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Preface

This thesis is the finishing work of my five-year Master of Science degree in Marine Hy-
drodynamics. The specialization is part of the study of Marine Technology at the Depart-
ment of Marine Technology (IMT) at the Norwegian University of Science and Technology
(NTNU).

The thesis explores the hydrodynamic interaction loads between square 3D cylinders in
forced harmonic oscillatory flow. Its motivation is directly tied to its industrial relevance,
specifically a multi-modular PV concept developed by Equinor and Moss Maritime. The
study holds significance, particularly in the context of multi-modular solar islands, where
the hydrodynamic interaction between the pontoons in waves and currents is expected.
The overarching objective is to leverage the available ocean space for sustainable green
energy production. Solar energy possesses a large potential to make substantial contri-
butions to the future energy portfolio. To ensure success, it is crucial to investigate the
environmental loads that the structure will encounter.

This study builds upon the master’s thesis by Reiten in 2022. The study has been a part
of a multi-disciplinary collaborative effort between several master’s and Ph.D. students
studying multi-modular PV plants. Collaboration and knowledge sharing between the
different group members have been emphasized. It is expected that the reader possesses
a certain level of pre-existing knowledge about hydrodynamics, fluid mechanics, and data
post-processing.
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Abstract

The present work investigates hydrodynamic interaction forces and effects between three-
dimensional square cylinders in a large Keulegan-Carpenter (KC) flow. This is primarily
done experimentally, with some features from the potential flow solver Wadam. Two
experiments spanning both the fall and spring semesters have been conducted to capture
the effects of both tandem and staggered arrangements. Additionally, a mesh refinement
analysis and numerical simulation have been performed using the Sesam suite.

The thesis is introduced with a brief description of its motivation, driven by the aspiration
to explore the potentially far-reaching impact of green energy and offshore solar islands. A
diligent effort is made to provide a comprehensive literature review despite the somewhat
limited topic.

The experiments took place in Ladertanken, located at the Marine Technology Center
in Trondheim. It is a narrow wave flume tank equipped with an actuator, allowing for
the examination of models in oscillatory motion. A custom rig is designed to facilitate
force measurements. This enables a detailed comparison between the forces exerted by the
cylinders, allowing for a comprehensive assessment. In total, seven different configurations
were tested in tandem across a range of KC numbers up until KC = 22. Staggered
arrangement were tested for inflow angles between 90° and 35°. The experiments yielded
substantial rig forces, which introduce uncertainty to the measurements. Consequently,
significant attention was dedicated to synchronizing and subtracting the empty rig from
the measurements. This enabled the isolation and acquisition of hydrodynamic damping
and added mass forces exclusively attributed to the cylinders.

Numerical simulations have been performed on the same experimental cases to extract
added mass coefficients from the potential flow solver. These coefficients are compared
to their experimental counterparts, along with features from strip theory and DNV-RP-
C205. Additionally, they were used in a modified KC dependent Morison inertial term to
evaluate the applicability of the potential flow solver and to compare this inertial force
with the experimental added mass forces.

These efforts showed clear KC number, inflow angle, and spacing ratio dependencies
on the forces. The nondimensionalized results seemed largely independent of cylinder
lengths when in tandem, with slightly more scatter for the smallest lengths. Unlike tan-
dem configuration, staggered configuration showed a dependency on cylinder length and
large stochasticity for higher frequencies. A load formulation based on a rewritten and
nondimensionalized Morison equation with KC dependency was proposed. This model
incorporates the simplified velocity reduction proposed by Kristiansen, but implements a
continuous sine function on each half-cycle instead of a constant velocity reduction factor.
While capturing the essence of the 2ω difference force, the model underestimates the re-
duced peaks. Furthermore, experimental results are compared with Hals’ CFD results,
providing recommendations to improve simulation strategies and enhance compatibility
with the experiments.

Further investigations are needed to develop an accurate load formulation, warranting
additional experiments and CFD simulations.
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Sammendrag

Dette arbeidet undersøker hydrodynamiske interaksjonskrefter og effekter mellom tred-
imensjonale kvadratiske sylindre i stor Keulegan-Carpenter-strøm (KC). Dette gjøres
primært eksperimentelt, med noen innslag fra den potensielle strømningsløseren Wadam.
To eksperimenter som spenner over b̊ade høst- og v̊arsemesteret er utført for å fange
effektene av b̊ade tandem- og forskjøvede konfigurasjoner. I tillegg er det utført en mesh-
analyse og numerisk simulering ved bruk av Sesam-pakken.

Oppgaven introduseres med en kort beskrivelse av motivasjonen, drevet av ambisjonen om
å utforske den potensielle vidtrekkende virkningen av grønn energi og offshore solarøyer.
Det gjøres en iherdig innsats for å gi en omfattende litteraturgjennomgang til tross for det
begrensede temaet.

Forsøkene fant sted i Ladertanken, som ligger ved Marinteknisk senter i Trondheim. Det
er en smal bølgesjakt utstyrt med en aktuator, som gjør det mulig å undersøke modeller i
oscillerende bevegelse. En spesialtilpasset rigg er designet for å lette kraftm̊alingene. Dette
muliggjør en detaljert sammenligning og vurdering av kreftene som utøves av sylindrene.
Totalt ble syv forskjellige modellkonfigurasjoner testet over en rekke KC-tall frem til KC =
22. Forskjøvet arrangement ble testet for vinkler mellom 90° og 35°. Eksperimentene gav
betydelige riggkrefter, som introduserer usikkerhet til m̊alingene. Følgelig er betydelig
oppmerksomhet dedikert til å synkronisere og trekke den tomme riggen fra kraftm̊alingene.
Dette muliggjorde isolering og anskaffelse av hydrodynamisk demping og tilleggsmasse som
utelukkende tilskrives sylindrene.

Numeriske simuleringer er utført p̊a de samme eksperimentelle tilfellene for å trekke ut
massekoeffisienter fra den potensielle strømningsløseren. Disse koeffisientene sammenlignes
med deres eksperimentelle motstykker, sammen med innslag fra stripeteori og DNV-RP-
C205. I tillegg ble de brukt i en modifisert KC avhengig Morison treghetsledd for å
evaluere anvendeligheten til den potensielle strømningsløseren, og for å sammenligne denne
treghetskraften med de eksperimentelle tilleggsmasse kreftene.

Forsøkene viste tydelige KC-tall, innstrømningsvinkel og avstandsforholdsavhengigheter
av kreftene. De ikke-dimensjonaliserte resultatene virket stort sett uavhengige av sylin-
derlengder i tandem, med litt mer spredning for de minste lengdene. I motsetning til
tandemkonfigurasjon, viste forskjøvet konfigurasjon avhengighet av sylinderlengde og stor
stokastisitet for høyere frekvenser. En lastformulering basert p̊a en omskrevet og ikke-
dimensjonalisert Morison-ligning med KC-avhengighet er foresl̊att. Modellen inkorporerer
den forenklede hastighetsreduksjonen foresl̊att av Kristiansen, men implementerer en kontin-
uerlig sinusfunksjon p̊a hver halvsyklus framfor en konstant hastighetsreduksjonsfaktor.
Mens den fanger essensen av 2ω forskjellskraften, undervurderer modellen de reduserte
toppene. Videre sammenlignes eksperimentelle resultater med Hals sine CFD-resultater,
og gir anbefalinger for forbedrede simuleringsstrategier og kompatibiliteten med eksperi-
mentene.

Ytterligere undersøkelser er nødvendig for å utvikle en mer nøyaktig lastformulering, noe
som nødvendiggjør ytterligere eksperimenter og CFD-simuleringer.
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Chapter 1
Introduction

This thesis is on the topic of hydrodynamic forces and interaction effects on three-dimensional
(3D) cylinders in close proximity and in forced oscillation. The research primarily em-
ploys experimental methods, conducting two experiments to examine both tandem and
staggered cylinder arrangements. Complementing the experimental findings, numerical
results from Wadam are utilized to evaluate the accuracy of potential flow solvers. The
experimental setup is specifically designed to investigate the influence of various paramet-
ers. Tandem configuration primarily deals with the KC number, spacing ratio (S/D), and
cylinder lengths (L), while staggered configuration investigates the inflow angle (θ) effects.
A primary objective has been to investigate the force’s dependency on the KC number,
which can be written as

KC =
UT

D
=

2πηa
D

, (1.1)

where ηa is the motion amplitude, U is the oscillation velocity amplitude, T is the oscil-
lation period and D is the characteristic body length. The KC number can be considered
the relative importance of drag and inertial forces and will be discussed in more detail in
Section 2.6.

The work has been a part of a collaborative effort between several master’s and Ph.D.
prospects writing about multi-modular PV plants. Aas-Hansen and Fagerbakke created
a simulator to investigate hinge optimization and Solberg conducted similar experiments
with catamaran models. Additionally, Hals simulated two-dimensional cases of the afore-
mentioned experiments using OpenFOAM. The main objective has been to create the
basis of a Morison-type load formulation that accounts for 3D effects and wake interac-
tion. Collaboration between Hals and Mikkelsen has been emphasized throughout the
work to bridge the gap between the experimental results and numerical simulations and
verify their accuracy.

1.1 Preproject Work - TMR4520

The work presented in this thesis is a direct continuation of the work conducted during
the fall of 2022. This pre-project focused on building a solid theoretical background,

1



CHAPTER 1. INTRODUCTION

codes for post-processing procedures, and a preliminary understanding of the experiments.
Experiments for the investigation of tandem cylinders were run in relation to this work.
Much of the information in the first four chapters is therefore repurposed for this thesis,
although expanded upon and improved [16].

1.2 Scope of Work

The primary objective of this thesis is to explore the hydrodynamic interaction between
cylinders in close proximity and identify key factors that warrant further investigation.
By delving into these factors, this research aims to provide a deeper understanding of the
complex dynamics of fluid flow and hydrodynamic interaction. The obtained results will
undergo thorough analysis to pinpoint crucial factors that necessitate additional invest-
igation. These identified factors will hopefully serve as the foundation for future work
focused on developing a Morison-type load formulation that adequately integrates hydro-
dynamic interaction. A comprehensive understanding of the fluid behavior in different
configurations and under varying conditions is required for this endeavor.

To achieve this goal, a set of sub-objectives are created to properly delineate the scope of
this thesis:

1. Perform a literary review and provide relevant theory and information on:

• Hydrodynamic forces.

• Turbulence and wake interaction in oscillatory flow.

• Large KC numbers.

• Morrison equation and load formulations.

2. Perform laboratory work:

• Calibration.

• Conduct experiments for tandem arrangement.

• Conduct experiments for staggered arrangement.

• Post-processing of results.

3. Perform numerical simulations:

• Create FEM models using GeniE.

• Do a mesh refinement analysis.

• Create environments in HydroD.

4. Present the results in a good and comprehensible manner.

5. Compare the numerical and experimental results to assess their validity. This should
be done for both the Wadam results, and complementary CFD results provided by
Hals.

6. Provide recommendations on getting compliance between experimental and numer-
ical results in further studies.

7. Provide guidance on the creation of a Morison-type load formulation.

8. Provide a solid foundation for future research on the topic of hydrodynamic inter-
action.

2



CHAPTER 1. INTRODUCTION

1.3 Motivation

Most greenhouse gases that trap the sun’s heat are produced during the burning of fossil
fuels, such as oil, gas, and coal, which contribute to over 70% of global greenhouse emissions
and 90% of carbon dioxide emissions [25]. Energy demand is projected to increase in the
coming years, resulting in a significant challenge for reducing greenhouse gas emissions.
Traditional reliance on fossil fuels for meeting this growing energy demand poses a threat
to the environment. Fossil-fuel alternatives are needed in order to meet the requirements
of the green shift. Of these alternatives, photovoltaic power (PV) is projected to become
the leading non-fossil fuel source by 2050 [3].

The growth of the PV sector has driven the increase in installed clean energy in recent
years [21]. This rapid growth of the PV sector, as well as its expected continued growth,
is the result of several factors. In short, a PV plant can be considered:

• Simple to install.

• Reliable to operate.

• Easy to scale.

• Of low cost.

Additionally, PV power is accessible worldwide at a low environmental impact and can
be produced in near-settlement areas. However, two main limitations are hindering the
growth of PV power [21]. These are because:

• PV plants are area demanding.

• Incentives for PV plants are declining.

A solution to these problems might already be proposed with a RES relative to PV power,
the wind energy sector. Investments have been made to ensure that the wind energy sec-
tor can go offshore. If PV power were also deployed offshore, it would address the first
limitation of limited space for PV installations. New incentives would likely be offered
for the use of ocean space for offshore PV plants. Floating PV power may be the key
to revitalizing PV growth. In addition, offshore PV production may improve power effi-
ciency due to cooler temperatures. Research conducted on the working temperatures of
partially floating PV plants in windy conditions found a working temperature reduction
of 11.60°C, which subsequently rose the output efficiency to 20.28% [5]. This shows good
correspondence with the writings of Rosa-Clot and Tina [21], who wrote that the power
efficiency of PV panels increases by 0.5% for every degree drop in panel temperature.

Several concepts for floating PV plants are already in development and may contain float-
ing membranes, multi-torus or modular structures. This thesis focuses on the hydro-
dynamic interaction between the pontoons of multi-modular PV structures.

3



CHAPTER 1. INTRODUCTION

(a) Membrane concept (b) Multi-torus concept (c) Multi-modular concept

Figure 1.1: Three different concepts for floating PV structures.

Source: [24], [11] and [6]

(a) A tractabel concept (b) A multi-modular concept

Figure 1.2: Two different solutions for modular PV structures.

Source: [10]

A concern associated with multi-modular PV concepts is the hydrodynamic interaction
that occurs between cylindrical pontoons in close proximity. Previous experiments demon-
strated substantial nonlinear effects, which can result in significant loads on the pontoons.
The difference forces between two cylinders in particular have been identified as problem-
atic. A large difference force must either be taken up in the hinges or in the mooring
system. These forces are therefore important in the design of such systems. Furthermore,
conventional use of the Morison equation is unsuitable to estimate some of these forces
and detect some of the phenomena.

The main motivation behind this thesis has been to contextualize the force observations
from experimental and numerical results in order to create a Morison-type load formu-
lation. This research is part of SFI BLUES and is considered to be of high industrial
relevance.

1.4 Literature Review

There are limited studies on the topic of hydrodynamic interaction on cylinders in tandem
and staggered arrangement subjected to forced oscillatory flow. Furthermore, almost no
research on the topic of square cylinders subjected to forced oscillatory flow, except for Re-
iten’s master thesis from 2022 was found [19]. This is in contrast to the extensive research
on dynamic interaction loads between circular cylinders in a steady flow. As outlined in
1977, wake interaction between two cylinders in steady flow has been studied extensively
due to its relevance to the aerospace and offshore oil industries [26]. A multi-modular
concept for a floating PV plant may be supported by 4 or more circular or quadratic
cylinders. It is therefore reasonable to believe that hydrodynamic interaction between

4



CHAPTER 1. INTRODUCTION

the pontoons from both tandem and side-by-side arrangement is present. Therefore, the
topic of two or more cylinders in forced oscillatory flow is of great importance for further
research to support the transition to RES.

Zdravkovich wrote a review paper in 1977 outlining the flow interference between two circu-
lar cylinders in various arrangements. He distinguished between two distinct arrangements
of cylinders; tandem arrangement and side-by-side arrangement. Every variation between
these two is considered a staggered arrangement. His findings show two different flow
patterns can be identified in the case of two cylinders in tandem arrangement. The first
pattern does not produce vortex shedding behind the upstream cylinder, while the second
flow pattern produces vortex shedding behind both cylinders. Moreover, he identified five
different flow regimes for tandem arrangement, all dependent on the distance-diameter
ratio.

Figure 1.3: The five different flow regimes identified by Zdravkovich and the distance-
diameter ratio they occur for. A distance-diameter ratio below and equal to two gives the
first flow pattern.

Source: [26]

The first flow regime is when the shear layer separated from the upstream cylinder sur-
passes the second one. This happens when the two cylinders are located close to each
other. The second regime occurs when the shear layer is reattached to the downstream
cylinder, and the reattachment is synchronous with the shedding. A quasi-steady reat-
tachment happens in the third flow regime, which will lead to highly irregular pressure
distributions and shedding patterns. At the fourth regime, the distance-diameter ratio
is large enough for the downstream cylinder to be hit by the wake recirculation. The
fifth and final regime is when the distance-diameter ratio is large enough for the vortex
shedding of the two cylinders to no longer be synchronous. All the five flow regimes of
tandem arrangement can be seen in Figure 1.3 [26].

5



CHAPTER 1. INTRODUCTION

(a) Drag coefficients (b) Lift coefficients

Figure 1.4: Contour plots by Zdravkovich for drag and lift coefficients for staggered ar-
rangements as a function of both transverse and longitudinal spacing ratios.

Source: [26]

Zdravkovich also studied the drag and lift coefficients of the downstream cylinder for
different inflow angles. The results are presented as contour plots in Figure 1.4. He
identified five additional flow regimes for staggered arrangements. These are characterized
by negligible lift and reduced drag, small repulsive lift and reduced drag, repulsive lift and
increased drag, negligible lift and increased drag, and negative lift and decreased drag. The
upstream cylinder can belong to any of the first three, while the downstream cylinder can
also belong to the last two. More importantly, Zdravkovich noted that the two cylinders
usually belong to different regimes at the same time.

One of the sources used in the review by Zdravkovich was the work by Biermann in 1933.
He introduced interference drag, which is defined as the drag of the bodies in combin-
ation minus the drag of the bodies tested separately. His findings show that when two
circular cylinders are placed in tandem arrangement the upstream cylinder drag is largely
unaffected by the presence of the downstream one. However, the drag of the downstream
cylinder is greatly reduced by the presence of the upstream cylinder. It was observed
that this drag drop occurred rapidly for spacings smaller than 4 diameters. Biermann
deduced that the probable reason for the drag force drop for the downstream cylinder was
the presence of a turbulent wake from the upstream cylinder. Another observation was
that both cylinder’s drag becomes less than a single cylinder’s drag when the spacing is
less than 3.5 diameters. Probably the most interesting of Biermann’s findings was that
the force acting on the downstream cylinder was directed opposite the flow direction for
spacings smaller than 3 diameters. This is probably because the vortices produced by the
upstream cylinder partly encircle the downstream one, which might produce a sufficiently
large force to create a forward response [2]. Subsequently, the interference drag coefficient
showed a reduction when the spacing was less than 3 for the upstream cylinder, and an
increase for the downstream cylinder when the spacing was 2.5. Zdrakovich also noted the
same flow regime as Biermann, where the vortices from the upstream cylinder surpass the
downstream one [26].
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CHAPTER 1. INTRODUCTION

Figure 1.5: Interference drag coefficient for an upstream (A) and a downstream (B) cyl-
inder. The results show that (A) is largely unaffected by the presence of (B), while (B) is
significantly affected by (A).

Source: [2]

Reiten wrote about the topic of hydrodynamic forces and interaction between 2D square
cylinders in oscillating flow in 2022. The research was conducted both experimentally
and numerically using a combined effort of Mentzoni’s viscous solver and OpenFOAM
(OF). Mainly, the sensitivity for the increased vertical and horizontal distance between
cylinder pairs, offset, inflow angle, and the mesh was investigated. His findings showed a
clear indication of hydrodynamic interaction between the pontoons. The results showed
the presence of a large difference force ∆F which was dominated by the 2ω harmonic,
although the first and higher-order harmonics were also present. Due to cancellation
effects, the first harmonic force was noted to be small. Interestingly, ∆F increased as the
KC number increased, which indicates good correspondence with the writings of Biermann
and Zdrakovich [2][26].

Figure 1.6: Comparison of mean ∆F from experimental, OpenFOAM and Mentzoni’s
viscous solver results from the Master’s thesis by Reiten.

Source: [19]
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Another noteworthy fact is that Mentzoni’s viscous solver consistently overestimated the
cylinder forces at high KC numbers, as shown in Figure 1.6 [19]. This is explained by
the solver not using a turbulence model. Wakes are turbulent by definition and wake
interaction was found to be significant, which therefore explains the large discrepancies
between the viscous solver and OF.

Sarpkaya, a scientist with extensive work on oscillating flow, found no correlation between
the drag and inertia coefficients and the Reynolds number. However, he discovered that
both coefficients correlate well with the KC number. His investigation was conducted
experimentally using a large U-tank with a cylinder placed in one of the tank sides. He
determined the drag, inertia, and lift coefficients by the use of a Fourier analysis of the
terms in the Morison equation. This analysis showed that the forces on cylinders may
oscillate with several frequency components such as ω, 2ω, 3ω and 4ω during a load cycle
[22].

Figure 1.7: Schematic of the U-tank used by Sarpkaya

Source: [22]

Li wrote his master’s thesis on the topic of two finite staggered cylinders in crossflow.
His findings showed that the difference in Strouhal number St between the two cylinders
is larger for finite cylinders compared to infinite cylinders. Furthermore, the St power
spectra indicated clear and pronounced peaks at the mid-height of the cylinders, while
broader spectra with weak or no peaks were observed at the base and ends. This indicates
that the vortex-shedding frequency changes along the height of the cylinders, and that
higher-order frequencies are expected to be more prevalent at the base ends. He also
found that moderately spaced cylinders are likely to experience different St numbers, and
identified a large discontinuity in St at a critical inflow angle at around 85° to 75°. Overall,
He Li noted a stronger interaction between finite cylinders compared to infinite [13].
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Chapter 2
Theory

The most relevant theory for this project will be presented in this chapter. These in-
clude the fundamental governing equations, including a set of important dimensionless
coefficients often used in a marine setting.

2.1 Dynamic Equilibrium

We start with Newton’s second law whenever we want to find the expression for the
dynamic equilibrium of a system. Newton’s second law states that the sum of the forces
acting on a body is equal to the product of mass and acceleration. This is expressed as

∑
F⃗ = ma⃗, (2.1)

where F⃗ and a⃗ indicate the vector sum of the forces and acceleration, and m is the
mass. If we consider a six-DOF system, the body position can be written as η =
[η1, η2, η3, η4, η5, η6]

T with body velocity as η̇ and acceleration η̈. These terms are as-
sociated with stiffness, damping, and inertial force contribution respectively. Newton’s
second law will then evolve to

−Bη̇(t)− Cη(t) + P (t) = mη̈(t), (2.2)

where B is the damping matrix, C is the stiffness matrix and P is an external load vector.
Note that for a six-DOF system m, B, and C are quadratic matrices with dimensions
of 6x6, while P is a six-long vector. We can reformulate Equation (2.2) by moving the
damping and stiffness terms and isolating the load vector. This will yield the more popular
version

mη̈(t) +Bη̇(t) + Cη(t) = P (t). (2.3)

There are four kinds of loads acting in this system, external load, inertial, damping, and
stiffness forces. This dynamic equilibrium equation is a linear second-order differential
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CHAPTER 2. THEORY

equation where the coefficients m, B, and C are constant. The solution of the system will
subsequently be on the form

η(t) = ηH(t) + ηP (t), (2.4)

where η(t) is the time dependent displacement, ηH(t) is the contribution from the homo-
geneous solution and ηP (t) is the contribution from the particular solution [1].

2.2 Wave Excitation Forces

A floating rigid body exposed to waves will in general respond in six degrees of freedom.
It will also create free-surface disturbances when it moves. These disturbances include
waves, which are referred to as radiated waves or the radiation problem. By combining
the radiation problem with the diffracted waves and the incident wave velocity potentials,
one can express the total wave field as a linear superposition of all velocity potentials. The
biggest advantage of linearised potential flow theory is that each problem can be solved
separately. This will yield

ϕ = ϕ0 + ϕ7 +

6∑
i=1

ϕi, (2.5)

where ϕ0 is the incident wave velocity potential, ϕ7 is the diffracted velocity potential
and the rest are the sum of all radiated velocity potentials for all six dofs. By relating
Equation (2.5) to the dynamic equilibrium in Equation (2.3), all velocity potentials from
the radiation problem will determine the components of the hydrodynamic mass, damping
and stiffness matrices. We can then recognize that the diffraction and incident wave
problems will determine the excitation loads.

We want to obtain the force acting on a body, which in the context of this work is a square
cylinder. The hydrodynamic excitation forces can be found by integrating the pressure
acting on the wet body surface. This pressure is found by using the linear Bernoulli
equation given in Equation (2.6).

p = −ρ
∂ϕ

∂t
− ρ

2
∇ϕ · ∇ϕ− ρgz + C(t) (2.6)

Because we are only interested in the dynamic force contribution, all static terms will
disappear. The velocity potential that gives the excitation forces will be the sum of the
incident wave potential and the diffracted potential. We can also utilize that the partial
derivative is a linear operator and that the two potentials ϕ0 and ϕ7 can subsequently be
treated separately. The Bernoulli equation will then be reduced to

pd = −ρ
∂(ϕ0 + ϕ7)

∂t
= −ρ

∂ϕ0

∂t
− ρ

∂ϕ7

∂t
. (2.7)

By integrating Equation (2.7) over the body surface, the expression for the excitation
force F exe

i is obtained in Equation (2.8). This expression gives force contributions; the
Froude-Kriloff force and the diffraction force [1].
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F exe
i =

∫
S0

pdnidS = ρ

∫
S0

∂ϕ0

∂t
nidS︸ ︷︷ ︸

Froude-Kriloff

+ ρ

∫
S0

∂ϕ7

∂t
nidS︸ ︷︷ ︸

diffraction

(2.8)

It can be seen that the Froude-Kriloff expression is simply an integration of the pressure
in the undisturbed wave over the body surface. This integral may be solved without
solving any boundary value problems related to the body. However, the second term, the
diffraction problem, needs to be solved numerically. Several commercial codes such as
WAMIT and DNV Wadam provide solutions to both linear and second-order problems
and can be used to solve diffraction. Wadam will be used for this project.

2.3 Hydrodynamic Force

The added mass and damping loads acting on a body can be defined as the loads acting
in phase with acceleration and velocity respectively [1].

F hd
jk = −ρ

∫
S0

∂ϕk

∂t
njdS (2.9)

The forced oscillation of the actuator in this thesis can be considered harmonic, meaning
we can estimate the model motion to be a simple sine or cosine function. If we assume
a displacement function equal to Equation (2.10), the functions for cylinder velocity and
acceleration will follow naturally to Equation (2.11) and Equation (2.12) respectively.

η2(t) = η2a cos(ωt) (2.10)

η̇2(t) = −ωη2a sin(ωt) (2.11)

η̈2(t) = −ω2η2a cos(ωt) (2.12)

Here, ηa represents the amplitude of the oscillation and ω is the oscillation radial frequency.
Because we have assumed a linearized problem with incident wave frequencies of ω, all the
responses will oscillate with the same frequency. This includes both body motions and
wave loads. The velocity and acceleration of the body are 90 degrees out of phase since
the acceleration and the velocity are orthogonal functions. Any sinusoid may therefore
be expressed as the sum of the velocity and acceleration of the body. In other words,
Equation (2.9) can be rewritten to express any mode as

F hd
jk = −Ajkη̈j −Bjkη̇j , (2.13)

where Ajk and Bjk are the added mass and damping matrices respectively. It will be
beneficial to separate the added mass and damping terms from each other. We know
that any integration over an arbitrary number of whole periods when the term consists
of orthogonal harmonic functions will be zero. This is called Fourier averaging and is one
of the possible ways to separate the damping and added mass terms. Added mass can be
solved by multiplying each side of Equation (2.9) by Equation (2.12), i.e acceleration, and
integrating over an arbitrary number of whole periods. This will yield
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∫
nT

P η̈2(t)dt =

∫
nT

A22η̈2(t)η̈2(t)dt+

∫
nT

B22η̈2(t)η̇2(t)dt︸ ︷︷ ︸
=0

, (2.14)

where n is the number of oscillation periods. By performing the same procedure with
velocity, an expression for the damping term can be found. This means to multiply
Equation (2.9) by Equation (2.11) instead of acceleration. This will instead yield

∫
nT

P η̇2(t)dt =

∫
nT

A22η̈2(t)η̇2(t)dt︸ ︷︷ ︸
=0

+

∫
nT

B22η̇2(t)η̇2(t)dt. (2.15)

We can determine expressions for the added mass and damping matrices by reshuffling
Equation (2.14) and Equation (2.15) and solving for the added mass and damping. The
result of this operation will be as shown in Equation (2.16) and Equation (2.17).

A22 = −
∫
nT P η̈2(t)dt∫

nT η̈2(t)η̈2(t)dt
(2.16)

B22 = −
∫
nT P (t)η̇2(t)dt∫
nT η̇2(t)η̇2(t)dt

(2.17)

It is beneficial to present the added mass and damping as non-dimensional values, and a
reference added mass value is therefore introduced. This reference added mass is specific-
ally chosen to be the analytical added mass for a flat plate and circular cylinder of equal
width of the body. The expression is

A0 = ρ
π

4
D2L, (2.18)

where ρ is the water density, D is the cylinder width and L is the cylinder length. By
using this reference along with Equation (2.11) and Equation (2.12), assuming harmonic
oscillation, Equation (2.13) can be non-dimentionalized and rewritten as

F

ω2ηaA0
=

A22

A0
cosωt+

B22

ωA0
sinωt (2.19)

Note that by using this reference, the non-dimensional added mass and damping coeffi-
cients can be written as Ca = A

A0
and Cb =

B
ωA0

respectively. Ca and Cb then coincide with
the convention typically used in the literature. It is possible to further simplify Equation
(2.19) by merging the two terms to a single sinusoid and using Ca and Cb. Equation (2.19)
then becomes

F

ω2ηaA0
=

√(
A22

A0

)2

+

(
B22

ωA0

)2

sin (ωt+ ϕ) =
√

C2
a + C2

b sin (ωt+ ϕ). (2.20)

Here, ϕ is the phase between the velocity and the non-dimensional force, while
√
C2
a + C2

b

becomes the amplitude. The non-dimensional force amplitude is a function of the squared
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added mass and damping coefficients. If one is larger than the other, the amplitude may
quickly become dominated by the larger term due to being squared. They can either be
evaluated as a ratio relative to each other, or as the percentwise contribution to the force
amplitude. The ratio can be defined as

Cb

Ca
=

B

ωA
. (2.21)

A ratio larger than 1 indicates that damping dominates the force amplitude, while a lower
than 1 indicates that added mass dominates. Alternatively, the percentwise contribution
of Cb to the amplitude can be evaluated. This may be written as

√
C2
b√

C2
a + C2

b

=
B
ωA√

1 +
(

B
ωA

)2 . (2.22)

Likewise, the added mass can also dominate if Ca is larger than Cb. Both sides of Equation
(2.22) can be used, but the left side is used for this thesis as Ca and Cb is extracted
automatically from the experiments [15].

2.4 Hydrodynamic Damping Forces

The damping loads of a marine system are the load terms that are dependent on the relative
body and water particle velocity. However, it is known that damping loads of a system
may have both linear and nonlinear characteristics. Common practice is therefore to split
the damping term into one term proportional to the velocity, and one term proportional
to the velocity squared. In other words, the damping term in Equation (2.13) can be
rewritten as

Bjkη̇j = B
(1)
jk η̇j +B

(2)
jk η̇j |η̇j |, (2.23)

where (1) and (2) denotes the linear and quadratic damping terms respectively. Typically,
the first-order term is associated with a linear wave-radiation force, while the second-order
term is associated with viscous drag forces.

2.5 Reynolds Number

In 1883, Osborne Reynolds conducted experiments investigating what determines if the
motion of water particles is direct or sinuous. His findings showed that the ratio between
inertial forces and viscous shear forces is important in determining the fluid motion beha-
vior [20]. This ratio was later named the Reynolds number by Sommerfeld in 1908 [23], a
name that stuck ever since. The Reynolds number is defined as

Re =
UL

ν
, (2.24)
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where U is the mean inflow speed, L is the characteristic linear dimension and ν is the
kinematic viscosity. The Reynolds number is an important quantity in marine technology
due to its influence on many important hydrodynamic coefficients. One famous example is
the Re-dependent drag coefficient CD, which is a factor in the drag and Morison equations.

2.6 Keulegan-Carpenter Number

The Keulegan-Carpenter number is a dimensionless quantity formulated by Garbis H.
Keulegan and Lloyd H. Carpenter in 1950. It describes the relative importance between
drag forces and inertial forces that is experienced by a blunt body in oscillating flow [9]. A
large Keulegan-Carpenter number will therefore indicate that drag forces dominate, while
small numbers indicate that inertial forces dominate. The Keulegan-Carpenter number
KC is defined as

KC =
UT

D
, (2.25)

where U is the amplitude of the relative flow velocity oscillation, T is the oscillation period
and D is the characteristic length scale of the body. Oscillating water particle flow and
still water body oscillation are synchronous in this case. The laboratory setup for this
thesis is a harmonically oscillating body. It can be shown that

KC =
2πηa
D

(2.26)

by combining Equation (2.25) with the fact that ω = 2π
T and U = ωηa for an harmonically

oscillating body. If the body is subjected to waves, and the wave follows linear potential
theory, the water particle velocity amplitude can be expressed as a function of wave height
ζa as described in Sea loads [7]. The expression for the KC number will then become

KC =
2πζa
D

. (2.27)

2.7 Morison’s Equation

In 1950, a team of master students consisting of Morison, O’Brien, Johnson, and Schaaf
wrote their thesis in light of the US offshore expansion in the 50s. They stated that the
force exerted from unbroken waves on a cylinder that extends from the bottom to above
the crest can be summed up into two parts. These two parts are:

1. A drag force proportional to the square of the velocity which may be represented by
a drag coefficient having substantially the same value as for steady flow, and

2. A virtual mass force proportional to the horizontal component of the accelerative
force exerted on the mass of water displaced by the pile [17].
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These relationships follow directly from fluid dynamics and linear wave theory and were
verified by experiments conducted at the University of Berkley. The first of these relation-
ships is analog to the drag equation, while the relationship for virtual mass can be derived
from linear wave theory. This work resulted in a semi-empirical equation for wave loads
on a circular cylinder, that could be expressed as

dFM = ρ
πD2

4
Caa(t)︸ ︷︷ ︸

inertial term

+
1

2
ρDCDu(t)|u(t)|︸ ︷︷ ︸

viscous term

, (2.28)

where a(t) is the water particle acceleration, u(t) the water particle velocity while Ca and
CD are the added mass and drag coefficients. The absolute value around the one u(t) term
ensures that flow direction is accounted for. In other words, the wave loads experienced by
a cylinder can be expressed by a superposition of an inertia force and the drag equation.

If the body is considered fixed and subjected to oscillating flow, the Froude-Kriloff force
needs to be included in Equation (2.28). That is, to introduce the mass coefficient CM

expressed by CM = Ca + Cf . Froude-Kriloff forces can be obtained by integrating the
pressure gradient that accelerates the water particles in the oscillating flow [19]. The
Morison equation will evolve into

FM = ρ
πD2

4
CM η̈3 +

1

2
ρDCDη̇3|η̇3| (2.29)

Figure 2.1: Relative importance of mass, viscous and diffraction forces on marine struc-
tures.

Source: [7]

We know that probable KC numbers for a multi-modular PV plant in offshore conditions
may be as high as 15-20 or even more. Moreover, a realistic characteristic length scale of
the pontoons of a PV module may be of the order of 1. By using Equation (2.27) with
the relative importance between different hydrodynamic loads as outlined by Faltinsen
and seen in Figure 2.1, we can determine which load type is expected to dominate for a
structure [7].
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The experimental results are presented in accordance with the description provided in
Section 2.3. The objective is to establish a connection between the results and the Morison
equation. In order to achieve a consistent format for both, we will start by linearizing the
viscous term and substituting one of the velocity terms with the amplitude in Equation
(2.10). Consequently, Equation (2.28) is reformulated as

FM = ρ
πD2

4
Caη̈3(t)L+

1

2
ρDCD

8

3π
(ωηa)η̇3(t)L, (2.30)

where 8
3π is the first harmonic component of sin(ωt)| sin(ωt)|. Equation (2.13) is already

linear, allowing a direct relationship between the two equations. By substituting A = CaA0

and B = CbωA0, Equation (2.13) can be expressed as

Fexp = CaA0η̈3 + CbωA0η̇3. (2.31)

We can then equate the inertial and damping terms in Equation (2.30) and Equation
(2.31). Furthermore, the reference added mass A0 is expressed using Equation (2.18).
Substituting this expression for A0 and solving for Ca and CD will yield

Cexp
D =

Cbωρ
π
4D

2Lη̇3
1
2ρD

8
3π (ωηa)η̇3L

=
3π3

8KC
Cb. (2.32)

The experimental added mass coefficient can be used directly while the experimental drag
coefficient is calculated using Equation (2.32). This allows for a comparison between
traditional Morison equation and the experimental force coefficients.
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Chapter 3
Experimental Setup

3.1 Facilities

The experiments were conducted at the center of Marine Technology in the Ladertanken
laboratory. This narrow wave flume tank is run by NTNU and is primarily used by
students for laboratory work in MSc or Ph.D. courses. The tank is also occasionally used
for research purposes as demonstrated by P̊al Lader, who built the tank and used it in his
Ph.D. work.

(a) Bottom-up overview of Ladertanken (b) Top-down overview of Ladertanken

The tank holds a length and breadth of 13.5m and 0.6m respectively. It has a wave
flap mounted on the far left side of the tank, which can produce waves alongside the
longitudinal direction of the tank. A parabolic beach is mounted on the other end to
dampen the waves and prevent reflection back to the rig. The cylinder models were forced
to oscillate using a vertical actuator, so the wave flap was not used during the experiments.
To access the cylinders, the tank had to be partially emptied between each run and then
refilled to a depth of 1 meter with fresh water from the Sea pool run by SINTEF. The
water was also refilled if the experiments had been idle for a long time, as it evaporates
over time. All the walls and the floor of the tank are made of glass, making it possible to
take pictures and videos of the experiments.
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Figure 3.2: Simple schematic of Ladertanken, with parabolic beaches at the ends.

3.2 Apparatus and Equipment

The vertical actuator was placed in the middle of the tank. Attached to the actuator were
two separate metal plates, the outer plate surrounding the inner plate. These plates were
connected to separate force measurement devices so the contribution of the cylinders could
be measured individually. For cases where four cylinders are present, each cylinder pair
attached to the same plate had their force contributions measured together. Each of the
two plates has two stiffeners welded to the respective plate and with screw holes drilled into
the plate for cylinder assembly. The cylinders were mounted with an equal counterpart
on the opposite side of the plate to create a yz-symmetry. This ensures that there were
no inherent moment contributions in the system that may affect the force measurements.

The actuator itself allows for control of both vertical amplitude and oscillation period. This
enables us to program the actuator for a large range of different KC numbers according
to Section 2.6. The maximum amplitude of the actuator was restricted to 20cm, which
along with periods of 1.0s and 1.5s allows us to test KC numbers up to 22.

Figure 3.3: Vertical oscillator from different perspectives
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Figure 3.4: Alternating cylinder lengths

All cylinders used in this project had a 5cm width with three different lengths that the
test cases alternated between. These included a short cylinder of 5cm, a medium-length
cylinder of 10cm, and a long cylinder of 15cm. Each test case was run for all three cylinder
lengths. The cylinders were secured by a mumle, and the mumle cavities were sealed by
tack. The cylinders are mirrored by the plate due to symmetry concerns.

Figure 3.5: Case 4 with cylinder lengths L = D.

3.3 Test Configurations

Two different experiments have been conducted to investigate the scope of this thesis. The
first of these was conducted in the fall semester in conjunction with the pre-project work
and is designed to explore cylinders in tandem. The second was conducted in the spring
semester and designed to capture the effects of inflow angles. Tandem and staggered are
chosen as names to keep with the naming conventions of Zdravkovich [26].
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3.3.1 Tandem Arrangement

Four main cylinder configurations were run during the experiments for tandem arrange-
ment. Case 1 is two cylinders in tandem condition with a cylinder spacing S equal to one
cylinder width D. Similarly, Case 2 also has two cylinders in tandem, but with a spacing
of S = 2D. Case 3 represents a module consisting of four cylinders with equal spacing
S = D between all horizontal and vertical pairs. Lastly, Case 4 covers two cylinders in a
staggered arrangement where the spacing between the two cylinders becomes S = D. This
means that Case 4 becomes a special expression of Case 1, where an oscillatory inflow of
θ = 45° is considered. Case 11, Case 12, and Case 13 have the same configurations as
cases 1-3, but with a diamond instead of square geometry. The difference between square
cylinders and diamond cylinders is the latter being square cylinders rotated 45 degrees. A
sketch of these two is provided by Figure 3.6.

Figure 3.6: Schematic of square and diamond geometries

Seven cases total are run for the experiments, and an overview can be seen in Figure 3.7.
Additionally, a separate test Case 0 was run without any cylinders. This is to capture the
force contribution from the rig, and is discussed in more detail in Chapter 4 with regards
to the post-processing.

Figure 3.7: Overview of all the different test cases of the investigations

Source: [10]

Not all cases are needed to investigate the scope and motivation presented in Section
Section 1.2 and 1.3. For the purposes of this thesis, only square geometry is considered
and the effect of changing geometry is not evaluated. As the staggered arrangement has
its own dedicated experimental investigation, Case 4 from the tandem experiments is
neglected.
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3.3.2 Staggered Arrangement

The staggered arrangement experiments aim to investigate the effect of changing the inflow
angle θ. Due to limitations with the experimental rig and setup, the spacing ratio was kept
constant at S

D = 2. This means that the staggered experiments are a special realization of
Case 2 where the setup is rotated to get an inflow angle. Additionally, inflow angles below
θ = 35° were unable to be tested. A Sketch of the staggered arrangement is provided in
Figure 3.8.

Figure 3.8: Sketch of the staggered arrangement experiments with the test parameter θ

3.4 Hammer Tests

The rig consists of numerous mechanical components that can result in measurement
inaccuracies due to resonance-induced noise. Filtering this noise is possible given that
the frequencies of the noise are sufficiently far from the frequency of the forced oscillating
motion. Significant amplification of the measurements is expected if this is not the case,
and the frequency components close to the rig’s eigenfrequencies need to be discarded from
the results.

To address this issue, a hammer test was conducted on several of the components attached
to the rig. This involved gently hitting the tank, attachments, rig, and plates with a rub-
ber hammer while simultaneously logging the data. By analyzing the hammer test data,
any noise that may have affected the measurements can be identified. Each of the afore-
mentioned locations is hit from multiple directions and the results are stored separately.
Examples of the resulting time series created from the hammer test are provided in Figure
3.9 and Figure 3.10.
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Figure 3.9: Example of a time-series created from the hammer test.

(a) Measured FY forces (b) Measured FZ forces

Figure 3.10: Example of time series immediately after hammer strikes on the empty rig
configuration.

The frequencies of the rig vibrations were determined through Fourier analysis of the
isolated data, as illustrated in Figure 3.10. The results from the hammer test show that
frequency variations were independent of the degree of freedom and the location where
the rubber hammer was applied.

The results revealed that the eigenfrequencies of the rig decreased when mass where added
to the plate, by introducing longer cylinders. Specifically, the lowest eigenfrequencies of
the rig decreased from 7 Hz for the empty plate to 6 Hz and 4.5 Hz for the plate with
small and large cylinders. These results are illustrated in Figure 3.11, Figure 3.12, and
Figure 3.13. These plots depict the frequency response for each of the three test cases
during the hammer test. Further analysis and determination of the ramifications from the
hammer test will be discussed in Section 4.4, where filtration of the measurements will be
discussed.
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Figure 3.11: Hammer test results for the empty rig configuration. The results for FZ are
presented in the left plot, while the results for FY are presented in the right plot.

Figure 3.12: Hammer test results for case 2 with small cylinders. The results for FZ are
presented in the left plot, while the results for FY are presented in the right plot.

Figure 3.13: Hammer test results for case 2 with large cylinders. The results for FZ are
presented in the left plot, while the results for FY are presented in the right plot.
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Figure 3.14: Zoomed hammer test results for case 2 with large cylinders. The results for
FY are presented in the left plot, while the results for FX are presented in the right plot.
A small peak around 1,5Hz is observed for FX.

In addition to the eigenfrequency and mode shape analysis, the hammer tests also revealed
some excitation along the longitudinal direction of the tank, particularly at frequencies
between 1.5 to 2 Hz. At this time it is unclear whether this excitation is due to a particular
eigenfrequency or if it is the result of the hammering direction. No evidence indicates that
the frequency components in the drag and lift directions for the cylinders are affected by
this noise.

3.5 Sources of Error

There are, generally speaking, two different types of errors that occur during experimental
investigations. These are random errors and systematic errors. Random errors occur be-
cause there always is some variability between tests. Such variability may be due to
slight fluctuations in instrumentation, environment, or simply due to chance. Repetition
and averaging of results help smear out the effect of any spurious modes and reduce the
significance of random error. The systematic error provides measurements that are con-
sistently different from the experiment’s true value. Bad calibration of either instruments
or procedures is a typical source of systematic error and is usually harder to detect.

The experiments operate under the assumption of infinite fluid. Interaction between the
tank boundaries and surface is expected due to limitations regarding the tank. This
is especially true for the largest KC numbers, where the amplitude of the oscillation is
highest. The cylinders are located in the center of the tank in an effort to minimize
wall and surface effects. Despite this effort, small surface disturbances can be observed,
meaning that the infinite water assumption is imperfect.

Experimental rigs are designed to provide controlled environments for scientific investiga-
tions, but they can be subject to sources of error. These may include both mechanical and
electrical vibrations and noise. Electrical noise is typically very high-frequent noise, which
should automatically be filtered away using the band-pass filter described in Section 4.4.
Mechanical noise is typically linked to the eigenfrequencies of the rig, and force-frequency
components located in close proximity to the rig’s eigenfrequencies will experience amp-
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lification. It is essential that the results presented are not close to these eigenfrequencies
in order to ensure the reliability of the experimental data. Sources of vibrations may
also arise from external factors, such as nearby machinery. This was experienced when
vibrations from the cavitation lab on the above floor were induced. These vibrations can
introduce measurement errors and interfere with the accuracy of the results.

Worn sensors and springs in experimental rigs may lead to sources of error in scientific
experiments. Over time, these components may degrade and become less sensitive. This
might in turn lead to inaccurate measurements of physical quantities. Additionally, old
sensors and springs may not respond consistently to changes in the environment, leading
to variability across experiments. This can be problematic when trying to replicate exper-
iments. Furthermore, worn springs may not provide consistent force, leading to imprecise
measurements and reduced experimental accuracy. The position sensor in particular was
found to give artificially high and spurious results when responding to oscillation starts
and stops.

The tank is usually filled up with water from the cavitation lab. However, the last few
tests of the experiments conducted in the spring were run with the tank partially filled
with tap water due to maintenance in the cavitation lab. This water will for instance not
hold the same concentration of chlorine, which is expected to alter the water’s properties.
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Chapter 4
Experimental Post-Processing

This section presents the primary workflow and post-processing procedures for the two
experimental tests carried out. A substantial amount of data has been acquired, and a
significant aspect of this work has therefore been to post-process this data. All post-
processing was conducted by creating various scripts and functions using Python. The
data is stored as binary files with the default sampling rate of 200Hz, and later converted
to Matlab format.

4.1 Locate KC Number

The data-logging system and oscillator are not initiated simultaneously when a test is
commenced. Consequently, the period of inactivity prior to the first oscillation may differ
across tests. To mitigate this, a Python function is applied to each test to record the
start time. This time is determined by identifying when the rig position reaches 1% of the
amplitude at KC = 1.

(a) KC number extraction (b) Steady state response, KC = 16

Figure 4.1: Example of KC number extraction and corresponding steady-state responses.
The stapled red lines indicate the start and end times of the desired KC number.

The testing procedure remains uniform for all tests, ensuring that the location of each KC
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number is precisely known once the start time is recorded. By excluding the four ramp-up
and ramp-down periods, the steady-state response for each KC number is then readily
extracted. A visual example is provided by Figure 4.1. The first and second experiments
have slightly different testing procedures, where the first also tests for KC increments of 0.5
and T = 1.5s. Therefore, the increments between each KC number are slightly different,
though follow the same analogy.

4.2 Synchronization

The start times as described in Section 4.1 may be affected by noise or other errors.
Although suitable to give an approximate start time for the rig and empty rig, a more
sophisticated synchronization scheme is needed. Euclidean distance is used for this en-
deavor.

Euclidean distance is the L2 norm of the difference between two vectors, and can sub-
sequently be considered a special case of the L2 norm. The expression for the Euclidean
error can be written as

ϵ =

√√√√f ·T∑
i=1

(P 1
i − P 0

i )
2, (4.1)

where P 1 is the rig position of the case, P 0 is the empty rig position and f is the sampling
frequency. We can reduce the lag between the two by incrementally shifting the empty
rig position along the horizontal axis and recording the corresponding euclidean distance
or error. By identifying the shift which results in the lowest error, we can determine the
optimal position of the empty rig. In addition, the empty rig position is the only shifted
series and only along the horizontal axis. An artificial shift is therefore subtracted initially
to ensure that the empty rig is lagging. This artificial shift is subtracted again at the end
to get the actual shift.

(a) Before synchronization (b) After synchronization

Figure 4.2: Illustration of a local oscillation peak before and after being synchronized.
The empty rig position is shifted along the horizontal axis to provide the best fit over one
oscillation period.

The steady state responses are extracted as described in Section 4.1, and the mean of the
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two time-series are subtracted to ensure zero mean oscillation. By evaluating the sum in
Equation (4.2) over only one period, we avoid finding several shifts that satisfy a minimum
error. This ensure that the rig and empty rig are locked onto the correct peak, and not
the subsequent one.

4.3 Rig and Acceleration Subtraction

The rig itself dominates the measured forces from the raw data created during the experi-
ments. In order to isolate the hydrodynamic forces acting on the cylinders, the empty rig
forces need to be subtracted from the measured data on each case. The end goal of the
procedures described in Section 4.1 and Section 4.2 is therefore to subtract the empty rig
forces from the actual case at corresponding times. This is written as

Fnet = Fmeasured − Femptyrig. (4.2)

Since the actuator oscillates the cylinders vertically, a mass force will also act on the
cylinders in z-direction. This force also needs to be subtracted from the measured data.
The total force then becomes

Fnet = Fmeasured − Femptyrig −mcylameasured, (4.3)

where mcyl is the cylinder mass and ameasured is the measured acceleration. The result of
this operation isolates the hydrodynamic damping and added mass forces.

4.4 Band-Pass Filtering

After synchronizing the results with the empty rig, locating each KC number, and isolating
the hydrodynamic forces, the data is now ready for filtering. A band-pass filter is used for
the purposes of this thesis. A band-pass filter is a device that passes frequencies within
a range whilst attenuating frequencies outside the range. A visual example of prior and
post-filtration is provided by Figure 4.3.
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(a) Filtration of forces (b) Filtration of acceleration

Figure 4.3: Example illustration of force and acceleration results before and after noise
attenuation.

The end goal of the filtration is to attenuate the noise from the physical force signal. Noise
typically comes from resonance from the rig itself, as electrical noise is located at higher
frequencies. A broad-banded Fourier spectra in-between integer frequencies can indicate
the presence of noise.

(a) Case 2 large (b) Empty rig

Figure 4.4: Fourier analysis of FZ measurements on the outer plate. The empty rig shows
clear peaks for odd frequencies, while signs of noise are shown around f = 4 − 5Hz with
cylinders.

Fourier plots of the empty rig and with large cylinders attached are shown in Figure 4.4.
Clear and pronounced peaks are observed for odd frequencies on the empty rig in Figure
4.4b. Indication of noise in the range of 4 and 5 Hz can be seen in Figure 4.4a. We can
explain this observation by relating it to the eigenfrequency of a simple harmonic oscillator

ω0 =

√
k

m
, (4.4)

where k is the stiffness and m is the mass. By attaching cylinders, or increasing cylinder
lengths, the mass of the system should increase. Subsequently, the eigenfrequencies of the
system should be shifted further towards the left.
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(a) L = D (b) L = 2D (c) L = 3D

Figure 4.5: FFT comparison of different cylinder lengths, where the stapled red lines
indicate the approximate noise range from the rig’s eigenfrequencies. The range is shifted
towards the physical range when mass is added.

It is clear from Figure 4.5 that the noise frequencies from the rig eigenperiods are shifted
more into the physical domain when larger cylinders are introduced at about 4.5Hz. This
is consistent with the findings in Section 3.4. Unfortunately, the rig noise is shifted far
enough to affect the 4ω force contributions, giving rise to spurious results at this frequency
for Case 1 and 2 with large cylinders. 4ω results should be discarded for these cases. This
also unfortunately makes evaluating Case 3 difficult, and is subsequently neglected in this
thesis.

4.5 Harmonic Component Extraction

The harmonic components of the force signal are exposed and isolated by using the band-
pass filter from Section 4.4 and setting its range to filter around the harmonic frequency.
Each harmonic component is stored as its own time series and analyzed separately. The
harmonic amplitude is then determined by subtracting the average minima from the av-
erage maxima and dividing by 2.

4.6 Nondimensionalization

Although only the cylinder lengths L were changed during the experiments, both L and
D are presumed to be subject to change in practical applications or further research. A
non-dimensional factor is introduced to present scalable results, make result comparison
between cases easier and keep with the established convention by Reiten and Kristiansen
[19]. The resulting non-dimensionalization can be written as

FT 2

ρLD3

[
kg·m
s2

· s2
kg
m3 ·m3 ·m

]
=⇒ [−]. (4.5)
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Chapter 5
Potential Flow Analysis - Wadam

Wadam is a hydrodynamic analysis program made for calculating wave-structure interac-
tion for fixed and floating structures. The program applies Airy wave theory and linear
frequency domain methods to solve the 3D radiation and diffraction problem, which is
automatically included in the analysis. HydroD is used to execute the Wadam analysis
and is also where the environment is modeled. To perform the hydrodynamic analysis,
a structure is needed, and Wadam requires a panel model of this structure. For this
endeavor, GeniE will be used.

5.1 Panel Model Setup

The first step is to create a panel model for the hydrodynamic analysis. GeniE is a
structural modeling program that can create panel models and export them as FEM files.
Both GeniE and Wadam, are developed by DNV and are part of the Sesam package, so
they are fully compatible. GeniE is therefore a good choice for creating the panel model.

The Wadam analysis is used to solve the radiation problem and calculate the excitation
forces. These problems only depend on the structure’s geometry and not on paramet-
ers that would be important for structural analysis, such as plate thickness or material.
Therefore, only the structure geometry needs to be modelled. We want to compare the
exciting and added mass forces from Wadam with the experimental results. The panel
model needs to represent the same square cylinders used in the experiments if the dif-
fraction and radiation results are to be used. For this thesis, cases 1, 2, and 3 have been
analyzed for all cylinder lengths.
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Figure 5.1: Sketch of the modeling strategy in GeniE. All cases in Wadam will be modeled
around origo with respect to x and y, while only negative z values are modeled.

It is important to ensure that the coordinate systems used in GeniE and HydroD corres-
pond with each other when exporting the panel model from GeniE to HydroD. If they do
not match, the model’s translation may be unfavorable when importing it into HydroD,
which will produce incorrect results. To prevent this, the panel model geometry is always
modeled around the global origin in GeniE as shown in Figure 5.1. Additionally, we are
only interested in the wet surface of the model, so the model is only modeled below the
waterline. HydroD have symmetry options that can mirror a structure around the xz
and yz plane. This means that only 25% of the model needs to be modeled in practice,
shortening the computation time and memory needed.

Figure 5.2: Sketch of the resulting model for Case 1 with large cylinders in GeniE. Stapled
red lines indicate the whole structure when double symmetry is applied in HydroD.

5.2 Wadam Setup

In addition to the panel model, the Wadam analysis requires an environment to run.
This environment is defined in HydroD, which is the program used to create and run the
Wadam analysis. The easiest way to create the analysis is to use a Wadam wizard, which
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will guide you through the required steps. The Wadam mass model is set up with scales
and data for a full-size module.

The environmental parameters are set to match the experimental setup. This mostly
involves the water density ρ, gravity g and viscosity ν. The panel model mass and the
center of gravity are explicitly specified in HydroD. As the radiation and excitation forces
are frequency-dependent, the Wadam and experimental results will not correspond if the
numerical frequencies match those used in the experiments. The environmental variables
used are given in Table 5.1 and Table 5.2.

Table 5.1: Definition of environment in HydroD

g [m/s2] depth [m] ρ [kg/m3] ν [m2/s]

9.8066 300 1000 1.19E-06

Table 5.2: Wadam mass model, single large cylinder

m [kg] COGx [m] COGy [m] COGz [m]

5859.4 0 0 1.875

5.3 Mesh Refinement Analysis

Mesh refinement analysis is crucial in improving the accuracy of numerical simulations
used in engineering design and analysis. In hydrodynamic simulations, a refined mesh is
essential to capture complex flow behaviors and accurately predict hydrodynamic loads. In
this case, a mesh refinement analysis was performed on a single cylinder using Wadam and
GeniE to improve the accuracy of the hydrodynamic loads. The cylinder was discretized
by splitting D into a number of elements. The number of elements used for the analysis
varied between five, ten, twenty, and thirty elements. Added mass and excitation forces
were calculated using Wadam for these numbers of elements in the mesh.

(a) Added mass (b) Exciting forces

Figure 5.3: Results for added mass and excitation forces for mesh refinement analysis in
surge. Added mass coefficient converges at about 20 elements, while excitation force is
largely unaffected.
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The results of the mesh refinement analysis are presented in Figure 5.3, and shows that
the results converged at around twenty elements. It can be observed that as the number of
elements is increased, the added mass becomes more accurate and converge while excitation
forces stay largely unaffected. The convergence of the results can be observed for about
twenty elements, and further refinement of the mesh does not significantly improve the
accuracy of the results. Therefore, twenty elements were chosen for subsequent analysis
due to the trade-off between accuracy and computational time.

5.4 Added Mass

The added mass output from Wadam is automatically normalized by mass displacement
ρV . It is also given as a per-wave period mass matrix because added mass is frequency-
dependent. To verify the Wadam results, we can compare them to the added mass coeffi-
cients for strip theory and the coefficients provided in DNV-RP-C205 [4]. Both tables are
provided by Figure A.1 and Figure A.2. While the coefficient for strip theory can be read
as Co

a = 1.51, no table for a right square cylinder in vertical motion is provided. We use
the data for a circular cylinder in Figure A.1 and interpolate in order to get the reduction
from the infinite value. Furthermore, we assume that this reduction is equivalent for a
square cylinder and scale the reduction with value for strip theory. This yields

Co
a = 1.51

(
y0 +

y1 − y0
x1 − x0

(x− x0)

)
, (5.1)

where y0 and y1 are the coefficients, and x0 and x1 are b/2a between point 0 and 1.
Furthermore, the coefficients from the Wadam results should use a circular reference area
to keep the comparison consistent. Plotting the results from Wadam against the added
mass coefficients for strip theory and the result from Equation (5.1) for a large cylinder
yields Figure 5.4a.

(a) Added mass (b) Exciting forces

Figure 5.4: Non-dimensional added mass values from Wadam plotted against theoretical
added mass, and non-dimensional exciting force of a single large cylinder.

The results show discrepancies between the asymptotic added mass from Wadam and the
other added mass coefficients. It is known that strip theory added mass will overestimate
the actual added mass [4], but the results from DNV-RP-C205 are harder to explain. It is
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possible that using circular cylinder interpolation directly with infinite values for a square
is not valid. However, we will use this anyway since we lack standards for square cylinders.
The added mass results appear to be ”independent” of time at about T = 10s as the added
mass coefficient is close to the asymptotic value at that period. Overall, the results for
the reference case show reasonable enough correspondence with the theory.

5.5 Excitation Loads

The excitation forces from Wadam are the integrated pressure over the body, given as a
per period, wavelength, and heading angle value. They are expressed as complex numbers
with both real and imaginary contributions. The corresponding absolute value and phase
angle are also provided. As such, the excitation forces from Wadam can be expressed as

F exe
11 = reiϕ = r(cos(ϕ) + isin(ϕ)), (5.2)

where r is the magnitude or length of the complex number.

As outlined in Section 2.2, the excitation forces are expressed as the sum of the Froude-
Kriloff forces and the diffraction problem. To separate the two and acquire an expression
for the diffraction force, we can solve

F exe
FK = ρ

∫
S0

∂ϕ0

∂t
nidS, (5.3)

and subtract the solution for the Froude-Kriloff force from the total excitation force. This
will become relevant to the experimental post-processing when the diffraction force from
Wadam is to be compared to the experimental results. Preliminary results for the exciting
forces of the single cylinder are also presented in Figure 5.4b.

5.6 Presentation of Numerical Results

The end goal of the numerical Wadam simulation is to evaluate the applicability of po-
tential theory when estimating added mass forces. In order to present the results from
Wadam in a manner consistent with the nondimensionalization established in Section 4.6,
we first start with the inertial term from Equation (2.28).

FI = ρ
πD2L

4
Co
aa(t) (5.4)

Furthermore, it is known from Equation (2.12) that the amplitude of the acceleration
can be written as a = ω2ηa and that the frequency is equal to ω = 2π

T . The oscillation
amplitude ηa can also be expressed by rewriting Equation (2.26) as ηa = KCD

2π . We can
then rewrite Equation (5.4) as

FI = ρ
πD2L

4
Co
a

(2π)2

T 2

KCD

2π
, (5.5)
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which can be added together to

FI =
1

8
ρD3LCo

a

(2π)2

T 2
KC. (5.6)

The added mass coefficients found from Wadam will be directly related to the actual
geometry of the analysis, which for this instance is a square. Added mass coefficients in
the literature are typically normalized by the displaced mass of a circular cylinder and
are denoted here as Co

a. The relation between the circle and square can be written as
Co
a = 4

πC
□
a , where C□

a is the coefficient from Wadam. Using this expression with the
nondimensionalization from Section 4.6, we get the

FIT
2

ρLD3
= 2πC□

aKC. (5.7)

This expression yields a linear relationship between the inertial forces and the KC number.
Comparing this linear trend from Wadam with the results for diffraction forces from the
experiments is especially important. A discrepancy between the two indicates that separ-
ation affects the inertial force contribution. An example of this linear trend is provided
in Figure 5.5. The assumptions used are that surface acceleration and C□

a at large wave
periods are representative of the entire case.

Figure 5.5: Example illustration of how the results from Wadam are presented as a linear
function of the KC number using Equation (5.7). This specific plot depicts the Wadam
results for Case 2 ( LD = 3).
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Chapter 6
Results and Discussions

The following chapter presents the results of the experimental investigations and the nu-
merical Wadam simulations. Firstly, the findings from the results for tandem arrangement
will be presented and discussed. The KC number and spacing ratio dependency are the
main parameters related to the tandem investigation. These investigations are also sup-
plemented by the Wadam analysis. Following tandem is the staggered arrangement, where
the effects of the inflow angle θ are the main topic of discussion. Each arrangement cor-
responds to a separate experimental investigation, which means that the two experiments
are subsequently presented and discussed in chronological order. The chapter is completed
with separate discussions on the 2ω responses, the applicability of the Morison equation,
and some summarizing comments.

6.1 Tandem Arrangement

Results for tandem arrangement are the product of the experimental investigation of the
cases described in Figure 3.7, conducted during the autumn. They are in general presented
as the force measurements Fz on each cylinder and the difference force ∆Fz. In the
experimental setup Cylinder 1 is defined as the bottom cylinder, and Cylinder 2 as the
top cylinder. Consequently, the difference force is defined as the subtraction of Cylinder 1
from Cylinder 2. Any time series provided are the band-passed force measurements while
KC dependent plots are made by extracting the different harmonic components from the
force.

6.1.1 Case 1

Until now, the cylinder configurations have solely been described by the cases described in
Section 3.3 and Figure 3.7. From this point forward, the use of the word ’cases’ specifically
refers to the experimental implementation and post-processing, while the results will be
presented and discussed using spacing ratio S

D . Three KC numbers are selected to give a
representative view of the force development across the KC number range. A time series
of Fz and ∆Fz for S

D = 1, for 5T is provided in Figure 6.1, Figure 6.2 and Figure 6.3.

It quickly becomes apparent from these figures that higher order frequency contributions
are more relevant for L = D, compared to L = 2D and L = 3D. The likely explanation
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for this phenomenon is the vortex-shedding frequencies at the 3D ends. Li wrote that
the St numbers of 3D cylinders are more broad-banded at the base and ends of the cyl-
inders, with pronounced peaks towards the center [13]. This implies that the end effects
should introduce a larger range of higher-order frequencies compared to 2D or infinite
cylinders. While L is incrementally increased, the cross-section and end effects should
stay unchanged. The higher-order force components should therefore be more smeared
out when increasing L, as the center shedding frequency peaks become more dominating.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.1: Time series of Fz and ∆Fz for Case 1 ( SD = 1) and L = D across three
representative KC numbers.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.2: Time series of Fz and ∆Fz for Case 1 ( SD = 1) and L = 2D across three
representative KC numbers.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.3: Time series of Fz and ∆Fz for Case 1 ( SD = 1) and L = 3D across three
representative KC numbers.

Another interesting finding is that Cylinder 1 consistently experiences larger peaks for
Fz in the positive direction, while Cylinder 2 experiences larger peaks in the negative
direction. This indicates a force contribution that acts on each half-cycle during the
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oscillation, and that this contribution on Cylinders 1 and 2 acts 180 degrees out of phase
from each other. A nonzero mean value should therefore be expected for both cylinders
individually.

An additional observation is the development of ∆Fz when increasing the KC number.
Clear and pronounced oscillation peaks show that ∆Fz becomes increasingly dominated
by 2ω frequency amplitudes at higher KC numbers. The exception is at L = D, where
even larger frequencies seem present. The dominating frequency component seems to be
2ω by counting peaks over one period T , which is consistent with the findings of Reiten
presented in Section 1.4.

It becomes evident that increasing L has little impact on the measured force range when
considering the non-dimensionalized values. This observation suggests that the force ex-
erted by the cylinders is primarily dependent on nondimensional factors. As previously
stated, it is likely that the primary effect of a shorter cylinder length is the introduction
of more high-frequency forces. The 3D end effects should be further investigated in future
studies in order to quantify them.

Due to the clear presence of higher-order frequency contributions in the time series, it is
appropriate to separate and analyze the harmonic force components separately. Trends
in the separate force harmonics are likely to be explained by different physical phenom-
ena. Using the same approach described in Section 4.5, the non-dimensional harmonic
amplitudes are extracted and shown in Figure 6.4 as a function of the KC number.

Figure 6.4: The harmonic force component amplitudes measured for Case 1 ( SD = 1)
and L = 3D. Both cylinders are included along with the equivalent Wadam results. 4ω
components are neglected due to noise concerns.

The first takeaway is that the 1ω force component dominates for both cylinders. This is
expected considering that the actuator also oscillates with a frequency of 1ω. A much
more interesting observation is how F 1ω

z compares to the results from Wadam. It can be
seen that these two correspond quite well until KC = 4, before F 1ω

z diverges more for
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higher KC numbers. There are two possible explanations for this nonlinear trend. The
first possible explanation is that viscous forces dominate more for higher KC numbers and
that the inertial forces from Wadam are a better fit to the added mass force from the
experiments isolated. The second is that vortex shedding affects the experimental mass
force. This is further discussed in Section 6.1.3, where the experimental added mass and
damping force contributions are separated.

Furthermore, this nonlinear trend is shared by the 2ω and 3ω forces. Higher-order con-
tributions are usually related to nonlinear or stochastic problems, so this is not that
surprising. A more notable observation is that these contributions are not negligible at
high KC numbers. Adding F 2ω

z to F 3ω
z with KC = 21 sums to approximately 50, which

is 20% relative to F 1ω
z . This means that although F 1ω

z dominates the force signal, the
higher-order contributions still provide a noticeable effect.

Lastly, the force measurements for Cylinder 1 are slightly higher than those for Cylinder 2
for all ω contributions. As mentioned in Section 3.5, the experiments are assumed to be in
deep water conditions. If this is not the case, and Cylinder 2 experiences larger boundary
interaction, it might explain the discrepancies in harmonic amplitudes. These disturbances
seem small enough to not significantly impact the results, with an amplitude difference
less than 10 at most. They are nonetheless worth mentioning and should be considered for
future experiments. This might explain ∆F 1ω

Z presence, but no other significant impact
is identified on the difference forces, which are presented in Figure 6.5.

Figure 6.5: Force amplitudes of ∆FZ for Case 1 ( SD = 1) and L = 3D.

The first interesting observation is the development of the importance of the 2ω contribu-
tion going from Figure 6.4 to Figure 6.5. It is clear that the difference forces are dominated
by ∆F 2ω

z . The ∆F 2ω
z contribution reaches 70 at KC = 21, making it a significant part of

the force image. Difference forces are important to evaluate, as they need to be taken up in
either the mooring system or in hinges to prevent drift. The fact that the difference force
is dominated by ∆F 2ω

z may pose fatigue problems for a potential hinge, as the difference
force then becomes predominately 2ω. In other words, the hinges will then experience
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twice as many force oscillations as the dominating forces on the rest of the structure.

Probably the most interesting takeaway from Figure 6.5 is the values of ∆F 2ω
z compared

to the 2ω forces in Figure 6.4. Using KC = 21 as an example, it can be seen that F 2ω
z ≈ 35

for both Cylinder 1 and Cylinder 2. The 2ω difference force amplitude is 70 at the same
KC number, meaning that ∆F 2ω

z is double the values for the individual cylinders. This
implies that the 2ω forces that act on the two cylinders are 180 degrees out of phase from
each other, leading to a sign shift when taking the difference. Any nonlinearity acting on
the cylinders will subsequently become exacerbated in ∆F 2ω

z . This is in contrast to the
1ω component which is largely canceled out during the subtraction. The 2ω forces are
discussed more in-depth in Section 6.1.4 and Section 6.3.

Only time series and the amplitudes of the harmonic components have been evaluated up
until now. In an effort to bolster the understanding of the hydrodynamic forces, plotting
the added mass and damping coefficients is a powerful tool. They provide a clue to the
development of the forces at high KC numbers and locate any trends. Furthermore, by
separating the mass and damping forces, determining the point where one overtakes the
other becomes possible. The added mass and damping are calculated using Equation (2.16)
and Equation (2.17) with the measured acceleration and its corresponding velocity using a
forward Euler scheme on the acceleration, before nondimensionalized. Figure 6.6 presents
the 1ω mass and damping force coefficients from the experiments for S

D = 1, along with
supplementary values from Wadam, DNV-RP-C205, and strip theory. The values from
Wadam and DNV-RP-C205 are only relatable to the mass coefficient C1ω

a . Due to long
wave approximation, these values should correspond with KC = 0. The experimental
results for C1ω

a are in good agreement with the numerical results from Wadam, as they
lie closely together at KC = 0. The DNV-RP-C205 line slightly overshoots the Wadam
line, which might be because the method described in section 5.4 is derived from a single
cylinder.

Figure 6.6: 1ω force coefficients for Case 1 ( SD = 1) and L = 3D. The measured force
coefficients are plotted against strip theory, the interpolated values for DNV-RP-C205 and
the coefficients from Wadam.
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It is clear that both C1ω
a and C1ω

b is highly dependent on the KC number. While C1ω
b starts

off close to zero and increases steadily, C1ω
a remains much more consistent throughout

the KC range. Unlike C1ω
b , C1ω

a seems to stay mostly independent of the KC number
after reaching KC = 10. This leads to the damping coefficient overtaking the added mass
coefficient at about KC = 18. The added mass force coefficient is expected to be larger than
the damping coefficient at lower KC numbers, while damping should increase in relevance
at higher KC numbers when viscous forces become more prevalent. As mentioned earlier,
the Wadam added mass coefficient corresponds quite well with the first experimental added
mass coefficient. This is a good indication that the numerical model in Wadam is set up
properly.

A more thorough investigation of the relative importance between the inertial and damping
forces is appropriate. This will help in determining which governing physical phenomena
become significant at different KC numbers. The relative importance between the inertial

coefficient and damping coefficient,
C1ω

b
C1ω

a
, should be evaluated. Furthermore, the damping

force should be evaluated as the percentwise contribution to the total force amplitude.
Both of these are presented in Figure 6.7. Interestingly, the damping coefficients seem to
overtake the added mass coefficients at KC = 18. This is a slightly higher KC number than
the expected value where damping coefficients overtake added mass coefficients for a single
circular cylinder at about KC = 10 − 14. A possible explanation is that the interaction
between the cylinders, especially the fluid entrainment of the fluid in the cylinder gap,
increases the relevance of the inertial force. It is also possible that vortex shedding of
the upstream cylinder and reattachment on the downstream cylinder lowers the damping
relevance.

(a) 2D (b) 3D

Figure 6.7: Relative importance of the force coefficients for Case 1 ( SD = 1) and L = 3D
and percentwise importance of damping in the force amplitude. Red stapled lines indicate
the point where damping overtakes the mass force coefficient.

6.1.2 Case 2

Case 2 is the experimental testing of cylinders where S
D = 2, doubling the spacing ratio in

Case 1. Due to the double spacing between the two cylinders, wake interaction between
the two is expected to reduce going from S

D = 1. Time series of the same selective KC
numbers as before are presented in Figure 6.8, Figure 6.9 and Figure 6.10.

The first introductory observation from these figures is the same as for S
D = 1. The
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forces are more high-frequent for L = D compared to L = 2D and L = 3D. The overall
oscillation amplitudes remain largely unaffected when altering the lengths. It is evident
that the 3D end effects affect the frequencies, and that a more comprehensive investigation
of this phenomenon is needed to quantify these effects.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.8: Time series of Fz and ∆Fz for Case 2 ( SD = 2) and L = D across three
representative KC numbers.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.9: Time series of Fz and ∆Fz for Case 2 ( SD = 2) and L = 2D across three
representative KC numbers.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure 6.10: Time series of Fz and ∆Fz for Case 2 ( SD = 2) and L = 3D across three
representative KC numbers.

There are mainly two takeaways that differentiate these figures from the figures from
S
D = 1. The first is that the general amplitudes of the force series increase when increasing
the spacing ratio from S

D = 1 to S
D = 2. This is in contrast to the ∆Fz forces, which

appear to require higher KC numbers to develop. An added effect of this is that ∆Fz

amplitudes do not reach the same levels as for S
D = 1. The ∆Fz amplitudes for spacings

S
D = 1 become larger relative to the regular force measurements compared to S

D = 2 as a
result.

43



CHAPTER 6. RESULTS AND DISCUSSIONS

The second takeaway is that the positive and negative force oscillation peaks of the two
cylinders coincide up until higher KC numbers compared to S

D = 1. Cylinder 1 will have
larger positive peaks while Cylinder 2 have larger negative peaks after this KC number,
which is the same as before. Any other observations that can be drawn from the time
series are otherwise consistent with the findings for S

D = 1.

The harmonic force amplitudes are extracted as previously for S
D = 1 and presented in

Figure 6.11. There are several similarities between the two spacing ratios, including the
general nonlinear trends. Likewise, the Wadam results and the first-order forces still
correspond well with each other at low KC numbers.

Figure 6.11: The harmonic force component amplitudes measured for Case 2 ( SD = 2)
and L = 3D. Both cylinders are included along with the equivalent Wadam results. 4ω
components are neglected due to noise concerns.

Interestingly, F 1ω
z increased considerably by approximately 50 at KC = 21 when increas-

ing the spacing ratio. Unlike F 1ω
z , the F 2ω

z amplitudes decrease when the spacing ratio
increases. This further strengthens the theory that the 2ω force components are mainly
a product of the wake interaction between the two bodies. It was observed earlier that
the F 2ω

z forces on the two cylinders appear added together when calculating the difference
force for S

D = 1. Coupled with the reduced measured F 2ω
z amplitudes, it is therefore

expected that the difference force is reduced as well. Figure 6.12 presents the difference
forces for S

D = 2.

44



CHAPTER 6. RESULTS AND DISCUSSIONS

Figure 6.12: Force amplitudes of ∆FZ for Case 2 ( SD = 2) and L = 3D.

As expected, ∆Fz decreases when the spacing ratio is doubled. The 2ω difference force
is decreased by ≈ 22 at KC = 21, which means that a doubling in spacing ratio did not
warrant a halving of ∆F 2ω

z . The difference forces are subsequently still a considerable
force response that needs to be evaluated and is still dominated by the ∆F 2ω

z amplitudes.
Considering that the 1ω amplitudes in Figure 6.11 increases, while the 2ω difference force
decreases, the importance of wake interaction and ∆Fz decreases when increasing the
spacing ratio. Simultaneously, the forces acting on each individual cylinder should increase
in importance.

As the spacing ratio increases from 1 to 2, the ∆F 2ω
z pickup begins to exhibit a noticeable

shift to later KC numbers. Previously from Figure 6.5 it is seen that the 2ω amplitudes
completely dominate ∆Fz all the way down to KC = 5. This point is now shifted up to
KC = 9 or KC = 10 as shown in Figure 6.12 going to S

D = 2. Overall, the results for
the difference forces shown in Figure 6.5 and Figure 6.12 show that the wake interaction
decreases when the spacing ratio increases.

Another interesting observation is the less smooth development of ∆F 2ω
z compared to

S
D = 1. Whereas ∆F 2ω

z in Figure 6.5 exhibits a strong nonlinear and explosive trend,
∆F 2ω

z in Figure 6.12 are slower to develop and have a more uneven curve at larger KC
numbers. An example of this is the plateau that occurs between KC = 18 and KC = 20,
and some smaller ones at KC = 14 and KC = 16. Compared to S

D = 1, it may indicate
that the rate of increase dissipates with increasing KC numbers or is just slower in general,
but the KC number range is too small to determine this conclusively. Seeing the difference
in the development of ∆Fz for more spacing ratios would be interesting, but would require
a new set of experiments.

Figure 6.13 presents the first order added mass and damping coefficients for spacing ratio
S
D = 2. As for S

D = 1 in Figure 6.6, the force coefficients exhibit a strong KC number
dependency. The general trends in the two spacing ratios are equal, although the curves
seem steeper for S

D = 2. As mentioned earlier, the forces on the individual cylinders in-
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crease going to larger spacing ratios. It is therefore expected that also the non-dimensional
force coefficients are larger. The C1ω

a from Wadam and DNV-RP-C205 still coincide well
with the experiments at KC = 0.

Figure 6.13: 1ω force coefficients for Case 2 ( SD = 2) and L = 3D. The measured force
coefficients are plotted against strip theory, the interpolated values for DNV-RP-C205 and
the coefficients from Wadam.

Another observation is that the KC number at which C1ω
b overtakes C1ω

a is now shifted to
KC = 14. It appears that the damping forces increase more compared to the added mass
force when the spacing ratio is increased. More interestingly, this KC number is closer
to when C1ω

b is expected to dominate for a single circular cylinder. This is also shown in
Figure 6.14a, which represents the ratio between C1ω

b and C1ω
a . Furthermore, it is seen in

Figure 6.14b that the percentwise importance of damping overtakes added mass at about
KC = 5. This is consistent with the findings of Mentzoni and Reiten, who noted the same
at around KC = 4 to KC = 5 [15][19].
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(a) 2D (b) 3D

Figure 6.14: Relative importance of the force coefficients for Case 2 ( SD = 2) and L = 3D,
and percentwise importance of damping in the force amplitude. Red stapled lines indicate
the point where damping overtakes the mass force coefficient.

6.1.3 Experiments and Potential theory

This subsection aims to tie the Wadam results together with the experimental mass forces.
In doing so, the validity of potential flow theory as an estimation model for the 1ω added
mass force will be evaluated. The added mass is separated from the total force signal using
Fourier averaging from Equation 2.14. By multiplying the added mass by the KC equival-
ent acceleration, the inertial forces are obtained. The inertial forces and the corresponding
Wadam results for S

D = 1 are presented in Figure 6.15.

It can be seen that the Wadam results, following the linear curve 2πCaKC, are almost
identical to the experimental F 1ω

I at low KC numbers. This was also the case for the total
measured forces in Subsection 6.1.1, but now they remain close for longer in comparison.
Viscous forces and vortex shedding become more important at higher KC numbers. There-
fore, potential theory will become less valid when the KC number is increased. Notably,
the inertial forces and the Wadam results are similar until about KC = 8, at which point
F 1ω
I starts to creep away from the numerical results. As a result, the experimental added

mass forces are ≈ 30% larger than the Wadam results at KC = 21.
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Figure 6.15: The mass force measurements for Case 1 ( SD = 1) and L = 3D, along with
results from Wadam. The first ω component and the Wadam results coincide well for the
first KC numbers.

(a) D (b) 2D (c) 3D

Figure 6.16: Excitation, diffraction and Froude-Kriloff forces for Case 1 ( SD = 1)

(a) D (b) 2D (c) 3D

Figure 6.17: Phase angles of the excitation and diffraction forces for Case 1 ( SD = 1)

The S
D = 2 inertial forces and the corresponding Wadam results are shown in Figure 6.18.

Like the results for S
D = 1, the Wadam results follow the experimental inertial forces much
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closer compared to the total forces. It may however, seem like the experimental results
increases slightly faster away from the numerical results for S

D = 2, although not by much.
In Subsection 6.1.2 it was discussed how the forces were increased when the spacing ratio
was increased. This is also reflected with the added mass force in Figure 6.18 being slightly
increased compared to Figure 6.15. Interestingly, the experimental results are now more
overestimated compared to the lower spacing ratio. With regards to the percentage, it
went from ≈ 30% to ≈ 40% overestimation compared to the numerical results.

In addition, the excitation forces are split into the diffraction and Froude-Kriloff forces as
described in Section 2.2 and Section 5.5. These forces are presented in Figure 6.16 with the
accompanying phases in Figure 6.17 for S

D = 1. Likewise, the forces and phases for S
D = 2

are presented by Figure 6.19 and Figure 6.20. The general trends stay the same for both
S
D = 1 and S

D = 2, with large phase angle dependency at shorter waves before smoothing
out at longer T . It is also seen that the phases converge to π

2 at about T = 3s, at which
point all the forces are in phase for the full-scale model. Normalizing the diffraction forces
further by water particle acceleration after T = 3s will yield Ca from Wadam [7].

Figure 6.18: The mass force measurements for Case 2 ( SD = 2) and L = 3D, along with
results from Wadam. The first ω component and the Wadam results coincide well for the
first KC numbers.

(a) D (b) 2D (c) 3D

Figure 6.19: Excitation, diffraction and Froude-Kriloff forces for Case 2 ( SD = 2)
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(a) D (b) 2D (c) 3D

Figure 6.20: Phase angles of the excitation and diffraction forces for Case 2 ( SD = 2)

It is seen in Figure 6.15 and Figure 6.18 that the difference between experimental added
mass force and the numerical added mass increases at high KC numbers. Potential flow
theory is not really compatible with vortex shedding by definition. As viscous effects
become more prevalent at higher KC numbers, the numerical potential theory results
should become less valid. Tying this back to Figure 6.15 and Figure 6.18, means that the
results show the added mass forces are increased due to the presence of viscous vortex
shedding.

6.1.4 Higher Order Force Coefficients

The following subsection presents the results for higher order ω forces. Due to the noise
discussed in Section 4.4 and Section 3.4, the main focus will be on the 2ω and 3ω contri-
butions.

To calculate the added mass and damping, the acceleration and velocity utilized in Equa-
tion (2.16) and Equation (2.17) must match the ω component of the force being rep-
resented. This is already satisfied for the 1ω forces because the rig acceleration is 1ω,
and the measurements from the accelerometer can be used directly. For the higher-order
force components, fictitious η̈(t) and η̇(t) are created by assuming unit amplitude for the
acceleration and integrating to get velocity. This is expressed as

η̈(t) = cosnωt, (6.1)

η̇(t) =
1

nω
sinnωt, (6.2)

where n is the frequency order. These expressions are used to create time series of 5T ,
which can subsequently be used to calculate the force coefficients. This fictitious velocity
and acceleration should be in phase with the force. It is important to note that the
coefficients created by this process are not correctly scaled, but nonetheless, provide us
with a qualitative basis to analyze the general trends in the higher-order forces.

Before presenting the higher-order results and discussing them, the opportunity to talk
about the nature of the results is taken. Force coefficients are usually not presented as
negative values, and many may therefore find the negative values strange. However, there
is a reason for this. The actuator oscillates with a frequency of 1ω, meaning that all energy
injection to the system happens at this frequency as well. This implies that:
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1. C1ω
b should never be negative for the cases in tandem configuration. And,

2. Ca can always be negative. Examples of negative C1ω
a is VIV or moonpool resonance,

although this is not expected here.

No energy injection happens at the higher order frequencies, and we can not expect the
same for 2ω and 3ω contributions. Furthermore, we expect large interaction between
vortices and cylinders in the wake interaction problem. It is reasonable to believe that a
significant degree of stochasticity is related to this interaction. As a result, the coefficient
signs and the KC number dependency may seem random. Identifying trends in the results
will be important to determine the degree of stochasticity, and can provide clues to the
governing parameters for each harmonic contribution.

The 2ω coefficients are presented in Figure 6.21 and Figure 6.22 for S
D = 1 and S

D = 2
respectively.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.21: 2ω force coefficients for Case 1 ( SD = 1).

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.22: 2ω force coefficients for Case 2 ( SD = 2).

There are mainly five prominent takeaways from Figure 6.21 and Figure 6.22 at face value:

1. The general trends for each case are, broadly speaking, independent of the cylinder
lengths.

2. With the exception of some scatter on a KC number basis, the general range and
magnitudes of the coefficients stay the same for all L within each case.

3. The inner and outer cylinders’ results mostly mirror each other around the KC axis.

4. Damping forces dominate the 2ω force response for most of the KC number range.
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5. The mass force stays relatively unchanged when going from S
D = 1 to S

D = 2.

The first two points are significant. They offer a hint that the 3D end effects may not be
a significant governing factor regarding the general trends of the 2ω force response. The
most likely effect of the 3D end effect is the introduction of scatter in the coefficient values,
as shown by the discrepancy between the values in Figure 6.22a and the other figures. We
know from the findings of Li [13] that the St number spectrum is broad-banded at the ends
of 3D cylinders. If there is a large randomness related to the vortex shedding at the end, it
might contribute to the fluctuations seen on a KC number basis. A plausible explanation
of the general trend seen in the 2ω coefficients may be the velocity reduction in the wake.
This solution was proposed by Kristiansen, who identified the ∆F 2ω

z component and its
mean using the drag equation with velocity reduction [12]. If this is the case, a velocity
reduction may explain the nonlinear increase in C2ω

b .

The third point is also a good indication that the 2ω trends are largely decided by the
velocity reduction. Velocity reduction from the upstream cylinder wake in an oscillating
flow indicates that a cylinder’s drag should always be bigger in one direction of the oscil-
lation. This fact alone should also indicate the formation of a mean value. Furthermore,
this indicates that the maximum 2ω value of the two cylinders should be 180 degrees out
of phase from each other, or have opposite signs.

The last two points show that the damping forces dominate the 2ω forces for large KC
numbers. Both mass and damping coefficients seem insignificant at low KC numbers,
before increasing when approaching high KC numbers. C2ω

b in particular increases sharply
at the first sign of increase, while C2ω

a increases slowly and seem independent of the spacing
ratio. This may indicate that C2ω

a is largely unaffected by the velocity reduction from the
wake, or is mainly due to sources of error. Furthermore, the sharp rise in C2ω

b seems
shifted towards larger KC numbers when the spacing ratio was increased, which further
strengthens the velocity reduction as an explanatory model.

The 3ω coefficients are presented in Figure 6.23 and Figure 6.24 for S
D = 1 and S

D = 2
respectively.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.23: 3ω force coefficients for Case 1 ( SD = 1).
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(a) L = D (b) L = 2D (c) L = 3D

Figure 6.24: 3ω force coefficients for Case 2 ( SD = 2).

Unlike the force coefficients for 2ω, trends in the 3ω coefficients are much harder to identify.
There seems to be some kind of trend where the 3ω mass force is slightly negative at lower
KC numbers before a slow and steady increase in the positive direction is observed. This
is, however, not universal across all the lengths for the two spacing ratios. Figure 6.24a
and Figure 6.24b specifically show that the mass coefficients may sporadically change sign
on a KC number basis and subsequently stand out from this trend. Scatter on a KC
number basis also seems to affect the results.

The damping coefficients exhibit no consistent trend across the board. They may start
to increase and stay high and positive, increase and quickly fall towards strongly negative
values, decrease slowly and steadily without stopping, or sporadically change between
strongly positive and negative values. The two cylinders may exhibit different tendencies
at the same time. Therefore, significant scatter and stochasticity clearly characterize the
results for C3ω

b , and trends are hard to identify.

6.2 Staggered Arrangement

Results for staggered arrangement are the product of the experimental investigation as
described in Figure 3.8, conducted during the spring. Any convention established regard-
ing the formatting of the post-processed results from tandem configuration is kept. To
that end, Cylinder 1 and Cylinder 2 are still placed at the bottom and top of the tank
respectively. The results are presented as the harmonic components of the drag and lift
forces on each cylinder, denoted D and L. Unlike the tandem configuration, the staggered
configuration is designed to investigate the effects of the inflow angle θ. Note that z and
y-direction for tandem coincides with drag and lift respectively when θ = 90°. Due to
limitations on the experimental rig, θ could only be tested between θ = 90° and θ = 35°
with increments of 5°.

6.2.1 1ω Force Components

The 1ω force components will be presented first for the staggered arrangement, as they
show the most consistency over the different cylinder lengths. These results for F 1ω

D and
F 1ω
L are presented for all L in Figure 6.25.

It was noted earlier that the dimensionless results in tandem configuration stay largely
independent of L. Interestingly, this does not seem to hold true for the staggered arrange-
ment. The results for drag and lift are seen to increase for each incremental increase in L.
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Although F 1ω
D and F 1ω

L increase when increasing L, the general trend stays consistent in
both Figure 6.25a, Figure 6.25b and Figure 6.25c. Localized, the water will flow in the dir-
ection of least resistance. For 3D cylinders with end effects, this means that the flow may
choose to flow below the ends instead of around the ”wall” formed by the cylinders. If the
water for some reason is more likely to choose to flow under the cylinders for staggered
cylinders compared to tandem, this might explain the sudden L dependency. This is,
however, not certain at this stage of the research. Further investigations are required to
determine this relationship definitely.

Firstly, both F 1ω
D and F 1ω

L experience a sudden increase at the first increments of θ. For
drag, this trend continues up until θ = 65° before stagnating. A kind of plateau is then
formed between 65° and 45° before F 1ω

D starts to decrease. A maximum drag is observed
at θ = 55° for all L. Note that θ = 45° were unable to be tested for L = 2D due to
limitations with the experimental rig, leading to a sharper plateau in Figure 6.25b.

The lift forces experience a much sharper increase at the first θ increments compared to
F 1ω
D . This is sensible as F 1ω

L is almost negligible at θ = 90°. They continue to grow up
to about θ = 65° before a sharp free fall is experienced. It appears that the minimum
lift is consistent throughout all L at about 45°. In contrast, the maximum lift is located
between 75° and 65° depending on L

D . The drag and lift forces subsequently experience
their maxima and minima at different inflow angles.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.25: F 1ω
D and F 1ω

L at KC = 16 for staggered arrangements.

As for tandem arrangement, ∆FD and ∆FL are also evaluated and presented in Figure
6.26. Where trends were found for F 1ω

D and F 1ω
L , there certainly are none for ∆F 1ω

D

and ∆F 1ω
L . The only shared finding in Figure 6.26 is that maximum ∆F 1ω

L is located at
θ = 65° for both L = 2D and L = 3D. It is otherwise difficult to locate any consistency
between the three lengths. L = D for instance is completely different quantitatively and
qualitatively from the other lengths.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.26: ∆F 1ω
D and ∆F 1ω

L at KC = 16 for staggered arrangements.
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To summarize, the 1ω drag and lift forces do appear to show general trends across the
board for all L. What makes F 1ω

D and F 1ω
L from the staggered arrangement fundamentally

different from their tandem counterpart is that their nondimensional magnitude seems
dependent on L. This is also observed in Figure 6.25 and Figure 6.26, where the magnitude
of the forces seem independent of L at θ = 90°. Any trend in the difference forces is
cumbersome to identify, but it seems that ∆F 1ω

L has a large increase around 75° and 65°.
The magnitudes and general shapes are not consistent across all L.

6.2.2 Higher Order Force Components

It was noted in Section 6.1.4 that scatter becomes more prevalent for higher ω contribu-
tions. Given the previous analysis of the 1ω contribution for staggered arrangement, a
significant scatter is expected for the higher-order frequencies. Figure 6.27 presents the
results for F 2ω

D and F 2ω
L , while Figure 6.28 shows the results for ∆F 2ω

D and ∆F 2ω
L .

As expected, the forces from Figure 6.27 present quite different trends qualitatively across
the L range. Curves do not stay consistent, and peaks or maxima are even shifted to
different θ. It is therefore difficult to make an identification of any trends that may
characterize the 2ω forces. The cluster of measurement points does seem to become more
stretched out or increased in magnitude by the increase in L. This is consistent with the
1ω drag and lift, which was also seen to be dependent on L.

The ∆F 2ω
D and ∆F 2ω

L amplitudes reflect the tendencies in ordinary lift and drag forces.
Any significant peak seems to be at a random θ and with a large scatter in magnitude. The
notable difference is ∆F 2ω

D for L = 2D and L = 3D, where maximum drag is estimated at
the same θ with similar magnitudes. This is however not reflected for L = D. Figure 6.27c
is also quite different from the findings of Reiten, both qualitatively and quantitatively
[19]. The scatter on both measured drag and lift, as well as the difference forces, persists
also on a KC number basis.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.27: F 2ω
D and F 2ω

L at KC = 16 for staggered arrangements.
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(a) L = D (b) L = 2D (c) L = 3D

Figure 6.28: ∆F 2ω
D and ∆F 2ω

L at KC = 16 for staggered arrangements.

The 3ω contributions from Figure 6.29 seem even more prone to scatter. It does appear
that the maximum peak of F 3ω

L is localized at earlier θ increments, but the general shape
varies. Unlike for 1ω and 2ω force contributions, the overall 3ω magnitude cluster does
not seem largely affected by the change in L, although this is hard to determine definitely.

∆F 3ω
D and ∆F 3ω

L are presented in Figure 6.30. The drag forces seem to be behaving
similarly throughout all cylinder lengths. On the other hand, the lift forces seem much
more spurious both in trend and magnitude.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.29: F 3ω
D and F 3ω

L at KC = 16 for staggered arrangements.

(a) L = D (b) L = 2D (c) L = 3D

Figure 6.30: ∆F 3ω
D and ∆F 3ω

L at KC = 16 for staggered arrangements.

To summarize, the higher-order frequency components are characterized by a large degree
of scatter. This scatter is seen in both changes in L and the KC number. It is possible
that this scatter is related to the broad-banded vortex-shedding Li found at the base ends.
As he considered much longer cylinders, the larger order frequencies in our results may
be exacerbated in comparison. This is however hard to determine definitely. Due to this
stochasticity, repetition testing will be important in order to provide a comprehensive
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picture of these forces. The scatter is also reflected in the difference forces, and their
overall usefulness should be evaluated at this stage until a more holistic understanding of
the regular forces is acquired.

6.2.3 Damping Forces - Staggered Arrangement

The most important source of prior research on the staggered arrangement is the paper
by Zdravkovich. As mentioned in Section 1.4, Zdravkovich created contour plots of the
drag and lift coefficients as a function of longitudinal and transverse spacing ratios. As
Zdravkovich only considered steady flow, it is necessary to isolate the damping results
from the experiments in order to compare the two. Compliance between the damping
results and the findings of Zdravkovich would be a good validation of the results.

(a) Drag coefficients (b) Lift coefficients

Figure 6.31: Contour plots from Zdravkovich for CD and CL from Figure 1.4, with the
expected largest values marked for Case 2 ( SD = 2).

Source: [26]

By using the spacing ratio for Case 2 along with the information from Figure 6.31, it is
possible to estimate the angles where the largest CL and CD are expected to occur. One
can use

θ = 90° − arctan

(
(T/D)

(L/D)

)
, (6.3)

where T/D and L/D are the longitudinal and transverse spacing ratios respectively. The
center-to-center distance between the cylinders in Case 2 can be written as S/D = 3.
Finding the crossing between the contours of maximum drag and lift coefficients with
S/D for Case 2 and using these values in Equation (6.3) will give approximately

θD ≈ 90° − arctan

(
2

3

)
= 56°, (6.4)

and

θL ≈ 90° − arctan

(
0.75

3

)
= 75° (6.5)
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for drag and lift respectively. These calculations indicate that it is expected that drag
should reach its maximal value at about θ = 56°. Likewise, lift should reach its maximum
value at about θ = 75°. Remember that Zdravkovich defined his lift coefficients in Figure
1.4b as negative values, and one should expect a negative maximal value at this angle for
the experiments.

Figure 6.32: 1ω damping forces at KC = 16 with L = 3D. The results show good
correspondence with the findings of Zdravkovich , with a maximum at θ = 75° and θ = 55°

for drag and lift respectively [26].

The damping forces for the staggered flow at KC = 16 for large cylinders are illustrated
in Figure 6.32. There are at least three main takeaways from this figure; Maximum
drag coincides with an inflow angle of about θ = 55°, the minimum lift is located at
about θ = 75° and drag decreases after an inflow angle θ = 45°. These takeaways seem
independent of both cylinder lengths and KC number, as shown in the appendices by
Figure C.1 and Figure C.2.

The possible explanations for each of these takeaways are presented separately.

1. Drag is seen to increase with a decrease in θ. A likely explanation is that the down-
stream cylinder is gradually shifted outside the turbulent wake from the upstream
cylinder. This means that the downstream cylinder experiences less velocity reduc-
tion from the turbulent wake.

2. The maximum negative lift is located at θ = 75°. As noted by Zdravkovich, a
plausible explanation for the negative lift value may already be provided by Mair
and Maull. They proposed that the negative lift is due to the entrainment of flow
into the wake boundary of the upstream cylinder [14]. Furthermore, Zdravkovich
noted that maximum negative lift is reached when the downstream cylinder displaces
the wake and compresses the streamlines between its inner side and the displaced
wake [26].
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3. The drag starts to decrease after θ = 45°. This may be explained by the frontal area
of the cylinders in the viscous part of Equation (2.28) decreasing. Additionally, the
cylinders experience a gradual change away from diamond back to square geometry
as they are rotated beyond θ = 45°, which are known to produce larger forces.

The findings regarding the second point are particularly interesting. As shown in Figure
6.32, the lift forces exhibit a quick increase in the negative lift as the first θ increments
towards its maximum value at θ = 75° before experiencing an abrupt fall in magnitude.
This creates a sharp spike in the damping lift forces, and the same abrupt fall was also
noted by Zdravkovich. Considering the inflow angle and the cylinder positions, it is likely
that an intense gap flow between the cylinders is responsible for the large lift force. If
this is correct, then the abrupt decrease in negative lift going from θ = 75° to θ = 90°

is explained by a blockage of that gap flow. Subsequently, the abrupt fall going from
maximum negative lift towards lower θ is due to more projected space in the gap, lowering
the intensity of the gap flow.

Figure 6.33: A sketch of the flow pattern for staggered arrangement.

6.3 A Discussion on 2ω Forces

As mentioned earlier in Section 6.1.4, a plausible explanation for the 2ω response of the
force in tandem is the wake velocity reduction. This section will outline how the findings
in that section affect the difference forces and why the 2ω component dominates. The
Morison equation in Section 2.7 is used to describe this phenomenon. By assuming large
KC numbers, Equation (2.28) can be reduced to the drag term since we expect viscous
drag to dominate at large KC numbers. The Morison equation then becomes

FD =
1

2
ρDCDu|u|. (6.6)

As described by Kristiansen, a simplified wake model by introducing a wake reduction
factor on the velocity acting on the cylinders for separate half-cycles [12] can be created.
This is expressed as
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u = ua sinωt, 0 ≤ t ≤ T

2
(6.7)

u = ub sinωt,
T

2
≤ t ≤ T (6.8)

where ua is the undisturbed velocity amplitude and ub is the reduced velocity amplitude.
Introducing this half-cycle velocity reduction to Equation (6.6) results in the force expres-
sions

FD =
1

2
ρDCDu

2
a sinωt| sinωt|, 0 ≤ t ≤ T

2
(6.9)

FD =
1

2
ρDCDu

2
b sinωt| sinωt|,

T

2
≤ t ≤ T (6.10)

A time series of the drag force on two cylinders generated in this manner is presented in
Figure 6.34. The forces are generated by expressing the velocities by ub = 0.8 · ua, using
0.8 as the wake reduction factor.

Figure 6.34: Time series of a simplified wake model with the Morison equation. The wake
model applies a constant velocity reduction factor of 0.8 on each cylinder during a half
period.

Source: [12]

Figure 6.34 shows mainly two takeaway points. Firstly, the wake reduction model proposed
by Kristiansen correctly identifies that the 2ω component dominates ∆Fz. Secondly, this
model correctly identifies the nonzero mean of this ∆Fz. Both of these takeaway points
are observed in the experimental investigation, and along with the findings and discussion
in Section 6.1.4, seem to strengthen velocity reduction as an explanatory model.

An attempt is made to further elaborate on the explosive nonlinear increase of the 2ω
components shown in Figure 6.5 and Figure 6.12.
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Remember, one of the main takeaways from Section 6.1.4 was that the cylinders’ 2ω forces
mostly mirror each other around the KC axis in Figure 6.21 and Figure 6.22. As a reference
point for further discussion, Figure 6.21c is presented on its own as an example in Figure
6.35.

Figure 6.35: 2ω force coefficients for Case 1 ( SD = 1) and L = 3D.

For simplicity, we assume that the forces on the two cylinders are exactly mirrored. In
other words, the absolute value of the 2ω forces on the two cylinders are assumed to be
exactly equal, and the forces act in opposite directions. This can be expressed as

F 2ω
1 = −F 2ω

2 . (6.11)

The difference forces are obtained by subtracting the forces of one cylinder from the other.
By using Equation (6.11) to calculate the difference forces, one obtains

∆F 2ω = F 2ω
1 − (−F 2ω

1 ) (6.12)

∆F 2ω = 2F 2ω
1 . (6.13)

This estimation from Equation (6.13) may seem unremarkable at face value. However, it is
evident from Figure 6.35 that F1 and F2 individually increase non-linearly as a function of
the KC number. This non-linearity is then exacerbated in ∆F when the two are summed
together, instead of subtracted due to opposite signs. The result is an explosion in the
difference force as shown in Figure 6.21 and Figure 6.22.
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6.4 Qualitative Comparison to 2D CFD

In this section, we aim to bridge the gap between the experimental results presented
earlier, and the CFD simulations from Hals. Hals is another MSc prospect who simulated
the experimental cases using a 2D RANS model. The primary objective is to assess the
agreement and discrepancies between the experimental data and the numerical findings
from Hals’s 2D RANS simulations. By evaluating and comparing the experimental results
and CFD simulations, we aim to provide valuable insight and guidance toward improve-
ments in simulation techniques for future investigations. Subsequently, this section is
written in collaboration with Hals in order to combine the results for comparison [8].

The current and previous paradigm for MSc prospects doing CFD on this topic is to use 2D
RANS in OpenFOAM with a k−ϵ turbulence model. Reiten obtained good correspondence
between his CFD simulations and experiments but only considered 2D investigations for
both [19]. Its applicability is not yet evaluated for 3D. The experimental and numerical
forces acting on Cylinder 1 in the tandem configuration are presented in Figure 6.36 for
both S

D = 1 and S
D = 2.

It quickly becomes apparent that the 2D numerical simulations overestimate the forces on
the cylinder compared to the experiments. The numerical results are expected to be con-
servative, and the 1ω forces are reasonably approximated compared to the experimental
results for higher KC numbers. At smaller KC numbers the numerical and experimental
simulations are almost identical. On the flip side, F 2ω

z seems vastly overestimated com-
pared to the experiments. The point where the numerical and experimental F 2ω

z diverges
seems shifted to higher KC numbers for S

D = 2, and these points indicate that the RANS
model is unable to accurately resolve the wake interaction.

(a) Case 1 ( S
D = 1) (b) Case 2 ( S

D = 2)

Figure 6.36: Comparison of Fz between the tandem 3D experiments and 2D CFD simula-
tions.

The ∆F 2ω
z forces should reflect the discrepancies in F 2ω

z , and make them easier to locate.
A similar alignment for the difference forces is provided in Figure 6.37. As discussed in
Section 6.3, the 2ω difference force is expected to be approximately 2F 2ω

z . The difference
forces can therefore be considered representative of 2ω differences in numerical and exper-
imental results. From Figure 6.37 it is shown that ∆F 2ω

z is about double the experimental
results. As mentioned earlier, numerical ∆F 2ω

z overestimates the experiments at later KC
numbers when spacing is increased.
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(a) Case 1 ( S
D = 1) (b) Case 2 ( S

D = 2)

Figure 6.37: Comparison of ∆Fz between the tandem 3D experiments and 2D CFD sim-
ulations.

It should be noted that the numerical simulations manage to capture the general trends
observed for the 3D experiments. Furthermore, it accurately resolves the forces at the
lowest KC numbers, although starts to overpredict the forces when increasing the KC
number further. This may be explained by the use of the RANS model, which in general
does not resolve the wake and vortex shedding properly. Therefore, it is not surprising that
the 2ω forces are not accurately predicted. Furthermore, the use of the k − ϵ turbulence
model may pose challenges. This is a model that is tuned to near-parallel flow and is
consequently not very suitable for bluff body flow. It should therefore be considered an
engineering model and not a scientific model when used in the context of this scope of
work.

Results for staggered arrangements are also compared. As outlined in Section 6.2, the
experimental staggered arrangement results are subject to significant scatter for higher
frequency contributions and L dependencies for 1ω. A selection of F 1ω

D , F 1ω
L , ∆F 2ω

D and
∆F 2ω

L were chosen to compare the two, whereas the first of these are presented in Figure
6.38.

The overall impression from Figure 6.38 is that the numerical simulations manage to
capture the θ effects fairly well. This is especially true for the lift forces, which surprisingly
are almost identical for the two, although this is likely coincidental. They also manage to
capture the general trends fairly well. The numerical results still overestimate the drag
forces for most of the range and fail to identify its critical inflow angle.
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Figure 6.38: Comparison of F 1ω
D and F 1ω

L between the staggered 3D experiments and 2D
CFD simulations.

The 2ω contribution has previously been identified as dominating for the difference forces
in tandem arrangement. Figure 6.39 shows the comparison of ∆F 2ω

D and ∆F 2ω
L between

the numerical and experiments for staggered arrangement.

It is clear from Figure 6.39a that the numerical results dramatically overestimate the ∆F 2ω
L

forces. There is no indication from the experiments that this is reasonable. In order to
make the drag comparison clear, the lift is neglected in Figure 6.39b. Interestingly the
∆F 2ω

D forces from the numerical and experimental results are qualitatively opposite from
each other. The maximum drag from the experiments coincides with the minimum value
from the RANS model. It is at the moment, unclear whether or not this is due to the large
degree of stochasticity and L dependency in the experimental staggered configuration, or
due to mesh and model choices in the numerical modeling. More investigations into this
phenomenon are needed to determine this definitely. Overall, the CFD presently seems
unfit to properly estimate higher-order force contribution for the staggered arrangement
but works reasonably well for F 1ω

D and F 1ω
L .

(a) Difference force components (b) Harmonic force components

Figure 6.39: Comparison of ∆F 1ω
D and ∆F 1ω

L between the staggered 3D experiments and
2D CFD simulations.

To summarize, the current CFD strategies overestimate the forces and should therefore
be treated as conservative estimates. They are capable of providing a reasonable image
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of the general trends observed in tandem arrangement and for F 1ω
D and F 1ω

L in staggered
arrangement. However, higher-order contributions are not accurately predicted by the
numerical results, giving large 2ω forces for tandem and being almost unrecognizable in
staggered. As the 2ω forces and difference forces are a large motivation behind this work,
an improved strategy is recommended.

Firstly, the use of the k−ϵ turbulence model should probably be reevaluated as it is tuned
for near-parallel flow. It is possible to tune the parameters in this model manually in
OpenFOAM, but doing so would require a separate study. Alternatively, the k−ω (SST)
turbulence model can be considered as a substitute for the k − ϵ model in future work.

Secondly, a change in the CFD model may be beneficial with regard to resolving the wake.
RANS does not resolve the wake accurately and is found to overestimate the 2ω forces.
Switching to a LES model will allow the resolution of large-scale turbulent structures and
may improve the overestimation of these forces. This model does however not work well
with 2D, warranting 3D CFD instead. Subsequently, this strategy can be computationally
expensive and may require a fine mesh resolution. A 3D simulation would be of interest
as it can help with the understanding of the 3D end effects of the cylinders. Alternatively,
a DES model can be considered. Ultimately, the trade-offs between the different models
will need to be evaluated if a model change is relevant.

6.5 Comparison to the Morison Equation

The end goal of the investigations is to compare the findings with and evaluate the ap-
plicability of the Morison equation. All previous results are presented on a KC number
basis, and so the easiest way to compare the experimental results with ordinary Morison
equation is to make Equation (2.28) KC number dependent in a similar manner as in
Section 5.6. We start with the viscous term in Equation (2.28)

FD =
1

2
ρCDDLu(t)|u(t)|. (6.14)

Furthermore, we know from Equation 2.11 that the velocity can be written as u =
ωηa sin(ωt) and that the frequency is equal to ω = 2π

T . The oscillation amplitude ηa
can also be expressed by rewriting Equation 2.26 as ηa = KCD

2π . We can then rewrite
Equation 6.14 as

FD =
1

2
ρCDDL

(2π)2

T 2

KC2D2

(2π)2
sin(ωt)| sin(ωt)|, (6.15)

which can be rewritten to

FD =
1

2
ρCDD

3L
KC2

T 2
sin(ωt)| sin(ωt)|. (6.16)

Using this expression along with the nondimensionalization from Section 4.6, we get the
viscous term

FDT
2

ρLD3
=

1

2
CDKC

2 sin(ωt)| sin(ωt)|. (6.17)
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This new, nondimensional and KC number-dependent viscous term can be combined with
the corresponding inertial term amplitude found in Section 5.6. The result is a nondimen-
sional and KC number-dependent Morison equation. By also accounting for an arbitrary
cylinder position x, this will result in

FT 2

ρLD3
=

1

2
π2CMKC cos(ωt− kx) +

1

2
CDKC2 sin(ωt− kx)| sin(ωt− kx)|, (6.18)

where k is the wave number. Equation (6.18) can be used to generate time series in
order to compare between using typical CM and CD values, and those extracted from the
experiments. Furthermore, the velocity reduction principle from Section 6.3 should be
implemented. This is done by directly applying the reduction factor to the velocity in the
KC number from Equation 2.25. The inertial term can then be written as

FIT
2

ρLD3
=

1

2
π2Cm(fvKC) cos(ωt− kx), (6.19)

while the viscous term can be written as

FDT
2

ρLD3
=

1

2
Cd(fvKC)

2 sin(ωt− kx)| sin(ωt− kx)|, (6.20)

where fv is a mean velocity factor. Instead of using a constant velocity reduction in
accordance with Kristiansen as presented in Section 6.3, a varying fv is applied. This
fv needs to vary in phase with the velocity, and act on the relevant half cycle, depend-
ing on the cylinder. Keeping the convention in Section 6.3 with variable reduction, the
implementation of fv can be expressed as

fv = 1− (1− fr) sinωt, 0 ≤ t ≤ T

2
(6.21)

fv = 1,
T

2
≤ t ≤ T (6.22)

where fr is the reduction factor of the mean velocity. Setting fr = 0.8 reduces the velocity
by 20% at the velocity peak. The implementation of this fr is shown in Figure C.5. A
visual example of a time series generated using Equation (6.18) is provided in Figure 6.40
for KC = 20 with T = 10s. Note that fr = 1 because only one cylinder is presented, and
that T is only used to decide the wave number and time range of the time series.

66



CHAPTER 6. RESULTS AND DISCUSSIONS

Figure 6.40: Example time series of Equation (6.18) for a single cylinder at KC = 20 and
T = 10s.

The resulting time series in Figure 6.40 retains the form usually associated with the Mor-
ison equation. This is more easily recognized for the drag term, which has the same form
as in Figure 6.34. In an effort to relate this back to the experiments and ordinary usage of
Morison, Case 2 with S

D = 2 is modeled for full-scale. Force coefficients are extracted from
the experimental results, and Cb is converted to CD using Equation (2.32). No Froude-
Kriloff forces are included, meaning that CM = Ca. Figure 6.41 presents the resulting
time series and FFT.

(a) Time series (b) FFT

Figure 6.41: Time series and FFT of Fz and ∆Fz using Equation (6.18), KC = 16 and
fr = 0.8.

Note the amplitude of the 2ω force contribution in Figure 6.41b for the difference force.
The simplified model using Equation (6.18), Equation (6.19) and Equation (6.20) with
fr = 0.8 predicts ∆F 2ω

z = 35 for KC = 16. This is equivalent to the experimental results
for S

D = 2 as shown in Figure 6.12, although this is likely coincidental. It also successfully
predicts that the 2ω contribution dominates the difference forces at this KC number, as
well as the formation of a mean difference force.
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The time series from Figure 6.41b also displays a similar trend previously viewed in both
the experiments and the model from Section 6.3. All positive peaks of Cylinder 1 are
taller compared to Cylinder 2, and vice versa for the negative peaks of Cylinder 2. In
order to relate this closer to the experiments, a comparison between the time series of the
simplified model and the experiments at KC = 21 is shown in Figure 6.42.

(a) Velocity reduction model (b) Experimental forces

Figure 6.42: Comparison between the simplified model from Equation (6.18) and the
corresponding experimental time series

The first thing of note is that the non-reduced peaks from the Morison model in Figure
6.42a match those from the experiments in Figure 6.42b reasonably well. Comparing the
two, the Morison model slightly underestimates the experimental peaks, though not by
much. An apparent drawback to the model is that it underestimates the cylinders’ reduced
peaks.

Another observation is that the experimental results also appear to have larger higher-
order frequency contributions, as seen by the more frequent and localized peaks in Figure
6.42b. Although not surprising, it is clear that the Morison model is unable to accurately
estimate the higher-order frequencies, and that these terms require separate modeling.
The presence of higher-order frequencies might also explain the underestimation of the
non-reduced peaks, but not the reduced ones.

The simplified wake model should be compared to the regular Morison equation, to see
how they compare to each other and to evaluate which of the two approximates the
experiments best. Figure 6.43 shows both the regular Morison equation and the wake
reduction model plotted together for KC = 16. The time series for regular Morison is
created using CD = 1 and Ca = 1.2. Comparing the two shows that regular usage of the
Morison equation significantly underestimates the experimental peaks from Figure 6.10b.
In contrast, only the reduced peaks for the reduced velocity model significantly miss the
experimental values.

Additionally, the difference forces obtained through the use of the ordinary Morison equa-
tion are simply wrong, both qualitatively and quantitatively. It is clear that the velocity
reduction needs to be accounted for if the difference forces are to be estimated correctly.

Only Case 2 has been presented on this topic. The simple reason is that the exact same
observations was made for Case 1, and Case 2 is therefore deemed a good representation
of the velocity reduction model. The concluding remarks on the model proposed by Equa-
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tion (6.18), Equation (6.19) and Equation (6.20) are that it is capable of estimating the
non-reduced peaks reasonably well. By introducing fr like in Equation (6.21) it becomes
possible to estimate ∆F 2ω

z accurately, but with the trade-off of underestimating the re-
duced peaks. Overall, the velocity reduction model shows promise and should be explored
in further work.

Figure 6.43: Comparison between the simplified wake model and ordinary Morison with
Cd = 1 and Ca = 1.2. The Ca value is chosen based on the findings from DNV-RP-C205
in Section 5.4.

Although showing a lot of promise, there certainly are major issues with the wake velocity
reduction as an explanatory model for the 2ω force contributions. Firstly, the determ-
ination of the reduction factor fr is currently guesswork and is assumed to be between
fr = 0.7 and fr = 0.9. It is clear that this factor will be highly dependent on both the
spacing ratio and the KC number. Determining these dependencies is highly relevant for
future investigations. A suggestion for the starting point for this further work may be
Stephen Pope’s mean velocity solution for the plane wake. The characteristic velocity
difference is

Us(x) = Uc − ⟨U(x, 0, 0)⟩, (6.23)

where Uc is the characteristic convective velocity or free stream velocity. This is, however,
stationary and is related to already developed wakes. It is therefore not necessarily directly
applicable towards the purposes of this thesis [18], especially for small KC numbers when
inertial forces dominate. More investigations are needed to determine the best way to
approximate the velocity reduction.

Furthermore, the velocity reduction is insufficient as an explanatory model for the lift
forces that occur. It also does not explain some of the forces dependencies of the inflow
angle θ shown by the staggered arrangement. As a result, it seems somewhat reasonable
as an explanatory model for tandem arrangements but insufficient or unjustified for small
θ contributions. It is clear that more research is required on this topic before a more
definite model can be proposed.
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6.6 Summarizing Comments and Load Formulation

This thesis has considered two experimental studies of 3D square cylinders in harmonic
oscillatory flow, tandem, and staggered arrangements. A Wadam simulation has also
been conducted to compare experimental and potential theory added mass forces. These
endeavors have uncovered hydrodynamic 3D effects and interaction between the closely
spaced cylinders.

Cylinders of three different lengths have been tested. A comparison of the different lengths
shows that the force signal becomes more high-frequent for smaller cylinders. This indic-
ates that the vortex shedding around 3D ends is more high-frequent compared to longer
cylinders, and is supported by Li [13] who noted a broader St number spectra around the
3D ends. Furthermore, force magnitudes for tandem arrangements appeared unaffected
by a change in L, unlike for staggered arrangements where 1ω amplitudes showed large
L dependency. These effects are not yet understood and more research on the topic is
warranted to understand and quantify the θ and 3D end effects.

The primary indication of interaction from the experiments between the cylinders is as
stated previously by Reiten [19] and confirmed by Hals [8], still the 2ω force amplitudes. It
was seen that the two cylinders experience reduced force peaks when in downstream flow
during the oscillation. The current hypothesis has therefore been that a wake velocity
reduction works on each half-cycle during the oscillation. The reduced peaks occur at
separate half-cycles between the cylinders, meaning that the resulting force is 2ω and
acts on the two cylinders with a 180° phase difference. This gives a sign shift when
subtracted and ∆F 2ω

z becomes about double F 2ω
z . Based on this information and the

Morison equation, a velocity reduction model was proposed.

FT 2

ρLD3
=

1

2
π2Cm(fvKC) cos(ωt− kx) +

1

2
Cd(fvKC)

2 sin(ωt− kx)| sin(ωt− kx)| (6.24)

Although showing a lot of promise for tandem arrangements, there are major issues with
using the wake velocity reduction as an explanatory model. Firstly, the determination of
the reduction factor fr is currently guesswork and a proper relation for fr is required for
proper use. Secondly, velocity reduction is insufficient as an explanatory model for the lift
forces observed for staggered arrangement. This is a topic that needs much more research
before any definite solution is proposed.

Another proposition may be to evaluate all the harmonic force components separately with
individual force coefficients for each harmonic frequency. Remember, the higher-order
frequency coefficient in this thesis is evaluated qualitatively using fictitious acceleration
and velocity. More experiments are required to determine these coefficients with real
accelerations and velocities. Such a tentative formulation proposed by Kristiansen may
read as

Fnω
D = ρD

∞∑
n=1

Cnω
D (S,G,KC, θ,Re)un, (6.25)

where S is spacing or a case-specific parameter, G is the cross-sectional geometry and un
is the velocity component of frequency n. The Re number is not treated already in the
thesis but is expected to change the coefficients if large variations between experiments
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and actual use cases occur. In mathematical terms, this sum may go to infinity, but in
practical terms, it may be sufficient to use up until 4ω. An additional important note is
that the experimental efforts until now have been forced harmonic studies. It is therefore
not sufficient to get a complete and comprehensive understanding of other untested factors
such as irregular sea states. The wavelength-diameter ratio is another factor that will be
important in practical applications. These same efforts are required for lift forces as well,
which was negligible in tandem but increased quickly with θ.

It is evident that the current research efforts are still in its early stages. A substantial
amount of additional experimental and numerical investigations are required to uncover
the needed relationships.
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Chapter 7
Conclusions and Further Work

The presented work has uncovered a set of results indicating significant hydrodynamic
effects. Of these are hydrodynamic interaction loads particularly treated. Additionally,
hydrodynamic 3D end effects and higher order frequency amplitudes stochasticity are
also uncovered. This chapter will conclude the main findings of the thesis, and provide
suggestions for further work.

7.1 Conclusions

The hydrodynamic loads and interaction, and their dependencies on the KC number,
spacing ratio, and inflow angle have been explored. Tandem arrangements show that
significant wake interactions are present and that this interaction is dependent on the
spacing ratio and KC number. The 1ω forces in drag direction decrease when the cylinders
are placed in closer proximity, while the 2ω forces increase. This results in a higher total
force for S

D = 2 compared to S
D = 1. Evidence that the 2ω forces of the two cylinders

are 180° out of phase is uncovered, indicating that ∆F 2ω
z is about twice the size of F 2ω

z .
The current hypothesis is that this is due to a velocity reduction on separate oscillation
half-cycles.

Staggered arrangements were tested experimentally, and large θ dependencies were un-
covered for both lift and drag. Unlike tandem arrangement, where the lift forces were
negligible compared to drag, staggered arrangement showed an explosion in the lift forces.
The drag forces are also increased when an inflow angle is introduced. Clear trends are
seen across both L and KC number for 1ω, while no coherent trend for 2ω forces could
be seen, neither as a function of the KC number nor L. The 1ω damping forces however
displayed good correspondence with maximum drag and lift indicated by Zdravkovich.

The experiments show indications that vortex-shedding frequencies are more broad-banded
at the 3D ends. Smaller cylinder lengths exhibited higher-frequency force responses, while
the magnitudes remained relatively consistent with increasing L in tandem arrangements.
Staggered arrangements displayed increased force magnitudes across all harmonic com-
ponents when increasing L. Further investigations are needed to fully understand and
quantify these 3D effects.

Comparisons with 2D computational fluid dynamics (CFD) models showed good agree-
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ment with 1ω forces but overestimated 2ω and higher frequency components. Recom-
mendations for enhancing future CFD work were provided.

Lastly, the evaluation of load formulations based on the Morison equation and the sim-
plified wake model by Kristiansen indicated the potential of a continuous sine function to
capture forces in tandem arrangements. However, these formulations fell short in repres-
enting high-frequency force components, lift forces, and certain θ dependencies. Further
exploration is required to develop an improved load formulation.

7.2 Further Work

While the experiments have provided indications of various phenomena, definitive conclu-
sions remain challenging. It is important to emphasize that the research is still in its early
stages. Promising results have been observed by using velocity reduction for addressing
2ω forces for tandem cylinders, but further investigations are necessary to pinpoint these
relations more accurately. Furthermore, this formulation does not explain the large θ
dependency, higher order frequency contributions, and observed lift forces.

Specific suggestions for future research directions are suggested to achieve the long-term
objectives of the research. The following suggestions are made based on the observations
and shortcomings experienced during this work:

• A large degree of stochasticity is observed for the highest order frequencies in tandem
arrangement and for 2ω or higher in staggered arrangement. Repetition testing is
recommended to improve the understanding of these phenomena and dependencies.

• It is possible that a future load formulation needs to be the form of Equation (6.25).
This necessitates more studies to uncover quantitatively correct 2ω, 3ω, and 4ω
added mass and damping coefficients. Further experiments where the loads oscillate
with these frequencies can be considered for this endeavor.

• The noise from the rig, as outlined in Section 3.4 and Section 4.4, made the testing
of the heavier cases difficult. Redesign of the experimental rig to make the system
stiffer should be considered. This will make it possible to more accurately evaluate
the 4ω contributions and cases with multiple cylinders such as Case 3.

• More sophisticated CFD strategies should be explored to make the numerical and
experimental results more compatible. A more mature CFD strategy may help
validate and acquire data for future research. This is also of great value as such
simulations can be used to evaluate cases that are not possible experimentally due
to rig limitations.

• Lastly, a proper investigation of the velocity reduction is needed. The Morison model
with velocity reduction on each half-cycle showed promise to estimate the 2ω forces,
but the exact relationship is not yet known. A specific study on this factor is required
to pinpoint its relationships with spacing and the KC number.
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Appendix A
DNV-RP-C205

Figure A.1: Analytical added mass coefficients for three-dimensional bodies in infinite
flow.

Source: [4]

Figure A.2: Analytical added mass coefficients for two-dimensional or infinitely long
square.

Source: [4]
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Appendix B
Force Plots and Results

B.1 Harmonic Forces - Small and Medium

(a) L = D (b) L = 2D

Figure B.1: Harmonic force amplitudes for L = D and L = 2D, Case 1 ( SD = 1)

(a) L = D (b) L = 2D

Figure B.2: Harmonic force amplitudes for L = D and L = 2D, Case 2 ( SD = 2)

78



APPENDIX B. FORCE PLOTS AND RESULTS

(a) L = D (b) L = 2D

Figure B.3: Difference force amplitudes for L = D and L = 2D, Case 1 ( SD = 1)

(a) L = D (b) L = 2D

Figure B.4: Difference force amplitudes for L = D and L = 2D, Case 2 ( SD = 2)
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B.2 Force Coefficients for Case 1

(a) D (b) 2D (c) 3D

Figure B.5: 1ω force coefficients for Case 1 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.6: 2ω force coefficients for Case 1 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.7: 3ω force coefficients for Case 1 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.8: 4ω force coefficients for Case 1 for L = D, L = 2D and L = 3D.
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B.3 Force Coefficients for Case 2

(a) D (b) 2D (c) 3D

Figure B.9: 1ω force coefficients for Case 2 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.10: 2ω force coefficients for Case 2 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.11: 3ω force coefficients for Case 2 for L = D, L = 2D and L = 3D.

(a) D (b) 2D (c) 3D

Figure B.12: 4ω force coefficients for Case 2 for L = D, L = 2D and L = 3D.
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B.4 Time Series - Case 1 ( SD = 1)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.13: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 1)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.14: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 1)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.15: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 1)
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B.5 Time Series - Case 1 ( SD = 2)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.16: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 2)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.17: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 2)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.18: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 2)
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B.6 Time Series - Case 1 ( SD = 3)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.19: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 3)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.20: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 3)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.21: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 1
( SD = 3)

84



APPENDIX B. FORCE PLOTS AND RESULTS

B.7 Time Series - Case 2 ( SD = 1)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.22: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 1)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.23: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 1)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.24: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 1)
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B.8 Time Series - Case 2 ( SD = 2)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.25: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 2)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.26: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 2)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.27: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 2)
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B.9 Time Series - Case 2 ( SD = 3)

(a) KC = 2 (b) KC = 4 (c) KC = 6

Figure B.28: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 3)

(a) KC = 8 (b) KC = 10 (c) KC = 12

Figure B.29: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 3)

(a) KC = 14 (b) KC = 16 (c) KC = 18

Figure B.30: Force time series of Fz and ∆Fz for Cylinder 1 and Cylinder 2, Case 2
( SD = 3)
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Appendix C
Miscellaneous

C.1 1ω Viscous Forces for Staggered flow

(a) D (b) 2D (c) 3D

Figure C.1: Illustration of viscous forces at KC = 16 for all three cylinder lengths.

(a) KC = 8 (b) KC = 16 (c) KC = 21

Figure C.2: Illustration of viscous forces at three different KC numbers for the large
cylinder length.
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C.2 Harmonic Forces - Case 3

(a) L = D (b) L = 2D

Figure C.3: Harmonic force amplitudes for L = D and L = 2D

(a) L = D (b) L = 2D

Figure C.4: Difference force amplitudes for L = D and L = 2D

89



APPENDIX C. MISCELLANEOUS

C.3 Example of Velocity Reduction Factor Implementation

Figure C.5: Example of the implementation of fr in the Morison model from Section 6.5.

90



Appendix D
Python Routines - Post-Processing

D.1 Data Extraction from Wadam

import numpy as np

import math

import matplotlib.pyplot as plt

import scipy.signal as sp

import scipy.fftpack

import os

def get_data_WADAM(file_dir, new_file):

file = open(file_dir)

added_mass_counter = 0

char_length_counter = 0

T_set = set()

a11 = []

a22 = []

a33 = []

F1 = []

F2 = []

F1_phases = []

F2_phases = []

for line in file:

if 'WATER DENSITY' in line:

rho_content = line.split()

rho = float(rho_content[4])

if 'CHARACTERISTIC' in line:

if char_length_counter == 2:

char_length_content = line.split()

char_length = float(char_length_content[4])

char_length_counter += 1

else:

char_length_counter += 1
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if 'HYDROSTATIC DATA:' in line:

hydrostatic_content = []

for i in range(6):

hydrostatic_content.append(file.readline())

disp_volume_row = hydrostatic_content[2].split()

disp_mass_row = hydrostatic_content[3].split()

WPLA_row = hydrostatic_content[5].split()

volume = float(disp_volume_row[4])

mass = float(disp_mass_row[6])

WPLA = float(WPLA_row[5])

if 'WAVE PERIOD' in line:

T_content = line.split()

T_set.add(float(T_content[3]))

continue

if 'ADDED MASS MATRIX' in line:

if added_mass_counter == 0:

added_mass_counter += 1

continue

else:

added_mass_content = []

for i in range(6):

added_mass_content.append(file.readline())

surge_row = added_mass_content[3].split()

sway_row = added_mass_content[4].split()

heave_row = added_mass_content[5].split()

a11.append(float(surge_row[1]))

a22.append(float(sway_row[2]))

a33.append(float(heave_row[3]))

continue

if 'H E A D I N G A N G L E = 0.00' in line:

excitation1_content = []

for i in range(16):

excitation1_content.append(file.readline())

F1_row = excitation1_content[13].split()

F1.append(float(F1_row[3]))

F1_phases.append(float(F1_row[4]))

continue

if 'H E A D I N G A N G L E = 90.00' in line:

excitation2_content = []

for i in range(16):

excitation2_content.append(file.readline())

F2_row = excitation2_content[15].split()

F2.append(float(F2_row[3]))

F2_phases.append(float(F2_row[4]))
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continue

if new_file == 1:

f = open("postprocessed_Wadam.txt", "w+")

for i in range(len(a11)):

if i == len(a11)-1:

f.write(str(a11[i]))

else:

f.write(str(a11[i]) + ",")

f.write("\n")

for i in range(len(a22)):

if i == len(a22)-1:

f.write(str(a22[i]))

else:

f.write(str(a22[i]) + ",")

f.write("\n")

for i in range(len(a33)):

if i == len(a33)-1:

f.write(str(a33[i]))

else:

f.write(str(a33[i]) + ",")

f.write("\n")

for i in range(len(F1)):

if i == len(F1)-1:

f.write(str(F1[i]))

else:

f.write(str(F1[i]) + ",")

f.write("\n")

for i in range(len(F2)):

if i == len(F2)-1:

f.write(str(F2[i]))

else:

f.write(str(F2[i]) + ",")

f.close()

T = sorted(list(T_set))

a11 = np.array(a11)

a22 = np.array(a22)

a33 = np.array(a33)

F1 = np.array(F1)

F2 = np.array(F2)

F1_phases = np.array(F1_phases) * math.pi/180

F2_phases = np.array(F2_phases) * math.pi/180

return char_length, rho, volume, mass, WPLA, T, a11, a22, a33, F1, F2,

F1_phases, F2_phases↪→
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def plot_data_Wadam(file_dir, save_dir, new_file, save_plot):

char_length, rho, volume, _, WPLA, T, A11, A22, A33, F1, F2,

F1_phases, _ = get_data_WADAM(file_dir, new_file)↪→

FK, FK_phase = FK_SquareCylinder_prototype(file_dir, new_file)

FI, FI_phases = FI_SquareCylinder_prototype(file_dir, new_file)

g = 9.80665

F_nondim = rho * g * volume * (1/char_length)

plt.plot(T, A11, label='Surge', linestyle='dashed')

plt.plot(T, A22, label='Sway')

plt.plot(T, A33, label='Heave', linestyle='dashdot')

plt.xlabel('Wave period [s]')

plt.ylabel('Added mass [-]')

plt.grid()

plt.legend()

plt.title('Added mass for surge and sway')

if save_plot:

plt.savefig(save_dir + "\AddedMass.svg", format='svg')

plt.show()

plt.plot(T, F1, label='Surge', linestyle='dashed')

plt.plot(T, F2, label='Sway')

plt.xlabel('Wave period [s]')

plt.ylabel('Excitation force [-]')

plt.grid()

plt.legend()

plt.title('Excitation for surge and sway')

if save_plot:

plt.savefig(save_dir + "\Excitation.svg", format='svg')

plt.show()

KC_list = np.linspace(0, 25, endpoint=True)

Fm_list = np.zeros(len(KC_list))

for i in range(len(KC_list)):

Fm_list[i] = 2*math.pi * A11[-1] * KC_list[i]

plt.plot(KC_list, Fm_list, label='2pi*Ca*KC')

plt.xlabel('KC number [-]')

plt.ylabel(r'$\frac{F_I*T^2}{\rho * L * D^3}$')

plt.grid()

plt.legend()

plt.title('Mass force')

plt.show()

plt.plot(T, F1, label='Total Excitation')

plt.plot(T, FI/F_nondim, label='Diffraction', linestyle='dashed')

plt.plot(T, abs(FK)/F_nondim, label='Froude Krylov',

linestyle='dashed')↪→

plt.xlabel('Wave period [s]')

plt.ylabel(r'$\frac{F * L_{char}}{\rho * g * V}$ [-]')
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plt.grid()

plt.legend()

plt.title('Amplitudes Excitation, Diffraction and FK force')

if save_plot:

plt.savefig(save_dir + "\ExcitationComponents.svg", format='svg')

plt.show()

plt.plot(T, F1_phases, label='Excitation phases')

plt.plot(T, FI_phases, label='Diffraction phases', linestyle='dashed')

plt.xlabel('Wave period [s]')

plt.ylabel(r'$\phi$ [rad]')

plt.grid()

plt.legend()

plt.title('Excitation and Diffraction phases')

if save_plot:

plt.savefig(save_dir + "\ExcitationComponents.svg", format='svg')

plt.show()

D.2 Synchronization

def find_start(timeseries, tolerance, hz):

N = len(timeseries)

list = np.zeros(3 * hz)

for i in range(3 * hz):

list[i] = timeseries[i]

timeseries = timeseries - np.mean(list)

for i in range(N):

if timeseries[i] < -tolerance:

shift = np.where(timeseries == timeseries[i])[0][0]

break

else:

continue

return shift

def getShift_KC(KC, T, hz, N_ramp, N_steady, N_wait):

time_shift = (2 * N_ramp + N_steady + N_wait) * T

shift_step = time_shift * hz

shift = shift_step * (KC - 1)

return shift

def getShift_L2(timeseries1, timeseries2, hz):

L2_norm = np.zeros(hz)
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L2_list = []

timeseries1 = timeseries1 - np.mean(timeseries1)

timeseries2 = timeseries2 - np.mean(timeseries2)

for j in range(hz):

for i in range(hz):

L2_norm[i] = (timeseries1[int(5*hz+i)] -

timeseries2[int(5*hz-0.2*hz+i+j)]) ** 2↪→

L2_list.append(sum(np.sqrt(L2_norm)))

shift = L2_list.index(min(L2_list)) - 0.2 * hz

return shift

D.3 Experimental Sub-routines

def Forward_Euler(start, rate, step):

result = np.zeros(len(rate))

result[0] = start

for i in range(len(rate) - 1):

result[i + 1] = result[i] + rate[i] * step

return result

def regular_wave(period, wave_height):

f = 1/period

omega = (2 * np.pi)/period

k = omega ** 2/9.81

wave_length = (2*np.pi)/k

velocity_amplitude = omega * wave_height

x_acceleration = omega ** 2 * wave_height

z_acceleration = - omega ** 2 * wave_height

return f, omega, k, wave_length, velocity_amplitude, x_acceleration,

z_acceleration↪→

def get_force(force, timeseries, step):

numerator = np.zeros(len(force))

denominator = np.zeros(len(timeseries))

for i in range(len(numerator)):

numerator[i] = force[i] * timeseries[i] * step

denominator[i] = timeseries[i] * timeseries[i] * step

result = - sum(numerator)/sum(denominator)

return result
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def Harmonics(timeseries, hz, T):

dt = 1 / hz

df = 1 / T

frequencies = np.arange(1/T, 11/T, df)

amplitudes = np.zeros(len(frequencies))

bp_list = []

for i in range(len(frequencies)):

bp_series, _ = bpass_gaussian(timeseries, dt, frequencies[i] -

0.1*df, frequencies[i] + 0.1*df)↪→

_, maxima = sp.find_peaks(bp_series, height=0)

_, minima = sp.find_peaks(-bp_series, height=0)

avg_maxima = np.sum(maxima["peak_heights"]) /

len(maxima["peak_heights"])↪→

avg_minima = - np.sum(minima["peak_heights"]) /

len(minima["peak_heights"])↪→

amplitudes[i] = (avg_maxima - avg_minima) / 2

bp_list.append(bp_series)

return amplitudes, frequencies, bp_list

def AccCos2VelSine_timeseries(acc_amp, omega_amp, T, Nperiods, hz, iplot):

timeseries = np.linspace(0, T * Nperiods, num=Nperiods*hz,

endpoint=True)↪→

acc_series = np.zeros(len(timeseries))

vel_series = np.zeros(len(timeseries))

omega = (2 * math.pi) / T

for i in range(len(timeseries)):

acc_series[i] = acc_amp * np.cos(omega_amp * omega *

timeseries[i])↪→

vel_series[i] = acc_amp * np.sin(omega_amp * omega *

timeseries[i]) / (omega_amp * omega)↪→

if iplot:

plt.plot(timeseries, acc_series, label='Acceleration')

plt.plot(timeseries, vel_series, label='Velocity')

plt.xlabel('Time [s]')

plt.ylabel(r'$\frac{m}{s^2}, \frac{m}{s}$')

plt.grid()

plt.legend()

plt.show()

return acc_series, vel_series
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D.4 Analyze Script for Tandem Arrangement

import scipy.io as sio

n = 9 # Case number

KC_list = [] # Desired KC numbers

hz = 200 # Sampling frequency

dt = 1 / hz # Sampling time step

T = 1.0 # Oscillation period

D = 0.05 # Cylinder diameter

rho = 1000 # Water density

# =============================HardCode============================= #

mat_files = ["Names of the .mat files, for post-processing"]

small_string = r' $(L / D = 1)$'

medium_string = r' $(L / D = 2)$'

large_string = r' $(L / D = 3)$'

Case_names = ["Names of the .mat files, for plot naming"]

WADAM_cases = ["Names of the .LIS files from Wadam"]

savepath = r"Insert save path for figures"

parent = r"Insert path to Wadam .lis files"

path = parent + WADAM_cases[n] + WADAM_cases[0]

save_dir = parent + WADAM_cases[n]

_, _, _, _, _, _, Ca_wadam, _, _, _, _, _, _ = get_data_WADAM(path, 0)

length = [0,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D,

D, 2 * D, 3 * D]

masses = [0,

0.69, 1.39, 2.08,

0.69, 1.39, 2.08,

1.38, 2.78, 4.16,

0.69, 1.39, 2.08,

0.69, 1.39, 2.08,

0.69, 1.39, 2.08,

1.38, 2.78, 4.16]

# Lists for Harmonic force components outer/inner cylinder

outer_omegas = [[], [], [], []]

inner_omegas = [[], [], [], []]
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outer_omegas_lift = [[], [], [], []]

inner_omegas_lift = [[], [], [], []]

# Lists for Harmonic force components difference force

delta_omegas = [[], [], [], []]

delta_omegas_lift = [[], [], [], []]

massForce_outer = [[], [], [], []]

dragForce_outer = [[], [], [], []]

massForce_inner = [[], [], [], []]

dragForce_inner = [[], [], [], []]

massForce_outer_lift = [[], [], [], []]

dragForce_outer_lift = [[], [], [], []]

massForce_inner_lift = [[], [], [], []]

dragForce_inner_lift = [[], [], [], []]

mass_coefficients_outer = [[], [], [], []]

drag_coefficients_outer = [[], [], [], []]

mass_coefficients_inner = [[], [], [], []]

drag_coefficients_inner = [[], [], [], []]

# =============================ReadData============================= #

# Read .mat files

mat0 = sio.loadmat('.\out' + mat_files[0])

mat = sio.loadmat('.\out' + mat_files[n])

# Import data from empty rig - 0 denotes empty rig

Pos_Rig_0 = mat0['Pos_Rig'].flatten()

Acceleration_0 = mat0['ACC_Z_BOTTOM_20497'].flatten()

FZ_OUTER_CALC_0 = mat0['FZ_OUTER_CALC'].flatten()

FZ_INNER_CALC_0 = mat0['FZ_INNER_CALC'].flatten()

FX_OUTER_CALC_0 = mat0['FX_OUTER_CALC'].flatten()

FX_INNER_CALC_0 = mat0['FX_INNER_CALC'].flatten()

FY_OUTER_CALC_0 = mat0['FY_OUTER_CALC'].flatten()

FY_INNER_CALC_0 = mat0['FY_INNER_CALC'].flatten()

t0 = mat0['Time 1 - default sample rate'].flatten()

# Import data from Case n

Pos_Rig = mat['Pos_Rig'].flatten()

Acceleration_n = mat['ACC_Z_BOTTOM_20497'].flatten()

FZ_OUTER_CALC = mat['FZ_OUTER_CALC'].flatten()

FZ_INNER_CALC = mat['FZ_INNER_CALC'].flatten()

FX_OUTER_CALC = mat['FX_OUTER_CALC'].flatten()

FX_INNER_CALC = mat['FX_INNER_CALC'].flatten()

FY_OUTER_CALC = mat['FY_OUTER_CALC'].flatten()

FY_INNER_CALC = mat['FY_INNER_CALC'].flatten()

t = mat['Time 1 - default sample rate'].flatten()

nondim = rho * length[n] * D ** 3 / T ** 2 # Force normalizing

start_amplitude = 0.05/(2*math.pi) # Start time criteria

A0 = rho * (math.pi / 4) * D ** 2 * length[n] # Reference factor
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omega = (2 * math.pi) / T # Radial frequency

# =============================PreSync============================= #

# Start synchronization

start_shift = find_start(Pos_Rig, 0.01 * start_amplitude, hz)

start_shift0 = find_start(Pos_Rig_0, 0.01 * start_amplitude, hz)

shift1 = start_shift + 87 * hz

shift0 = start_shift0 + 87 * hz

intervals = [[int(shift1 + 5 * T * hz), int(shift1 + 33 * T * hz)],

[int(shift0 + 5 * T * hz), int(shift0 + 33 * T * hz)]]

# Initialize case - for easier reading in console

print("# ======== NewCase ======== #")

print("Case file:", mat_files[n])

print("start amplitude:", start_amplitude)

print("start index:", shift1)

print("start time:", shift1/hz)

print("start index 0:", shift0)

print("start time 0:", shift0/hz)

Pos1 = Pos_Rig[intervals[0][0]:intervals[0][1]]

Pos0 = Pos_Rig_0[intervals[1][0]:intervals[1][1]]

plotPostitions(Pos1, Pos0, 'First oscillation', 0)

# Iteration loop for selective KC numbers

for i in range(len(KC_list)):

KC = KC_list[i]

print("# ====================== #")

print("KC number:", KC)

intervals = [[int(shift1 + 5 * T * hz), int(shift1 + 33 * T * hz)],

[int(shift0 + 5 * T * hz), int(shift0 + 33 * T * hz)]]

# =============================Synchronize============================= #

# Constructing the shift value for empty rig

KC_shift = getShift_KC(KC, T, hz, 150, 5, 5)

intervals[0][0] = intervals[0][0] + int(KC_shift)

intervals[0][1] = intervals[0][1] + int(KC_shift)

intervals[1][0] = intervals[1][0] + int(KC_shift)

intervals[1][1] = intervals[1][1] + int(KC_shift)

L2_shift = getShift_L2(Pos_Rig[intervals[0][0]:intervals[0][1]],

Pos_Rig_0[intervals[1][0]:intervals[1][1]], hz)↪→

print("L2 shift:", L2_shift)

intervals[1][0] = intervals[1][0] + int(L2_shift)
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intervals[1][1] = intervals[1][1] + int(L2_shift)

Pos1 = Pos_Rig[intervals[0][0]:intervals[0][1]]

Pos0 = Pos_Rig_0[intervals[1][0]:intervals[1][1]]

plotPostitions(Pos1, Pos0, 'Steady state position KC = %i' % KC, 0)

# ============================IsolateForces============================ #

# Subtract the rig

FZ_OUTER_raw = FZ_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FZ_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FZ_INNER_raw = FZ_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FZ_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FX_OUTER_raw = FX_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FX_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FX_INNER_raw = FX_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FX_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FY_OUTER_raw = FY_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FY_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FY_INNER_raw = FY_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FY_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

Acc = Acceleration_n[intervals[0][0]:intervals[0][1]]

# Subtract the mass

FZ_OUTER_raw = FZ_OUTER_raw + masses[n] *

Acceleration_n[intervals[0][0]:intervals[0][1]]↪→

FZ_INNER_raw = FZ_INNER_raw + masses[n] *

Acceleration_n[intervals[0][0]:intervals[0][1]]↪→

delta_FZ_raw = FZ_INNER_raw - FZ_OUTER_raw

sum_FZ_raw = FZ_INNER_raw + FZ_OUTER_raw

delta_FY_raw = FY_INNER_raw - FY_OUTER_raw

sum_FY_raw = FY_INNER_raw + FY_OUTER_raw

# ============================Filtration============================ #

FZ_OUTER, _ = bpass_gaussian(FZ_OUTER_raw, dt, 0.8/T, 10/T)

FZ_INNER, _ = bpass_gaussian(FZ_INNER_raw, dt, 0.8/T, 10/T)

FX_OUTER, _ = bpass_gaussian(FX_OUTER_raw, dt, 0.8/T, 10/T)

FX_INNER, _ = bpass_gaussian(FX_INNER_raw, dt, 0.8/T, 10/T)

FY_OUTER, _ = bpass_gaussian(FY_OUTER_raw, dt, 0.8/T, 10/T)

FY_INNER, _ = bpass_gaussian(FY_INNER_raw, dt, 0.8/T, 10/T)

FZ_delta, _ = bpass_gaussian(delta_FZ_raw, dt, 0.8/T, 10/T)

FZ_sum, _ = bpass_gaussian(sum_FZ_raw, dt, 0.8/T, 10/T)

FY_delta, _ = bpass_gaussian(delta_FY_raw, dt, 0.8/T, 10/T)

FY_sum, _ = bpass_gaussian(sum_FY_raw, dt, 0.8/T, 10/T)

Acc_bpass, _ = bpass_gaussian(Acc, dt, 0.8 / T, 10 / T)

FZ_OUTER = FZ_OUTER / 2
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FZ_INNER = FZ_INNER / 2

FX_OUTER = FX_OUTER / 2

FX_INNER = FX_INNER / 2

FY_OUTER = FY_OUTER / 2

FY_INNER = FY_INNER / 2

FZ_delta = FZ_delta / 2

FZ_sum = FZ_sum / 2

FY_delta = FY_delta / 2

FY_sum = FY_sum / 2

# =============================Harmonics============================= #

# Calculate harmonic force contributions

outer_amp, outer_omega, outer_BP_list = Harmonics(FZ_OUTER, hz, T)

inner_amp, inner_omega, inner_BP_list = Harmonics(FZ_INNER, hz, T)

delta_amp, delta_omega, delta_BP_list = Harmonics(FZ_delta, hz, T)

sum_amp, sum_omega, sum_BP_list = Harmonics(FZ_sum, hz, T)

outer_amp_lift, outer_omega_lift, outer_BP_list_lift =

Harmonics(FY_OUTER, hz, T)↪→

inner_amp_lift, inner_omega_lift, inner_BP_list_lift =

Harmonics(FY_INNER, hz, T)↪→

delta_amp_lift, delta_omega_lift, delta_BP_list_lift =

Harmonics(FY_delta, hz, T)↪→

sum_amp_lift, sum_omega_lift, sum_BP_list_lift = Harmonics(FY_sum, hz,

T)↪→

"""

plotFFT(FZ_OUTER, dt, 0, 10, 0)

plotFFT(FZ_INNER, dt, 0, 10, 0)

plotFFT(FY_OUTER, dt, 0, 10, 0)

plotFFT(FY_INNER, dt, 0, 10, 0)

"""

# Append harmonic forces to previous lists

outer_omegas[0].append(outer_amp[0])

outer_omegas[1].append(outer_amp[1])

outer_omegas[2].append(outer_amp[2])

outer_omegas[3].append(outer_amp[3])

inner_omegas[0].append(inner_amp[0])

inner_omegas[1].append(inner_amp[1])

inner_omegas[2].append(inner_amp[2])

inner_omegas[3].append(inner_amp[3])

delta_omegas[0].append(delta_amp[0])

delta_omegas[1].append(delta_amp[1])

delta_omegas[2].append(delta_amp[2])

delta_omegas[3].append(delta_amp[3])

outer_omegas_lift[0].append(outer_amp_lift[0])

outer_omegas_lift[1].append(outer_amp_lift[1])

outer_omegas_lift[2].append(outer_amp_lift[2])
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outer_omegas_lift[3].append(outer_amp_lift[3])

inner_omegas_lift[0].append(inner_amp_lift[0])

inner_omegas_lift[1].append(inner_amp_lift[1])

inner_omegas_lift[2].append(inner_amp_lift[2])

inner_omegas_lift[3].append(inner_amp_lift[3])

delta_omegas_lift[0].append(delta_amp_lift[0])

delta_omegas_lift[1].append(delta_amp_lift[1])

delta_omegas_lift[2].append(delta_amp_lift[2])

delta_omegas_lift[3].append(delta_amp_lift[3])

# =============================Velocity============================= #

Acc_vec = Acc_bpass[0:int(T * hz)]

Acc_shift = np.where(Acc_vec == max(Acc_vec))[0][0]

# Acceleration intervals for force calculation - MUST be a whole

number of periods↪→

Acc_intervals = [[int(Acc_shift), int(Acc_shift + 5 * T * hz)],

[int(Acc_shift), int(Acc_shift + 5 * T * hz)]]

Acceleration = Acc_bpass[Acc_intervals[0][0]:Acc_intervals[0][1]]

Velocity = Forward_Euler(0, Acceleration, dt)

FZ_AVF_OUTER = FZ_OUTER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

FZ_AVF_INNER = FZ_INNER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

# =============================MassDrag============================= #

for i in range(len(mass_coefficients_outer)):

if i == 0:

acc = Acceleration

velocity = Forward_Euler(0, Acceleration, dt)

else:

acc, velocity = AccCos2VelSine_timeseries(1, i + 1, T, 5, hz,

0)↪→

force_FZ_outer = outer_BP_list[i][round(Acc_shift):round(Acc_shift

+ 5 * T * hz)]↪→

force_FZ_inner = inner_BP_list[i][round(Acc_shift):round(Acc_shift

+ 5 * T * hz)]↪→

force_FZ_outer_lift =

outer_BP_list_lift[i][round(Acc_shift):round(Acc_shift + 5 * T

* hz)]

↪→

↪→

force_FZ_inner_lift =

inner_BP_list_lift[i][round(Acc_shift):round(Acc_shift + 5 * T

* hz)]

↪→

↪→

mass_force_outer = get_force(force_FZ_outer, acc, dt)
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mass_force_inner = get_force(force_FZ_inner, acc, dt)

drag_force_outer = get_force(force_FZ_outer, velocity, dt)

drag_force_inner = get_force(force_FZ_inner, velocity, dt)

mass_force_outer_lift = get_force(force_FZ_outer_lift, acc, dt)

mass_force_inner_lift = get_force(force_FZ_inner_lift, acc, dt)

drag_force_outer_lift = get_force(force_FZ_outer_lift, velocity,

dt)↪→

drag_force_inner_lift = get_force(force_FZ_inner_lift, velocity,

dt)↪→

mass_coefficient_outer = mass_force_outer / A0

mass_coefficient_inner = mass_force_inner / A0

drag_coefficient_outer = drag_force_outer / (omega * A0)

drag_coefficient_inner = drag_force_inner / (omega * A0)

massForce_outer[i].append(mass_force_outer * ((2 * math.pi * KC *

D) / T**2))↪→

massForce_inner[i].append(mass_force_inner * ((2 * math.pi * KC *

D) / T**2))↪→

dragForce_outer[i].append(drag_force_outer * ((KC * D) / T))

dragForce_inner[i].append(drag_force_inner * ((KC * D) / T))

massForce_outer_lift[i].append(mass_force_outer_lift * ((2 *

math.pi * KC * D) / T**2))↪→

massForce_inner_lift[i].append(mass_force_inner_lift * ((2 *

math.pi * KC * D) / T**2))↪→

dragForce_outer_lift[i].append(drag_force_outer_lift * ((KC * D) /

T))↪→

dragForce_inner_lift[i].append(drag_force_inner_lift * ((KC * D) /

T))↪→

mass_coefficients_outer[i].append(mass_coefficient_outer)

mass_coefficients_inner[i].append(mass_coefficient_inner)

drag_coefficients_outer[i].append(drag_coefficient_outer)

drag_coefficients_inner[i].append(drag_coefficient_inner)

D.5 Analyze Script for Staggered Arrangement

import scipy.io as sio

import scipy.fftpack

import re

n = 9 # Case number

KC_list = [] # Desired KC numbers

hz = 200 # Sampling frequency

dt = 1 / hz # Sampling time step

T = 1.0 # Oscillation period

D = 0.05 # Cylinder diameter

rho = 1000 # Water density
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iplot = 1

# =============================HardCode============================= #

mat_files = ["Names of the .mat files, for post-processing"]

data = ["lengts"], ["masses"], ["plot names"]] # Aiding data

A0 = rho * (math.pi / 4) * D ** 2 * data[0][n] # Reference factor

omega = (2 * math.pi) / T # Radial frequency

# Lists for Harmonic force components outer/inner cylinder

IL_outer_omegas = [[], [], [], []]

IL_inner_omegas = [[], [], [], []]

CF_outer_omegas = [[], [], [], []]

CF_inner_omegas = [[], [], [], []]

delta_CF_omegas = [[], [], [], []]

delta_IL_omegas = [[], [], [], []]

viscous_IL_outer = [[], [], [], []]

viscous_CF_outer = [[], [], [], []]

viscous_IL_inner = [[], [], [], []]

viscous_CF_inner = [[], [], [], []]

inertial_IL_outer = [[], [], [], []]

inertial_CF_outer = [[], [], [], []]

inertial_IL_inner = [[], [], [], []]

inertial_CF_inner = [[], [], [], []]

thetas = []

print(mat_files[n])

print("length:", data[0][n])

print("mass:", data[1][n])

for i in range(len(KC_list)):

KC = KC_list[i]

print("# ====================== #")

print("KC number:", KC)

for j in range(len(mat_files[n])):

print("Case:", mat_files[n][j])

# =============================ReadData============================= #

theta = int(re.findall(r'\d+', mat_files[n][j])[0])

thetas.append(theta*(math.pi/180))
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# Read .mat files

mat0 = sio.loadmat('.\out' + mat_files[0][0])

mat = sio.loadmat('.\out' + mat_files[n][j])

# Import data from empty rig - 0 denotes empty rig

Pos_Rig_0 = mat0['6047 Position'].flatten()

Acceleration_0 = mat0['Acc_20497'].flatten()

FZ_OUTER_CALC_0 = mat0['FZ_CALC_OUT'].flatten()

FZ_INNER_CALC_0 = mat0['FZ_CALC_IN'].flatten()

FX_OUTER_CALC_0 = mat0['FX_CALC_OUT'].flatten()

FX_INNER_CALC_0 = mat0['FX_CALC_IN'].flatten()

FY_OUTER_CALC_0 = mat0['FY_CALC_OUT'].flatten()

FY_INNER_CALC_0 = mat0['FY_CALC_IN'].flatten()

t0 = mat0['Time 1 - default sample rate'].flatten()

# Import data from Case n

Pos_Rig = mat['6047 Position'].flatten()

Acceleration_n = mat['Acc_20497'].flatten()

FZ_OUTER_CALC = mat['FZ_CALC_OUT'].flatten()

FZ_INNER_CALC = mat['FZ_CALC_IN'].flatten()

FX_OUTER_CALC = mat['FX_CALC_OUT'].flatten()

FX_INNER_CALC = mat['FX_CALC_IN'].flatten()

FY_OUTER_CALC = mat['FY_CALC_OUT'].flatten()

FY_INNER_CALC = mat['FY_CALC_IN'].flatten()

t = mat['Time 1 - default sample rate'].flatten()

nondim = rho * data[0][n] * D ** 3 / T ** 2

start_amplitude = 0.05/(2*math.pi)

# =============================Synchronize============================= #

# Start synchronization

start_shift = find_start(Pos_Rig, 0.01 * start_amplitude, hz)

start_shift0 = find_start(Pos_Rig_0, 0.01 * start_amplitude, hz)

intervals = [[int(start_shift + 5 * T * hz), int(start_shift + 33

* T * hz)],↪→

[int(start_shift0 + 5 * T * hz), int(start_shift0 +

33 * T * hz)]]↪→

# Constructing the shift value for empty rig

KC_shift = getShift_KC(KC, T, hz, 4, 30, 30)

intervals[0][0] = intervals[0][0] + int(KC_shift)

intervals[0][1] = intervals[0][1] + int(KC_shift)

intervals[1][0] = intervals[1][0] + int(KC_shift)

intervals[1][1] = intervals[1][1] + int(KC_shift)

L2_shift = getShift_L2(Pos_Rig[intervals[0][0]:intervals[0][1]],

Pos_Rig_0[intervals[1][0]:intervals[1][1]], hz)↪→

intervals[1][0] = intervals[1][0] + int(L2_shift)
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intervals[1][1] = intervals[1][1] + int(L2_shift)

mean = np.mean(Pos_Rig[intervals[0][0]:intervals[0][1]])

mean0 = np.mean(Pos_Rig_0[intervals[1][0]:intervals[1][1]])

Pos1 = Pos_Rig[intervals[0][0]:intervals[0][1]]

Pos0 = Pos_Rig_0[intervals[1][0]:intervals[1][1]]

plotPostitions(Pos1, Pos0, 'Steady state position KC = %i' % KC,

0)↪→

# =============================IsolateForces=============================

#↪→

# Subtract the rig

FZ_OUTER_raw = FZ_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FZ_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FZ_INNER_raw = FZ_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FZ_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FX_OUTER_raw = FX_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FX_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FX_INNER_raw = FX_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FX_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FY_OUTER_raw = FY_OUTER_CALC[intervals[0][0]:intervals[0][1]] -

FY_OUTER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

FY_INNER_raw = FY_INNER_CALC[intervals[0][0]:intervals[0][1]] -

FY_INNER_CALC_0[intervals[1][0]:intervals[1][1]]↪→

Acc = Acceleration_n[intervals[0][0]:intervals[0][1]]

# Subtract the mass

FZ_OUTER_raw = FZ_OUTER_raw + data[1][n] *

Acceleration_n[intervals[0][0]:intervals[0][1]]↪→

FZ_INNER_raw = FZ_INNER_raw + data[1][n] *

Acceleration_n[intervals[0][0]:intervals[0][1]]↪→

delta_IL_raw = FZ_INNER_raw - FZ_OUTER_raw

delta_CF_raw = FY_INNER_raw - FY_OUTER_raw

sum_FZ_raw = FZ_INNER_raw + FZ_OUTER_raw

# =============================Filtration============================= #

FZ_OUTER, _ = bpass_gaussian(FZ_OUTER_raw, dt, 0, 10)

FZ_INNER, _ = bpass_gaussian(FZ_INNER_raw, dt, 0, 10)

FX_OUTER, _ = bpass_gaussian(FX_OUTER_raw, dt, 0, 10)

FX_INNER, _ = bpass_gaussian(FX_INNER_raw, dt, 0, 10)

FY_OUTER, _ = bpass_gaussian(FY_OUTER_raw, dt, 0, 10)

FY_INNER, _ = bpass_gaussian(FY_INNER_raw, dt, 0, 10)

IL_delta, _ = bpass_gaussian(delta_IL_raw, dt, 0, 10)

CF_delta, _ = bpass_gaussian(delta_CF_raw, dt, 0, 10)

FZ_sum, _ = bpass_gaussian(sum_FZ_raw, dt, 0, 10)

Acc_bpass, _ = bpass_gaussian(Acc, dt, 0, 10)
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FZ_OUTER = FZ_OUTER / 2

FZ_INNER = FZ_INNER / 2

FX_OUTER = FX_OUTER / 2

FX_INNER = FX_INNER / 2

FY_OUTER = FY_OUTER / 2

FY_INNER = FY_INNER / 2

IL_delta = IL_delta / 2

CF_delta = CF_delta / 2

FZ_sum = FZ_sum / 2

# =============================Harmonics============================= #

# Calculate harmonic force contributions

IL_outer_amp, IL_outer_omega, IL_outer_BP_list =

Harmonics(FZ_OUTER, hz, T)↪→

IL_inner_amp, IL_inner_omega, IL_inner_BP_list =

Harmonics(FZ_INNER, hz, T)↪→

CF_outer_amp, CF_outer_omega, CF_outer_BP_list =

Harmonics(FY_OUTER, hz, T)↪→

CF_inner_amp, CF_inner_omega, CF_inner_BP_list =

Harmonics(FY_INNER, hz, T)↪→

delta_IL_amp, delta_IL_omega, _ = Harmonics(IL_delta, hz, T)

delta_CF_amp, delta_CF_omega, _ = Harmonics(CF_delta, hz, T)

delta_CF_omegas[0].append(delta_CF_amp[0])

delta_CF_omegas[1].append(delta_CF_amp[1])

delta_CF_omegas[2].append(delta_CF_amp[2])

delta_CF_omegas[3].append(delta_CF_amp[3])

delta_IL_omegas[0].append(delta_IL_amp[0])

delta_IL_omegas[1].append(delta_IL_amp[1])

delta_IL_omegas[2].append(delta_IL_amp[2])

delta_IL_omegas[3].append(delta_IL_amp[3])

IL_outer_omegas[0].append(IL_outer_amp[0])

IL_outer_omegas[1].append(IL_outer_amp[1])

IL_outer_omegas[2].append(IL_outer_amp[2])

IL_outer_omegas[3].append(IL_outer_amp[3])

IL_inner_omegas[0].append(IL_inner_amp[0])

IL_inner_omegas[1].append(IL_inner_amp[1])

IL_inner_omegas[2].append(IL_inner_amp[2])

IL_inner_omegas[3].append(IL_inner_amp[3])

CF_outer_omegas[0].append(CF_outer_amp[0])

CF_outer_omegas[1].append(CF_outer_amp[1])

CF_outer_omegas[2].append(CF_outer_amp[2])

CF_outer_omegas[3].append(CF_outer_amp[3])
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CF_inner_omegas[0].append(CF_inner_amp[0])

CF_inner_omegas[1].append(CF_inner_amp[1])

CF_inner_omegas[2].append(CF_inner_amp[2])

CF_inner_omegas[3].append(CF_inner_amp[3])

# =============================Velocity============================= #

Acc_vec = Acc_bpass[0:int(T * hz)]

Acc_shift = np.where(Acc_vec == max(Acc_vec))[0][0]

# Acceleration intervals for force calculation - MUST be a whole

number of periods↪→

Acc_intervals = [[int(Acc_shift), int(Acc_shift + 5 * T * hz)],

[int(Acc_shift), int(Acc_shift + 5 * T * hz)]]

Acceleration = Acc_bpass[Acc_intervals[0][0]:Acc_intervals[0][1]]

Velocity = Forward_Euler(0, Acceleration, dt)

FZ_AVF_OUTER = FZ_OUTER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

FZ_AVF_INNER = FZ_INNER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

FY_AVF_OUTER = FY_OUTER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

FY_AVF_INNER = FY_INNER[round(Acc_shift):round(Acc_shift + 5 * T *

hz)]↪→

plotAVF(Acceleration, Velocity, FZ_AVF_OUTER, FZ_AVF_INNER, KC, 0)

plotAVF(Acceleration, Velocity, FY_AVF_OUTER, FY_AVF_INNER, KC, 0)

# =============================Velocity============================= #

for i in range(len(viscous_IL_outer)):

if i == 0:

acc = Acceleration

velocity = Forward_Euler(0, Acceleration, dt)

else:

acc, velocity = AccCos2VelSine_timeseries(1, i + 1, T, 5,

hz, 0)↪→

force_IL_outer =

IL_outer_BP_list[i][round(Acc_shift):round(Acc_shift + 5 *

T * hz)]

↪→

↪→

force_IL_inner =

IL_inner_BP_list[i][round(Acc_shift):round(Acc_shift + 5 *

T * hz)]

↪→

↪→

force_CF_outer =

CF_outer_BP_list[i][round(Acc_shift):round(Acc_shift + 5 *

T * hz)]

↪→

↪→
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force_CF_inner =

CF_inner_BP_list[i][round(Acc_shift):round(Acc_shift + 5 *

T * hz)]

↪→

↪→

drag_CF_outer = get_force(force_CF_outer, velocity, dt)

mass_CF_outer = get_force(force_CF_outer, acc, dt)

mass_IL_outer = get_force(force_IL_outer, acc, dt)

drag_IL_outer = get_force(force_IL_outer, velocity, dt)

drag_CF_inner = get_force(force_CF_inner, velocity, dt)

mass_CF_inner = get_force(force_CF_inner, acc, dt)

mass_IL_inner = get_force(force_IL_inner, acc, dt)

drag_IL_inner = get_force(force_IL_inner, velocity, dt)

viscous_IL_inner[i].append(drag_IL_inner * ((KC * D) / T))

viscous_CF_inner[i].append(drag_CF_inner * ((KC * D) / T))

inertial_IL_inner[i].append(mass_IL_inner * ((2 * math.pi * KC

* D) / T**2))↪→

inertial_CF_inner[i].append(mass_CF_inner * ((2 * math.pi * KC

* D) / T**2))↪→

viscous_IL_outer[i].append(drag_IL_outer * ((KC * D) / T))

viscous_CF_outer[i].append(drag_CF_outer * ((KC * D) / T))

inertial_IL_outer[i].append(mass_IL_outer * ((2 * math.pi * KC

* D) / T**2))↪→

inertial_CF_outer[i].append(mass_CF_outer * ((2 * math.pi * KC

* D) / T**2))↪→
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