 0.035485 0.987443 0.032728 0.989276

2 0.026974 0.990223 0.026172 0.989963

3 0.022937 0.991297 0.021596 0.992079

4 0.020268 0.992333 0.020267 0.992164

5 0.019282 0.992546 0.017031 0.993394

6 0.018016 0.993067 0.026539 0.990163

7 0.017474 0.993222 0.015528 0.994052

8 0.016720 0.993420 0.013870 0.994738

9 0.016301 0.993626 0.017391 0.992908

10 0.015962 0.993779 0.014148 0.994795

11 0.015413 0.994001 0.013254 0.994967

12 0.015298 0.993810 0.013926 0.994567

13 0.014992 0.994249 0.016854 0.993451

14 0.014640 0.994182 0.014377 0.994309

15 0.014405 0.994274 0.015713 0.993937

16 0.014043 0.994408 0.013479 0.994452

df3_liquid_history=pd.DataFrame(tf_df3_liquid_bestmodel.history.history)
df3_liquid_history



In [25]: 

Out[25]:

Text(0, 0.5, 'Loss')

plt.figure(figsize=(8,5))
ax=plt.gca()
df3_liquid_history[['loss','val_loss']].plot(kind='line',ax=ax)
plt.title('Model Loss by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Loss",fontsize=12)



In [26]: 

In [27]: 

In [28]: 

Out[26]:

Text(0, 0.5, 'Loss')

3643/3643 [==============================] - 4s 1ms/step

             precision    recall  f1-score   support

          0    0.99362   0.99469   0.99416     54991
          1    0.99525   0.99430   0.99478     61572

   accuracy                        0.99448    116563
  macro avg    0.99444   0.99449   0.99447    116563
weighted avg    0.99448   0.99448   0.99448    116563

plt.figure(figsize=(8,5))
ax=plt.gca()
df3_liquid_history[['accuracy','val_accuracy']].plot(kind='line',ax=ax)
plt.title('Model Loss by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Loss",fontsize=12)

df3_ytest_liquid_pred_tf = np.where(tf_df3_liquid_bestmodel.predict(df3_xtest_liquid_sca

print(classification_report(df3_ytest_liquid,df3_ytest_liquid_pred_tf,digits=5))
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# confusion matrix

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df3_ytest_liquid, df3_ytest_liquid_pred_tf,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()



In [63]: 

3643/3643 [==============================] - 10s 3ms/step

# roc
df3_ytest_liquid_pred_proba_tf = tf_df3_liquid_bestmodel.predict(df3_xtest_liquid_scale)

plt.figure(figsize=(5,5))
ax=plt.gca()
RocCurveDisplay.from_predictions(df3_ytest_liquid,df3_ytest_liquid_pred_proba_tf,ax=ax)
ax.plot([0,1],[0,1],'k--')
plt.title("ROC of Test Data",fontsize=14)
plt.show()



In [64]: 

Out[64]:

metrics models score

0 accuracy xgboost 0.999048

1 recall xgboost 0.999432

2 precision xgboost 0.998766

3 f1 xgboost 0.999099

4 accuracy tensorflow 0.993857

5 recall tensorflow 0.993195

6 precision tensorflow 0.995167

7 f1 tensorflow 0.994180

df3_ytest_liquid_accuracy_xgb=accuracy_score(df3_ytest_liquid,df3_ytest_liquid_pred_xgb)
df3_ytest_liquid_recall_xgb=recall_score(df3_ytest_liquid,df3_ytest_liquid_pred_xgb)
df3_ytest_liquid_precision_xgb=precision_score(df3_ytest_liquid,df3_ytest_liquid_pred_xg
df3_ytest_liquid_f1_xgb=f1_score(df3_ytest_liquid,df3_ytest_liquid_pred_xgb)

df3_ytest_liquid_accuracy_tf=accuracy_score(df3_ytest_liquid,df3_ytest_liquid_pred_tf)
df3_ytest_liquid_recall_tf=recall_score(df3_ytest_liquid,df3_ytest_liquid_pred_tf)
df3_ytest_liquid_precision_tf=precision_score(df3_ytest_liquid,df3_ytest_liquid_pred_tf)
df3_ytest_liquid_f1_tf=f1_score(df3_ytest_liquid,df3_ytest_liquid_pred_tf)

df3_ytest_liquid_metrics=pd.DataFrame([
    {'metrics':'accuracy','models':'xgboost','score':df3_ytest_liquid_accuracy_xgb},
    {'metrics':'recall','models':'xgboost','score':df3_ytest_liquid_recall_xgb},
    {'metrics':'precision','models':'xgboost','score':df3_ytest_liquid_precision_xgb},
    {'metrics':'f1','models':'xgboost','score':df3_ytest_liquid_f1_xgb},
    
    {'metrics':'accuracy','models':'tensorflow','score':df3_ytest_liquid_accuracy_tf},
    {'metrics':'recall','models':'tensorflow','score':df3_ytest_liquid_recall_tf},
    {'metrics':'precision','models':'tensorflow','score':df3_ytest_liquid_precision_tf},
    {'metrics':'f1','models':'tensorflow','score':df3_ytest_liquid_f1_tf},
])

df3_ytest_liquid_metrics
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plt.figure(figsize=(8,5))
ax=plt.gca()
sns.barplot(x='metrics', y='score',hue='models',data=df3_ytest_liquid_metrics)
plt.title("Models' Metrics Comparasion",fontsize=14)
plt.xlabel("Metrics",fontsize=12)
plt.ylabel("Score",fontsize=12)
plt.legend(loc='lower right')
plt.ylim(0.9,1)
sns.despine()
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In [31]: 

Out[29]:

 

time ambient_pressure release_rate humidity purge obstacles vent
panel p

460436 -0.171071 0.970818 0.994948 0.921757 0 1 1 0.9017

423601 -1.355244 0.983050 0.994948 0.909962 0 1 1 1.1211

2 rows × 26 columns

Out[31]:

((262265, 26), (262265,), (87422, 26), (87422,))

# we'd better normalize features first
num_features=['time', 'ambient_pressure', 'release_rate', 'humidity',
                'p01', 'p02', 'p03', 'p04', 'pt_01', 'pt_02',
                'pt_03', 'pt_04', 'wind_direction_high', 'wind_direction_low',
                'wind_speed_high', 'wind_speed_low', 'tt', 'x', 'y']

scaler=StandardScaler()
df3_xtrain_solid_scale=df3_xtrain_solid.copy()
df3_xtest_solid_scale=df3_xtest_solid.copy()

for feature in num_features:
    
    # fit scaler
    df3_xtrain_solid_scale[feature]=scaler.fit_transform(df3_xtrain_solid_scale[[feature
    
    # use the same scaler to transform test data
    df3_xtest_solid_scale[feature]=scaler.transform(df3_xtest_solid_scale[[feature]])
    
df3_xtest_solid_scale.head(2)

df3_xtrain_solid_scale['sealing_low-level vent']=df3_xtrain_solid_scale['sealing_low-lev
df3_xtrain_solid_scale['sealing_low-level vent and opening to vent mast']=df3_xtrain_sol
df3_xtrain_solid_scale['sealing_none']=df3_xtrain_solid_scale['sealing_none'].astype(int

df3_xtest_solid_scale['sealing_low-level vent']=df3_xtest_solid_scale['sealing_low-level
df3_xtest_solid_scale['sealing_low-level vent and opening to vent mast']=df3_xtest_solid
df3_xtest_solid_scale['sealing_none']=df3_xtest_solid_scale['sealing_none'].astype(int)

df3_xtrain_solid_scale_train,df3_xtrain_solid_scale_val, df3_ytrain_solid_train,df3_ytra
    df3_xtrain_solid_scale, df3_ytrain_solid,test_size=0.25,random_state=42,stratify=df3

df3_xtrain_solid_scale_train.shape, df3_ytrain_solid_train.shape,df3_xtrain_solid_scale_

 

 
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In [34]: 

Out[32]:

 

time ambient_pressure release_rate humidity purge obstacles vent
panel p

201764 1.181843 -1.243264 0.671755 0.930407 0 0 0 -0.7469

178229 0.425355 -1.231032 0.671755 0.932766 0 0 0 -0.6654

350432 -0.967705 0.954509 0.533244 0.616667 1 1 0 1.1954

155371 -0.310231 -1.239186 0.671755 0.940628 0 0 0 -0.5637

213512 1.559685 -1.251418 0.671755 0.935124 0 0 0 -0.7836

5 rows × 27 columns

Out[33]:

((126000, 26), (126000,), (87422, 26), (87422,))

df_tmp=df3_xtrain_solid_scale_train.copy()
df_tmp['solid_oxygen']=df3_ytrain_solid_train

df_tmp.head()

df_tmp_0=df_tmp[df_tmp['solid_oxygen']==0].copy()
df_tmp_1=df_tmp[df_tmp['solid_oxygen']==1].copy()

df_tmp_01=pd.concat([df_tmp_0.sample(63000,random_state=42),df_tmp_1.sample(63000,random
                    ignore_index=True)

df3_xtrain_solid_scale_train=df_tmp_01.drop('solid_oxygen', axis=1)
df3_ytrain_solid_scale_train=df_tmp_01['solid_oxygen']

df3_xtrain_solid_scale_train.shape, df3_ytrain_solid_scale_train.shape,df3_xtrain_solid_

tf.keras.backend.clear_session()
tf_df3_solid_bestmodel = tf.keras.models.Sequential([

    tf.keras.layers.Dense(64, activation='relu',input_shape=[df3_xtrain_solid_scale.shap
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(1, activation="sigmoid")

])

 
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Model: "sequential"
_________________________________________________________________
Layer (type)                Output Shape              Param #   

=================================================================
dense (Dense)               (None, 64)                1728      
                                                                
dense_1 (Dense)             (None, 32)                2080      
                                                                
dense_2 (Dense)             (None, 8)                 264       
                                                                
dense_3 (Dense)             (None, 1)                 9         
                                                                
=================================================================
Total params: 4,081
Trainable params: 4,081
Non-trainable params: 0
_________________________________________________________________

You must install pydot (`pip install pydot`) and install graphviz (see in
structions at https://graphviz.gitlab.io/download/) (https://graphviz.git
lab.io/download/)) for plot_model to work.

tf_df3_solid_bestmodel.summary()

plot_model(tf_df3_solid_bestmodel, to_file='tf_model_3csv_solid.png', show_shapes=True)

https://graphviz.gitlab.io/download/)
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



Epoch 1/100
3938/3938 [==============================] - 13s 3ms/step - loss: 0.44
99 - accuracy: 0.7697 - val_loss: 0.4505 - val_accuracy: 0.7461
Epoch 2/100
3938/3938 [==============================] - 11s 3ms/step - loss: 0.33
50 - accuracy: 0.8744 - val_loss: 0.3134 - val_accuracy: 0.8673
Epoch 3/100
3938/3938 [==============================] - 10s 3ms/step - loss: 0.23
22 - accuracy: 0.9217 - val_loss: 0.2113 - val_accuracy: 0.9143
Epoch 4/100
3938/3938 [==============================] - 11s 3ms/step - loss: 0.16
58 - accuracy: 0.9465 - val_loss: 0.1569 - val_accuracy: 0.9444
Epoch 5/100
3938/3938 [==============================] - 10s 3ms/step - loss: 0.13
16 - accuracy: 0.9590 - val_loss: 0.1300 - val_accuracy: 0.9516
Epoch 6/100
3938/3938 [==============================] - 10s 3ms/step - loss: 0.11
24 - accuracy: 0.9646 - val_loss: 0.1126 - val_accuracy: 0.9581
Epoch 7/100

# train model

optimizer=tf.keras.optimizers.SGD(learning_rate=1e-3)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0.0001, pati

tf_df3_solid_bestmodel.compile(loss='binary_crossentropy',
                optimizer=optimizer,
                metrics=['accuracy'])

tf_df3_solid_bestmodel.fit(df3_xtrain_solid_scale_train,df3_ytrain_solid_scale_train, ep
          validation_data=(df3_xtrain_solid_scale_val,df3_ytrain_solid_val), callbacks=[
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df3_solid_history=pd.DataFrame(tf_df3_solid_bestmodel.history.history)
df3_solid_history



Out[38]:

loss accuracy val_loss val_accuracy

0 0.449916 0.769690 0.450465 0.746139

1 0.334960 0.874381 0.313368 0.867287

2 0.232215 0.921714 0.211290 0.914335

3 0.165803 0.946548 0.156862 0.944350

4 0.131606 0.958960 0.130010 0.951625

5 0.112391 0.964603 0.112637 0.958100

6 0.099656 0.967302 0.104911 0.961291

7 0.090627 0.969587 0.092704 0.964540

8 0.083747 0.971341 0.087926 0.965958

9 0.078056 0.972683 0.083427 0.967125

10 0.073198 0.974325 0.073598 0.970545

11 0.068933 0.975786 0.069176 0.973393

12 0.065303 0.977063 0.067196 0.973771

13 0.061938 0.978643 0.058772 0.977843

14 0.059145 0.980040 0.062229 0.976390

15 0.056534 0.981270 0.059442 0.978095

16 0.054183 0.982397 0.054923 0.980154

17 0.052207 0.983667 0.053312 0.980611

18 0.050224 0.984460 0.052008 0.981252

19 0.048482 0.985079 0.052072 0.981275

20 0.046884 0.986056 0.049825 0.982373

21 0.045350 0.986500 0.045468 0.983917

22 0.043888 0.987056 0.043594 0.985370

23 0.042598 0.987484 0.043388 0.984889

24 0.041364 0.988016 0.040418 0.986125

25 0.040177 0.988397 0.041178 0.985759

26 0.039029 0.988794 0.039086 0.987189

27 0.038117 0.989087 0.037985 0.986754

28 0.037201 0.989167 0.037016 0.987360

29 0.036372 0.989563 0.037214 0.987566

30 0.035596 0.989897 0.038745 0.986834

31 0.034800 0.990198 0.033829 0.988458

32 0.034097 0.990254 0.038013 0.986628

33 0.033528 0.990436 0.032874 0.989259

34 0.032864 0.990611 0.033774 0.988184

35 0.032272 0.990817 0.032346 0.989190

36 0.031632 0.990913 0.032498 0.988973



loss accuracy val_loss val_accuracy

37 0.031253 0.991016 0.030410 0.989511

38 0.030733 0.991254 0.030584 0.989373

39 0.030264 0.991270 0.030967 0.989328

40 0.029760 0.991357 0.029797 0.989453

41 0.029334 0.991460 0.029854 0.989362

42 0.029014 0.991500 0.028351 0.990163

43 0.028594 0.991754 0.028361 0.990094

44 0.028186 0.991913 0.026966 0.990815

45 0.027836 0.992063 0.028671 0.989968

46 0.027494 0.992048 0.026402 0.991352

47 0.027123 0.992238 0.024508 0.992176

48 0.026855 0.992286 0.027519 0.991226

49 0.026503 0.992556 0.025353 0.991398

50 0.026212 0.992603 0.025815 0.991341

51 0.025967 0.992603 0.027715 0.990151

52 0.025643 0.992627 0.024453 0.991718



In [39]: 

Out[39]:

Text(0, 0.5, 'Loss')

plt.figure(figsize=(8,5))
ax=plt.gca()
df3_solid_history[['loss','val_loss']].plot(kind='line',ax=ax)
plt.title('Model Loss by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Loss",fontsize=12)
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In [41]: 

In [42]: 

Out[40]:

Text(0, 0.5, 'Accuracy')

3643/3643 [==============================] - 4s 1ms/step

             precision    recall  f1-score   support

          0    0.99810   0.99166   0.99487     88527
          1    0.97420   0.99404   0.98402     28036

   accuracy                        0.99224    116563
  macro avg    0.98615   0.99285   0.98945    116563
weighted avg    0.99235   0.99224   0.99226    116563

plt.figure(figsize=(8,5))
ax=plt.gca()
df3_solid_history[['accuracy','val_accuracy']].plot(kind='line',ax=ax)
plt.title('Model Accuracy by Epoch',fontsize=14)
plt.xlabel("Epoch",fontsize=12)
plt.ylabel("Accuracy",fontsize=12)

df3_ytest_solid_pred_tf = np.where(tf_df3_solid_bestmodel.predict(df3_xtest_solid_scale)

print(classification_report(df3_ytest_solid,df3_ytest_solid_pred_tf,digits=5))
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# confusion matrix

plt.figure(figsize=(5,5))
ax=plt.gca()
ConfusionMatrixDisplay.from_predictions(df3_ytest_solid, df3_ytest_solid_pred_tf,
                                      ax=ax,cmap=plt.get_cmap('Blues'),colorbar=False)
plt.title("Confusion Matrix of Test Data",fontsize=14)
plt.show()
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Out[44]:

metrics models score

0 accuracy xgboost 0.999683

1 recall xgboost 0.999144

2 precision xgboost 0.999536

3 f1 xgboost 0.999340

4 accuracy tensorflow 0.992236

5 recall tensorflow 0.994043

6 precision tensorflow 0.974202

7 f1 tensorflow 0.984023

df3_ytest_solid_accuracy_xgb=accuracy_score(df3_ytest_solid,df3_ytest_solid_pred_xgb)
df3_ytest_solid_recall_xgb=recall_score(df3_ytest_solid,df3_ytest_solid_pred_xgb)
df3_ytest_solid_precision_xgb=precision_score(df3_ytest_solid,df3_ytest_solid_pred_xgb)
df3_ytest_solid_f1_xgb=f1_score(df3_ytest_solid,df3_ytest_solid_pred_xgb)

df3_ytest_solid_accuracy_tf=accuracy_score(df3_ytest_solid,df3_ytest_solid_pred_tf)
df3_ytest_solid_recall_tf=recall_score(df3_ytest_solid,df3_ytest_solid_pred_tf)
df3_ytest_solid_precision_tf=precision_score(df3_ytest_solid,df3_ytest_solid_pred_tf)
df3_ytest_solid_f1_tf=f1_score(df3_ytest_solid,df3_ytest_solid_pred_tf)

df3_ytest_solid_metrics=pd.DataFrame([
    {'metrics':'accuracy','models':'xgboost','score':df3_ytest_solid_accuracy_xgb},
    {'metrics':'recall','models':'xgboost','score':df3_ytest_solid_recall_xgb},
    {'metrics':'precision','models':'xgboost','score':df3_ytest_solid_precision_xgb},
    {'metrics':'f1','models':'xgboost','score':df3_ytest_solid_f1_xgb},
    
    {'metrics':'accuracy','models':'tensorflow','score':df3_ytest_solid_accuracy_tf},
    {'metrics':'recall','models':'tensorflow','score':df3_ytest_solid_recall_tf},
    {'metrics':'precision','models':'tensorflow','score':df3_ytest_solid_precision_tf},
    {'metrics':'f1','models':'tensorflow','score':df3_ytest_solid_f1_tf},
])

df3_ytest_solid_metrics
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In [ ]: 

plt.figure(figsize=(8,5))
ax=plt.gca()
sns.barplot(x='metrics', y='score',hue='models',data=df3_ytest_solid_metrics)
plt.title("Models' Metrics Comparasion",fontsize=14)
plt.xlabel("Metrics",fontsize=12)
plt.ylabel("Score",fontsize=12)
plt.legend(loc='lower right')
plt.ylim(0.9,1)
sns.despine()
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