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Abstract

This Master’s thesis focuses on addressing the challenges associated with compensating for second-
order, low-frequency wave load on DP vessels. The conventional approach of using the integral action
feedback method has been found to be susceptible to transients caused by the low-frequency components
of the wave loads. This may cause positional offsets of the vessel. Motivated by this challenge, the
work presented in this thesis aims to explore alternative methods for real-time compensation of these
residual loads.

A high-fidelity simulation platform, MCSimPython, has been developed, in collaboration with Jan-Erik
Hygen. The platform provides a comprehensive descriptions of vessel kinetics and kinematics, external
environmental loads, and DP functionality, providing the complete functionality for end-to-end testing
of DP control system. The simulation platform is provided as a open-source PyPI Python package.
Additionally, a neural network source code has also been developed, and is utilized in the control
techniques.

Four different disturbance rejection methods for compensating second order, low-frequency wave loads
on DP vessels has been presented and successfully implemented. The methods include direct integral
action in a PID controller, DP-observer estimates utilized in a feedforward loop, an adaptive controller
employing a truncated Fourier series disturbance model and a neural network bias estimate integrated
into a feedforward loop. The two first methods serve as baseline approaches, while the latter two are
proposed as alternative methods for potentially better compensation of residual loads. All controllers
have been tuned equally, by the means of derivative-free-optimization techniques, enabling a fairer
comparison foundation.

The simulation study proved that all control methods exhibited a satisfactory performance. The adapt-
ive controller demonstrated potential for a more rapid bias rejection during transient phases, although
slightly underperforming in overall performance. The neural network bias model exhibited a superiority
over the other approaches in regard to bias estimation. That being said, as the controller was imple-
mented in a direct bias compensation mechanism, relying on a perfect vessel model, it was concluded
that the technique faced difficulties regarding commercial feasibility.

A sensitivity analysis is provided to assess the robustness of the two newly proposed control methods.
The analysis revealed sensitive behavior related to noisy velocity estimates, which had to be addressed
in the tuning process of the adaptive gain, and introduced a trade-off between rapid bias rejection
and stability. The neural network controller showcased notable variations in bias estimation when
subjected to errors in the control design model and input parameters. This highlights the need for
extensive training for the controller can be effectively implemented in a real system.

Finally, the PID and the adaptive controller, were tested experimentally in a laboratory. Despite the
need for extensive re-tuning of the controllers, the experimental tests exhibited similar behaviors and
trends as observed in the simulation study. This alignment serves as an important validation of the
results obtained from the simulation study.
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Sammendrag

Denne masteroppgaven fokuserer p̊a å h̊andtere utfordringene forbundet med kompensasjon av annenor-
dens, lavfrekvente bølgebelastninger p̊a DP-fartøy. Konvensjonelt brukes integralvirkning i en tilbakekob-
lingssløyfe for å kompensere for slike krefter. Denne metoden har derimot vist seg å være sensitiv for
transiente effekter for̊arsaket av de lavfrekvente komponentene i bølgebelastningene. Dette kan res-
ultere i posisjonelle avvik for fartøyet. Motivert av denne utfordringen tar arbeidet i denne oppgaven
sikte p̊a å utforske alternative metoder for sanntidskompensasjon av disse gjenværende belastningene.

En omfattende simuleringsplattform, MCSimPython, har blitt utviklet i samarbeid med Jan-Erik Hy-
gen. Plattformen inkluderer funksjonalitet for å modellere et fartøys kinematikk og kinetikk, ytre
miljøkrefter samt funksjonalitet knyttet til reguleringsteknikk. Med dette fasiliteter plattformen for å
kunne kjøre omfattende testing og analyse av DP-systemer. Simuleringsplattformen er tilgjengelig for
allmenheten da den kan installeres som en egen Python pakke ved bruk av PyPI.

Fire ulike metoder for kompensasjon av annenordens, lavfrekvente bølgebelastninger p̊a DP-fartøy
presenteres og er blitt implementert. Metodene inkluderer direkte integralvirkning i en PID-regulator,
bias estimater fra observer brukt i en foroverkobling, en adaptiv regulator som benytter en Fourier-
serie bias-modell, og, bias estimering fra et nevralt nettverks integrert i en foroverkobling. De to første
metodene er konvensjonelle metoder og fungerer som et sammenligningsgrunnlag for de to sistnevnte
mer innovative metodene.

Det er gjennomført en simuleringsstudie som evaluerer og sammenligner de fire ulike metodene presen-
tert ovenfor. Hvor gode regulatorene er til å holde fartøyet i ro for en gitt posisjon, samt hvor godt de
klarer å følge en ønsket manøver har blitt evaluert. For den sistnevnte testen er transienter tilstede.
Dette øker kompleksiteten til testen. Generelt sett viste alle kontrollmetodene tilfredsstillende resultater
for de to testene. Den adaptive regulatoren viste seg å ha de overordnede d̊arligste resultatene. Den
viste derimot potensiale for rask kompensasjon av bias under transiente faser. Den nevrale nettverks-
regulatoren gav den høyeste posisjonsnøyaktigheten blant alle regulatorer. Samtidig estimerte den
biasesen betraktelig bedre enn de andre metodene. Til tross for de lovende resultatene, kreves det
videre utvikling før denne regulatoren kan anvendes i virkelige DP-systemer.

For å vurdere robustheten til de to alternative regulatorene ble det utført en sensitivitetsanalyse. Ana-
lysen avdekket sensitiv oppførsel knyttet til støyfulle hastighetssignaler for den adaptive regulatoren.
Viktigheten av regulatorens stabilitet m̊atte derfor veies opp mot rask bias kompensering. Den nev-
rale nettverksregulatoren viste betydelige variasjoner i bias estimeringen n̊ar det ble introdusert feil i
kontroll design modellen og nettverkets input parametere. Dette understreker behovet for omfattende
trening før regulatoren kan implementeres effektivt i et ekte system.

To av kontrollmetodene, PID-regulatoren og den adaptive regulatoren, ble testet i Marin Teknisk Senters
eget laboratorium. Til tross for at det var behov for omfattende justering av regulatorene, viste de
eksperimentelle testene lignende oppførsel og trender som testene utført p̊a simuleringsplattformen.
Disse funnene fungerer som en validering av resultatene fra simuleringsstudien.
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Preface

This thesis represents the culmination of our dedicated efforts and academic journey throughout five
rewarding years at the Marine Technology master’s degree program at NTNU in Trondheim. The work
was started in the preceding project thesis during the fall of 2022, and it now concluded with the current
master’s thesis. The delivery of this thesis finalize our master’s degree in marine cybernetics.

The knowledge acquired during these past months has significantly improved our understanding of the
challenges currently faced by the industry regarding dynamic positioning systems. It has broadened
our proficiency in programming, control theory, artificial intelligence, system modeling, and model
verification and validation. We hand in this Master’s thesis with motivation and optimism, as we
embark on our professional journeys within the maritime industry.

We hope that this thesis serves as a meaningful contribution to the field within marine control systems
and inspires further research and exploration. It is our fervent hope that the findings presented here
will contribute to the advancement of knowledge regarding the study of disturbance rejection and have
practical implications in marine control systems.

vi



Acknowledgments

We would like to seize this opportunity to express our deepest gratitude to all those who have gener-
ously shared their knowledge, expertise, and time, contributing significantly to the development of this
Master’s thesis. Their support has been invaluable throughout this journey.

First and foremost, we would like to extend our appreciation to our supervisor, Roger Skjetne, and
our co-supervisor, PhD candidate, Mathias Marley. They have both expressed a genuine interest in
our work, and their insightful feedback, constructive criticism, and guidance, have played a key role
in shaping the direction and content of this thesis. Throughout the entire research process, both has
welcomed us to ask questions and prioritized to put aside time to talk to us. We are truly grateful for
the encouragement to explore research questions that remain unanswered.

PhD candidate, Markus Fossdal, and Senior Engineer, Robert Opland, deserves a special mention for
their invaluable assistance in conducting experiments in the MC-lab. Given the authors’ limited prior
experience in conducting lab experiments, their help has been of utmost importance for the successful
completion of this thesis. Fossdal’s remarkable proficiency in both software and hardware is truly
impressive, and we and we consider ourselves fortunate to have such an exceptional teacher. The fact
that Opland knows the MC lab like the back of his hand has been immensely helpful whenever we have
faced difficulties in the lab. The willingness of both Opland and Fossdal to assist us, even outside of
office hours, shows remarkable dedication. For this we are truly grateful.

Furthermore, we would like to express our gratitude to Jan-Erik Hygen for a productive and rewarding
collaboration in the development of a generic simulation platform. This collaboration stands as one of
the major contributions of this project. We strongly believe that our engaging discussions and different
approaches to problem-solving has undoubtedly resulted in a better result than what any of us could
have achieved individually.

Finally, we would like to express our sincere gratitude to our fellow students who have made the past
five years truly memorable. We would like to extend a special thanks to our friends with whom we
have shared our offices, the people in C317 and C319. Your positivity and sense of humor have greatly
contributed to making this challenging journey more enjoyable.

To all those mentioned above and to those who have supported us in ways beyond words, we express our
deepest gratitude. Your contributions have been instrumental in the completion of this master thesis,
and we are truly honored to have had the opportunity to work with such remarkable individuals.
Thank you.

Marie Fejerskov Kongshaug and Harald Mo
June 2023

vii



Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project formulation and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Scope and delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Project contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Mathematical preliminaries and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Mathematical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Fourier transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Hydrodynamic wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Wave modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Wave spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Wave loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Newman’s approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Training a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Developing a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



2.4 Dynamic positioning control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Typical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Thrust allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Reference model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.6 Control design model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.7 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.8 DP control law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Low-speed simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 X-in-the-loop testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Derivative-free optimizion techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Derivative-free optimization for controller tuning . . . . . . . . . . . . . . . . . . 33

2.8 MC-lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 CyberShip Arctic Drillship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.2 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Development of simulation platform 37

3.1 Design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Implementation of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Sea state module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Wave load module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Vessel module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 GNC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 ROS interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Validation and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Problem formulation and methods 55

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Disturbance rejection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Setup and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Bias compensation by integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Bias estimation from observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Adaptive control using a Fourier series disturbance model . . . . . . . . . . . . . . . . . 61

ix



4.4.1 Frequency-selection for the adaptive update law . . . . . . . . . . . . . . . . . . . 66

4.4.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Bias estimation with a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Further enhancement of the bias estimate . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Simulation results and discussion 72

5.1 Test scenario 1 - Stationkeeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Test scenario 2 - 30◦-30◦ heading change . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Qualitative assessment of the control methods . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Experimental testing and validation 86

6.1 Lab setup and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Lab session 1 - Test of baseline controller . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Stationkeeping test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 4-corner test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Lab session 2 - Test of the adaptive controller . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Stationkeeping test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.2 20°-20° heading change test scenario . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Key takeaways from the lab sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion 98

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography I

A Guides V

1 Guide: How to use MCSimPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

B X-in-the-loop VI

1 Model-in-the-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

2 Simulator-in-the-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

3 Hardware-in-the-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

4 Physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

x



List of Figures

2.1 Comparison of different 1D wave spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Wave loads divided according to frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Heat map of a fictive QTF, displaying Newman’s approximation. . . . . . . . . . . . . . 12

2.4 The relation between deep learning, machine learning and artificial intelligence. . . . . . 13

2.5 Neural network with one hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Different activation functions and their derivative in a neural network. . . . . . . . . . . 16

2.7 Dense and activation layer structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Layers structured in series, forming a neural network. . . . . . . . . . . . . . . . . . . . 18

2.9 Block diagram displaying a typical DP system, separated into Guidance, Navigation and
Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 WF motion obtained with colored noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Speed regimes for vessels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 The influence of linear and nonlinear damping depending on the speed of the vessel. . . 30

2.13 Concept of model-in-the-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 Concept of simualtor-in-the-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 Concept of hardware-in-the-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.16 Steps in the Nelder-Mead optimization algorithm. . . . . . . . . . . . . . . . . . . . . . . 33

2.17 CSAD in the wave basin in the MC-lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.18 Graph model of ROS architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 The structure of the simulation platform and its modules. . . . . . . . . . . . . . . . . . 38

3.2 Sea state module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 2D wave spectrum and multidirectional wave field with θp = 0 [°], Hs = 2.0 [m], and
Tp = 9.0 [s]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Wave load module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Generation of full QTF matrices in preprocessing. . . . . . . . . . . . . . . . . . . . . . 42

xi



3.6 QTFs generated from the wave load module. Hs = 0.03 m, Tp = 1.5 s, N = 50, β = 0. . 43

3.7 QTF matrices retrieved with different methods from the simulation platform. . . . . . . 44

3.8 Vessel module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Thruster configuration for CSAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 GNC module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 ROS wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 ROS architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.13 Second order wave loads for a single wave component. . . . . . . . . . . . . . . . . . . . 51

3.14 Second order wave loads for N = 2 wave components. . . . . . . . . . . . . . . . . . . . 51

3.15 Second order wave loads for N = 3 wave components. . . . . . . . . . . . . . . . . . . . 52

3.16 Comparison of computational time for second order wave loads. . . . . . . . . . . . . . . 52

3.17 Validation of response spectra in heave for simulated, experimental, and theoretical re-
sponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.18 Validation of response spectra in roll for simulated, experimental, and theoretical response. 53

3.19 Validation of response spectra in pitch for simulated, experimental, and theoretical re-
sponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Simulated residual loads, both in BODY and NED, during a 360◦ turn. The dotted lines
represent the mean values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Derivative free optimization procedure for the PID controller. . . . . . . . . . . . . . . . 60

4.3 Before and after DFO tuning of the PID controller for a simple setpoint change in surge. 60

4.4 Block diagram of the adaptive controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Derivative free optimization process for the adaptive controller. . . . . . . . . . . . . . . 66

4.6 Before and after DFO tuning of adaptive controller for a simple setpoint change in sway. 67

4.7 The fully developed neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Study evaluating how different activation functions in the hidden layers of the neural
network estimate the bias loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Vessel response for all control methods during stationkeeping test scenario. . . . . . . . 73

5.2 Bias rejection in surge for all controllers, in a 100 seconds interval, during stationkeeping. 73

5.3 Key performance indicators for steady state stationkeeping. . . . . . . . . . . . . . . . . 74

5.4 Heading response, and bias rejection term in sway, for all control methods during a
30◦-30◦ test scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Bias rejection terms in sway during a 30◦-30◦ test scenario, from t = 1750 s to t = 2100 s. 76

5.6 Key performance indicators for a 30◦-30◦ heading change. . . . . . . . . . . . . . . . . . 76

5.7 Sensitivity plot for test scenario 2, plotted for different values of Γ. . . . . . . . . . . . . 79

5.8 Power spectral density of the bias rejection terms for various values of N . . . . . . . . . 80

5.9 Adaptive coefficients in Θ, for N = 0, 1 and 5. . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



5.10 Normalized KPIs for bias prediction from the neural network model, performed for a
range of different Hs and Tp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11 Bias rejection performance in the neural network controller for a given set of errors in
the CDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.12 Average computational time per calculated control load for the different control methods. 85

6.1 The basin frame defined in the MC-lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Wave spectrum measured in the MC-lab from two distinct wave probes, compared to the
theoretical JONSWAP spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Wave realizations for WP1 and WP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Position for a PID controller during a station keeping test in head sea. . . . . . . . . . . 89

6.5 xy-plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Position and heading plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.7 Position and bias rejection term for an adaptive controller during a stationkeeping test
in head sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.8 Experimental stationkeeping test with an increased adaptive gain. . . . . . . . . . . . . 93

6.9 Heading for CSAD during a 20°-20° heading test scenario. . . . . . . . . . . . . . . . . . 93

6.10 The experimental bias rejection term for CSAD during a 20°-20° heading test scenario. . 94

6.11 The corresponding simulated bias rejection term for CSAD during a 20°-20° heading test
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.1 Structure of MIL testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

B.2 Structure of SIL testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

B.3 Structure of HIL testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

B.4 Structure of physical testing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

xiii



List of Tables

2.1 Capacity of wave maker in the MC-lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Main data for CSAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Thruster specifics for CSAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Overview of all sea states used both simulations and experimental testing. . . . . . . . . 58

4.2 Bias estimation KPI for different activation functions. The indicators are normalized
such that the worst performing function has a value of 100. . . . . . . . . . . . . . . . . 69

5.1 Key performance indicators for steady state stationkeeping. . . . . . . . . . . . . . . . . 74

5.2 Defined levels of errors in the control design model. . . . . . . . . . . . . . . . . . . . . . 83

5.3 KPIs for different levels of errors in the CDM. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Qualitative PIs for the four control methods. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 The evolution of the average x position of the vessel during stationkeeping. . . . . . . . 92

xiv



Abbreviations

CDM Control design model

CLF Control Lyapunov function

CSAD Cybership Artic Drillship

DFO Derivative-free optimization

DFT Discrete Fourier transform

DOF Degree of freedom

DP Dynamic positioning

EKF Extended Kalman filter

FFT Fast Fourier transform

GNC Guidance, navigation & control

IMO International Maritime Organization

HF High-frequency

HIL Hardware-in-the-loop

IMU Inertial measurement unit

ITTC International Towing Tank Conference

ISSC International Ship and Offshore Structures
Congress

JONSWAP Joint North Sea Wave Project

LF Low frequency

LTV-KF Linear time-varying Kalman filter

MC Marine cybernetics

MIMO Multiple-input and multiple-output

MIL Model-in-the-loop

ML Machine learning

MPM Modified Pierson-Moskowitz

NED North-East-Down

NLO Nonlinear observer

NN Neural network

OOP Object-oriented programming

PM Pierson-Moskowitz

QTF Quadratic transfer function

RAO Response amplitude operator

RBF Radial basis function

ReLU Rectified linear unit

ROS Robotic operative system

SIL Software-in-the-loop

SV Slowly-varying

WF Wave frequency

xv



Nomenclature

β Wave direction

ϵ Wave phase

η Generalized position vector

γ Peak enhancement factor

λ Wave length

ν Generalized velocity vector

ω Wave frequency

ρ Water density

τ Generalized force vector

ζ Free surface elevation

ζa Wave amplitude

{b} Body-fixed reference frame

{n} North-East-Down reference frame

Cg Group velocity

Cw Phase velocity

g Gravitational acceleration

h Water depth

j Imaginary unit

k Wave number

w Gaussian zero-mean white noise

Hs Significant wave height

T Wave period

T1 Average wave period

Tp Peak wave period

Tz Average zero-crossing period

xvi



Chapter 1
Introduction

1.1 Motivation

Norway, stands, with the world’s second longest coastline, as one of the leading offshore nations globally.
With over 150 years of maritime experience, Norway is currently controlling the world’s 4th largest mer-
chant fleet (International Trade Administration, 2022). As emerging industries like offshore wind and
aquaculture gain momentum, considerable growth in the international maritime industry is expected,
and Norway is expected to play a central part in this transition. In a world facing both climate change
and energy scarcity, advancements in the maritime industry hold immense importance, not only for the
economic growth and welfare of the maritime nations such as Norway, but for the entire world.

The maritime engineering systems of today are already operating in highly challenging environments.
As marine operations move further away from shore, these environments becomes even harsher, further
increasing the demands with regards to safety and reliability. Dynamic positioning (DP) systems are
present in most complex maritime operations today and it is, therefore, important to dedicate time and
effort to make them as accurate and redundant as possible. DP systems are designed to compensate
for environmental loads such as waves, currents, and wind. Currently, wind loads are compensated for
with a feedforward control, while the slow variations exhibited by current and second order wave loads
are commonly compensated for using integral action in a feedback loop. However, this compensation is
susceptible to transients, originating from low-frequency contributions, which can manifest as positional
offsets in the vessel’s position. For marine operations that require high positional precision, such drift
can be unacceptable. Increasing accuracy in the DP system can significantly strengthen the operational
safety, enabling operations in harsher conditions than currently operated in, and expending the weather
window, ultimately reducing costs. Addressing this challenge has been the driving force behind the work
presented in this thesis, where efforts has been made to explore alternative methods for low-frequency
wave load compensation.

1.2 Project formulation and objectives

This thesis focus on exploring the challenges related to the compensation of second order, low-frequency
wave loads on DP vessels. It is possible that superior alternative disturbance rejection methods, sur-
passing the baseline methods, exist, and have the potential to enhance the overall performance of DP
systems. This thesis aims to investigate this statement by formulating the following main objective:

• Explore the effectiveness of alternative compensation techniques, in comparison to traditional
integral action, for mitigating response from low-frequency (not necessarily zero-frequency) wave
load components.
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In addition, a sub-objective has been established to support the achievement of the main objective:

• Develop a high fidelity simulation platform to enable full end-to-end testing of control systems in
an isolated environment.

To accomplish these objectives, a scope was defined in collaboration with our supervisor, Roger Skjetne.
The scope is presented in Section 1.4.

1.3 Literature review

The present study builds upon a solid foundation of existing research and theoretical frameworks in the
field of dynamic positioning. The project objective is based on the preceding master’s thesis written by
Brørby (2022). This thesis have been used as a notable reference point, and provided valuable insight
for further development in the current study.

The doctoral thesis of Værnø (2020) has played a fundamental role in this master’s thesis. Specifically,
the research conducted and published in the journal papers within the thesis, such as Værnø, Skjetne
et al. (2019), and Værnø, Brodtkorb et al. (2019). Especially the latter, which investigates the effects
of various internal bias models for compensating residual loads in a DP system, has been influential,
and is frequently referenced to in the relevant scientific literature.

A large part of the theory in this thesis is collected from the text books written by Faltinsen (1990),
Fossen (2021), and Nocedal and Wright (2006). These publications present in-depth descriptions of
wave load theory, marine control systems, and optimization, and are considered well known within
their respective field of works.

1.4 Scope and delimitations

The scope of this thesis was outlined to fulfill the objectives presented in Section 1.2. It can be
summarized in the following bullet points.

• Perform an extensive background study and literature review on relevant topics to provide in-
formation and references essential for the completion of this thesis.

• Further advance the already established Python simulation platform. A simulation model, capable
of simulating first and second order wave loads for various vessel models, is to be created. Focus
on making the source code computational efficient.

• Extend the established simulation platform to a full DP-model by implementing guidance, nav-
igation and control (GNC) functionality.

• Implement four different control techniques, whereas two serve as baseline controllers, commonly
used in industrial DP systems of today. The remaining two should be considered as less explored
methods. Evaluate their performance with regards to compensation of slowly varying wave loads.

• Utilize derivative free optimization (DFO) to tune the implemented controllers, creating an in-
creased basis for comparisons in between.

• Ensure seamless communication between the simulation platform and hardware in the marine
cybernetics laboratory (MC-lab) by implementing a Robot Operating System (ROS) wrapper.

To set realistic expectations for what can be achieved from the research related to the thesis, delimita-
tions are presented as follow:
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• The scope of the thesis mainly involve compensation of wave and current loads. Disturbances due
to wind is, therefore, excluded in all test cases.

• Only a general thrust allocation algorithm has been implemented in the developed simulation
platform. Constraints, such as forbidden zones and angular rate, has not been addressed.

• The created simulation model fully relies on hydrodynamic coefficients and response amplitude
operators provided by ShipX (Veres) by Sintef Ocean. These functions are numerically computed
from 2D strip theory, and the fidelity of the simulation platform is, thus, limited by the fidelity
of the Veres data.

• The availability to the MC-lab was limited due to the fact that the lab was shared with several
other Master’s students. This resulted in limited time for the experimental testing.

• The model vessel used for experimental testing had malfunctioning on several of the thrusters,
strongly reducing the maneuverability of the vessel.

• Due to complexity in generating current in the MC-lab, the experimental tests were conducted
without the presence of current loads.

1.5 Project contributions

The contributions from this project thesis are focused on facilitating for further work related to the
development of disturbance rejection methods and DP studies. Extensive work has been conducted,
and the main contributions can be listed as:

• Contributions to Knowledge: Advancing knowledge about alternative methods for residual
load compensation in DP systems.

• Development of Simulation Platform: In collaboration with fellow M.Sc. student Jan-Erik
Hygen, a high-fidelity simulation platform has been developed. This platform is distributed as
an open-source Python package, making it accessible to researchers and other students. The
simulation platform serves as a valuable tool for testing and evaluating DP systems.

• Validation of Simulation Platform: The simulation platform has been validated through
comparisons with experimental testing and theoretical analysis. This validation process ensures
the accuracy and reliability of the platform, enhancing its usefulness for future studies.

• Development of four distinct control methods Four distinct control methods have been
implemented, all with their separate bias rejection technique. Their performances are studied
through an in-depth analysis, and two of the controllers are tested experimentally in the MC lab.

• Neural Network Architecture: A neural network architecture has been developed specifically
for bias prediction. The architecture provides an innovative approach to estimate and compensate
for bias loads in DP systems.

• Comparison Study: The project thesis includes a comprehensive comparison study that eval-
uates and compares four different disturbance rejection methods. This study offers insights into
the strengths and weaknesses of these methods, hopefully facilitating for further research on the
approaches presented.

1.6 Thesis outline

The thesis is structured into seven separate chapters. The setup aims to first provide the reader with
a comprehensive background of the relevant theory, before presenting the developed simulation model,
as well as all compensation methods. Furthermore, all simulation results are presented and discussed,
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before, finally, some of the key findings are validated in an experimental study. The chapters are
organized as followed.

Chapter 2 presents the relevant background theory used as a basis for all further work and results
presented in this Master’s thesis. The chapter address topics such as hydrodynamic wave theory, neural
networks, DP systems, derivative-free optimization techniques, and the MC lab facilities.

Chapter 3 propose a high-fidelity, 6 degree of freedom (DOF), simulation platform developed for
this master’s thesis. The platform’s modules, and all their functionalities, are displayed and critically
discussed, before illustrating how the platform can be connected to hardware, using a ROS interface.

Chapter 4 unveil the research questions of the thesis, as well as the different control methods explored
to solve them. The chapter also briefly presents the tuning processes of the controllers.

Chapter 5 presents final results from the extensive simulation study of the different disturbance
rejection methods. Both quantitative and qualitative assessments of the controllers are made. The
results also include a sensitivity analysis for a selected number of controller parameters.

Chapter 6 aims to investigate some of the key findings from the simulation study through experimental
testing in the MC-lab. The findings are discussed, and evaluated against results in Chapter 5.

Chapter 7 summarize the key findings from the analyses presented in Chapter 5 and Chapter 6. The
chapter set the findings up against the overall objectives of the thesis, and present potential further
work to be done.
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Chapter 2
Background

This section will present a comprehensive description of all theory relevant for the upcoming study.
This include a thorough presentation of hydrodynamic wave loads, neural networks, DP systems, vessel
modeling, derivative-free optimization, and the MC-lab setup. Certain parts of the presented theory
are adapted from the preliminary project work in Kongshaug and Mo (2022). This is particularly the
case for Section 2.2, Section 2.4, and Section 2.5.

2.1 Mathematical preliminaries and methods

2.1.1 Mathematical notation

The following chapter presents mathematical notations used in this report.

Hadamard product: The element-wise product of two matrices. The Hadamard product between
two matrices A and B is denoted as

A ◦ B. (2.1)

Euclidean distance: The distance between two points in the n-dimensional Euclidean space,

d(x,y) = ||x − y|| =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2, (2.2)

where x = [x1, ..., xn] and y = [y1, ..., yn].

Cross product operator: The cross product matrix operator is given by

λ × a := S(λ)a,

where S is given as the matrix

S(λ) = −S⊤(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 . (2.3)

Skew-symmetric matrices: A skew-symmetric matrix is defined as

S = −S⊤, (2.4)
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implying that sij = −sji. A skew symmetric matrix also has the useful property for the quadratic form
of a vector λTS(λ)λ ≡ 0.

Big-O notation: The big-O notation describes the run time limit of a function f. The notation is
often used in run time analysis within computer science, and denotes how the execution time of a script
is based on the size of the input n. The limit is notated as f = O(. . . ), where the run time is presented
within the bracket, as a function of n.

2.1.2 Fourier transformations

Given a signal in the time-domain f(t), the Fourier transformation will map this signal to the frequency-
domain through the Fourier transformation operator F

[
·
]
. The operator is defined as in (2.5a), ac-

cording to Kreyszig (2011). The output signal is then regarded as the signal spectrum, describing
the intensity and presence of harmonic sinusoidal waves for different frequencies. This enables several
signal processing opportunities. It can especially be of interest to examine the magnitude for different
frequencies, which can indicate where the different frequencies originate from. The Fourier transform is
a complex number, where the modulus corresponds to the amplitude, and the argument to the phase.
Similarly to the Fourier transformation operator, the inverse Fourier transformation also exists, and is
described in (2.5b).

f̂(jω) = F
[
f(t)

]
=

1
√

2π

∫ ∞

−∞
f(t)e−jωtdt (2.5a)

f(t) = F−1
[
f̂(jω)

]
=

1
√

2π

∫ ∞

−∞
f̂(jω)ejωtdω (2.5b)

As computers operate in discrete time, the discrete Fourier transform (DFT), presented in (2.6), is
used in software and electronic devices that generate frequency spectra. The method can be seen as a
approximation of the continuous transformation, (2.5a). The validity of the DFT will depend on the
time-domain signal being analyzed, as it is defined on a finite time interval for a computational signals.
For efficiency the DFT is commonly implemented by the fast Fourier transform (FFT) (Brigham, 1988).

f̂(jω) = F
[
f(t)

]
=

N∑
k=0

f(tk)e−jωtk ∆t (2.6)

There exist several different methods for spectral density estimation. One of those is Welch’s method
which partitions the signal into multiple periodograms and averages them to reduce noise in the estim-
ated power spectra. Welch’s method will introduce a trade-off between noise reduction and frequency
resolution. This will be decided by the number of samples per periodogram and is important to bear
in mind when performing spectral analysis (Solomon, 1991).

2.2 Hydrodynamic wave theory

2.2.1 Wave modeling

Wave modeling is often split into two subsections: regular and irregular wave theory.

Regular wave theory is a mathematical model that assumes that waves can be described by a constant
wavelength, period, and amplitude. The theory is based on simplifying assumptions, including the
disregard of wave breaking, viscosity, and turbulence effects. Regular waves can be mathematical
described as the relationship between the height, length, period, and speed of the wave, as well as the
water depth and gravitational acceleration. The first order solution of the wave elevation for a regular
sinusoidal wave can be expressed as
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ζ(x, t) = ζa sin (ωt± kx+ ϵ), (2.7)
where the angular wave frequency is defined as ω = 2π

T , T is the wave period, k is the wave number,
and ϵ is a random phase, uniformly distributed in the interval [0, 2π]. The plus/minus sign inside
the trigonometric expression in (2.7) defines the direction of the wave propagation. In all upcoming
calculations, the waves described will be defined to propagate in the positive x-direction, corresponding
to using the minus sign. The relation between the wave frequency and wave number is given by the
dispersion relation presented in (2.8a). g, defines the gravitational constant. By assuming infinite
water depth (h → ∞), the expression is simplified to the deep water dispersion relation, as in (2.8b)
(Faltinsen, 1990, ch. 2).

ω2 = kg tanh (kh) (2.8a)
ω2 = kg (2.8b)

Unlike regular waves, which can be described by a simple mathematical equation, irregular waves have
a more complex nature, providing a more realistic representation of a real sea. Irregular wave theory
models the sea surface as a linear superposition of regular wave components with various amplitude,
phase angle and frequency. The properties of these component waves are provided by the wave spectrum,
S(ω), a frequency-domain representation of the sea state. The spectrum provides information about
the energy content and spatial distribution of the waves, as presented in (2.9) (Larsen et al., 2021, ch.
12).

E

ρg
=

N∑
i=1

1
2ζ

2
ai(ωi) =

N∑
i=1

S(ωn)∆ω (2.9)

Irregular waves are often classified into long-crested waves and short-crested waves. Long-crested waves
are modeled as two-dimensional, unidirectional waves, that vary in space and time. This model can be
sufficient for waves generated by a storm where the waves travel with sufficiently large wave periods,
typically seen for swell (Newman, 2017). The surface elevation of long crested waves are expressed
as the sum of N distinct regular wave components, with a random phase angle, ϵi. The phase angle,
uniformly distributed between 0 and 2π, represents the randomness and unpredictability of the wave
field.

ζ(x, t) =
N∑
i=1

ζai cos (ωit− kix+ ϵi) (2.10)

It can be observed that the expression in (2.10) is a linear superposition of several representations of
(2.7), each with their own energy contribution. By combining (2.9) and (2.10), the surface elevation
can be expressed as

ζ(x, t) =
N∑
i=1

√
2S(ωi)∆ω cos (ωit− kix+ ϵi). (2.11)

The unidirectional wave assumption can be insufficient for describing a real sea surface, where waves
often propagate from multiple directions. Especially for shorter and steeper waves, this directional
variation is significant (Newman, 2017). Short-crested waves provides a more realistic representation
of a real sea surface by superposing waves propagating from multiple directions. The surface elevation
at a given position (x, y), at time t, can is then given as

ζ(x, y, t) =
N∑
i=1

M∑
j=1

√
2S(ωi, βj)∆ω∆β sin (ωit− kix cos (βj) − kiy sin (βj) + ϵi,j), (2.12)

where the directional wave spectrum, S(ω, β) is introduced. β defines the direction of the wave propaga-
tion. N and M are the number of frequencies and directions, respectively. An increased number of
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wave components will lead to increased computational time for simulations, and efforts can thus be
made to reduce this computational time, for instance by choosing random frequencies and directions
within each frequency- and direction-interval. Another measure to reduce computational time is to
remove wave components that contain an insignificant amount of energy, as these components often
have a negligible contribution to the total sea state (Fossen, 2021).

2.2.2 Wave spectra

As stated, the wave spectra portray a frequency-domain representation of the sea state. Several dif-
ferent wave spectra exist, each with their own characteristics. The Pierson-Moskowitz (PM) and the
JONSWAP spectra are two commonly used, one-peaked spectra within ocean engineering.

The PM spectrum is a wave spectrum, developed in 1963, for fully developed wind-generated sea states
in the North Atlantic Ocean. The spectrum is known to have a steep front at low frequencies, and is
used as a basis for several spectral formulations. It can be expressed as

S(ω) = A

ω5 exp
(

− B

ω4

)
. (2.13)

In the original formulation, the parameters A, and B, are given according to Fossen (2021), as

A = 8.1 · 10−3g2, B = 0.74
( g

V19.5

)4
.

The standard PM spectrum is defined by V19.5, the wind speed 19.5 m above the sea level. However,
ISSC and ITTC recommends a modified version for a deep-water fully developed sea with no swell and
unlimited fetch. This modified PM spectrum (MPM) is a two-parameter wave spectrum, as opposed to
the standard one-parameter PM spectrum, and is defined by the significant wave height, Hs, and the
average zero-crossing period, Tz. Its parameters are then defined in Fossen (2021), as

A =
4π3Hs2

Tz4 , B =
16π3

Tz4 .

The JONSWAP spectrum is an ITTC stadard spectrum, created to resemble non-fully developed sea in
the North Sea. The spectrum was developed during the extensive measurement program known as the
Joint North Sea Wave Project. Mathematically, it can be represented as a PM-like spectrum, scaled by
a peak enhancement factor, denoted as γ. Hence, it is often recognized by its sharp peak compared to
the PM spectrum. The spectrum can be expressed, according to Faltinsen (1990), as

S(ω) = 155 Hs2

T4
1ω

5 exp
(

− 944
T4

1ω
4

)
γ

exp
[

−
(

0.191ωT1−1√
2σ

)2
]

(2.14)

σ =
{
σa, for ω < ωp

σb, for ω > ωp
, (2.15)

where T1 describes the average wave period, and ωp represents the spectral peak frequency. Results
from the JONSWAP project suggested γ = 3.3, σa = 0.07 and σb = 0.09 (Torsethaugen, 2004). Notice
that when γ = 1, the JONSWAP spectrum equals the PM spectrum. This can be observed from
Figure 2.1, as the blue and the orange lines coincide.
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Figure 2.1: Comparison of different 1D wave spectra.

Although the two spectra presented both are considered as one-peaked spectra, the sea state can also be
modeled by a two-peaked spectra, such as the Torsethaugen spectrum. The Torsethaugen spectrum is
an empirical spectrum derived from fitting two JONSWAP-shaped spectra to a spectrum averaged over
different combinations of Hs and Tp from the Norwegian Continental Shelf. The additional low-frequent
peak introduced in the spectrum originates from swell (Torsethaugen, 2004).

Figure 2.1 only presents unidirectional spectra, capable of generating waves in one direction. One
may, however, wish to model multidirectional wave fields for a more accurate representation of the sea
state. This requires directional wave spectra. The energy of the wave spectrum is then spread out over
different angles through a spreading function

D(θ) = 2(2s−1)s! (s− 1)!
π(2s− 1)! cos (θ − θp)(2s)

, (2.16)

such that

S(ω, θ) = S(ω)D(θ), (2.17)

where D is here assumed independent of frequency. It is important to note that this assumption is a
simplification and may not necessarily hold true in all cases (Larsen et al., 2021, ch. 13).

2.2.3 Wave loads

The wave loads exerted on a vessel can be modelled as a sum of first and second order wave loads.
Higher-order terms can also be included to additionally increase the precision, even though theory up
to second order often is considered sufficient.

First order wave loads, τ(1st), operate in the same frequency interval as the incident wave frequencies.
They will, thus, oscillate in parallel with the wave elevation, but with a different phase. As for the second
order loads, τ(2nd), it is common to split them up into three separate loads; sum-frequency, difference-
frequency, and mean-drift loads. The sum- and difference-frequency loads occur at respectively higher
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and lower frequency compared to the first order wave-frequency loads. The mean-drift loads do not
oscillate and will therefore provide a constant force on an object in waves (Faltinsen, 1990). The total
force acting on a body in waves is then modeled as

τwave = τ(1st) + τ(2nd). (2.18)

Figure 2.2 displays the partition of the first and second order wave loads, separated according to which
frequency interval the loads operate within.

1) Wave-frequeny loads

2) High-frequency loads

3) Low-frequency loads

4) Mean-drift loads

Incident wave range

Non-linear,

2nd order

effects

Difference-frequency range Sum-frequency range

1st order effects

Figure 2.2: Wave loads divided according to frequency.

The first order wave loads, often denoted as the wave-frequency (WF) loads, usually represent the
largest contribution of the wave loads. These loads can be represented as a sum of each individual
wave’s load contribution (OrcaFlex, 2022). Force Response Amplitude Operators, (RAOs), can be
used to translate the incident waves to wave-induced loads. These force RAOs are first order transfer
functions, dependent on ship geometry, and contains both an imaginary and a real part (amplitude and
phase).

Given a force RAO
RAOforce(ω, β) = |Fj(ωk, βi)| + j∠Fj(ωk, βi), (2.19)

the wave-induced, first order load, in DOF m, can be calculated as

τm =
N∑
k=1

M∑
i=1

ρgζa,k |Fm(ωk, βi)| cos
(
ωt+ ∠Fm(ωk, βi) + ϵk

)
, (2.20)

where Fm(ωk, βi) is the force RAO’s amplitude, and ∠Fm(ωk, βi) is the force RAO’s phase (Fossen,
2021). j is defined as the imaginary unit.

Second order wave loads are included in wave load calculations to enhance the accuracy of the wave
loads acting on a vessel. In second order wave theory, all terms in the velocity potential, proportional
to the square of the wave amplitude, are taken into consideration and superposed with the linear terms,
according to the perturbation method. This results in a smaller approximation error, described by the
upper approximation error limit of O(ζ3) (Faltinsen, 1990).

The total second order wave loads are obtained by summing up the three components present in
the second order model, as in (2.21). SV and HF do here refer to slowly-varying and high-frequency,
respectively. The sum-frequency loads are often neglected as these, in general, are smaller in magnitude
and yield little effect on large vessels. However, for some marine constructions, such as tension leg
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platforms, the sum-frequency forces can be of great significance as they can excite resonant oscillations
(Fossen, 2021). That being said, for DP-vessels, the slowly varying motions are the ones of the greatest
interest, as these can cause the vessel to drift from its set point.

τ(2nd) = τ̄ + τSV + τHF (2.21)

The slowly-varying excitation loads occur when two regular waves with different frequencies interfere.
The resulting wave load can be measured to have a frequency equal to the difference of the two regular
wave frequencies. A general formula for these loads can be derived utilizing quadratic transfer functions
(QTFs), according to OrcaFlex (2022). The slowly varying load in DOF m, for an irregular sea state
with N regular wave components, can then be written as

τSV
m =

N∑
k=1

N∑
i=1

Re
{
ζkζi Tm(βk, βi, ωk, ωi) exp

(
j(ωk − ωi)t− (ϵk − ϵi)

)}
, (2.22)

where ζk, ωk, and ϵk represent the amplitude, frequency, and phase of wave component k, while
Tm(βk, βi, ωk, ωi) denotes the complex-valued QTF for the wave pair (k, i), in DOF m, consisting
of both amplitude and phase information. Re denotes taking the real part of the complex value. The
QTFs can, for all N wave components, be collected in a QTF matrix. For a fixed relative angle β, this
can be represented by the matrix T (β) ∈ RN×N , as

T (β) =


T (β, ω1, ω1) . . . T (β, ω1, ωN )

... . . . . . .

T (β, ωN , ω1) . . . T (β, ωN , ωN )

 (2.23)

Finding the low-frequency wave load in (2.22) can be a challenging task. First of all, the double
summation can lead to difficulties regarding computational capabilities. However, the more complex
problem lies in determining the quadratic transfer functions. This can be done experimentally, but due
to the substantial costs involved in large-scale tests, it is more commonly done numerically, for instance
with programs such as WAMIT (3D potential theory) or VERES (2D strip theory). To avoid calculating
the full QTF matrix in (2.23), a simplified approach, known as the Newman’s approximation can be used.
The approximation only requires knowledge of the diagonal terms, defined as the drift-coefficients, to
approximate the full QTF. The approximation is widely used in the industry, and provide significantly
less CPU time. The drift coefficients are also derived purely by first order analysis, simplifying the
calculations even further.

2.2.4 Newman’s approximation

Newman’s approximation was first proposed by Newman (1974), and is widely used for estimating
the off-diagonal terms of the quadratic transfer function in (2.23). The approximation is stated in
OrcaFlex (2022), and in Faltinsen (1990), with slightly different notation. This thesis use the definition
and mathematical expressions as

Definition. Newman’s Approximation:
The value of the QTF for (ωi, ωk) can be found as the average of its value for (ωi, ωi) and (ωk, ωk).

T (ωi, ωk) = T (ωk, ωi)︸ ︷︷ ︸
Newman’s definition

= 0.5 (T (ωi, ωi) + T (ωk, ωk))︸ ︷︷ ︸
Newman’s approximation

(2.24)

According to Standing et al. (1987), the arithmetic mean in Equation 2.24 can be replaced by a geometric
mean to further improve the approximation. This can be justified as, provided that there is little spread
of wave directions, the far-from-diagonal QTF values are less crucial as they provide higher frequency
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contributions. High-frequency loads are, for most vessels, often associated with little effects, due to
their large inertia. Figure 2.3 displays how an arbitrary point in a fictive QTF can be calculated from
its belonging diagonal with Newman’s approximation.

Figure 2.3: Heat map of a fictive QTF, displaying Newman’s approximation. Courtesy of Fonseca and
Stansberg (2017).

The approximation can be said to be suitable if the real part of the QTF at relevant difference-
frequencies (such as natural frequencies) are close to the value at the main diagonal. As the imaginary
part (phase) of the QTF is zero along the diagonal, Newman’s approximation will lead to zero phase for
all elements in the QTF. Thus, the approximation is best suited if the actual phase also is close to zero.
Newman’s approximation does however often result in satisfactory outcome, as T (ωi, ωk) generally do
not alternate a lot with frequency. Care must nevertheless be taken if ω is close to the resonance
frequency as this can generate large motions (OrcaFlex, 2022). Figure 2.3 further strengthen the un-
derstanding of how local peaks in the QTF potentially can influence the validity of the approximation.

Two crucial cases for which care must be taken should also be mentioned when discussing Newman’s
approximation. Firstly, sea floor, or tank wall, effects may influence the validity of the approximation.
Consequently the approximation can be insufficient in shallow waters. Secondly, waves with adjacent
periods but distinct directions use far-from-diagonal QTF values. Thus, for vessels subject to a signi-
ficant spread of wave directions caution should be exercised. In general the full QTF is to be preferred
in both of these cases.

Mean drift forces can be described as a special case of difference-frequency loads that occur when
ωj = ωk in (2.22). This equality evidently leads to zero-frequency loads, indicating that a constant force
is acting on the vessel. A term for the mean drift load can be derived by evaluating the expression for
slowly-varying loads in (2.22). The zero-frequency definition will then eliminate the complex exponential
term, resulting in the following more straightforward equation.

τm =
N∑
i=1

ζ2
i Tm(β, ωi, ωi) (2.25)

T (β, ωi, ωi) is here taken as the real value of the diagonals in the QTF in (2.23). As expected, wave
components pair of equal frequencies give a time-independent contribution which can give rise to a
mean static offset of the vessel if not sufficiently compensated for.
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2.3 Neural networks

Neural networks (NN) are a subset of machine learning (ML) and are considered to be at the heart of
deep learning algorithms. The computing systems are based on the principle of the neurons in the brain
and are designed to recognize patterns. A network is composed of interconnected nodes arranged in
multiple layers, which process information and make predictions based on input data. NNs have been
applied to a wide range of fields, including computer vision, natural language processing, predictive
analysis, and control theory (IBM, 2023).

Artificial Intellegence

Machine Learning

Deep Learning

Figure 2.4: The relation between deep learning, machine learning and artificial intelligence.

The incorporation of neural networks in control theory dates back to the early 1990s. Since then,
extensive attention has been given to develop different techniques and approaches to integrate NNs into
a growing range of control applications. Within control theory, NNs have two major utility values; to
approximate dynamic programming for solving optimal control problems, and to be used in closed-loop
feedback control. However, implementing NNs to feedback control may introduce challenges related
to the closed-loop stability, as well as to the performance of the system. It is, therefore, important to
select a suitable control system structure and to tune the network properly (Al-Aubidy, 2023).

NN offer potential solutions to various aspects and challenges in control theory, including plant dynamics
modeling. Modeling the dynamics of a system is known to be a challenging task, especially when there
is limited or no information available about the plant model. By treating the plant model as a black box,
NNs can be used to provide numerical information about the behavior of the system without requiring
any mathematical description of it.

The fast learning capabilities of NNs make them suitable to for controllers that aim to adapt to chan-
ging environments (Al-Aubidy, 2023). NNs are also well-suited for making predictions about future
outcomes, through processing historical data. In the context of marine control theory, accurate predic-
tions, for instance of the unknown bias load, can be used to increase the accuracy and performance of
a DP controller. This aspect will be further investigated in Chapter 4.

2.3.1 Topology

NN algorithms are structured as a stack of multiple different layers of artificial neurons. The layers can
generally be categorized in three, being the input layer, the hidden layer, and the output layer, where
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the neurons of one layer is connected to its adjacent layers through weighted channels. Data is initially
inserted into the input layer and weighted based on its impact on the output. The weighted inputs are
them passed through one or more hidden layers. The hidden layers process the data through activation
functions, h(·), specifically selected to capture the desired characteristics of the process. The nodes in
the hidden layer will have specific threshold values assigned to them. If the value of a node exceeds its
threshold, the node is activated and the weighted signal is transmitted to the next layer. Conversely,
if the output has a value below the threshold, the signal is not passed through the node. Ultimately,
the output layer combines the processed data into the expected output z (IBM, 2023). The complete
process is illustrated in Figure 2.5. The constant node in the figure represents a bias in the network.

Input layer Hidden layer Output layer

.

.

.

.

.

.

.

.

.

.
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.
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.

.

Figure 2.5: Neural network with one hidden layer.

Increasing the number of layers in a NN, generally improves its accuracy. However, the complexity of
the network also increases, and the network can easily become computationally demanding. Hence,
it is important to find the right balance between efficiency and accuracy. In many cases, it can be
sufficient with a relatively shallow network to achieve satisfactory results, provided that the NN is well
constructed, i.e. if well suited activation functions have been chosen.

2.3.2 Activation functions

The performance of a neural network is heavily linked with the selection of activation functions in its
layers. The activation functions transfer the summed weight of input from the previous layer into an
output value to be fed into the following layer. Consequently, they play a crucial role in capturing
nonlinearities of the observed dynamics. Without an activation function, the neural network would
simply be reduced to a linear function of its input, which can be considered purposeless as most
realistic processes involve significant nonlinearities.

When selecting an activation function, there are several important factors to consider. Firstly, the
function should be continuous and differentiable. Non-continuous and non-differentiable activation
functions can provide complications when training the network with backpropagation, to be described
in Section 2.3.3. It is also important to adjust the activation function based on the type of prediction
problem that is being solved. These task-specific considerations can involve the dynamics of the system,
as well as the characteristics of the input data, and must be evaluated in relation with the properties of
the activation functions. Overall, this often lead to a trade-off between the performance of the predicted
results, and challenges related to complexity and computational time.
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The activation function can be chosen from a variety of alternatives, where some commonly used
options are presented in the following bullet points. The information is gathered from Baheti (2021),
and Sharma (2017).

• Sigmoid function: f(x) =
1

1 + e−x

The Sigmoid function is a smooth, s-shaped function that can take a value between 0 and 1. It
is thus commonly utilized in networks that aims to solve binary identification and probability
problems. Even though its derivative is continuous and easily derived, it can often lead to issues
related to the problem of vanishing gradient. This problem occur when the value of the gradient
becomes adequately small, which can cause the the weights of the lower layers to be updated very
slowly, or not at all.

• Hyperbolic tangent: f(x) = tanh x

The hyperbolic tangent function has large similarities to the Sigmoid function. The function is
continuous, easily differentiated, and also takes the same s-shape. Its output values are however
zero centered and span from -1 to 1. This enables the network to more easily map the output
values as strongly negative, neutral, or strongly positive. The hyperbolic tangent does also face
issues related to a vanishing gradient, but is often preferred over the Sigmoid function, as it has a
steeper, and more substantial gradient. Due to the zero centering of the function, the hyperbolic
tangent is also more capable of capturing nonlinearities, as the gradient is not restricted to move
in a certain direction.

• Gaussian radial basis function f(x) = exp
[
−β||x− c||2

]
Gaussian radial basis functions (RBFs) can be highly practical to use in NNs. They are considered
particularly useful in function approximation tasks, as the functions have the ability to interpolate
any set of input-output pairs exactly, as long as enough RBFs are applied. The functions are also
highly nonlinear, and thus, excellent at capturing nonlinearities in the training data (Liu, 2013).
However, it is important to note that RBFs are also prone to overfitting, where the model fails to
generalize well to unseen data. Additionally, the RBFs can be computationally more demanding
compared to other activation functions. The functions also require center initialization, which
often is considered a difficult task, but, nonetheless, plays a crucial role for achieving optimal
performance of the network.

• ReLU and leaky ReLU functions f(x) =
{
x, if x ≥ 0
0.01x, if x < 0

The rectified linear unit (ReLU) function is a piecewise linear function that returns the input,
given that the input is positive. If not, zero is returned. The function may intuitively give the
impression of a linear function, even though it still has a derivative function, which consequently
allow backpropagation to be applied. The ReLU function is therefore one of the more popular
activation functions in the world today. An issue does nonetheless arise due to the fact that
all negative input values will become zero. This affects the model’s ability to fit the weights to
the data set during backpropagation properly, which in turn affects the resulting graph by not
mapping the negative values adequately. This is often referred to as the dying ReLu problem,
and can be avoided by implementing the leaky ReLU function. The leaky ReLU function will,
similarly to the original function, return the input value for all positive numbers. For negative
inputs however, it has a small positive slope, ensuring that the gradient of the function never will
come to be zero for negative inputs. This will eventually guarantee that all neurons play a part
in updating the weights during backpropagation.
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Figure 2.6: Different activation functions and their derivative in a neural network.

2.3.3 Training a neural network

Neural networks are designed to learn and adapt from data, and in order for networks to work as
intended, proper training must be conducted. Through the process of adjusting the weights of the
network, the neural network can learn to identify patterns and generate predictions based on new
inputs in the future. The procedure is therefore pivotal for the performance of the network, and rely
on a proper and representative set of data.

Two important concepts in the process of training a neural network, are backpropagation, and gradient
descend. Backpropagation is the process of calculating the error rate of the output of a network,
and using the chain rule to propagate this rate backwards through the network. The calculated error
gradients can then be utilized to modify the weight parameters in order to minimize an overall error
function. This must be accomplished by an optimization algorithm, such as the commonly used gradient
descend. The algorithm adjust the weights in the direction of the negative gradient of the loss function,
and the size of the update is determined by a given learning rate to be selected by the creator of the
network. The learning rate must be selected in such a manner that the global minimum of the error
function is reached.

The process of training a neural network can be summarized in the four following steps.

1. Feed the network with input from a training data set, and propagate through the network to
calculate an output.

2. Compare the calculated output from the network with the actual data, and calculate an error
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based on a selected error function.

3. Backpropagate through the network and adjust the weights using for instance a gradient descent
technique.

4. Repeat step 1-3 for the complete dataset.

Tuning a neural network can also give rise to some unforeseen complications. One of the most common
of which is the problem of overfitting. This concept occurs when a network is trained to fit its training
data perfectly, at the expense of the algorithm’s performance against upcoming and unseen data. This
may be difficult to notice, as the network will show no sign of overfitting during the training process. It
will however most likely result in poor performance when tested on different data sets. As mentioned
in Section 2.3.2, problems also occur if the value of the gradient of the activation functions become too
small. This is especially the case for deep neural networks with several hidden layers, as it can lead to
an increased difficulty to update the weights and biases efficiently.

2.3.4 Developing a neural network

The development of a neural network can be a complicated and time consuming process. Several
different library tools which can be of use, such as the widely used Python package, PyTorch, already
exist. Functionality from this library has been used for this thesis. Nonetheless, to guarantee that the
network behaves as desired for a specific problem, it is important to understand the fundamentals of
how to implement a neural network without such assistance. The following paragraphs describe how
to implement a simple neural network. The procedure is heavily inspired by the process described in
Aflak (2018).

In general, the implementation of a neural network consists of defining two fundamental layers, namely
a dense layer and an activation layer. The dense layer describes the process of moving from one layer
in a neural network to its adjacent layer, while the activation layer describes the process of sending
a data through an activation function, as described in Section 2.3.2. When moving forward (forward
propagation) in a neural network, both layers take in a vector, X ∈ Rn, and returns a vector, Y ∈ Rm.
Similarly, when moving backwards (backpropagation) in the network, the error gradient with respect
to the output, ∂E

∂Y ∈ Rm, is handled as an input, before returning the error gradient with respect to the
original input, ∂E

∂X ∈ Rn. The general structure can be seen in Figure 2.7. The dense layer must also
differentiate the error with respect to the weights in the layer, ∂E

∂W ∈ Rm×n, to be used when updating
the weights using gradient descend.

(a) (b)

Figure 2.7: Dense and activation layer structure.

By evaluating the structure of Figure 2.7, it can be seen that both layers must be able to handle
both forward propagation and backpropagation. During forward propagation, the input, X, must
be transformed into an output, Y . This can for both layers be considered as a rather straightforward
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process. For backpropagation however, the error gradient, ∂E∂Y , is handled as input, and must be utilized
in order to calculate ∂E

∂X and ∂E
∂W . This procedure is derived using the chain rule, as summarized in

(2.26)-(2.28). The reader is referred to Aflak (2018) for a more detailed derivation.

∂E

∂X
=
∂E

∂Y

∂Y

∂X
=


W⊤ ∂E

∂Y
, if dense layer.

∂E

∂Y
⊙ f ′(X), if activation layer.

(2.26)

∂E

∂W
=
∂E

∂Y

∂Y

∂W
=
∂E

∂Y
X⊤ (2.27)

Y =


WX + B, if dense layer.

f(X), if activation layer.
(2.28)

A selected number of the two layers in Figure 2.7 can then be connected together in series, to form
a complete NN. The output of one layer will then function as input in the sequential, both when
propagating forward and backward, and can be seen in Figure 2.8. These layers are not to be confused
with the amount of layers presented in Figure 2.5, and do not represent the depth of the NN.

Figure 2.8: Layers structured in series, forming a neural network.

In the layout above, only the final layer requires the input to be uniquely defined while propagating
backwards, as it does not receive any error derivative from its neighboring layer. A differentiable error
function must therefore be specified by the developer. Given the output of the final layer Y , and the
actual desired output of the network, denoted as Y ∗, the mean square error (MSE) can be defined as

EMSE =
1
n

∑
i

(y∗
i − yi)2, (2.29)

with the derivative
∂EMSE

∂Y
=

∂

∂Y

[
1
n

∑
i

(y∗ − y)2

]
=

2
n

(Y − Y ∗). (2.30)

The selection of error function is by no means limited only to MSE as shown above. Pastor-Pellicer
et al. (2013) does, among others, propose an error backpropagation algorithm based on the F-Measure,
while Tian et al. (2022) discusses several more complicated loss functions and their advantages for deep
learning neural networks.
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2.4 Dynamic positioning control system

A Dynamic Positioning vessel is by definition a vessel that automatically maintains a desired position
and heading exclusively by means of active thrusters (IMO, 1994). The technology was first introduced
in the 1960s, even though it would take several years before it was developed into the advanced systems
known today. The motivation behind the evolution originated from the offshore oil and gas industry. As
new oil fields progressed into more challenging depths, the traditional bottom fixed platforms could no
longer be utilized. As a result, floating production rigs were developed and taken into use. Anchoring at
such depths was nonetheless vastly unpractical, forcing engineers to think outside the box and explore
the possibilities of implementing dynamic positioning.

DP systems have traditionally been utilized for low-speed maneuvering and stationkeeping, but in later
years standard autopilots and waypoint-tracking functionalities have also been implemented into the
DP system. A trend seen today, nonetheless, is the realization of high-speed functionalities, where the
ultimate goal is that this can merge with the more traditional DP systems and create a unified system
for all speed ranges (Fossen, 2021, ch. 15.3).

It is normal to classify DP systems according to their reliability. The International Maritime Organiz-
ation (IMO) operates with three equipment classes, all defined by their worst case failure (IMO, 1994)
. For DP class I, loss of position may occur in the event of a single fault. DP class II, loss of position is
not to occur in the event of a single fault in any component of the system. All components must thus
be redundant. The system must consist of at least two independent computer systems, as well as at
least three separate positioning systems and three sensor systems. DP class III includes all regulations
in class II, with the addition of redundancy in technical design and physical arrangement to prevent
failure during for instance flooding and fire.

A commercial DP system must be robust and able to compensate for environmental forces and unmod-
elled dynamics. These are some of the most important design requirements, as a full-state feedback
controller will fail in bad weather conditions unless the environmental forces are included in the design
specifications. The following requirements must therefore be present in an industrial vessel DP control
system, according to Fossen (2021):

• Disturbance rejection to compensate for slowly-varying loads.

• Wind feedforward control to compensate for wind gusts.

• Wave filtering to suppress first order wave frequency motion from entering the feedback loop and
cause wear and tear of actuators.

• State observer for noise filtering and the estimation of unmeasured states such as velocity.

• Optimal allocation of thrust to ensure that the desired thrust is provided by the propulsion system
on board.

• Signal filtering and fault detection/mitigation of measurements.

Understandably, other requirements do exist when designing a motion control system, but the afore-
mentioned can be considered as the most essentials in a DP system.

2.4.1 Objective

Seagoing vessels are continuously subjected to external forces from wind, waves and current. A DP
system aims to counteract these forces by controlling the propulsion system, obliging the vessel to
maintain either a fixed or dynamic position. The system must thus be able to evaluate the effects of
wind, wave and current on a vessel and initiate measures to prevent these. The difference between the
pose of the vessel, η, and the desired reference pose, ηd, can be defined as the error, often denoted
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η̃. The objective of the system can then be said to ensure a convergence of η̃(t) towards zero, written
mathematically as

η̃(t) = η(t) − ηd(t) → 0 as t → ∞. (2.31)

Similarly, the desired velocity, νd can be specified. The DP-system must then also consider the conver-
gence of the velocity error of the vessel when calculating the desired thrust force, that is,

ν̃(t) = ν(t) − νd(t) → 0 as t → ∞. (2.32)

2.4.2 Reference frames

When modelling and analyzing a DP vessel it can be convenient to first define the different reference
frames, for which the vessel’s motion can be described about. A broad variety of frames exist, but this
thesis will mainly utilize two of the most frequently used in the industry. These are the geographical
NED (North-East-Down) frame, denoted {n}, and the body-fixed BODY frame, denoted {b}. The
NED-frame is defined as a tangent plane located on the Earth’s ellipsoid, with its axis pointing towards
true North, East and downwards normal to the Earth’s surface. The BODY-frame has its origin fixed
to a moving vessel, usually located midships in the waterline.

When expressing the position of a marine craft, it is normal to do so in the geographical NED-frame.
The generalized position is then defined as

ηn = [xn yn zn ϕ θ ψ]⊤. (2.33)

The orientation of the vessel is here expressed using Euler angles, Θ. It is then possible to extract the
generalized velocities of the vessel by taking the time derivative of the expression, that is

η̇n = [ẋn ẏn żn ϕ̇ θ̇ ψ̇]⊤. (2.34)

It is, however, often more advantageous to express these velocities in the BODY-frame when deriving
the equation of motion. The velocities are then denoted as

νb = [u v w p q r]⊤. (2.35)

The superscript in the aforestated equations will be dismissed in further equations. It is important that
all forces and motions in an equation are expressed in the same reference frame. The ability to rotate
a vector in between the two defined frames is therefore a key property when deriving the equation of
motions. This can be done by a rotation matrix JΘ according to Fossen (2021), such that

JΘ(η) =
[

Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
. (2.36)

The matrix utilizes the orientation of the vessel, expressed by its Euler angles, and rotates both the
linear and angular velocity from {b} to {n}, by the relation η̇ = JΘ(η)ν. Its inverse can also be used
to transform the other way around. Other options to describe the orientation of the vessel, such as
quaternions, also exist, but will not be granted any further attention in this thesis. A broader and more
detailed derivation of the rotation matrix is given by Fossen (2021).

When modeling a DP-vessel, it is often sufficient to only consider horizontal motion. By assuming small
angular motions in roll and pitch, the 6 DOF kinematics represented above can then be reduced to
only consider surge, sway, and yaw. The rotation matrix will then also be simplified, using only the
yaw angle as input, giving the kinematics

η̇ = R(ψ)ν (2.37a)
ẋn

ẏn

ψ̇

 =


cosψ − sinψ 0
sinψ cosψ 0

0 0 1



u

v

r

 , (2.37b)

where the rotation matrix has the useful property of R−1(ψ) = R⊤(ψ).
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2.4.3 Typical topology

Similar to other motion control systems, the DP system is often separated into three independent blocks;
Guidance, Navigation and Control (Fossen, 2022, ch.11). These blocks can be complex and consist of
several subsystems. A brief description is given underneath. Figure 2.9 shows a block diagram of a
complete DP system where the Guidance, Navigation and Control systems all are marked.

Adaptive

law
Plant

Path planner, reference model

Operator

Operator, autopilot

Sensor system and

signal processing

State Estimation

Control

law

High-

level

allocation

Low-

level

dynamics

Guidance

Navigation

Control

Figure 2.9: Block diagram displaying a typical DP system, separated into Guidance, Navigation and
Control.

Guidance: The guidance system has the objective of computing the desired position, velocity, and
heading of the vessel based on some given setpoints. These parameters are usually inserted and utilized
in the control system block. The basic guidance system often consists of a path planner and a reference
model, where advanced optimization techniques can be implemented to obtain an optimal trajectory.

Navigation: The navigation system has the objective of directing the vessel by determining its states
(position, velocity, and attitude). The block consists of sensor systems, signal processing, and state
estimators, with the desire to provide both the guidance and control system with accurate and clean
signals.

Control: The control system has the objective of determining the necessary action required to satisfy
the control objective. The control objective is often seen in conjunction with the guidance system, and
it can involve the intention of minimizing energy, tracking trajectories, and maneuvering control. In
addition to the control law, consisting of both feedback and feedforward control laws, control allocation
is also a part of the control block.

Figure 2.9 presents how these three blocks are outlined as well as how they interact with each other. At
the core of the DP system, the controller is located. The controller receives signal about desired position
and velocity from the guidance block, as well as information about the actual position and velocity from
the navigation block, and utilizes this knowledge in a control law. The control law calculates the desired
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force required to obtain the DP objective, mentioned in Section 2.4.1. It can make use of the calculated
state error in a feedback loop, as well as measurements of the wind velocity in a feedforward signal.
Signals from the navigation block can also be used to create estimates of unknown parameters to be
utilized in an adaptive law.

2.4.4 Thrust allocation

The high-level thrust allocation is a part of the control block in a general DP system which receives the
desired control loads calculated in the control law, and transform these to control inputs for the onboard
propulsion system. DP vessels tend to be overactuated, meaning that an optimization problem must
be solved in order to find the desired control inputs. This thesis will purely focus on thrust allocation
for azimuth thrusters, as this is the only propulsion unit installed on the the model vessel used for this
thesis. Other propulsion systems such as tunnel thrusters, main propellers, and rudders are, however,
also normally installed on DP vessels.

In general the high-level thrust allocation can be summarized as in (2.38) (Fossen, 2021). The actuator
forces and moments, τ ∈ Rn relate to the control forces and moments, f ∈ Rr, by (2.38a), where
T (α) ∈ Rn×r is the thrust configuration matrix dependent on the azimuth angles, α ∈ Rr. For a vessel
equipped with r azimuth thrusters for operation in n DOFs, the thrust configuration matrix describes
the geometry or locations of the actuators. The control forces and moments can again be expressed as
in (2.38b), where K ∈ Rr×r is the diagonal force coefficient matrix and u ∈ Rr is the control inputs.

τ =T (α)f (2.38a)
f =Ku (2.38b)

(2.38) presents a nonlinear allocation problem due to the configuration matrix’ dependence on the
azimuth angles. When solving the thrust allocation problem for rotatable thrusters, it can be desirable
to formulate the problem as in (2.39). The subscript e in (2.39) indicates that the vectors and matrices
are extended. This is done to make the problem independent of the azimuth angles and hence, easier
to solve.

τ =Tefe (2.39a)
fe =Keue, (2.39b)

In (2.39), the rotatable forces are treated as two forces. The extended thrust configuration matrix, Te,
is defined with a set of column vectors (two for each azimuth propeller), describing the unit force in
x- and y-direction, as well as the moment arm in yaw. Te will thus be defined as a n × 2r-matrix.
The thrust coefficient matrix is simply a diagonal matrix describing the force coefficients, Ki, of each
azimuth propeller. For a DP system, when n = 3, the expression in (2.38) can be written out as


X

Y

N


︸ ︷︷ ︸
3×1

=


0 1 0 1 · · ·
1 0 1 0 · · ·
lx1 ly1 lx2 ly2 · · ·


︸ ︷︷ ︸

3×2r


K1 0 · · · 0
0 K1 · · · 0
...

... . . . ...
0 0 · · · Kr


︸ ︷︷ ︸

2r×2r



u1x

u1y

u2x

u2y

...
upy


︸ ︷︷ ︸

2r×1

.

The extended control inputs can then, given the desired thrust vector, be calculated by

ue = K−1
e T †

e τ, (2.40)
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where T †
e is the right Moore-Penrose pseudoinverse (Penrose, 1955) of Te. The actual control inputs

and angles can be calculated by mapping the pairs (uix , uiy ) according to (2.41), which have to be
modified to low level machinery signal [rpm],

ui =
√
u2
ix

+ u2
iy
, αi = atan2(uiy , uix), i = 1, 2, ..., p. (2.41)

The allocation problem is a an optimization problem, where the optimal solution should fulfill all given
constraints as sufficient as possible. In industrial propulsion systems, both physical constraints, such
as saturation and forbidden zones, as well as manually set constraints, like fuel or energy optimization
must be considered.

Thruster bias, which is often implemented for DP systems, can complicate the allocation problem.
However, it has its benefits. By having the thrusters deliver a minimum thrust at all times at a
favorable directional spreading, the DP vessels will be more responsive and will easier overcome slow
azimuth response by improving their ability to produce resulting forces in any direction (Kaasen, 2015).

2.4.5 Reference model

In order for the control block to provide the vessel with control signals, the guidance system has to
distribute a desired position and velocity , which is provided by the reference model in the guidance
block. A reference model computes the desired trajectory based on a given set of waypoint. The
reference position given by an operator (or other trajectory generators), xref , does then behave as the
input to the reference model, which generates a smooth signal without any steps xd. This prevents
sudden jumps in the error state, as well as avoiding saturation in acceleration and velocity of the vessel.
It is vital that the bandwidth of the chosen reference model is selected lower than the bandwidth of
the DP system in order to obtain satisfactory tracking performance and stability.

The reference model can, according to Fossen, 2022, ch.12, be modelled as a second order mass-spring-
damper system connected in cascade with a first order low-pass filter. Mathematically this can be
represented by the state space representation shown below. For the model, ∆ = diag{ζ1, ζ2, ζ3} is the
relative damping matrix, and Ω = diag{ω1, ω2, ω3} is the reference model’s natural frequency matrix.
Both of these matrices are tuned according to the desired performance of the reference system.

ẋd = Adxd + Bdxref (2.42)

where xd = [η⊤
d η̇⊤

d η̈⊤
d ]⊤ ∈ R9 and

Ad =


03x3 I3x3 03x3

03x3 03x3 I3x3

−Ω3 −(2∆ + I3x3)Ω2 −(2∆ + I3x3)Ω

 ,Bd =


03x3

03x3

Ω3

 (2.43)

Both the controller block and guidance block are depending on reliable system state signals from the
navigation block. The position and orientation of the vessel is measured in the sensor system, which
can be influenced by noise, bias and signal failures. The recurrence of the latter one can be reduced
by enabling measures such as different error tests (signal range, variance, and wildpoint test) as well as
utilizing voting and weighting of redundant sensors (Sørensen, 2018, ch.5). As for extracting the actual
state from sensor bias and noise, a state observer can be implemented as in Section 2.4.7.

2.4.6 Control design model

Several blocks in Figure 2.9 are so-called model based components. Thus, they require that an adequate
vessel model is implemented. For that reason a control design model (CDM) is derived. The CDM is
used in model-based observers and controllers and is a simplified model of the simulation model. Its
objective is to describe the most essential behaviour of the system. A more complete, high-fidelity
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system model is described in Section 2.5. The CDM can also, according to Sørensen (2018), be used to
evaluate the stability of the system. It is often advantageous to divide the control plant model into a
low frequency (LF) and a wave frequency model. As the model is to be used in a horizontal plane DP
system, it only contains three DOFs (surge, sway and yaw).

The simplifications in the CDM are based on the assumption that ϕ and θ are small. This simplifies the
diagonal elements in the transformation matrix presented in (2.36) to Rn

b (Θnb) ≈ Rz,ψ and TΘ(Θnb) ≈
I3×3. The simplified kinematic equation is given in (2.37a) and can be written once more as

η̇ = R(ψ)ν,

where R(ψ) := Rz,ψ with v = [u, v, r]⊤ and η = [xn, yn, ψ]⊤.

Low-frequency control design model

The low-frequent control design model is mainly driven by second order mean and slowly varying wave
loads (see Section 2.2.3), as well as current and wind loads. Low speed is an important assumption
when deriving models for DP systems, and based on this assumption an equation describing the kinetics
of the vessel can be greatly simplified. Firstly, the Coriolis and centripretal forces arise due to rotation
of the {b} about {n}. For low speed vessels, the rotation of {b} is small, and hence these terms can
be neglected. The low-speed assumption also indicate that linear damping is a good approximation.
As all DOFs are in the horizontal plane and no mooring lines are fastened, all restoring terms can be
disregarded as well. The kinetics can then, according to Newton’s second law of motion, be described
as

Mν̇ = −Dν + R⊤(ψ)b + τctrl, (2.44)

where b is the bias model that represents second order, slowly varying loads as well as all unmodelled
dynamics. τctrl is the applied thrust forces delivered by the propulsion system, and M is the total
inertia matrix consisting of both rigid body and hydrodynamic inertia (added mass). Notice also
how the rotation matrix R(ψ) makes the model nonlinear because of its trigonometric functions. The
estimate of the bias term will be nonphysical because several unmeasured components are compensated
for simultaneously. This is often referred to as the DP curent because of its behaviour as a drift force
due to second order wave drift forces, ocean currents and unmodeled dynamics (Fossen, 2022). In the
CDM, it can be modelled as a random walk disturbance, displayed mathematically as

ḃ = wb. (2.45)

Several other bias models also exist. A frequently used model for marine control applications is for
instance the first order Markov process (Sørensen, 2018, ch.7), which provides great abilities when it
comes to stability calculations. Some of these bias models will be elaborated further in Chapter 4.
Upcoming sections will also elaborate on how the design of the control law can help to effectively
compensate for the bias term.

Wave-frequency control design model

It can be useful to describe the wave-frequency motion by a simple model. It is therefore conventional
to model the WF motions as an harmonically damped oscillator. This approach is easy to implement,
and makes the performance and robustness of the control system easy to test. The model is driven by
white noise, ww, as input, and works as a shaping filter, shaped according to a desired wave spectrum,
which colors the white noise. Mathematically this can be represented on the linear state space form as

ξ̇ = Awξw + Ewww (2.46a)
ηw = Cwξw, (2.46b)

where ηw represent the linear wave response in surge, sway, and yaw, while Cw ∈ R3×6 is the meas-
urement matrix, and ξ ∈ R6 is the state vector. Aw ∈ R6×6 is the system matrix, and Ew ∈ R6×3 is
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the disturbance matrix. The matrices in (2.46) describes the sea state in accordance to a selected wave
spectrum and should be tuned accordingly.

Aw =
[
03×3 I3×3

−Ω2 −2ΛΩ

]
, Ew =

[
03×3

Kw

]
, Cw =

[
03×3 I3×3

]
Here Λ = diag{λ1, λ2, λ3}, Ω = diag{ω1, ω2, ω3} and Kw = diag{kw1 , kw2 , kw3} are tuned to obtain a
realistic result of the sea state.

Figure 2.10: WF motion obtained with colored noise.

Total control design model

The complete CDM can then be represented as a combination of the LF and WF models. The total
output derived from sensor measurements is expressed using superposition of η and ηw, while adding
sensor noise as a zero-mean white noise process v ∈ R3.

y = η + ηw + v (2.47)

The final model can then be summarized by combining the equations derived so far as

ξ̇ = Awξw + Ewww (2.48a)
η̇ = R(ψ)ν (2.48b)
ḃ = wb (2.48c)

Mν̇ = − Dν + R⊤(ψ)b + τctrl (2.48d)
y = η + Cwξw + v (2.48e)

2.4.7 Observer design

It was mentioned that a DP system is required to perform wave filtering, noise filtering, and estimation
of unmeasured states. This is the work of the DP observer. Its abilities can be summarized in three
main bullet points, as stated in (Sørensen, 2018, ch.7):

• Estimate non-measured states
For many systems it can be difficult to apply all states in a feedback loop. The states can be
unavailable as the system may be too complicated or sensor measurements may be unattainable.
The state observer is then applied to estimate the inaccessible states which then can be used in
the state feedback.
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• Perform Dead Reckoning during signal loss
It is crucial to have reliable and redundant systems. It is well known that at one point during
its life cycle. Several regulations and recommended practises regarding redundancy already exist
within the maritime industry. However, by applying a model based state observer, the signal
may be replaced until the original sensor is back and running. This procedure, relaying solely on
previous estimates in the contemporary state calculation, is known as dead reckoning, and will
have an increasing cumulative error.

• Filter out wave-frequency in the feedback loop
The vessel dynamic consist of low-frequency and wave frequency motion (WF). The WF motion
will have a significantly larger frequency than the LF motion, which the propulsion system often
is unable to provide sufficient power for compensation. Thus, to ensure a more sensible fuel
consumption, the state observers are designed such that WF motion can be filtered out in the
feedback loop.

Some of the most widely recognized observers, and state-of-the-art within marine DP systems, are
Kalman Filter-based observers. Early research on applying the Kalman filter in DP systems were
conducted by Grimble et al. (1980), as well as Fung and Grimble (1983). The Extended Kalman Filter
(EKF) was introduced by J. G. Balchen et al. (1976), and further developed by Saelid et al. (1983).
Fossen and Strand (1999) presented a nonlinear (passive) observer (NLO), with extensive experimental
results, demonstrating strong evidence of its effectiveness. Remarkably, the NLO exhibits structural
similarities to the Linear Time-Varying Kalman Filter (LTV-KF), as their structure can be seen as
identical during steady state operations (Værnø, Skjetne et al., 2019).

In this thesis, both the EKF and the LTV-KF will be introduced. The EKF can be described as an
nonlinear augmentation of the traditional Kalman Filter, and is an efficient recursive state estimator,
capable of predicting the states of a system based on noisy measurements and a system model. It does,
however, require that a linearization of the system is done around the current state estimate at each
time step. This is not the case for the LTV-KF, which assumes a linear system. The nonlinearities
in the rotation matrix is then overcome by considering the matrix as a known, time-varying signal,
provided by the measured heading angle. This approach eliminates the need to calculate the Jacobian
matrix of the system in the linearization process, leading to a simpler implementation, as well as a more
computationally efficient algorithm.

Both algorithms can be divided into two separate blocks, the predictor and the corrector. The predictor
calculates an a priori state estimate, x, purely based on the internal system model. The a priori estim-
ate can be thought of as a best guess of the acutal state, prior to incorporation of any measurements.
This is fed into the corrector, which generates the final a posterior estimate, x̂, as a blending between
the a priori estimate and the measurements. The two contributions are weighted by the Kalman gain
K, which balance the reliability of the sensors and the reliability of the internal model. The gain is
designed to minimize the mean-square error of the estimate, and depends on the two tuning matrices
Q and R.

The discrete-time Extended Kalman Filter algorithm can be described with the following equations:

Nonlinear system:

ẋ = f(x,u,w) (2.49a)
y = Cx + ϵ (2.49b)

Initial Values:

xk=0 = x0 (2.50a)
Pk=0 = E[(x(0) − x̂(0))(x(0) − x̂(0))T ] = P0 (2.50b)
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Corrector:

Kk = P̄kHT [HPkHT + R]−1 (2.51a)
P̂k = (I − KkH) Pk (I − KkH)T + KkRKT

k (2.51b)
x̂k = xk + Kk(yk − Hxk) (2.51c)

Predictor:

Pk+1 = ΦkP̂kΦ
T
k + ΓkQΓTk (2.52a)

xk+1 = x̂k + hf(x̂k,uk,0) (2.52b)

The discrete system matrices Φ, Γ and H are as mentioned defined with the Jacobian matrices based
on (2.49). The following linearization must thus be performed for every iteration.

Φ = I + h
∂f(x,u,w)

∂x

∣∣∣∣∣
x=x̂k,w=0

Γ = h
∂f(x,u,w)

∂w

∣∣∣∣∣
x=x̂k,w=0

, H =
∂y(x,u)
∂x

∣∣∣∣∣
x=x̂k

(2.53)

For the LTV-KF, however, (2.49a) is modified according to f(x,u,w) = A(t)x + Bu + Ew. The
discrete system matrices in (2.53) are, consequently, simplified as

Φ = I + hA(tk), Γ = hE, H = C. (2.54)

It is important to emphasize that the EKF algorithm presented above is a state observer that utilize
linearization. This results in the loss of several advantages associated with the LTV-KF regarding
stability and optimality. The separation principle states that different parts of a control system can be
analyzed independently regarding stability in order to obtain global asymptotic stability. One of the
assumptions in the derivation of this principle is however that the system is considered linear and time-
independent, which not is the case in the EKF described above. Nonetheless, as illustrated by Loria
et al. (2000), the separation principle can be applied for nonlinear ship models, as the trigonometric
functions in the rotation matrix only introduce small nonlinearities. Yet another disadvantage with
Kalman Filters is that the estimated covariance matrix P̂, often tend to underestimate the actual
covariance matrix. Care must therefore be taken regarding covariance blow-up and instability (Fossen,
2022). That being said, both the EKF and the LTV-KF are widely popular in maritime navigation
systems and is, as mentioned, considered state-of-the-art, yielding great performance.

2.4.8 DP control law

The control law naturally plays a critical part of the DP system in (2.9). The selection of control
algorithm will therefore be decisive for the performance of the complete DP system. DP systems are
often considered as multiple-input and multiple-output (MIMO), and generate a desired control force in
all 3 horizontal DOFs to fulfill the DP objective, presented in subsection 2.4.1.

The control law in a DP system often consists of a feedback part, and a feedforward part, that is

τctrl = τFB + τFF . (2.55)

The feedforward term in (2.55) is responsible of suppressing wind loads, based on wind speed measure-
ments and wind models. This term can be said to be optional in a DP controller, as a bias rejection
term in the feedback control can compensate for slowly varying wind forces as well. That being said,
the feedforward component responds quicker, as an integrator in the feedback loop can require several
minutes to remove large wind components (Fossen, 2021).

The feedback component in (2.55) can be set to a nominal PD controller, augmented with a bias
compensation term, as

τFB = −τnPD − τBC . (2.56)
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The last term in (2.56) serves to compensate for slowly-varying and constant external loads, along with
unmodelled dynamics. Its inclusion is therefore essential for achieving the control objective, as a steady
state error will be seen if these loads are not compensated for properly. One of the most frequently
used compensation techniques is by the use of integral action. By assuming no feedforward components
are implemented, the DP control law can then be written as

τctrl = −KpRT (ψ)η̃ − Kdν̃ − KiRT (ψ)
∫ t

0
η̃(τ)dτ. (2.57)

Kp, Kd and Ki ∈ R3x3 are positive tuning gains, normally set to diagonal matrices, which for instance
can be tuned according to the MIMO nonlinear PID pole-placement algorithm in Fossen (2022). Al-
ternatively, trial-and-error can also be used, although this can be a complicated process when dealing
with MIMO systems. Fossen (2022) also proves the stability of the control law in (2.57) by a Lyapunov
stability analysis.

An alternative strategy for handling disturbances, as a substitute to the integral action in (2.57), can
be to include them in an internal model while aiming for asymptotic output tracking. If the unknown
disturbance can be generated using a predefined model, the CDM can incorporate this model to improve
both output tracking and disturbance rejection. This concept is known as the internal model principle
(Skjetne, 2022).

The PID controller in (2.57) can be considered as one of the simpler control laws. That being said,
numerous other control techniques that are more complex in nature can also be implemented in the
control law construction. An robust controller can, for instance, be constructed by the inclusion of
an adaptive control law, capable of adapting its parameters to variations in the process dynamics.
Addintionally, J. Balchen et al. (1976) proposed a model-based control concept based on stochastic
optimal control theory, while Agostinho et al. (2009) proposed nonlinear sliding mode control for the
DP contol law. The reader is referred to Sørensen (2011), and the references therein, for a deeper
explanation.

2.5 Low-speed simulation model

In order to perform credible and reliable numerical simulations of a vessel, it is crucial to employ
a high-fidelity model. In this context, the simplified model in Section 2.4.6 can be augmented to
more efficiently capture the realistic behavior of a vessel. This model is referred to as the simulation
model, and provides a more detailed mathematical description of the real dynamics of the system. The
required complexity of a simulation model depends on the purpose of the model. Different models must
be developed for different operations and domains. The different domains can, according to Sørensen
(2018), be separated into speed regimes as shown in Figure 2.11. Stationkeeping (DP) models can make
assumptions such as zero speed and little nonlinear damping, while high-speed models often demand
greater implementation of nonlinearities.
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Figure 2.11: Speed regimes for vessels.

A general 6 DOFs simulation model can, according to Fossen (2021), be expressed as shown in (2.58).
The kinematics of the simulation model will be the same as in Section 2.4.2, which for 6 DOFs could
be described as in (2.58b), where JΘ(η) is given by Equation 2.36. The kinetics in (2.58a) arise from
a generalized and augmented CDM from (2.48d). This equation introduce nonlinear damping, and
Coriolis and centripetal forces due to rotation and restoring forces in the vertical plane. External forces
from waves and wind are included instead of letting a bias term represent these.

Mν̇r + C(νr)νr + Dv(νr)νr + Dpνr + G(η) = τctrl + τwave + τwind (2.58a)
η̇ = JΘ(η)ν (2.58b)

where

• M = MRB + A ∈ R6x6, are the rigid body and added mass inertia matrix.

• C = CRB +CA ∈ R6x6 are the Coriolis and Centripetal matrix of the vessel due to its rigid body
and added mass. The matrices occur as a consequence of evaluating Newton’s law of motion in
the rotating body-fixed frame.

• Dp,Dv ∈ R6x6 are the potential and viscous damping matrices of the vessel, and consists of both
a linear and a nonlinear term.

• G(η) ∈ R6x6 is the hydrostatic restoring matrix and is a consequence of the vessel’s point of
equilibrium in the water.

• τctrl,τwave,τwind ∈ R6 consist of thruster forces and external forces due to waves and wind acting
on the vessel. Current forces are interpreted in the relative velocity term νr and therefore not
included on the right hand side of the equation. The wave forces consist of both first and second
order wave loads, while the sum-frequency loads are neglected as they yield little impact on DP
vessels.

The damping is in general one of the most complex and challenging terms in the mathematical simula-
tion model in (2.58a). Hydrodynamic damping is said mainly to be caused by effects due to potential
damping and viscous damping. The potential damping is often calculated by the means of a hydro-
dynamic program built on potential theory, and consequently, viscous damping forces must be added
separately. The viscous damping is mainly caused by skin friction, wave drift damping, lift forces and
vortex shedding (Fossen, 2021), even though other viscous effects also may be significant. Common
for all these forces is that they can be challenging to model. The influence of the different effects are
also difficult to separate, and it can therefore be convenient to divide the total damping term into a
linear and a nonlinear damping matrix, as seen in (2.59). The linear damping matrix will in general
be important for low-speed maneuvering and station keeping, while the nonlinear damping term will
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dominate at higher speed operations, as seen in Figure 2.12. It is often necessary to include both terms
in the vessel model to obtain satisfactory results.

Dtot(νr) = Dl + Dnl(νr) (2.59)

Figure 2.12: The influence of linear and nonlinear damping depending on the speed of the vessel.
Courtesy of Fossen (2022).

As this thesis focuses on DP station keeping operations (U ≈ 0), assumptions can be made to simplify
(2.58a). First, the total damping force, consisting of linear potential damping and nonlinear viscous
damping, can be combined and linearized around U = 0. The Coriolis and centripetal forces are highly
velocity dependent and can thus be neglected for zero-speed operations. By assuming small values in
the generalized position η, the restoring force can also be represented by a linear matrix, even though
the position must be rotated by the nonlinear rotation matrix. As mentioned in the introduction, wind
loads will also be disregarded throughout the scope of this thesis. The simplified simulation model
designed for zero-speed DP operations can then be expressed as

η̇ = J(Θ)ν (2.60a)
Mν̇ = −Dνr − GJ(Θ)−1η + τctrl + τwave. (2.60b)

2.6 X-in-the-loop testing

Developing and testing complex systems such as DP control systems can be a time consuming process.
X-in-the-loop testing is a set of different testing techniques which are used at different stages of the
development cycle of the system which aims to step by step validate and ensure safety for the system.
X-in-the loop tests are performed to verify the behavior and performance of the system and to validate
the design and functionality of the system in a controlled and repeatable environment. It is much used
in the automotive industry. There exist different traditional methods of X-in-the-loop tests. Model-
in-the-loop, (MIL), simulator-in-the-loop, (SIL), and hardware-in-the-loop, (HIL), are three standard
methods for simulation-based testing and verification which are often performed successively in the
listed order (Smogeli, 2022). The idea of performing X-in-the-loop tests is to test the system for all
steps in the development process to detecting failures early on. This will consequently reduce the
time and cost of developing the final product. By resolving issues early on which potentially could be
hazardous, it also increases safety.
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Model-in-the-loop

MIL testing is useful to quickly verify a complex system in the early stages of the system development
(Park et al., 2020). In MIL testing, the full system, being the control system, the environment and the
physical equipment is mathematically modeled and simulated. As the software is emulated, there is no
relation to the real hardware (Smogeli, 2022). As the tests are executed completely virtually, the can
easily be repeated for a range of different conditions.

Figure 2.13: Concept of model-in-the-loop. In courtesy of Smogeli (2022).

Software-in-the-loop

In SIL testing, the real software is tested with virtualized hardware in a simulated environment. These
software components should be fit to be embedded in the physical control system (Smogeli, 2022). SIL
allows developers to isolate and test the software in a controlled environment to detect errors related
to system functioning.

Figure 2.14: Concept of simualtor-in-the-loop. In courtesy of Smogeli (2022).

Hardware-in-the-loop

In HIL testing, the controller on implemented in a physical calculator running on a real-time simulation
platform emulating the environment. This means that both the hardware and software are tested. HIL
is typically used in the later stages of the system development to validate the integration of the control
system and to efficiently test the control system functionality and performance (Skjetne & Egeland,
2006).
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Figure 2.15: Concept of hardware-in-the-loop. In courtesy of Smogeli (2022).

2.7 Derivative-free optimizion techniques

Derivative-free optimization, also called zeroth-order optimization, is a meta-heuristic optimization
technique which can be used to find the maximum or minimum of a function without calculating its
gradients. This is a particularly useful approach when the objective function only is available as an
output from a set of complex equations and little to no information about the system, or its derivatives,
are known. This can be due to the system being highly nonlinear, or if several local minima exist. DFO
is also practical when the calculation of the function derivatives are becoming too time consuming.
Such problems may occur both in experimental methods and stochastic simulation, and DFO can then
be a highly advantageous optimization technique (Audet & Hare, 2017).

The development of the modern, gradient-based methods can, in many ways, be said to have come
further than the DFO methods. Thus, given that gradient information for an optimization problem is
available, reliable, and obtainable, DFO will almost never outperform gradient-based algorithms (Audet
& Hare, 2017). Nonetheless, DFO methods are often considered more robust and can deal with a wider
range of optimization problems. They can be particularly useful when not expecting the method to find
the optimal solution, but rather a solution that is acceptable within a given computational time limit
and tolerance level. Consequently, DFO methods are widely used in several separate field of studies
and continue to be an area of research within optimization and computer science (Nocedal & Wright,
2006).

Countless different derivative-free optimization algorithms exist, several of which are presented and
investigated in the master’s thesis of Løv̊as (2019). The downhill simplex method of Nelder and Mead
is one of the simpler examples, which tracks n+ 1 points for each step in the algorithm, where n is the
dimension of the objective. The convex set forms a simplex, hence the name of the algorithm (Nocedal
& Wright, 2006). For a two-dimensional objective, the simplex will be a triangle. Given the simplex,
the optimization algorithm aims to remove the point with the worst objective function value, with a
point with a better value. This is done by reflecting or expanding the simplex through the centroid of
the remaining points. If no point within the simplex yields a better cost, the point with the best value
is chosen and the algorithm proceeds by shrinking the simplex. These algorithm steps is presented
in Figure 2.16, according to Chen (2021). Here, w is the point with the worst function value. The
Nelder-Mead method have a vast amount of applications and is used in several different field of studies,
including engineering design, finance, and machine learning.
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(a) Reflectinged point r. (b) Extending point e.
(c) Inside and outside contracted
points ci and c0.

Figure 2.16: Steps in the Nelder-Mead optimization algorithm. In courtesy of Chen (2021).

2.7.1 Derivative-free optimization for controller tuning

DFO algorithms are particularly effective for controller tuning purposes. These optimization methods
have the potential to outperform manual tuning performed by a human operator, and offer a significantly
more time-efficient approach compared to extensive trial-and-error techniques. For these cases, the
tuning parameters, being the controller gains, are chosen as optimization variables. A suitable cost
function is selected, and utilized to evaluate the performance of a full simulation, where an initial guess
for gains is specified. The DFO algorithm is then constructed to select values close to the initial guess
of gains, and evaluate if they provide a lower cost function.

An appropriate cost function is critical for achieving a well-performing regulator. In the context of a DP
controller tuning process, factors such as trajectory tracking accuracy, wear and tear of actuators, and
computational time, should all be taken into consideration in the selection process. In Løv̊as (2019),
several cost functions were presented and discussed. Some of which are presented underneath, and will
be addressed later on in this thesis. Common for most of these objective functions is the desire to
minimize the pose error, (η(t) −ηd(t)). Velocities, ν(t), and command forces, τ(t), are also included to
ensure realistic outputs of the controller. As all the mentioned parameters have different magnitudes
and units, normalization or weighting techniques are often applied.

Integral of absolute error IAE
∫ T

0 |(η − ηd)|dt

Integral of absolute error times work IAEW
∫ T

0 |(η − ηd)|dt
∫ T

0 |ν⊤τ|dt

Integral of absolute error and control IAEC
∫ T

0 |(η − ηd)|dt+ ρ
∫ T

0 |τ|dt

When analyzing and comparing different controllers, care and considerations must be taken in regards to
how well they are tuned. If manual tuning is performed, some might be tuned more optimal than others,
and conclusions regarding performance can be drawn wrongfully. Using DFO in the tuning process
offers the advantage of enabling a fairer comparison, as they are all tuned in accordance with the same
optimization criteria. However, different controllers and observers have different tuning parameters,
which can present a challenge related to comparison, even when using DFO tuning.

Another advantage with DFO tuning compared to manual tuning is that it can be included in an
autotuning loop to enable autonomous tuning. This can be done for simulations, scaled experiments,
and full-scale applications. Consequently, the operator is excluded from the tuning process altogether,
which could enhance performance, and aid in a more efficient operation (Løv̊as, 2019).

Similarly to a DP controller tuning process, DFO can also be utilized in a DP observer tuning process.
The cost functions presented above must then be modified to better fit the objectives of the observer,
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related to the estimated states of the vessel. However, comparison of different observers is not a part
of the scope of this thesis. Consequently, any DFO tuning process of the implemented observers will
not be presented in detail.

2.8 MC-lab

Experimental platforms play a crucial role in validating simulation models and testing the response
of a system. Although simulation models provide an approximation of real dynamics, it cannot be
ensured that the simulated response accurately matches the actual system response. Therefore, the
use of experimental platforms and testing is necessary to obtain valuable insights during the design
phase of a DP vessel, and to confirm that the implemented system will successfully achieve its intended
objective.

The marine cybernetics laboratory is a facility operated by the Department of Marine Technology,
mainly used by students and employees at NTNU for teaching and research purposes. The lab has a
relatively small basin equipped with a wave maker and a positioning system, making it well-suited for
testing motion control systems. The dimension of the wave basin are L × B × D = 40m × 6.45m × 1.5m.
The basin has a shallow end with a beach, and a deeper end equipped with a 6 m wide flap capable of
generating both regular and irregular waves (NTNU, 2023). The capacity of the wave maker is listed
in Table 2.1.

Table 2.1: Capacity of wave maker in the MC-lab.

Description Capacity

Regular waves H < 0.25 m, T = 0.3 – 3 s
Irregular waves Hs < 0.15 m, T = 0.6 – 1.5 s
Available Spectrums JONSWAP, PM, Bretschneider, ISSC, ITTC
Wave controller update rate 10 Hz
No. wave gauge on paddle 4
Stroke length on actuator 590 mm
Speed limit 1.2 m/s

The motion caption system in the MC-lab is called Qualisys. This can provide real-time measurements
of the model vessels position and attitude by using Oqus cameras together with the Qualisys Track
Manager software (NTNU, 2023). Qualisys works by detecting and calculating the position of markers
installed on the model vessel. These markers are reflecting spheres installed at different positions with
different heights on the model vessel. For Qualisys to be able to provide the 6DOF measurements of
the model vessel, at least three of the spheres needs to be visible to the Ocus cameras. Consequently,
the camera setup limits the operating area for testing motion control systems.

2.8.1 CyberShip Arctic Drillship

CyberShip Arctic Drillship (CSAD) is one of the model vessels hosted by the MC-lab and has been
used for experimental testing for this thesis. CSAD is a model-scaled replica of the Inocean Cat I
Arctic Drillship built in 2016. The purpose of developing the model was to facilitate for research on
thruster-assisted position mooring. A summary of CSAD’s main data is presented in Table 2.2.
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Table 2.2: Main data for CSAD.

Parameter Value Unit

Length over all (LOA) 2.578 m
Beam 0.440 m
Depth 0.211 m
Design draft 0.133 m
Weight 127.92 kg
Scale 1:90 -

CSAD is equipped with six azimuth thrusters powered by six 12V 12Ah batteries, connected in par-
allel. The thrust is controlled by a set of electronic speed controllers connected to DC motors, while
the thruster angles are controlled servos. Both the motors and the servos are controlled by pulse width
modulation signals. For measurement purposes, CSAD is be equipped with multiple inertial measure-
ment units (IMUs) containing both accelerometers and gyroscopes. Additionally, CSAD is equipped
with a Raspberry Pi, which is a single-board computer responsible for controlling the hardware on the
model vessel.

Figure 2.17: CSAD in the wave basin in the MC-lab.

2.8.2 ROS

Robot Operating System is an open source software used to interact with hardware in the MC-lab.
It provides a framework for developing robots and offers powerful capabilities when combined with
a Raspberry Pi. A great advantage when using ROS to develop robots is its ability to facilitate for
seamless communication between different components in a robotic system, such as actuators, sensors
and control systems. This communication is achieved by the use of topics and messages. The general
architecture of ROS, presented in Figure 2.18, involves a ROS master and multiple ROS nodes (Open
Robotics, 2022). The ROS master is the facilitator for a ROS process to run sufficiently. Its job is to
register all the nodes, the executables, and set up peer-to-peer communication between them. Nodes
can exchange messages by publishing to and subscribing from topics. The messages can be stored in
bag files subscribing to the topic. Notably, the messages do not need to pass the ROS master. This
decentralised architecture is a great strength with ROS as it make it possible for nodes to be run on
separate networked computers. In the MC-lab, this multi-machine functionality is an advantageous
approach if heavy computations are required, as the Raspberry Pi may face limitations in processing
power (The Robotics Back-End, 2022).
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Figure 2.18: Graph model of ROS architecture.

As the nodes are isolated and the messages passed between them are standardized, software in the ROS
ecosystem is language-independent. This design allows nodes built up by code written by different
programming languages, such as Python and C, to run in conjunction. This feature makes ROS
adaptable for software based on different languages and makes it accessible and user-friendly for people
with diverse coding experience.
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Development of simulation platform

Parts of the following chapter is developed in collaboration with fellow M.Sc. student Jan-Erik Hygen,
and is also presented in (Hygen, 2023). The same applies for all source code in the simulation model
and its module.

During the work related to this Master’s thesis, a comprehensive simulation platform has been de-
veloped, together with fellow student J. Hygen. The simulation platform includes a high fidelity sim-
ulation model, building upon work done in the preceding project thesis of Kongshaug and Mo (2022),
based on previous work done by Brørby (2022). The model has further been improved during the spring
of 2023. The model provides a comprehensive description of the vessel kinetics and kinematics, as well
as its surroundings, and can be used for high-fidelity simulations when accurate and robust numerical
performance is required. Additionally, the platform includes control system functionality, making it
possible to carefully examine the functionality and performance of different DP control systems. This
master’s thesis is primarily based around the control system aspects of the simulation model, while Hy-
gen (2023) has had more focus on wave-induced response. The simulation platform is made compatible
with ROS, facilitating for real model tests of the implemented control systems.

The upcoming chapter describes the design and implementation of the complete simulation platform.
The choices made during the design process will be discussed and the modules implemented will be
thoroughly described. All implementations are done by the authors, together with Hygen (2023), if not
specified otherwise.

The software is created with the intention of being installed and used, not only by the authors, but
also by other external individuals. An open-source Python package, called MCSimPython, has been
created and uploaded to the Python Package Index, PyPI (Hygen et al., 2023). It can be installed
from PyPI using the package installer for Python, pip. It has been focused on writing general and
user-friendly code, well-documented using Sphinx and ReadTheDocs. A detailed step-by-step guide
on how to download the package and its documentation is provided in Appendix A as well as in the
documentation.

3.1 Design overview

The implemented simulation platform can said to be module-based, using modular programming. This
is a software design technique that decompose different parts of the code into independent blocks, such
that each block includes all necessities to execute and test all its code locally and without interference
from other parts of the code. Each module will then have a required input and given output, and is
capable of executing only one aspect of the desired functionality of the model.

The source code is written using object-oriented programming (OOP), which is closely associated with
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modular programming. OOP is based on the concepts of centralizing the code around objects and
classes, rather than functions and logical statements. All important information is then privately
contained within an object, restricting external access and modification. This approach is well suited
for larger and complex programs that are actively updated and/or maintained. The latter state is
highly applicable for NTNU-MSC repositories, and also one of the main reasons behind the selected
implementation. The technique facilitate for collaborative development, enabling a cooperative design
process. Additional benefits of OOP include code reusability, scalability and efficiency (Gillis, 2021).

The simulation model is also implemented using data abstraction. This is a design technique which
involve implementing abstract classes, from which subclasses can inherit properties from. The abstract
classes define general characteristics of an object as well as implementation methods, and works as a
template for all its subclasses. This can be seen in the implemented code, where for instance an abstract
class is defined for a general base wave spectrum, and a subclass is created for every different variant of
the wave spectrum (PM, JONSWAP...). Functions and attributes which are equal for all wave spectra,
such as spectral moments and wave realization, can then be defined in the abstract base spectrum class,
which all subclasses then inherit. This make the code more perspicuous, and ensures that modifications
to current spectra and implementation of new spectra will be easier to organize.

In the master’s thesis by Brørby (2022), implementation issues of the simulation model, related to time-
consumption was stated. An objective for the design process of the simulation model for this master’s
thesis has therefore been heavily influenced by optimizing runtime and generating efficient code. This
is an important matter as the model is dependent on substantial calculations for every timestep. For
Brørby (2022), this limited the fidelity of the model, as it restricted the number of wave components
used in the simulations. As the objective was to generate a model with as high fidelity as possible, the
runtime have been given considerable awareness throughout the entire programming process.

An overview of the structure of the simulation platform is displayed in Figure 3.1. The platform is as
illustrated divided into four modules; the Sea state module, the Wave load module, the Vessel module,
and the GNC module. The simulation platform requires some preprocessing before the online function-
ality can be run continuously during simulations. Each of the four modules presented in Figure 3.1,
their input and output parameters, their implementation, as well as all communication amongst them,
will be rigorously discussed in the upcoming sections.
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Figure 3.1: The structure of the simulation platform and its modules.
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3.2 Implementation of modules

In this section, the implementation of each of the four modules presented in Figure 3.1, will be presented.
The simulation platform is developed such that it requires some input to be initialized. These inputs
are marked in purple in Figure 3.1. The external configuration file, used as input both in the Vessel
module, and in the Wave load module, contains vessel model parameters and hydrodynamic transfer
functions. In this Master’s thesis, these parameters are extracted from the Veres’ hydrodynamic vessel
response program, ShipX, and have been used in the simulation model for CSAD. ShipX utilizes 2D
potential strip theory to approximate the hydrodynamic terms and transfer functions. For most of the
DOFs, linear potential theory can be a sufficient assumption. However, the roll motions are to a large
degree determined by nonlinear effects, and hence, care should be taken when using the hydrodynamic
data from Veres.

Veres produces four distinct result files:

• *.re1: Response transfer functions (RAOs).

• *.re2: Added resistance (mean drift forces in surge, sway and yaw).

• *.re7: Hydrodynamic coefficients.

• *.re8: Wave excitation force transfer functions.

Veres use a slightly different convention than as presented in this thesis. The coordinate system does
not follow the standard body-frame representation, presented in Section 2.4.2, and the force RAOs are
defined with a phase lead, rather than with a phase lag, as seen in Section 2.2. All hydrodynamic
coefficients are also provided in the center of gravity, while the presented simulation model require the
coefficients to be defined in the center of origin. A relevant rotation, according to Fossen (2021), ch.3,
was, consequently, also necessary.

The simulation model is developed in Python. It was thus decided that the result files were to be
converted to JSON-format configuration files. Given Python’s built-in features to process JSON files,
this was considered a preferred format.

3.2.1 Sea state module

The sea state module is responsible for defining the wave spectrum and the individual wave components
in the simulated environment based on a set of user-defined input parameters. The functionality of the
sea state module is summarized in Figure 3.2. The module offers the possibility to construct various
wave spectra, including both 1D and 2D spectra. To ensure code reuse and modularity, an abstract
base class called BaseSpectrum is created as the parent class for all 1D spectra. Each wave spectrum
presented in Section 2.2.2 have been implemented as its own subclass inheriting from the corresponding
parent class. For example, the MPM spectrum is a modified version of the PM spectrum, hence, it is
defined as a subclass of the PM class. Furthermore, since the JONSWAP spectrum coincides with the
MPM spectrum for γ = 1, the JONSWAP class is set to inherit from the MPM class.

The sea state module does not include current and wind loads. However, as will be demonstrated in
Chapter 5, current is included in the simulations. This is due to the fact that it is included in the
relative velocity state of the vessel model, and thus is defined separately for every simulation. The
load could, however, be defined within the sea state module if more complex current models were to be
implemented.
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Figure 3.2: Sea state module.

The module also incorporates a directional spectra functionality through the DirectionalSpectrum base
class. This class uses a predefined 1D spectrum and a spreading function to construct a 2D spectrum.
By implementing a directional spectrum, the sea state module provides the possibility to generate
multidirectional wavefields. A directional wave spectrum and its belonging multidirectional wave field
generated from the sea state module can be seen in Figure 3.3.

Figure 3.3: 2D wave spectrum and multidirectional wave field with θp = 0 [°], Hs = 2.0 [m], and
Tp = 9.0 [s].

40



3.2. Implementation of modules

As indicated by the color scheme in Figure 3.1, the sea state module only performs preprocessing
tasks. Based on the defined wave spectrum, the module computes and outputs wave amplitudes, wave
frequencies, random phases, and wave directions. These computed parameters are passed on to the
wave load module where they are used in the calculations of first and second order wave loads.

3.2.2 Wave load module

The main objective of the wave loads module is to calculate the vessel-specific first and second order
wave loads at each time-step t. The module takes the wave components, provided by the sea state
module, as input, in addition to a vessel configuration file. The configuration file contains first order
force RAOs and mean drift loads, calculated for a set of wave frequencies and wave angles in Veres. In
the preprocessing stage of the simulation model, the wave load module extracts the necessary transfer
functions from the Veres configuration file, based on the wave components defined in the sea state
module. Figure 3.4 presents a overview of the module.
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Figure 3.4: Wave load module.

First order wave loads, τ(1st) ∈ R6, are calculated at the instantaneous vessel position using a matrix
formulation of (2.20), such that (3.1).

τ(1st) = F(ω,β)ζa. (3.1)

Here, ζa ∈ RN×1, is the vector of wave amplitudes computed in the sea state module, and F ∈ R6×N

is the force transfer function for each wave component. This is selected for the wave frequencies and
incident angle of the waves. The elements in F(ω,β) are computed at each time step, in DOF i, and
wave component j, according to

Fij = ρg
∣∣Fi(ωj , βj)∣∣∣ cos

(
ωjt− kjx cos(βrel,j) − kjy sin(βrel,j) − ϕj − ∠Fi(ωj , βrel,j)

)
, (3.2)

where
∣∣Fi(ωj , βj)∣∣∣, and ∠Fi(ωj , βrel,j), are the amplitude and phase of the force RAO for wave com-

ponent j, respectively. kj denotes the wave number for wave component j, found with either by the
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infinite or finite depth dispersion relation, depending on the specified water depth. βrel,j indicates the
relative incident wave angle for wave component j, calculated based on the heading of the vessel at
the given timestep. The model is designed specifically for stationkeeping and low-speed maneuvering
applications, which can justify the utilization of the wave frequency ωj , rather than of the encounter
frequency ωe.

As only a limited set of force RAOs are provided by Veres, these are selected either by their closest index,
or by a linear interpolation scheme. Both are implemented into the simulation model, although the last
option is recommended to more accurately estimate the RAO amplitudes and phases. As mentioned,
the sea state is assumed constant during simulations. Hence, the force RAOs for the different wave
frequencies are selected in the preprocessing stage of the simulation. For wave frequencies outside the
range of Veres, extrapolation is used to extract suitable RAOs. The force RAO then functions as a
lookup table, from which

∣∣F (ωj , βj)
∣∣∣, and ∠F (ωj , βrel,j), are extracted. Although the wave frequencies

are assumed constant during the simulation, this does not hold for the relative incident wave angles. A
linear interpolation in the predefined force RAO matrix is therefore performed at every time timestep,
making the wave module capable of modeling both uni- and multidirectional wave loads.

Second order drift and slowly-varying loads are computed based on the QTFs provided by Veres. The
QTFs are calculated for every DOF (i = 1, 2, ..., 6), for M relative wave angles, and for N × N wave
pair components, resulting in a tensor, Q ∈ R6×M×N×N . This is done in the preprocessing step of the
simulator, to generate a lookup table for the QTFs, as illustrated in Figure 3.5. As all QTFs needed
by the simulator are pre-calculated, the computational time is reduced, compared to if the QTFs were
computed in real-time.

..
.

DOF = 1

...

..
.

DOF = 6

Figure 3.5: Generation of full QTF matrices in preprocessing.

As Veres only computes the mean drift load coefficients, the full QTF matrix, as presented in (2.23),
must be approximated. This is done according to the theory in Section 2.2.4, using Newman’s ap-
proximation. The default method of the module is to approximate the QTFs utilizing the arithmetic
mean. However, the user can specify to rather use the geometric mean as an alternative approxima-
tion method. The difference is clearly illustrated in Figure 3.6. One can observe that the geometric
mean method result in lower QTF values for the far-from diagonal terms, as should be expected. The
user should be aware of the differences between the two methods when using the module, as they will
influence the wave loads generated.
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(a) Arithmetic mean approximation. (b) Geometric mean approximation.

Figure 3.6: QTFs generated from the wave load module. Hs = 0.03 m, Tp = 1.5 s, N = 50, β = 0.

Veres only provides drift coefficients for a set of specific frequencies and headings. 47 frequencies indexes,
given in the interval of [0.2094, 9.364] rad/s, as well as 36 headings, given in the range of [0, 2π] rad,
are provided by Veres. To retrieve the correct QTFs during simulation, the wave load module offers
the user to either interpolate over frequencies and/or headings, or to use the closest value. Figure 3.7
illustrates the difference between these methods. The QTFs presented are defined for CSAD’s motions
in surge with a heading of β = 8°, in a sea state with 50 wave components. One can observe significant
differences between the different plots. The smoothness, especially, increases when interpolating with
respect to frequency. It is recommended to at least use interpolation over the frequencies to generate
the QTFs.
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(a) Closest value for both headings and frequencies.
(b) Interpolated for headings, closest value for frequen-
cies.

(c) Interpolated for frequencies, closest value for head-
ings. (d) Interpolated for both headings and frequencies.

Figure 3.7: QTF matrices retrieved with different methods from the simulation platform.

Second order wave loads are calculated at the origin of the NED-frame, (N,E) = (0, 0). Only unidirec-
tional waves are considered, as it is assumed that the slowly varying wave loads act in the mean wave
direction of all wave components, if a multidirectional wave field is simulated. This assumption may not
hold for all multidirectional sea states, but, as all simulations in this thesis are done in a unidirectional
wave field, it will not be granted much more attention.

The slowly varying wave loads are given, based on (2.22). The double summation can easily be im-
plemented using a double for loop in Python. However, the computational time of a double for loop
increases by O(N2), making it challenging to simulate in real-time, using a large number of wave com-
ponents. Thus, a matrix formulation is introduced, in order to use the computationally more efficient
Python library, Numpy, built in optimized, pre-compiled C code (Numpy, 2022). The final equation, in
DOF m, and for a given relative wave angle βrel, is then given as

τ(2nd)
m = Re

{
ζ⊤
a (Qm ◦ exp[j(Ωt+ Φ)]ζa

}
, (3.3)

where Qm ∈ RN×N is the full QTF matrix in DOF m, for the interpolated relative wave angle βrel.
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ζa ∈ RN×1 consists of all wave amplitudes in the sea state, and Ω ∈ RN×N , and Φ ∈ RN×N are defined
by two precalculated matrices as

Ω =


ω1 − ω1 . . . ω1 − ωn

... . . . ...
ωn − ω1 . . . ωn − ωn

 (3.4a)

Φ =


ϕ1 − ϕ1 . . . ϕ1 − ϕn

... . . . ...
ϕn − ϕ1 . . . ϕn − ϕn

 . (3.4b)

When the first and second order wave loads have been calculated, they are passed to the vessel simulation
module as input to the equations of motion.

3.2.3 Vessel module

The vessel module is responsible for simulating the kinetics and kinematics of the vessel. An overview
of the model’s functionality is presented in Figure 3.8. In Section 2.5, it was discussed that different
speed regimes require different models based on the operational context of the vessel. Some of the
functionality is, however, common to all simulation models, such as the state vector. To accommodate
this, the vessel module contains an abstract base class, Vessel, which provides the main functionality
of the module. This base class can be inherited from, and extended, to add specific functionality for
different types of vessels. Separate sub-classes have been created for each vessel, keeping the source
code tidy and easy to extend. The source code in Hygen et al. (2023), include both 6 DOF DP models
and 3 DOF maneuvering models for both CSAD and NTNU’s research vessel, R/V Gunnerus (RVG).
However, according to the scope of this master’s thesis, the focus has been to develop the DP model
for CSAD, and further examine its performance.

M, A, D, G

Set system matr ices 

Compute kinematics and kinetics

Numer ical integration

Vessel  m odule

Thruster  dynamics

config.json

Vessel

GunnerusManeuver ing3DoF

RVG_DP_6DOF

CSADMan3DOF

CSAD_DP_6DOF

CSAD_DP_Seakeeping

Euler  

4th-order  Runge-Kutta

Figure 3.8: Vessel module.
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Some assumptions regarding the low-speed 6DOF DP simulation model has already been stated in
Section 2.5. It is assumed that the Coriolis and centripetal loads can be neglected for low-speed
applications, that the damping is linear, and that the encounter frequency is equal to the wave frequency.
These assumptions simplify the kinetics of the vessel. The final simplified DP simulation model is
expressed in (2.60), and is restated as

η̇ = J(Θ)ν
Mν̇ = −Dνr − GJ(Θ)−1η + τctrl + τ(1st) + τ(2nd).

The hydrodynamic vessel parameters are defined in the configuration file and set as constant throughout
the simulations. The frequency-dependent terms can then be set according to the desire of the user. As
default, the coefficients use zero-frequency in the horizontal plane (DOF 1,2,6), and the peak-frequency
in the vertical plane (DOF 3,4,5), as proposed by Fossen (2021).

Fossen also discuss using both fixed and frequency-dependent hydrodynamic coefficients, while introdu-
cing the concept of fluid memory effects and Cummins equation. The fluid memory effects are estimated
from a state space identification of a retardation function. This is implemented in the wave load mod-
ule, but has not been utilized in any vessel models in this master’s thesis. It will, thus, not be discussed
any further, and the reader is referred to (Hygen, 2023, ch.2) for a more in-depth derivation.

Two integration methods are implemented to the simulation package, for integrating the state vectors,
η and ν. These are the forward Euler integration and the 4th-order Runge-Kutta integration, and the
user can state his or hers preferred method when initializing the vessel object.

Thruster dynamics

The actuator’s dynamics directly affect the performance of a DP system. The systems ability to
respond to environmental forces depends on the speed at which thrusters can change their thrust level
and direction. Thrusters with a faster response time, naturally provides better control and stability,
allowing the DP system to maintain its position more effectively. For a high-fidelity simulation model,
it is important to take the thruster dynamics into consideration as it can limit the calculated command
loads from the controller.

Thruster dynamics are implemented to the vessel module as a base class. The class object is initialized
with input data from a vessel specific configuration file containing information about the thruster
configuration, coefficients and specifics. The thruster configuration for CSAD can be seen presented in
Figure 3.9, where all six thrusters are the same type of azimuth thrusters and the thruster spesificcs
for each thruster are summarized in Table 3.1.

Table 3.1: Thruster specifics for CSAD. In courtesy of Bjørnø et al. (2017)

Parameter Value Unit

Max shaft speed 94.9 RPS
Power 0.868 W
Propeller diameter 0.03 m
Steering speed 114 deg/s
Max torque 0.0015 Nm
Max thrust 1.5 N
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Figure 3.9: Thruster configuration for CSAD. In courtesy of Bjørnø et al. (2017).

The thruster dynamics gets its input commands, α and u, from the thrust allocation block. Its
objective is then to calculate the actual thrust force, τctrl, based on the natural restrictions of the
thruster configuration. These restrictions include the likes of saturation limits and rate limits of the
azimuth thrusters, ensuring that the output is equal to the resulting loads produced by the thrusters,
as they would be for the real vessel.

In (2.38) in Section 2.4.4, a model stating the relation between the the actuator loads, τ, and the
control signals u, α, was stated. To be able to represent realistic thruster dynamics, it is also necessary
to state the relation between the control signals and the shaft speed n, of the thrusters, as this often
needs to be rate-limited. This can be done, according to Fossen (2021), as

u = n|n| ⇒ n = sgn(u)
√

|u|, (3.5)

which, if inserted into (2.38), provides

τ = T(α)K∗n|n|, (3.6)

where T(α) was described as the actual thrust configuration matrix, and K∗ is the actual force coeffi-
cient matrix. In simulation aspects, the latter matrix can be set equal to the one in Section 2.4.4. For
real-world vessels, however, these will only be given as an estimation, based on the specifications of the
thrusters.

3.2.4 GNC Module

To expand the simulation platform, developed in Kongshaug and Mo (2022) to a complete DP simulator,
the GNC module was added. The module made it possible to perform full end-to-end tests of the
simulated system, and included reference models, observers, controllers, and thrust allocation. The
objective of the module was to provide the vessel module with the required control input to satisfy the
control objective. The theory behind the GNC module has been presented in Section 2.4.3, and this
section will only briefly presents the different functionalities implemented. An overview of the GNC
modul is presented in Figure 3.10.
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Control ler

Thrust al location

Obser ver

GNC m odule

Reference model

thruster_data.py

AllocatorCSAD

pseudo_inverse_allocator f ixed_angle_allocator

AdaptiveFSControl ler

PD

PID

PI

DirectBiasCompensationControl ler BacksteppingControl ler

EKF

LTVKF

NonlinObs3dof
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Figure 3.10: GNC module.

Navigation

The navigation receives the input to the GNC module (η, τctrl), and determines the full state vector
of the vessel. Three different observers have been implemented, each as their own class. Two of which
are variants of the Kalman filter from subsection 2.4.7, being the EKF and LTV-KF, and one nonlinear
observer. The observer pass the estimated states to the control and the guidance system.

Guidance

The guidance system is represented by the Reference model block in Figure 3.10 which takes the
estimated position and velocity from the observer and computes an optimal setpoint for the vessel.
The desired position, velocity and acceleration are then sent to the controller. The simulation platform
includes the implementation of both a third order reference filter and a hybrid path-parameterization
model. Both are implemented as their own class with their own private functionality.

Control

The control block receives observer estimate and reference states as input, and calculates the necessary
command forces and moments for the thrusters in order to achieve the control objective. A total of six
controllers are present in the created toolbox, where four of which can be considered as well established
and familiar controllers. These are the PD, PI, PID, and direct bias compensation controllers. Addi-
tionally, an adaptive controller and a backstepping controller also exist. The adaptive controller will,
together with some of the more basic controllers, be utilized considerably in the upcoming simulation
study, and are presented more in depth in Chapter 4. All controllers are implemented as their own
class. A neural network has also been developed as an augmentation of the controller module. This is
utilized in an internal neural network bias model, to be presented in Chapter 4
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The control-part of the GNC module also consist of thrust allocation. The trust allocation block takes
the command loads computed by the controller and maps them to actuator commands. There exist
many different thrust allocation algorithms, which all share some common functionality. Hence, a base
class has been implemented for CSAD (AllocatorCSAD). The base class defines abstract methods for the
allocation problem and the allocation algorithm. These are defined in the subclasses, inheriting from the
base class. One of the allocation algorithms implemented as a sub class is the pseudo inverse algorithm
presented in Section 2.4.4. In addition, a fixed-angle allocator has been implemented, which shares
the same logic as the pseudoinverse, with the additional implementation of constant azimuth angles.
Saturation of the thrust loads is the only implemented constraint to the allocation algorithm. Ideally,
aspects such as angular rates, and forbidden zones for the azimuth thrusters, should also have been
implemented. This has, however, not been fully implemented in the toolbox, and can be regarded as
an area that requires improvement. The thrust allocation block finally returns the actuator commands,
which eventually serves as output of the GNC module.

To facilitate the use of the thruster allocation class, the module also includes implementation of a thruser
base class. This defines the common features for a typicall thruster. Two sub-classes, inheriting from
this, has been implements, one for creating tunnel thrusters and one for creating azimuth thrusters.

3.3 ROS interface

To enable testing and validation of the simulation model through physical experiments, it was necessary
to ensure compatibility between the MCSimPython software and the hardware setup. This involved
making the simulation platform ROS-compatible, which was achieved by incorporating a ROS wrapper.
This section will present the implementation of the ROS wrapper and the architecture of the nodes and
topics in the ROS environment.

The concept of wrapping in programming often refers to creating a module within another module.
This can add extra functionalities, or as in this case, create a brand new interface. A ROS wrapper will
create such a ROS interface by wrapping non-ROS code, as in MCSimPython, inside a ROS node. In
this way, the original source code can be modified without changing the ROS interface. Additionally,
this means that anyone familiar with ROS can take the program in use without having any knowledge
about the functionality in the source code. Keeping the source code completely independent from ROS,
also makes it easier to locate potential errors when troubleshooting. It will also make it possible for
developers without knowledge of ROS to understand and modify the source code and use it for other
purposes (The Robotics Back-End, 2023).

ROS wr apper  

Librar y 
(non-ROS code)

Publisher

Subscr iberTopic 1 

Topic 2 

Figure 3.11: ROS wrapper

Figure 3.11 illustrates how a ROS wrapper is created around the functionality of the source code.
As the figure illustrates, ROS features are added to enable communication. A total overview of the
ROS environment implemented is illustrated in Figure 3.12. The nodes can publish and/or subscribe to
topics, indicated by the arrows. As illustrated, the ROS environment can be used both by the simulator

49



Chapter 3. Development of simulation platform

and by the hardware, depending on which nodes are defined in the ”Vessel and sensors” box.

Vessel  and sensor s

Thrust al locatorObser ver

Guidance Control ler

(a) Overview of full ROS architecture.

MoCap

Actuator s

Vessel  and sensor s

(b) Vessel and sensor block - hardware.

Simulation model

Vessel  and sensor s

(c) Vessel and sensor block - simulator.

Figure 3.12: ROS architecture.

3.4 Validation and result

An important aspect of creating a simulation model is to validate its performance. This ensures the
model’s performance and accuracy, and evaluates the simulation’s capability of replicating a credible
behavior. According to the test procedures in Section 2.6, this was initially done by conducting model-
in-the-loop simulations. This aids in model validation, while using a emulated control system, as can
be seen in Appendix B. 1. Further testing of the control system, utilizing both software-in-the-loop
(Appendix B. 2), and hardware-in-the-loop (Appendix B. 3), was also conducted before any software
could be said to be ready for experimental testing (Appendix B. 4).

For a single regular wave, the second order wave loads are expected constant and no slowly-varying
component shall be observed. Figure 3.13 shows the second order wave loads in surge, sway, and yaw,
acting on CSAD in head sea. It can be seen that the sway and yaw loads are zero, while a small
constant drift load appear in surge. Furthermore, in Figure 3.14, two wave components with distinct
frequencies are simulated. The slowly-varying wave loads then provide an oscillating force in surge,
while still yielding no loads in sway and yaw. The force in surge can be seen to exhibits oscillations
with a nonzero mean and a period of approximately 65 seconds. Finally, in Figure 3.15, three distinct
wave components are included in the simulation. The second order wave loads acting on the vessel can
now be seen oscillating with three frequencies.

The observations above strengthens the credibility of the implemented wave load module, as all findings
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are according to what can be expected by the theory. A single wave component does only provide a
mean load. Two components, however, introduce an oscillation in addition to the mean load. This
oscillation should act with a frequency of ω1 − ω2 = 0.1 rad/s ≈ 0.016 Hz, which equals a period of
62.5 seconds, well within range of the initial observation. As for three wave components, two more
frequencies are introduced into the oscillations. It is worth noticing that if the initial wave frequencies
would have been evenly spaced, only two frequencies should be distinguished in the slowly varying
loads, in addition to the mean load. It can be concluded that the number of wave components present
in a system directly impacts the nature and complexity of the oscillations observed. It can also be
noted that the wave load magnitude correlates with the total wave amplitude, being greater when the
wave amplitude is large.

Figure 3.13: Second order wave loads for a single wave component with amplitude ζ = 1 m and
frequency ω = 0.8 rad/s.

Figure 3.14: Second order wave loads for N = 2 wave components with amplitudes [ζ1, ζ2] = [1, 0.8] m
and frequency [ω1, ω2] = [0.8, 0.7] rad/s.
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Figure 3.15: Second order wave loads for N = 3 wave components with amplitudes [ζ1, ζ2, ζ3] =
[0.5, 1.0, 0.8] m and frequency [ω1, ω2, ω3] = [0.4, 0.25, 0.7] rad/s.

Given the significant amount of time and resources allocated to reduce the computational time of
the proposed algorithm, it became imperative to validate the runtime performance of the wave load
algorithm. To determine if the proposed algorithm ran faster than the double for-loop used by Brørby
(2022), a computational speed test was performed. The test measured the average computational
time of N = (1, 2, ..., n) wave components on a AMD Ryzen 7 3700U CPU with 16 GB RAM. For
each distinct number of wave components, the computational time was averaged over 50 computations.
The results of the test, shown in Figure 3.16, demonstrate that the matrix formulation in (3.3), runs
significantly faster than the double for-loop. If defining the simulation time step to 0.01 seconds (10
ms), the double for-loop algorithm was restricted to running with 20 wave components. In contrast,
the matrix formulation allowed for almost 200 wave components, yielding far more realistic simulations
of the sea states.

(a) Double for-loop of Brørby (2022). (b) Matrix formulation of Hygen et al. (2023).

Figure 3.16: Comparison of the computational time for second order wave loads using the matrix
formulation in (3.3), and a double for-loop. The dotted lines indicate the global time step used in the
simulator (0.01 s).

In the period between Oct.-Nov. 2022, numerous tests with CSAD, were carried out in the MC-lab
by PhD candidate Raphael Mounet. The sea states were defined with the JONSWAP spectrum, and
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used a total of 500 wave components for the wave realizations. The data generated by Mounet was
from an early development stage used in validation of the presented simulation model. The 6DOF
simulation model of CSAD was then simulated with the same amount of wave components as those
defined in the lab experiments. As no thrust allocation logic or thruster dynamics were included in the
vessel simulation model at this point, only the vertical motions were examined. A simple controller was
implemented to control the simulated vessel and keep it at a fixed heading in beam sea, such that the
relative wave angle remained unchanged at βrel = 180◦. The response spectra for two separate sea states
are presented in Figure 3.17 - Figure 3.19. The figures include both the experimental and simulated
response, in addition to the theoretical calculated directly from the response amplitude operators of
the vessel.

(a) Hs = 0.06 m and Tp = 1.3 s. (b) Hs = 0.06 m and Tp = 1.5 s.

Figure 3.17: Validation of response spectra in heave for simulated, experimental, and theoretical re-
sponse.

(a) Hs = 0.06 m and Tp = 1.3 s. (b) Hs = 0.06 m and Tp = 1.5 s.

Figure 3.18: Validation of response spectra in roll for simulated, experimental, and theoretical response.
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(a) Hs = 0.06 m and Tp = 1.3 s. (b) Hs = 0.06 m and Tp = 1.5 s.

Figure 3.19: Validation of response spectra in pitch for simulated, experimental, and theoretical re-
sponse.

The response spectra presented yield a very promising result. This is particularly the case for the heave
and pitch response, in Figure 3.17 and Figure 3.19, where the simulated response coincide well with
both the experimental and theoretical results. It can be observed that an unmodeled peak is evident
in the experimental pitch response spectrum, for both sea states. The absence of this peak in the
theoretical response spectra suggests the need for an improvement in the RAOs of the vessel. It is
assumed that the RAOs would require a higher resemblance of the actual dynamics in order to capture
these frequencies in the simulation model.

As the tests were conducted in head sea, it could be assumed that no roll motion should be present in
the displayed spectra. This is also seen in the theoretical response in Figure 3.18. However, this is not
the case for neither the simulated nor the experimental spectra. This could be due to the controller
struggling to obtain βrel at exactly 180◦, resulting in roll motion. The experimental and simulated
peak do also differ in frequency, but as previously stated, caution should be exercised when evaluating
roll motion generated by the simulation model. This is because both the RAOs and force RAOs are
derived from linear potential theory, whereas roll motion often consist of highly nonlinear phenomena
(Faltinsen, 1990).
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4.1 Problem formulation

This master’s thesis addresses the compensation of second order, low-frequency wave loads in dynamic
positioning vessels. These loads contain a slowly varying component, and are commonly compensated
for using integral action in the feedback loop. However, this method is susceptible to transients ori-
ginating from low-frequency contributions, which can manifest as offsets in the vessel’s position. That
being the case, the thesis aims to explore alternative control law algorithms that could more effectively
compensate for these loads, and thereby mitigate such offsets. The main objective was given in the
introduction and is repeated in the bullet point underneath.

• Explore the effectiveness of alternative compensation techniques, in comparison to traditional
integral action, for mitigating response from low-frequency (not necessarily zero-frequency) wave
load components.

A DP vessel is exposed to slowly varying loads, arising from second order wave loads, wind, and current,
as well as from uncertain factors in the control design model, such as inaccuracies in hydrodynamic
parameters. However, the DP system faces difficulty in identifying and distinguishing these forces.
Hence, they are usually grouped together as a single vector, termed the residual load vector or bias
load vector, b. This bias vector is frequently modeled in the NED frame (Fossen, 2022), due to the
assumed predominance of environmental loads, which more often than not are represented in a NED
frame.

In an ideal case, these residual loads loads should be perfectly counteracted for in a DP controller.
This can, however, prove to be a challenging task. The inherent complexity and nonlinearity present
in real-world systems, makes the control system struggle to react accordingly, especially during highly
transient load conditions. Ongoing research is being performed on the subject, dedicated to address
these challenges, and striving towards the attainment of a perfect bias compensation.

The bias term is typically modelled to be constant. This can result in inaccuracies during transient
behavior. These transient load changes are typically not accounted for in deterministic mathematical
models, and are, thus, considered as part of the unmodeled dynamics. Consequently, they should be
compensated for by the bias term. A constant bias term may therefore struggle to cope with these
transient loads, leading to poor DP system performance. This is often referred to as the transient
load challenge (Værnø, 2020). The mentioned transient events may be operation specific, such as
crane procedures or gangway connections, or they may be operator induced, such as mode changes and
heading changes.

The aforementioned challenge is best illustrated by an example. A similar case is presented in Værnø
(2020).
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Example 4.1: The transient load challenge

Given the high-fidelity DP simulation model derived in Chapter 3, presented mathematically once again
in (4.1). All external forces from waves and wind are lumped into the nonlinear expression f . Current
forces are still modelled in the relative velocity term, νr = ν − νc. It is assumed that the current
is irrotational and constant. A simplified low-frequency control design model is suggested in (4.2),
according to Section 2.4.6, where the bias is modelled in the NED frame. M̂ and D̂ are the estimated
mass and damping matrices, while τ̂ctrl is the estimated thruster dynamics.

Mν̇r = − Dνr + τctrl + f (4.1)
M̂ν̇cdm = − D̂νcdm + τ̂ctrl + R⊤b{n} (4.2)

If the residual loads are captured perfectly in the bias term, the two models should coincide. However,
this assumption presumes that the velocity in the simulation model only contains low-frequency motion,
which is not generally true. This can be handled in a simulation platform, by removing all wave-
frequency loads from the vector f , so that only slowly varying loads excite the vessel, resulting in a
slowly varying response. The simulation platform also provides access to the remaining loads, so that
it becomes possible to derive an expression for the optimal bias term. (4.2) is subtracted from (4.1),
and solved for the bias term.

Mν̇r − M̂ν̇cdm = −Dνr + D̂νcdm + τ̃ctrl + f − R⊤b{n} (4.3a)
R⊤b{n} = −M̃ν̇ + Mν̇c︸ ︷︷ ︸

0

−D̃ν + Dνc + τ̃ctrl + f (4.3b)

R⊤b{n} = −M̃ν̇ + D̃ν + Dνc + τ̃ctrl + f (4.3c)

M̃ , D̃, τ̃ represent the error in the estimated mass matrix, damping matrix and thruster configuration
respectively. The optimal bias calculated above will also be referred to as the true bias or actual bias
in the following sections.

The expression in (4.3c) can be even further simplified by assuming that the control design model
perfectly models these hydrodynamic coefficients, as well as the assumption of perfect thrust allocation,
so that M̃ , D̃, τ̃ = 0. This will never be the case in a real system, but can, nonetheless, be obtained
in a simulation platform. The bias will then only be a sum of damping due to current, and external
forces represented in f .

b{n} = R(ψ)
[
Dνc + f

]
(4.4a)

b{b} = Dνc + f (4.4b)

This residual term can then be calculated as the vessel is forced to make a complete rotation (360◦),
while being stationary at the origin. No wave or wind loads are present, but a constant current, Uc = 0.2
m/s, from βc = 45◦, acts on the vessel. The bias term, both in the BODY and NED frame, is presented
in Figure 4.1.
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Figure 4.1: Simulated residual loads, both in BODY and NED, during a 360◦ turn. The dotted lines
represent the mean values.

Figure 4.1 quite clearly illustrates that the assumption of a constant bias load can be invalid during
large transients. The mean values are also shown as dotted lines. In this case, it can be seen that when
expressed in the BODY frame, the bias load oscillates around zero. It can also be observed that for
yaw rotation, the two reference frames align.

To more accurately capture the transient variations, demonstrated in the example, one may seek to
improve the fidelity of the control design model. However, this would demand more complex hydro-
dynamic calculations, which could increase the computational time and render stability assessments
more difficult. Even so, it would be impossible to perfectly identify the actual hydrodynamic para-
meters. Thus, representing the bias loads as a constant load has been demonstrated to yield good
performance in both simulations and experimental testing, as reported by Fossen and Strand (1999)
and Loŕıa and Panteley (1999). However, it should be noted that these results are related to operations
where the residual loads act at low-frequency (or zero-frequency), which can not be said to be the case
for the example above (Værnø, 2020). Hence, more robust and adaptive controller algorithms, capable
of more precisely estimating these residual loads, will be considered.

4.1.1 Disturbance rejection methods

This thesis presents four distinct control algorithms for disturbance rejection. Two of which, can
be considered standard within commercial DP systems, involving integral action, and feedforward of
observer-estimated bias. The remaining algorithms have not, to the best of the authors’ knowledge,
been employed in marine DP operations thus far. They entail an adaptive controller using a truncated
Fourier series disturbance model, and a PI controller augmented with a neural network disturbance
prediction model. All control algorithms are listed below, and thoroughly presented in Section 4.2 -
Section 4.5.
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Method 1 Bias compensation by integral action.

Method 2 Bias estimation from observer.

Method 3 Adaptive control using a Fourier series disturbance model

Method 4 Bias estimation from a neural network model

Although this master’s thesis endeavors to analyze high-fidelity cases, certain simplifications were ne-
cessary due to various reasons. These simplifications are explicitly mentioned whenever they occur and
their potential impacts on the results are discussed.

4.1.2 Setup and implementation

The control algorithms have been tested on the high-fidelity simulation platform, as previously in-
troduced by the authors (see Chapter 3). The majority of the results have been obtained from this
simulation platform, with the aim of validating some of the outcomes obtained from this simulation
study through experimental testing. The simulation study is presented in Chapter 5, while the experi-
mental validations are presented in Chapter 6.

For the purpose of conducting simulations, two distinct test scenarios were defined. The first of which,
is a general stationkeeping test, aiming to evaluate the performance of the controllers after a stationary
condition has been reached. The second scenario consists of a 30◦-30◦ heading change, initiated from
ηref = [0, 0, 0]⊤. The setpoint is then slowly changed to ηref = [0, 0, 30◦]⊤, back to ηref = [0, 0,−30◦]⊤,
before returning to ηref = [0, 0, 0]⊤. It is emphasized that this maneuver assumes that a steady state
performance is reached before the heading change is initiated, in order to only assess transients that
occur as a consequence of the maneuver. The scenarios are, unless otherwise specified, performed in
the same, predefined, environmental conditions. These are summarized as Seastate 1 and Seastate 2 in
Table 4.1. Both consist of an irregular sea state, with similar wave parameters. Seastate 1, however,
also include current effects. All simulations presented in Chapter 5 are conducted in Seastate 1, while
Seastate 2 is intended for the experimental testing in Chapter 6.

Table 4.1: Overview of all sea states used both simulations and experimental testing.

Environmental condition Hs [m] Tp [s] γ [-] βw [◦] Uc [m/s] βc [◦]

Seastate 1 0.03 1.5 1.0 180 0.01 180
Seastate 2 0.03 1.5 1.0 180 0 -

In order to allow for a fair comparison between the distinct controllers, DFO optimization techniques,
outlined in Section 2.7, are incorporated in the tuning process. The optimization process is performed,
both for the nominal PID/PD controller, as well as for the adaptive controller. The translational and
rotational gains were tuned separately, in addition to treating surge and sway gains as equal. This
was introduced in order to reduce computational time, which was discovered to be a major problem
in the inital tuning phase. The optimization process used the IAEW cost function, as presented in
Section 2.7, and multiple runs with varying initial conditions were performed to avoid being stuck
at any local minima. The tuning process defined a separate setpoint change from the one described
previously, to circumvent the consequence of overfitting to a specific maneuver. A presentation of the
tuning results are appended after the implementation of each controller. Even though the optimization
technique should provide a set of optimal gains, some manual tuning, through trial and error, had to
be performed subsequently, to achieve the desired performance.

As presented, the primary objective of this master’s thesis is to evaluate whether or not the indicated
control algorithms better cope and compensate for wave loads with low- and zero-frequency components.
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The simulation study will involve both qualitative and quantitative evaluations of the controllers, as
well as a sensitivity analysis of certain controller parameters. The PID controller will serve as a baseline
for comparison with the successive algorithms. Various other hypothesis are also to be defined for each
controller, and will be established in the subsequent sections.

The quantitative performance of the controllers can be measured by a given set of key performance
indexes (KPIs). The different set of KPIs utilized in the upcoming chapters are

Jη =
∫ tf

t0

[
|ηN − ηd,N | + |ηE − ηd,E | + 180

π
|ψ − ψd|

]
dt (4.5a)

Jτ,uv =
∫ tf

t0

[
|τsurge| + |τsway|

]
dt (4.5b)

Jτ,r =
∫ tf

t0

|τyaw|dt (4.5c)

Jb =
∫ tf

t0

[
|b̂N − bN | + |b̂E − bE | +

180
π

|b̂ψ − bψ|
]
dt, (4.5d)

where the final KPI, in (4.5d), is an evaluation of the controllers bias rejection term, evaluating the
bias compensation term, b̂ ∈ R3, against the extracted actual bias b ∈ R3. Certain analyses will also
use evaluations based on a weighted sum of some of these performance indicators.

4.2 Bias compensation by integral action

One of the most frequently used control methods for DP operations is the nominal PID controller.
The controller utilizes integral action for disturbance rejection, and is a widely adopted method in
control algorithms for DP operations. The integral term accumulates the calculated error over time
and efficiently compensates for any constant disturbances. This provides a long-term control action,
while ensuring that the control output converges to the desired setpoint. However, an integral term
introduces a negative 90◦ phase shift to the response at low frequencies, which can limit the controller’s
stability margins (J. Balchen et al., 2016, ch.9). Nonetheless, the PID-controller remains a highly
robust, simple and widely trusted controller in the industry. Its integral action will, consequently, serve
as a baseline against other less frequently used disturbance rejection techniques in this thesis.

The control law for a nominal PID controller is presented in (4.6). The integral term is represented by
a new, augmented state, z, such that the control force, τctrl, will include the integral of the cumulative
positional error over time. The controller will, thus, add a corrective action to drive the system towards
the setpoint, even for small or fluctuating errors.

τctrl = −KpR⊤(ψ)(η̂ − ηd) − Kd(ν̂ − νd) − KiR⊤(ψ)z (4.6a)
ż = η̂ − ηd (4.6b)

That being said, the integral term may also introduce challenges if not implemented properly. Integral
windup is a well-known concept that should be addressed in all PID controllers. The phenomenon occurs
when the integrator term continues to accumulate error even when the control output not effectively
can compensate for such error. This can lead to undesirable consequences, as both the performance
and stability of the controller can be affected. An anti-windup scheme has therefore been implemented
simultaneously to the controller, to avoid non-physical actuator input.

The integral term in (4.6) is often tuned relatively slow for DP systems (Værnø, 2020). Fossen, 2021
presents a rule of thumb stating that the integral gain, at least, should inherit a value less than a tenth
of the system’s natural frequency. This is to prevent any potential overshoot, due to the substantial
inertia exhibited by vessels. The large inertia will, in general, result in a slow response, which can cause
the integral term to accumulate too much positional error before reaching a desired setpoint. It may,
consequently, result in oscillatory performance, and give rise to errors during transient operations with
fluctuating disturbances.
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4.2.1 Tuning

The tuning of the PID controller was done using a DFO technique. Figure 4.2 displays the process,
showing the development of the translational gains (Kp, Ki and Kd), as well as the overall cost function.
The initial value for the tuning gains were deliberately set relatively low, so that the initial cost function
described a stable system. Figure 4.3 presents the response and control load, τcmd, in sway, for a simple
setpoint change, both before and after DFO tuning was implemented. As can be observed from the
figure, the response of the vessel after tuning, closely aligns with the desired response.

(a) Controller gains. (b) Normalized cost function.

Figure 4.2: Derivative free optimization procedure for the PID controller.

Figure 4.3: Before and after DFO tuning of the PID controller for a simple setpoint change in surge.
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4.3 Bias estimation from observer

Alternatively to the conventional integral term, the disturbances can also be compensated for by dir-
ectly feeding the bias estimate, provided by the observer, into the control law. This method, shown
mathematically in (4.7), is proposed by Loŕıa and Panteley (1999), where the separation principle is
utilized to ensure global asymptotic stability. A bias estimate, extracted from a model-based observer,
such as the one presented in (2.48), is then included in the feedback loop together with position and
velocity estimates, and utilized in the control law.

τctrl = −KpR⊤(ψ)(η̂ − ηd) − Kd(ν̂ − νd) − R⊤(ψ)b̂ (4.7)

The use of an estimated bias instead of the traditional integral action do lead to some benefits. Firstly,
the tuning process is simpler for an offline data process such as in the observer. Optimization methods
can also be used to find acceptable gains. Integral windup will also not be a problem when implementing
the bias estimate, as no integrator is present to accumulate error. Nonetheless, integral action can be
tuned independently of the bias response time, enabling the possibility to account for steady state
offsets (Værnø, Brodtkorb et al., 2019). Bias estimates from the observer may also exhibit a more
oscillatory behavior, which can lead to undesirable response when employed in a feedback loop.

The bias used in the control law can be represented by several different bias models. Different bias
models will have different characteristics depending on traits, such as linearity, stochasticity and vari-
ations with time. The bias model should therefore, carefully, be selected according to the dynamics it
is desired to capture. The previously presented CDM in (2.48), presented a random walk bias model,
ḃ = wb, where the bias is represented with random fluctuations over time. This model captures the
stochastic nature of the bias, which often is to be found in marine environments, due to the natural
stochasticity of waves. The stochastic, first order Markov process was also briefly mentioned as an
alternative, as presented in Sørensen (2018), ch.7. This model introduces temporal correlation in the
bias estimation, accounting for memory effects in the bias dynamics.

Værnø, Brodtkorb et al. (2019), also looked into how different bias models, utilized as in (4.7), affected
the performance of the DP control system. The paper presented three distinct bias models and con-
cluded that bias compensation from a separate observer, which was fine-tuned to accurately estimate
the true low-frequency bias load, yielded the most favorable results. Even though these bias models
not will be implemented any further in this thesis, a different bias model candidate will be presented
in Section 4.5, based on an artificial neural network.

The combination of bias estimation from an observer, and bias compensation through integral action,
will serve as a baseline for the upcoming disturbance rejection methods, and are both considered as
well established within commercial DP systems.

4.3.1 Tuning

For the augmented PD controller in (4.7), the same tuning parameters as for the proportional and
derivative gain in the PID controller have been implemented. Even though the final term in the control
law may exhibit some differences to the integral term in (4.6), it is assumed that the PD-part of the
controllers can be tuned independently of the bias rejection term. Again, minor changes were done,
though trial and error, to obtain an ideal performance.

4.4 Adaptive control using a Fourier series disturbance model

The adaptive control using a Fourier series disturbance model mainly involve estimating the bias term
in the control design model as a truncated Fourier series. The Fourier series will have a set of Fourier
coefficients Θ, as well as a regressor, Φ(t), consisting of harmonic functions with N pre-defined fre-
quencies. By estimating the Fourier coefficients in an adaptive law, the bias, b(t) ∈ R3, can then be
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modeled as

b(t) = Φ⊤(t)Θ, (4.8)

where

Θ =
[
θ⊤

1 θ⊤
2 θ⊤

3

]⊤
, (4.9)

and

Φ(t) =


ϕ1 02N+1 02N+1

02N+1 ϕ2 02N+1

02N+1 02N+1 ϕ3

 . (4.10)

In (4.9) and (4.10), θi ∈ R2N+1 and ϕi ∈ R2N+1, represent the Fourier coefficients and set of harmonic
functions, respectively, for DOF i. Evidently, considering N harmonic frequencies, the resulting dimen-
sions for the full matrices are Θ ∈ R6N+3, and Φ(t) ∈ R(6N+3)×(6N+3). For every degree of freedom,
the bias is then modelled as

bi(t) = ϕ⊤
i (t) θi =

[
1 cos (ω1t) sin (ω1t) . . . cos(ωN t) sin(ωN t)

]


ai0

ai1

bi1
...
aiN

biN


, (4.11)

or represented as a sum,

bi(t) = ai0 +
N∑
j=1

aij cos (ωjt) + bij sin (ωjt). (4.12)

In the forthcoming calculations, Θ will be assumed constant, that is Θ̇ = 0, which is considered
plausible for a fully developed sea state. It should be noted that the first term in the regressor is
constant, constructed to represent the mean drift loads.

The selection of Fourier coefficients in Θ can be found with various techniques. As mentioned previously,
this section will construct an adaptive law, where stability of the controller can be guaranteed according
to its control Lyapunov function (CLF). The coefficients can, however, also be estimated by other means,
such as an additional state in the observer model, according to the internal model principle.

The calculated bias is directly fed into an adaptive control law, where the bias estimate is designed to
suppress the actual disturbances working on the vessel. A block diagram of the control system is shown
in Figure 4.4.
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Adaptive control 
law

Plant

Environment

Adaptive update 
law

Figure 4.4: Block diagram of the adaptive controller.

The control law is determined by using LgV-backstepping, (Arcak & Kokotović, 2001), calculated
through a recursive construction of a CLF. This is a robust design technique ensuring global stability.
The procedure introduces a change of coordinates, where a new state vector, z, is generated. The given
approach is inspired by the former M.Sc. thesis by Brørby (2022), solving a similar problem, as well as
the procedure described in appendix A in Fossen (2021).

The transformation of coordinates is displayed in (4.13). The control objective, in accordance with
Fossen (2021), is to drive the first state, z1, to zero. The second state, z2, will be used as a virtual
control input to stabilize the first subsystem.

z1 = R⊤(ψ)(η − ηd(t)) (4.13a)
z2 = ν − α (4.13b)

Here, α, is another virtual control input, and will be specified later.

Step 1: (4.13a) can to begin with be differentiated.

ż1 = Ṙ⊤(ψ)(η − ηd(t)) + R⊤(ψ)(R(ψ)ν − η̇d(t))
= −S(r)z1 + z2 + α − R⊤(ψ)η̇d(t) (4.14)

A CLF candidate is then proposed as

V1(z1) =
1
2z

⊤
1 z1, (4.15)

which can be differentiated as

V̇1 =z⊤
1 ż1

=z⊤
1

[
−S(r)z1 + z2 + α − R⊤(ψ)η̇d(t)

]
=z⊤

1

[
z2 + α − R⊤(ψ)η̇d(t)

]
. (4.16)

63



Chapter 4. Problem formulation and methods

After inspecting (4.16), a proposal can be made for the virtual control input,

α = −K1z1 + R⊤(ψ)η̇d(t) + α0, (4.17)

where K1 ∈ R3x3 is defined as a positive tuning matrix, and α0 as a new virtual control law for making
(4.16) negative. This will be further discussed later in the derivation. Inserting (4.17) into (4.16) yield

V̇1 =z⊤
1 z2 − z⊤

1 K1z1 + z⊤
1 R⊤(ψ)η̇d(t) + z⊤

1 α0 − z⊤
1 R⊤(ψ)η̇d(t)

=z⊤
1 z2 − z⊤

1 K1z1 + z⊤
1 α0

≤κz⊤
1 z1 +

1
4κz

⊤
2 z2 − z⊤

1 K1z1 + z⊤
1 α0, (4.18)

where the final line in (4.18) has used Young’s inequality, defined as z⊤
1 z2 ≤ κz⊤

1 z1 + 1
4κz

⊤
2 z2 for a

constant scalar κ > 0. The virtual control law can then be set to remove the first term in (4.18) by
selecting

α0 = −κI3z1. (4.19)

This results in the following property for the CLF candidate,

V̇1 ≤
1

4κz
⊤
2 z2 − z⊤

1 K1z1. (4.20)

To finish off the first step, (4.17) can be inserted into (4.14), providing

ż1 = −S(r)z1 + z2 − (K1 + κI3)z1. (4.21)

Step 2: For step 2, the dynamics in (4.13b) is considered. Again, the first step is to find the time
derivative. M is multiplied into the equation to easier introduce the kinetics of the CDM.

Mż2 = Mν̇ − Mα̇

= −Dν + b + τctrl − Mα̇

= −Dν + Φ⊤(t)Θ + τctrl − Mα̇ (4.22)

Again, a new CLF candidate is assigned. This time the previous CLF candidate in (4.15) is included,
that is

V2(z1, z2) = V1(z1) +
1
2z

⊤
2 Mz2. (4.23)

Its time derivative is given as

V̇2 = V̇1 + z⊤
2 Mż2 (4.24)

≤
1

4κz
⊤
2 z2 − z⊤

1 K1z1︸ ︷︷ ︸
V̇1

+z⊤
2

[
−Dν + Φ⊤(t)Θ + τctrl − Mα̇

]

≤
1

4κz
⊤
2 z2 − z⊤

1 K1z1 + z⊤
2

[
−D(z2 + α) + Φ⊤(t)Θ + τctrl − Mα̇

]
.

Θ̂ is then introduced as an estimate of Θ, with the estimation error Θ̃ = Θ − Θ̂. The error dynamic
can then be described by ˙̃Θ = Θ̇ − ˙̂

Θ = − ˙̂
Θ, where the final equality is due to the assumption that Θ

is constant.

The control law, τctrl, in (4.24), can then be chosen to counteract the undesired terms in the CLF.
Note that it is desirable to keep the damping term −Dz2 because of the stability property it naturally
comes with. This is in general an advantage with vectorial backstepping, allowing the designer to select
which terms to keep and remove due to their stability properties. The control law is proposed as

τctrl = −K2z2 + Dα + Mα̇ − Φ⊤(t)Θ̂, (4.25)

64



4.4. Adaptive control using a Fourier series disturbance model

where K2 ∈ R3x3, similarly to K1, is a positive tuning matrix. Inserting (4.25) into the CLF candidate
in (4.24) provides

V̇2 ≤
1

4κz
⊤
2 z2 − z⊤

1 K1z1 − z⊤
2 Dz2 − z⊤

2 K2z2 + z⊤
2 Φ⊤(t)Θ̃

= − z⊤
2

[
−

1
4κI3 + D + K2

]
︸ ︷︷ ︸

K3

z2 − z⊤
1 K1z1 + z⊤

2 Φ⊤(t)Θ̃ (4.26)

where K3 is defined for simplicity. The state equation in (4.22) can now also be written as

Mż2 = −Dz2 − K2z2 + Φ⊤(t)Θ̃ (4.27)

Step 3: Finally, we introduce the previously defined state ˙̃Θ = − ˙̂
Θ. The final CLF candidate can then

be selected as
V(z1, z2, Θ̃) = V2 +

1
2Θ̃

⊤Γ−1Θ̃. (4.28)

Γ ∈ R(6N+3)×(6N+3) is defined as the final tuning matrix, determining how rapidly the coefficients in
Θ will be updated. For the final time the time derivative of the CLF is derived,

V̇ =V̇2 + Θ̃⊤Γ−1 ˙̃Θ

≤ − z⊤
2 K3z2 − z⊤

1 K1z1 + z⊤
2 Φ⊤(t)Θ̃ + Θ̃⊤Γ−1 ˙̃Θ

= − z⊤
2 K3z2 − z⊤

1 K1z1 + Θ̃⊤
[
Φ(t)z2 + Γ−1 ˙̃Θ

]
, (4.29)

where the final equation is obtained by exploiting z⊤
2 Φ⊤(t)Θ̃ = Θ̃⊤Φ(t)z2. The error state ˙̃Θ, can

then be chosen such that the CLF candidate will be negative, that is
˙̃Θ = −ΓΦ(t)z2, (4.30)

which gives
˙̂
Θ = − ˙̃Θ = ΓΦ(t)z2. (4.31)

This choice will evidently lead to the time derivative of the CLF being negative semi-definite

V̇ ≤ −z⊤
1 K1z1 − z⊤

2 K3z2 ≤ 0 ∀ (z1, z2, Θ̃) ̸= 0. (4.32)

A conclusion stating that the equilibrium point (z1, z2, Θ̃) = 0 will be uniformly globally stable (UGS),
can, as a consequence of Lyapunov’s direct method, thus be drawn. LaSalle-Yoshizawa’s theorem for
non-autonomous systems also proves that (z1, z2) will converge towards 0 (Fossen, 2022). Note that
the convergence of Θ̃ towards 0 not is guaranteed. All conclusions will only hold if the already made
assumptions prove to be valid. Thus, it is required that the CDM accurately describes the system
dynamics, and that the proper bias term persistently excite the regressor, Φ(t).

The calculations in this section can be summerized with the following equations.

Change of coordinates:

z1 = R⊤(ψ)(η − ηd(t))
z2 = ν − α

Virtual control:

α = −K1z1 + R⊤(ψ)η̇d(t) − κI3z1

Control law

τctrl = −K2z2 + Dα + Mα̇ − Φ⊤(t)Θ̂

Adaptive update law
˙̂
Θ = ΓΦ(t)z2
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4.4.1 Frequency-selection for the adaptive update law

An important aspect using the derived adaptive controller lays in the selection of, and quantity of,
frequencies employed in the regressor. A higher number of frequencies is expected to give a more
accurate disturbance estimate, but also increase the required computational time by enlarging the
vectors Φ and Θ. An appropriate interval, [ω1, . . . , ωN ], consisting of N components must therefore be
selected with care.

An extensive analysis was conducted by the authors in the preceding project thesis. The thesis intro-
duced a frequency analysis of the model vessel CSAD, from Section 2.8.1, with the aim of identifying
the most important, low-frequent frequencies in the load, and response spectrum. The analysis yielded
valuable information regarding which discrete frequency components that should be represented in the
truncated Fourier series, for sufficiently accurate estimation and compensation. Findings found in the
analysis have been used in the implementation of the adaptive controller (Kongshaug & Mo, 2022).

The number of frequencies, N , represented in the truncated Fourier series, may affect the performance
of the estimate. A higher number of frequencies would, intuitively, be expected to enhance the accuracy
of the estimate. Nevertheless, as the residual loads often only span over a limited frequency range, the
frequency components of interest may be closely spaced. To evaluate the effects this may produce, an
objective for the adaptive controller was formulated:

• Evaluate how varying number of frequency components in the adaptive bias model impact the
performance of the estimated bias.

4.4.2 Tuning

The adaptive control law in (4.25) can, in general, be considered as less intuitive to tune, compared
to the previously presented PID and PD controllers. This enhance the practicality of DFO techniques,
ensuring that optimization algorithms will handle the process. DFO is performed for the tuning matrices
K1 and K2, again separating the procedure into translational and rotational motion. Figure 4.5 display
the development of the tuning gains and cost function during the optimization method, while Figure 4.6
presents the response in sway for a simple setpoint change, both before and after DFO tuning was
implemented.

(a) Controller gains. (b) Normalized cost function.

Figure 4.5: Derivative free optimization process for the adaptive controller.
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Figure 4.6: Before and after DFO tuning of adaptive controller for a simple setpoint change in sway.

The adaptive update law in (4.31), also include a tuning matrix, Γ, which regulates the rate at which
the adaptive coefficients are updated. This is adjusted manually. The choice of Γ has a significant
impact on the convergence behavior of the bias estimate. It can be expected that a larger value of Γ
should lead to a more aggressive update of the adaptive coefficients, potentially driving the estimate
closer to the true bias value within a shorter period of time. This improvement may, however, come
at the expense of introducing overshoot and instability. This trade-off will be evaluated in Chapter 5
with the following objective.

• Evaluate how the performance of the adaptive bias model is affected by its tuning matrix, Γ, and
how the magnitude of the gain works as a trade-off between a rapid estimation and introduction
of oscillations.

4.5 Bias estimation with a neural network

As presented in Chapter 2, artificial neural networks are in general well suited for nonlinear function
approximation. Consequently, they can be effectively utilized to approximate highly nonlinear char-
acteristics of a marine vessels. By implementing neural networks for this purpose, the nonlinear and
complex behavior of the real-time residual loads may be captured and approximated. The residual
loads, or bias loads, b ∈ R3, can then be directly integrated into, and compensated for, in a nominal
control law, such as the augmented PD controller in (4.7). Determined by the accuracy of which the
neural network is able to approximate the actual bias, this approach can further enhance the controller’s
ability to adapt and respond to various disturbance, and, hence, improve overall control performance
in a dynamic marine environment.

In order to implement the aforementioned controller, a neural network has been implemented. The
inputs for the network have been carefully selected according to their assumed relevance to the actual
residual bias loads. The availability of measurements onboard the vessel also played a role in determining
the selection of input parameters, which will be further discussed in Section 4.5.1. By considering
the mathematical equation in the already established simulation model, (2.58), it can be suspected
that certain variables, such as ν, and τctrl, heavily influence the residual loads on the vessel. As
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slowly varying wave loads and current also are lumped into the bias term, it is reasonable to assume
that significant wave height, Hs, wave period, Tp, current velocity, νc, and wave and current angles,
βw,rel, βc,rel, also impact the residual loads. For the network to be dependent on the relative wave,
and current, angle, the heading of the vessel, ψ, should consequently be taken as input. Incorporating
recently estimated bias output as input when training the network can also prove to be advantageous.
This implementation, often referred to as a recurrent neural network (RNN), introduce an internal
memory effect into the network, and can deal with the concept of autocorrelation, indicating that past
values may influence the current bias. The fully developed neural network in this thesis then end up
consisting of a total of 18 inputs and 3 outputs, which is selected to propagated through four hidden
layers of dimension N , mathematically represented as a function f : R18 → R3, and visualized in
Figure 4.7. The Leaky ReLU function is used as activation function in all layers, based on a simple
study, evaluating the performance of some of the previously mentioned functions. This study is seen in
Table 4.2 and Figure 4.8.
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Figure 4.7: The fully developed neural network.

The bias model in Figure 4.7 can also be presented mathematically. The bias in the CDM in (2.48),
which the network desire to predict, can be replaced with W ∗⊤H(x). H(x) : RN → RN , is then
the set of activation functions in the final hidden layer of the network, and W ∗ ∈ RN×3 is the ideal
set of weights in the final layer that ensures that the network perfectly predicts the actual bias. This
representation assume that the bias signal can be perfectly reconstructed with N set of a given activation
function.

An estimate for the bias is then introduced as

b̂(t) = W⊤H, (4.33)

where W ∈ RN×3 is the trained set of weights in the network, such that the true bias can be represented
as

b(t) = W⊤H + ϵ = b̂(t) + ϵ. (4.34)
ϵ ∈ R3, denotes the approximation error of the estimate. Through sufficient adjustment of the weights,
it is then desirable that the trained set of weights, W , approach the ideal value, W ∗, such that the
estimation error, ϵ, tend towards zero, and estimated bias, b̂(t), converges towards the true bias, b(t).

One can notice the resemblances in the shape of the mentioned bias estimate in (4.33), and the previously
introduced bias model in (4.8) from Section 4.4. By treating the activation functions as the regressor,
Φ(t), and the weights as adaptive coefficients, Θ, an alternative adaptive model is formulated. Utilizing,
for instance, the beneficial traits of radial basis functions, as explained in Section 2.3.2, a new radial
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4.5. Bias estimation with a neural network

basis function adaptive law can be employed. Similar studies, involving radial basis function neural
networks in marine control system, is performed by Li et al. (2021), and Du et al. (2013). Both papers
present a robust adaptive neural network control scheme for DP operations in the present of both model
and disturbance uncertainties, displaying promising results.

(a) Absolute error in the bias estimate in surge, sway, and yaw,
for the activation functions Tanh, ReLU, and Leaky ReLU.

(b) Normalized bias estimation KPI from
(4.5d) for the activation functions Tanh,
ReLU, and Leaky ReLU.

Figure 4.8: Study evaluating how different activation functions in the hidden layers of the neural
network estimate the bias loads.

Table 4.2: Bias estimation KPI for different activation functions. The indicators are normalized such
that the worst performing function has a value of 100.

Activation function Jb

Tanh 100.0
ReLU 78.7
Leaky ReLU 53.2

The neural network has been implemented with the same modular approach as the simulation platform
only in a separate source code. The network defines a base class for the layers, named Layer. From
this, both dense layers, a class called Dense, and activation layers, a class named Activation, inherit
functionality. Further, the activation class defines common functionality for all activation functions and
serves as a parent lass for the different activation functions implemented. The neural network itself is
defined by a separate class, named NeuralNetwork. This class is built up by layers from the layer-classes
and defines the total network and its general functionality. Utility functionality such as loss functions
has been implemented. Additionally, functionality from the python package PyTorch, supplemented
our neural network analysis.
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4.5.1 Further enhancement of the bias estimate

The performance of the neural network is intricately tied to its training process, and the accuracy of the
training data. As demonstrated in (4.3c), in the initial example at the very start of this chapter, if given
a well-established, high-fidelity simulation model, it is possible to accurately extract the residual bias
load from simulations. This load can subsequently serve as training data, when fitting the weights in the
network. If trained appropriately, the network will be capable of estimating the bias loads impeccably,
thereby achieving an optimal bias feedforward mechanism. This approach, however, may be deemed
as somewhat artificial from a real-world perspective. Inaccuracies in the simulation model, compared
to the actual vessel, particularly in the hydrodynamic parameters, would most likely result in highly
unreliable and unrepresentative bias loads. The accurate acquisition of environmental states, such as
significant wave height and current velocity, is also a demanding task. In general, this represents one
of the most difficult challenges related to disturbance estimation, as attaining a credible bias signal is
complex and highly elusive.

As the acquisition of a precise bias signal is vital for the performance of the neural network, inaccuracies
in this signal would inevitably lead to reduced estimation accuracy and performance. In light of these
challenges, the implementation of the controller will, in this paper, be limited to a simulation stage.
Nevertheless, to generate credible simulation results, these inaccuracies can be simulated by introducing
subtle offsets in hydrodynamic parameters in the simulation model, as well as marginally imprecise
estimates of environmental conditions. To evaluate the importance of accuracy in these parameters,
two more objectives are presented, to be evaluated in the upcoming simulation study in Chapter 5.

• Evaluate how inaccuracies in the environmental conditions affect the performance and robustness
of the neural network bias estimation.

• Evaluate how inaccuracies in the training model, as well as in hydrodynamic parameters, affect
the performance and robustness of the neural network bias estimation.

That being said, the bias estimation could also be further enhanced by introducing acceleration meas-
urements in the training process. By utilizing acceleration measurements, the neural network would
enable the calculation of the specific forces acting on the vessel through the application of Newton’s
second law of motion. In the event that these force measurements are obtained, filtered, and processed,
all residual loads in the CDM could be predicted more precisely. These loads can be incorporated into
the bias term, and presents a valuable opportunity to enhance the training data for a neural network,
thereby improving the provided estimates from the network. Acceleration measurements are, however,
seldom used in marine control theory due to the not so trivial measuring, filtering and decoupling
process. Nonetheless, Skjetne and Kjerstad (2016) introduce these specific force measurements in a
control system design, by the use of four distinct inertial measurement units. The main contribution of
the paper is the novel method of integrating the dynamic acceleration as an acceleration feedforward
mechanism in the control law, providing promising results. Fossen (2021) also introduce the concept of
specific force measurements into marine control system approaches, demonstrating that the inclusion
of acceleration measurements can be a viable and valuable addition to marine control systems.

Another possibility to enhance the feasibility of incorporating the controller within an actual vessel can
be to further improve the available models. Recent studies, conducted by both Wang et al. (2022) and
Kanazawa et al. (2022), at NTNU in Ålesund, Norway, propose a physics-data cooperative modeling
approach, to further improve the vessel models. These papers introduce a hybrid model, constructed
by a deterministic model derived from hydrodynamic principles, merged with a data-driven, black-box
model, learned from the observed vessel states. The prior knowledge given by the numerical model of
a vessel, is integrated into a neural network as informative input, so that the informed neural network
calibrates the bias between model outcomes and actual states in principle. This is in general a positional
bias, but synergies may be drawn to the bias load already discussed in this thesis, as both represent a
bias between a mathematical model and real-world observations. The papers showed promising results,
concluding that a hybrid model yielded a more accurate model with relaxed data requirements and
less learning consumption. A similar approach could also be made for bias loads. For instance through
implementing a neural network to estimate the bias in a rough simulation model, given real-time specific
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force measurements from sensors onboard an operating vessel. This has, nonetheless, not been a part
of this thesis, due to temporal constraints.

4.5.2 Tuning

The controller utilizes the same control law as in (4.7). Consequently, the same procedure as described
in Section 4.3.1, also apply for this controller.
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Chapter 5
Simulation results and discussion

The following chapter will present an overview of the simulation results obtained for the four control
techniques derived in the previous chapter. The controllers are evaluated, both in a steady state,
stationkeeping operation, and in a 30◦-30◦ heading test. The stationkeeping test is performed to
evaluate the controllers’ ability to maintain a predetermined setpoint under given environmental load
conditions, serving as the fundamental test before the subsequent maneuver is examined. The 30◦-30◦

heading maneuver is more related towards the main objective of the thesis, and focuses on evaluating the
controllers’ performance during transient operations. Both tests are mainly performed in the predefined
sea state, as presented in Table 4.1.

The test procedures in the this chapter is in accordance with the strategies outlined in Section 2.6.
Firstly, the simulation model and the simulated environment were tested with MIL tests to validate the
response of the vessel’s response to environmental forces. An overview of the test design for the MIL
tests are illustrated in Appendix B. 1.

The proposed control algorithms were then tested with a SIL approach, as seen presented in Appendix
B. 2, yielding valuable insight into the disturbance rejection characteristics. These insights guided the
selection of controllers for further investigation in an experimental lab setup. The most promising
controllers were eventually tested in the MC-lab.

Section 5.1 presents the result obtained from the stationkeeping test. The 30◦ − 30◦ heading change
scenario is presented in Section 5.2. Ultimately, in Section 5.3, a more in-depth analysis and discussion,
related to all presented objectives in the problem formulation, is provided. This section also includes a
sensitivity analysis of key parameters, both for the adaptive, and neural network controller parameters.

5.1 Test scenario 1 - Stationkeeping

The following section displays the result of the stationkeeping test scenario. The test was conducted
for 1750 seconds, and precautions were taken to ensure that the vessel had attained a steady state
before commencing the test. Figure 5.1 presents the surge position of the vessel for the four different
control methods. As it can be observed, very little separate the performance of the four methods.
All controllers were capable of obtaining the setpoint, although some low-frequency motion might be
detected. Figure 5.2a and Figure 5.2b present the corresponding bias rejection term in surge, for all the
controllers in a 100 seconds interval, as well as their absolute error compared to the true bias term. The
neural network bias estimate, visible as control method 4 in Figure 5.2a, is trained on the assumption
of a perfect model, and can thus be considered very close to the true bias, as evidenced by the low
absolute error.

Table 5.1 exhibit the previously presented KPIs during the test scenario in a tabular format. All KPIs
have been normalized such that the worst performing control method had a value of 100. With the
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exception of the bias estimation KPIs, it is evident that there is minimal difference in the performance
indications among the four control methods. Method 3, being the adaptive controller, displayed the
worst overall performance in all performance indicators, which also marginally can be seen in the
response, in Figure 5.1. That being said, very little separateed the performance of the four controllers
after a steady state had been reached. For the bias estimation KPI, nonetheless, the neural network
control estimate outperformed the other controllers significantly.

Figure 5.1: Vessel response for all control methods during stationkeeping test scenario.

(a) Bias rejection term.

(b) Absolute error between the estimated bias and true bias.

Figure 5.2: Bias rejection in surge for all controllers, in a 100 seconds interval, during stationkeeping.
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Table 5.1: Key performance indicators for steady state stationkeeping. The KPIs are normalized for
every cost function, such that the worst performing control method has a value of 100.0

Controller Jη Jτ,uv Jτ,r Jb,xy Jb,ψ

Method 1 99.7 94.3 93.3 98.8 93.4
Method 2 99.3 94.3 95.8 98.9 89.2
Method 3 100.0 100.0 100.0 100.0 100.0
Method 4 98.9 95.1 95.6 1.8 48.3

These KPIs can also be visualized graphically, as in Figure 5.3. The indicators are then normalized
such that the worst performing controller has a maximum of 1 for the whole test scenario. Using a
weighted sum of the previously defined KPIs, the indicators are combined into three separate KPIs,
evaluating performance, effort, and bias estimation, respectively. The KPIs coincide well with the
previously displayed performance of the controllers, showing minimal difference, both in performance
and effort. As stated, control method 3 exhibited the poorest performance, while control method 4
vastly outperformed the other methods in estimating the bias loads.

Figure 5.3: Key performance indicators for test scenario 1. The KPIs are normalized such that the
worst performing controller has a maximum of 1 for the whole test scenario.

Even though some variations may be observed in the presented figures, it is reasonable to assume
that all controllers demonstrate sufficient capability for stationkeeping in head sea. This assumption is
fundamental for the upcoming section, and serves as the basis for further analysis and comparison of
the controller performances.

5.2 Test scenario 2 - 30◦-30◦ heading change

Having evaluated the controllers’ ability to maintain a given setpoint, it can be proceeded to the second
test scenario. This section presents the results from the 30◦-30◦ heading change maneuver for all four
control methods. The test consisted of three setpoint changes which introduced transients to the test.
It started with the vessel at zero heading, followed by a change to 30◦ and -30◦ heading respectively,
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before finally returning to the initial zero heading setpoint. The test lasted for a total of 2500 seconds,
and a setpoint change was initialized at t = 250 s, t = 1000 s, and t = 1750 s. Again, precautions were
taken to ensure that the vessel had attained a stationary performance before commencing the test.

Figure 5.4 presents the heading, and bias rejection term in sway, for all four controllers, during the
entire maneuver. It can be observed that all controllers, to a certain degree, were capable of following
the desired trajectory. Large similarities can also be seen in the compensated bias, even though some
controllers displayed a more rapid, or noisy, behavior.

Figure 5.4: Heading response, and bias rejection term in sway, for all control methods during a 30◦-30◦

test scenario.

Figure 5.5 shows the same bias rejection plot in sway, as seen in Figure 5.4, but zoomed in on the
final transient phase, occurring from approximately t = 1750 s to t = 2100 s. The absolute error, and
normalized cumulative error are also indicated on the right. This illustrates how the four controllers
performed during more rapid changes in the residual loads. It can be seen that control method 1,
being integral action, displayed the slowest performance. Yet again it is worth noticing that the neural
network bias estimate (Method 4) provided close to perfect bias compensation.
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Figure 5.5: The left plot display the bias rejection terms in sway, from Figure 5.4, in the time interval
t = 1750 s to t = 2100 s. The right hand plots display the absolute error and cumulative error, when
comparing the bias estimates with the true bias.

Similarly to the stationkeeping test scenario, the controllers behavior, this time only for the transient
interval presented above, can be summarized in a set of KPIs. This is shown graphically in Figure 5.6.

Figure 5.6: Key performance indicators for test scenario 2 in the interval t = 1750 s to t = 2100 s. The
KPIs are normalized such that the worst performing controller has a maximum of 1 for the whole test
scenario.
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5.3 Analysis and discussion

With the presentation of the simulation study results, the focus now shifts to their analysis and in-depth
discussion in the following sections. As a reminder for the reader, the main objective of the analysis is
restated.

• Explore the effectiveness of alternative compensation techniques, in comparison to traditional
integral action, for mitigating response from low-frequency (not necessarily zero-frequency) wave
load components.

The findings presented in Section 5.1 justified that all control methods were capable of maintaining
a predetermined setpoint under the influence of environmental loads. This served as a basis, and
could be considered a minimum requirement before any further analyses were conducted. According to
the performance indicators from the stationkeeping trial, control method 3, being the adaptive Fourier
series controller, showed a slightly worse performance, compared to the others, although differences were
minimal. As expected, control method 4, being the neural network controller, completely outperformed
the others in regards to bias estimation. As the controller was trained on the exact bias calculations
from the same simulation model, these results can be considered somewhat artificial, and would be
challenging to obtain in a more realistic, real-life scenario. The controller’s robustness to such errors
are discussed further in the upcoming sensitivity analysis. The calculated bias signal may also be
considered as too noisy to be implemented into a DP control system, and precautions should be taken
to overcome this challenge.

Test scenario 2 introduced transients into the maneuver. It was, thus, well-suited for evaluating the
effectiveness of the alternative bias compensation techniques, as the residual loads changed considerably
during the trial. Again, very little distinguished the controllers with regards to performance and effort.
This can be seen, both in the heading response, in Figure 5.4, and in the KPIs, in Figure 5.6. That
being said, dissimilarities aroused in the bias rejection term for the controllers. Figure 5.5 clearly
illustrates these differences through an observable error from the true bias. The integral action-based
bias compensation exhibited the slowest reaction, and did, thus, have the largest cumulative error for
the setpoint change. This can be seen as a consequence of the inertia in the integral term in the control
law, which require that an error must occur, and be accumulated over time. As mentioned in the
implementation, the integral term is also often tuned relatively slow in DP systems, to avoid overshoot
and instability. Bias estimates from the observer outperformed the integral action in transient behavior,
and did, in this case, provide a better bias rejection.

Furthermore, the Fourier series based bias model, demonstrated a more rapid bias rejection than both
the previous methods. However, it exhibited a significantly noisier behavior. This could possibly
be explained through the adaptive update law, in (4.31), stating that ˙̂

Θ = ΓΦ(t)z2, as derived in
Section 4.4. If either Γ is tuned too rapidly, or the velocity estimates in z2 include wave-frequency
components, a noisy behavior can be expected, as the coefficients in θ̂ would struggle to achieve their
optimal value. It can be reasonable to assume that the latter is the cause of the noisy behavior observed
in Figure 5.5, as the bias rejection term inhibited some wave-frequent oscillations. An even better tuned
observer could potentially eliminate such oscillations. A sensitivity analysis of Γ is performed below,
and its impact on the response will be addressed there.

The neural network controller had close to zero absolute error, and could thus be considered as almost
identical to the true bias. This control method could, consequently, be looked upon as close to perfect
bias rejection. This is visible in the bias KPI, displaying close to zero error. Nonetheless, the overall
performance of the controller did not differ much from the other rejection techniques.

5.3.1 Sensitivity analysis

Sensitivity analyses were conducted for parameters both in the adaptive controller and neural network
controller. This was to evaluate their robustness, with the aim of achieving the presented objectives,
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stated in Chapter 4. The analyses provided a broader understanding of the significance of certain
parameters, by systematically varying their value, while keeping all remaining factors constant.

Adaptive controller

The objectives for the sensitivity analysis for the adaptive controller were, as previously stated in
Section 4.4:

• Evaluate how the performance of the adaptive bias model is affected by its tuning matrix, Γ, and
how the magnitude of the gain works as a trade-off between a rapid estimation and introduction
of oscillations.

• Evaluate how varying number of frequency components in the adaptive bias model impact the
performance of the estimated bias.

The gain factor, Γ, is crucial in the adaptive update law, as it governs the rate of which the adaptive
parameter, Θ̂, is updated. It is an important parameter that influences speed, stability, convergence,
and tracking performance of the adaptive control system.

Figure 5.7a illustrates the bias rejection term in test scenario 2, performed for multiple values of Γ.
A clear correlation between the magnitude of the gain factor and the rate of the bias rejection term
can be observed. As expected, it can also be seen that an increase in bias compensation rate led
to an intensified signal variance. This is a direct trade-off between speed and stability, and can be
compared to the gain parameter in a conventional integral action controller. The underlying cause of
the increased noise in the bias rejection term is evident in Figure 5.7b. As Γ increased, the adaptive
parameter, Θ, struggled to obtain a steady state value, resulting in large oscillations. As previously
stated, the transformed vessel state was also included in the adaptive update law. Noisy signals from
the observer could, thus, influence the limit of how rapidly Γ could be tuned, and decrease the rate of
which the residual loads were compensated for.
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(a) Bias rejection term (sway).

(b) The first three components of the adaptive parameter, Θ.

Figure 5.7: Sensitivity plot for test scenario 2, plotted for different values of Γ.

The internal bias model implemented in the adaptive controller also required a finite number of fre-
quencies, N . Figure 5.8a displays the power spectral density of the bias rejection term for a various
selection of N . Very little separated the different graphs, and it can be seen that close to no frequen-
cies above f = 0.15 Hz were excited. Figure 5.9 presents how the adaptive coefficients behaved for
N equal to 0, 1, and 5. For N = 5, it can be seen that all higher-frequency coefficients stabilized at
zero, diminishing their associated frequency. This, despite the fact that Figure 5.8b proved that these
frequencies in fact were present in the residual loads. This can be said to be a trend for all simulations,
as the adaptive update law in general struggled to maintain a persistent level of excitation for its upper
bound of frequencies. This could be due to various underlying reasons. The bias term was, for the
given environmental conditions, dominated by the current load. As this load, being a strong and con-
sistent disturbance, was present during the entire excitation period, it might have dominate the vessel’s
response and limited the exploration of other dynamics. Further investigations should, consequently,
be conducted.
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(a) N = 0 to N = 25.

(b) True bias term.

Figure 5.8: Power spectral density of the bias rejection terms for various values of N .

Although little separated the graphs in Figure 5.8a, a difference can be seen for N = 0. This case
should, theoretically, only be considered as a constant bias model. Resemblances can be therefore be
drawn to the bias model utilized in the observer CDM, in (2.48), which also is modelled as constant.
This is evident in Figure 5.8a, where the spectral density of the observer bias, employed as a bias
feedforward term in control method 2, also is plotted. The similarities to the constant bias model for
N = 0 are apparent, with both graphs distinctly differing from the remaining spectra.
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(a) N = 0

(b) N = 1

(c) N = 5

Figure 5.9: Adaptive coefficients in Θ, for N = 0, 1 and 5.
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Neural network controller

In Section 4.5 two objectives for the analysis of the neural network controller were formulated. As for
the adaptive controller, these are restated.

• Evaluate how inaccuracies in the training model, as well as in hydrodynamic parameters, affect
the performance and robustness of the neural network bias estimation.

• Evaluate how inaccuracies in the environmental conditions affect the performance and robustness
of the neural network bias estimation.

Section 5.1 and Section 5.2 presented results of a neural network controller under perfect conditions.
This controller was trained on data obtained in the same conditions as in the test it was evaluated for.
However, in a more realistic scenario, such ideal conditions will never be met. Hence, it is of interest
to assess the bias prediction in more realistic scenarios. The subsequent paragraphs present two such
scenarios. The first involves evaluating the controller’s sensitivity to various sea states, and the other
considers imperfections in the CDM.

As mentioned in Section 4.5, neural network bias estimation relies on sea state parameters as input.
Therefore, if the neural network controller designed in this thesis were to be implemented on a real
system, the vessel would require measurement systems to precisely estimate these input parameters.
An example of such a measurement system is an X-band radar. Understandably, the availability and
accuracy of the sea state input parameter estimates may vary significantly depending on the quality
of the vessel sensors. To evaluate the robustness of the bias prediction, it was therefore important to
assess how robust the controller was for inaccuracies in the sea state estimation.

To evaluate the sensitivity to sea state changes, the variation of two relevant input parameters, Hs
and Tp, was examined. The network used in the sensitivity analysis was pre-trained on the Seastate 2
presented in Table 4.1. The test was then performed by evaluating the bias prediction for simulations
with a range of different values for Hs and Tp. However, the network was, for each prediction, fed the
same values, Hs = 0.03 m and Tp = 1.5 s, to mimic an estimation error.

The KPIs for the bias prediction for the different simulations are presented in a contour plot in Fig-
ure 5.10. The sea state for which the network has been trained for is marked with a black marker.
This region in the plot corresponds to a relative low KPI value, indicating that the prediction for these
values of Hs and Tp is relatively good. However, other combinations of Hs and Tp values results in even
better KPIs, such as Hs = 0.00 m and Tp = 1.0 s, and Hs = 0.01 m and Tp = 1.6 s. The worst KPI
value is found for Hs = 0.01 m and Tp = 1.1 s. It is challenging to observe any trends from Figure 5.10,
and additional combinations of Hs and Tp should be included. That being said, as the contour plot dis-
plays distinct regions with a larger prediction error, it is clear that the estimated sea state parameters,
utilized as input in the network, play a significant role in the overall bias compensation.
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Figure 5.10: Normalized KPIs for bias prediction from the neural network model, performed for a range
of different Hs and Tp.

When predicting the bias term with the inputs stated in Section 4.5, it is assumed that the CDM
is ideal. This assumption implies that the hydrodynamic terms, such as damping and added mass,
as well as the thrust allocation algorithms represent the true dynamics. The structure of the CDM
itself is also assumed to accurately mimic the real world dynamics. This ideal scenario does not hold,
and errors will occur in the CDM. These imperfections will cause variations in the input parameters
for the network. To investigate how this will impact the network’s predicted output, three levels of
CDM imperfections, presented in Table 5.2, were introduced and tested on the network. These were
all compared to the predictions of the bias when using a perfect CDM. It should be noted that this is
only a small robustness test, and that more extensive testing should be performed to further validate
the neural network algorithm.

Table 5.2: Defined levels of errors in the control design model.

Error source Mild error Moderate error Severe error

Hydrodynamic damping, D 5 % 20 % 40 %
Hydrodynamic added mass, M 5 % 20 % 40 %
Thrust allocation 5 % 15 % 25 %

The absolute error in the prediction of the bias in surge, sway and yaw is presented in Figure 5.11a.
From the plot, it is clear that the test where a perfect CDM was used predicted the bias term the best
and that the tests with severe modeling errors in the CDM provided the worst predictions. However,
it is difficult to distinguish between the mild and moderate error predictions. This can be observed
more clearly when plotting the KPIs for the different tests, as seen in Figure 5.11b. As the plot clearly
illustrate, the bias prediction performed by the neural network got worse with increasing errors in the
CDM. The KPIs for all tests after 1000 seconds are summarized in Table 5.3.
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(a) Bias rejection term.
(b) Absolute error between the estimated
bias and true bias.

Figure 5.11: Bias rejection performance in the neural network controller for a given set of errors in the
CDM.

Table 5.3: KPIs for different levels of errors in the CDM.

CDM error Jb

Perfect 10.6
Mild 57.7
Moderate 61.1
Rough 100.0

5.4 Qualitative assessment of the control methods

So far, the analysis of the control methods has primarily been performed using quantitative measures,
through the aid of key performance indicators. However, a qualitative evaluation has also been per-
formed for the four controllers, considering factors that may be more difficult to measure quantitatively.
The analysis yielded more insights into practical aspects, and feasibility of implementing the control-
lers in real-world applications. Criteria include factors such as ease of implementation, tuning process,
robustness, and commercial feasibility. The evaluation is fully based on the procedures and use-cases
experienced by the authors in this thesis, and can, therefore, be considered as subjective.

The commercial feasibility is a crucial aspect of the analysis. It encompasses factors such as scalability,
and cost-effectiveness, and assess whether or not the controllers align well with commercial requirements
and industry practices. This is particularly of interest for the newly proposed control methods, and
can evaluate the likelihood of successful adoption and implementation in a real-world system. Control
method 4, as presented in this thesis, is still far from being implemented in a real vessel. That being
said, the integration of machine learning and neural network for residual load compensation can offer
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numerous opportunities. Some of which were referenced in Section 4.5.1.

Another aspect that influence the commercial feasibility is the computational requirement of the differ-
ent controllers. Figure 5.12 display the average computational time per calculated control load from the
simulation model. Although none of the controllers demand tremendous computational time, it should
be noted that the time of control method 4 will increase as complexity in the neural network increases.
The control method would require an exceptionally more intricate network model in real-life scenarios,
leading to higher perplexity, and consequently, computational time could become challenging.

Figure 5.12: Average computational time per calculated control load for the different control methods.

In present DP systems, both method 1 and method 2 are widely known, and simple to implement.
They can, thus, be expected to outperform the other proposed control techniques in certain qualitative
criteria. Given their establishment in the industry, well-performing heuristic tuning methods have also
been developed to simplify the tuning processes significantly. The same also applies to control method
4, which, likewise, utilize the same nominal PD controller in its control law. Method 1 is the only
control method that can be regarded as entirely model-free, while method 2 and method 4 incorporate
an internal model to estimate the bias. Method 3 fully relies on a model-based control law. A full
overview of the performance indicators are given in Table 5.4.

Table 5.4: Qualitative PIs for the four control methods.

Qualitative PI

Criterion Method 1 Method 2 Method 3 Method 4

Ease of implementation Excellent Excellent Good Moderate
Tuning process Excellent Excellent Moderate Excellent
Disturbance rejection robustness Moderate Good Good Excellent
Model uncertainty robustness Excellent Good Moderate Moderate
Commercial feasibility Excellent Excellent Good Moderate
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Chapter 6
Experimental testing and validation

The purpose of this chapter is to validate some of the results obtained from the conducted simulation
survey. The validation is performed, first by utilizing HIL testing, before experimental model tests
are carried out in the MC-lab (see Appendix B. 3 and Appendix B. 4). The tests aimed to verify the
integration of the control systems and provide a comprehensive end-to-end assessment of the complete
system.

ROS played a crucial role in creating an interface between the simulation platform and the hardware,
and to facilitate for seamless communication between different components therein. The ROS interface
can be seen in Figure 3.12. In accordance with the methodology presented in section 2.6, the source
code was first tested by itself in a ROS environment utilizing the ROS wrapper methodology presented
in Figure 3.11, before running the code in real-time on the actual Raspberry Pi hardware. X-in-the-loop
procedure had thus been executed, thereby ensuring the vessel’s readiness for laboratory testing.

The experimental testing was divided in two separate lab sessions. The first had the primary objective
of evaluating the baseline controller, while familiarizing the authors with the lab setup. The second
session aimed to validate some of the findings from the simulation study, particularly with focus on
one of the newly proposed disturbance rejection approaches. Due to the unavailability of certain input
measurements required by the neural network in control method 4, the adaptive controller was selected
as the controller of interest.

The primary objective of the experimental laboratory tests was to replicate the observed trends from
the simulation tests, thereby validating the simulation results. Specifically, the aim was to determine
if the bias compensation in the adaptive controller exhibited faster response compared to the integral
action term in the PID controller, as observed in the simulation study. This validation process aimed to
enhance the confidence in the simulation results and assess the performance of the controllers in more
realistic conditions.

Furthermore, to assess the performance of both controllers, specific tolerance boundaries were estab-
lished for the stationkeeping offsets. It was determined that for a controller to be considered satisfactory,
it should not exceed a tolerance offset of ±0.05 m in position and ±3.0° in heading. These tolerance
limits served as benchmarks to evaluate the controllers’ effectiveness in maintaining the desired sta-
tionkeeping position.

The results obtained from the experimental tests will be presented in the subsequent sections, providing
insights into the performance and effectiveness of each controller. Following the presentation of results
from a lab session, a discussion will be provided to analyze and interpret the findings. Potential impacts
from error sources will also be discussed.
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6.1 Lab setup and conventions

This section provides an overview of the laboratory setup and conventions utilized for the experiments
conducted in the MC-lab.

Coordinate frames

Careful consideration were paid to coordinate frames within the lab. A fixed coordinate frame, es-
tablished for the basin in the forthcoming tests, is illustrated in Figure 6.1. This is referred to as the
basin-frame, [Xbasin, Y basin, Zbasin]. Additionally, the motion capture system also operated with its own
local coordinate system, directing the vertical axis upwards. A rotation matrix was thus implemented,
which rotated these measurement signals π rad around the horizontal x-axis, ensuring alignment with
the defined basin-frame. The vessel naturally employed its own body-frame, as presented in subsec-
tion 2.4.2.

Figure 6.1: The basin frame defined in the MC-lab.

Wave generation

In all experimental tests presented in the upcoming sections, the wave maker was configured to generate
waves corresponding to the Sea state 2 described in Table 4.1. This excluded the implementation of
current, as the MC-lab does not have the functionality to generate it. Two wave probes were installed
and placed both in front of, and behind the operating area of the vessel to capture the wave realization.
These wave probes revealed that the wave maker generated a somewhat inconsistent wave field. This
discrepancy is important to consider when evaluating the experimental results. Figure 6.2 presents
wave spectra obtained from the wave probes for an arbitrary test run, in addition to the associated,
theoretical JONSWAP spectrum. Minor fluctuations can be observed. These fluctuations can also be
assumed to increase during the duration of the sea state, as error sources such as wall effects, and an
imperfect beach, influence the wave realization.
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Figure 6.2: Wave spectrum measured in the MC-lab from two distinct wave probes, compared to the
theoretical JONSWAP spectrum.

Figure 6.3: Wave realizations for WP1 and WP2.

Thruster configuration

CSAD is equipped with 6 azimuth thrusters. However, throughout the spring of 2023, the model vessel
experienced a significantly reduced performance for certain thrusters. Both port side thrusters were
consistently non-functional, while the forward thruster also experienced malfunctioning for parts of the
spring, particularly during the final lab session. This strongly affected the vessel’s maneuverability,
especially in bow and beam sea.

It was also noticed that the thruster configuration at CSAD not provided any thrust for the ∼ 10%
smallest thrust signals. Achieving satisfactory performance, even for stationkeeping in calm water,
would then become challenging. A constant thruster bias was thus introduced, ensuring that every
thruster at all time was running on a slightly higher rpm than originally required. Thrust was thus
provided, even for small rpms, while also making the vessel more reactive to sudden and significant
changes in environmental loads.
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6.2 Lab session 1 - Test of baseline controller

The first controller to be tested in the lab was the baseline PID controller. For the PID controller,
two specific tests were conducted: a stationkeeping test and a 4-corner test. The stationkeeping test
aimed to assess the controller’s ability to maintain the vessel at a fixed position, while the 4-corner test
involved maneuvering the vessel through a predetermined set of four corners.

6.2.1 Stationkeeping test scenario

The initial test conducted for the PID controller was the stationkeeping test. The resulting position,
represented in the basin-frame, is illustrated in Figure 6.4.

From the figure, it is evident that the vessel’s position oscillates around the desired setpoint at x =
0. The oscillations indicate that the vessel maintains a relatively close proximity to the setpoint. The
observed steady state offset from the setpoint is minimal, with a value of only 0.001 m. Additionally,
the maximum deviation of the vessel from the setpoint can be observed to be 0.06 m.

Figure 6.4: Position for a PID controller during a station keeping test in head sea.

The results demonstrate a minimal steady-state offset, suggesting that the integral action implemeted
for the PID controller effectively compensates for residual loads. However, it is important to note the
presence of oscillatory movement in the graph. It is likely that this oscillatory behavior origins from a
slightly aggressive tuning of the derivative term in the controller. This should be properly addressed
before any evaluation of the bias compensation performance. Limited time in the lab did, however,
restrict the time used for stationkeeping tests.

6.2.2 4-corner test scenario

The final test for the baseline controller was the 4-corner test. The 4-corner test is useful for evaluating
the performance of a DP system as it captures both isolated and coupled movements of the vessel. The
test is performed in five distinct steps which assess the DP behavior when performing strongly coupled
setpoint changes (Skjetne et al., 2017). The test can be described as:

1. Change of position consisting of pure surge motion.

2. Change of position consisting of pure sway motion.

3. Change of heading consisting of pure yaw motion.

4. Change of position consisting of coupled surge and sway motion.

5. Coupled maneuver involving motion in all three DOFs.

For each setpoint, the vessel was directed to maintain its position, in accordance with the predefined
tolerance limits of ±0.5 m and ±0.3°, for a duration of 100 seconds before proceeding.

89



Chapter 6. Experimental testing and validation

Figure 6.5 and Figure 6.6 present the resulting position and heading from the final 4-corner test. The
test was initialized in the origin of the basin-frame. It can be observed that the PID controller managed
to follow the reference trajectory in a satisfactory way. The best performance was seen for purely surge
motion. For this maneuver, only small deviations from the reference trajectory were observed. Small
offsets could be detected, primarily when the vessel started to approach the second setpoint, and could
be caused by the vessel decreasing its velocity.

The controller displayed a slightly more oscillatory behavior for the isolated sway maneuver, than during
the surge motion. However, this should be expected as the vessel is imposed to greater loads during
transverse motion. Additionally, as both thrusters on the port side of the vessel were disfunctional, the
maneuverability of the vessel was most likely heavily decreased. This was the case for all maneuvers.

The third setpoint change involved a heading change from 0 to 45◦. As can be observed in the top right
corner of Figure 6.5, this maneuver led to a positional offset. During a heading change, the vessel is
imposed to transient behaviors, which can cause the controller to struggle. As the vessel was ordered
to continuously stay within the tolerance for a given duration of time, a few attempts were required.
Consequently, it stayed at the setpoint for a longer period of time, compared to other setpoints. This
could potentially result in the performance being perceived as even worse in Figure 6.5, than the actual
case.

The two lasts steps in the four corner test introduced coupled setpoint changes, and were also executed
with a satisfactory result. Some oscillatory behavior can be observed, but overall, the results could be
deemed satisfactory.

Figure 6.5: xy-plot.
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Figure 6.6: Position and heading plots.

6.3 Lab session 2 - Test of the adaptive controller

The adaptive controller was the second and final controller to be tested in the MC lab. Similarly as
for the PID controller, a stationkeeping test was first performed, to evaluate the controller’s ability
to maintain a predefined setpoint. Secondly, a 30°-30° heading test were to be performed. However,
due to problems with the thrusters on CSAD during lab session 2, resulting in a strongly reduced
maneuverability, a 20°-20° heading test was performed instead. The original intention was to conclude
the lab session with a 4-corner test, as for the first session, but due to the time-consuming tuning
process and limited available lab time, this final test had to be disregarded.

6.3.1 Stationkeeping test scenario

The initial validation test of the adaptive controller involved the simple stationkeeping test. Figure 6.7
showcases the x-position and the bias rejection term, respectively, during the trial. It can be observed
that the adaptive controller exhibited a constant offset of 0.009 m in x-position, surpassing that of the
PID controller. However, the maximum deviation from the setpoint, measuring 0.57 m, was less than
for the PID controller.
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The steady state offset indicates that the bias rejection term was not functioning optimally. Upon
further examination of the bias rejection term in surge, from the second plot in Figure 6.7, it became
clear that the term had not yet fully reach a stationary condition. Still, as indicated by the red trend
line, it was progressively increasing over time. It is worth noticing that the mean value of the x-position
demonstrated a slight smaller offset to the setpoint during the second half of the simulation, compared
to the first. This can be seen from Table 6.1 where the mean values for the two intervals are presented.
This observation suggests that if the bias term would have been given enough time to reach a stationary
condition, the positional offset would likely decrease further.

Figure 6.7: Position and bias rejection term for an adaptive controller during a stationkeeping test in
head sea.

Table 6.1: The evolution of the average x position of the vessel during stationkeeping.

Time interval [s] Mean value [mm]

t = [0 − 450] -9.01
t = [450 − 900] -8.17

The challenge related to the slowly growing bias rejection term could be addressed by two potential
approaches. Firstly, by allowing the controller more time to reach a stationary conditions. However,
as indicated by the small vertical axis in the bias rejection term in Figure 6.7, this would require an
extensively large amount of time.

Secondly, it could be attempted to increase the value of the adaptive gain term, Γ, to expedite the build-
up of the rejection term. The impact of adjusting this gain was discussed in Section 5.3.1, proving as a
trade-off between rapid estimation and stability. This was tested in the laboratory, and the results of
the test is seen in Figure 6.8. Notably, a more aggressive tuning caused the steady state in x-position
to be almost mitigated, as indicated with the dashed mean value. Furthermore, the bias rejection term
from the controller aligned well with the estimated bias from the observer. In the case of Figure 6.7,
the observer bias was not displayed due to the significant difference in magnitude compared to the bias
rejection term, noticeable on the large vertical axis in Figure 6.8. Even though the increased tuning
showed promising results, it is crucial to exercise caution when increasing the values of Γ, as it can be
observed that, after around 200 seconds, the bias rejection term starts exhibiting unstable behavior.
This instability indication was consistently observed in all cases when the adaptive gain was tuned to
aggressively.
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Figure 6.8: Experimental stationkeeping test with an increased adaptive gain. The mean value in the
upper plot is calculated in the interval 0-200 seconds.

Section 5.3.1 stated that a potential explanation for these unstable oscillations could be due to the
presence of noise in the velocity estimates. This issue would also be more pronounced during experi-
mental testing, as a narrower time window restricted the extent to which the observer could be tuned
to perfection. Consequently, the adaptive gain had to be tuned to smaller values, evidently leading to a
slower bias compensation. This trade-off was necessary in order to preserve the stability of the vessel,
and mitigate noisy signals from entering the controller.

6.3.2 20°-20° heading change test scenario

Secondly, the 20°-20° heading change test was conducted. Figure 6.9 presents the vessel’s heading
throughout the trial. It can be observed that the heading is maintained within an acceptable range of
the setpoint. The vessel encountered greater challenges as the heading angle increased, displaying one
of the reasons why the test was constrained to a maximum 20◦ angle.

Figure 6.9: Heading for CSAD during a 20°-20° heading test scenario.

Figure 6.10 displays the corresponding bias rejection term for the duration of the test. Red trend
lines are drawn to better illustrate the tendency of the estimates. As for the stationkeeping test, the
slow development, and presence of noise, are noticeable. That being said, the trend lines disclose the
development of the compensation, which can be said to align with the expected results, both from
theory and former simulations.

The bias rejection term in surge maintained a negative mean value, as the vessel only operated in head
and partially bow sea. All residual loads are thus working in the negative x-axis. Fluctuations in surge
would be expected as the vessel turns from 20◦ to -20◦, but these are not distinguishable in the figure,
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due to the slow update of the rejection estimate. As for in sway and yaw, the bias rejection term swung
around a zero-mean value, in accordance with the heading of the vessel. Stationary conditions were
not obtained, neither at 20◦ nor -20◦, as the vessel would require a considerably longer duration for the
controller to achieve such conditions.

The corresponding bias rejection term from the same test in the simulation platform is given in Fig-
ure 6.11. This figure illustrates a clear synergy between the experimental and theoretical bias rejection
term, especially if the simulated bias rejection term is evaluated against the trend lines in the exper-
imental data. The magnitude of the bias compensation is, nonetheless, different. It is reasonable to
assume that these magnitudes would have been more comparable if the experimental bias rejection
term had been given sufficient time to fully develop and stabilize.

Figure 6.10: The experimental bias rejection term for CSAD during a 20°-20° heading test scenario.
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Figure 6.11: The corresponding simulated bias rejection term for CSAD during a 20°-20° heading test
scenario

6.4 Sources of error

When conducting experimental tests, potential sources of error are always present, which one will need
to take into consideration when evaluating the results. During the test performed with CSAD in the
MC-lab, a significant numbers of such error sources were present.

Motion capture system

The control system relies on measurements of the vessel’s position obtained from the motion capture
system, Qualisys. As presented in Section 2.8, the system calculate these measurements from four
distinctly placed cameras. The observable zone is defined as the area in the basin where the cameras
have a clear view of, and are capable of tracking, the vessel. Outside this zone, Qualisys is unable to
determine the pose of the vessel. The size of this observable zone depends on the setup and location
of the cameras. During the lab experiments it was discovered that the observable zone was somewhat
restricted. This resulted in a limited area of approximately 2 m × 2 m where tests could be conducted.
In addition to loosing track of the vessel outside this area, the Qualisys system also struggled to maintain
its track of the vessel for certain orientations within the observable zone.

When Qualisys lost track of the vessel, an implemented dead reckoning functionality was activated
to reduce the negative impact of losing the vessel’s position. However, the estimated position quickly
turned inaccurate when the vessel remained outside the observable zone, indicating that the internal
observer model likely exhibited considerable deficiencies or imperfections.

The quality of the Qualisys observation also varied greatly within the observable zone. This observability
was defined by a residual weight, provided by Qualisys. In an ideal scenario, the measurement noise
covariance matrix in the Kalman filter, responsible for weighing the uncertainties in the measurements,
could be adjusted specifically for each location in the basin, dependent on this residual weight. However,
during the experimental tests, such variable tuning was not implemented due to the inconsistent and
unpredictable nature of the residual. Due to its complexity, it is unlikely that such observer tuning
would have yielded any better results for this master’s thesis.
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Vessel model

The vessel model, CSAD, did, as previously stated, experience significant errors due to several malfunc-
tioning thrusters. Specifically, two out of the six thrusters were consistently non-functional, and for
some test runs, only three out of the six thrusters were activated. The affected thrusters were located
on the port side, and in the bow of the vessel. The original idea, prior to the lab experiments, was to run
the fixed-angle pseudoinverse thrust allocation from the simulation platform. However, as this yielded
poor maneuverability attributes, the original pseudoinverse allocation method had to be used. The
fixed-angle allocation was initially intended as it removed any rate constraints in the thruster angles.

In the lab, the thruster angle offset required calibration on a daily basis. These offsets were approximate
values, and had to be adjusted by visually observing the angle of the thrusters. This calibration method
introduced a high possibility of human error, and required that the offsets were carefully observed prior
to each test.

As previously mentioned, during the discussion of the experimental setup, the thrusters installed on
CSAD had limitation where they did not generate thrust for the smallest thrust commands. To over-
come this limitation, thruster bias was implemented. The lower actuator signal limit, for which the
thrusters failed to provide any thrust at, also varied in magnitude. This could potentially suppress
the implemented thruster bias, and was found to vary with the amount of voltage supplied by the
batteries to the servos. Careful considerations were thus taken, to ensure that CSAD always operated
with batteries in a fully charged condition.

Wave basin

Conducting experiments in a wave tank allows for the investigation of a vessel’s response under different
wave conditions within a controlled environment. However, it is important to note that the sea state
generated in a wave tank only is an approximation of real life conditions, and is influenced by tank
wall effects. In particular, wave reflection can be a significant in the MC-lab’s wave tank, due to its
relatively small size. When waves encounter the tank walls, they can bounce back and interfere with
the incoming waves, leading to an altered wave pattern.

Additionally, wave diffraction can occur when waves encounter obstacles that causes the waves to change
direction. This phenomena was also believed to occur for the lab testing in this project.

Both wave reflection and wave diffraction impacted the accuracy and realism of the wave conditions
experienced by the model vessel and should be considered when interpreting the results of the conducted
experiments.

Wave maker

The wave generator in the MC-lab has shown to generate wave conditions which does not always
match the input to the generator. This was also the case for the lab experimenters presented above,
as indicated in Figure 6.2. When generating regular waves, it was also noticed smaller, high-frequent
ripples on top of the regular wave. This was assumed to be caused by loose mechanical components,
vibrating as the wave flap is moved back and forth by the piston. The piston was also connected to the
wave flap at its center, and as the wave flap not necessarily can be considered as completely rigid, this
may also lead to errors in the generated waves.

Combined with the previously discussed tank wall effects, it can be presumed that the waves acting
on the vessel, not coincide entirely with the predetermined wave parameters. However, as the exact
conditions of the sea state not were the primarily focus of the lab sessions, time was not allocated to
extensively calibrate the wave generator prior to every test.

96



6.5. Key takeaways from the lab sessions

6.5 Key takeaways from the lab sessions

The experimental results obtained from these tests served as the basis for validating the results of the
simulation study. By comparing the simulation outputs with the experimental data, the researchers
could further assess the accuracy and reliability of the simulation platform.

The laboratory tests presented in this chapter have been highly susceptible to various sources of error.
Additionally, re-tuning of gains compared to the settings used in the simulation tests was required.
This adjustment was necessary to account for the differences between the simulation environment and
the physical setup. However, this naturally influenced the basis of comparison between the different
sets of tests.

Despite challenges related both to error sources and tuning, the same tendencies and behaviors observed
in the simulation studies could be seen replicated for the tests executed on the model vessel. This
serves as a strong indicator of validity of the simulation platform. These findings further enhance
the assumption that the simulation platform accurately represents the real dynamics of the system.
Combined with the simulation results, this contributes to a comprehensive validation process, affirming
the credibility of the simulation platform.
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Chapter 7
Conclusion

This final chapter will include a concise conclusion, as well as listing some recommendations for further
research, based on findings in this thesis.

7.1 Conclusion

This master’s thesis have successfully implemented a high-fidelity simulation platform in Python. The
simulation platform has been developed in close collaboration with Hygen (2023), and builds upon
previous work done by Brørby (2022). The simulation platform provides comprehensive descriptions
of vessel kinetics and kinematics, external environmental loads, and DP functionality. This thesis has
primarily focused on the developed simulation model of the model-scale vessel CSAD, with particular
emphasis on computational efficiency. Through significant preprocessing, as by employing a matrix
formulation for second order wave load calculations, the runtime was reduced by a magnitude of 10,
compared to the traditional double for-loop implementation. This allowed for a higher number of wave
components in real-time simulation, thereby improving the fidelity of the platform. The simulated
response of CSAD has been verified against theory and validated by experimental results, yielding
highly encouraging results.

The developed simulation model has been made compatible with ROS. This enabled communication
between the software of the platform and hardware in the MC-lab, facilitating for experimental test-
ing. Leveraging the widespread usage of ROS, the source code of MCSimPython could then interact
effectively with various robotic systems, enabling comprehensive experimental investigations. This in-
tegration not only enabled the validation of the simulation study conducted in this thesis, but also
enhanced the platform’s versatility, opening up additional use cases for external users. This feature
could prove to be particularly beneficial for future master’s students whom may have limited knowledge
of software-hardware communication and wish to conduct laboratory tests. The ROS compatibility
made it simple to interface the MCSimPython platform with hardware components, simplifying the
setup and execution of experiments in the laboratory environment.

With the help of the implemented simulation platform, an extensive simulation study has been conduc-
ted. The study addressed the compensation of second order, low-frequency wave loads in DP vessels,
and explored alternative control law algorithms that more efficiently would compensate for such loads.
Consequently, four controllers have been implemented and tested. In addition to the conventional in-
tegral action and bias estimation in the DP observer, two additional controllers were proposed. These
included an adaptive control technique using a truncated Fourier series bias model, and a direct com-
pensation neural network controller.

The adaptive controller displayed sufficient performance for the different tests conducted in the sim-
ulation study. However, the specified KPIs indicated that the controller had a slightly worse overall
performance than the other three methods presented. Despite this, the Fourier series based bias model
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demonstrated a more rapid bias rejection than both baseline methods, in transient behavior. It was
discovered that the robustness of the controller’s bias compensation depended on the quality of the ve-
locity signals, which in this thesis was believed to be moderately too noisy. A perfectly tuned observer
would likely improve the performance of the bias compensation even further. The controller was also
tested experimentally, but as the velocity estimates in lab had a more significant amount of noise, the
adaptive gain had to be tuned appropriately slow to avoid instability.

Furthermore, a neural network bias model was implemented. This method was based on the nominal
PD control law, and compensated for residual loads through an internally trained neural network. The
controller demonstrated a satisfactory DP performance, marginally showcasing the highest positional
accuracy among the tested controllers. Additionally, the method exhibited a superiority over the other
approaches in regard to bias estimation. However, as the neural network was implemented as a direct
bias compensation mechanism, based on a perfect vessel model, it was deemed to be somewhat un-
realistic. This motivated the conducted sensitivity analysis, highlighting the need for further studies
and testing to make the controller more commercially feasible. Studies involving more indirect imple-
mentations of neural networks in DP control systems have thus also been explored and referred to in
the thesis. While the developed network may not be currently suitable for direct implementation in
a real system, the authors acknowledge the promising potential of utilizing neural networks for bias
estimation in marine controllers.

Finally, it is crucial to acknowledge the limitations inherent in the test scenarios. As all simulations
presented in the simulation study are tested in the same sea state, and limited to two distinct maneuvers,
the results might present an artificial degree of adaptation tailored specifically to these scenarios. Hence,
the possibility that the controllers may not exhibit the same level of robustness in other test should be
considered.

7.2 Further work

This master’s thesis is intended to provide a foundation for future research and exploration. The
following suggestions are given to guide future researchers and students in further enhancing the impact
of the contributions delivered by this thesis.

• Conduct more extensive testing of the proposed disturbance rejection methods

In order to properly analyze and validate the implemented disturbance rejection methods in this
master’s thesis, it is crucial to conduct tests across a broader range of sea states. Currently, the
simulation study is limited to evaluating the methods in only one specific sea state. To assess
the robustness of the controllers, it is imperative to perform tests in a variety of environmental
conditions, especially including more extreme sea states. To enhance the credibility of the presen-
ted sensitivity analyses, additional testing is also recommended. Particularly when considering
the sensitivity analysis of the neural network controller, more extensive testing that accounts for
model and parameter inaccuracies would be beneficial. By expanding the scope of testing, the
findings from this thesis would prove more credible.

• Further explore the use of neural networks in DP control design

An approach for using neural networks in DP control design has been investigated and implemen-
ted in this thesis. As stated in the conclusion, this specific implementation face some challenges
which would need to be addressed before implementing it to a real system. However, the authors
strongly believe that neural networks and machine learning has great potential within the field
of marine control systems and highly urge others to look into the use of these methods for bias
estimation, as well as for other challenges, such as system modeling and identification.

• Implement the MCSimPython toolbox as verified NTNU software

One of the main contributions of this thesis is the development of the open source and high-fidelity
simulation platform, the MCSimPython Python package. From the very start, the objective was
to develop a user-friendly and valuable resource for researchers, particularly for future master’s
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students. It is desirable that the platform can serve a solid foundation for future innovating re-
search, and to obtain this, it is vital that the platform is continuously validated and approved by
external experts. A unified base platform would be beneficial for future students as it would elim-
inate the need for individual development of simulation platforms, thereby potentially expediting
their research initiatives.
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Appendix A
Guides

1 Guide: How to use MCSimPython

The complete documentation can be found at: https://wave-model.readthedocs.io/en/latest/index.html.

PyPI

The MCSimPython package can be installed from PyPi using pip:

pip install MCSimPython

Github

Install from GitHub in the following:

1. Clone the GitHub repository to your local computer.

2. Create a virtual environment: py -m venv name-of-venv

3. Activate virtual environment: name-of-venv \scripts\activate

4. Update pip and setuptools: py -m pip install --upgrade pip setuptools

5. Install the python package locally: pip install .
Alternatively you can install as an editable: pip install -e .

6. Verify that the python package MCSimPython has been installed properly by running a demo
script, or simply in the command promt:
(venv) C:\path\to\dir> python
>>> import MCSimPython
>>>

V
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Appendix B
X-in-the-loop
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2. Simulator-in-the-loop
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4 Physical system
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