
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Johan Olaf Løe

Multi-Robot Control with MotoROS2

Enabling ROS2 for Welding with the GP25-12

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
June 2023

Johan Olaf Løe

Multi-Robot Control with MotoROS2

Enabling ROS2 for Welding with the GP25-12

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Multi-Robot Control with MotoROS2
Enabling ROS2 for Welding with the GP25-12

Johan Olaf Løe

2023-06-10

Preface

This thesis marks the journey’s end at the Norwegian University of Science and
Technology, NTNU. I want to express my sincere gratitude to Lars Tingelstad for
his invaluable guidance as my supervisor, whose expertise and support have been
instrumental in completing this research. Additionally, I am grateful to NTNU for
allowing me to utilize their lab, Manulab, which has provided a crucial foundation
for my experimental work.

Johan Olaf Løe

2023-06-10

Summary

This thesis addresses the challenges associated with intelligent robot program-
ming, particularly in the context of the Manulab robot system at NTNU. The
existing control method for the system was inadequate for efficient and intelligent
programming, so the goal was to develop a user-friendly software package that
simplifies the programming process.

To achieve this goal, the thesis outlines several sub-objectives, including identify-
ing necessary constraints and variables, developing a simulation system represen-
tation, enabling external communication capabilities with MotoROS2, designing
and implementing software for controlling the robot system and validating the
proposed solution through physical tests.

Tests were conducted to evaluate the system’s performance in various scenarios,
including straight lines, curves, movements inside workpieces, and welding tasks.
The outcomes of the tests were successful, with motion planners generating ac-
curate trajectories that followed the desired paths and velocities. The result is a
system that makes it easy to program the robot system and implement sensors
into the robot program, relative to the existing solution.

Sammendrag

Denne oppgaven tar for seg utfordringene knyttet til intelligent robotprogrammer-
ing, spesielt i sammenheng med Manulab-robotsystemet ved NTNU. Den eksis-
terende kontrollmetoden for systemet var utilstrekkelig for effektiv og intelligent
programmering, så målet var å utvikle en brukervennlig programvarepakke som
forenkler programmeringsprosessen.

For å oppnå dette målet beskriver oppgaven flere delmål, inkludert identifisering
av nødvendige begrensninger og variabler, utvikling av en simulert systemrepre-
sentasjon, muliggjøring av ekstern kommunikasjonsevne ved bruk av MotoROS2,
design og implementering av programvare for styring av robotsystemet, og valid-
ering av den foreslåtte løsningen gjennom fysiske tester.

Testene ble gjennomført for å evaluere systemets ytelse i ulike scenarier, inkludert
rette linjer, kurver, bevegelser nær arbeidsstykker og sveiseoppgaver. Resultatene
fra testene var vellykkede, med baneplanleggere som genererte nøyaktige baner
som fulgte ønskede bane og hastigheter. Resultatet er et system som gjør det
enkelt å syre robotsystemet, og implementere sensorer til robotprogrammet, rel-
ativt til den løsningen som var tilstede.

Contents

Preface i

Summary iii

Sammendrag v

1. Introduction 1
1.1. Background and Motivation . 1
1.2. Outline of the Thesis . 2

2. Fundamentals 3
2.1. Robot Controller . 3
2.2. Robot Manipulators . 4
2.3. Robotic System . 4
2.4. Sensors . 4
2.5. Middleware . 4

2.5.1. Nodes . 5
2.5.2. Services and Messages . 5
2.5.3. Colcon . 6

2.6. URDF . 6
2.7. Robotics . 7

2.7.1. Frames . 7
2.7.2. Degrees of Freedom . 8
2.7.3. Rotations . 8
2.7.4. Quaternions . 10
2.7.5. Transformations . 11
2.7.6. Twist . 12
2.7.7. Kinematics . 13
2.7.8. Path and Trajectory . 14
2.7.9. Online and Offline Programming 15

2.8. Welding . 16
2.9. Robotic welding . 16
2.10. Existing Solutions and Previous Work 17

viii Contents

2.11. Welding Parameters . 18
2.12. Welding Equipment . 19

3. Hardware and System Description 21
3.1. Robot Controller . 21
3.2. Robot Manipulators . 22
3.3. Extra Modules . 22
3.4. Welding Equipment . 24
3.5. The Robot Cell . 27

4. Approach for Achieving the Stated Objectives 31
4.1. Communication . 31
4.2. Simulation . 32
4.3. Calibration . 34
4.4. Motion Planning . 35

4.4.1. Velocity Control . 36

5. Implementation 39
5.1. MotoROS 2 . 39

5.1.1. Installation . 39
5.2. MoveIt 2 . 42

5.2.1. Creating System Model . 42
5.2.2. Creating Moveit package 45

5.3. Ros2 Main Package - planner_node 47
5.3.1. Planning Functionality . 47
5.3.2. Implementing End Effector In-Position Publisher 48

5.4. Ros 2 Interface Package . 49
5.5. Usage . 50

6. Experiments 53
6.1. Case . 53
6.2. Definition of Object Origin . 54
6.3. Tests . 54

7. Results 59
7.1. The Planning Package . 59
7.2. The Virtual Environment . 60
7.3. The In-Position Publisher . 61
7.4. The Velocity Limiter . 62
7.5. Test 1: The Linear Motion Test . 62
7.6. Test 2: The Circular Motion Test 62
7.7. Test 3: The Inside Weld Test . 70
7.8. Test 4: Weld Test . 70

Contents ix

8. Discussion 77
8.1. Virtual Environment . 77
8.2. The Tests . 77
8.3. The velocity Limiter . 78
8.4. The Controlling Interface . 80
8.5. The Planning Implementation . 82
8.6. MotoROS2 . 85
8.7. Further Limitations . 86

9. Conclusion and Further Works 89
9.1. Conclusion . 89
9.2. Further Works . 89

A. Yaskawa Motoman GP25-12 Datasheet 95

B. Yaskawa Motoman TSL600 Datasheet 97

C. Yaskawa Motoman MT1 Datasheet 99

D. Description of the Folders Included in the MotoROS2 Package 103

E. Structure of the Robot Model Packages 105

F. Moveit Controller Changes 107

G. The Launchfile for Planning 109

H. utilities.h 111

I. utilities.cpp 113

J. planner_node.cpp 123

K. jacobian_generator.py 135

L. waypoint_publisher.py 145

M.Joint Velocities for Test Cases 1, 2, 3, and 4 153

List of Figures

2.1. Visualization of two frames, where frame {b} is located in the y-
direction of frame {a}, while frame {a} is located in the z-direction
of frame {b}. 8

2.2. A transformation between the two frames, {w} and {1}. 11
2.3. Representation of twist. A mobile robot rotates around the point

r with an angular velocity w and linear velocity v. Figure from [18]. 12

3.1. The Motoman YRC1000 robot controller with the teach pendant
(top right corner of the controller). 23

3.2. Netgear R2610 wireless router used for establishing network con-
nectivity in the setup. 24

3.3. Yaskawa Motoman GP 25-12 industrial robot arm equipped with
TIG torch as end effector. 25

3.4. Yaskawa Motoman GP 25-12 industrial robot arm mounted on
Yaskawa Motoman TSL600 linear module, equipped with MIG gun
as end effector. 26

3.5. Yaskawa Motoman MT1 with workpiece. 26
3.6. The Fronius MagicWave 3000 welding source. 27
3.7. The Fronius TPS400i welding source. 28
3.8. The image captures the complete robot cell, which includes two

robot arms, a linear module (TSL600), a workpiece positioner mod-
ule (MT1), and two welding apparatus. 28

3.9. The image showcases the world frame, the frame of the TSL600
base, and the frame of the mounting pendant within the system. . 29

4.1. System overview and functionality. 32

5.1. The figure displays that the IP address has been manually set to
the value described. 40

5.2. Configuration of the agent IP for establishing a connection. 41
5.3. Configuration of joint names. 41
5.4. Alignment of the model and origin. 44

xii List of Figures

6.1. The coordinates defining the start point (left) and end point (right)
of the weld are extracted directly from CAD software. 58

6.2. The offset of the end effector. 58

7.1. The schematics of the node waypointlistener. 60
7.2. The figure shows the virtual environment created in this thesis,

visualized with Rviz2. 60
7.3. The figures illustrate the variation in data as the end effector ap-

proaches the waypoint set for welding, indicating the activation of
the welding torch. 61

7.4. The trail of the end effector represents the trajectory for straight-
line motion. 63

7.5. Linear velocity for straight-line motion. Untouched (top) and twist
method (bottom). 64

7.6. Linear velocity for straight-line motion. Iterative time parameteri-
zation (top) and twist method (bottom) 65

7.7. Initial movement. 66
7.8. The trail of the end effector represents the trajectory. for circular

motion . 66
7.9. The trail of a low sampled arc. 67
7.10. The generated path lengths for a circle with resolutions n = 15 and

n = 1000. 67
7.11. Linear velocities for circular path Untouched (top) vs twist (bottom) 68
7.12. Linear velocity for circular path, Iterative time parameterization

(top) and twist (bottom). 69
7.13. The trail of the end effector representing the trajectory for test 3. . 70
7.14. Linear velocity for inside motion. Untouched (top) vs twist method

(bottom). 71
7.15. Linear velocity for inside motion. Iterative time parameterization

(top) vs twist method (bottom). 72
7.16. The trail of the end effector representing the trajectory for test 4. . 73
7.17. The end effector can be traced through the edge defined as the weld. 73
7.18. Linear velocity for test 4. Untouched (top) vs twist manipulation

(bottom). 74
7.19. Linear velocity for test 4. Iterative time parameterization (top) vs

twist method (bottom). 75

8.1. Desired path vs generated path . 80
8.2. Representation of how the end effector may reach the desired way-

point inbetween publishing joint states, failing to update the kine-
matics in the node. 81

List of Figures xiii

8.3. Visualization of the ready signal. Here, the signal is TRUE from
waypoint X (left) untill updated at waypoint Y (right) which is
FALSE. 82

8.4. The structure of the URDF. 83
8.5. The figure shows the resulting trajectory for a small Cartesian

change when planning in joint space. 84
8.6. The figure shows the resulting trajectory for a small Cartesian

change when planning in joint space with constraints. 85
8.7. If no Ethernet connection is detected after MotoROS2 is installed

on the controller, a warning will show. 87

D.1. The structure of a JBI file. Collected from Yaskawa DX100 IN-
STRUCTIONS FOR RELATIVE JOB FUNCTION manual 104

M.1. Joint velocities for straight line motion. Untouched (top) and twist
method (bottom) . 154

M.2. Joint velocities for straight line motion. Iterative time parameteri-
zation (top) and twist method (bottom) 155

M.3. Joint velocities for circular path. Untouched (top) and twist (bot-
tom). 156

M.4. Joint velocities for ciruclar path. Iterative time parameterization
(top) and twist method (bottom). 157

M.5. Joint velocities for inside motion. Untouched (top) vs twist method
(bottom). 158

M.6. Joint velocities for inside motion. Iterative time parameterization
(top) vs twist (bottom). 159

M.7. Joint velocities for test 4. Untouched (top) vs twist method (bottom).160
M.8. Joint velocities for test 4. Iterative time parametrization (top) vs

twist method (bottom). 161

List of Tables

6.1. Waypoints for test 1 . 55
6.2. Waypoints for test 2 . 56
6.3. Waypoints for test 3 . 56
6.4. Waypoints for test 4. 57

7.1. Distance and time for the tests. 62

Chapter 1.

Introduction

1.1. Background and Motivation
Robotics has witnessed significant growth and has emerged as a vital component
of the modern industrial complex over the past decade [10], with its importance
expected to increase further in the future. Robots offer precision, speed, long
working hours, and the ability to operate in hazardous environments where hu-
man presence, even with safety equipment, is not feasible [36]. However, despite
their numerous advantages, programming robots remains a complex and chal-
lenging task, requiring knowledgeable and experienced programmers to achieve
the desired functionality. Moreover, the time required for robot programming is
often impractical for rapidly changing jobs [15]. The advent of Industry 4.0 has
introduced new industrial principles that emphasize small-batch manufacturing
with frequent production changes [12]. Consequently, smart solutions are essen-
tial for efficient robotic programming in line with these evolving manufacturing
requirements.

This thesis aims to address the challenges associated with intelligent robot pro-
gramming, specifically focusing on the robot system available in Manulab at
NTNU. At the time of this investigation, the existing control method for the
system fell short of meeting the requirements for efficient and intelligent pro-
gramming. A key sub-goal is to develop a user-friendly software package that
puts the planning in an abstract layer, such that developers can focus on intelli-
gent solutions such as edge detection or acquire points of interest with a camera.
The proposed solution can benefit from its modularity by leveraging open-source
software, allowing for seamless future modifications and enhancements. The the-
sis specifically focuses on establishing a comprehensive framework for seamless
offline programming of the Motoman GP25-12 industrial general-purpose arms
equipped with welding gear, and thus, welding jobs will be in focus for the devel-
opment. To accomplish this overarching goal, the following sub-objectives have

2 Chapter 1. Introduction

been identified:

• Identify the necessary constraints and variables for being able to solve the
case.

• Enable external communication capabilities with the robot system for effi-
cient programming and control.

• Develop a virtual representation of the system to facilitate planning, testing,
and analysis.

• Design and implement software that can effectively control and manage the
robot system.

• Validate the proposed solution by conducting tests on a physical system.

1.2. Outline of the Thesis
This thesis will first provide the preliminary knowledge needed to understand the
methods and ideas discussed within it, as well as identify some of the challenges
within the case. The following chapter will propose solutions for each problem
and describe the hardware and software used to achieve the stated goals. Subse-
quently, the results will be presented and discussed, followed by a conclusion and
suggestions for further development.

Chapter 2.

Fundamentals

This chapter aims to provide readers with the necessary knowledge to understand
the concepts and methods utilized in this thesis. Before delving into the prelim-
inaries, it is important to establish a clear definition of the term used. In this
thesis, the term robot specifically refers to open-loop robots, commonly known
as robot arms. It is important to note that the term robot can encompass a
wide range of mechanical and electronic assemblies capable of manipulating their
environment, such as steward robots and wheeled robots.

2.1. Robot Controller
The robot controller serves as the central computer that governs the operations
of the mechanical arm. A robot arm is capable of carrying out various func-
tions, such as acting as a force source, executing specific motions, interacting
with the environment, and performing a combination of these tasks. To enable
these functionalities, the robot controller is responsible for effectively controlling
the individual joints of the robot. By coordinating the movements of these joints,
the robot controller enables the arm to accomplish its intended tasks [18].

The teach pendant, also known as the robot pendant or programming pendant [44],
is a handheld device that is connected to the robot controller. It serves as a user
interface, allowing for monitoring, programming, and interaction with the robot
controller. The teach pendant provides a convenient means for users to interface
with the robot system and manage its operations effectively.

4 Chapter 2. Fundamentals

2.2. Robot Manipulators
A robot manipulator or robot arm is a physical product that can be configured
to achieve different configurations. This allows the robot to manipulate physical
objects, allowing for the automation of complex tasks. A robot manipulator con-
sists of a series of links, which are connected by joints, that allow the arm to move
and assume different configurations.

The joints are typically driven by electric motors or hydraulic actuators, which
provide the necessary force and control to move the arm. The end of the arm may
also have a tool or gripper attached to it, allowing it to pick up and move objects.
This tool is often referred to as the end effector.

The arm’s configuration can be controlled through various means, including man-
ual programming or computer algorithms. Being programmable, the robot can
perform virtually any task that can be programmed. As a result, the arm is capa-
ble of a wide range of operations, from simple holding tasks to intricate assembly
and manufacturing processes like welding.

2.3. Robotic System
In this thesis, the term “robotic system” refers to the comprehensive integration
of hardware and software components utilized to enable the robot to execute
the desired task. It encompasses all the necessary elements and subsystems that
contribute to the functionality and operation of the robot.

2.4. Sensors
A sensor is a component that is capable of detecting and measuring physical
phenomena from the surrounding environment. It converts the sensed data into
a format that can be used in the digital world. Sensors can range from simple
devices like photo-resistors to more advanced technologies such as camera sensors
and Light Detection and Ranging (LiDAR) sensors.

2.5. Middleware
Middleware is a vital communication architecture that enables different applica-
tions to interact with one another. In the realm of robotics, this component plays
a crucial role, particularly when applications are written in different programming

2.5. Middleware 5

languages. Middleware facilitates seamless communication between these appli-
cations, bridging the language barrier and allowing them to exchange information
effectively [6].

ROS 2 (Robot Operating System 2), is a robotics middleware that provides a
collection of tools, libraries, and conventions for developing complex robotic sys-
tems. It is an evolution of the original ROS, with the aim of addressing some of
the limitations and shortcomings of the original system.

ROS 2 supports multiple programming languages, including C++, Python, and
others, making it easier for developers to use the language they are most comfort-
able with. Additionally, it provides a rich set of tools for debugging and visualizing
the behavior of robotic systems [19].

Certain computers, such as microcontrollers, often have limited resources in terms
of available RAM and computational power. As a result, running the ROS 2
framework on these devices becomes challenging. However, a solution called
Micro-ROS addresses this limitation by enabling seamless communication between
resource-constrained computers and the ROS 2 framework [1]. Micro-ROS offers
a lightweight implementation of ROS 2 that can effectively operate on devices
with limited resources, making it possible to leverage the core functionalities of
ROS 2 in such environments.

2.5.1. Nodes

A ROS node is a process that processes data. Typically, a ROS node is responsible
for performing specific tasks such as calculations, reading and sharing sensor data,
or activating external components such as light-emitting diodes. These nodes are
designed to have a narrow scope of responsibility, which offers the advantage of
simplifying error detection and adding fault tolerance to the system since nodes
can continue to operate even when one node fails. Nodes are essential components
of the ROS framework and can communicate with each other using messages and
services [29].

2.5.2. Services and Messages

ROS messages are a way for different nodes in a ROS system to communicate with
each other by sending data. Messages define the structure and content of the data
being sent and are defined using a simple message definition language. Messages
can contain various types of data, including strings, numbers, and arrays. Once a
message is defined, it can be published by one node and subscribed to by another
node, allowing for asynchronous communication between different parts of the
system.

6 Chapter 2. Fundamentals

ROS services, on the other hand, provide a way for nodes to communicate in a
synchronous manner. Instead of sending data continuously like messages, services
allow nodes to request specific tasks to be performed by other nodes. Services
are defined using a similar language to messages and consist of a request message
and a response message. When a node makes a request to a service, it waits for
a response before proceeding with its task.

ROS services and messages are published and subscribed to over topics. Topics are
designed to be asynchronous and loosely coupled. Nodes can publish messages
to a topic without knowing if there are any subscribers, and subscribers can
receive messages without knowing who published them. This makes it easy to
add or remove nodes from the system without affecting the overall communication
flow [30].

In ROS 2, both ROS messages and ROS services are critical for building complex
robotic systems that require coordination between different nodes. They provide
a standardized way of exchanging data and commands, enabling the seamless
implementation of custom messages and services [28].

2.5.3. Colcon

Colcon is a build tool specifically designed for ROS 2, aiming to facilitate the
management and construction of large-scale robotic systems. It streamlines the
process of building and packaging ROS 2 packages, providing developers with a
convenient means of organizing their projects.

One of the key advantages of using Colcon is its support for independent pack-
age building. Each package within the workspace is treated as an autonomous
unit, allowing developers to rebuild only the specific package that requires mod-
ifications. This approach significantly reduces build times, leading to improved
efficiency during development.

After building a workspace using Colcon, it is essential to source the workspace in
order to access the packages from the command line. Sourcing the workspace en-
sures that the terminal recognizes the packages and their associated dependencies,
enabling seamless interaction and execution of commands related to the packages
within the workspace [39].

2.6. URDF
The Unified Robotics Description Format (URDF) is a file format used to describe
robot scenes. URDF allows for the specification of various components such as
links, joints, sensors, and actuators. This comprehensive representation enables

2.7. Robotics 7

a detailed description of the robot’s physical structure and interactions with the
environment.

URDF incorporates kinematic and dynamic properties essential for accurate sim-
ulation and control of the robot. It allows the specification of joint limits, joint
types (such as revolute or prismatic), and inertial properties (such as mass, center
of mass, and moments of inertia). These properties determine the robot’s motion,
stability, and response to external forces.

To tackle the challenges associated with managing large and complex URDF files,
a macro language for XML called xacro is employed. Xacro enables a more trans-
parent and organized approach to creating URDFs. By utilizing xacro, each robot
can be described in its own file, and a more comprehensive system consisting of
multiple robots and objects can be created by importing each component into a
joint xacro file, which can be used to generate the URDF [8].

2.7. Robotics

2.7.1. Frames

A frame is a coordinate system. Frames are assigned to reference points and parts
in a robot. they are useful for describing the orientation between points of interest
relative to a given frame. As different objects may change orientation, frames can
be used to express how the object is oriented as well as how other objects are
positioned when observed from a specific frame. A visualization of frames can be
seen in Figure 2.1.

In robotics, the body-frame, often denoted as {b}, is a local coordinate system
attached to the end effector of the robot. This frame is used to describe the
orientation of the robot’s end effector relative to the robot’s base frame or another
fixed reference frame, such as the space-frame {s}. The body-frame moves with
the end effector, and its position and orientation can change as the robot moves
and performs tasks.

The space-frame {s}, also known as the world frame or global frame, is a fixed
reference frame attached to a stationary specific point in the robot’s environment.
It serves as a common reference for all frames within the robot system and is
crucial to determine its position and orientation in the environment and navigating
to different locations [18].

8 Chapter 2. Fundamentals

Figure 2.1.: Visualization of two frames, where frame {b} is located in the y-
direction of frame {a}, while frame {a} is located in the z-direction of frame {b}.

2.7.2. Degrees of Freedom

In robotics, degrees of freedom refers to the number of independent configurations
a frame can have. A frame is said to have more degrees of freedom if it can be
configured in more independent ways. For instance, if a frame can have any
orientation and exist within the space defined by the three dimensions x, y, and
z, it has six degrees of freedom. In Euclidean space, six degrees of freedom are
the maximum possible, as the frame cannot be configured independently in any
more ways. Degrees of freedom plays a critical role in robotic systems as they
determine the robotic system’s range of motion and flexibility.

2.7.3. Rotations

Rotations are fundamental in the field of robotics and mechanics as they are used
to describe the orientation of one coordinate frame relative to another. A rotation
can be described by a 3x3 rotation matrix or a quaternion.

When considering two frames {a} and {b}, the rotation matrix that describes the
rotation from frame {a} to frame {b} is denoted as Rab. Similarly, the rotation
matrix that describes the rotation from frame {b} to frame {a} is denoted as Rba.

Rotation matrices possess a significant property that their transpose is equal to
their inverse, i.e., RT = R−1. This property ensures that the transpose of a
rotation matrix is equivalent to rotating in the opposite direction, meaning RT

ab =
Rba. Furthermore, rotations can be used to express a point described in frame {b},
in frame {a}. If a point is represented in frame {b}, the corresponding coordinates
in frame {a} can be obtained utilizing the following:

ta = Rabtb. (2.1)

The properties described above are beneficial in many robotics applications, where
frames of reference constantly change, and switching between frames is necessary.

2.7. Robotics 9

Therefore, understanding the properties of rotation matrices and their relation-
ships between frames is essential in the field of robotics and mechanics. This
knowledge is particularly critical for applications involving object manipulation,
where the accurate interpretation of orientation significantly impacts task perfor-
mance and success.

A rotation matrix R can be mathematically represented as follows:

R =

xx yx zx

xy yy zy

xz yz zz

 ∈ SO(3) (2.2)

Here, the elements xx, yx, zx, xy, yy, zy, xz, yz, zz define the orientation of the frame.
The notation SO(3) denotes the special orthogonal group of dimension 3, which
represents the set of all rotation matrices in three-dimensional space.

The rotation matrix R can be represented using exponentials. If a frame is rotated
around the unit axis ω̂ by an angle θ, the corresponding rotation matrix is given
by:

R = e[ω̂]θ = I + sin(θ)[ω̂] + (1 − cos(θ))[ω̂]2 (2.3)

Here, [ω] represents the skew-symmetric matrix associated with the 3-dimensional
rotation axis ω:

[ω] =

 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

 (2.4)

In Equation 2.3, I is the identity matrix. The matrix exponential e[ω]θ provides a
compact representation of the rotation matrix R using the axis-angle parameters
ω and θ.

Rotation matrices can be multiplied together to form a new rotation matrix. By
defining three distinct rotations around the orthogonal axes x, y, and z, the re-
sulting composite rotation can be represented as R = Rx,θ1Ry,θ2Rz,θ3 , where θ1,
θ2, and θ3 denote the rotation angles around each respective axis. This composi-
tion of rotations enables the description of any desired orientation by combining
the individual rotations around the axes [18].

10 Chapter 2. Fundamentals

2.7.4. Quaternions

A quaternion is a four-dimensional vector consisting of a real component, denoted
as w, and three complex components, denoted as i, j, and k. In the field of
robotics, quaternions are commonly used to describe rotations. The real compo-
nent represents the magnitude of rotation, while i, j, and k are orthogonal vectors
that define a three-dimensional axis around which the rotation occurs.

Mathematically, a quaternion can be expressed as:

q = w + ai + bj + ck, (2.5)

where a, b, and c are coefficients and i, j, and k represent imaginary units. If
the norm of the quaternion is equal to 1, meaning that the magnitude is 1, the
quaternion can be formatted as:

q = sin(θ/2) + cos(θ/2) · ω, (2.6)

where θ and ω is the angle and unit axis of rotation, similar to Equation 2.3.

Hamilton product, also known as quaternion multiplications, is a convention to
multiply two quaternions together, forming a new quaternion. If the two quater-
nions are unit quaternions, then the product is also a unit quaternion. Hamilton
product is defined as follows:

q1 ◦ q2 =(w1w2 − x1x2 − y1y2 − z1z2)
+ (w1x2 + x1w2 + y1z2 − z1y2)i
+ (w1y2 − x1z2 + y1w2 + z1x2)j
+ (w1z2 + x1y2 − y1x2 + z1w2)k (2.7)

To rotate a vector or a point with quaternions, the vector needs to be rewritten as a
quaternion, which can be done by writing the point r = x, y, z as r̄ = 0+xi+yj+zk,
where 0 corresponds to the w. The point can then be multiplied with another
quaternion:

r̂ = q ◦ r̄ ◦ q∗, (2.8)

where q∗ is the conjugated of the quaternion defined as q∗ = w − xi − yj − zk,
and r̂ is the rotated point [5].

2.7. Robotics 11

2.7.5. Transformations

Transformations are a fundamental mathematical concept that describes the rel-
ative position and orientation of coordinate frames in a given space. In robotics,
transformations are used extensively to specify the position and orientation of a
robot’s end-effector, as well as the location and orientation of objects in its envi-
ronment. Mathematically, a transformation can be represented as a 4x4 matrix,
commonly referred to as a transformation matrix:

T =
[
R t
0 1

]
∈ SE(3). (2.9)

Here, 0 =
[
0 0 0

]
, and t is the translation between the two frames t =[

x y z
]T

. The notation SE(3) denotes the special Euclidean group consisting
of all homogeneous transformation matrices in R3 [18].

A transformation between two frames; frame {a} and frame {b} is noted as Tab.
Because of the unique properties of transformation matrices, the transformation
from frame {b} to frame {a} can be found by taking the inverse of the transfor-
mation Tab: Tba = T −1

ab . The transformation between two frames is visualized in
Figure 2.2.

Figure 2.2.: A transformation between the two frames, {w} and {1}.

A pose refers to the transformation between the global frame and another frame
of interest within a robotic system. It can be represented using different math-
ematical representations, such as a transformation matrix or a combination of
a translation vector and a quaternion. The transformation matrix provides a
comprehensive representation of the pose, including both translation and rotation
information. On the other hand, using a translation vector and a quaternion al-
lows for a more compact representation while still capturing the necessary spatial
information. Both representations are widely used in robotics to describe the po-
sition and orientation of objects or coordinate frames in a precise and consistent
manner.

12 Chapter 2. Fundamentals

2.7.6. Twist

In robotics, a twist is a mathematical concept that describes the combined lin-
ear and angular motion of a rigid body or a frame in space. A twist is typically
represented as a six-dimensional vector, denoted by ν, which includes both a
three-dimensional angular velocity vector ω and a three-dimensional linear veloc-
ity vector v.

ν =
(

ω
v

)
=
(

ω̂θ̇

−ω̂θ̇ × q + hω̂θ̇

)
. (2.10)

Here, ω̂ is the rotation axis which the frame is rotated around, θ̇ is the magnitude
of the change in rotation, q is the vector describing the distance from ω̂ to the
frame evaluated and h is the speed at which the frame is moving along ω̂. The
angular velocity vector ω describes the rate of change in the orientation of the
frame, while the linear velocity vector v describes the rate of change in the position
of the frame.

There are two types of twists that are commonly used in robotics: the spatial
twist and the body twist. The spatial twist νs describes the motion of a frame
relative to the fixed reference frame {s}. The body twist, denoted as νb, represents
the local motion experienced by a frame. A visual representation of the twist can
be seen in Figure 2.3.

Figure 2.3.: Representation of twist. A mobile robot rotates around the point r
with an angular velocity w and linear velocity v. Figure from [18].

In robotics, a twist can be interpreted as rotation about an axis known as the
"screw axis" S with the angular velocity θ̇:

ν = Sθ̇ (2.11)

The screw axis provides crucial information about how a rigid body moves when
it undergoes a motion consisting of translation and rotation. Because the physical
properties of robot arms are a series of rigid links and joints, so all motions can
be represented as a screw. This proves helpful, as it can be shown that any
configuration of a robot arm can be represented with constant S.

2.7. Robotics 13

The screw axis is defined as the normalized twist, denoted by S. It captures the
direction and magnitude of the motion and is defined as:

S = ν/∥ω∥ if ω ̸= 0
ν/∥v∥ if ω = 0.

(2.12)

The screw axis plays a vital role in kinematics and dynamics analysis, motion
planning, and control of robotic systems [18].

2.7.7. Kinematics

Forward Kinematics

Forward kinematics describes the transformation between a reference frame and
the frame of a given link, usually the end effector. As this transformation changes
as the joint values θ i.e the motors in the robot turn, forward kinematics are
essential for knowing where in space the robot is:

Tsb = T (θ). (2.13)

Product-of-exponentials is a convention used to describe the forward kinematics
of a robot. The convention utilizes the screws Si of each joint, as well as the
corresponding joint angles θi. This convention has the advantage of not requiring
the definition of a frame for each joint, except for specifying the rotation axis ωi

and the position qi of each joint relative to the base frame of the robot:

T (θ) = Πn
i=1e[si]θiM. (2.14)

Here, n is the number of joints in the system and M = T (0) represents the
transformation from the coordinate frame s to the coordinate frame b when all
the joints are at their zero configuration [18].

Inverse Kinematics

Inverse kinematics plays a crucial role in effectively controlling robots. It is a
mathematical process that aims to calculate the joint positions required to achieve
a specific goal or pose. In contrast to forward kinematics, which determines the
resulting pose based on input positions, inverse kinematics focuses on determining
the joint positions necessary to reach a desired pose.

14 Chapter 2. Fundamentals

Velocity Kinematics

Velocity kinematics, also known as differential kinematics, provides information
about the speed at which the robot is moving, given a specific joint configuration
and velocity.

The Jacobian is a crucial tool for understanding the velocity kinematics of a
robot. The Jacobian is a matrix that relates the velocities or rate of change of a
set of variables to another set of variables. More specifically, the Jacobian matrix
represents the gradient or derivative of a vector-valued function concerning its
input variables. In the context of robotics, the Jacobian matrix describes the
relationship between a robot’s joint velocities and its end-effector velocities or the
velocities of any other relevant frames.

For a robot arm, the Jacobian is obtained with the following equation:

J(θ) =
[
J1 J2 ... Jn

]
, (2.15)

and
Ji = Ad(Πi−1

j=1e[Sj]θj)Si. (2.16)

The Ad(x) represent the adjoint of the resulting 4 × 4 matrix:

Ad(T) =
[

R 0
[t]R R

]
∈ R6×6.

The velocity of the end effector is defined as the twist νee (Equation 2.10), which
can be obtained by multiplying the Jacobian matrix J(θ) with the vector of joint
velocities θ̇ [18]:

ν = J(θ)θ̇. (2.17)

2.7.8. Path and Trajectory

In robotics, a path refers to a time-independent and purely geometric sequence of
positions and orientations that a robot is required to follow in order to accomplish
a specific task or achieve a desired goal. To define the starting and ending points
of a path, it is commonly parameterized using the parameter s. The parameter
s is defined within the range of [0, 1], where 0 represents the beginning of the
path and 1 represents the end. This parameterization enables to establish a clear
reference for the progression along the path. In robotics, a path is denoted as
θ(s) = θ1(s), θ2(s), . . ., where θi(s) represents the value of the i-th joint at the
position s.

2.7. Robotics 15

A trajectory is a path that is time-dependent, where each point in the path is
reached at a specific time. In contrast to a path, a trajectory is time-parameterized,
and the scalar path parameter s becomes a function of time denoted as s(t). There-
fore, a trajectory is denoted as θ(s(t)) in robotics to represent its dependence on
time.

By manipulating the time parameterization function s(t), the velocity profile of
the robot can be adjusted to achieve specific behaviors, such as minimizing the
robot’s acceleration, known as jerk, maximizing the smoothness of the trajectory,
and minimizing the total time required to complete the trajectory, known as time
optimization [18].

2.7.9. Online and Offline Programming

A robot is a mechanical and electronic product that requires programming to
achieve its desired behavior. Programming a robot involves configuring the values
for its actuators, which control its movement and actions. In the field of robotics,
there are two main methods for programming a robot: offline programming and
online programming.

Offline programming is a programming method that does not require direct in-
teraction with the physical robot. Instead, it involves developing and testing
programs using a digital representation or simulation of the robot system. This
approach offers several advantages, including the ability to rapidly iterate and
develop complex programs, leverage advanced sensors, and employ sophisticated
algorithms. By relying on digital simulations, collision risks with the physical
robot can be easily avoided and mitigated. However, it is important to note that
offline programming heavily relies on accurate algorithms and calculations to en-
sure the program’s effectiveness and safety. By utilizing software tools and digital
representations of the system, potential collisions and other safety concerns can
be proactively addressed, resulting in efficient and reliable program development.

On the other hand, online programming involves using a physical robot to achieve
the desired behavior. This is achieved by manually controlling the robot through
actions such as jogging or physically guiding its movements. Online programming
allows the programmer to directly record and teach the robot specific actions
and sequences of movements, enabling precise execution of tasks. However, one
limitation of this approach is that it often requires taking the robot out of pro-
duction or temporarily halting its normal operations for programming purposes.
This interruption can disrupt workflow and reduce productivity during the pro-
gramming phase. Additionally, utilizing sensors effectively may be challenging.
Nevertheless, online programming offers the advantage of immediate feedback and
real-time interaction with the robot, allowing for explicit and, most importantly,

16 Chapter 2. Fundamentals

simple control [11].

2.8. Welding
Welding is a widely used process in manufacturing and construction industries,
where two or more metal parts are fused. Welding creates strong, durable, and
permanent joints between metal parts and is a critical process in producing many
structures, such as buildings, bridges, pipelines, and vehicles.

Gas Tungsten Arc Welding (GTAW), also known as Tungsten Inert Gas (TIG)
welding, and Gas Metal Arc Welding (GMAW), also known as Metal Inert Gas
(MIG) welding, are two standard welding techniques. TIG welding uses a tungsten
electrode and a shielding gas to create a precise, high-quality weld, making it ideal
for welding thin materials like aluminum. MIG welding, on the other hand, uses
a wire electrode that is continuously fed through a welding gun and a shielding
gas to protect the weld from contamination [40].

The choice of welding technique depends on the specific application and the prop-
erties of the metals being welded. Each technique has its own advantages and
disadvantages, and selecting the correct technique for the job requires careful con-
sideration of factors such as material thickness, joint configuration, and desired
weld quality.

2.9. Robotic welding
Robotic welding is an advanced and automated technique that utilizes robot ma-
nipulators to perform welding tasks, eliminating the need for manual labor. This
technology has gained significant traction, particularly in industries that require
a high volume of welds, such as the automotive industry. By employing robots,
the quality of welds can be improved, along with enhancements in flexibility, cost-
effectiveness, and overall manufacturing productivity [14].

The value and significance of robotic welding are further emphasized by the short-
age of skilled welders in the manufacturing industry [21, 41, 2]. The declining
number of skilled welders has created a scarcity, which necessitates exploring
alternative solutions to ensure uninterrupted welding operations and maintain
productivity.

Moreover, certain metals, such as aluminum, pose specific challenges for human
welders. Aluminum has higher thermal conductivity compared to other metals,
resulting in a narrower window for achieving proper fusion between parts. Ad-
ditionally, when exposed to air, aluminum is prone to oxidation, leading to the

2.10. Existing Solutions and Previous Work 17

formation of oxide layers on the metal surface. These oxide layers can interfere
with the welding process and contribute to the formation of impurities in the weld,
resulting in weaker and inferior welds [13].

To address these challenges and ensure high-quality welds, the use of robotic weld-
ing systems offers distinct advantages. Robots can execute precise and consistent
welds, reducing the risk of human error and mitigating the difficulties associated
with welding aluminum or other challenging materials.

While robotic welding offers numerous advantages, there are also several issues
that need to be considered when substituting humans with robotic applications [14].
These include the substantial time and effort required to develop robotic appli-
cations for low-batch size jobs, such as repairing. Additionally, in the absence of
sensors and advanced control systems, the robot system is unable to make cor-
rective adjustments when unforeseen changes occur. Moreover, the initial cost of
implementing robotic welding solutions can be high, potentially surpassing the
return on investment.

One of the most crucial aspects of robotic welding is the ability of robots to
make corrective decisions, which heavily relies on advanced control systems and
sensors. However, implementing advanced sensors and programs with industrial
arms presents a challenge due to the low-level nature of the robot controller. While
robots typically come with simplified programming options like a teach pendant
and some online programming capabilities, integrating sensors necessitates the
acquisition and programming of an external PLC (programmable logic controller),
introducing additional complexities. Moreover, developing programs in this low-
level language is demanding, and robot controllers often have limited resources in
terms of memory and computational power.

2.10. Existing Solutions and Previous Work
Because of the apparent need and the many benefits of utilizing robotic welding,
ongoing research efforts are focused on advancing robotic welding technologies, re-
fining control algorithms, exploring innovative welding techniques, and integrating
advanced sensing systems. There are multiple solutions have been developed.

ROSWELD, developed by PPM ROBOTICS AS, is a comprehensive planning,
monitoring, and control software suite specifically designed for heavy industrial
robot applications [25]. While frameworks like ROSWELD offer valuable func-
tionalities, there are certain considerations to be aware of. As ROSWELD is built
on the ROS framework, more specifically the ROS 1 version, it is not automat-
ically compatible with newer versions. For instance, if an application is created
with the newer ROS 2 framework, it can lead to compatibility issues.

18 Chapter 2. Fundamentals

Additionally, as an all-in-one solution, the framework aims to encompass various
tasks such as changing welding parameters, visualizing welding processes, and
planning welding paths. However, this comprehensive approach can result in
a larger program size, potentially compromising transparency and making it less
suitable for prototyping and implementing advanced algorithms for new solutions.

Path Robotics is a company that specializes in providing solutions for robotic
welding. Their solution includes the concept of “truly autonomous welding” and
the ability to have robots scan, position, and weld parts independently without
the need for skilled welders or robot programmers [31].

The functionality of their robots is based on a process where the model is scanned
and recreated in 3D. Through the utilization of artificial intelligence (AI), the
system comprehends the characteristics of the part, enabling the generation of
optimal robotic paths and precise part positioning, ultimately leading to the pro-
duction of high-quality welds. This results in a robot system that eliminates the
need for traditional programming.

However, it is essential to consider that one limitation of this approach is its in-
compatibility with existing robot systems. Implementing Path Robotics’ solution
necessitates using a completely new robot cell, making it challenging to retrofit
onto other robot systems. As a result, manufacturers interested in adopting this
technology would need to replace their current robot cells, which can be a signif-
icant expense. Additionally, the new cell would likely be limited to performing a
specific task, such as welding, reducing its versatility for other applications.

2.11. Welding Parameters
Welding is a complex process that requires careful consideration of multiple vari-
ables to achieve optimal results. The quality of the weld depends on various
factors, including but not limited to feeding speed, movement speed, angle of the
welding gun, the direction of the weld, the type and thickness of the material
being welded, and the specific welding tool used. Developing a comprehensive
framework that accounts for all these parameters is a formidable task.

However, it is important to note that many of these parameters are typically
determined by the welding source and do not necessarily need to be explicitly
considered by the mechanism controlling the robot or welding tool. Assuming
that only the parameters directly related to the movement of the end effector are
taken into consideration, the following factors remain:

• Direction: The path or trajectory along which the welding torch moves.

2.12. Welding Equipment 19

• Orientation: The alignment or position of the welding torch with respect to
the workpiece during welding.

• Travel speed: The velocity at which the welding torch moves during the
welding process. Depending on the technique, the torch should move steadily
in the range from 1 to 10 cm/s [20].

2.12. Welding Equipment
The term “welding equipment” encompasses all the components required for being
able to weld. These components include the welding gun, the welding source, and
the wire feeder.

The welding gun or welding torch is an essential component of welding equipment,
serving a crucial role in the welding process. It fulfills multiple functions, including
generating the necessary heat or arc to melt the metal pieces together, guiding
and directing the filler material into the weld, and directing shielding gas to
protect the weld zone. The design of the welding gun can vary depending on
the specific welding technique employed, taking into account factors such as the
welding method, materials being welded, and desired welding parameters [42].

The wire feeder is a crucial component responsible for supplying filler material to
the welding gun. There are two types of wire feeders commonly used: cold feeders
and electrode wire feeders.

Cold feeders are designed to provide filler material to the weld without the material
being part of the electrical circuit. In this case, the material needs to be heated
separately before joining the metal pieces. Cold feeders are commonly used in
TIG welding processes.

On the other hand, electrode wire feeders are specifically designed for the wire
that is part of the electrical circuit during welding. The wire acts as both the
filler material and the electrode, carrying the current necessary for the welding
process [43].

The welding source or power source is the component that provides the necessary
voltage and amperage to facilitate welding. These sources may include comput-
ers that allow for job creation, parameter setting, and external communication
through an interface.

Chapter 3.

Hardware and System
Description

This chapter describes the hardware that is used and exists within the robot cell.

3.1. Robot Controller
The Yaskawa Motoman YRC1000 is a robot controller Yaskawa which is compati-
ble with multiple arms within the Motoman family. The YRC1000 can control up
to 8 robots and external axes for control of a total of 72 joints [44]. The YRC1000
controller can be seen in Figure 3.1.

The robot controller plays a critical role in the operation of industrial robots.
Functioning as a computer with its own operating system, it provides a platform
for running various applications that enable robots to carry out their designated
tasks. Developing third-party applications for robot controllers can be challenging,
especially when the operating system is closed source. However, the YRC1000
controller offered by Yaskawa Motoman provides a distinct advantage with the
MOTOPLUS SDK (software development kit) [23], a toolkit enabling developers
to create custom applications which work seamlesly with the robot controller. This
capability opens up significant potential by allowing the utilization of libraries
such as ROS2, thereby enhancing the capabilities of industrial robots.

One notable feature of the YRC1000 controller is its extensive range of commu-
nication options, enabling seamless interaction with the controller. These options
include Ethernet and RS232 connections, utilizing protocols such as TCP/IP [44].
These conventional communication methods provide convenient connectivity with
external computers. In this thesis, to establish communication with the robot
controller, a generic wireless router (as depicted in Figure 3.2) was employed,

22 Chapter 3. Hardware and System Description

connected to the controller via an Ethernet cable.

3.2. Robot Manipulators
The Yaskawa Motoman GP25-12 is a type of robot manipulator designed for
industrial automation applications. It features six revolute axes, which provide a
high degree of flexibility and control over the arm’s motion. The joints are named
by the manufacturer as S, L, U, R, B, and T, representing swivel, lower, upper,
rotation, bend, and twist respectively.

The six axes of the GP25-12 give the end effector a 6 degrees of freedom, meaning
that the end effector can move and orient itself in six different directions. This
allows the arm to reach any position within its work space and manipulate objects
with great precision and accuracy.

In a robot system, each joint of the robot arm may have a “joint limit” that de-
fines the maximum and minimum values that the joint can move within. Joint
limits are typically given in radians or degrees, except in the case of linear joints
where they are specified in meters. They are predetermined based on the design of
the hardware components, such as servo motors used in the robot, or by physical
constrains. The specifications of the GP25-12 can be found in Appendix A. How-
ever, it is important to note that in some cases, software-defined limits may be
implemented to further restrict the range of movement. This can be particularly
relevant when the robot is equipped with specialized equipment that cannot toler-
ate excessive twisting or bending. Therefore, while the physical limits of the robot
must be respected, the software-defined limits may impose additional restrictions
to ensure safe and precise operation.

The system has two GP25-12s. One arm is mounted on a pendant elevating the
robot from the floor (Figure 3.3), and one arm is mounted on a the linear module
TSL600 (Figure 3.4).

3.3. Extra Modules
In addition to the robot controller and the industrial arms, there are other mod-
ules within the workspace that enhance the system’s capabilities. These modules
provide extended reach and additional degrees of freedom, enabling the execution
of more complex tasks.

The Motoman TSL600 (shown in Figure 3.4) is a linear motion base that allows
movement along a single axis. By mounting a robot manipulator on the TSL600,

3.3. Extra Modules 23

Figure 3.1.: The Motoman YRC1000 robot controller with the teach pendant
(top right corner of the controller).

24 Chapter 3. Hardware and System Description

Figure 3.2.: Netgear R2610 wireless router used for establishing network con-
nectivity in the setup.

the robot’s workspace can be significantly increased. The TSL600 comes in dif-
ferent lengths, with versions available in 2, 3, and 4 meters, which correspond to
the length of the linear motion base. This feature enables a single robot arm to
perform tasks over a larger work area and perform for example welding tasks on
structures or objects which would not be possible otherwise. The specifications
of the TSL600 can be found in Appendix B.

The Motoman MT1 (shown in Figure 3.5) is a workpiece station that serves as
a platform for holding a workpiece. The station enables rotation and positioning
of the workpiece, even when a robot arm is stationary. This allows for operations
on the workpiece that would not otherwise be reachable, expanding the range of
possible tasks that can be performed by the robot system. See Appendix C for
specifications.

3.4. Welding Equipment
The robot cell was equipped with two different welding systems, both manufac-
tured by Fronius. The first system utilized the Fronius TPS400i as its power
source, as seen in Figure 3.7. A MIG welding torch is connected to this system
for the welding process, and a electrode wire feeder is mounted on the arm.

3.4. Welding Equipment 25

Figure 3.3.: Yaskawa Motoman GP 25-12 industrial robot arm equipped with
TIG torch as end effector.

26 Chapter 3. Hardware and System Description

Figure 3.4.: Yaskawa Motoman GP 25-12 industrial robot arm mounted on
Yaskawa Motoman TSL600 linear module, equipped with MIG gun as end effector.

Figure 3.5.: Yaskawa Motoman MT1 with workpiece.

3.5. The Robot Cell 27

The second arm of the robot system was equipped with the Fronius MagicWave
3000 as its welding power source (shown in Figure 3.6). A TIG welding torch is
connected to the robot arm, and a wire feeder is mounted on the arm to supply
filler material for the welding process.

Figure 3.6.: The Fronius MagicWave 3000 welding source.

3.5. The Robot Cell
The entire system can be observed in Figure 3.8. The system is contained within
a transparent glass enclosure, forming a robot cell. The cell is equipped with a
sliding door and a lock mechanism that is connected to the robot controller. This
ensures that programs cannot be executed remotely when the door is unlocked,
enhancing safety and security measures.

Figure 3.9 illustrates two significant transformations, accompanied by their cor-
responding transformation matrices as shown in Equations 3.1 and 3.2. These
transformations were measured using basic tools, and it is important to acknowl-
edge the possibility of some errors in the measurements.

28 Chapter 3. Hardware and System Description

Figure 3.7.: The Fronius TPS400i welding source.

Figure 3.8.: The image captures the complete robot cell, which includes two
robot arms, a linear module (TSL600), a workpiece positioner module (MT1),
and two welding apparatus.

3.5. The Robot Cell 29

Figure 3.9.: The image showcases the world frame, the frame of the TSL600
base, and the frame of the mounting pendant within the system.

Tworldframe,pedestal2 =
[
Rot(z, −30.5 deg) t1

0 1

]
, t1 =

−1.10719347
2.225587

0

 (3.1)

Tworldframe,T SL600base =
[
Rot(z, 180 deg) t2

0 1

]
, t2 =

1.58
3
0

 (3.2)

Chapter 4.

Approach for Achieving the
Stated Objectives

This chapter is dedicated to describing the methods that have been considered
and employed to achieve the goals outlined in the introduction.

4.1. Communication
Establishing communication with the robot controller is vital to control and in-
teract with the robot system effectively. This section outlines the methodology
employed in this thesis to achieve communication with the robot controller, en-
abling precise command execution and real-time monitoring of the robot’s state.

A fundamental requirement for successful communication is establishing a reli-
able and efficient communication channel. This allows for the transmission of
control commands, receipt of sensor data, and exchange of information between
the robot controller and external systems. By enabling bidirectional communica-
tion, advanced control algorithms can be implemented, sensors can be integrated
for perception, and collaborative operations with other robotic components can
be facilitated.

To fulfill these requirements, the MotoROS2 application was utilized in this the-
sis. MotoROS2, developed by Yaskawa America, Inc. and the Delft University of
Technology [45], allows micro-ROS to run directly on the robot controller. This
enables control over the robot system using ROS2 services and actions. Leveraging
ROS2 provides the ability to program the robot arm using conventional program-
ming languages, thereby enabling the creation of highly sophisticated programs
incorporating advanced sensors without the need for extra hardware such as PLCs.

It is essential to acknowledge that MotoROS2 was in a closed beta phase at the

32 Chapter 4. Approach for Achieving the Stated Objectives

time of this thesis, which means it was subject to potential changes and had
limited documentation available. The thesis supervisor provided the necessary
files for the implementation.

An overview of the MotoROS2 architecture can be seen in Figure 4.1, illustrating
the integration of ROS2 with the robot controller for communication and control.
From the figure, it can be seen that MotoROS2 enables the action “follow joint
trajectory”. This allows the robot controller to execute a preplanned trajectory.
By leveraging this functionality, the details of how the robot initiates and moves
can be abstracted, allowing for a focus on implementing ways for intuitive path
description and sensor implementation.

Figure 4.1.: System overview and functionality.

4.2. Simulation
To ensure efficient programming and operation of the robot system, it was crucial
to implement a simulation environment. The simulation provided visual feedback,
allowing the user to verify the correctness of the system and observe the desired
behavior. Numerous simulators were available, each with its own set of features,
such as physics simulation and collision detection. Therefore, a careful analysis
was conducted to determine the required elements for the software selection.

Two types of simulators were considered, which can be described as kinematic
simulators and dynamic simulators. Kinematic simulators focus on replicating
the arm’s movement, while dynamic simulators incorporate the study of motion
caused by forces. Dynamic simulation is particularly valuable for tasks involving
deformable objects or when movement and positioning within the work envelope
are necessary. These simulators find applications in machine learning problems,
such as peg-in-hole tasks.

4.2. Simulation 33

For this thesis, the main important aspects were kinematics and collision detec-
tion. Collision detection plays a vital role in identifying and notifying the pres-
ence of collisions within the simulator. This feature assists in preventing collisions
within the existing work system and minimizing potential damage.

Further consideration of software options can be classified into two categories:
manufacturer-provided and non-manufacturer software.

Manufacturer-provided software, often referred to as robot simulation software or
robot programming software, is specifically designed to support the programming
and operation of industrial robots. These software products are typically devel-
oped by robot manufacturers themselves, ensuring seamless integration with their
hardware. They offer accurate geometry and kinematic properties of the robotic
systems and provide advanced visualization tools, optimization features, and con-
trol modules for additional equipment, such as conveyors. However, these solu-
tions can be expensive and have restricted support for programming languages
and customization options, as they primarily focus on the manufacturer’s own
robot models.

Examples of manufacturer-provided simulators include motoSIM by Yaskawa Mo-
toman [22] and KUKA.sim by KUKA [16], with estimated prices of 8, 000 and
2, 000, respectively [11].

On the other hand, non-manufacturer software is created by third parties who
may not necessarily produce physical products but offer virtual tools or services
to enhance existing products or processes. These solutions are not tied to specific
products and offer high customizability.

Robotsuite is a modular simulation framework designed for machine learning ap-
plications on robotic arms. It provides flexibility in choosing physics engines and
includes pre-built robotic arm models. However, its focus on machine learning
limits the customization of robot cells and systems [46].

ISAAC Sim, developed by NVIDIA, is a scalable robotics simulation application
and synthetic data-generation tool. Powered by Omniverse, it creates photoreal-
istic and physically accurate virtual environments, enabling faster development,
testing, and management of AI-based robots [24].

Gazebo is a widely used open-source simulation software tool that facilitates the
behavior and performance simulation of robots in various environments. It sup-
ports complex robotic system modeling and simulation, offering features such as
3D visualization, physics simulation, and sensor simulation. Gazebo supports mul-
tiple programming languages and benefits from an active community contributing
to its plugins and models [7].

Rviz2 is a tool for ROS2, provides a 3D visualization environment for robotic

34 Chapter 4. Approach for Achieving the Stated Objectives

data and models. While not strictly a simulator, it can function as a kinematic
simulator with the help of external packages. Its modular nature enables its
application as a simulation tool depending on the visualized data type, making it
valuable for robotics research and engineering.

These are just some of the many tools that enable the simulation of the robot.
To select simulation software, an analysis of the resources available and require-
ments necessary to achieve the goals described in the description of this thesis
were conducted. Considering these factors, Rviz2 was deemed suitable for the
simulation needs of the robot system, providing an efficient and effective environ-
ment for offline programming and visualization of the desired robot behaviors and
interactions.

It is important to note that the selection of Rviz2 is based on the specific require-
ments and considerations of the thesis project. Other simulation environments
mentioned earlier may also be appropriate depending on the project’s objectives,
constraints, and specific needs.

4.3. Calibration
To ensure precise control of the robot system, calibration becomes necessary. Cal-
ibration involves two main aspects: controller calibration and system description
calibration. Controller calibration refers to the process of calibrating the robot
controller itself. It involves determining the transformation of each joint in the
system and providing this information to the software running on the controller.
This allows the controller to accurately represent the joint positions and move-
ments on the teach pendant or other user interfaces. In the scope of this thesis,
the goals did not require any changes or adjustments to the controller calibration,
and thus it was not necessary to modify this aspect.

System description calibration is the calibration of system description, more specif-
ically the URDF. System description calibration is an essential step in achieving
an accurate alignment between the virtual representation of the robot and its
physical counterpart. In this study, a systematic calibration process was adopted
to fine-tune the transformations within the URDF based on the observed de-
viations between the actual robot and its simulated representation. This was
important because no description of the robot cell was found, and the positions
and orientations of each robot component were unknown.

The calibration procedure involved jogging each end effector in the robot system
into easily measurable positions. Through careful observation and analysis of the
disparities between the real-world robot and its virtual counterpart, adjustments
were made to the URDF parameters.

4.4. Motion Planning 35

This iterative calibration process enabled the progressive refinement of the URDF,
ensuring a more precise alignment between the physical robot system and its
digital representation in the simulator.

It is important to note that the precision and accuracy of the calibration process
outlined above heavily rely on the ability to accurately measure the real-world
system. Any inaccuracies or uncertainties in the measurements can introduce
deviations between the physical system and the calibrated model.

While every effort was made to ensure accurate measurements, it is important to
acknowledge the inherent limitations and potential sources of error in the calibra-
tion process. The obtained results should be interpreted in light of these potential
inaccuracies, and further research or refinements may be required to improve the
precision of the calibration.

4.4. Motion Planning
To achieve precise control of the robot arm’s end effector, an efficient and effective
motion planning framework is essential. Motion planners play a crucial role in
solving the inverse kinematics problem, enabling the robot to reach a desired
goal. Over the years, extensive research has been conducted in the field of motion
planning, resulting in the development of numerous algorithms.

Traditionally, algorithms like the A* (A-star) algorithm have been widely used
for solving shortest path problems. However, these algorithms rely on predefined
graph exploration, which becomes impractical for physical robots operating in
environments with stringent precision requirements, such as achieving accuracy
within 0.1 mm or less. Additionally, due to the high degree of freedom that a robot
arm possesses, creating a map of all possible paths, as required by traditional
path-finding algorithms, becomes virtually impossible.

To address these limitations, rapidly exploring random trees (RRT) was intro-
duced as a sampling-based alternative to graph-based algorithms like A*. RRT*
(RRT-Star) is a variant of RRT that generates more optimal paths between con-
figurations, making it particularly suitable for complex environments [17].

In recent years, machine learning has gained popularity as an approach for control-
ling robot arms, particularly in dynamic and intricate environments. By training
a neural network on a substantial dataset of example motions, the network can
learn to predict the necessary joint positions to achieve a desired end effector pose,
without relying on pre-defined planners or trajectories. Various machine learning
algorithms are utilized for robotic motion planning, including deep reinforcement
learning and supervised learning, and imitation learning. Deep reinforcement

36 Chapter 4. Approach for Achieving the Stated Objectives

learning trains the neural network to take actions based on a reward signal, such
as a score for successfully completing a task. Supervised learning trains the net-
work using a labeled dataset of example motions, while imitation learning involves
learning from an expert demonstration of the desired motion.

Despite the promising results demonstrated by machine learning approaches in
specific applications, they also have certain limitations. One major drawback is
the requirement of a large dataset of example motions for training the neural
network, which can be time-consuming and costly to collect. Additionally, neu-
ral networks may struggle to generalize to novel scenarios beyond the training
data, necessitating re-training or fine-tuning for each new task or environment.
Nonetheless, machine learning holds significant potential for achieving advanced
control of robot arms in the future, and its benefits may outweigh its limitations
in specific applications [4].

The selection of the motion planner was driven by the goals outlined in the in-
troduction, with a particular emphasis on leveraging open-source resources and
the ROS 2 framework. After considering these factors, the MoveIt 2 platform
was chosen. MoveIt 2 is an open-source platform that is widely used and well-
documented. It provides the latest developments in planning and control, offering
an intuitive setup of the robot and efficient planning capabilities. Additionally,
MoveIt 2 comes integrated with the OMPL (Open Motion Planning Library) for
advanced motion planning [33].

One significant advantage of using MoveIt 2 and OMPL is the comprehensive
collection of planning algorithms they provide. This feature enables rapid switch-
ing between different planners based on specific requirements or scenarios. The
availability of various algorithms in OMPL offers flexibility and adaptability in
the planning process, empowering researchers and practitioners to explore multi-
ple planning strategies and experiment with different approaches. This versatility
allows for efficient optimization and customization of the planning process, ulti-
mately enhancing the overall performance and effectiveness of the robotic system.

Moveit 2 also incorporates virtual controllers that utilize the aforementioned fol-
low joint trajectory action. This integration enables seamless compatibility with
the MotoROS2 application, leading to the development of a robust system.

4.4.1. Velocity Control

In general, the plans generated by a motion planner do not include information
about time dependencies. This means that while the desired points to be reached
are defined, the timing between these points is not specified. As a result, the
velocities required for the robot arm are not determined. While robot controllers

4.4. Motion Planning 37

may still be able to interpret these plans, the resulting motion will be jerky and
detrimental to the health of the robot arm. To address this issue, methods like
time parameterization are employed, as mentioned in subsection 2.7.8.

Although there are several algorithms available for automatically post-processing
the path with time parameterization to achieve smooth trajectories for robot arms,
not all of them prioritize precise control over end-effector velocity. However, for
certain tasks such as welding or applications that require slow and controlled
movements, having precise control over end-effector velocity is crucial. Some
planners include velocity constraints in their planning algorithms. However, it is
important to note that MoveIt 2, which is primarily a kinematic motion planning
framework, focuses on planning for joint or end effector positions rather than
velocity or acceleration [35]. As a result, a post-processing method is necessary if
MoveIt 2 and OMPL are used to achieve smooth and controlled robot motion.

Two methods are considered for post-processing the generated trajectory, manip-
ulating the twist and utilizing time parametrization.

The twist tells about how the end effector moves relative to a frame. The v
component tells about the change of position, which in turn results from the
changes in the joints defining the robot arm, θ̇ as seen in Equation 2.17.

To determine the required joint velocities for achieving a desired end effector twist,
the relationship between the twist, the Jacobian matrix, and the joint velocities
can be utilized. If the inverse of the jacobian exists, then the joint velocities θ̇
from Equation 2.17, can be found by pre-multiplicating the inverse of the jacobian
into the equation resulting in:

θ̇ = J−1ν. (4.1)

By knowing the desired end effector twist νdesired, the required joint velocities θ̇req

can be obtained:
θ̇req = J−1νdesired. (4.2)

In scenarios where the robot does not have a 6-axis configuration, the Jacobian
matrix may not be square, leading to the absence of a traditional inverse. The
pseudoinverse of the Jacobian matrix, a least squares method solution, is employed
to address this limitation. The pseudoinverse enables estimation of the inverse
even for singular or non-square matrices.

Further analysis of the twist reveals that while the twist captures the instan-
taneous linear velocity in a given configuration, evaluating the entire twist is
necessary to determine the Cartesian speed. The twist, represented in the space

38 Chapter 4. Approach for Achieving the Stated Objectives

frame, can be written as follows:

[ν] =
[
[w] v
0 0

]
= Ṫ T −1 =

[
Ṙ ṫ
0 1

] [
R t
0 1

]−1

=
[
ṘRT ṫ − ṘRT t

0 0

]
,

(4.3)

where [ν] is the skew representation of the t, Ṙ denotes the time derivative of the
rotation matrix R, ṫ represents the time derivative of the translation vector t, and
R and t correspond to the rotation and translation components, respectively [18].
To ensure that the Cartesian velocity remains within the desired limit, the twist
must be scaled such that ṫ remains within the desired velocity limits:

νdesired = αν, (4.4)

where
α = ṫ

Desired End Effector speed . (4.5)

The second approach employed for velocity control is iterative time parametriza-
tion, which leverages the properties of time-parameterized trajectories. As the
trajectory is computed by the planner, all the necessary information describing
the path is known.

Iterative time parametrization involves calculating the forward kinematics for each
point along the trajectory. This computation allows for determining the spatial
difference between the end effector positions at successive time instances, such as
between time t and t + 1. Dividing this spatial difference by the desired velocity
yields the corresponding time duration required for the end effector to traverse
between the two points.

To ensure smooth and controlled movements, the iterative time parametrization
technique is applied to each segment of the trajectory. By iteratively updating
the trajectory based on the values obtained from the previous segment and us-
ing the computed time durations, it guarantees that the robot’s speed is limited
throughout the entire trajectory.

It is important to emphasize that both of these methods are designed to limit the
speed to a specified value, which may result in trajectories with velocities lower
than the desired speed. Additionally, it is crucial to exercise caution when uti-
lizing the method that involves scaling of the twist, as it is an analytic approach
that may generate results exceeding the physical capabilities of the robot if used
imprudently. Therefore, careful consideration and validation of the resulting tra-
jectories are necessary to ensure that they align with the robot’s operational limits
and constraints.

Chapter 5.

Implementation

This chapter aims to describe the process and implementation of the methods
outlined in the previous chapter.

5.1. MotoROS 2
As previously mentioned, it is important to note that the MotoROS2 package was
in a closed beta stage at the time of implementation. Therefore, the following de-
scription provides an overview of the version available during the implementation
phase and may be subject to changes.

The MotoROS2 package provided consisted of the following five folders:

• config

• example_jobs

• motoros2-beta1-0.0.15

• motoros2-beta1-main

• motoros2_interfaces-beta1-main

Additionally, the package included the object file motoros2_yrc.o, and a readme.txt
file. A description of the folders can be seen in Appendix D.

5.1.1. Installation

A generic wireless router was configured with a subnet mask of 192.168.255.x. The
subnet mask was chosen because of the preset settings on the robot controller.
This was essential for allowing communication between the robot controller and

40 Chapter 5. Implementation

the host computer. Alternatively, the IP address of the robot controller could
have been changed to match the router’s settings, achieving the same outcome.

On the host computer, a static IP address of 192.168.255.10 was configured (shown
in Figure 5.1). This particular address was selected to accommodate multiple
clients on the same network while ensuring a consistent and known IP address
assignment. It was crucial to define a specific IP address, as it needed to be
specified for the MotoROS2 application, particularly the micro-ROS agent running
on the application, to establish a connection successfully.

Figure 5.1.: The figure displays that the IP address has been manually set to
the value described.

The motoros2_config.yaml file, which was located in the config folder of the
MotoROS2 package, served as the configuration file for MotoROS2. This file
contained various settings and parameters that defined the behavior of the Mo-
toROS2 application. Specifically, in the motoros2_config.yaml file, the previously
mentioned IP address was inserted in the agent_ip_address field as shown in
Figure 5.2.

Furthermore, within the configuration file, the custom-defined names of each joint
that define the robot system were specified. Since the robot cell comprised two
Yaskawa Motoman GP25-12 robot arms, each with 6 joints, they were differen-
tiated by using the prefix names “group_1” and “group_2”. Additionally, the
extra linear module TSL600 was assigned the prefix “group_3”, and the work-

5.1. MotoROS 2 41

Figure 5.2.: Configuration of the agent IP for establishing a connection.

piece positioner module MT1 was assigned the prefix “group_4”, as illustrated
in Figure 5.3. As emphasized in the configuration, the order of the groups (mod-
ules) is important. Additionally, the number of joint names provided must exactly
match the number of joints in the corresponding group.

Figure 5.3.: Configuration of joint names.

A final modification was made in the field specifying the quality of service (QoS)
of the ROS messages. Initially, the QoS profile of the joint_states publisher in
the config file was set to “sensor_data”, but it was later changed to ‘default”.
This change was motivated by the observation that no data was being published
during the initial attempt. Additionally, the config file mentions that certain
applications may require the use of default values for QoS in order to ensure
proper communication.

The configuration file, object file, and IONAMES.DAT file were uploaded to a
freshly formatted USB stick and inserted into the teach pendant. The robot
controller was turned on while holding down the “menu” button to start the
controller in “maintenance mode”. This provided access to the necessary settings
for installing MotoROS2. The files were then uploaded and installed according to
the instructions provided in the README.md file included with MotoROS2.

It is worth mentioning that the MOTOMAN DRIVER setting was adjusted to
“USED” in the “System Info/Setup/Option Function” window within the teach
pendant while the robot was in maintenance mode. This adjustment was made to
address the expected alarm “8013 [0] Missing MotoROS2 cfg file” that was missing
during the controller restart, during installation. As a result of this change, the

42 Chapter 5. Implementation

alarm was triggered as described in the installation guide, indicating a successful
installation.

On the host computer used for communication with MotoROS2, micro-ROS was
installed directly on the system. Alternatively, micro-ROS could be run in a
Docker container, although this approach was attempted but did not work on
the current setup. The installation was verified by running the micro-ROS agent,
which connected using the UDP4 protocol and the port specified in the config
file. After a successful connection, the topics currently active on the network were
listed using the following command:

1 ros2 topic list

which outputted “motoman_ab_cd_ef”, where ab_cd_ef were the last 3 bytes
of the mac-address of the controller, signaling that the ROS node on the robot
controller was spinning.

Finally, a test was performed by setting the teach pendant to online mode, locking
the door to the robot cell, and executing the following command:

1 ros2 service call / start_traj_mode motoros2_interfaces /srv/
StartTrajMode

The command returned a successful response, and an audible sound was generated
by the servo motors, confirming that the servos on the physical arm were activated.
This test verified the proper functioning of the trajectory mode and the activation
of the robot arm.

5.2. MoveIt 2
The installation of MoveIt 2 was performed by following the installation guide
provided on the official MoveIt 2 webpage [33].

5.2.1. Creating System Model

MoveIt 2 provides a setup assistant tool that assists with the creation of a package
for robot control, including a planner and visual modeling. In order to set up a
virtual robot system, it is necessary to define the URDF, which requires the 3D
models of the system components. The 3D models for the robot system were
obtained from online sources. The GP25-12 robot arms were acquired from [9],
while the linear module and the workpiece positioner were obtained from [27]
and [26], respectively.

5.2. MoveIt 2 43

A separate package was created for each unique robot model, namely the GP25-12,
TSL600, and MT1. These packages were developed based on the existing packages
provided by ROS-Industrial [34]. However, since the packages available in ROS-
Industrial were designed for ROS 1, they could not be directly used without
modifications. The package structure, including the launch and config folders,
can be seen in Appendix E. Although the launch and config folders were included
in the package structure, they were not utilized in this implementation.

Each link from the 3D models mentioned above was imported into the 3D modeling
software Blender [3]. This step was necessary to adjust the scale and position of
each link to ensure they had the correct size and alignment. The reason for this
adjustment was that different software applications interpret units differently. For
example, if a model was created in millimeters [mm], other software applications
might interpret it as meters [m].

Additionally, the URDF specification defines the rotation axis about the origin
of the model, which may not correspond to the physical center of rotation, as
depicted in Figure 5.4a. To address this, each link was moved so that it aligned
with the physical center of rotation, resulting in the updated configuration shown
in Figure 5.4b.

The xacro-files were created from scratch to define the robot’s components and
their parameters. The macro.xacro file was specifically designed to accept input
parameters such as “connectedTo”, “translation”, “rotation”, and “prefix”. The
“prefix” parameter was used to assign a group name to the robot, for instance,
“group_1/” allowing multiple models to be generated from the same file without
collision of names. On the other hand, “connectedTo” parameter specifies the
parent link to which the base of the robot is connected. The “rotation” and
“translation” parameters defined the transformation between the “connectedTo”
link and the robot’s base. This flexible setup enabled the convenient addition
of pedestals and positions within the environment. Additionally, a virtual link
and joint were included in the macro.xacro file to describe the transformation
between the “connectedTo” link and the robot’s base. Finally, a separate xacro
file was created specifically for verification and testing purposes, ensuring that
the transformations between each link were accurately defined and functioning as
intended.

It was crucial to match the joint names defined in the macro.xacro files, with the
joint names specified in the config file, which was loaded into the robot controller
during the installation of MotoROS2, as a mismatch would cause the mismatched
joint not to be found by the system.

After creating support packages for each robot component, a system support folder
was created, named “gp25_sys_support”, to describe the system as a whole. This

44 Chapter 5. Implementation

(a) A model of the robotic arm base, where the origin frame (intersec-
tion of the two orthogonal lines) is not aligned with the robot base.

(b) The model in the correct position, with the base and origin properly
aligned.

Figure 5.4.: Alignment of the model and origin.

5.2. MoveIt 2 45

folder followed the same structure as the individual robot components described
in Appendix E but included some additional models as described below.

To create visual and collision models for the workpiece, end-effectors, and pedestals,
three extra folders were added to the “meshes/visual” and “meshes/collision” di-
rectories, each with their respective names. These models were designed using the
CAD software SolidWorks [37].

In the URDF folder of the system support package, a .xacro file was created to
define the robot components. This file imported the macro.xacro file for each com-
ponent and specified material properties. A world link was defined as a common
reference point. Since the robotic arms were mounted on pedestals, links, and
joints for this connection were defined to describe their geometry and position.
Each robot component was inserted with the appropriate prefix, parent link, and
transformation.

The workpiece, used as a test case, had its geometry and transformation defined
and connected to the appropriate parent link, in this case, “group_4/link_2”.
The end-effectors’ geometry and transformation were also defined.

The packages were built and sourced. A file with the URDF file extension was
generated from the system xacro file using the xacro package included with the
ROS2 framework.

5.2.2. Creating Moveit package

In MoveIt Setup Assistant, the robot system URDF file was uploaded, and the
setup guide provided on MoveIt’s website [32] was followed. The following list
outlines the crucial setup steps that enable the real word robot cell to be con-
trolled:

• Collision Matrix: Collision matrix were generated without change of values.

• Virtual Joint: A virtual joint was defined between the world frame and the
base link specified in the URDF

• Planning Groups: Planning groups were defined to specify subsets of the
robot’s joints used for motion planning.

• ROS 2 and MoveIt Controllers: ROS 2 controllers and MoveIt controllers
were configured to enable control and motion planning for the robot.

Each robot component was assigned its own planning group, which contained only
the joints responsible for the robot’s movement. For example, since “group_1”
was mounted on “group_3”, the joints of “group_3” were included in “group_1”.
The default planner was set as RRTstar, and the default kinematic solver was set

46 Chapter 5. Implementation

as the default “kdl_kinematics_plugin/KDLKinematicsPlugin,” as the system
comprised only open-loop robots.

Additionally, a common planning group named “follow_joint_trajectory” was
defined, including all the joints in the system. This planning group is neces-
sary because MotoROS2 expects joint values for each joint in the entire system
and does not work with individual groups. As the system consists of 15 joints
(6 + 6 + 2 + 1), the planning group also includes 15 joints. The name “fol-
low_joint_trajectory” is used because MotoROS2 listens for this action to exe-
cute joint trajectories. By matching the name of the system planning group with
the action server, the resulting configuration will allow MoveIt 2 to control the
physical robot.

After generating the config package using the MoveIt Setup Assistant, the con-
troller names in the file “moveit_controller.yaml” located in “moveit_config/config”
were modified. The original controller name, “follow_joint_trajectory_controller,”
was changed to “follow_joint_trajectory.” Additionally, the value of the “ac-
tion_ns” variable was modified from “follow_joint_trajectory” to an empty string,
“”. This change can be found in more detail in Appendix F.

The virtual environment could be launched by executing the ROS2 launch file
“demo.planning.py”. This launch configuration sets up the necessary processes
for visualization, planning, and controlling the system. However, it is essential to
be aware that the configuration also started a virtual controller, which publishes
values on the same topics as MotoROS2, primarily on the topic “/joint_states”.
This caused conflicts as the virtual robot and the physical robot may be at
different positions, causing the system to jump between configurations. Con-
sequently, planning may not be feasible. To address this issue, the frequency in
the “ros2_controller.yaml” file located in “moveit_config/config” was modified.
Specifically, the frequency was changed from the initial 100 Hz to 0 Hz, effectively
preventing the virtual controller from publishing data. This final modification
enables the control of the physical robot system using the Rviz2 and MoveIt 2
interface.

An alternative solution was created, and instead of running the “demo.launch.py”
configuration with multiple unnecessary processes, the individual launch files
“rsp.launch.py” and “move_group.launch.py” could be launched. For visualiza-
tion purposes, the launch configuration file “moveit_rviz.launch” was used. How-
ever, running these launch files individually requires opening three separate ter-
minal windows. To simplify this process, a new launch file was created to start
the three desired processes simultaneously, which can be seen in more detail in
Appendix G.

5.3. Ros2 Main Package - planner_node 47

5.3. Ros2 Main Package - planner_node
The ROS2 main package consisted of a single node named “planner_node”. This
node was designed to provide two services: one for planning the robot’s trajec-
tory and another for executing the trajectory of the robot. Additionally, the
planner_node had the objective of providing information about the robot’s po-
sition. This functionality was crucial, as explained in section 2.9, to ensure that
only robot movements were controlled by this node. By having this capability,
the activation of the welding tool could be controlled by other nodes.

The planner_node consisted of a single class named “WaypointListener” with the
following structure:

• Class WaypointListener

Subscriptions:

- joint_state_subscription

Publishers:

- ready_publisher_

Services:

- plan_service_

- execute_service_

Private core functions:

- update_thread_function

- create_plan

- Callback functions

5.3.1. Planning Functionality

The class implemented a service method to enable the planning service named
/plan_group. The callback function associated with this service was responsible
for pre-processing the received message defining the planning request, and passing
the data to the private function create_plan, which performed the main planning
work. Once the plan was created, the callback function notified that the plan was
ready for execution and responded with the fraction of the trajectory that was
planned. The implementation can be seen in Appendix J.

Using the MoveIt 2 planning interface, a Cartesian path for the given group was
calculated based on the waypoints acquired from the message. An algorithm then

48 Chapter 5. Implementation

processed the calculated trajectory to limit the end effector’s Cartesian speed to
the velocity defined in the message, resulting in a trajectory for the given group
with the desired speed.

Since the planning was performed for a single group, an algorithm was developed
to manipulate the trajectory. This algorithm ensured that the trajectory contained
all the joint values for each joint in the system. The trajectory was then expanded
to have the same length as the calculated trajectory for the single group. Finally,
the index position of the group in the global trajectory was determined, and the
planned trajectory was inserted at the correct position. The implementation of
this algorithm can be seen in Appendix I in the function addToPlan.

End Effector Speed Limiter

To limit the speed of the end effector, iterative time parameterization was imple-
mented. The method used was originally developed by Benjamin Scholz and Thies
Oelerich [38]. Some minor changes were made so that the method worked stan-
dalone with the package presented in this thesis and did not require modification
of the external MoveIt 2 framework.

The second suggested method for limiting the end effector’s Cartesian velocity
involved manipulating the twist of the end effector and calculating the resulting
joint velocities required. This implementation was done in Python, allowing for
efficient and intuitive development and solution. The numerical math library
numpy was utilized for its computational capabilities.

To implement this method, a new ROS2 node named “jacobian_generator” was
created. The URDF for the system was loaded, and the kinematics were built
following the product of exponential convention. The trajectory was loaded into
the script, and the jacobian and the twist were calculated for each point in the
trajectory. The desired twist was calculated by scaling the end effector’s twist, as
described in Equation 4.5.

The rate of change is calculated using the forward kinematics method from [18]
and is divided by the time it takes to move between the two points. The desired
joint velocities were acquired from Equation 4.2. For each position, the end effec-
tor’s time to reach the next point was calculated similarly to the iterative time
parameterization method. The implementation can be seen in Appendix K.

5.3.2. Implementing End Effector In-Position Publisher

To ensure the continuous calculation of the robot’s forward kinematics during
plan execution, a dedicated thread was created. This thread performed forward

5.4. Ros 2 Interface Package 49

kinematics calculations for the current robot position while the execution was in
progress. The use of a separate thread was necessary due to the blocking nature
of the trajectory execution function in the MoveIt 2 interface. Additionally, to
handle multiple concurrent callbacks, a callback group, and a multithread ex-
ecutor were implemented for the node. This was crucial because, without these,
only one callback could be executed at a time, causing issues such as the joint
positions needing to be updated. Similarly, a callback group was defined for the
ready_publisher to address the same concern.

The forward kinematic poses and the waypoint poses were compared. If the
difference between the two poses fell within a specified tolerance (set to 0.01
in this thesis), a private variable named “in_position” was updated to indicate
whether the robot was in position. This updated “in_position” variable was then
published over its corresponding topic at a predefined frequency of 50 Hz. For
detailed implementation information, see Appendix J, specifically the function
update_thread.

5.4. Ros 2 Interface Package
An interface package was created to define custom-defined ROS2 services and
messages. The services and messages were both created with the goals mentioned
in the introduction of this thesis in mind and, as a result, did only consist of data
necessary to control the robot.

The main message was a custom made massage defined as the following and
included the necessary information required to plan a trajectory:

1 waypoints .msg
2

3 string groupname
4 geometry_msgs /Pose [] waypoints
5 bool [] is_job
6 float32 speed

Because the system was made to be able to control multi-arm systems, it was
crucial to specify what group which was desired to move. This was done with
the variable groupname in the message. If one were to move the arm “group_2”,
this would be specified in the message such that the program could calculate the
trajectory for this group.

The path that the end effector was intended to follow was defined as a list of poses
called waypoints. Each waypoint described a point and an orientation that the
end effector was meant to visit. The waypoints were ordered such that the first
waypoint represented the start of the trajectory, the second waypoint indicated the

50 Chapter 5. Implementation

next point in the trajectory, and so on. The message type geometry_msgs/Pose
was chosen to represent the waypoints, as it is used by the Cartesian planner for
planning and provides a compact way of conveying the necessary information.

To specify whether the end effector should be activated or deactivated, a variable
named “is_job” was defined as a list of booleans. Each index in the is_job list
corresponded to a waypoint with the same index such that waypoints[i] = is_job[i].
If, for example, a welding path were defined as waypoints[i] and was finished at
waypoints[i+k], the values of is_job[i], is_job[i+1], ..., is_job[i+k-1], were set to
true, while the end of the path was set to is_job[k] = false.

Lastly, a speed variable was defined such that the user was able to control the end
effector speed used by the methods described above.

The service /execute_plan was defined as follows:
1 Execute .srv
2 ---
3 bool success

The service had no inputs and a single boolean success as output. If the service
were called, the plan created from the waypoints.msg was executed on the robot
system.

The final service definition used to call the service for planning the trajectory is
defined as follows:

1 Plan.srv
2 Waypoints waypoints
3 ---
4 float32 trajectory_fraction

This service consists of a “Waypoints” message and has a return value of the
fraction of the successfully planned trajectory, giving the user or application in-
formation if the system was successful with the planning. If the value was equal
to 1, then all waypoints were planned for, and thus the executed service can be
called safely.

5.5. Usage
The ROS2 package provided in this thesis has dependencies on several external
packages. To ensure the package’s successful usage, ensure the following packages
are included in the workspace. If they are not included by default in the ROS2
distribution, they will need to be manually installed:

• control_msgs

5.5. Usage 51

• indusrial_msgs

• motoros2_interfaces - A part of the MotoROS2 repo

• sensor_msgs

• std_srvs

• tf2_msgs

Usage (assuming Linux):

1. Download, build and source MoveIt 2 framework [32].

2. Build and source the workspace proposed in this thesis:
1 cd ws_master
2 colcon build
3 source install /setup.bash
4

If the physical robot is present, and connected to the same local network as
the host computer:

a) Run the micro-ROS agent with the port defined in the MotoROS2
configuration:

1 ros2 run micro_ros_agent micro_ros_agent udp4 --
port 8888

2

3. launch the systems robot state publisher and move_group launch files
1 ros2 launch robco rsp. launch .py
2 ros2 launch robco move_group . launch .py
3 #for visualization
4 ros2 launch robco moveit_rviz . launch .py
5

6 # Alternatively , a single command for all three , launch
the custom launch -file (saves terminal windows)

7 ros2 launch robco planning . launch .py

In the move_group window, after successfully loading, it should be printed
something along “[move_group-1] You can start planning now!”. If mi-
cro_ros_agent is connected, the virtual robot in the Rviz2 window should
snap to its appropriate place.

4. Run the planner node presented in this thesis
1 ros2 run moveit_group_planner planner_node
2

52 Chapter 5. Implementation

The planner_node window should say, “Node is spinning, ready to take
waypoints.” At this point, waypoints can be sent via the plan_group service.
This can be tested with the supplied package waypoint_publisher

1 ros2 run waypoints_publisher waypoint_publisher

After planning, the service should return with a value between 0 and 1,
representing the fraction of the trajectory successfully planned.

5. If the physical robot is online, and the host computer running the plan-
ner_node is connected to the same network, the servos can be activated by
running

1 ros2 service call / start_traj_mode motoros2_interfaces /srv/
StartTrajMode

An audible click sound should be made. It is then possible to execute the
plan on the physical robot with the following command. This is currently
only available if the physical robot is connected.

1 ros2 service call / execute_plan
moveit_group_planner_interfaces /src/ Execute

Chapter 6.

Experiments

This chapter describes the setup for testing the solutions. All the implementations
of the tests can be seen in Appendix L.

6.1. Case
To simulate real-life scenarios, a workpiece was acquired from the laboratory for
the experiments. The selection process for the workpiece was random, as multiple
workpieces were available for testing purposes. The chosen workpiece, in this case,
is made of aluminum. The workpiece consists of a solid plate measuring 1 meter
by 0.8 meters. On top of this plate, there are pieces of U-profiles measuring 13
centimeters by 13 centimeters. This U-profile is positioned in such a way that it
creates a cross configuration on the surface of the plate. The workpiece can be
seen in the lower left corner in Figure 3.3. The presence of the workpiece adds
complexity to the experiments and allows for testing under conditions that closely
resemble real-world scenarios.

The robot system will initially be at its “ready” configuration for all tests. This
configuration is a custom-defined configuration where all the joint values are at
zero, except the linear motion joint on the TSL600, which is set to 1. This
configuration allows for quick resetting when the robot is in most poses.

Pose “Ready”:

0 for all joints except group 3, which is set to θ = 1

Group 3 was assigned a value of 1 due to the clustered nature of the robot cell
scene. This clutter poses a significant collision risk with other groups, leading
to an invalid path being generated by the planner in most configurations when
group 3 is set to 0. Furthermore, for post-processing, the trajectories to limit the

54 Chapter 6. Experiments

end effector velocity set to 0.1 m/s or 10 cm/s. This value allowed the robot to
finish the movement within a reasonable time while simultaneously allowing the
velocity limiter to work.

6.2. Definition of Object Origin
The definition of object origin is essential for allowing efficient description of
coordinates in the real world. While the URDF and the robot system described
in the previous chapters have their global “world”-frame defined, this may not lie
in a place that is intuitive to use for specifying points and tasks. For instance,
in the package defining the robot system, the world frame is inside the MT1
positioner, and therefore the application of a transformation is beneficial, such
that points can be represented in the frame of the origin of the workpiece. For
this system, this transformation was defined as:

Tworld,o =

1 0 0 0
0 1 0 1.532
0 0 1 0.575

 ,

which corresponds to the transformation from the world frame to the top plate,
of which objects can be placed on the MT1 platform. The values 0, 1.532, and
0.575 were then defined as cx, cy, and cz, respectively.

6.3. Tests
A series of tests were defined to test the ability of the system to plan and follow
desired paths. A total of 4 tests were created for evaluation, each with its own
aspects. Test 1 and 2 were tests for simple geometric movements where the main
goal was to evaluate the resulting trajectory without the opportunity for collision
with the environment. Test 3 and test 4 were created to evaluate the ease of
creating welding paths and following edges of the physical workpiece mentioned
above. The tests were conducted iteratively with the development to verify the
development of the control application.

It is important to note that parallel work was carried out utilizing the Fronius
TPS400i welding apparatus. As a result, the focus was shifted to the arm using
the same welding apparatus. Therefore, the later tests (Test 3 and Test 4) were
not intended to be used for the other arm.

6.3. Tests 55

Test 1: Straight line motion

The initial evaluation involved testing the robot to follow a straight path. Specif-
ically, the objective was to move to the center of the workspace, slightly above
the rotation platform of the MT1, proceed to the edge of the workpiece, and
ultimately to the opposite edge of the workpiece. The end effector’s orientation
was such that the approach of the end effector pointed downward, resulting in a
constant orientation in the defined path. Furthermore, acceleration and decelera-
tion will be necessary to ensure that the trajectory is smooth because of the turn
the arm was required to take when the end of the workpiece was reached. If the
trajectory then is free of jerk, then the planner is usable and further development
can be done.

To achieve this, the service plan_group was called for the points listed in Table 6.1,
where rx, ry, rz, and w correspond to the quaternion representing the orientation
of the end effector relative to the world frame of the system. The z value was also
chosen to ensure a safe distance from potential collisions within the workspace,
with an appropriate margin.

Table 6.1.: Waypoints for test 1

.

Waypoint X Y Z rx ry rz w
Waypoint 1 cx cy 0.76 1 0 0 0
Waypoint 2 cx + 0.5 cy 0.76 1 0 0 0
Waypoint 3 cx - 0.5 cy 0.76 1 0 0 0

Test 2: Circular Motion

In order to evaluate the system’s capability to generate smooth trajectories for
paths that involve arcs, an experiment using a circular path was conducted. The
path was defined by employing the following formula:

x = r · cos θ
y = r · sin θ

z = 0.73
,

where x, y, and z represent the Cartesian coordinates in space. The variable θ
was discretized with a specified resolution of 100 as an input to the system. The
z value was set to 0.73 to avoid collisions with the workpiece, similar to test 1.
Finally, the r was defined as 0.5 meters. The waypoints defining this test can be
seen in Table 6.2. The index i describes the i-th waypoint out of N .

56 Chapter 6. Experiments

Table 6.2.: Waypoints for test 2
where N = 100 and r = 0.5.

Waypoint X Y Z rx ry rz w
Waypoint i cx + r cos(2πi

N) cy + r sin(2πi
N) 0.73 1 0 0 0

Test 3: Inside Job

In the third test of the experimental setup, a straight line motion was performed
within the space enclosed by the U-profile of the workpiece. Contrasting the
previous two tests that focused on welding operations on the workpiece’s outer
surface, this specific test aimed to assess the planning and execution of a path
under strict constraints regarding movement and poses. The confined space within
the U-profile posed a challenge, necessitating precise control and coordination of
the robotic system to navigate and execute the desired motion accurately.

The purpose of this test was to assess the system’s ability to generate trajectories
that adhere to the limited space and pose constraints imposed by the U-profile.
The objective was to validate the system’s capability to plan and execute move-
ments within restricted areas, ensuring the feasibility and accuracy of the welding
process even when confronted with limited freedom of motion. This test was ex-
clusively performed for the robot arm connected to the Fronius TPS400i. This
was due to the welding torch of the end effector, which had a 34-degree downward
angle, allowing for proper orientation within the enclosed space. The waypoints
defining this test can be seen in Table 6.3.

Table 6.3.: Waypoints for test 3
Waypoint X Y Z rx ry rz w
Waypoint 1 cx + 0.5 cy 1.9 −0.5721 0.5721 0 −0.5878
Waypoint 2 cx + 0.6 cy 0.75 0.8569 −0.5146 0.0217 −0.0193
Waypoint 3 cx + 0.55 cy 0.60 0 −

√
2

2 0 −
√

2
2

Waypoint 4 cx + 0.50 cy 0.60 0 −
√

2
2 0 −

√
2

2
Waypoint 5 cx + 0.35 cy 0.60 0 −

√
2

2 0 −
√

2
2

Waypoint 6 cx + 0.55 cy 0.60 0 −
√

2
2 0 −

√
2

2
Waypoint 7 cx + 0.6 cy 0.73 0.8569 −0.5146 0.0217 −0.0193

It should be noted that the values for this test, especially those describing the
orientation, were acquired by manually jogging the robot to an orientation that
visually appeared appropriate. While this method may not provide precise nu-
merical values, it suffices for the purpose of this specific test, as the main focus is
on evaluating the system’s performance within the limited space of the U-profile.

6.3. Tests 57

Test 4: “Weld” Test

This test aimed to simulate a real-life scenario where the end effector’s orientation
is aligned with the edge of the workpiece during welding. The weld was performed
as a straight line parallel to the y-axis of the world frame. The orientation of the
end effector was set by a sequence of rotations: first, a 180-degree rotation around
the x-axis, followed by a 45-degree rotation around the z-axis, and finally, a -45-
degree rotation around the x-axis, resulting in the end effector pointing downward,
and with an angle at 45 degrees in both the direction of the weld and up from the
horizon.

A welding path was defined based on the edge of the workpiece, utilizing coor-
dinates extracted from the CAD model using SolidWorks as seen in Figure 6.1.
To accommodate for the orientation and diameter of the welding gun, the way-
points needed to be offset in the negative z direction of the end effector’s pose
by a constant value. Leveraging the equation Equation 2.1 and the known end
effector orientation, this offset was easily achieved. A point t = [0, 0, −offset] was
defined, and employing Equation 2.8, the resulting coordinates δ were then added
to the coordinates that defined the welding path. The offset was calculated as
Dee/2 + 5mm tolerance, where Dee = 25mm represents the diameter of the end
effector, asserting the end effector gets as close to the welding path as possible
without touching the workpiece, as shown in Figure 6.2. The resulting definition
of the path can be seen in Table 6.4.

Table 6.4.: Waypoints for test 4.
Waypoint X Y Z rx ry rz w
Waypoint 1 cx + 0.5 cy 1.4 -0.5721 0.5721 0 0.5878
Waypoint 2 cx +

0.065 +
δx

cy +
0.065 +
δy

0.73 +
δz

1 0 0 0

Waypoint 3 cx +
0.065 +
δx

cy +
0.065 +
δy

0.73 +
δz

0.8536 -0.3536 -0.1464 0.3536

Waypoint 4 cx +
0.065 +
δx

cy +
0.065 +
δy

cz +
0.01 +
δz

0.8536 -0.3536 -0.1464 0.3536

Waypoint 5 cx +
0.065 +
δx

cy +
0.4 +
δy

cz +
0.01 +
δz

0.8536 -0.3536 -0.1464 0.3536

Waypoint 6 cx +
0.065 +
δx

cy +
0.4 +
δy

cz +
0.13 +
δz

0.8536 -0.3536 -0.1464 0.3536

58 Chapter 6. Experiments

Figure 6.1.: The coordinates defining the start point (left) and end point (right)
of the weld are extracted directly from CAD software.

Figure 6.2.: The offset of the end effector.

Chapter 7.

Results

7.1. The Planning Package
This thesis presents a package or, more specifically, a workspace that includes
multiple packages for ROS 2. The workspace comprises support packages for the
robots used in this thesis, a MoveIt config package for the system used, and the
main package planner_node. Furthermore, it includes the experimental package
jacobian_generator and the testing package waypoint_publisher.

The planner node is the main work. It is a barebone ROS 2 node that takes the
custom-defined service Plan. Plan has the request data “waypoints” which is a
custom-defined message, and a response trajectory_fraction which is the fraction
of the total plan which was followed. The message waypoints defined a list of
waypoints that the end effector must reach, a list of booleans that correspond to
each waypoint, defining if the waypoint is part of the welding trajectory, which
group should be planned for, and the speed limit. The node then uses MoveIt 2
and OMPL to create a trajectory for the given group. If the speed limit is set,
iterative time parameterization slows the end effector down.

Additionally, the node has a service “execute” that calls for the execution of
the plan. During execution, a separate thread listens for joint_states from Mo-
toROS2. It calculates the forward kinematics for the given group to see if the
end effector has reached the waypoints defined in the received message. If the
waypoint is defined as “is_job”, it will be stored.

Finally, the node publishes the topic “/ready” if the end effector is in the desired
position. The purpose of this function is to tell if, for example, the welding gun is
in position for activation. By default, it publishes with a frequency of 50 Hz and
is set to false. The overall schematics can be seen in Figure 7.1.

60 Chapter 7. Results

Figure 7.1.: The schematics of the node waypointlistener.

7.2. The Virtual Environment
The virtual environment representing the robot cell is depicted in Figure 7.2.
It includes the two robot arms, the workpiece, the workpiece positioner MT1,
and the linear module TSL600. The virtual environment incorporates collision
and visual models of the robot system, enabling collision detection and planning
within the robot cell.

Figure 7.2.: The figure shows the virtual environment created in this thesis,
visualized with Rviz2.

7.3. The In-Position Publisher 61

7.3. The In-Position Publisher
The in-position was successfully implemented, and the result can be seen in Fig-
ure 7.3. While the end effector is located in a trajectory segment not designated
as a job, the corresponding data is marked as false, as illustrated in Figure 7.3a.
Once the end effector reaches a waypoint defined as a job, the data is updated to
true, as demonstrated in Figure 7.3b. This updated status remains in effect until
the end of the trajectory or until a point is reached where the job is set back to
false.

(a)

(b)

(c)

Figure 7.3.: The figures illustrate the variation in data as the end effector ap-
proaches the waypoint set for welding, indicating the activation of the welding
torch.

62 Chapter 7. Results

7.4. The Velocity Limiter
The result of the velocity limiter implementation can be seen in Table 7.1 for test
1, test 2, test 3, and test 4, as well as in the plots shown. Due to the simple
geometry of the paths, the distances of the paths were known, and the estimated
time could be calculated by dividing the distance by the velocity specified in
chapter 6. The measured times were collected from the plots.

Table 7.1.: Distance and time for the tests.
Test Distance [m] Estimated Time [s] Measured Time [s]

Test 1: 3.0687 30.687 32.41
Test 2 4.7137 47.137 49.21
Test 3 3.8750 38.750 42.78
Test 4 3.5934 35.934 39.49

7.5. Test 1: The Linear Motion Test
The test demonstrated the system’s capability to generate trajectories represent-
ing straight lines while maintaining smooth motion and velocity limiting. The
resulting path, depicted in Figure 7.4, has been split into two figures due to the
software’s limitation on the length of the tail. Despite this limitation, the path
clearly showcases the successful execution of the straight-line trajectory. The
system effectively maintains a consistent direction and accurately and precisely
achieves the desired linear motion. The velocity profile of the end effector is shown
in Figure 7.5 and 7.6.

7.6. Test 2: The Circular Motion Test
The test results indicate that the system is capable of generating smooth trajec-
tories for arcs, as demonstrated in Figure 7.8, using the implemented Cartesian
planner. However, when the arc is represented with low resolution, the trajectory
becomes more jagged, as depicted in Figure 7.9. Additionally, the impact of arc
resolution is evident in Figure 7.10, highlighting that high resolution of arcs does
not negatively affect the trajectory. The velocity profiles of the end effector can
be seen in Figure 7.11 and 7.12.

7.6. Test 2: The Circular Motion Test 63

(a) End effector trail, straight line part 1.

(b) End effector trail, straight motion part
2.

Figure 7.4.: The trail of the end effector represents the trajectory for straight-
line motion.

64 Chapter 7. Results

F
igure

7.5.:Linear
velocity

for
straight-line

m
otion.

U
ntouched

(top)
and

tw
ist

m
ethod

(bottom
).

7.6. Test 2: The Circular Motion Test 65

F
ig

ur
e

7.
6.

:L
in

ea
rv

el
oc

ity
fo

rs
tr

ai
gh

t-
lin

e
m

ot
io

n.
It

er
at

iv
e

tim
e

pa
ra

m
et

er
iz

at
io

n
(t

op
)a

nd
tw

ist
m

et
ho

d
(b

ot
to

m
)

.

66 Chapter 7. Results

Figure 7.7.: Initial movement.

(a) End effector trail, circular motion part
1.

(b) End effector trail, circular motion part
2.

Figure 7.8.: The trail of the end effector represents the trajectory. for circular
motion

7.6. Test 2: The Circular Motion Test 67

Figure 7.9.: The trail of a low sampled arc.

(a) The generated path with length 160 when a circle
is represented with n = 15 points.

(b) The generated path with length 104 when a circle
is represented with n = 1000 points.

Figure 7.10.: The generated path lengths for a circle with resolutions n = 15
and n = 1000.

68 Chapter 7. Results

F
igure

7.11.:Linear
velocities

for
circular

path
U

ntouched
(top)

vs
tw

ist
(bottom

)

7.6. Test 2: The Circular Motion Test 69

F
ig

ur
e

7.
12

.:
Li

ne
ar

ve
lo

ci
ty

fo
r

ci
rc

ul
ar

pa
th

,I
te

ra
tiv

e
tim

e
pa

ra
m

et
er

iz
at

io
n

(t
op

)
an

d
tw

ist
(b

ot
to

m
).

70 Chapter 7. Results

7.7. Test 3: The Inside Weld Test
Test 3 demonstrated the system’s ability to plan and execute tasks within objects,
specifically showcasing its capability to perform welding operations inside objects,
provided that the desired goal is reachable. The resulting trajectory is depicted in
Figure 7.13, and the velocity profiles of the end effector are shown in Figure 7.14
and 7.15.

Figure 7.13.: The trail of the end effector representing the trajectory for test 3.

7.8. Test 4: Weld Test
The test demonstrated successful control of the robot and the ease of defining
trajectories, as described in chapter 6. The close proximity of the movement to the
defined weld edge and the appropriate orientation of the end effector both suggest
that the product of this thesis can be effectively utilized for welding tasks. The
trajectory trace, depicted in Figure 7.16, provides visual evidence of the robot’s
path. Furthermore, the intersection of the end effector’s z-axis with the weld edge,
as shown in Figure 7.17, indicates that the welding process will be successful. The
velocity profiles of the end effector for test 4 can be seen in Figure 7.18 and 7.19.

7.8. Test 4: Weld Test 71

F
ig

ur
e

7.
14

.:
Li

ne
ar

ve
lo

ci
ty

fo
r

in
sid

e
m

ot
io

n.
U

nt
ou

ch
ed

(t
op

)
vs

tw
ist

m
et

ho
d

(b
ot

to
m

).

72 Chapter 7. Results

F
igure

7.15.:Linear
velocity

for
inside

m
otion.

Iterative
tim

e
param

eterization
(top)

vs
tw

ist
m

ethod
(bottom

).

7.8. Test 4: Weld Test 73

(a) End effector trail, test 4 part 1. (b) End effector trail, test 4 part 2.

Figure 7.16.: The trail of the end effector representing the trajectory for test 4.

Figure 7.17.: The end effector can be traced through the edge defined as the
weld.

74 Chapter 7. Results

F
igure

7.18.:Linear
velocity

for
test

4.
U

ntouched
(top)

vs
tw

ist
m

anipulation
(bottom

).

7.8. Test 4: Weld Test 75

F
ig

ur
e

7.
19

.:
Li

ne
ar

ve
lo

ci
ty

fo
r

te
st

4.
It

er
at

iv
e

tim
e

pa
ra

m
et

er
iz

at
io

n
(t

op
)

vs
tw

ist
m

et
ho

d
(b

ot
to

m
).

Chapter 8.

Discussion

8.1. Virtual Environment
The virtual environment depicted in Figure 7.2 employed Rviz2 to visualize the
URDF and the virtual robot system. This environment successfully replicated the
real-life system, facilitating efficient trajectory planning with the assistance of the
MoveIt 2 framework. Although the virtual environment did not encompass every
component of the complete robot cell, such as the YRC1000 robot controller,
wireless router, welding apparatus, or the surrounding walls, it was a valuable
tool for trajectory planning.

The utilization of Rviz2 for this purpose provided extensive customization and
flexibility. It offered a wide range of features and options, allowing for compre-
hensive visualization of the robot system, including its links, joints, and sensors.
The ability to customize the display and configure various visual elements within
Rviz2 made it easy to verify the trajectory. Additionally, the MoveIt2 module
allowed for the positioning of every joint in the system, enabling the control of
the robot by graphically setting its pose in the real world.

It is evident that the virtual environment closely approximates the geometry of the
real-world system, although it is not an exact replica. The calibration method
outlined in section 4.3 proved effective overall, but achieving the exact center
of the point of reference (the center hole of the MT1 rotation platform) posed
challenges. Nevertheless, no collisions occurred during the development of the
planning interface, indicating that the error remains within the millimeter scale.

8.2. The Tests
The conducted tests aimed to evaluate the system’s performance in various sce-
narios, encompassing different types of geometric paths and welding tasks. Test 1

78 Chapter 8. Discussion

focused on straight lines, while Test 2 involved curves and arcs. Test 3 examined
movements close to and inside workpieces, while Test 4 specifically assessed the
system’s welding capability. Additionally, the tests included objectives related to
trajectory smoothness, waypoint detection, and appropriate data publication.

Overall, the tests yielded successful outcomes. The motion planners provided by
OMPL generated visually appealing trajectories that precisely followed the desired
paths. The trajectory representations can be observed in Figure 7.4, 7.8, 7.13,
and 7.16, for test 1, test 2, test 3 and test 4, respectively. Furthermore, videos of
robots executing the tests are included in the digital appendix.

Test 4 was primarily designed to simulate an actual welding operation. However,
the welding task could not be performed due to the unavailability of shielding
gas. Nevertheless, the test was successfully conducted in a “dry” manner, and the
results were positive. In Figure 7.17, the approach of the end effector is depicted,
demonstrating the precise alignment of the welding torch with the defined weld
edge. This suggests that the pieces would be effectively joined together if welding
were to take place. However, it is essential to note that without actual welding,
the quality of the weld cannot be assessed. Additionally, extracting coordinates
from the CAD file validated the effectiveness of utilizing Cartesian coordinates
for planning and defining welding and movement areas.

One notable observation is that describing the desired orientation can be challeng-
ing and non-intuitive. Although achieving every orientation is generally possible,
determining the optimal orientation may require a system that can decide based
on factors beyond simple rotation around the world frame. Exploring alternative
approaches for orientation calculation could enhance the system’s performance in
this regard.

8.3. The velocity Limiter
The time the robot arms take to complete the trajectories is a reliable indicator
of whether the end effector velocities were appropriately limited. In Table 7.1, the
distance covered, estimated time for completion, and actual time used by the arm
in the tests are presented. A consistent observation across the tests is that the
estimated times and the actual times were similar, with the actual times being
slightly slower than the estimated times. This trend is particularly noticeable in
Test 3 and Test 4.

The difference between the estimated and actual times can be attributed to two
main factors. Firstly, the estimated time does not account for acceleration and
deceleration, resulting in a shorter estimated time compared to the actual time
taken. As the robot arm starts and stops its motion, the time required for ac-

8.3. The velocity Limiter 79

celeration and deceleration adds to the overall completion time. Secondly, when
the end effector undergoes orientation changes while maintaining its position in
space, it momentarily pauses during the orientation transition. This pause in mo-
tion contributes to a slightly longer actual time compared to the estimated time.
In Test 1 and Test 2, where the end effector changes orientation only once, the
impact on the overall time is relatively minor. However, in Test 3 and Test 4,
where the orientation changes occur multiple times, the cumulative effect is more
pronounced.

The similarity between the estimated and actual times implies that the algorithm
successfully controlled the robot’s velocity to match the desired speed. Despite
the minor deviations caused by acceleration, deceleration, and orientation changes,
the results demonstrate that the implementation achieved its intended purpose of
constraining the end effector velocities within the desired range. This is further
evident when inspecting the velocity plots. The four tests yielded similar results,
demonstrating a consistent behavior of the end effector’s travel speed when using
the methods described. In Figure 7.5, 7.11, 7.14, and 7.18, the bottom graphs
depict the linear velocities of the end effector obtained from the twist manipulation
method applied to the reference trajectory. The top plots depict the reference
trajectory of the top plots. In Figure 7.6, 7.12, 7.15, and 7.19, the top plots depict
the same test with the iterative time parametrization approach. The bottom is the
twist manipulation approach when applied to the iterative time parametrization
method.

A notable finding is that the twist manipulation method performed less favor-
ably compared to the results obtained from iterative time parametrization. This
difference could be attributed to the fact that the twist manipulation only con-
siders values in the current instance without considering previous and subsequent
values. Consequently, the joint values may not be consistent, and compensatory
actions may be required if some joints have low velocities while others require
compensation. In contrast, the iterative time parametrization approach employs
parabolic splining, ensuring consistent velocities with smooth transitions.

Furthermore, an important observation is that all the velocity plots exhibit peaks
that exceed the desired velocity limits. This can be explained by considering
Equation 4.3, where the end effector’s linear velocity component v includes the
influence of the end effector’s change in orientation Ṙ. This is particularly evident
in Figure 7.12, where the end effector undergoes a 90-degree rotation, resulting in
the convex portion of the plot. Once the rotation is completed, the end effector’s
linear velocity remains constant.

In Figure 7.6, 7.12, 7.15, and 7.19, the twist manipulation method is employed
on top of the iterative time parameterization method. For this reason, the plots
are expected to be the same, as the end effector linear velocity is already limited

80 Chapter 8. Discussion

by the iterative time parameterization method. However, this is not the case,
as seen in Figure 7.15 and 7.19. It is evident that one of the methods has been
implemented incorrectly. By inspecting the time it is calculated to complete the
trajectory in Figure 7.14, it is clear that the twist manipulation does not work as
expected, as there is a significant mismatch between the expected time and the
time used in the trajectory.

8.4. The Controlling Interface
The proposed solution demonstrated seamless path modification capabilities. If
the geometry was known, it was straightforward to define the desired trajectory
in Cartesian coordinates and intuitively adjust parameters such as speed and the
controlled group. However, the accuracy of the trajectory relies on the planner
and the provided waypoints to the ROS node. Cartesian path planners priori-
tize straight paths between waypoints to minimize the overall distance in cases
where the waypoints are sparse. Consequently, the end effector may deviate from
the desired path, particularly in arcs, if the resolution is not high enough, as de-
picted in Figure 8.1. This deviation is illustrated in Figure 7.9, where a circle
is represented with only n = 10 points. To mitigate this error, increasing the
number of waypoints for curves is recommended. An additional benefit of us-
ing a higher waypoint resolution for arcs is that the resulting trajectory will be
shorter. This occurs because robotic planners aim to minimize jerk, resulting in
naturally smooth motions when the waypoints are close to each other, as depicted
in Figure 7.10.

Figure 8.1.: Desired path vs generated path

The joint_states topic provides information about the robot’s joint positions and
is published by the MotoROS2 node running on the robot controller. Since the
robot’s joint states change as it moves, it is crucial to publish updates at a suffi-
ciently high frequency to ensure the robot reaches its waypoints when this data is

8.4. The Controlling Interface 81

published. Low publishing frequency can cause the robot to surpass the waypoint
before the next update, leading the system to perceive that the waypoint was not
reached incorrectly. Consequently, the /ready_publisher may not be updated,
and the tool may not activate as desired. Figure 8.2 visualizes this phenomenon.
During the tests conducted during development, this issue did not occur as the
end effector’s speed was low, and the publishing frequency was set at the default
value of 50 Hz.

Considering the end effector speed used in the tests, which was 10 cm per second,
and a refresh rate of 50 Hz, the joint states would be updated for every 2 mm
of end effector movement. It is important to note that in practical welding sce-
narios, where even smaller end effector velocities are typically employed to ensure
welding precision, as described in section 2.9, the issue of overshooting waypoints
is unlikely to occur.

Figure 8.2.: Representation of how the end effector may reach the desired way-
point inbetween publishing joint states, failing to update the kinematics in the
node.

The Ready publisher publishes the data from the waypoints message in the
“is_job” variable. The data changes when a waypoint is reached and remains
unchanged until the next one is reached, as seen in Figure 8.3. This implemen-
tation works for welding along edges, where the end effector is constantly on and
has a constant effect. However, this approach may not be beneficial for all tasks.
It should be considered to publish more information, such as the actual forward
kinematics or the number of waypoints reached. Publishing such data improves
the system’s potential and transparency.

82 Chapter 8. Discussion

An issue with the current implementation that often occurred was the flawed
initialization of the robot in space, resulting in the robot’s position not being set
correctly within the program developed in this thesis. As a result, the end effector
never ’reached’ the waypoint within the planner_node, leading to incorrect data
being published.

Figure 8.3.: Visualization of the ready signal. Here, the signal is TRUE from
waypoint X (left) untill updated at waypoint Y (right) which is FALSE.

8.5. The Planning Implementation
The planning process involved addressing specific challenges related to controlling
the robot system using programming and planning a trajectory for the robot.
Initially, planning for the whole system was not feasible due to the inability of the
MoveIt 2 framework to automatically identify the end effectors. This limitation
prevented the creation of a plan based on the desired end goal of the end effector,
as the planning interface could not locate the end effector link and thus not
knowing the kinematics to solve for. The reason for this was unknown, as the tree
defining the robot structure seen in Figure 8.4, clearly shows that end effectors
were endpoints in the tree.

To address this challenge, individual planning groups were established, allowing
the planner to locate the end effector links and generate Cartesian plans accord-
ingly. However, this approach necessitated extensive manipulation of the planned
trajectory due to the robot controller’s requirement for data values from all joints
within the robot system, even though the planned trajectory focused on a single
arm. Despite this complexity, the resulting implementation successfully achieved
the desired task.

In order to achieve the desired goal of this thesis, the utilization of Cartesian plan-

8.5. The Planning Implementation 83

Figure 8.4.: The structure of the URDF.

ners proved to be crucial. Planning for a specific set of joint values often resulted
in random trajectories. It lacked coherence when attempting to reach the desired
goal, as illustrated in Figure 8.5 and 8.6. Such trajectories are unsuitable for
tasks requiring precise and stable movements, such as welding. Cartesian plan-
ners, however, generate trajectories with coherent points relative to each other,
providing trajectories that fulfill these requirements.

A critical limitation of the current implementation is that only groups with at
least 6 degrees of freedom can be planned for, as the goal is a 6-degree-of-freedom
pose. As a result, even though four groups are present in the system utilized in
this study, only 2 (and effectively 3, since one is a subgroup of the other) can
be planned for with the current implementation of the planner_node. This is
because the planner requires a pose or transformation as input, consisting of a
position vector and an orientation quaternion. For instance, group 4 in the system
can only rotate and tilt, but not pitch and translation, rendering it incompatible
with any Cartesian planner. A potential solution to this limitation could be to
check whether the input specifies only an orientation or a position plus orientation.
Depending on the input, a different planner can be utilized to enable planning for
groups with less than 6 degrees of freedom.

Another significant limitation pertains to collision avoidance. While Cartesian
planners incorporate collision detection, they do not inherently provide collision
avoidance capabilities. As a result, if the initial waypoint requires the robot arm
to move through the workpiece, the generated trajectory will be a straight line
toward that point until a collision is detected. At that point, the trajectory will
abruptly terminate, resulting in a fraction of the desired path being executed. The
MoveIt 2 framework does offer collision avoidance methods, but these methods
are exclusively designed for goal-focused planners. In other words, they prioritize
reaching the start and end goals while disregarding the arm’s orientation and
position between them.

84 Chapter 8. Discussion

In the current implementation, it was essential to manually consider collision
avoidance by carefully selecting waypoints that enabled the Cartesian planner to
navigate without encountering collisions. This requirement became particularly
evident in test 3, where the end effector had to move inside the workpiece, ne-
cessitating the definition of additional points, making the programming of the
trajectory somewhat more complex. By utilizing target goal planners for the
initial waypoint, collision avoidance could be integrated, simplifying the plan-
ning process. The remaining trajectory portions could then be planned using the
Cartesian planner. Addressing collision avoidance more automatically would sig-
nificantly enhance the system’s usability and flexibility. This can also solve the
limitation of low-degree-of-freedom planning mentioned above.

Lastly, it is vital to address the limitation related to the robot arm’s initial position
relative to the desired start of the job task. In the current implementation, if
the robot arm is far from the intended starting point, the velocity of the entire
trajectory is limited. This leads to an unnecessarily long trajectory since the
movement to reach the start of the path does not require velocity limitation.

To optimize the system further, it would be beneficial to incorporate a more
intelligent approach that dynamically adjusts the velocity limitations based on
the specific segment of the trajectory. Overall efficiency and time optimization
can be achieved by allowing higher velocities for movements that do not involve
reaching the start point.

Figure 8.5.: The figure shows the resulting trajectory for a small Cartesian
change when planning in joint space.

8.6. MotoROS2 85

Figure 8.6.: The figure shows the resulting trajectory for a small Cartesian
change when planning in joint space with constraints.

8.6. MotoROS2
To establish communication with the robot controller, the MotoROS2 application
was employed. This choice facilitated successful communication, and leveraging
ROS2 on the controller made it relatively straightforward to develop a robot
movement and control program. The utilization of MotoROS2 has thus proven to
be highly valuable.

Throughout this thesis, a vision was to implement a camera sensor to detect
objects, edges, and changes within the system. For this reason, it was desirable
to implement a way to tell the robot to move to a Cartesian coordinate. The
main reason for this is that utilizing computer vision and camera sensors provides
a transformation from the camera to the pixel evaluated. As this transformation
includes a Cartesian coordinate, the transformation can be easily used to tell the
robot to move to the point corresponding to the pixel or by following the edge
found by an edge-finding algorithm.

The proposed method did facilitate the goal mentioned above. However, it utilized
the action “follow joint trajectory”. This action required a preplanned trajectory
and thus did not offer on-the-go changes in the trajectory, and further explorations
of the MotoROS2 application should be considered for alternative, real-time con-
trol.

Several challenges were encountered while utilizing MotoROS2 within the setup
of this project. One significant issue was the occasional instability in communi-
cation. The micro-ROS client experienced frequent dropouts, necessitating the
need for reconnection. Consequently, the services and publishers provided by Mo-

86 Chapter 8. Discussion

toROS2 became temporarily unavailable, leading to the sudden unavailability of
certain functionalities. Moreover, this reconnection process often resulted in the
emergence of the “TF_OLD_DATA” error, inundating the terminal with error
messages. These dropouts may have been caused by a weak wireless network
connection, resulting in intermittent communication disruptions. Further investi-
gation and mitigation strategies are necessary to address these connectivity issues
effectively.

During the experimentation, a notable limitation was identified regarding the
memory capacity of the robot controller and the inadequate support for long tra-
jectories within the MotoROS2 application. When attempting to execute complex
paths comprising numerous waypoints, the application would freeze, necessitating
a hard reset. Although this limitation was anticipated as a known constraint of
the application, it manifested at considerably shorter trajectory lengths. One in-
stance occurred on a trajectory with 166 points, as opposed to the expected 200.
This deviation is likely attributed to the inclusion of three additional joints in the
system, further exacerbating the memory constraints.

Another limitation observed is the requirement for the robot controller to be con-
nected to Ethernet after installing MotoROS2. Failure to meet this requirement
results in an error warning message being displayed, as depicted in Figure 8.7.
The warning continues to appear despite attempting to reset the system, dis-
abling most operations, such as jogging the robot. This issue can be resolved by
simply connecting the Ethernet cable to establish the required connection.

8.7. Further Limitations
The arm moves continuously between each waypoint, following its defined imple-
mentation. Some tasks, like tack welding, require the end effector to stay in one
place for a specific duration, which is not feasible when continuously moving. To
solve this issue, it is possible to define a waypoint with the exact coordinates but a
different orientation. The end effector will move to that spot, stop, change its ori-
entation, and resume motion. However, this method does not allow for controlling
the duration of the halt, which can be problematic in some instances. A better ap-
proach would be to move the end effector to the designated waypoint, perform the
required task, and then calculate a new trajectory based on the updated position
of the end effector.

Although the waypoints defined in this thesis were considered representative of
the welding path in the case of robotic welding, it is essential to acknowledge
certain limitations in the implemented approach of the main package. The current
implementation addresses the kinematics required for the end effector to reach the

8.7. Further Limitations 87

Figure 8.7.: If no Ethernet connection is detected after MotoROS2 is installed
on the controller, a warning will show.

specified waypoints. However, there are potential challenges that may arise. For
instance, when dealing with edges in corners, the diameter of the welding gun can
prevent reaching the desired waypoints. Additionally, it is necessary to maintain
a distance between the welding gun and the arc, further complicating waypoint
attainment. In the test case (test 4), a solution was applied by incorporating
an offset to account for these challenges. However, this solution requires users
to calculate the adjusted points themselves manually. Considering the potential
benefits, it could be advantageous to integrate this offset calculation method into
the main package.

Chapter 9.

Conclusion and Further Works

9.1. Conclusion
In conclusion, this thesis successfully enabled ROS 2 control for one of the robot
cells in Manulab at NTNU and facilitates the integration of advanced sensors
like cameras. By configuring the robot controller to communicate with external
computers and utilizing the functionalities of ROS 2 through the MotoROS2 ap-
plication, effective network-based control of the robot was achieved using a laptop
running ROS 2.

The proposed planning application and the implementation of end effector velocity
control provided an intuitive means for controlling and programming trajectories
while ensuring the robot arm’s velocity remained within desired limits.

The effectiveness of the implemented solution was evaluated through a series of
comprehensive tests, including real-world scenarios in realistic environments. Al-
though limitations with materials prevented actual welding, the system’s valida-
tion focused on assessing the visual appearance of the robot arm’s movements.

The tests’ results validated the proposed solution’s capabilities and demonstrated
its potential for real-world applications. However, to further enhance the system,
future work should focus on conducting experiments involving actual welding pro-
cesses and evaluating the system’s performance in a broader range of industrial
scenarios.

9.2. Further Works
The primary objective of this thesis is to present a particular concept and enable
the system for ROS 2. However, to augment its capability and practicality, it is
imperative to fine-tune and amplify specific elements of the thesis.

90 Chapter 9. Conclusion and Further Works

• Implementing a camera and utilizing its sensor capabilities for edge detection
could be valuable for applications such as welding, and such functionality
was the main motivator of this thesis. By detecting and recognizing edges,
the system could automatically identify and define weld areas, streamlining
the planning and execution of welding operations. Furthermore, this camera
can provide pose estimation, which would further increase the capability of
the system to be more dynamic.

• Finding a more intuitive way to describe the orientation of the end effec-
tor would simplify the process of specifying desired orientations for trajec-
tory planning. This could involve exploring alternative representations or
methods that make it easier for users to define and understand the desired
orientation of the robot’s end effector.

• Implement a solution to use a planner that allows for automatic object
avoidance to reach the trajectory’s desired start. This will make it easier
to implement solutions for automatic welding jobs, as it would no longer
require manual avoidance.

• Implement low degree of freedom planners. The current solution uses pose
planning, requiring at least 6 DOF for solving. This can be solved, as well
as the point mentioned above, by planning to achieve a target joint goal,
instead of the Cartesian pose used.

• Allowing for planning for multiple groups simultaneously would enhance the
solution’s versatility and enable coordinated movements of multiple robot
groups within a system. This would facilitate more complex tasks and im-
prove overall system efficiency.

References

[1] Kaiwalya Belsare, Antonio Cuadros Rodriguez, Pablo Garrido Sánchez, Juanjo
Hierro, Tomasz Kołcon, Ralph Lange, Ingo Lütkebohle, Alexandre Malki,
Jaime Martin Losa, Francisco Melendez, Maria Merlan Rodriguez, Arne
Nordmann, Jan Staschulat, and Julian von Mendel. “Micro-ROS”. In: Robot
Operating System (ROS): The Complete Reference (Volume 7). Ed. by Anis
Koubaa. Cham: Springer International Publishing, 2023, pp. 3–55. isbn:
978-3-031-09062-2. doi: 10.1007/978-3-031-09062-2_2. url: https:
//doi.org/10.1007/978-3-031-09062-2_2.

[2] Marie Bodet. Robotic Welding with Machine Vision Explained. Zivid. Sept.
2022. url: https://blog.zivid.com/robotic-welding-with-machine-
vision-explained (visited on 06/03/2023).

[3] Blender Online Community. Blender - a 3D modelling and rendering pack-
age. Blender Foundation. Stichting Blender Foundation, Amsterdam. url:
http://www.blender.org (visited on 06/08/2023).

[4] Aras Dargazany. “DRL: Deep Reinforcement Learning for Intelligent Robot
Control - Concept, Literature, and Future”. In: CoRR abs/2105.13806 (2021).
arXiv: 2105.13806. url: https://arxiv.org/abs/2105.13806.

[5] James Diebel et al. “Representing attitude: Euler angles, unit quaternions,
and rotation vectors”. In: Matrix 58.15-16 (2006), pp. 1–35.

[6] Ayssam Elkady and Tarek Sobh. “Robotics Middleware: A Comprehen-
sive Literature Survey and Attribute-Based Bibliography”. In: Journal of
Robotics 2012 (May 2012). doi: 10.1155/2012/959013.

[7] Gazebo. Open Source Robotics Foundation. http://gazebosim.org/. (Vis-
ited on 04/25/2023).

[8] Stuart Glaser, William Woodall, and Robert Haschke. xacro. url: http:
//wiki.ros.org/xacro#Macros (visited on 06/01/2023).

[9] Yaskawa Europe GmbH. Yaskawa GP25-12 Robot. url: https : / / www .
yaskawa.eu.com/products/robots/handling-mounting/productdetail/
product/gp25-12_698 (visited on 06/03/2023).

https://doi.org/10.1007/978-3-031-09062-2_2
https://doi.org/10.1007/978-3-031-09062-2_2
https://doi.org/10.1007/978-3-031-09062-2_2
https://blog.zivid.com/robotic-welding-with-machine-vision-explained
https://blog.zivid.com/robotic-welding-with-machine-vision-explained
http://www.blender.org
https://arxiv.org/abs/2105.13806
https://arxiv.org/abs/2105.13806
https://doi.org/10.1155/2012/959013
http://gazebosim.org/
http://wiki.ros.org/xacro#Macros
http://wiki.ros.org/xacro#Macros
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25-12_698

92 References

[10] Ruchi Goel and Pooja Gupta. “Robotics and Industry 4.0”. In: A Roadmap
to Industry 4.0: Smart Production, Sharp Business and Sustainable De-
velopment. Ed. by Anand Nayyar and Akshi Kumar. Cham: Springer In-
ternational Publishing, 2020, pp. 157–169. isbn: 978-3-030-14544-6. doi:
10.1007/978-3-030-14544-6_9. url: https://doi.org/10.1007/978-
3-030-14544-6_9.

[11] Thea Holmedal. Implementing robotic offline programming with the Yaskawa
Motoman GP25-12. Master’s thesis, Norwegian University of Science and
Technology. 2021. url: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/2788486.

[12] IBM. Industry 4.0. https://www.ibm.com/topics/industry-4-0. 2023.
(Visited on 05/26/2023).

[13] Universal Technical Institute. Aluminum Welding: Tips and Techniques for
Success. Universal Technical Institute. 2023. url: https://www.uti.edu/
blog/welding/aluminum-welding (visited on 06/05/2023).

[14] P. Kah, M. Shrestha, E. Hiltunen, and J. Martikainen. “Robotic arc weld-
ing sensors and programming in industrial applications”. In: International
Journal of Mechanical and Materials Engineering 10.1 (2015), p. 13. issn:
2198-2791. doi: 10.1186/s40712-015-0042-y. url: https://doi.org/
10.1186/s40712-015-0042-y.

[15] Danica Kragic, Joakim Gustafson, Hakan Karaoguz, Patric Jensfelt, and
Robert Krug. “Interactive, Collaborative Robots: Challenges and Opportu-
nities”. In: July 2018, pp. 18–25. doi: 10.24963/ijcai.2018/3.

[16] KUKA. KUKA Simulation, Planning & Optimization. url: https://www.
kuka.com/en-us/products/robotics-systems/software/simulation-
planning-optimization/kuka_sim (visited on 05/29/2023).

[17] Steven M. LaValle. “Rapidly-exploring random trees : a new tool for path
planning”. In: The annual research report (1998).

[18] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

[19] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. “Robot Operating System 2: Design, architecture, and uses in
the wild”. In: Science Robotics 7.66 (2022), eabm6074. doi: 10 . 1126 /
scirobotics.abm6074. url: https://www.science.org/doi/abs/10.
1126/scirobotics.abm6074.

[20] James F. Manji. Robots Facilitate High-speed Welding. url: https://www.
automate.org/industry-insights/robots-facilitate-high-speed-
welding (visited on 06/08/2023).

https://doi.org/10.1007/978-3-030-14544-6_9
https://doi.org/10.1007/978-3-030-14544-6_9
https://doi.org/10.1007/978-3-030-14544-6_9
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2788486
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2788486
https://www.ibm.com/topics/industry-4-0
https://www.uti.edu/blog/welding/aluminum-welding
https://www.uti.edu/blog/welding/aluminum-welding
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/10.24963/ijcai.2018/3
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.automate.org/industry-insights/robots-facilitate-high-speed-welding
https://www.automate.org/industry-insights/robots-facilitate-high-speed-welding
https://www.automate.org/industry-insights/robots-facilitate-high-speed-welding

References 93

[21] ManpowerGroup. Her er de ti jobbene norske bedrifter sliter mest med å fylle
i Norge nå. 2018. url: https://www.dn.no/arbeidsliv/manpowergroup/
her- er- de- ti- jobbene- norske- bedrifter- sliter- mest- med- a-
fylle-i-norge-na/2-1-366384 (visited on 04/04/2023).

[22] Motoman. Motoman Simulation. url: https://www.motoman.com/en-
us/products/software/simulation (visited on 05/29/2023).

[23] Motoman. MotoPlus SDK. url: https : / / www . motoman . com / en - us /
products/software/development/motoplus-sdk (visited on 06/06/2023).

[24] NVIDIA. Isaac Sim. url: https://developer.nvidia.com/isaac-sim
(visited on 06/07/2023).

[25] PPM-Robotics-AS. PPM-Robotics-AS. https://github.com/PPM-Robotics-
AS. (Visited on 06/07/2023).

[26] Roboplan. MT1 Positioner. url: https://www.roboplan.pt/en/products/
positioners/mt1 (visited on 05/30/2023).

[27] Roboplan. Yaskawa Motoman Linear Track TSL-TSL. url: https://www.
roboplan.pt/en/products/positioners/yaskawa- motoman- linear-
track-tsl-tsl (visited on 05/30/2023).

[28] Open Robotics. ROS 2 Concepts - About ROS Interfaces. 2023. url: https:
//docs.ros.org/en/foxy/Concepts/About- ROS- Interfaces.html
(visited on 03/03/2023).

[29] Open Robotics. ROS Wiki: Nodes. url: http://wiki.ros.org/Nodes
(visited on 05/26/2023).

[30] Open Robotics. Understanding ROS 2 Topics. url: https://docs.ros.
org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-
Topics/Understanding-ROS2-Topics.html (visited on 05/29/2023).

[31] Path Robotics. Path Robotics. https://www.path-robotics.com/. (Vis-
ited on 04/14/2023).

[32] PickNik Robotics. Getting started. 2023. url: https://moveit.picknik.
ai/humble/doc/tutorials/getting_started/getting_started.html
(visited on 04/04/2023).

[33] PickNik Robotics. MoveIt! by PickNik Robotics. 2023. url: https://moveit.
picknik.ai/humble/index.html (visited on 04/21/2023).

[34] ROS-Industrial. ROS-Industrial/motoman. 2023. url: https://github.
com/ros-industrial/motoman (visited on 05/30/2023).

[35] ROS-Planning. MoveIt! Tutorials: Time Parameterization. 2021. url: https:
//ros-planning.github.io/moveit_tutorials/doc/time_parameterization/
time_parameterization_tutorial.html (visited on 04/21/2023).

https://www.dn.no/arbeidsliv/manpowergroup/her-er-de-ti-jobbene-norske-bedrifter-sliter-mest-med-a-fylle-i-norge-na/2-1-366384
https://www.dn.no/arbeidsliv/manpowergroup/her-er-de-ti-jobbene-norske-bedrifter-sliter-mest-med-a-fylle-i-norge-na/2-1-366384
https://www.dn.no/arbeidsliv/manpowergroup/her-er-de-ti-jobbene-norske-bedrifter-sliter-mest-med-a-fylle-i-norge-na/2-1-366384
https://www.motoman.com/en-us/products/software/simulation
https://www.motoman.com/en-us/products/software/simulation
https://www.motoman.com/en-us/products/software/development/motoplus-sdk
https://www.motoman.com/en-us/products/software/development/motoplus-sdk
https://developer.nvidia.com/isaac-sim
https://github.com/PPM-Robotics-AS
https://github.com/PPM-Robotics-AS
https://www.roboplan.pt/en/products/positioners/mt1
https://www.roboplan.pt/en/products/positioners/mt1
https://www.roboplan.pt/en/products/positioners/yaskawa-motoman-linear-track-tsl-tsl
https://www.roboplan.pt/en/products/positioners/yaskawa-motoman-linear-track-tsl-tsl
https://www.roboplan.pt/en/products/positioners/yaskawa-motoman-linear-track-tsl-tsl
https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html
http://wiki.ros.org/Nodes
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://www.path-robotics.com/
https://moveit.picknik.ai/humble/doc/tutorials/getting_started/getting_started.html
https://moveit.picknik.ai/humble/doc/tutorials/getting_started/getting_started.html
https://moveit.picknik.ai/humble/index.html
https://moveit.picknik.ai/humble/index.html
https://github.com/ros-industrial/motoman
https://github.com/ros-industrial/motoman
https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/time_parameterization/time_parameterization_tutorial.html

94 References

[36] Balkeshwar Singh, N Sellappan, and P Kumaradhas. “Evolution of indus-
trial robots and their applications”. In: International Journal of emerging
technology and advanced engineering 3.5 (2013), pp. 763–768.

[37] SolidWorks. url: https://www.solidworks.com/ (visited on 06/08/2023).
[38] Thieso. trajectory_processing, MoveIt! GitHub repository. Cartesian end

effector speed implementation. 2021. url: https://github.com/Thieso/
moveit/tree/cartesian_ee_speed/moveit_core/trajectory_processing
(visited on 04/21/2023).

[39] Dirk Thomas. colcon - collective construction. 2018. url: https://colcon.
readthedocs.io/en/released/ (visited on 06/05/2023).

[40] Klas Weman and Gunnar Lindén. MIG welding guide. Woodhead Publish-
ing, 2006.

[41] Workforce Development. American Welding Society Foundation. url: https:
//www.aws.org/foundation/page/workforce-development (visited on
04/04/2023).

[42] www.robot-welding.com. Welding torch. 2001. url: http://www.robot-
welding.com/welding_torch.htm (visited on 06/07/2023).

[43] www.robot-welding.com. Wire Feeder. 2001. url: http : / / www . robot -
welding.com/wire_feeder.htm (visited on 06/08/2023).

[44] Yaskawa. Overview Functions Packages YRC1000. Yaskawa Europe GmbH.
Aug. 2019. url: https : / / www . yaskawa . eu . com / Global % 20Assets /
Downloads/Brochures_Catalogues/Robotics/software/Overview_Functions_
Packages_YRC1000_E_08.2019.pdf.

[45] Yaskawa Global. MotoROS2: Yaskawa-Global/motoros2. url: https : / /
github.com/Yaskawa-Global/motoros2 (visited on 05/29/2023).

[46] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek
Joshi, Soroush Nasiriany, and Yifeng Zhu. “robosuite: A Modular Simula-
tion Framework and Benchmark for Robot Learning”. In: arXiv preprint
arXiv:2009.12293. 2020.

https://www.solidworks.com/
https://github.com/Thieso/moveit/tree/cartesian_ee_speed/moveit_core/trajectory_processing
https://github.com/Thieso/moveit/tree/cartesian_ee_speed/moveit_core/trajectory_processing
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://www.aws.org/foundation/page/workforce-development
https://www.aws.org/foundation/page/workforce-development
http://www.robot-welding.com/welding_torch.htm
http://www.robot-welding.com/welding_torch.htm
http://www.robot-welding.com/wire_feeder.htm
http://www.robot-welding.com/wire_feeder.htm
https://www.yaskawa.eu.com/Global%20Assets/Downloads/Brochures_Catalogues/Robotics/software/Overview_Functions_Packages_YRC1000_E_08.2019.pdf
https://www.yaskawa.eu.com/Global%20Assets/Downloads/Brochures_Catalogues/Robotics/software/Overview_Functions_Packages_YRC1000_E_08.2019.pdf
https://www.yaskawa.eu.com/Global%20Assets/Downloads/Brochures_Catalogues/Robotics/software/Overview_Functions_Packages_YRC1000_E_08.2019.pdf
https://github.com/Yaskawa-Global/motoros2
https://github.com/Yaskawa-Global/motoros2

96 Appendix A. Yaskawa Motoman GP25-12 Datasheet

Appendix A.

Yaskawa Motoman GP25-12
Datasheet

G P 2 5 - 1 2 R O B O T

Axes
Maximum

motion range
Maximum speed

Allowable
moment

Allowable
moment of inertia

degrees 0/sec N•m kg•m2

S ±180 210 – –

L +155/-105 210 – –

U +160/-86 220 – –

R ±200 435 22 0.65

B ±150 435 22 0.65

T ±455 700 9.8 0.17

Specifications for GP25-12 with XP package may be different.
Mounting Options: Floor, Wall, Tilt or Ceiling
* The MLX300 software option is not available for use with arc or spot welding applications.
 MLX300 fieldbus cards, I/O cards and vision equipment must be purchased separately from
 the supplier. All peripherals are programmed using a PLC.

O P T I O N S
•	Robot risers and base plates

•	Extended length manipulator cables

•	Wide variety of fieldbus cards

•	External axes

•	PLC integration via MLX300
software option*

•	Functional Safety Unit (FSU)

•	MotoSight™ 2D and 3D vision

Item Unit GP25-12

Controlled axes 6

Maximum payload kg 12

Repeatability mm 0.03

Horizontal reach mm 2,010

Vertical reach mm 3,649

Weight kg 260

Internal user I/O cable 17 conductors w/ ground

Internal user air line (1) 3/8" connection

Power requirements 380-480 VAC

Power rating kVA 2.0

S P E C I F I C AT I O N S

Technical specifications subject to change without notice. | Motoman is a registered trademark.
All other marks are the trademarks and registered trademarks of Yaskawa America, Inc.

DS-874 ©2021 Yaskawa America, Inc. JANUARY 2021

YASKAWA AMERICA, INC. 100 Automation Way | Miamisburg, OH 45342

937.847.6200 | motoman.com

A X E S L E G E N D
S-Axis: Swivel Base
L-Axis: Lower Arm
U-Axis: Upper Arm
R-Axis: Arm Roll
B-Axis: Wrist Bend
T-Axis: Tool Flange

R2010

180°

180°

Ø56

128

60

260

200

30

60

200316

92
45

375
335

Ø62Ø50

261 229

491

400

135

R285

45°

375
335

Ø100

292

139

R561

P-POINT

P-POINT
MAXIMUM
ENVELOPE

505

760

200

83 150 1082 100

1710 2010

2365

1284

2X M10X1.5 x18

2X M10X1.5 x12

229

1X Ø4 x6
8X M4X0.7 x8 23°

INTERNAL USER AIR LINE
3/8" PT (WITH PLUG)

INTERNAL USER CABLE
CONNECTOR JL05-2A20-29PC
(WITH CAP). MATING CONNECTOR
IS NOT SUPPLIED, BUT COMPLETE
CABLES ARE AVAILABLE AS
AN OPTION.

170

4X Ø18 THRU

2X Ø12 THRU

AVAILABLE RANGE

INTERNAL USER WIRING CONNECTOR
JL05-2A20-29SC WITH CAP MATING
CONNECTOR IS NOT SUPPLIED BUT

COMPLETE CABLES ARE AVAILABLE
AS AN OPTION.

AIR EXHAUST 3/8" PT WITH PLUG

VIEW C

VIEW A

VIEW B

C
B

A

All dimensions are metric (mm) and for reference only.
Request detailed drawings for all design/engineering requirements.

D
VIEW D

VIEW C

98 Appendix B. Yaskawa Motoman TSL600 Datasheet

Appendix B.

Yaskawa Motoman TSL600
Datasheet

YASKAWA Nordic AB
PO Box 504
SE-385 25 Torsås, SWEDEN

Phone +46 480 41 78 00
info.se@yaskawa.eu.com
www.yaskawa.eu.com

© YASKAWA Nordic AB · RegNo. 1081EN-01, Sept 2020
Technical data may be subject to change without previous notice.

790 3000

H

Technical data TSL-600 SY

Maximum payload 600 kg

Maximum speed 2.14 m/s

ED 50%

Acceleration velocity 2.38 m/s2

Travel 500 mm
 1000 mm

0.85 sec
1.16 sec

Repetitive position accuracy ±0.05 mm

Height (H) including robot stand 687, 887, 1087, 1287 or 1487 mm

Standard length (L) 2,3 or 4 meter

Travel length (stroke) L-850 mm

TSL-600

All dimensions are for reference only.

Request detailed drawings for design/engineering requirements!

100 Appendix C. Yaskawa Motoman MT1 Datasheet

Appendix C.

Yaskawa Motoman MT1
Datasheet

MT1-1000, MT1-1500

Technical data MT1-1000 S2D MT1-1500 S2D

Max. payload 1000 kg 1500 kg

Welding capacity 100% duty cycle
 60% duty cycle

2x 350 A
2x 460 A

2x 350 A
2x 460 A

Tilt axis torque dynamic
 static

4236 Nm
3389 Nm

8290 Nm
6632 Nm

Tilt axis rated speed
 maximum speed

0-3.6 rpm
9.6 rpm

0-3.4 rpm
9.1 rpm

Rotating axis torque dynamic
 static

2830 Nm
2264 Nm

6480 Nm
5184 Nm

Rotating axis rated speed
 maximum speed

0-5.3 rpm
15 rpm

0-4.3 rpm
15 rpm

Rated offset from centre of gravity (COG) 230 mm 352 mm

n	 Rigid design.

n	 High freedom of positioning.

n	 Heavy payloads.

This is a one station positioner for workpieces requiring rota-
tion about two axes. Its high freedom of positioning makes
it easy to find the optimum position even in complicated
workpieces.

This MT1 positioner with its L arm design is able to with-
stand the strain of handling heavy workpieces.

When used together with a Gantry robot it provides the best
possible workpiece access.

Controlled by
DX200

Controlled by
YRC1000

101

MT1-1500 S2D (H = 1200)

MT1-1000 S2D

L

H

3107

10
00

L

65
0

12
00

3107

10
00

L

80
0

15
00

YASKAWA Nordic AB
PO Box 504
SE-385 25 Torsås, SWEDEN

Phone +46 480 41 78 00
info.se@yaskawa.eu.com
www.yaskawa.eu.com

© YASKAWA Nordic AB · RegNo. 1017EN-03, 2020-09
Technical data may be subject to change without previous notice.

MT1-1000, -1500

H (mm) L (mm) Weight Part No.

MT1-1000 S2D
1200 850 1610 kg 124617-102

1200 1100 1647 kg 124617-103

MT1-1500 S2DL
1200 1195 3484 kg 124618-100

1500 1615 4010 kg 124619-100

Rotating axis

Tilt axis

Rotating axis

Tilt axis

MT1-1500 S2D (H = 1500)

Appendix D.

Description of the Folders
Included in the MotoROS2
Package

config - This folder includes a single .yaml file. This file is where the configuration
of the motoros2 is being defined by the user.

example_jobs - This folder includes a series of subfolders. The folders were the
following:

• sda_dual_arm

• single_arm

• single_arm_with_base_axis

• single_arm_with_ext_axis

• two_arms

Each folder has a IONAME.DAT file and a INIT_ROS.JBI file. The ION-
AME.DAT file is the same for all folders, while the INIT_ROS.JBI has some
different setup. The structure of the INIT_JOB.JBI is seen in Figure D.1. The
different folders will set the JOB - INST - GROUP1 and GROUP2 depending if
the job is defined for a multiarm/base/station system.

The setup is then followed by the INFORM code:
1 NOP
2 DOUT OT #(890) OFF
3 DOUT OT #(889) OFF
4 TIMER T=0.05
5 DOUT OT #(889) ON
6 WAIT OT #(890) =ON

104 Appendix D. Description of the Folders Included in the MotoROS2 Package

Figure D.1.: The structure of a JBI file. Collected from Yaskawa DX100 IN-
STRUCTIONS FOR RELATIVE JOB FUNCTION manual

7 DOUT OT #(890) OFF
8 DOUT OT #(889) OFF
9 END

which is similar for all the folders.

motoros2-beta1-0.0.15 - This folder includes a script which listens for debug
messages from motoros2, as well as a README.MD and a CHANGELOG.MD
file. The README.MD file describes the installation process and instruction for
motoros2 aswell as debugging information and common errors.

motoros2-beta1-main - This folder includes the same files as motoros2-beta1-
0.0.15

motoros2_interfaces-beta1-main - This folder is a ros2 package which in-
cludes the messages, services and actions used by motoros2.

Appendix E.

Structure of the Robot Model
Packages

1 Motoman
2 mt1_support
3 gp25_12_support
4 tsl600_support

Each support folder had the following structure:
1 xxx_support
2 URDF
3 - mt1.xacro
4 - mt1_macro .xacro
5 meshes
6 visual
7 -link_1 .stl
8 -link_2 .stl
9 -...

10 collision
11 -link_1 .stl
12 -link_2 .stl
13 -...
14 launch
15 config

Appendix F.

Moveit Controller Changes

The changes done in , the file moveit_controller.yaml in the moveit_config/config
folder were as follows:

From
1 moveit_simple_controller_manager :
2 controller_names :
3 - group_1_controller
4 - group_2_controller
5 - group_3_controller
6 - group_4_controller
7 - follow_joint_trajectory_controller

to
1 moveit_simple_controller_manager :
2 controller_names :
3 - group_1_controller
4 - group_2_controller
5 - group_3_controller
6 - group_4_controller
7 - follow_joint_trajectory # <-- changed

and from
1 follow_joint_trajectory :
2 type: FollowJointTrajectory
3 action_ns : " follow_joint_trajectory "
4 default : true
5 joints :
6 - group_2 / joint_1_s
7 - group_2 / joint_2_l
8 - group_2 / joint_3_u
9 - group_2 / joint_4_r

10 - group_2 / joint_5_b
11 - group_2 / joint_6_t

108 Appendix F. Moveit Controller Changes

12 - group_3 / joint_1
13 - group_1 / joint_1_s
14 - group_1 / joint_2_l
15 - group_1 / joint_3_u
16 - group_1 / joint_4_r
17 - group_1 / joint_5_b
18 - group_1 / joint_6_t
19 - group_4 / joint_1
20 - group_4 / joint_2
21 action_ns : " follow_joint_trajectory "
22 default : true

to
1 follow_joint_trajectory :
2 type: FollowJointTrajectory
3 action_ns : "" # <-- changed
4 default : true
5 joints :
6 - group_2 / joint_1_s
7 - group_2 / joint_2_l
8 - group_2 / joint_3_u
9 - group_2 / joint_4_r

10 - group_2 / joint_5_b
11 - group_2 / joint_6_t
12 - group_3 / joint_1
13 - group_1 / joint_1_s
14 - group_1 / joint_2_l
15 - group_1 / joint_3_u
16 - group_1 / joint_4_r
17 - group_1 / joint_5_b
18 - group_1 / joint_6_t
19 - group_4 / joint_1
20 - group_4 / joint_2
21 action_ns : "" # <-- changed
22 default : true

Appendix G.

The Launchfile for Planning

planning.launch.py
1 from moveit_configs_utils import MoveItConfigsBuilder
2 from moveit_configs_utils . launches import generate_move_group_launch
3 from moveit_configs_utils . launches import generate_rsp_launch
4 from moveit_configs_utils . launches import

generate_moveit_rviz_launch
5 from launch import LaunchDescription
6

7 def generate_launch_description ():
8 moveit_config = MoveItConfigsBuilder (" motoman_gp25sys ",

package_name ="robco"). to_moveit_configs ()
9

10 ld = [generate_move_group_launch (moveit_config),
generate_rsp_launch (moveit_config), generate_moveit_rviz_launch (
moveit_config)]

11 return LaunchDescription (ld)

Appendix H.

utilities.h

1

2 # include <cstdio >
3 # include <memory >
4

5 # include " iostream "
6

7 # include <rclcpp / rclcpp .hpp >
8 # include <moveit / move_group_interface / move_group_interface .h>
9

10 # include <moveit_msgs /msg/ robot_state .hpp >
11 # include <moveit_msgs /msg/ robot_trajectory .hpp >
12

13 # include <sensor_msgs /msg/ joint_state .hpp >
14 # include <trajectory_msgs /msg/ joint_trajectory .hpp >
15

16

17

18

19 int log(std :: string data , const int verbose = 0);
20 std :: vector <std ::pair <std :: string , std ::pair <size_t , size_t >>>

findNumberOfMatches (const std :: vector <std :: string >& keywords ,
const std :: vector <std :: string >& dataset);

21 int printTrajectory (moveit :: planning_interface :: MoveGroupInterface ::
Plan plan);

22 bool compareByIndex (const std ::pair <std :: string , std ::pair <size_t ,
size_t >>& a, const std ::pair <std :: string , std ::pair <size_t ,
size_t >>& b);

23 bool isGroupInPlan (const std :: string & group , const moveit ::
planning_interface :: MoveGroupInterface :: Plan& plan);

24 int8_t isGroupInPlans (const std :: string & group , const std :: vector <
moveit :: planning_interface :: MoveGroupInterface ::Plan >& plans);

25 moveit :: planning_interface :: MoveGroupInterface :: Plan
expandTrajectory (moveit :: planning_interface :: MoveGroupInterface
:: Plan plan , size_t lengthOfTrajectory);

26 moveit :: planning_interface :: MoveGroupInterface :: Plan

112 Appendix H. utilities.h

newPlanFromStartState (moveit :: planning_interface ::
MoveGroupInterface :: Plan templatePlan , std :: string name , size_t
numberOfJoints , size_t startIndex);

27 int8_t findIndex (std :: vector <std :: string > subset , std :: vector <std ::
string > set);

28 sensor_msgs :: msg :: JointState concatenateStates (const std :: vector <
moveit :: planning_interface :: MoveGroupInterface ::Plan >& plans);

29 std :: vector < moveit :: planning_interface :: MoveGroupInterface ::Plan >
findPlans (const std :: vector < geometry_msgs :: msg ::Pose >& points ,
const std :: string & group , const std :: shared_ptr < rclcpp ::Node >
node);

30 moveit_msgs :: msg :: JointConstraint createJointConstrain (std :: string
joint_name , double lower_limit , double upper_limit);

31 moveit_msgs :: msg :: Constraints createJointConstrains (std :: vector <std
:: string > joint_names , std :: vector <double > lower_constrains , std
:: vector <double > upper_constrains);

32 std :: vector < geometry_msgs :: msg ::Pose > createStraightPathPoints (std ::
vector <double > xyz_start , std :: vector <double > xyz_stop , std ::
vector <double > xyzw_orientation , int num_points);

33 void addToPlan (moveit :: planning_interface :: MoveGroupInterface :: Plan&
plan , const moveit :: planning_interface :: MoveGroupInterface ::

Plan planToAdd , int startidx =0);
34 geometry_msgs :: msg :: Pose createPose (double x, double y, double z,

double ox , double oy , double oz , double ow);
35 moveit :: planning_interface :: MoveGroupInterface :: Plan

stupidPlanCreator (const std :: string & group , const std ::
shared_ptr < rclcpp ::Node > node);

36 builtin_interfaces :: msg :: Duration addDurations (builtin_interfaces ::
msg :: Duration dur1 , builtin_interfaces :: msg :: Duration dur2);

37 builtin_interfaces :: msg :: Duration divideDuration (const
builtin_interfaces :: msg :: Duration & d, float value);

Appendix I.

utilities.cpp

1 # include " utilities .h"
2

3 bool DEBUG = true;
4

5 int log(std :: string data , const int verbose){
6 if (verbose == 0){
7

8 std :: cout << data << std :: endl;
9 }

10 else if (verbose > 0 and DEBUG){
11 std :: cout << data << std :: endl;
12 }
13 return 1;
14 }
15

16 std :: vector <std ::pair <std :: string , std ::pair <size_t , size_t >>>
findNumberOfMatches (const std :: vector <std :: string >& keywords ,
const std :: vector <std :: string >& dataset) {

17 std :: vector <std ::pair <std :: string , std ::pair <size_t , size_t >>>
results ;

18

19 for (const auto& sequence : keywords){
20 size_t counter = 0;
21 size_t idx_counter = 0;
22 // for alle gruppene
23 for (const auto& group : dataset){
24 //se om sequence finnes i gruppe , evt hvor mange
25 if (group.find(sequence) != std :: string :: npos){
26 counter ++;
27 }
28 if (counter == 0){
29 idx_counter ++; //vi vil bare finne posisjonen til den fø

rste matches .
30 }
31 }

114 Appendix I. utilities.cpp

32 results . push_back (std :: make_pair (sequence , std :: make_pair (
counter , idx_counter)));

33

34 }
35 return results ;
36 }
37

38 int printTrajectory (moveit :: planning_interface :: MoveGroupInterface ::
Plan plan){

39 for (auto it : plan. trajectory_ . joint_trajectory . points){
40 for (auto point : it. positions){
41 std :: cout << point << " ";
42 }
43 std :: cout << std :: endl;
44 }
45 return 1;
46 }
47

48 bool compareByIndex (const std ::pair <std :: string , std ::pair <size_t ,
size_t >>& a, const std ::pair <std :: string , std ::pair <size_t ,
size_t >>& b) {

49 return a. second . second < b. second . second ;
50 }
51

52 bool isGroupInPlan (const std :: string & group , const moveit ::
planning_interface :: MoveGroupInterface :: Plan& plan){

53 if (plan. trajectory_ . joint_trajectory . joint_names [0]. find(group)
!= std :: string :: npos){

54 return true;
55 }
56 return false;
57 }
58

59

60 int8_t isGroupInPlans (const std :: string & group , const std :: vector <
moveit :: planning_interface :: MoveGroupInterface ::Plan >& plans){

61 // returnerer indeksen gruppen finnes i planvektoren , -1 hvis den
ikke finnes

62 int8_t index = 0;
63 for (const auto& plan : plans){
64 if (isGroupInPlan (group , plan)){
65 return index;
66 }
67 index ++;
68 }
69 return -1;
70 }
71

72

73 moveit :: planning_interface :: MoveGroupInterface :: Plan
expandTrajectory (moveit :: planning_interface :: MoveGroupInterface

115

:: Plan plan , size_t lengthOfTrajectory){ // exapnds the length of
the plan to a given length with the last value in the plan

74 // hver plan skal inneholde start_state_
75

76 moveit :: planning_interface :: MoveGroupInterface :: Plan newPlan =
plan;

77

78 for(size_t i = plan. trajectory_ . joint_trajectory . points .size (); i
< lengthOfTrajectory ; i++){

79 newPlan . trajectory_ . joint_trajectory . points . push_back (plan.
trajectory_ . joint_trajectory . points .back ());

80 }
81 return newPlan ;
82 }
83 moveit :: planning_interface :: MoveGroupInterface :: Plan

newPlanFromStartState (moveit :: planning_interface ::
MoveGroupInterface :: Plan templatePlan , std :: string name , size_t
numberOfJoints , size_t startIndex){ // returns a plan which
starts at startstate and has the same "width"

84

85 moveit :: planning_interface :: MoveGroupInterface :: Plan newPlan (
templatePlan);

86

87 newPlan . trajectory_ . joint_trajectory . joint_names = std :: vector <std
:: string >(templatePlan . start_state_ . joint_state .name.begin () +
startIndex , templatePlan . start_state_ . joint_state .name.begin () +

startIndex + numberOfJoints);
88 newPlan . trajectory_ . joint_trajectory . points [0]. positions = std ::

vector <double >(templatePlan . start_state_ . joint_state . position .
begin () + startIndex , templatePlan . start_state_ . joint_state .
position .begin () + startIndex + numberOfJoints);

89 // effort er tom slik at dette leder til segfault
90 // newPlan . trajectory_ . joint_trajectory . points [0]. effort = std ::

vector <double >(templatePlan . start_state_ . joint_state . effort .
begin () + startIndex , templatePlan . start_state_ . joint_state .
effort .begin () + startIndex + numberOfJoints);

91 newPlan . trajectory_ . joint_trajectory . points [0]. velocities = std ::
vector <double >(templatePlan . start_state_ . joint_state . velocity .
begin () + startIndex , templatePlan . start_state_ . joint_state .
velocity .begin () + startIndex + numberOfJoints);

92 newPlan . trajectory_ . joint_trajectory . points [0]. time_from_start =
templatePlan . trajectory_ . joint_trajectory . points [0].
time_from_start ; // dette vil finnes første punkt [0]

93 newPlan . trajectory_ . joint_trajectory . points [0]. accelerations = std
:: vector <double >(numberOfJoints , 0.0);

94

95 //Er bare interessert i første punkt
96 std :: vector < trajectory_msgs :: msg :: JointTrajectoryPoint > firstPoint

;
97 firstPoint . push_back (newPlan . trajectory_ . joint_trajectory . points

[0]);

116 Appendix I. utilities.cpp

98 newPlan . trajectory_ . joint_trajectory . points = firstPoint ;
99

100 return newPlan ;
101 }
102

103 builtin_interfaces :: msg :: Duration addDurations (builtin_interfaces ::
msg :: Duration dur1 , builtin_interfaces :: msg :: Duration dur2){

104 builtin_interfaces :: msg :: Duration result ;
105 result . nanosec = (dur1. nanosec + dur2. nanosec) %1000000000;
106 result .sec = dur1.sec + dur2.sec + std :: floor ((dur1. nanosec + dur2

. nanosec) /1000000000) ;
107 return result ;
108 }
109

110 builtin_interfaces :: msg :: Duration divideDuration (const
builtin_interfaces :: msg :: Duration & d, float value) {

111 builtin_interfaces :: msg :: Duration result ;
112 long long totalNanosec = d.sec * 1000000000 + d. nanosec ; //

Convert to nanoseconds
113 totalNanosec = totalNanosec + totalNanosec /value; // Divide by

input
114 result .sec = totalNanosec / 1000000000; // Convert back to

seconds and nanoseconds
115 result . nanosec = totalNanosec % 1000000000;
116 return result ;
117 }
118

119

120 void addToPlan (moveit :: planning_interface :: MoveGroupInterface :: Plan&
plan ,const moveit :: planning_interface :: MoveGroupInterface :: Plan
planToAdd , int startidx){

121 // plan has a length i
122 // and a with j
123 // moveit :: planning_interface :: MoveGroupInterface :: Plan results (

plan);
124 log(" trying to add vector with length : " + std :: to_string (

planToAdd . trajectory_ . joint_trajectory . points .size ()) + " at
index " + std :: to_string (startidx) + " to a vector with size " +

std :: to_string (plan. trajectory_ . joint_trajectory . points .size ())
, 1);

125

126 for(int i = startidx ; i < startidx + planToAdd . trajectory_ .
joint_trajectory . points .size (); i ++){

127 int idx = findIndex (planToAdd . trajectory_ . joint_trajectory .
joint_names , plan. start_state_ . joint_state .name); // denne sikrer

at gruppen , dersom den ikke gjør det vil ikke det finnes
fysiske joints å bevege

128 if (idx >= 0){ //if the group exist insert , startidx is >= 0
129 plan. trajectory_ . joint_trajectory . points .at(i). positions .erase

(plan. trajectory_ . joint_trajectory . points .at(i). positions .begin
() + idx , plan. trajectory_ . joint_trajectory . points .at(i).

117

positions .begin () + idx + planToAdd . trajectory_ . joint_trajectory
. joint_names .size ());

130 plan. trajectory_ . joint_trajectory . points .at(i). positions .
insert (plan. trajectory_ . joint_trajectory . points .at(i). positions .
begin () + idx , planToAdd . trajectory_ . joint_trajectory . points .at(
i- startidx). positions .begin (), planToAdd . trajectory_ .
joint_trajectory . points .at(i- startidx). positions .end ());

131 plan. trajectory_ . joint_trajectory . points .at(i). velocities .
erase(plan. trajectory_ . joint_trajectory . points .at(i). velocities .
begin () + idx , plan. trajectory_ . joint_trajectory . points .at(i).
velocities .begin () + idx + planToAdd . trajectory_ .
joint_trajectory . joint_names .size ());

132 plan. trajectory_ . joint_trajectory . points .at(i). velocities .
insert (plan. trajectory_ . joint_trajectory . points .at(i). velocities
.begin () + idx , planToAdd . trajectory_ . joint_trajectory . points .at
(i- startidx). velocities .begin (), planToAdd . trajectory_ .
joint_trajectory . points .at(i- startidx). velocities .end ());

133

134 // planToAdd starter på t = 0, må starte ved t = t_prev_bane
135 plan. trajectory_ . joint_trajectory . points .at(i). time_from_start

= addDurations (planToAdd . trajectory_ . joint_trajectory . points .at
(i - startidx). time_from_start , plan. trajectory_ .
joint_trajectory . points .back (). time_from_start);

136 }
137 }
138 // bruker plans siste tid til å lagre den akkumulerte tiden banen

tar
139 if(startidx + planToAdd . trajectory_ . joint_trajectory . points .size ()

!= plan. trajectory_ . joint_trajectory . points .size ()){
140 plan. trajectory_ . joint_trajectory . points .back (). time_from_start

= addDurations (plan. trajectory_ . joint_trajectory . points .back ().
time_from_start , planToAdd . trajectory_ . joint_trajectory . points .
back (). time_from_start);

141 }
142 // return results ;
143 }
144

145

146

147 int8_t findIndex (std :: vector <std :: string > subset , std :: vector <std ::
string > set){

148 // rekkef ølgen er lik slik at vi kan bare iterere opp
149 // samtidig vil set.size () > subset .size () slik at vi kan iterere

gjennom null problem
150 for (uint8_t i = 0; i < set.size (); i ++){
151 // finner den første matchen
152 if(set.at(i) == subset .front ()){
153 return i;
154 }
155 }
156 return -1;

118 Appendix I. utilities.cpp

157 }
158

159

160

161 sensor_msgs :: msg :: JointState concatenateStates (const std :: vector <
moveit :: planning_interface :: MoveGroupInterface ::Plan >& plans){
//Slår sammen states fra forskjellige grupper slik at du får en
vector med statene

162 sensor_msgs :: msg :: JointState state(plans [0]. start_state_ .
joint_state);

163 /*
164 må finne ut hvilken posisjon i joint_state de forskjellige

verdiene skal
165 group_names = vector <string >
166 */
167 for (auto const& plan : plans){
168 int8_t idx = findIndex (plan. trajectory_ . joint_trajectory .

joint_names , plan. start_state_ . joint_state .name);
169 int8_t sizeOfGroup = plan. trajectory_ . joint_trajectory .

joint_names .size ();
170 if (idx >= 0){
171 state. position .erase(state. position .begin () + idx , state.

position .begin () + idx + sizeOfGroup);
172 state. position . insert (state. position .begin () + idx , plan.

trajectory_ . joint_trajectory . points .back (). positions .begin (),
plan. trajectory_ . joint_trajectory . points .back (). positions .end ())
;

173 }
174 }
175 return state;
176 }
177

178 moveit :: planning_interface :: MoveGroupInterface :: Plan
stupidPlanCreator (const std :: string & group , const std ::
shared_ptr < rclcpp ::Node > node){

179 moveit :: planning_interface :: MoveGroupInterface :: Plan newPlan ;
180 using moveit :: planning_interface :: MoveGroupInterface ;
181 auto move_group_interface = MoveGroupInterface (node , group);
182

183 sensor_msgs :: msg :: JointState tempState ;
184 tempState .name = move_group_interface . getJointNames ();
185 for(auto const& joint : tempState .name){
186 tempState . position . push_back (0.0);
187 }
188 move_group_interface . setJointValueTarget (tempState);
189 move_group_interface .plan(newPlan);
190 std :: cout << newPlan . start_state_ . joint_state . header . frame_id <<

std :: endl;
191

192 return newPlan ;
193 }

119

194

195

196

197 std :: vector < moveit :: planning_interface :: MoveGroupInterface ::Plan >
findPlans (const std :: vector < geometry_msgs :: msg ::Pose >& points ,
const std :: string & group , const std :: shared_ptr < rclcpp ::Node >
node){

198 std :: vector < moveit :: planning_interface :: MoveGroupInterface ::Plan >
plans;

199 // Hentet fra moveit cpp tutorial
200 using moveit :: planning_interface :: MoveGroupInterface ;
201 auto move_group_interface = MoveGroupInterface (node , group);
202 move_group_interface . setPlanningTime (20); // dette er dumt
203

204 // log(move_group_interface . getEndEffectorLink ());
205 move_group_interface . setMaxVelocityScalingFactor (0.02) ; // setter

skalering -> nærmere 0 == tregere
206

207 // the first point has the robot current startvalues
208 for (auto const& point : points){
209 if (point == points .front ()){ //if first plans is empty
210 log(" setting target pose", 1);
211 move_group_interface . setPoseTarget (point);
212 log(" creating plan", 1);
213 auto const [success , plan] = [& move_group_interface]{
214 moveit :: planning_interface :: MoveGroupInterface :: Plan msg;
215 auto const ok = static_cast <bool >(move_group_interface .plan(

msg));
216 return std :: make_pair (ok , msg);
217 }();
218 if (success){
219 plans. push_back (plan);
220 }
221 else{
222 log(" PLANNING FAILED ! EXITING ");
223 exit (-1);
224 }
225 }
226 else{// else calculate from previous position
227 moveit_msgs :: msg :: RobotState startState ;
228 sensor_msgs :: msg :: JointState temp = concatenateStates (std ::

vector < moveit :: planning_interface :: MoveGroupInterface ::Plan >{
plans.back ()});

229 startState . joint_state .name = temp.name;
230 startState . joint_state . position = temp. position ;
231 startState . joint_state . velocity = temp. velocity ;
232 startState . joint_state . effort = temp. effort ;
233

234 log(" setting start state to previous end state", 1);
235 move_group_interface . setStartState (startState);
236 log(" setting target pose", 1);

120 Appendix I. utilities.cpp

237 move_group_interface . setPoseTarget (point);
238 log(" creating plan", 1);
239 auto const [success , plan] = [& move_group_interface]{
240 moveit :: planning_interface :: MoveGroupInterface :: Plan msg;
241 auto const ok = static_cast <bool >(move_group_interface .plan(

msg));
242 return std :: make_pair (ok , msg);
243 }();
244 if (success){
245 plans. push_back (plan);
246 }
247 else{
248 log(" PLANNING FAILED ! EXITING ");
249 exit (-1);
250 }
251 }
252 }
253 return plans;
254 }
255

256

257

258

259 std :: vector < geometry_msgs :: msg ::Pose > createStraightPathPoints (std ::
vector <double > xyz_start , std :: vector <double > xyz_stop , std ::
vector <double > xyzw_orientation , int num_points){

260 std :: vector < geometry_msgs :: msg ::Pose > points ;
261

262 // std :: cout << xyz_start .size ();
263 assert (xyzw_orientation .size () == 4); //må være verdier for alle
264 // assert ((xyz_start .size () == xyz_stop .size ()) == 3); //må være

verdier for xyz
265

266 auto const target_pose = [](double x, double y, double z, std ::
vector <double > xyzw_orientation){

267 geometry_msgs :: msg :: Pose msg;
268 msg. position .x = x;
269 msg. position .y = y;
270 msg. position .z = z;
271 msg. orientation .x = xyzw_orientation .at (0);
272 msg. orientation .y = xyzw_orientation .at (1);
273 msg. orientation .z = xyzw_orientation .at (2);
274 msg. orientation .w = xyzw_orientation .at (3);
275 return msg;
276 };
277

278 double dx = (xyz_stop .at (0) - xyz_start .at (0))/ num_points ;
279 double dy = (xyz_stop .at (1) - xyz_start .at (1))/ num_points ;
280 double dz = (xyz_stop .at (2) - xyz_start .at (2))/ num_points ;
281

282 for(int i = 0; i < num_points - 1; i++){

121

283 points . push_back (target_pose (xyz_start .at (0) + dx * i, xyz_start
.at (1) + dy * i, xyz_start .at (2) + dz * i, xyzw_orientation));

284 }
285 points . push_back (target_pose (xyz_stop .at (0) , xyz_stop .at (1) ,

xyz_stop .at (2) , xyzw_orientation));
286 return points ;
287 }
288

289

290 moveit_msgs :: msg :: JointConstraint createJointConstrain (std :: string
joint_name , double lower_limit , double upper_limit){

291 moveit_msgs :: msg :: JointConstraint result ;
292 result . joint_name = joint_name ;
293 result . tolerance_below = lower_limit ;
294 result . tolerance_above = upper_limit ;
295 result . weight = 0.3;
296 //må potensielt ha posisjon også
297 return result ;
298

299 }
300

301

302 moveit_msgs :: msg :: Constraints createJointConstrains (std :: vector <std
:: string > joint_names , std :: vector <double > lower_constrains , std
:: vector <double > upper_constrains){

303 moveit_msgs :: msg :: Constraints results ;
304 for(int i = 0; i < joint_names .size (); i ++){
305 results . joint_constraints . push_back (createJointConstrain (

joint_names .at(i), lower_constrains .at(i), upper_constrains .at(i
)));

306 }
307 return results ;
308 }
309

310

311

312 geometry_msgs :: msg :: Pose createPose (double x, double y, double z,
double ox , double oy , double oz , double ow){

313 geometry_msgs :: msg :: Pose result ;
314 result . orientation . set__w (ow);
315 result . orientation . set__x (ox);
316 result . orientation . set__y (oy);
317 result . orientation . set__z (oz);
318 result . position . set__x (x);
319 result . position . set__y (y);
320 result . position . set__z (z);
321

322 return result ;
323 }

Appendix J.

planner_node.cpp

The main ROS2 node planner_node

1 # include " utilities .h"
2

3 # include <moveit_group_planner_interfaces /msg/ waypointsets .hpp >
4 # include <moveit_group_planner_interfaces /msg/ waypoints .hpp >
5 # include <moveit_group_planner_interfaces /srv/ execute .hpp >
6 # include <moveit_group_planner_interfaces /srv/plan.hpp >
7

8 # include " fstream "
9

10 //# include <fstream > // used for storing and plotting the trajectory /
velocity etc in python

11

12

13 using std :: placeholders ::_1; // used by service / subscription
14 using std :: placeholders ::_2; // used by service / subscription
15 using std :: placeholders ::_3; // used by service / subscription
16 using std :: placeholders ::_4; // used by service / subscription
17

18 // Class in main and not in .h because legacy from development .
19 class WaypointListener : public rclcpp :: Node
20 {
21 public :
22 WaypointListener ()
23 : Node(" waypoint_listener "), logger_ (rclcpp :: get_logger ("

waypoint_listener "))
24 {
25 joint_state_callback_group_ = this -> create_callback_group (

rclcpp :: CallbackGroupType :: MutuallyExclusive);
26 ready_publisher_callback_group_ = this -> create_callback_group (

rclcpp :: CallbackGroupType :: MutuallyExclusive);
27

28 auto joint_state_callback_group_options_ = rclcpp ::
SubscriptionOptions ();

124 Appendix J. planner_node.cpp

29 auto execute_callback_group_options_ = rclcpp ::
SubscriptionOptions ();

30 joint_state_callback_group_options_ . callback_group =
joint_state_callback_group_ ;

31 joint_state_subscription_ = this -> create_subscription <
sensor_msgs :: msg :: JointState >(

32 " joint_states ", 10, std :: bind (& WaypointListener ::
joint_state_callback , this , _1),
joint_state_callback_group_options_);

33

34 plan_service_ = this -> create_service <
moveit_group_planner_interfaces :: srv ::Plan >(

35 " plan_group ", std :: bind (& WaypointListener :: plan_callback ,
this , std :: placeholders ::_1 , std :: placeholders ::_2));

36

37 execute_service_ = this -> create_service <
moveit_group_planner_interfaces :: srv :: Execute >(

38 " execute_plan ",std :: bind (& WaypointListener :: execute_callback
, this ,

39 std :: placeholders ::_2));
40

41 ready_publisher_ = this -> create_publisher < std_msgs :: msg ::Bool
>(" ready", 10);

42

43 // alternative for inline like in execute_service and
plan_service , because that did not work.

44 std :: function <void ()> callback = std :: bind (& WaypointListener ::
ready_publisher_callback , this , std :: make_shared < std_msgs :: msg ::
Bool >());

45 ready_publisher_timer_ = this -> create_wall_timer (std :: chrono ::
milliseconds (50) , callback , ready_publisher_callback_group_);

46 RCLCPP_INFO_STREAM (logger_ , "Node is spinning , ready to take
waypoints ");

47 }
48

49 private :
50 moveit :: planning_interface :: MoveGroupInterface :: Plan plan;

// For storing the trajectory for execution
51 moveit :: planning_interface :: MoveGroupInterface * current_group ;

// For storing the relevant group for FK purposes
52 std :: string end_effector_link ;

// storing the relevant end effector , used to find FK such that
in_position can be set

53 bool in_position = false;
// For notifying if the arm is in position to execute task - i.e
in position to weld

54 bool is_executing = false;
//If robot is executing a plan - used in update_thread_function
()

55

56 // Because this is developed around motoros2 the main group is:

125

57 // follow_joint_trajectory
58 // that is that motoros2 listens to actions for the group

follow_joint_trajectory
59 // however , if the controller is able to listen to multiple

action topics , this may not be a good way to define this
60 const std :: shared_ptr < rclcpp ::Node > followJointTrajectoryNode =

std :: make_shared < rclcpp ::Node >(" follow_joint_trajectory ", rclcpp
:: NodeOptions (). automatically_declare_parameters_from_overrides (
true));

61 moveit :: planning_interface :: MoveGroupInterface
move_group_interface { followJointTrajectoryNode , "
follow_joint_trajectory "}; //= MoveGroupInterface (
followJointTrajectoryNode , " follow_joint_trajectory ");

62 moveit :: core :: RobotState robot_state =
getRobotStateFromMoveGroupInterface (move_group_interface); // for

storing the current robotstate and calculating FK for the
system

63

64 // these variables are used to store information about the
current robot state - listening on / joint_states

65 // the order of joints from controller may not be the same as
from moveit

66 std :: vector <std :: string > joint_names ;
// reading the joint_names from joint_state topic

67 std :: vector <double > joint_positions ;
// reading the joint_positions from joint_state topic

68 std :: vector <std ::pair <bool , geometry_msgs :: msg ::Pose >>
pairWaypoints ; // used to store waypoint and the corresponding
isJob - see update_thread_function ()

69

70 // multi -threading , need to lock
71 std :: mutex joint_position_mutex ;
72 std :: mutex joint_names_mutex ;
73 std :: mutex in_position_mutex ;
74

75 double end_effector_skip = 0.01;
76 double jump_threshold = 0.0;
77 double end_effector_pose_tolerance = 0.05; // in meter. The

tolerance of which end effector and waypoints is compared
against in update_thread_function .

78 int planner_time_limit = 20; //sec , default 5
79

80

81 bool allow_replanning = true;
82

83

84

85 // ________________________ Class Functions
_________________________ //

86

87 // joint_states_callback - listen to joint_states and updates the

126 Appendix J. planner_node.cpp

private variables joint_position and joint_names
88 void joint_state_callback (const sensor_msgs :: msg :: JointState ::

SharedPtr msg) {
89 this -> joint_position_mutex .lock ();
90 this -> joint_names_mutex .lock ();
91

92 this -> joint_positions = msg -> position ;
93 this -> joint_names = msg ->name;
94

95 this -> joint_names_mutex . unlock ();
96 this -> joint_position_mutex . unlock ();
97

98

99

100 }
101

102 // plan_callback - callback for listening to waypoints - calls
createPlan

103 void plan_callback (const std :: shared_ptr <
moveit_group_planner_interfaces :: srv :: Plan :: Request > req ,

104 std :: shared_ptr <
moveit_group_planner_interfaces :: srv :: Plan :: Response > res){

105 RCLCPP_INFO_STREAM (this ->logger_ , " Waypoints recived ");
106 std :: string group_name = req -> waypoints . groupname ;
107 std :: vector < geometry_msgs :: msg ::Pose > waypoints = req ->

waypoints . waypoints ;
108 float speed = (req -> waypoints .speed <= 0.0) ? 100000.0 : req ->

waypoints .speed; //if speed is set to <= 0, set the speed to a
high value , else set to given value

109 RCLCPP_INFO_STREAM (this ->logger_ , (req -> waypoints .speed < 0.0)
? "Speed not valid. No limit set" :

110 ((req -> waypoints .speed == 0.0) ? "No limit set" : ("
Speed limit set to: " + std :: to_string (speed) + "m/s")));

111

112

113 // Asserts that the length of isJob and waypoints are the same
114 // This is used to publish if job can be done
115 // for example if waypoint is a part of a welding -path or not
116 std :: vector <bool > isJob = req -> waypoints . is_job ;
117 if (isJob.size () not_eq waypoints .size ()){
118 RCLCPP_WARN_STREAM (this ->logger_ , " Length of isJob list is

not equals length of waypoint list , sets all job to false");
119 isJob = std :: vector <bool >(waypoints .size (), false);
120 }
121 // stores in privat vector
122 for (size_t i = 0; i < isJob.size (); i ++){
123 pairWaypoints . push_back (std :: make_pair (isJob.at(i),

waypoints .at(i)));
124 }
125

126 // pass to createPlan

127

127 double trajectory_fraction = createPlan (group_name , waypoints ,
speed);

128 RCLCPP_INFO_STREAM (this ->logger_ , "Plan created , call /
execute_plan service to execute ");

129 res -> set__trajectory_fraction (static_cast <float >(
trajectory_fraction));

130 }
131

132 // ready_publisher_callback - callback for publishing if robot is
in position to start job or not

133 void ready_publisher_callback (std :: shared_ptr < std_msgs :: msg ::
Bool > msg){

134 this -> in_position_mutex .lock ();
135 msg ->data = this -> in_position ;
136 this -> ready_publisher_ -> publish (* msg);
137 this -> in_position_mutex . unlock ();
138

139 }
140

141 // execute_callback - callback for executing planned trajectory
if service is called - passes to moveit planning_interfaces

142 void execute_callback (const std :: shared_ptr <
moveit_group_planner_interfaces :: srv :: Execute :: Response > res){

143 // using moveit :: planning_interface :: MoveGroupInterface ;
144 // auto const followJointTrajectoryNode = std :: make_shared <

rclcpp ::Node >(" follow_joint_trajectory ", rclcpp :: NodeOptions ().
automatically_declare_parameters_from_overrides (true));

145 // auto move_group_interface = MoveGroupInterface (
followJointTrajectoryNode , " follow_joint_trajectory ");

146

147 // execute the plan
148 // while this should optionally return true if execute is

finished , we can not get current state from this framework
149 //if last point of end effector is end of waypoint list ==

return true
150 // potentional workaround = listen to followjointtrajectory /

result
151

152 //if task is successfully sent down the pipeline , plan is
executing , else something went wrong

153 // this could be error in motoros or setup , for example wrong
namespace or bad connection

154

155

156 //FK thread because . execute wait for execution and need to
update fk while this is happening

157 this -> is_executing = true;
158 std :: thread update_thread = std :: thread (& WaypointListener ::

update_thread_function , this);
159

160 if (this -> move_group_interface . execute (this ->plan). SUCCESS){

128 Appendix J. planner_node.cpp

161 res -> set__success (true);
162 }
163 else{
164 res -> set__success (false);
165 }
166

167 this -> is_executing = false;
168 update_thread .join ();
169 }
170

171

172

173 void update_thread_function (){
174

175

176 int timeout = this ->plan. trajectory_ . joint_trajectory . points .
back (). time_from_start .sec;

177 int start_time_ms = std :: chrono :: time_point_cast <std :: chrono ::
milliseconds >(std :: chrono :: system_clock :: now ()). time_since_epoch
(). count (); // convert to milliseconds

178

179 float tolerance = this -> end_effector_pose_tolerance ; // temp +-
5 cm may be too loose

180 if (this -> joint_positions .empty ()){ return ;} //if joint
position is empty , no FK is availible , segfault : return

181 for(auto pair:this -> pairWaypoints){// for each waypoint
182 while(true){// wait untill waypoint is reached
183 std :: this_thread :: yield ();// update positions
184 if(this -> is_executing == false){
185 // robot not executing - either finished or something

went wrong
186 this -> in_position = false;
187 return ;
188 }
189 int current_time_ms = std :: chrono :: time_point_cast <std ::

chrono :: milliseconds >(std :: chrono :: system_clock :: now ()).
time_since_epoch ().count ();

190 if((current_time_ms - start_time_ms) > ((1 + timeout) *
1000)){//if this has been going on longer than the path is
expected , break

191 RCLCPP_INFO_STREAM (this ->logger_ , " Execution timeout in
thread , exiting thread ");

192 this -> in_position = false;
193 return ;
194 }
195

196 if (this -> joint_names_mutex . try_lock () || this ->
joint_position_mutex . try_lock ()){

197 // because the order of values from motoros2 /
robotcontroller may not be the same as values from moveit - need

to reorder

129

198 // restructure_vectors is a long process such that
joint_state_listener may try access variables while the function

is running leading to segfault
199 //if these are locked we can not read values
200 restructure_vectors (this ->plan. trajectory_ .

joint_trajectory . joint_names , this -> joint_names , this ->
joint_positions);

201 this -> joint_names_mutex . unlock (); // allow for
joint_state_listener to update positions

202 this -> joint_position_mutex . unlock (); // allow for
joint_state_listener to update positions

203 }
204 else{
205 // this is updated quickly so we can skip one iteration

in the "while loop"
206 continue ; // wait untill mutex is availible
207 }
208 // calculates FK
209 this -> robot_state . setVariablePositions (this ->

joint_positions);
210 auto const fk = this -> robot_state . getGlobalLinkTransform (

this -> end_effector_link);
211 //fk is now a 4x4 Transformation matrix , while waypoints

is a pose - need to convert one of them such that we can compare
212 geometry_msgs :: msg :: Pose fk_pose = tf2 :: toMsg(fk);
213

214

215 if(posesEqual (pair.second , fk_pose , tolerance)){
216 if(this -> in_position_mutex . try_lock ()){ // this loop is

way quicker than the publisher such that skipping an iteration
in this is less bad than a publish

217 this -> in_position = pair.first;
218 this -> in_position_mutex . unlock ();
219 break; // waypoint reached
220 }
221 }
222 }
223 }
224 this -> in_position = false; // Asserts that the tool is off when

finished .
225 return ;
226 }
227

228 // createPlan - takes group_name , a vector with waypoints and end
effector speed

229 // NOTE: THIS CAN NOT BE USED FOR <6 DOF
230 //-Will create a cartesian path for the given group [group_name]
231 //-Use iterative time parametrization to manipulate the

trajectory of the end effector such that the desired speed is
reached

232 //-Expand the trajectory such that the trajectory contains the

130 Appendix J. planner_node.cpp

values for each group in the system as system = [group_a ,
group_b , ...]

233 //-Stores the plan class variable : plan
234 double createPlan (std :: string name , std :: vector < geometry_msgs ::

msg ::Pose > waypoints , float speed){
235 using moveit :: planning_interface :: MoveGroupInterface ;
236 // makes a planning node and movegroup interface for

calculating path for given group
237 auto const group_node = std :: make_shared < rclcpp ::Node >(name ,

rclcpp :: NodeOptions ().
automatically_declare_parameters_from_overrides (true));

238 auto group_move_interface = MoveGroupInterface (group_node ,
name);

239 group_move_interface . setPlanningTime (this -> planner_time_limit)
; // Standard = 5 sec

240 group_move_interface . allowReplanning (this -> allow_replanning);
241

242 // Since FK for the end effector only will work if the system
can recognize the kinematics (i.e the link/joint pair -set from
base to tip of the robot)

243 //We need to store the relevant group for getting relevant FK
later.

244 this -> current_group = & group_move_interface ; // seg fault
245 this -> end_effector_link = group_move_interface .

getEndEffectorLink ();
246

247

248 // contains plan for only a given group
249 // stupidPlanCreator creates a plan with only some values

filled , enough to work
250 moveit :: planning_interface :: MoveGroupInterface :: Plan tempPlan

= stupidPlanCreator (name , group_node);
251

252 // calculating cartesian path
253 //If fraction < 1, the planner has exited before visiting all

waypoints
254 // this can be because of collision , orientation or out -of -

reach
255 moveit_msgs :: msg :: RobotTrajectory traj;
256 double pathFraction = group_move_interface .

computeCartesianPath (waypoints , this -> end_effector_skip , this ->
jump_threshold ,traj);

257 RCLCPP_INFO_STREAM (this ->logger_ , " Fraction of trajectory
found: " << pathFraction);

258 if (pathFraction < 1){
259 // todo find a way to detect what kind of error
260 RCLCPP_WARN_STREAM (this ->logger_ , "Could not compute path

for the whole set of waypoints , this is likely because of point
out of reach , collision or orientation not reachable ");

261 RCLCPP_WARN_STREAM (this ->logger_ , "Does orientation - values
have enough decimals ?");

131

262 }
263

264 // limits the end effector velocity with method by : Benjamin
Scholz , Thies Oelerich

265 //
--//

266 // The method used robot_Trajectory as input , while this code
has used moveit_msgs :: msg :: RobotTrajectory

267 // convert moveit_msgs :: msg :: RobotTrajectory to
robot_trajectory :: RobotTrajectory

268 auto robot_state = getRobotStateFromMoveGroupInterface (
group_move_interface);

269 robot_trajectory :: RobotTrajectory limitedTraj (robot_state .
getRobotModel (), name);

270

271

272 // sets robot_state .traj = traj
273 // traj is the calculated path for the given group
274 limitedTraj . setRobotTrajectoryMsg (robot_state , traj);
275

276 // sets the speed with iterative time parametrization
277 this -> end_effector_link = group_move_interface .

getEndEffectorLink ();
278 if(this -> end_effector_link .empty ()){ RCLCPP_WARN_STREAM (this ->

logger_ , "No end effector found for group: " << name);}
279 trajectory_processing :: limitMaxCartesianLinkSpeed (limitedTraj ,

speed , group_move_interface . getEndEffectorLink ());
280 // Because we need to know if the end effector
281 // is in desired position (for example if we are ready to weld

)
282 // we need to store the poses for each position in the

trajectory
283

284

285 // inserts back into a moveit_msgs :: msg :: RobotTrajectory
286 limitedTraj . getRobotTrajectoryMsg (traj);
287

288 // makes a new plan for the group. The above step only creates
the trajectory and we need start_state etc

289 moveit :: planning_interface :: MoveGroupInterface :: Plan newPlan =
newPlanFromStartState (tempPlan , "this is not used", traj.

joint_trajectory . joint_names .size (), findIndex (traj.
joint_trajectory . joint_names , tempPlan . start_state_ . joint_state .
name));

290 newPlan . trajectory_ = traj;
291

292 // From motoros2 , because of limited memory in the controller
a trajactory can not be too long

293 // There are no check for if the trajectory is too long , and
depending of how many points and joints in the system ,

132 Appendix J. planner_node.cpp

294 // this limit is not well - defined .
295 // for a system consisting of 15 joint , this occured at 166

points , while the developer of motoros noticed 200 points
296 // Warns a warning
297 int size_of_trajectory = newPlan . trajectory_ . joint_trajectory .

points .size ();
298 RCLCPP_INFO_STREAM (this ->logger_ , " Trajectory has " <<

size_of_trajectory << " points ");
299 if(size_of_trajectory > 150){
300 RCLCPP_WARN_STREAM (this ->logger_ , " WARNING : Path long , may

cause crash in motoros2 as controller may not have enough memory
");

301 }
302

303 // The above steps only for single group and not the whole
system

304 // need this path into a wider path containg all the joint in
system

305 moveit :: planning_interface :: MoveGroupInterface :: Plan
mergedPlan = expandTrajectory (newPlanFromStartState (newPlan , "
this is not used", newPlan . start_state_ . joint_state .name.size (),

0), newPlan . trajectory_ . joint_trajectory . points .size ());
306

307 // adds the plan from groupplan into systemplan
308 addToPlan (mergedPlan , newPlan);
309 // stores the plan for later execution
310 this ->plan = mergedPlan ;
311

312

313 // ________Stores pos and vel data for experimental
purposes__________ //

314 // this will not work if "johan" not user , couts a warning
315 std :: cout << " Storing velocity and position data for

experimental purposes - saves to user ’johan ’ and may cause
error if other user" << std :: endl;

316 std :: ofstream posfile ("/home/johan/ debugs / positions .txt");
317 std :: ofstream velfile ("/home/johan/ debugs / velocities .txt");
318 for(auto const& it : this ->plan. trajectory_ . joint_trajectory .

points){
319 // for each point in plan
320 posfile << it. time_from_start .sec <<"."<<it. time_from_start .

nanosec <<" ";
321 velfile << it. time_from_start .sec <<"."<<it. time_from_start .

nanosec <<" ";
322 for(auto const& jointpos : it. positions){
323 // for each joint
324 posfile << jointpos << " ";
325 }
326 posfile << std :: endl;
327 for(auto const& jointvel : it. velocities){
328 // for each joint

133

329 velfile << jointvel << " ";
330 }
331 velfile << std :: endl;
332 }
333 posfile .close ();
334 velfile .close ();
335

336 // _______________________ END
_________________________________ //

337 return pathFraction ; // returns the fraction of the planned
trajectory vs desired trajectory

338

339 }
340

341

342 // initializing ros - defined classes
343 rclcpp :: TimerBase :: SharedPtr ready_publisher_timer_ ;
344 rclcpp :: Subscription < sensor_msgs :: msg :: JointState >:: SharedPtr

joint_state_subscription_ ;//??
345 rclcpp :: Publisher < std_msgs :: msg ::Bool >:: SharedPtr

ready_publisher_ ;
346 rclcpp :: Service < moveit_group_planner_interfaces :: srv ::Plan >::

SharedPtr plan_service_ ;
347 rclcpp :: Service < moveit_group_planner_interfaces :: srv :: Execute >::

SharedPtr execute_service_ ;
348 rclcpp :: Logger logger_ ;
349

350 // used for multi - threading callbacks
351 rclcpp :: CallbackGroup :: SharedPtr joint_state_callback_group_ ;
352 rclcpp :: CallbackGroup :: SharedPtr execute_callback_group_ ;
353 rclcpp :: CallbackGroup :: SharedPtr ready_publisher_callback_group_

;
354

355

356

357 };
358

359

360

361

362

363 int main(int argc , char * argv [])
364 {
365 // std :: cout << argv [1]; could use this as global group name (/

follow_joint_trajectory)
366 rclcpp :: init(argc , argv);
367 // need executor as we require multiple callbacks at the same time
368 // rclcpp :: spin(std :: make_shared < WaypointListener >()); // single

thread
369

370 rclcpp :: executors :: MultiThreadedExecutor executor ;

134 Appendix J. planner_node.cpp

// creates executor
371 auto waypoint_listener_node = std :: make_shared < WaypointListener >()

; // create node
372 executor . add_node (waypoint_listener_node);

// add node to executor
373 executor .spin ();

// spins the executor - runs the program
374

375 rclcpp :: shutdown ();
376 return 0;
377 }

Appendix K.

jacobian_generator.py

This is an experimental program which calculates forward kinematics, jacobian
and velocity from a given URDF, velocity- and position lists and plots the result.
Furthermore, it has an experimental function which attempts to reduce the joint
velocities by inv(jacobian) * desired_joint_velocities.

1 # import roslib
2 # roslib . load_manifest (" urdfdom_py ")
3 # import rospy
4 import modern_robotics as mr
5 import numpy as np
6 import matplotlib . pyplot as plt
7 from mpl_toolkits . mplot3d import Axes3D
8 from urdf_parser_py .urdf import URDF
9

10

11 def skew(axis): # returns skew representation of the 3x1 vector
12 assert (len(axis) == 3)
13 return np.array ([[0 , -axis [2], axis [1]] ,
14 [axis [2], 0, -axis [0]] ,
15 [-axis [1] , axis [0] ,0]])
16

17 def exp3(axis , theta = 0):
18 return np.eye (3) + np.sin(theta) * skew(axis) + (1 - np.cos(

theta)) * skew(axis) @ skew(axis)
19

20 def Tmat(R, r):
21 T = np.eye (4)
22 T[:3 ,:3] = R
23 T[:3, 3] = r
24 return T
25

26 def getPrefixes (jointlist) -> list:
27 prefixes = []
28 for joint in jointlist :

136 Appendix K. jacobian_generator.py

29 prefix = joint.name.split("/")[0]
30 if prefix not in prefixes :
31 prefixes . append (prefix)
32 return prefixes
33

34 def getTransformationInChain (chain): # returns a list with sudo -
transformations from joint_i to joint_i +1

35 Ts = []
36 for i in range(len(chain)):
37 dx = chain[i]. origin .xyz [0]
38 dy = chain[i]. origin .xyz [1]
39 dz = chain[i]. origin .xyz [2]
40 r = np.array ([dx , dy , dz])
41

42 axis = np.array ([chain[i]. origin .rpy [0], chain[i].
origin .rpy [1], chain[i]. origin .rpy [2]])

43 # because of the way the urdf is set up , if there are no
rotation between the frame , the norm of "axis" will be 0

44 #if there are any rotations , the norm will be non -zero
45 # Furthermore , a joint rotate about its "z" axis , so that

this doesn|t really makes sense
46 #However , if the slt model is defined such that each joint/

link follows the same coordinate system
47 #the axis will be correct with the respect of global frame ,

and it can be used with PoE conventions
48 theta = np. linalg .norm(axis)
49 if theta != 0:
50 axis /= theta
51

52 rot = exp3(axis , theta)
53 diff_rot = rot
54 Ts. append (Tmat(diff_rot , r))
55 return Ts
56

57

58

59 def getGroups (jointlist) -> dict: # returns a dict {group , [joints]}
#if group_x exist as child of group_y , then group_y includes
joints of group_x . but not other way

60 prefixes = getPrefixes (jointlist)
61 groups = {}
62 for prefix in prefixes :
63 groups [prefix] = []
64

65 for joint in jointlist :
66 for prefix in prefixes :
67 if prefix in joint.name:
68 groups [prefix]. append (joint)
69 return groups
70

71

137

72 def getChain (jointlist) -> list: #A group may contain additional "
virtual " fixed joint/links which will not be a part of the
kinematic

73

74 """ Assuming each group has a " joint_1 ",
75 this function returns the chain defined from the first joint and

out.
76 This will not take links before the first dynamic joint into

account
77

78 for example [fixed_joint_1 , fixed_joint_2 , joint_1 , joint_2 ...]
-> [joint_1 , joint_2 ...]

79 where fixed_jont_1 etc is joints defining the fixed
transformation between two frames / joints

80 """
81 chains = {}
82

83 groups = getGroups (jointlist)
84 for key in groups :
85 chain = []
86 group_joints = groups [key]
87

88 for i, joint in enumerate (group_joints):
89 if " joint_1 " in joint.name: ##if "fixed" not in joint.

type
90 chain. append (joint)
91 child = joint.child
92 for j, obj in enumerate (jointlist):
93 if obj. parent == child:
94 chain. append (obj)
95 child = obj.child
96

97 chains [key] = chain
98 chain = []
99 return chains

100

101

102 def Slist(chain):
103 #takes a chain and return the spatial twist in home position
104 #e^(s*theta) = T
105 #The M position (home position)
106 Ts = getTransformationInChain (chain)
107 qs = []
108 Rs = []
109

110 M = np.eye (4) #Tsb
111 for i in Ts:
112 M = M @ i
113 qs. append (M[:3 ,3])
114 Rs. append (M[:3, :3])
115

138 Appendix K. jacobian_generator.py

116 #S_i = rotation_axis , -(w x q)
117

118 S = []
119 for i, joint in enumerate (chain):
120 #only supported for revolute and prismatic joints
121 if joint.type == " revolute ":
122 #from urdf , the joint.axis is in the respect of the

joint in question
123 #it is however defined as rotation the geometries origin

(. slt file)
124

125 w_s = np.array ([joint.axis [0], joint.axis [1], joint.axis
[2]])

126 v = -skew(w_s) @ qs[i] #qs[i]
127 S. append (np. hstack ((w_s , v)))
128

129 if joint.type == " prismatic ":
130 w_s = np.array ([0 ,0 ,0])
131 v = np.array ([joint.axis [0], joint.axis [1], joint.axis

[2]])
132 S. append (np. hstack ((w_s , v)))
133 #[s_1 , s_2 , s_3 , ...]
134 return np.array(S).T
135

136

137

138

139

140 def calculateSpatialJacobian (chain , thetalist):
141 S = Slist(chain)
142 return mr. JacobianSpace (S, thetalist)
143

144 def sToBtwist (chain , s):
145 M = getM(chain)
146 #To change the reference
147 #Vb = Ad(Tbs) Vs
148 return Adjoint (np. linalg .inv(M)) @ s
149

150 def sToBjac (chain , J_s):
151 M = getM(chain)
152 return mr. Adjoint (np. linalg .inv(M)) @ J_s
153

154 def getM(chain):
155 Ts = getTransformationInChain (chain)
156 M = np.eye (4) #Tsb
157 for T in Ts:
158 M = M @ T
159 return M
160

161

162 def fk(chain , theta):

139

163 #T0 -n = Prod(exp6(s_i , theta_i))@M
164

165 M = getM(chain)
166 S = Slist(chain)
167

168 return mr. FKinSpace (M, S, theta)
169

170

171

172 def capSpeed (chain , velocitylist , positionlist , timelist , max_speed
= None , timestep = 0.1):

173

174 """ takes a trajectory , max cartesian speed and timestep
175 returns a trajectory following the same paths but with

max_speed velocities
176

177 from moveit , timestep seems to be 0.1 but this is not
nessisarily the case

178 """
179

180 #len position = len time = len velocity
181

182

183 newTimelist = []
184 newVelocitylist = []
185 newPositionlist = []
186

187

188 #plan:
189 # for pos , vel:
190 # is linearvel > max_speed ?
191 # new_vel = max_vel
192 # new_pos = pos + vel * timestep
193 i = 0
194

195 prev_time = 0.0
196 delta = 0.0
197 newTimelist . append (0) #first step at time 0
198

199 for theta , dtheta , t in zip(positionlist , velocitylist , timelist
):

200 jac = sToBjac (chain , calculateSpatialJacobian (chain , theta))
201 end_effector_twist = jac @ dtheta
202 end_effector_speed = (np. linalg .norm(end_effector_twist [3:])

)
203

204 if end_effector_speed > max_speed :
205 scalefactor = max_speed / end_effector_speed
206 scaled_twist = end_effector_twist * scalefactor
207 new_velocity = np. linalg .inv(jac) @ scaled_twist
208

140 Appendix K. jacobian_generator.py

209 else:
210 new_velocity = dtheta
211 newVelocitylist . append (new_velocity)
212

213 # updated version of setting speed
214

215 #fk from this point and to next
216 if (i != len(positionlist) -1): #if there exist a next point
217 fk_current = fk(chain , theta)
218 fk_next = fk(chain , positionlist [i+1])
219 euclidian_diff = np. linalg .norm(fk_next [:3 ,3] -

fk_current [:3 ,3]) # length of the x,y,z components
220 timestep = euclidian_diff / max_speed #m / m/s = s
221 newTimelist . append (timestep + newTimelist [-1]) #time to

reach the next point
222

223

224

225 i += 1
226

227 return newVelocitylist , positionlist , newTimelist
228

229

230

231 def main ():
232 robot = URDF. from_xml_file ("/home/johan/ ws_test2 /src/ motoman /

motoman_gp25sys_support /urdf/ gp25sys .urdf")
233 #robot = URDF. from_parameter_server ()
234 joints = robot. joints
235 robotchains = getChain (joints)
236

237

238

239 timelist = []
240 velocitylist = []
241 positionlist = []
242

243 endeffectorvelocity_space = []
244 endeffectorvelocity_body = []
245 endeffectorabsvelocity_space = []
246 endeffectorabsvelocity_body = []
247

248 endeffectorabsangular_body = []
249

250 cartesianPosx = []
251 cartesianPosy = []
252 cartesianPosz = []
253

254 startidx , endidx = 1, 7 #idx 0 = time , 1-15 = joints
255

256 with open("/home/johan/ debugs / positions .txt", "r") as file:

141

257 lines = file. readlines ()
258 for line in lines:
259 if line.strip ():
260 vals = [float(i) for i in line.split(" ") if i.strip

()] # skip empty strings
261 # timelist . append (vals [0])
262 positionlist . append (np.array(vals[startidx : endidx]))
263

264 with open("/home/johan/ debugs / positions .txt", "r") as file:
265 lines = file. readlines ()
266 for line in lines:
267 if line.strip ():
268 time = line.split(" ")[0]
269 secs , nanos = time.split(".")
270 if len(nanos) < 9: # asserts that x sec and 999

nanosec = x sec and 0.000000999 nanosec instead of 1 sec and
999000000 nanosec

271 nanos = "0"*(9- len(nanos)) + nanos
272 timelist . append (float(secs + "." + nanos))
273

274

275 with open("/home/johan/ debugs / velocities .txt", "r") as file:
276 lines = file. readlines ()
277 for line in lines:
278 if line.strip ():
279 vals = [float(i) for i in line.split(" ") if i.strip

()] # skip empty strings
280 velocitylist . append (np.array(vals[startidx : endidx]))
281

282 chain = robotchains [" group_2 "] #the desired group to calculate
the kinematics for

283

284 for theta , dtheta in zip(positionlist , velocitylist):
285 #twist = [w, v] = angular velocity , linear velocity
286 jac = calculateSpatialJacobian (chain , theta)
287 endeffectorvelocity_space . append (jac @ dtheta)
288 endeffectorabsvelocity_space . append (np. linalg .norm(

endeffectorvelocity_space [-1][3:]))
289 endeffectorvelocity_body . append (sToBjac (chain , jac) @ dtheta

)
290 endeffectorabsvelocity_body . append (np. linalg .norm(

endeffectorvelocity_body [-1][3:]))
291 endeffectorabsangular_body . append (np. linalg .norm(

endeffectorvelocity_body [-1][:3]))
292

293

294

295 T = fk(chain , theta)
296 cartesianPosx . append (T[0 , -1])
297 cartesianPosy . append (T[1 , -1])
298 cartesianPosz . append (T[2 , -1])

142 Appendix K. jacobian_generator.py

299

300 plt. figure ()
301 plt.plot(timelist , endeffectorabsvelocity_body , label="End

effector speed")
302 plt. xlabel ("time [s]")
303 plt. ylabel (" Velocity [m/s]")
304 plt. legend ()
305

306 ### 3D plot for plotting end effector trajectory ###
307 fig = plt. figure ()
308 ax = fig. add_subplot (111 , projection =’3d’)
309

310

311 ax. scatter (cartesianPosx , cartesianPosy , cartesianPosz)
312 for i in range(len(timelist)):
313 ax.text(cartesianPosx [i], cartesianPosy [i], cartesianPosz [i

], str(timelist [i]), color=’red ’)
314 ax. set_xlabel (’X’)
315 ax. set_ylabel (’Y’)
316 ax. set_zlabel (’Z’)
317

318 plt.show ()
319

320

321

322 newVelocitylist , newpositionlist , newtimelist = capSpeed (chain ,
velocitylist , positionlist , timelist , max_speed = 0.02)

323 endeffectorvelocity_space = []
324 endeffectorvelocity_body = []
325 endeffectorabsvelocity_space = []
326 endeffectorabsvelocity_body = []
327 cartesianPosx = []
328 cartesianPosy = []
329 cartesianPosz = []
330

331

332 for theta , dtheta in zip(newpositionlist , newVelocitylist):
333 #twist = [w, v] = angular velocity , linear velocity
334 jac = calculateSpatialJacobian (chain , theta)
335 endeffectorvelocity_space . append (jac @ dtheta)
336 endeffectorabsvelocity_space . append (np. linalg .norm(

endeffectorvelocity_space [-1][3:]))
337 endeffectorvelocity_body . append (sToBjac (chain , jac) @ dtheta

)
338 endeffectorabsvelocity_body . append (np. linalg .norm(

endeffectorvelocity_body [-1][3:]))
339 endeffectorabsangular_body . append (np. linalg .norm(

endeffectorvelocity_body [-1][:3]))
340 T = fk(chain , theta)
341 cartesianPosx . append (T[0 , -1])
342 cartesianPosy . append (T[1 , -1])

143

343 cartesianPosz . append (T[2 , -1])
344

345

346 ### 3D plot for plotting end effector trajectory ####
347 fig = plt. figure ()
348 ax = fig. add_subplot (111 , projection =’3d’)
349

350

351 ax. scatter (cartesianPosx , cartesianPosy , cartesianPosz)
352 for i in range(len(timelist)):
353 ax.text(cartesianPosx [i], cartesianPosy [i], cartesianPosz [i

], str(newtimelist [i]), color=’red ’)
354 ax. set_xlabel (’X’)
355 ax. set_ylabel (’Y’)
356 ax. set_zlabel (’Z’)
357

358 plt. figure ()
359 plt.plot(newtimelist , endeffectorabsvelocity_body , label="End

effector speed")
360 plt. xlabel ("time [s]")
361 plt. ylabel (" Velocity [m/s]")
362 plt. legend ()
363 plt.show ()
364

365

366 if __name__ == ’__main__ ’:
367 main ()

Appendix L.

waypoint_publisher.py

The script for testing the robots capability.

1 import rclpy
2 import math
3 from rclpy.node import Node
4 import sys
5

6 from std_msgs .msg import String
7 from moveit_group_planner_interfaces .msg import Waypoints
8 from moveit_group_planner_interfaces .srv import Plan
9 from geometry_msgs .msg import Pose

10

11 DEBUG = True
12

13 #the translation from worldframe to workpiece center .
14 cy = 1.532
15 cx = 0.0
16 cz = 0.575
17

18 MAX_SPEED = 0.1 #zero is limitless
19 GROUP_NAME = " group_1 "
20 JOB_NR = 1
21

22 offset = 25.e -3/2 + 10.e-3 #half of the diameter of the end effector
+ 10mm # -approach

23

24

25 def quaternion_mult (q,r):
26 # Extract individual components of the quaternions
27 x1 , y1 , z1 , w1 = q
28 x2 , y2 , z2 , w2 = r
29

30 # Perform quaternion multiplication
31 x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
32 y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2

146 Appendix L. waypoint_publisher.py

33 z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
34 w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
35 return [x,y,z,w]
36

37 def quaternion_qunj (q):
38 x, y, z, w = q
39

40 # Compute the conjugate
41 conjugate = [-x, -y, -z, w]
42

43 return conjugate
44

45

46 def point_rotation_by_quaternion (point ,q):
47 #q = xyzw
48 r = point + [0] #adds w = 0 to xyz point for such that r

represent a quaternion
49 q_conj = quaternion_qunj (q)
50 return quaternion_mult (quaternion_mult (q,r),q_conj)[:3]# returns

xyz rotated
51

52 def create_pose (x, y, z, r = None , p = None , q = None , w= None):
53 pose = Pose ()
54 pose. position .x = float(x)
55 pose. position .y = float(y)
56 pose. position .z = float(z)
57 if (r != None):
58 pose. orientation .x = float(r)
59 if (p != None):
60 pose. orientation .y = float(p)
61 if(q != None):
62 pose. orientation .z = float(q)
63 if(w != None):
64 pose. orientation .w = float(w)
65 return pose
66

67

68 def circle (r, x, y, z, n_points = 100):
69 points = []
70 for i in range(n_points +1): #resolution , + 1 for full circle
71

72 #step = 2*3.1415/ n_points
73

74 xx = x + r*math.cos(i *2*3.1415/ n_points)
75 yy = y + r*math.sin(i *2*3.1415/ n_points)
76 points . append (create_pose (xx , yy , z ,1.0, 0.0, 0.0, 0.0)) #

xyz + orientering
77 return points
78

79

80

147

81 def getWaypoints (job_nr):
82 msg = Waypoints ()
83

84

85 if job_nr == 0:
86

87 diff = point_rotation_by_quaternion ([0,0, -offset],
[-0.8535533905932737 , 0.3535533905932736 , -0.14644660940672624 ,
0.353553390593274]) # convert z in body frame to world

88 # approach = point_rotation_by_quaternion ([0 ,0 ,1] ,
[-0.8535533905932737 , 0.3535533905932736 , -0.14644660940672624 ,
0.353553390593274]) #the end effector apporach dir

89

90 msg. waypoints . append (create_pose (cx +0.5 , cy , 1.4,
-0.5720614 , 0.5720614 , 0, 0.5877852522924731))

91 msg. waypoints . append (create_pose (cx +0.5 , cy , 1.4,
-0.8535533905932737 , 0.3535533905932736 , -0.14644660940672624 ,
0.353553390593274))

92 msg. waypoints . append (create_pose (cx +0.5 + diff [0], cy + diff
[1], 1.4 + diff [2], -0.8535533905932737 , 0.3535533905932736 ,
-0.14644660940672624 , 0.353553390593274))

93

94 if job_nr == 1:
95 diff = point_rotation_by_quaternion ([0,0, -offset],

[0.8535533905932738 , -0.35355339059327373 , -0.14644660940672619 ,
0.3535533905932738]) # convert z in body frame to world

96 approach = point_rotation_by_quaternion ([0 ,0 ,1] ,
[0.8535533905932738 , -0.35355339059327373 , -0.14644660940672619 ,

0.3535533905932738])
97 # gruppe_1 sveise langs kant
98 msg. waypoints . append (create_pose (cx +0.5 , cy , 1.4,

-0.5720614 , 0.5720614 , 0, 0.5877852522924731)) #<- needed if
robot is at home +-w if error

99 msg. is_job . append (False) #død- bevegelse
100 msg. waypoints . append (create_pose (cx + 0.065 + diff [0],
101 cy + 0.065 + diff [1],
102 0.73 + diff [2],
103 1,0,0,0))#denne

orienteringen er ca straight down group_1
104 msg. is_job . append (False) # bevege ee til ca start
105

106 msg. waypoints . append (create_pose (cx + 0.065 + diff [0],
107 cy + 0.065 + diff [1],
108 0.73 + diff [2],
109 0.8535533905932738 ,

-0.35355339059327373 , -0.14644660940672619 , 0.3535533905932738))
#q

110 msg. is_job . append (False)
111

112 #weld job
113 msg. waypoints . append (create_pose (cx + 0.065 + diff [0],

148 Appendix L. waypoint_publisher.py

114 cy + 0.065 + diff [1],
115 cz + 0.01 + diff [2],
116 0.8535533905932738 ,

-0.35355339059327373 , -0.14644660940672619 , 0.3535533905932738))
#q

117 msg. is_job . append (True) # begynne sveis langs kortside av
profil

118 msg. waypoints . append (create_pose (cx + 0.065 + diff [0],
119 cy + 0.400 + diff [1],
120 cz + 0.01 + diff [2],
121 0.8535533905932738 ,

-0.35355339059327373 , -0.14644660940672619 , 0.3535533905932738))
#q

122 msg. is_job . append (False) #stopp sveis
123 msg. waypoints . append (create_pose (cx + 0.065 + diff [0],
124 cy + 0.400 + diff [1],
125 cz + 0.13 + diff [2],
126 0.8535533905932738 ,

-0.35355339059327373 , -0.14644660940672619 , 0.3535533905932738))
#q

127 msg. is_job . append (False) #løfte ee
128

129 elif job_nr == 2:
130 diff = point_rotation_by_quaternion ([0,0, -offset],

[-0.8535533905932737 , 0.3535533905932736 , -0.14644660940672624 ,
0.353553390593274]) # convert z in body frame to

131 # gruppe_1 sveise langs kant
132 msg. waypoints . append (create_pose (cx +0.5 , cy , 1.4,

-0.5720614 , 0.5720614 , 0, 0.5877852522924731)) #<- needed if
robot is at home +-w if error

133 msg. is_job . append (False) #død- bevegelse
134 msg. waypoints . append (create_pose (cx -0.065 , cy - 0.4 , 0.73 ,

1,0,0,0))#denne orienteringen er ca rett ned for gruppe 1
135 msg. is_job . append (False) # bevege ee til ca start
136

137 #weld job
138 msg. waypoints . append (create_pose (cx - 0.065 + diff [0],
139 cy - 0.4 + diff [1],
140 cz + 0.13 + diff [2],
141 -0.8535533905932737 ,

0.3535533905932736 , -0.14644660940672624 , 0.353553390593274)) #q
142 msg. is_job . append (True) # begynne sveis langs kortside av

profil
143

144 msg. waypoints . append (create_pose (cx - 0.065 + diff [0],
145 cy - 0.4 + diff [1],
146 cz + 0.01 + diff [2],
147 -0.8535533905932737 ,

0.3535533905932736 , -0.14644660940672624 , 0.353553390593274)) #q
148 msg. is_job . append (False)
149 msg. waypoints . append (create_pose (cx - 0.065 + diff [0],

149

150 cy - 0.065 + diff [1],
151 cz + 0.01 + diff [2],
152 -0.8535533905932737 ,

0.3535533905932736 , -0.14644660940672624 , 0.353553390593274)) #q
153 msg. is_job . append (False) #stopp sveis
154 msg. waypoints . append (create_pose (cx - 0.065 + diff [0],
155 cy - 0.065 + diff [1],
156 cz + 0.13 + diff [2],
157 -0.8535533905932737 ,

0.3535533905932736 , -0.14644660940672624 , 0.353553390593274)) #q
158 msg. is_job . append (False) #løfte ee
159

160 elif job_nr == 3:
161 # gruppe_1 sveise invendig
162 msg. is_job . append (False) # movement
163 msg. waypoints . append (create_pose (cx +0.5 , cy , 1.4 + 0.5,

-0.5720614 , 0.5720614 , 0, -0.5877852522924731)) #<needed if
robot at home +-w if error

164

165 msg. waypoints . append (create_pose (cx +0.6 , cy , 0.75 ,
0.856925 , -0.514625 , 0.0216612 , -0.0192533))#denne orienteringen

er ca rett ned for gruppe 1
166 msg. is_job . append (False)#to position
167 msg. waypoints . append (create_pose (cx + 0.50+0.05 , cy , 0.51 +

0.04 + 0.01 + 0.05 , 0, -0.7071067811865476 , 0.0,
0.7071067811865476))

168 msg. is_job . append (False)#to position
169 msg. waypoints . append (create_pose (cx + 0.50 , cy , 0.51 + 0.04

+ 0.01 + 0.05 , 0, -0.7071067811865476 , 0.0, 0.7071067811865476)
)

170 msg. is_job . append (True)
171 msg. waypoints . append (create_pose (cx + 0.50 - 0.15 , cy , 0.51

+ 0.04 + 0.01 + 0.05 , 0, -0.7071067811865476 , 0.0,
0.7071067811865476))

172 msg. is_job . append (False) #"weld" along edge
173 msg. waypoints . append (create_pose (cx + 0.50+0.05 , cy , 0.51 +

0.04 + 0.01 + 0.05 , 0, -0.7071067811865476 , 0.0,
0.7071067811865476))

174 msg. is_job . append (False)#move ee out
175 msg. waypoints . append (create_pose (cx +0.6 , cy , 0.73 ,

0.856925 , -0.514625 , 0.0216612 , -0.0192533))#denne orienteringen
er ca rett ned for gruppe 1

176 msg. is_job . append (False) #move up
177

178 elif job_nr == 4:
179 msg. waypoints . append (create_pose (cx , cy , 0.76 , 1, 0, 0, 0))
180 msg. waypoints . append (create_pose (cx +0.5 , cy , 0.76 , 1, 0, 0,

0))
181 msg. waypoints . append (create_pose (cx -0.5 , cy , 0.76 , 1, 0, 0,

0))
182

150 Appendix L. waypoint_publisher.py

183 elif job_nr == 5:
184 msg. waypoints = circle (0.5 , cx , cy , 0.73 , 100)
185 if (len(msg. is_job) != len(msg. waypoints)):
186 for w in msg. waypoints :
187 msg. is_job . append (True)
188

189 return msg.waypoints , msg. is_job
190

191 class MinimalPublisher (Node):
192 #dette burde vært service
193 def __init__ (self):
194 super (). __init__ (’minimal_publisher ’)
195 self. client_ = self. create_client (Plan , " plan_group ")
196

197

198

199 def call_service (self):
200 #build the request
201 req = Plan. Request ()
202 req. waypoints . groupname = GROUP_NAME
203 req. waypoints .speed = float(MAX_SPEED)
204 print(" creating plan ...")
205 req. waypoints .waypoints , req. waypoints . is_job = getWaypoints

(JOB_NR)
206 print(" calling service ...")
207 # request request
208 future = self. client_ . call_async (req)
209 rclpy. spin_until_future_complete (self , future)
210

211 self. get_logger ().info(str(future . result ().
trajectory_fraction))

212

213

214

215

216

217

218

219

220 def main(args=None):
221 args=sys.argv
222 try:
223 JOB_NR = int(args)
224 except Exception :
225 pass #could not convert args to int
226

227 rclpy.init ()
228

229 minimal_publisher = MinimalPublisher ()
230 minimal_publisher . call_service ()
231

151

232 # Destroy the node explicitly
233 # (optional - otherwise it will be done automatically
234 # when the garbage collector destroys the node object)
235 minimal_publisher . destroy_node ()
236 rclpy. shutdown ()
237

238

239 if __name__ == ’__main__ ’:
240 main ()

Appendix M.

Joint Velocities for Test Cases
1, 2, 3, and 4

The joint velocities of the robot performing the test.

154 Appendix M. Joint Velocities for Test Cases 1, 2, 3, and 4

F
igure

M
.1.:Joint

velocities
for

straight
line

m
otion.

U
ntouched

(top)
and

tw
ist

m
ethod

(bottom
)

155

F
ig

ur
e

M
.2

.:
Jo

in
tv

el
oc

iti
es

fo
rs

tr
ai

gh
tl

in
em

ot
io

n.
It

er
at

iv
et

im
ep

ar
am

et
er

iz
at

io
n

(t
op

)a
nd

tw
ist

m
et

ho
d

(b
ot

to
m

)

156 Appendix M. Joint Velocities for Test Cases 1, 2, 3, and 4

F
igure

M
.3.:Joint

velocities
for

circular
path.

U
ntouched

(top)
and

tw
ist

(bottom
).

157

F
ig

ur
e

M
.4

.:
Jo

in
t

ve
lo

ci
tie

s
fo

r
ci

ru
cl

ar
pa

th
.

It
er

at
iv

e
tim

e
pa

ra
m

et
er

iz
at

io
n

(t
op

)
an

d
tw

ist
m

et
ho

d
(b

ot
to

m
).

158 Appendix M. Joint Velocities for Test Cases 1, 2, 3, and 4

F
igure

M
.5.:Joint

velocities
for

inside
m

otion.
U

ntouched
(top)

vs
tw

ist
m

ethod
(bottom

).

159

F
ig

ur
e

M
.6

.:
Jo

in
t

ve
lo

ci
tie

s
fo

r
in

sid
e

m
ot

io
n.

It
er

at
iv

e
tim

e
pa

ra
m

et
er

iz
at

io
n

(t
op

)
vs

tw
ist

(b
ot

to
m

).

160 Appendix M. Joint Velocities for Test Cases 1, 2, 3, and 4

F
igure

M
.7.:Joint

velocities
for

test
4.

U
ntouched

(top)
vs

tw
ist

m
ethod

(bottom
).

161

F
ig

ur
e

M
.8

.:
Jo

in
t

ve
lo

ci
tie

s
fo

r
te

st
4.

It
er

at
iv

e
tim

e
pa

ra
m

et
riz

at
io

n
(t

op
)

vs
tw

ist
m

et
ho

d
(b

ot
to

m
).

	Preface
	Summary
	Sammendrag
	Introduction
	Background and Motivation
	Outline of the Thesis

	Fundamentals
	Robot Controller
	Robot Manipulators
	Robotic System
	Sensors
	Middleware
	Nodes
	Services and Messages
	Colcon

	URDF
	Robotics
	Frames
	Degrees of Freedom
	Rotations
	Quaternions
	Transformations
	Twist
	Kinematics
	Path and Trajectory
	Online and Offline Programming

	Welding
	Robotic welding
	Existing Solutions and Previous Work
	Welding Parameters
	Welding Equipment

	Hardware and System Description
	Robot Controller
	Robot Manipulators
	Extra Modules
	Welding Equipment
	The Robot Cell

	Approach for Achieving the Stated Objectives
	Communication
	Simulation
	Calibration
	Motion Planning
	Velocity Control

	Implementation
	MotoROS 2
	Installation

	MoveIt 2
	Creating System Model
	Creating Moveit package

	Ros2 Main Package - planner_node
	Planning Functionality
	Implementing End Effector In-Position Publisher

	Ros 2 Interface Package
	Usage

	Experiments
	Case
	Definition of Object Origin
	Tests

	Results
	The Planning Package
	The Virtual Environment
	The In-Position Publisher
	The Velocity Limiter
	Test 1: The Linear Motion Test
	Test 2: The Circular Motion Test
	Test 3: The Inside Weld Test
	Test 4: Weld Test

	Discussion
	Virtual Environment
	The Tests
	The velocity Limiter
	The Controlling Interface
	The Planning Implementation
	MotoROS2
	Further Limitations

	Conclusion and Further Works
	Conclusion
	Further Works

	Yaskawa Motoman GP25-12 Datasheet
	Yaskawa Motoman TSL600 Datasheet
	Yaskawa Motoman MT1 Datasheet
	Description of the Folders Included in the MotoROS2 Package
	Structure of the Robot Model Packages
	Moveit Controller Changes
	The Launchfile for Planning
	utilities.h
	utilities.cpp
	planner_node.cpp
	jacobian_generator.py
	waypoint_publisher.py
	Joint Velocities for Test Cases 1, 2, 3, and 4

