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‘Quant à Phileas Fogg, il semblait que ce
typhon fût partie de son programme.’

‘As for Phileas Fogg, it seemed just as if
the typhoon were a part of his

programme.’

— Jules Verne
AROUND THE WORLD IN EIGHTY DAYS



Abstract

Digital twins, i.e. digital, continuously up-to-date digital representations of real-
world physical entities, are increasingly used for purposes like simulation, monit-
oring, prediction, and visualization. This Master’s thesis revolves around research
and development around digital twins of geographical locations, specifically an
area around Gløshaugen in Trondheim, Norway.

Development was done mainly in the NVIDIA Omniverse software platform.
Software was created for receiving real-time positional data and update locations
of objects in the digital representation. Building geometry and roof textures were
fetched and embedded into the digital scene automatically. For wall texturing, a
manual method using photography, perspective correction, and image stitching
was designed. Also, an automatic alternative for wall texturing was devised using
photogrammetry. The scene was also rendered using virtual reality technology.

Research showed that real-world location updates, embedding of building geo-
metry, and roof texturing could be largely automated. The manual method of wall
texturing produced good results, and has the potential to run in real-time if auto-
mated. The photogrammetric method, although automatic, proved to produce dis-
torted results with only one front-facing on-vehicle camera while driving. It is also
slow and thus inappropriate for real-time processing.

Keywords: Digital twin, computer vision, autonomous vehicles, simulation, pho-
togrammetry, texturing, virtual reality, geography, GNSS, road networks
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Sammendrag

Digitale tvillinger, dvs. digitale, kontinuerlig oppdaterte digitale representasjoner
av fysiske enheter fra den virkelige verden, blir i stadig økende grad brukt for
formål innenfor simulering, overvåkning, prediksjoner, og visualisering. Denne
masteroppgaven omhandler forskning og utvikling rundt digitale tvillinger av geo-
grafiske lokasjoner, spesifikt et område rundt Gløshaugen i Trondheim, Norge.

Utvikling ble hovedsakelig utført i NVIDIA Omniverse-programvaren. Kode
ble laget for å motta posisjonsdata i sanntid og oppdatere posisjoner til objekter i
den digitale representasjonen. Bygningsgeometri og takteksturer ble hentet og in-
tegrert inn i den digitale scenen automatisk. For veggteksturering ble det utformet
en manuell metode ved bruk av fotografi, perspektivkorreksjon og sammenføyn-
ing av bilder. Et automatisk alternativ for veggteksturering ved bruk av fotogram-
metri ble også utformet. Scenen ble også gjengitt ved bruk av VR-teknologi.

Undersøkelser viste at posisjonsoppdateringer fra den virkelige verden, in-
tegrering av bygningsgeometri, og takteksturering kunne i stor grad automatis-
eres. Den manuelle metoden å utføre veggteksturering produserte gode resultater,
og har potensiale til å kjøre i sanntid ved automatisering. Den fotogrammetriske
metoden, skjønt automatisk, viste seg å gi forvrengte resultater ved bruk av kun
ett frontvendt kamera festet på et kjøretøy. Den er også treg og derfor upassende
for sanntidsprosessering.

Nøkkelord: Digital tvilling, datasyn, autonome kjøretøy, simulering, fotogram-
metri, teksturering, virtuell virkelighet, geografi, GNSS, veinettverk
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Preface

This thesis was written as part of the Master’s thesis at the Norwegian University
of Science and Technology (NTNU), at the Department of Computer Science (IDI).
This report, written for the course ‘TDT4900 Computer Science, Master’s Thesis’,
is a culmination of 6 years of higher education within the course programme of
Computer Science (MTDT) and beyond.

All development was done with the Windows 10 operating system. This doc-
ument itself was written in LATEX, using the Overleaf editor. Inkscape and Adobe
Illustrator were used for producing vector graphics illustrations, and occasional
bitmap graphics were created with Blender. General image editing was executed
with GIMP and Adobe Photoshop.
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of surfaces, and returned to a receiver. Distances are computed from the
elapsed time between emission and reception. 10, 23, 30, 82
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locomotion In VR technology, the act of moving within a virtual world by con-
tinuous motion. 67

longitude In geographical sciences, the measure of location in the east-west dir-
ection. 12, 37, 38, 60

material In 3D computer graphics, a description of a mesh’s visual properties like
color, reflections, light emission, and so on. 17

mesh A digital three-dimensional object made up of vertices, edges, and faces.
xiv, 17, 18, 20, 27, 28, 34, 35, 45–49, 51, 54, 58, 60–64, 66, 71–73, 75, 76,
83, 85–90, 92, 94

orthophoto A top-down photograph of a geographical area, typically taken by a
satellite or an airplane. 6, 33–35, 45

photogrammetry The science of reconstructing 3D objects from a set of 2D im-
ages. 7, 21, 23, 34, 35, 61–63, 66, 73, 75–78, 89–94

photorealistic rendering The act of producing computer-generated images that
are nearly indistinguishable from a real-life photograph. 3, 27

quaternion A way to represent rotations around arbitrary axes without risking
encountering gimbal locks. 18, 20, 42

raster image Digital image stored pixel by pixel, as opposed to a vector image
which is stored with geometric shapes. 33

raytracing A 3D rendering technique where light rays are simulated to construct
photorealistic images. 27

render The act of synthesizing an image from digital 3D objects. 7, 11, 28, 29,
81, 92

saturation In color theory, the degree of chromatic purity, i.e. the difference from
the shade of gray having the same brightness. 60, 71, 73

scene In 3D computer graphics, the collection of geometry, lights, and everything
else making up a digital 3D world. 4, 27, 28, 30, 32, 33, 36–38, 41, 46, 49,
53, 61, 62, 67, 78, 79, 81, 91–93

scene graph A data structure used to represent logical and spatial relations between
objects in a 3D scene. 27

texel The most fundamental unit of a texture (akin to a pixel in a digital two-
dimensional image). 18, 35, 81, 82

texture An image mapped to the surface of a digital three-dimensional object.
5–7, 17, 18, 21, 23, 24, 28–30, 33–35, 51–54, 58–61, 71–78, 81–94
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Introduction

‘Sic parvis magna.’

‘Greatness from small beginnings.’
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Chapter 1

Introduction & Motivation

1.1 Project Motivation

This thesis explains the process of developing a simple digital twin of the Gløshau-
gen area in Trondheim, Norway. The project will be centered around the traffic
aspect of the digital twin. Such a traffic-centered twin has a manifold of practical
purposes. It enables real-time monitoring of aspects such as congestion, vehicle
count, speed, and much more. Using cameras producing sufficient image quality,
aspects such as structural integrity of buildings and roads could be monitored as
well. Such a digital twin can also be used for predictive analyses, especially if
utilizing artificial intelligence (AI).

A digital twin should, by definition, be updated in real-time by a range of dif-
ferent sensors. On a large enough scale, with enough entities carrying appropriate
sensors, this can be done completely automatically. This has the potential for re-
ducing large amounts of expenses in the long run that would otherwise be used
for salaries, specialized equipment, and other resources.

A digital road model can contain metadata related to vehicle behaviour, es-
pecially in terms of restricting their movements regarding lanes, traffic signals,
traffic rules, etc. Using such metadata provides a foundation for vehicle simula-
tion. Simulation capabilities provide an environment in which AI agents can be
trained and algorithms can be verified. Combine this with photorealistic render-
ing, and one can generate realistic images from the perspective of a human driver.
Such renderings can in turn be used for training and validating neural networks
(NNs) for use with autonomous vehicles. Simulation and photorealistic rendering
combined also provides an arena to generate weather effects and mimic lighting
conditions at different times of day. By training neural networks on a variety of
different scenarios, their accuracy can in turn increase.

The ability to fabricate training and validation data in this way has a number
of benefits. For training neural networks, a large amount of images is required.
Collecting these images usually requires real-life driving, with camera-equipped
vehicles. This can be cost-demanding in terms of equipment, fuel and time con-
sumption, human drivers, and any risks involved with driving in traffic.

3
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Once an autonomous vehicle has been trained with the appropriate data, it
can be put into practical use in real-world traffic. While driving, a camera records
real-time video of its surroundings, which the vehicle uses to make predictions
based on what it perceives. For such predictions to be as good as possible, a num-
ber of criteria ideally need to be fulfilled. The road should be free of any coverage
like snow or water puddles. The car should have a clear line of sight in front of
it, free from weather phenomena like heavy downfall or mist. The sun should
also not be angled so as to severely overexpose images taken from the car’s cam-
era(s). However, all of these conditions are relatively commonplace, especially in
Norwegian climate. This means that a conventional autonomous car could poten-
tially perform sub-par compared to locations with other, more forgiving climates.
However, with an accurate digital twin having proper metadata about road lanes,
driving directions and the like, an autonomous vehicle could use the twin along
with its own positional data to align itself in the proper lanes, even in the cases
of low visibility caused by, for example, mist or heavy downfall.

Although a digital twin is meant to reflect the real world as closely as possible,
its usage can be extended beyond this strict linkage. For example, by changing the
road network topology, one can simulate how traffic flow will be affected were
these changes to be realized. New buildings could be added along with metadata
like expected visitor times, durations, and amounts, and could potentially uncover
otherwise unforeseen weaknesses in future traffic infrastructure like bottlenecks
or dangerous intersections.

Such an environment can also benefit from being rendered in virtual reality
(VR). VR visualization can enhance the act of monitoring conditions within the
digital twin. For example, if a structural weakness has been detected in a building
or road, one can inspect the area in virtual reality, possibly without approaching
the real-life area. Preventative measures can then be taken before any accidents
occur. VR can also be used in this context for city planning, for example for visual-
izing future building projects or road network changes. Multiple alternatives can
be visualized and compared, without running the risk of spending large amounts
on preliminary construction. VR can also be used for overlaying a variety of data
to the user, like temperature, weather forecasts, or air pollution.

1.2 Research Questions

To aid in the development and research of this thesis, a number of research ques-
tions were formulated. The research questions, as shown below, represent the
main questions that this thesis attempts to answer:

RQ1: Can dynamic location data of a physical entity be transferred to a digital
3D scene in order to update it in real-time?

RQ2: Can a three-dimensional model of a geographical area be acquired or
created, especially with terrain, buildings, and roads; and to what de-
gree can this be automated?
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RQ3: Can any photo of a building be applied as a texture to a corresponding
3D object so that the building looks realistic enough to be near indistin-
guishable from reality?

RQ4: Can we use photos taken from a driving car to update building textures
automatically in real-time?

RQ5: Can a digital twin be visualized in VR alongside real-time scene updates?

1.3 Foundation & Contributions

This thesis will partly consist of practical development regarding a geographical
digital twin. The area in focus is Gløshaugen, Trondheim and its surroundings.
The area contains the largest campus of NTNU, which is advantageous considering
the close proximity to the university’s resources. Within the area is also Elgeseter
gate, which is part of the main vehicular artery to the city of Trondheim. This road
often sees large volumes of traffic, which is of great benefit when analyzing and
simulating traffic. The exact area considered in this thesis is shown in Figure 1.1,
and is defined by the following bounding box given in UTM33N coordinates (see
Section 2.3.1 for more details):

Northwest corner: N 7040993, E 270211

Southeast corner: N 7039779, E 271077
(1.1)

Figure 1.1: Map of the area covered by this thesis’ digital twin development.
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The practical work of this thesis is based on the work performed by Rune
Strøm Brekke from their Master’s thesis from 2021 [1]. Brekke created a three-
dimensional digital model of the Gløshaugen area, with terrain, buildings, and
vegetation. Buildings contained procedural textures, and the terrain was draped
with an orthophoto. This thesis is also based on my project work from the course
‘TDT4501 Computer Science, Specialization Project’ attended in 2021 [2]. Here,
a road model was created, complete with textures as well as behavior rules for
simulated vehicles.

As part of the development in this thesis, the road network was properly geor-
eferenced. In order to improve the accuracy of the building textures, methods for
roof and wall texturing for buildings were explored. One method uses manual
plane-to-plane homography, and another uses automatic photogrammetry and
georeferencing. Additionally, code was created to update the locations of 3D di-
gital car models. The scene was also set up to be visualized in VR.

1.4 Thesis Structure

The thesis is structured as follows:

PART I is the current part, and contains introductory material.

Chapter 1 contains an introduction to the main themes of the thesis. It
also presents research questions, the foundation of which this thesis is
written, and finally this very structure overview.

Chapter 2 introduces theoretical background knowledge useful for under-
standing the rest of the thesis.

Chapter 3 outlines previous work in the fields related to the main themes
of this thesis.

PART II is the main part of the thesis. It outlines the necessary prerequisites and
explains the development process conducted as part of this thesis.

Chapter 4 outlines the software, hardware, services, and assets used in the
development process.

Chapter 5 introduces the most common file formats, data types, and data
sources involved with the project.

Chapter 6 features the steps performed on the starting assets in order to
prepare them for the rest of the development process.

Chapter 7 shows the steps performed in developing software for updating
the position of a three-dimensional object from GNSS coordinates.

Chapter 8 contains steps for downloading and georeferencing building ob-
jects from an online service.

Chapter 9 explains how to apply high resolution roof textures to buildings
automatically.

Chapter 10 features experiments performed in order to assess the viability
of using photography to update textures of 3D building objects.
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Chapter 11 introduces an unsupervised method for updating building tex-
tures using photogrammetry.

Chapter 12 explains the steps taken to render the scene in virtual reality.

PART III contains results and discussions concerning the development process,
as well as a conclusion and an outline for future work.

Chapter 13 shows results from the methods and experiments performed
in Part II, along with videos showing results from all major aspects of
development combined.

Chapter 14 discusses findings from the results, as well as problems and
shortcomings with the proposed methods. It also discusses whether
and to what degree the research questions were answered.

Chapter 15 presents a summary of the thesis at large, and presents sugges-
tions for further development and research.

PART IV consists of the thesis’ appendices.





Chapter 2

Background Theory

2.1 Digital Twins

At the heart and core of this thesis is the concept of a digital twin. Its definition
has varied across time, applications, and research fields. The concept consists of
two words, which are defined by Merriam-Webster as such:

• DIGITAL (adjective) — ‘characterized by electronic and especially computerized
technology’; ‘composed of data in the form of especially binary digits’ [3]

• TWIN (noun) — ‘one of two persons or things closely related to or resembling
each other’ [4]

A digital twin can in its most basic terms be defined as being an accurate digital
counterpart of a physical entity. M. Grieves of Florida Institute of Technology pro-
poses that any digital twin is composed of three primary constituents, illustrated
in Figure 2.1: [5]

• A physical space, where a real physical entity or asset exists;
• A virtual space, where a digital representation of that physical entity or

asset resides;
• A link between between the physical and the virtual space, where data and

information can be bidirectionally exchanged.

There are in principal no limitations as to what can be a physical entity. Con-
structions like buildings or vehicles, to geographical areas like a city center or a
farm field, even living entities like animals or humans can be such an entity having
a virtual counterpart.

The bidirectionality aspect of the link between the two spaces is rephrased by
M. Singh et al., who proposes as part of the definition of a digital twin that:

‘...It is not just the Digital Twin which mimics its physical twin but any
changes in the Digital Twin are mimicked by the physical twin too.’ [6]

W. Kritzinger et al. confirms this in their proposal that a digital model be classi-
fied into three subclasses based on its level of integration with the physical world
(see Figure 2.2): [7]

9
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Physical space Virtual space

Data exchange
link

Figure 2.1: The three basic components of a digital twin, according to M. Grieves.

Physical asset

Virtual asset

(a) Digital model

Physical asset

Virtual asset

(b) Digital shadow

Physical asset

Virtual asset

(c) Digital twin

Manual AutomaticData flow:

Figure 2.2: Illustration showing the different integration levels of a digital twin,
as proposed by Kritzinger et al.

• Digital Model — A digital model represents a physical entity, but has no
automatic transfer of data in either direction.

• Digital Shadow — A digital shadow builds on the definition of a digital
model, in that in a digital shadow there is a one-way automatic flow of data
from the physical entity to the virtual entity. The reverse direction of data
flow is still manual.

• Digital Twin — A digital twin is characterized by the automatic flow of data
being bidirectional between the physical and the virtual asset.

One common way that data can be sent from the physical to the virtual world
automatically is by using sensors. Radars and LiDARs, RGB cameras, heart rate
monitors, wind and precipitation sensors, and thermometers are all examples of
such sensors. It is critical that the transfer of data in any direction should happen
in real-time [5][8]. The fulfillment of this requirement facilitates the possibilities
of using a digital twin for monitoring, simulation, and prediction [9][10].
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Digital twins have a wide range of applications, ranging from industrial en-
gineering and manufacturing to healthcare and aviation [5][7][11][9]. Some con-
ceptual examples are:

• An industrial mechanical arm can send data from its sensors and motors
to a digital twin, which reflects the arm’s physical pose at any moment in
time. The pose should also be changeable inside the digital twin, and its
physical state should instantaneously reflect the changes performed in the
digital twin.

• A biological digital twin can monitor a person’s vital signs like heart rate or
the presence of allergens in the body. The digital twin can react by activating
an automatic pacemaker in case of a heart failure, or injecting epinephrine
in case of a severe allergic reaction.

• An aerial drone can photograph farmlands and update a twin with data like
irrigation levels or damaged crops. These data can be used for automatic
decision-making, for example by watering dry areas or planting new seeds.

2.2 Autonomous Vehicles & Computer Vision

Autonomous vehicles are vehicles characterized by their ability to drive without
human input. They are able to perform independent decision-making in all as-
pects of driving, be it keeping distance to other vehicles, bikers, and pedestrians;
stopping in front of light signals; and predicting and avoiding accidents.

In order for autonomous vehicles to perform their tasks, they are typically
trained by an artificial neural network (NN). The branch of artificial intelligence
(AI) called computer vision is of particular importance. In computer vision, neural
networks are used for interpreting and understanding visual aspects of the real
world. The main data source used for these networks are images and videos re-
corded by a front-facing camera equipped to the car.

Computer vision NNs require annotated images for it to be trained. The pro-
cess of annotating an image usually involves placing bounding boxes around ob-
jects in images, and labeling these boxes with whatever is enclosed by the bound-
ing box. The labels are typically taken from a pool of predefined categories. In
the context of traffic, common labels can be ‘vehicle’, ‘pedestrian’, and ‘cyclist’. A
neural network is then trained on these labels and bounding boxes, allowing them
to later predict new bounding boxes from the same category pool on unseen im-
ages. Figure 2.3 shows an example of predictions performed by a neural network
on an unseen image.

It is of utmost importance that labels are correctly identified in real-time while
driving. For example, if the AI fails to identify a pedestrian walking across the
street on a red pedestrian light, the car might cause an accident by colliding with
the person. This implies that the network must be trained on images from a variety
of situations. If using renders from a digital twin as training data, this also means
that these renders should be as photorealistic as possible.
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Figure 2.3: Screenshot from a video taken from a car driving along Elgeseter
gate in Trondheim, Norway. The image has been tagged by predictions from an
artificial NN trained to recognize vehicles, persons, signs, and bicycles. The fig-
ure is part of the author’s results from the final project in the course TDT4265
Computer Vision and Deep Learning, Spring 2020. The image has been edited to
have blurred vehicle registration plates for privacy reasons.

Autonomous vehicles can also benefit from so-called high-definition maps,
which are accurate digital descriptions of a road network. These maps are of-
ten accurate to the centimeter, and can contain information like lane positions,
traffic signs, and road shape. A high-definition map can act as a guide or a ground
truth for the vehicle, meaning it can perform well even in low-visibility situations
and environments.

2.3 Geodesy

2.3.1 Spatial Reference Systems

Considering that this thesis revolves around a digital twin of a particular geo-
graphical area, it is imperative to have a way to refer to geographical locations.
Locations on the surface of Earth are usually defined by two values: Longitude,
which denotes the position along the east-west axis; and latitude, which denotes
the position along the north-south axis.

If the planet had been a perfect sphere, all locations on the surface would
have a unique mathematical spherical coordinate representation. However, the
Earth is an irregularly shaped ellipsoid, caused by mountains, ocean trenches, and
centrifugal forces from the Earth’s rotation around its own axis [12]. Therefore,
there exist multiple coordinate systems, i.e. multiple ways to use longitude and
latitude to refer to geographical locations.
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One of the most common coordinate systems, called World Geodetic System
1984 (WGS84), uses longitudes and latitudes measured in degrees, for referring
to a location on a sphere or ellipsoid. It defines the Earth’s geographic north pole
to be 90° north, its south pole to be 90° south, and the latitude in the middle of
these (i.e. the equator) to be at 0°. The prime meridian (i.e. the longitude defined
as having 0°) runs through Greenwich, England, perpendicular to the equator. The
longitudes range from 180° west to 180° east. WGS84 coordinates can optionally
be referenced with degrees, minutes, and seconds, as an alternative to decimal
degrees. In this case, one degree is divided into 60 arcminutes (often called simply
‘minutes’, denoted by a single apostrophe), and each arcminute is divided into 60
arcseconds (often called simply ‘seconds’, denoted by a double apostrophe).

Figure 2.4 shows an example of how the WGS84 coordinate system works.
The coordinates shown on the figure, denoted by the place where the two red
circles intersect, are defined by the coordinates

N 34°58′1.9′′, E 135°47′7.84′′ (2.1)

where N denotes degrees, minutes, and seconds north from the equator, and E
denotes degrees, minutes, and seconds east from the zero meridian. u in the figure
illustrates the longitudinal rotation at the center of the Earth, and v represents
the latitudinal rotation. The black circles represent the prime meridian and the
equator respectively.

Another commonly used coordinate system is called Universal Transverse Mer-
cator (UTM). The central concept around the workings of UTM is dividing the
Earth into 60 different zones, each spanning 84° north to 80° south and 6° in
longitude. Coordinates are defined in meters north and east. Each zone’s center
meridian is defined to be 500000 meters east. On the northern hemisphere, the
maximum north value is set to be 9 300000 meters north from the equator, and on
the southern hemisphere, equator is set to have a north value of 10000 000 meters
north. These definitions imply that the system can be used without the concern
of negative coordinate values. To eliminate ambiguities regarding whether given
coordinates are given on the northern or southern hemisphere, zones are often
split along the equator, where the northern part is denoted with an N suffix, and
the southern part with an S suffix.

Figure 2.5 shows an example of a location on Earth using the UTM31N co-
ordinate system. Figure 2.5a shows the area covered by UTM31N. The example
location is defined by the coordinates

N 4827064, E 378369 (2.2)

meaning that the location lies 4827 064 m north of the equator, and 121631 m
west of the center meridian.1 These numbers are illustrated in Figure 2.5b.

1500000 m− 378 369m= 121631 m
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N

S

u

v

Figure 2.4: Example of a location on the surface of Earth, represented with spher-
ical coordinates like in the WGS84 coordinates system.
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(a) The full area defined by UTM31N, along with the chosen location.

121.6 km

4827 km

(b) The chosen location as defined by the distance from equator and from UTM31N’s
center meridian.

Figure 2.5: Illustration of how a location is defined in the UTM coordinate system.
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2.3.2 GNSS

A Global Navigation Satellite System (GNSS) is a system for automatically de-
termining the coordinates of geographical locations on Earth. Traditionally, the
most widespread GNSS has been the Global Positioning System (GPS). It is de-
veloped and owned by the government of the United States, originally for military
use. GPS uses the WGS84 coordinate system [13]. Other well-known systems are
Galileo, developed by the European Union; and GLONASS, developed by Russia
[14] [15].

A GNSS typically comprises three segments: [16]

1. Space segment, consisting in turn of a number of artificial satellites in Earth
orbit.

2. Control segment, consisting of ground stations used to ensure that the
satellite signals are accurate.

3. User segment, consisting of electronic devices utilizing the satellites to de-
termine their own location and time.

The satellites each require highly stable atomic clocks for accurate timekeep-
ing. Each satellite also emits a signal propagating with a known speed. The time
of signal emission from the atomic clock is part of this information. When these
signals reach the Earth, they can be picked up by GNSS receivers. The receiver
can calculate the difference between the current time and the timestamp present
in the GNSS signal in order to determine the propagation time of said signal. Us-
ing four or more satellites, the receiver is able to compute its latitude, longitude,
altitude, and time [17].

In isolation, a GNSS can have an accuracy of a few tens of centimeters to
several meters [18] [19]. However, using 5G network signals and/or CPOS tech-
nology,2 the accuracy can be increased to less than a centimeter [20] [21]. Correc-
tions from 5G networks is based on relative positions compared to other devices
connected to the network. Conversely, CPOS utilizes a ‘virtual base station’, which
in reality is a web server sending correction data to the GNSS receiver.

2.4 3D Graphics Concepts

This thesis will not act as a course, an introduction, or an encyclopedia for three-
dimensional graphics. However, because three-dimensional data is central to this
thesis, a short summary of the most important features will be presented here.
This will provide a common foundation when referring to important aspect of 3D
graphics.

2Note that CPOS technology only covers mainland Norway.
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Figure 2.6: Illustration showing the
most basic geometric components
of a mesh.
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Z

Figure 2.7: Figure showing a wid-
get commonly used in 3D graphics
to denote coordinate axes and their
positive direction.

2.4.1 Geometry

An object in 3D graphics is commonly called a mesh. A mesh is usually built up
with three different components, as shown in Figure 2.6:

• Vertex (plural vertices) — A vertex, in and of itself, is a 0-dimensional point
in space.

• Edge — An edge is a 1-dimensional edge in space. An edge only exists
between two vertices.

• Face — A face makes up a closed set of three or more edges. The surface of
a mesh consists of a collection of such faces.

All these components exist in three-dimensional space. In order to refer to the
location of these components, as well as the mesh itself, it is common to use a
coordinate system. Convention dictates that the basis vectors for this coordinate
system are called X, Y, and Z respectively (see Figure 2.7).3

There are also some common attributes that can be derived from these com-
ponents. Each face has a normal vector, or simply a normal, indicating which
direction it is facing. Each vertex can have its own vertex normal, calculated
from the normals of adjacent faces.

2.4.2 Surface Appearance

As for the surface appearances, meshes often have materials applied to them.
A material is a description of how the mesh reacts to light, i.e. a description of
its visual appearance. This encompasses the mesh’s surface color, reflective and
refractive properties, self-emission, ‘shininess’, and so on.

Sometimes, one desires to drape a two-dimensional image around a mesh to
give the illusion of having a more complex surface than what is represented by
geometry alone. Such draped images are often called textures. Textures are made

3Note that it is not standardized which axis points in which direction. The most common discrep-
ancy is which axis to point upwards. Some application use the Y axis as the up axis, while others
use the Z axis.
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V

Figure 2.8: Example of an image with the corners marked with their correspond-
ing UV coordinates. A UV coordinate widget is shown at the image’s origin. The
image is taken by the author themselves and used with permission.

up of fundamental units called texels, which are analogous to pixels being the
fundamental unit of general digital images.

For representing which parts of an image should be applied to which parts of
the three-dimensional mesh, one uses what is commonly called texture coordin-
ates or UV coordinates.4 UV coordinates are given in the range of 0 to 1 relative
to the image used as a texture. For example, if the bottom left corner has UV co-
ordinates (0,0), then the opposite (top right) corner has coordinates (1, 1) (see
Figure 2.8). Each vertex in the part of the mesh to be textured is assigned a (u, v)
tuple. All texels positioned inside the bounds of the vertices’ corresponding face
are sampled and applied to that face. An illustration of this is shown in Figure 2.9.

2.4.3 Transformations

3D transformations are of paramount importance within the realm of computer
graphics. They are used for any translation (movement), rotation, and scaling
of object within a scene, as well as for giving the illusion of perspective. Such
transformations are usually represented by matrices, and a transformation can
be performed on a mesh by multiplying the transformation matrix with a matrix
consisting of the vertex coordinates of all vertices in that mesh.

4We use U and V for coordinate names in order to distinguish them from the X, Y, and Z axes
used for representing 3D space, and W often used for quaternion rotation.
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Figure 2.9: Figure showing how UV coordinates are applied to mesh vertices.
Squares having the same color represent corresponding vertex-UV pairs.

In three-dimensional computer graphics, a transformation is usually represen-
ted as a 4× 4 matrix, rather than a 3× 3 matrix as intuition would suggest. This
enables representing translations via matrix multiplications. Consider Equation
2.3. Here, M is a 3 × 3 matrix representing a general three-dimensional trans-
formation; p is the coordinates of a vertex to be transformed; t⃗ is a translation
vector; and p′ is the new vertex coordinates after performing the transformation.
Next, consider Equation 2.4. Here, T is instead used as the transformation matrix.
T is a 4× 4 matrix with the translation vector embedded in its fourth column. ph
is the coordinates of the vertex, with an added dimension with a value of 1. p′h is
the result of the matrix multiplication, again with a extra dimension. We see that
the first three rows of p′h is equal to p′. After performing the transformation in
Equation 2.4, we can in practice ignore the fourth row of p′h when applying the
result to the vertices. Coordinates with such an additional dimension are called
homogeneous coordinates.

p′ =Mp+ t⃗ =


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Representing transformations with only matrix multiplications is beneficial
from a performance perspective. GPUs are often specialized on performing few
types of operations of large amounts of data. Having to deal with only matrix mul-
tiplication, instead of both multiplications and additions, means that the GPU can
be more specialized in multiplications. An entire transformation can also be rep-
resented by one single matrix, instead of one for translation and one for all other
transformations. This makes transformations considerably faster to compute.

When performing transformations, it is important to consider the space in
which the transformation takes place. When focusing on a mesh in isolation, co-
ordinates are given in object space. Coordinates in object space are typically given
relative to a specified object center. When assembling multiple object together in
a scene, coordinates must be transformed to world space. Here, all coordinates
are usually given relative to a defined world center. In camera space, coordinates
are transformed to be relative to a camera object, where entities visible to the
camera are usually defined in the range of −1 to 1. Finally, in viewport space,
coordinates are transformed to pixel coordinates.

2.4.4 Quaternions

Quaternions are a mathematical construct often used within computer graphics
to represent 3D rotation. Quaternions can be represented by a scalar part s and a
vector part −→v :

q =
�

s,−→v
�

(2.5)

A rotation by an angle θ around an arbitrary axis −→n can then be expressed as

qr =
�

cos
θ

2
,−→n sin

θ

2

�

(2.6)

The main advantage of using quaternions over Euler angles is the absence
of gimbal lock. Gimbal lock occurs when two of the rotational axes of an object
aligns, removing one degree of freedom. Quaternions solve such ambiguities by
adding another dimension to the definition of the rotation.
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2.5 Photogrammetry

Photogrammetry is the science of using a collection of two-dimensional images
to reconstruct a three-dimensional scene. It works by gathering visible features
from images, and matching these between images. By knowing the properties of
the camera lens and observing how features differ in location between images,
one can compute a reconstruction of the scene’s three-dimensional geometry. By
sampling pixels from the original image, one can also apply textures to the result-
ing geometry.

2.6 VR

Virtual reality (VR) is a technological concept that aims to ‘embed’ a user into a
virtual world, where the world can be shown and interacted with via kinetic input.
Modern, consumer level virtual reality suites usually consists of a head-mounted
display (HMD)—often called a ‘headset’—and two handheld controllers, one for
each hand. The HMD contains two lenses—one for each eye—and translates and
rotates a virtual camera corresponding to how the user moves their head while
wearing the HMD. The headset is meant to be worn on the user’s head, in front
of the eyes, so that the user sees what is being rendered to the lenses. Moving the
hand-held controllers often enables moving objects in the virtual world corres-
pondingly. Said objects are often meant to represent human hands, or an exten-
sion thereof (e.g. tools). Many controllers also have buttons and analog sticks for
sending additional commands to the virtual world. Figure 2.10 shows an example
of the most common hardware components of a VR suite.

A number of early VR kits require the use of base stations, which are sensors
used for tracking the positions of the headset and handheld controllers. In addi-
tion, early VR kits typically require the use of an external computer, herein called a
host computer, in order to run VR software. Many newer headsets support station-
less tracking via cameras embedded in the HMD. They also often have sufficient
computing power to run independently, although the only natively supported soft-
ware are usually games bought in an online store.
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Head-mounted display
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Figure 2.10: Illustration of the most important hardware components of a VR
suite. The suite shown is called Meta Quest 2.
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Related Work

The earliest form of digital twins have existed since 1970, when the National
Aeronautics and Space Administration (NASA) used a digital twin of the Apollo
13 spacecraft to guide its astronauts to safety after a critical accident on board
[5]. The concept entered the field of product lifecycle management in the early
2000s under names like ‘Mirrored Spaces Models’ [22]. The first known use of the
name ‘digital twin’ appears in a 2010 publication by NASA presenting a draft of a
roadmap for its own technological evolution [6][23].

An example of geographical digital twin technology in use today comes from
Institute for Automotive Engineering at RWTH Aachen University in Germany.
Per 2021, they use LiDAR and 5G technology combined with digital twins in the
development of infrastructure to integrate autonomous vehicles [24].

One important aspect of this thesis’ digital twin is updated, realistic, and high
resolution building textures. Some previous work has been made in building tex-
turing using either a video stream or an unordered sets of images, and pose es-
timation [25]. However, this assumes that camera position and orientation can
be accurately retrieved, which is not always the case. Other methods mainly use
street-level photography with automatic mosaicking, but without any automatic
application to 3D objects [26]. This thesis will explore some alternatives, both
manual and automatic, for application of wall textures to 3D objects without the
need for pose estimation or camera calibration.

Photogrammetry is a technique being increasingly utilized in the creation and
update of digital twins. Unmanned Aerial Vehicles (UAVs) have been used for
generating digital twins of man-made constructions such as bridges, and for sub-
sequent quality assessments and monitoring of said constructions [27]. Progress
has also been made for using photogrammetry and digital twins for underwa-
ter purposes, taking into consideration refraction phenomena between different
physical media as well as high-pressure underwater environments [28]. However,
little work has been made using photogrammetry at street level, especially us-
ing camera-equipped vehicles, to generate textured three-dimensional models of
buildings. This thesis will explore the viability of generating textured buildings
using photogrammetry with street-level imagery taken while driving.

23
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Building reconstruction in and of itself is also relevant for geographical digital
twins. Automatic building reconstruction is possible using elevation data, satellite
images, and/or aerial images [29] [30]. For this thesis, pre-reconstructed build-
ings are retrieved from an online service only.

Extended reality (XR) has also seen increasing development in the context of
digital twins. Industrial applications are becoming increasingly prevalent, incor-
porating both augmented reality (AR) and virtual reality (VR) technology [31]
[32]. Other use cases, especially within VR, are remote surgery [33], traffic sim-
ulation and accident prevention [34], and more general situations and processes
that require human input [35]. VR has even been used in combination with di-
gital twins in contexts like street network modelling, movement patterns, wind
flow simulation, and even qualitative perception data, in a case study involving
the small German town of Herrenberg [36] [37]. This thesis will likewise revolve
around a geographical VR-enabled digital twin, with an emphasis on vehicle pos-
itions, building georeferencing, and texturing.



Part II

Materials & Methods

‘...if you are a student you should always
get a good night’s sleep unless you have
come to the good part of your book, and
then you should stay up all night and let
your schoolwork fall by the wayside, a

phrase which means “flunk”.’

— Lemony Snicket
‘THE AUSTERE ACADEMY’
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Chapter 4

Tools & Assets

4.1 Software

4.1.1 Universal Scene Description

Universal Scene Description (USD)1 is a framework developed by Pixar meant to
act as a standard file format for creating and storing 3D data. It combines differ-
ent 3D content types, like meshes, animation, particles, and physics simulations
into one standardized format. Put in another way, USD exists to alleviate the need
to compose 3D scenes containing many different content types, and make those
scenes interchangeable between different 3D software and platforms. It also con-
tains a highly optimized scene graph, enabling users to collaborate on one and
the same USD scene in real-time.

4.1.2 Omniverse

At the core of the project is a software platform by NVIDIA named Omniverse.2

It is a real-time development platform designed for content creation, simulation,
photorealistic rendering, and collaboration across different 3D creation software.
The USD file format is used extensively throughout the platform. For this thesis,
three key sub-units of the platform were used:

• Nucleus is the core of the collaborative aspect of Omniverse. It is based on a
publisher/subscriber model, where Omniverse clients can publish changes
to the Nucleus that subscriber clients can acquire. This transfer takes place
in real-time, and can be bi-directional, meaning that a client can be both
a subscriber and a publisher simultaneously. Nucleus contains a file system
structure containing all assets to keep synchronized.

• RTX Renderer enables the creation of photorealistic renders using real-time
raytracing.

1https://graphics.pixar.com/usd/release/index.html
2https://developer.nvidia.com/nvidia-omniverse-platform
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• Connect is a series of extensions and plugins that enables communication
between 3rd party applications via Nucleus. Communication typically takes
place in the form of updating the contents of a 3D scene. Consequently,
Nucleus enables such communication to happen in real-time.

Omniverse also features a collection of applications for different purposes. The
following were used in this project:

• Cache was used to improve loading times and reduce bandwidth between
clients and servers.

• Create was the main piece of software used to view, edit, and render the
project scene.

• Drive was used in order to access the Nucleus server files as if they were
mounted on a Microsoft Windows drive.

• XR was used to render the USD scene in VR.

4.1.3 RoadRunner

MathWorks RoadRunner3 is a software used for modelling road networks, either
from scratch or using satellite imagery of Earth’s surface. Roads can be edited
with simulation metadata, like speed limits, driving directions, and traffic light
behavior. Although no road network was modelled in this thesis, the road network
from the author’s specialization project was used, see Section 6.1.

4.1.4 CityEngine

ArcGIS CityEngine4 is a software used for large-scale modelling of cities. Like with
RoadRunner, cities can either be generated from scratch or use real-world data to
create a model of an already existing city. One feature in particular that benefited
this thesis, is automatic generation of building textures. Although these textures
do not reflect real-world textures, they serve as useful placeholders in cases where
no real-world textures have been collected. No city models were created this way
in the thesis, although the foundation scene from Brekke’s Master’s thesis con-
tained building meshes automatically textured with CityEngine [1].

4.1.5 Meshroom

Meshroom5 is an open-source software used for performing photogrammetry. It
takes a collection of images as input, and can output reconstructed point clouds,
textured three-dimensional meshes, and camera positions via pose estimation. For
this thesis, Meshroom was primarily used to reconstruct textured 3D representa-
tions of real-world buildings.

3https://www.mathworks.com/products/roadrunner.html
4https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
5https://alicevision.org/

https://www.mathworks.com/products/roadrunner.html
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://alicevision.org/
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4.1.6 Steam and SteamVR

Steam6 is an online service for distributing and playing video games, created and
owned by video game developer and publisher Valve Corporation. The service
ships with its own virtual reality platform called SteamVR,7 enabling VR gaming
on personal computers. Many game engines and 3D development software sup-
ports SteamVR, among others Omniverse through the Omniverse XR application.

4.1.7 CloudXR

NVIDIA has developed a platform named CloudXR8 for streaming XR content
between devices. It works by having a server computer running an XR software,
sending rendered images to a client computer. The client then displays the images
on a screen, be it a smartphone or a tablet screen in the case of AR or an HMD for
VR. The connection need not be wired—in fact, the platform has been developed
with 5G wireless technology in mind. The Omniverse platform supports CloudXR
integration via the Omniverse XR application.

4.1.8 Blender

For 3D editing, troubleshooting, and visualization, the open source 3D creation
suite Blender9 was used. Despite Blender having numerous features spanning an-
imation, digital sculpting, and movie editing, it was primarily used for UV editing
(see Section 10).

4.1.9 Adobe Photoshop

Adobe Photoshop10 is a general-purpose 2D image manipulation program. Pho-
toshop was mainly used for stitching and color-correction of manually collected
building textures (see Section 10).

4.1.10 Python

Python 11 was the main programming language used for the development portion
of the thesis. The reasoning for this is twofold. Firstly, it is known for its ease of
use and high abstraction level. Secondly, it is one of the languages supported by
the Connect portion of Omniverse, meaning that custom connectors can be coded
with Python.

6https://store.steampowered.com/
7https://store.steampowered.com/steamvr
8https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
9https://www.blender.org/

10https://www.adobe.com/products/photoshop.html
11https://www.python.org/

https://store.steampowered.com/
https://store.steampowered.com/steamvr
https://www.nvidia.com/en-us/design-visualization/solutions/cloud-xr/
https://www.blender.org/
https://www.adobe.com/products/photoshop.html
https://www.python.org/
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4.2 Hardware

The main piece of hardware used for development was an MSI Creator 7 computer
containing an NVIDIA GeForce RTX 2060 graphics card. In addition, a desktop
PC with an NVIDIA GeForce GTX 1080 graphics card was available for use from
Department of Computer Science’s VR laboratory.

NTNU hosts a research group called NTNU Autonomous Perception Labor-
atory (NAPLab). [38] The purpose of the group is to conduct research on and
develop autonomous vehicles, and adapt these to particularities present in Nor-
wegian driving conditions. NAPLab owns a car equipped with sensors like LiDARs,
cameras, and GNSS receivers. Data from these sensors can be used for updating
a digital twin in real-time. Specifically, the outputs of the camera and the GNSS
receiver were used in this thesis. In addition to the vehicle’s camera, a Samsung
Galaxy S9+ smartphone was used for photography.

For the virtual reality implementation of the digital twin, the Meta Quest 2
VR suite was used. The hardware consists of a head-mounted display (HMD) and
two handheld controllers, without base stations.

4.3 Services

3D Clip&Ship12 is a service from Geodata enabling users to select areas on a map
and export features like 3D buildings, terrain, vegetation, and more from that
area. The data can be exported to a variety of formats, among others the OBJ
format (see Section 5.1.2). The service also contains a REST API for automated
export. Access to this service was granted on a two-month basis from Geodata.

4.4 Assets

As a basis for this thesis, an already existing USD scene of Gløshaugen was used.
The buildings themselves are modelled after the real world; the building textures,
however, have been automatically generated by CityEngine. Although real-world
textures are important for digital twins themselves, they are of lesser priority for
the performance of autonomous vehicles. For this purpose, it is sufficient that
the textures appear realistic enough that the objects they are applied to can be
recognized as buildings by a neural network.

The scene contains a separate object for a partial road network around the
Gløshaugen area. This object was modelled in RoadRunner as part of this thesis’
specialization project [2]. The model in its isolation can be seen in Figure 4.1. The
Gløshaugen model and the road model were also combined as part of that project.
The result is used as a foundation for this thesis, and is shown in Figure 4.2. A 3D
model of NAPLab’s car was also supplied and is shown in Figure 4.3.

12https://www.arcgis.com/apps/webappviewer/index.html?id=
304346a17c7b463fa76bd6820e39a184

https://www.arcgis.com/apps/webappviewer/index.html?id=304346a17c7b463fa76bd6820e39a184
https://www.arcgis.com/apps/webappviewer/index.html?id=304346a17c7b463fa76bd6820e39a184
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Figure 4.1: The road network from RoadRunner, seen from a top-down perspect-
ive.
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Figure 4.2: The thesis’ foundation scene from top-down perspective.

Figure 4.3: 3D model of NAPLab’ car.



Chapter 5

Data

In order to create a digital twin, one needs a plethora of data, often originating
from different sources. This chapter aims to give an insight into what data is ne-
cessary for the approach presented in this thesis.

5.1 File Formats

5.1.1 USD

The Universal Scene Description (USD) file format is arguably the most important
file format for this project. All data is eventually collected into a USD scene in
Omniverse and stored in USD files.

5.1.2 OBJ

Wavefront OBJ is a common file format to store polygonal three-dimensional
meshes. In its most basic implementation, an OBJ file contains information such
as object names, the position of each vertex, texture coordinates, normals, and
faces. Optionally, an OBJ file can be accompanied by an MTL file describing the
objects’ surface shading properties. In this project, OBJ files were used as an in-
termediary file format because of its widespread use in a variety of 3D software
ecosystems.

5.1.3 TIFF and GeoTIFF

The Tag Image File Format (TIFF) is a common image file format used to store
raster images. One extension to this format, called GeoTIFF, is used to store ras-
ter graphics that has a geographical location, such as a map or an orthophoto.
Typically, a GeoTIFF file contains data like its corners’ geographical coordinates,
and which coordinate system the coordinates are represented with.
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5.2 Data Description and Sources

5.2.1 Terrain

Terrain data in the form of height maps can be seen as a figurative and literal
foundation for the rest of the twin. It represents the ground level of the model, and
can be used to generate a three-dimensional mesh of the ground. It also dictates in
which altitude to place features like buildings and roads. Such height maps can be
exported from the website GeoNorge1 as GeoTIFF files. A 3D mesh incorporating
such a terrain map can be fetched from 3D Clip&Ship in the OBJ format.

5.2.2 Orthophoto

An orthophoto, in the context of geography, is an image of a geographical area
taken from a top-down perspective. An orthophoto is typically taken from a satel-
lite or an airplane flying over the area. Such a photo can be draped over a terrain
mesh to show ground colors, and can also act as a reference image when model-
ling road networks.

The web service Norge i bilder2 has been identified as the main source of
orthophotos. This service offers photos with resolutions up to 4 cm× 4 cm. These
photos are also used as roof textures on buildings exported from the Clip&Ship
service. Alternatively, even higher resolution images can be collected from aerial
drone footage.

5.2.3 3D Buildings

The main source of 3D mesh data for buildings for this project is 3D Clip&Ship.
The data can be exported as clean, low-polygonal meshes as opposed to more
noisy meshes resulting from photogrammetry. The data was exported with the
OBJ file format. Optionally, the buildings can be exported with roof textures.

5.2.4 Road Metadata

Road metadata, in the context of digital twins, involves data such as center lines,
the number of road lanes and their positions and sizes, driving direction, speed
limits, and more. For this thesis, this data was manually created by modelling the
roads in the RoadRunner software. Terrain and orthophoto were needed in order
to model them accurately in all three spatial dimensions.

1https://www.geonorge.no/
2https://norgeibilder.no/

https://www.geonorge.no/
https://norgeibilder.no/
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Figure 5.1: An example of a building that has been textured by draping an or-
thophoto on the mesh.

5.2.5 Building Textures

The 3D Clip&Ship service contains wall and roof textures for its building meshes.
However, for the textures to be useful for training autonomous vehicles, they need
to have a certain level of realism. Figure 5.1 shows an example of a textured
building taken directly from the 3D Clip&Ship export. The building is satisfactorily
textured on the roof, but the walls contain a striped pattern instead of the real-
world wall texture. This phenomenon appears when the texel values from the
edges of the roof are repeated across the entire wall surface in the Y axis. This is
done because the buildings have been draped with the orthophoto only, and thus
lack proper wall textures.

An alternative wall texturing scheme was used. First, CityEngine was used
to automatically generate textures for the building meshes, so as not to leave
any building textureless. This was performed by R. Brekke in their Master’s thesis
[1]. For real-world textures, an experiment using manually collected images was
performed using a smartphone camera, see Chapter 10. If wall texturing was to be
automated, video frames from NAPLab’s on-board cameras could be used. Images
from such cameras were also used in the automated photogrammetry method
presented in Chapter 11.
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Figure 5.2: Flowchart illustrating the data flow of this thesis’ digital twin. Yellow
boxes represent data, green boxes represent data sources, and purple boxes rep-
resent software used to manipulate data. An arrow pointing from a data source
to a piece of data denotes that the data can be retrieved from that data source.
An arrow pointing from a piece of data to a software denotes that the data is used
as input to that software. An arrow pointing from a software to a piece of data
denotes that the data is an output after being manipulated by that software.

5.3 Data Flow

This section aims to give an overview of how data is processed, and which software
and services are used to perform this processing.

3D buildings are imported to CityEngine, and textures are automatically gen-
erated and applied. Alternatively, images from the surroundings as well as roof
textures from orthophotos are used for texturing. The resulting objects are then
imported to Omniverse. Orthophotos and terrain meshes are used directly in Om-
niverse, as well as in RoadRunner. In Roadrunner, they are used to create a 3D
model of the road network, along with simulation metadata. These models are
subsequently imported into Omniverse. Position data from a GNSS receiver is used
to update locations of vehicle objects in the USD scene.



Chapter 6

Scene Preparation

6.1 Road Alignment

In order to have a sound foundation to send and receive live data, having an
accurate three-dimensional model of the area is an important prerequisite. In the
foundation assets from the specialization project, the road network model from
RoadRunner is not properly aligned to the rest of the scene. In that project, the
road network was manually transformed so as to approximate the correct location.
As part of this thesis, to achieve a more accurate alignment, the road network was
aligned to the rest of the scene via georeferencing.

The main problem to overcome was the fact that the two scenes use different
coordinate systems. The main scene uses coordinates derived from the UTM33N
system. During Brekke’s thesis, while exporting to USD, the coordinates were set
to use a certain offset, so as to align the geometric center of the scene to the co-
ordinates (0,0, 0). The reason for this was to avoid performance problems in USD
due to large numerical values of the UTM coordinates. Using an offset will ensure
that the coordinate values remain small enough not to cause performance issues.
The offsets can be seen in Table 6.1. Note that the absolute values of the longitude
and latitude values from Table 6.1 are equal to the center coordinates of the main
scene. It was also noted that positive X values denote eastwards direction, positive
Y values denote upwards in altitude, and positive Z values denote southwards.

The RoadRunner scene is expressed in a derivation of the WGS84 coordinate
system. This system also uses an offset to define its center. In order to incorporate
this into the USD scene, the coordinates were converted to the UTM33N coordin-

Coordinate USD axis Offset
Longitude X −270630.659
Latitude Z −7040355.576
Altitude Y −46.670

Table 6.1: Table showing the coordinate offsets of the main scene, expressed in
UTM33N coordinates.
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Figure 6.1: The result of combining the CityEngine scene with the RoadRunner
road network by geographic projection. The road network mesh is highlighted in
orange.

ate system. The scene’s coordinate system is explicitly defined using a custom pro-
jection string which can be used to convert between the two coordinate systems.
This string also explicitly defines the coordinates of the scene’s center, meaning
that offsets will automatically be taken into account when projecting to UTM.

Then, in order to properly align the road network to the rest of the USD model,
the same offset as in Table 6.1 has to be applied to the longitude and latitude
coordinates. This projection and offset was performed on all vertices of the road
network mesh, on the X and Z coordinates specifically. Finally, the entire road
network object was translated by the Y offset from Table 6.1 to align the road
network in altitude. The result is shown in Figure 6.1.

6.2 3D Car Model

The car model shown in Figure 4.3 was used as a visual cue for received position
data (see Chapter 7 for more details). However, the raw model file was deemed
to be excessively dense in terms of geometry, containing almost 1.2 million faces.
Therefore, using Blender, the model was decimated to have 1 % of its original
face count. It was also scaled by a factor of 0.01, from centimeter coordinates to
meters. The origin of the object was moved to coincide with the location of the
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Figure 6.2: 3D model of NAPLab’s car after preparing for use in Omniverse.

GNSS receiver. The faces were also crudely colored. The resulting model is shown
in Figure 6.2. Finally, the object was exported to the OBJ file format and imported
into Omniverse.





Chapter 7

Position Data

This chapter explains the development undertaken while attempting to answer
Research Question RQ1 (Can dynamic location data of a physical entity be trans-
ferred to a digital 3D scene in order to update it in real-time?).

In addition to the pre-packaged connectors in the Omniverse Connect module,
Omniverse features an example connector with code as a basis to create custom
connectors. It can be accessed by downloading ‘Connect Sample Omniverse Con-
nector’ from the Omniverse launcher. It contains example code in both C++ and
Python, and shows how to programmatically create and live-update an Omniverse
scene. The base code acted as a foundation to develop a custom connector to re-
ceive data from NAPLab’s autonomous car.

The data received from NAPLab’s GNSS sensors are given in the WGS84 co-
ordinate system. Incorporating the data into the digital model necessitates con-
verting the coordinates from WGS84 to the USD scene’s coordinate system. The
coordinates were offset with the values from Table 6.1 in order to be aligned with
the rest of the scene. Because north is defined as negative Z in the scene, the Z
values were inverted after conversion.

The 3D model of NAPLab’s car, as introduced in Section 6.2, was used in the
USD scene. This model’s location was programmed to be updated based on the
location values received. For prototyping, coordinate values were read from a CSV
file at a pre-determined time interval.

In cases where altitude readings are not available, the altitude of the car was
calculated using a height map of the area. The height map was downloaded from
Geonorge, and has a resolution of 10 m × 10 m. Using this map directly would,
because of its low resolution, cause the car model to abruptly change altitude at
regular intervals of space. In order to ensure smoother transitions in the height
values, the map was interpolated using bicubic interpolation. Samples were then
taken from the interpolated map using UTM coordinates, and the altitude of the
car model was updated with the sampled values.

The GNSS readings were also used to rotate the car to coincide with its driving
direction. This problem can be reduced to finding the necessary rotation to align
the Z axis of the car to the vector that represents the difference between two
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temporal-adjacent sets of coordinates. The concept is illustrated in Figure 7.1.
Worth noting is that a GNSS reading is only considered for rotation if it is different
than the previous reading.

We use one vector −→v1 which is equal to the unit vector along the Z axis. Then,
for every coordinate reading, we construct a vector −→v2,i which is the difference
between the current (ci) and the previous unequal (ci−1) coordinate reading:

−→v1 =
�

0 0 1
�T

(7.1)
−→v2,i = ci − ci−1, i = 2, . . . , n (7.2)

where n is the total amount of coordinate readings in which no two temporal-
adjacent readings are equal. Then, for each reading, we compute:

−−−→vx yz,i =
−→v1 ×

−→v2,i =
�

x i yi zi
�T

(7.3)
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2
+−→v1 ·

−→v2,i (7.4)

where −−−→vx yz,i and wi are the vector and scalar parts of the quaternion respectively.
Concatenating this will give a quaternion representing the rotation from−→v1 to−→v2,i:

qi =
�

wi ,
−−−→vx yz,i

�

=
�

wi ,
�

x i yi zi
�T�

(7.5)

Using this method will, however, give an infinite amount of solutions. The Z
axis of the car will be aligned to the difference vector −→v2,i; however, the car can
still be rotated an arbitrary amount along its own Z axis and the solution would
still be valid. Therefore, using the assumption that the car will drive on near-flat
roads most of its journey, we disable rotation along the X axis by setting x i = 0:

qwyz,i =
�

wi ,
�

0 yi zi
�T�

(7.6)

Normalization is then applied to give the following quaternion:

qn,i =
qwyz,i
�

�qwyz,i

�

�

(7.7)

Finally, to smooth out the rotations applied on the car model, a running average
is taken using the last ten quaternions:

q f ,i =

∑9
j=0 qn,i− j

10
(7.8)
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Figure 7.1: Figure illustrating the concept of using two temporal-adjacent GNSS
readings to rotate the vehicle model.





Chapter 8

Building Geometry

This chapter addresses the acquisition of building meshes from Research Question
RQ2 (Can a three-dimensional model of a geographical area be acquired or created,
especially with terrain, buildings, and roads; and to what degree can this be auto-
mated?). Terrain meshes can be acquired and processed using the same method.

In order to avoid the 3D meshes of buildings to become outdated as real life
construction and demolition takes place, a pipeline was created to automatically
download and integrate updated building models. The models are acquired from
the 3D Clip&Ship service from Geodata. Because the service comes with a REST
API, the process of fetching the buildings can be automated. The API accepts a
number of settings to determine what to export, among others:

• A list of coordinates that constitutes the external boundaries of the area to
be exported;

• The geographic projection that the data should be represented with;
• What kind of data to export, for example 3D buildings, terrain model, ve-

getation, and orthophotos;
• File formats for the resulting export.

See also Appendix C for an API reference.

8.1 Geometry Retrieval

In order to access the Clip&Ship service, a user account was created on Geodata’s
online platform called Geodata Online. Subsequently, a Geodata employee gran-
ted access to the service on a two-month basis. In addition, because a download
link to the finished export is sent by mail, a dedicated email account was cre-
ated. Omniverse Drive was also set up in order to access Omniverse Nucleus via
a Windows drive. Optionally, one can run a script to encrypt and locally store the
passwords to the Geodata Online platform and the email client.

The data were subsequently downloaded and imported to Omniverse Create.
The steps performed are outlined in Sequence 8.1. A corresponding sequence dia-
gram can be seen in Figure 8.1.
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Sequence 8.1 - Automatic Retrieval of Building Meshes

1. If any passwords were locally stored, they were decrypted and loaded.
2. An access token was generated at an API endpoint. Usage of all other API end-

points requires the presence of such a token. Jobs are assumed to take less than
24 hours to compete; thus, the token was configured to be valid for 24 hours.

3. An export job was submitted to the Geodata servers. Among the specified set-
tings were UTM33N for the coordinate system and OBJ for the file format
(Clip&Ship cannot export to USD, but Omniverse can import OBJ files).

4. The status of the job was checked every 10 minutes. The API provides an en-
dpoint specifically for this task. The status check lasts as long as the job has
status as uncompleted.

5. The email inbox was checked every minute. This continuous check is necessary
because empiric experiments revealed that a few minutes may pass from the
status turns completed to the email is received.

6. The download URL was fetched from the received email.
7. The files were downloaded and uncompressed.
8. The files were copied to the local cache. Omniverse will cache OBJ files auto-

matically when adding a reference to them; however, it will not cache accom-
panying MTL files, which are necessary to render meshes properly.

9. The files were uploaded to Omniverse Nucleus via Omniverse Drive.

8.2 Building Georeferencing

After acquiring all relevant files and uploading them to Nucleus, the 3D meshes
were georeferenced. The exported files contains data to perform this transform-
ation automatically. Directly from the export, the 3D models have their center
at the origin (0,0, 0), and they are scaled so that all coordinate values lie in the
range [−0.5,0.5]. A file called global.fwt contains a 4×4 transformation matrix
to transform these coordinates back to the original coordinate system.

The steps in Sequence 8.2 were taken to georeference the 3D buildings to the
USD scene. An illustration of the transformations applied are shown in Figure 8.2.

Sequence 8.2 - Automatic Georeferencing of Building Meshes

1. A reference to the relevant OBJ file was created in Omniverse Create.
2. global.fwt was parsed into a transformation matrix.
3. The translation portion of the transformation matrix was modified to take the

offsets from Table 6.1 into account.
4. The Y and the Z components of the translation were swapped. Where the

Clip&Ship export uses Z as its up axis, the Omniverse scene uses the Y axis.
5. The matrix was combined with a rotation matrix of 270° along the X axis to

account for the inconsistency of which coordinate axis points upwards.
6. Finally, the transformation was applied on the 3D meshes.
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Figure 8.1: Sequence diagram of the pipeline for fetching updated 3D meshes
of buildings. The numbers in the green circles correspond to the list numbers in
Sequence 8.1.
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(0,0,0)

Swap up-axis

Translate

Scale & rotate

UTM33N

USD

Figure 8.2: Summary of the transformations performed on the building meshes
after importing to Omniverse Create. The red, green, and blue arrow widget rep-
resent the world coordinate system’s X, Y, and Z axes respectively.
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For the rest of this section, when referring to the X, Y, and Z axes, we will take
that to mean those axes belonging to the world coordinate system. The transform-
ation matrix applied to the buildings can be expressed like this:

M= Rx(θ ) · S · T (8.1)

where Rx is a rotation matrix along the X axis, θ is the angle of rotation along
the X axis, S is a scale matrix, and T is a translation matrix. Going in a bit more
detail, we give the definitions of rotation, scale, and translation matrices:

Rx (θ ) =







1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1






(8.2)

S=







sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1






(8.3)

T=







1 0 0 t x
0 1 0 t y
0 0 1 tz
0 0 0 1






(8.4)

Here, sx , sy , and sz are the scaling factor along the X, Y, and Z axes respectively;
and t x , t y , and tz denote the translation along the X, Y, and Z axes respectively.
We define the translations to be the net translation from the origin to the correct
position in the USD scene, expressed in UTM33N coordinates. We assume that

s := sx = sy = sz (8.5)

so as to avoid stretching of the exported meshes. We also must take into con-
sideration that when translating, the Y and Z axes must be swapped in order to
accommodate for the inconsistency of which axis is the up axis. Finally, with a
rotation of 270°= 3

2π along the X axis, we set

θ :=
3
2
π (8.6)

This gives us the following modified matrices:

R′x

�

3
2
π

�

=







1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1






(8.7)
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S′ =







s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1






(8.8)

T′ =







1 0 0 t x
0 1 0 tz
0 0 1 t y
0 0 0 1






(8.9)

Multiplying these matrices together gives us the final transformation matrix:

M′ = R′x · S
′ · T′ =







s 0 0 st x
0 0 s st y
0 −s 0 −stz
0 0 0 1






(8.10)



Chapter 9

Roof Texturing

This chapter marks the start of examining Research Question RQ3 (Can any photo
of a building be applied as a texture to a corresponding 3D object so that the build-
ing looks realistic enough to be near indistinguishable from reality?). Specifically,
textures are applied to the roofs of 3D buildings. The method outlined here uses
the exported building meshes from Chapter 8, and replaces their roof textures
automatically using georeferenced images. The new textures should ideally be of
higher resolution than those already present.

For roof texturing, Clip&Ship has an option for exporting building meshes with
pre-applied roof textures. These are the highest resolution textures from the web
service Norge i bilder (4 cm × 4 cm). In theory, even higher resolution textures
can be collected by, for example, UAVs. As a proof of concept, Python code was
developed to automatically apply textures to the building meshes from Section 8.
The textures can theoretically come from any source; however, two main assump-
tions must be fulfilled in order for the code to produce the correct results:

1. The building meshes extracted in Chapter 8 must be exported with already
existing roof textures, and without wall textures. The script assumes that all
textured faces belong to the roof part of the mesh. This is simply a way to
distinguish between the roof and the rest of the mesh.

2. The image to be used as a texture must already be georeferenced.

The method involves transforming vertex coordinates to UTM33N using the
global.fwt file. Coordinates are then normalizing them to the range [0, 1] relat-
ive to the corners of the texture, which are also given in UTM33N. The normalized
coordinates are used directly as UV coordinates. The process is summarized here
and in Figure 9.1:

Sequence 9.1 - Roof Texturing

1. The OBJ file was read, and data like materials, vertex coordinates, and already
existing UV coordinates were extracted.

2. For each material, vertex and UV coordinates belonging to each face of that
material were found.
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3. Vertex coordinates were transformed to UTM33N using global.fwt.
4. A bounding box was computed for each material using the vertices’ UTM33N

coordinates.
5. The image textures were cropped to the extent of its respective bounding box.
6. The original textures were overwritten by the new cropped textures.
7. Vertex coordinates were normalized to the range [0, 1] based on each material’s

bounding box, and used directly as the new UV coordinates.
8. The OBJ file was overwritten with the new UV coordinates.

UTM

(−0.5, −0.5) (0.5, −0.5)

(−0.5, 0.5) (0.5, 0.5)

UTM UTM

(0, 0) (1, 0)

(0, 1) (1, 1)

UV

Crop

NormalizeTra
nsfo

rm

Exported mesh

Figure 9.1: Figure illustrating the concept of applying roof textures automatically.



Chapter 10

Projective Wall Texturing

This chapter will mainly focus on answering Research Question RQ3 (Can any
photo of a building be applied as a texture to a corresponding 3D object so that the
building looks realistic enough to be near indistinguishable from reality?). Some
initial insight is also given into Research Question RQ4 (Can we use photos taken
from a driving car to update building textures automatically in real-time?).

For a geographical digital twin to be useful for neural network training and
validation, it is important that the buildings look as realistic as possible. Wall
textures need to have a sufficiently high resolution, and should contain features
commonly found on walls like windows, balconies, and doors. neural networks
should be able to distinguish these features and recognize that the buildings are,
in fact, buildings. Automatically generated textures, like those generated by City-
Engine, are deemed to fulfill these criteria. However, in order for the scene to be
a true digital twin, it is important that the textures on the buildings mirror those
present in the physical world.

Ideally, this would be done automatically by one or more cameras moving
in the physical world. This is a difficult problem compounded of numerous sub-
problems. Therefore, experiments were conducted to examine the feasibility of
texturing buildings. The experiments were conducted in the form of performing
the texturing manually, in order to get an overview of the necessary steps involved
in the process. All building models used in this chapter were exported from 3D
Clip&Ship with the procedure outlined in Chapter 8.

10.1 Texture Mapping Experiment

First, a single flat surface of a single building was photographed. The surface in
question was chosen to be the south facing wall of the building at Sem Sælands
vei 5, located at coordinates

N63°25′0.46′′, E10°24′12.51′′ (10.1)
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Ideally, a texture for square-shaped wall should also be square-shaped. How-
ever, because of perspective distortion occurring when viewing a wall at an angle,
walls that are square in the physical often appear as irregular quadrilaterals in im-
ages. An example of this can be seen in Figure 10.1. This effect can become quite
large when dealing with photos taken from a camera-equipped vehicle, especially
when only using front- or back-facing cameras. These cameras are oriented par-
allel to the driving direction, while building walls often face perpendicular to the
driving direction. Considering this, a qualitative experiment was conducted in
order to compare the effects of viewing angles to the quality of the resulting tex-
ture. Sequence 10.1 shows the steps comprising the experiment, and the results
are shown in Section 13.1. Figure 10.2 shows a screenshot from the procedure.

Sequence 10.1 - Texture Mapping Experiment

1. The wall located at the coordinates in Equation 10.1 was photographed at
three different angles.

2. The photos were imported to Blender, along with a 3D mesh of the correspond-
ing building.

3. The relevant face was isolated from the mesh.
4. A new material was added to the mesh, and set to sample colors from a texture.
5. Blender’s camera was aligned to point at the face, parallel to the face’s normal.
6. While looking through the camera, the command ‘Project from View’ was ex-

ecuted. This enables UV editing in Blender’s UV editor.
7. The face’s UV coordinates were edited to align with the building wall.
8. The image was rendered and saved.

10.2 Perspective Correction

Using images as textures without performing corrections may result in parallel
lines becoming non-parallel (see Figure 13.1 for an illustration, and Sections 14.2
and 14.3 for a discussion on the phenomenon). An algorithm was created for cor-
recting the images (see Algorithm 10.1). The algorithm takes as input the four
corners of a square—usually a single building wall—as well as an image. From
those four corners, it corrects the perspective distortion of the input image. The
image is subsequently cropped to those same corners in order to simplify the as-
signment of UV coordinates. Cropping this way means that the texture will cover
the entire wall, meaning that in most cases, the only UV coordinates that need be
assigned are (0, 0), (0, 1), (1, 0), and (1, 1) for each respective corner.

The algorithm computes the lengths of the top and left edges respectively, and
uses these as the width and height of the output. It is assumed that these edges are
hypotenuses in their respective triangles. We can therefore use the Pythagorean
equation to compute the length of the hypotenuses:

l =
Æ

(∆x)2 + (∆y)2 (10.2)
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(a) Photo of a wall outlined in black.

(b) Wall outline without photo.

Figure 10.1: Example of a square wall projected to an irregular quadrilateral
when taking a photo.
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Figure 10.2: Screenshot from the UV editing process in Blender. The UV editor
is shown in the leftmost subwindow with UV vertices aligned to the building’s
corners.

The concept is illustrated in Figure 10.3.
Once the corners of the output image are computed, we apply a plane-to-plane

homography to the image. In the rest of this section, we will use the term ‘input
coordinates’ to mean a wall corner’s image coordinates before homography is ap-
plied, and ‘output coordinates’ to mean its image coordinates after application.

First, a transformation matrix is computed using the input and output corners.
To compute the matrix, we set up four matrix equations, one for each corner:

di = P · si , i = 1,2, 3,4 (10.3)

where di is the ith corner’s output coordinates; si is the ith corner’s input coordin-
ates; and P is the homography matrix needed to transform the input coordinates
to the output coordinates. The equations can alternatively be written like





ci x
′
i

ci y ′i
ci



=





a1 a2 t1
a3 a4 t2
p1 p2 1









x i
yi
1



 , i = 1, 2,3, 4 (10.4)

Here, (x i , yi) are the input coordinates of the ith corner; (x ′i , y ′i ) are the output
coordinates of that corner; and ci is a scaling coefficient. In P, a1–a4 denotes affine
transformation parameters like rotation, scaling and shearing; t1 and t2 are trans-
lation parameters; and p1 and p2 are projection parameters [39]. Solving these
equations for P will give the final transformation matrix. The results of applying
perspective correction are presented in Figure 13.1.
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(tlx , tly)

(trx , try)

Δx

Δy
l

Figure 10.3: Illustration of treating edges of a wall as hypotenuses to find the
dimensions of the output. Width derivation is shown here as an example. (t lx , t l y)
denotes the top left corner of the wall, and (t rx , t ry) denotes the top right corner.
∆x and ∆y denote the differences in x and y coordinates, respectively, between
the top left and the top right corner. Finally, l is the hypotenuse in the right triangle
with ∆x and ∆y as its catheti. The equivalent approach is used for calculating
the height of the output.

Algorithm 10.1 Perspective Correction

img ← LOAD_IMAGE ()

t l, t r, br, bl ← img.input_corners

w←
Ç

(t lx − t rx)
2 +
�

t l y − t ry

�2

h←
Ç

(t lx − blx)
2 +
�

t l y − bl y

�2

xmin← t lx
xmax ← t lx +w− 1
ymin← t l y
ymax ← t l y + h− 1

output_corners← ((xmin, ymin) , (xmax , ymin) , (xmax , ymax) , (xmin, ymax))
m← COMPUTE_MATRIX(img.input_corners, output_corners)
TRANSFORM_IMAGE (img, m)
CROP_IMAGE (img, xmin, xmax , ymin, ymax)
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10.3 Manual Texturing in Omniverse

A single perspective-corrected texture was then applied to the corresponding mesh
face in Omniverse Create. This software lacks the user interface to edit individual
vertices and texture coordinates, meaning that this must be performed program-
matically. As a proof of concept, the following steps were performed in order to
use an image to texture a single face of a building;

Sequence 10.2 - Manual Texturing

1. The relevant image was uploaded to Nucleus.
2. The corresponding mesh’s existing material was modified to sample colors from

a texture.
3. The ‘points’ attribute of the mesh, containing all its vertex coordinates, was

edited and immediately reverted. This creates a ‘delta’ in that mesh (i.e. a
change from the original OBJ reference). This is necessary in order to access
the ‘points’ attribute via code.1

4. For each vertex, a cube was created with the same coordinates as the vertex (see
Figure 10.4 for an illustration). This simplifies the task of determining which
vertices to assign UV coordinates to. The cubes were named according to the
corresponding vertex’s index.

5. The cubes belonging to the mesh face to be textured were manually identified
by their indices.

6. A list of the UV coordinates (0, 0) was initialized.
7. The list positions with the same indices as those identified in step 5 were as-

signed UV coordinates based on the coordinate scheme from Figure 2.8.

10.4 Image Collection, Preparation, and Application

As part of this experiment, three different buildings were manually textured. This
was done in order to uncover practical advantages and drawbacks with the tex-
turing phase. The three buildings are shown in Figure 10.5, and their addresses
and coordinate locations are shown in Table 10.1.

To collect textures, photos were taken from street level, either while standing
in the road lane for less trafficked roads, or on the edge of the pavement for roads
with heavier traffic. All photos were subsequently corrected using plane-to-plane
homography. In order to simplify this step, a tool was developed that allows for
rapid manual perspective correction. It works by displaying the non-transformed
photos one by one on screen, along with a black-bordered box. By clicking and
dragging on the image, the box corner closest to the mouse cursor will move
along with the cursor. By right-clicking, Algorithm 10.1 will be executed, using

1The fact that the existence of a delta is necessary in order to access an attribute of a reference
is considered a bug. Creating a delta is only a workaround for this issue.

2https://norgeskart.no/

https://norgeskart.no/
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Figure 10.4: Illustration of green guiding cubes used to determine which vertices
to assign UV coordinates to.

1

2

3

Figure 10.5: Map of the buildings that were manually textured. The numbers in
the map correspond to the building numbers in Table 10.1. The map was fetched
from Norgeskart.no.2
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Building
no.

Street name
Street
no(s).

Latitude (N) Longitude (E)

1 Sem Sælands vei 5, 7, 9 63°24′59.47′′ 10°24′11.41′′

2 Klæbuveien
64, 66, 68,

70, 72
63°24′55.48′′ 10°23′55.80′′

3 Holtermanns veg 2 63°24′53.05′′ 10°23′55.74′′

Table 10.1: Table showing the addresses and coordinates of the manually tex-
tured buildings. The building numbers correspond to the numbers shown in the
map in Figure 10.5. The information was fetched from Norgeskart.no. Latitudes
and longitudes are given in the WGS84 coordinate system.

the corner coordinates as inputs in the matrix equations from Equation 10.3. The
output of the script is a cropped image whose borders correspond to the borders of
the black box. The algorithm can be executed as many times as deemed necessary
per image. When the quality of the output is satisfactory, the image can be closed,
and the next one will appear on screen. This repeats until all images have been
consumed by the algorithm.

The walls comprising multiple images were then stitched together in Adobe
Photoshop. The sub-images were manually color-corrected to unify their exposure
and saturation. This reduces the occurrence of highly visible sub-image borders
across the texture. Figure 13.2 shows a stitched texture before and after exposure
and saturation correction.

Blender was used in order to quickly assign UV coordinates to each building
wall. All finished textures were imported to Blender and applied to the corres-
ponding mesh face. After the entire building was textured, the mesh was exported
to OBJ, and a reference was created in Omniverse Create to that OBJ file. Finally,
the transformation matrix from the Clip&Ship export’s global.fwt file was parsed
and applied to the building.



Chapter 11

Photogrammetric Wall Texturing

This chapter revolves around Research Question RQ4 (Can we use photos taken
from a driving car to update building textures automatically in real-time?). An al-
ternative method for applying textures to 3D buildings is introduced. For this pur-
pose, a method for wall texturing using photogrammetry was developed. This
method regards the buildings objects from exports such as Clip&Ship as ‘ground
truth’ objects for where the building should be located. An external photogram-
metry software then creates a textured 3D representation using a video of a geo-
graphical area taken from the perspective of a driving car. This mesh is georefer-
enced into the Omniverse scene, and the appropriate parts of that mesh’s geo-
metry is projected onto the ‘ground truth’ object. This results in a flat, textured
mesh laying on top of the already existing ground truth mesh.

11.1 Mesh Construction and Georeferencing

Video frames recorded from the front-facing camera of NAPLab’s car was used as
input to the photogrammetry software. First, every 10th frame was extracted from
the video, reducing the amount of images to process from 30 per second to 3 per
second. Then, images were gradually imported into the photogrammetry software
Meshroom, giving a reconstructed point cloud with relative camera positions. This
point cloud was converted to a textured mesh, resulting in a textured OBJ file.

Along with the recorded video, NAPLab’s car outputs a file with timestamps
for each frame of the video. The GNSS receiver also records timestamps for each
of its measurements. The video frames’ timestamps were first paired with each
camera position in the reconstructed scene. The camera positions are given in
an arbitrary local coordinate system. Then, the timestamps are matched up with
the timestamps of the GNSS recordings in order to give a real-life location to
the camera positions. Timestamps from the camera and the GNSS device do not
perfectly match, so a linear interpolation is performed on the GNSS coordinates.

We can use an affine transformation to georeference the constructed mesh.
We find the affine transformation matrix by considering three camera positions
and solving the following equation for T:
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u= Tp (11.1)

where u is the UTM33N coordinates of the chosen cameras, p is their local co-
ordinates, and T is the transformation matrix that transforms the coordinate val-
ues from local to UTM33N coordinates. Coordinate values should ideally have
as wide a range as possible in order to minimize precision errors. This method
assumes that the first, last, and middle frame fulfill this requirement sufficiently.
The resulting matrix was then applied to the imported mesh in Omniverse Create.
The Y dimension was found to be excessively scaled; thus, the Y component of
the scaling was replaced by the average of the X and the Z components. This was
done with the assumption that the mesh should roughly keep its aspect ratio after
georeferencing. The result is a georeferenced three-dimensional reconstruction of
a portion of the real world.

11.2 Projection to Ground Truth Geometry

The following section will refer to two different meshes. One will representing the
‘ground truth’ of a building’s geometry and will be called the building mesh. The
other will be a reconstruction resulting from photogrammetry and will be named
the photogrammetry mesh.

The following sequence outlines the procedure of aligning the geometry of the
photogrammetry mesh to the building mesh (see Figure 11.1 for an illustration):

Sequence 11.1 - Alignment of Photogrammetry Mesh to Building Mesh

1. The building mesh was translated so that one of the vertices of the face was
positioned at the scene’s origin.

2. The building mesh was rotated so that the face’s normal was oriented parallel
to one of the coordinate axes. In this case, the Z axis was arbitrarily chosen.

3. The same translation and rotation was applied to the photogrammetry mesh.
4. A filter was applied to determine which vertices of the photogrammetry mesh to

transform. More specifically, those vertices having X and Y coordinates inside
the current face were marked for transformation.

5. If more than half of the filtered vertices had their vertex normals pointing in
the general direction of the corresponding face of the building mesh, then all of
those vertices were marked for transformation. If not, then none of them were.

6. The marked vertices were scaled by a factor of 0 along the Z axis.
7. The transformations performed in steps 1–3 were reverted.
8. All vertices unaffected by the scaling in step 6 were removed from the photo-

grammetry mesh.
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X

Z

Origin

Building mesh

Photogrammetrymesh

(a) Example start state.

(b) Translation to origin, and rotation to align face normal to Z axis (steps 1–3).

(c) Filtering of vertices and projection to building mesh (steps 4–6).

(d) Final result, after un-rotation and un-translation (step 7).

Figure 11.1: Illustration showing the core concepts of aligning the photogram-
metry mesh to the building mesh. See Sequence 11.1 for reference.
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11.2.1 Translation to Origin and Rotation to Z Axis

The transformation matrix in step 1 is the following translation matrix:

Mt =







1 0 0 v1
0 1 0 v2
0 0 1 v3
0 0 0 1






(11.2)

where [v1, v2, v3]
T is the vertex coordinates of one of the faces in the building

mesh. The transformation matrix used in step 2 is a rotation matrix consisting of
two rotations. The first rotation, along the X axis, aligns the face’s normal vector
to the YZ plane. The other rotation, along the Y axis, aligns the normal to the Z
axis. These transformation can be represented as such:

Mr = Ry(θ2) ·Rx(θ1)

=







cosθ2 0 sinθ2 0
0 1 0 0

− sinθ2 0 cosθ2 0
0 0 0 1






·







1 0 0 0
0 cosθ1 − sinθ1 0
0 sinθ1 cosθ1 0
0 0 0 1







(11.3)

where θ1 is the amount of rotation to be performed along the X axis, and θ2 is the
subsequent rotation amount along the Y axis. sinθ1 and cosθ1 can be found by
considering the face’s homogeneous normal vector

−→v =
�

x y z 1
�T

(11.4)

and projecting that vector onto the YZ plane:

−→v ′ =
�

0 y z 1
�T

(11.5)

Then, consider a triangle spanned between the Z axis, −→v ′, and a line parallel
to the Y axis going through the endpoint of−→v ′. We can use trigonometry to rewrite
sinθ1 and cosθ1:

sinθ1 =
y
p

y2 + z2
cosθ1 =

z
p

y2 + z2
(11.6)

The intermediate vector after the first rotation can now be expressed as

−→v1 = Rx(θ1) ·
−→v =









x
0
p

y2 + z2

1









(11.7)
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For the second rotation, we can once again, we can consider a triangle spanned
between the Z axis,−→v1 , and a line parallel to the Y axis going through the endpoint
of −→v1 . Using trigonometry, we can rewrite sinθ2 and cosθ2:

sinθ2 =
x
p

x2 + y2 + z2
cosθ2 =

p

y2 + z2
p

x2 + y2 + z2
(11.8)

For simplicity, we use

α=
Æ

x2 + y2 + z2 β =
Æ

y2 + z2 (11.9)

The sines and cosines can then be written as

sinθ1 =
y
β

cosθ1 =
z
β

sinθ2 =
x
α

cosθ2 =
β

α

(11.10)

The final rotation matrix then becomes

Mr =















β
α 0 x

α 0

0 1 0 0

− x
α 0 β

α 0

0 0 0 1





























1 0 0 0

0 z
β − y

β 0

0 y
β

z
β 0

0 0 0 1















=















β
α − x y

αβ − xz
αβ 0

0 z
β − y

β 0
x
α

y
α

z
α 0

0 0 0 1















(11.11)

This gives us a transformation matrix that can be explicitly and directly construc-
ted from the face’s normal coordinates alone.

There are two edge cases that must be handled. One occurs when α = 0, i.e.
when x = y = z = 0. This happens when the face’s normal vector has no length
or rotation. This is considered an error, and is handled by returning the identity
matrix. The other edge case happens when β = 0, i.e. when y = z = 0 and x ̸= 0.
In this case, the face’s normal is parallel with the X axis. In order to rotate the
vector to the Z axis, one only needs one rotation 90° along the Y axis. The final
rotation matrix then becomes

Mr =







0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1






(11.12)
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11.2.2 Vertex Filtering

The filtering is performed in two steps. First, an axis-aligned bounding box is
created around the face in question. Because a face in and of itself has no volume,
its axis-aligned bounding box also has no volume. Therefore, the Z component of
the bounding box was extended by a fixed amount. All vertices located outside of
this bounding box remained unmarked for processing.

Then, a more fine-tuned filtering was performed. Because the face has been
aligned to be parallel to the Z axis, only the X and Y coordinates of the photo-
grammetry mesh’s vertices were sufficient for filtering. The face was treated as
a 2D polygon, and a point-in-polygon test was performed for every vertex in the
photogrammetry mesh, ignoring all Z values.

Subsequently, a decision was made as to whether any transformation of the
photogrammetry mesh’s vertices would be performed at all. All vertex normals
belonging to the filtered vertices were compared to the face normal of the current
face in the building mesh. If more than half of the vertex normals were at a less
than 90° angle compared to the face normal, then all of the vertices would be
transformed. Otherwise, none of the vertices would be transformed. The angle
between the vectors were computed by simple dot products, where a dot product
less than 0 represents an angle of less than 90°.

11.2.3 Zero-Scaling

After filtering, the remaining vertices were scaled with a factor of 0 along the Z
axis:

Ts =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1






(11.13)

Because one of the building mesh’s faces are parallel to the world’s Z axis and
touching the world’s origin, this transformation will in practice project the geo-
metry of the photogrammetry mesh to that of the building mesh. Then, both
meshes were transformed back to their original location and rotation. Finally, all
vertices of the photogrammetry mesh not affected by the scaling were removed.



Chapter 12

Virtual Reality

This chapter will explore Research Question RQ5 (Can a digital twin be visualized
in VR alongside real-time scene updates?). Basic VR functionality was implemented
for the USD scene. Omniverse contains an application called Omniverse XR for this
purpose. Omniverse XR supports head mount and controller tracking natively, as
well as movement and teleportation. As a proof of concept, the scene was rendered
using both SteamVR and CloudXR.

The SteamVR solution was run locally with a wired connection to the HMD.
In Omniverse XR, VR mode features both HMD and controller tracking, as well as
locomotion and teleportation. Controller models are visible in-world, along with
labels informing the user of the available control bindings. The most important
bindings are shown in Table 12.1 (see also Appendix B for a reference to the
physical input controls).

As for the CloudXR solution, Omniverse XR only supports running CloudXR
in Tablet AR mode. The rendered frames received by the client are meant for
smartphones and tablet devices, having no locomotion, teleportation, or controller
tracking. HMD tracking is supported, although with a limited field of view.

To set up CloudXR functionality, two separate computers were used. The com-
puter running the Omniverse XR application was designated to be the server. The
application runs the CloudXR server automatically, and informs which network

Control binding Effect
� Right stick, up Teleport
� Right stick, left/right Rotate left/right (30°)
� Left stick, up/down (oriented horizontally) Move forward/backward
� Left stick, up/down (pointing vertically) Move up/down
� Left stick, left/right Pan left/right
� Left trigger Faster movement speed

Table 12.1: The most important control bindings available in VR mode in the
Omniverse XR application.
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ports to use when connecting to the server. The server’s IP address was found by
running the ipconfig command in a command line interface. The other computer
was installed with the CloudXR client. Tablet AR was then started server-side in
the XR application, and the client was connected using the server’s IP address and
TCP port.



Part III

Results, Analysis, & Summary

‘If there is any truth in the world, it lies
when I’m with you, and if I find the

courage to speak my truth to you one
day, remind me to light a candle in

thanksgiving at every altar in Rome.’

— Elio Perlman
‘CALL ME BY YOUR NAME’

ANDRÉ ACIMAN





Chapter 13

Results

The results of the thesis are provided in this chapter. Note that the results are
mainly visual and qualitative.

13.1 Projective Wall Texturing

This section presents the results of the experiments performed in Chapter 10. Fig-
ure 13.1 shows results of applying a texture to a wall, before and after correcting
for perspective distortion. Subfigures 13.1a, d, and g shows unprocessed images,
with the wall of interest outlined in black. Subfigures 13.1b, e, and h shows the
respective results after applying the unprocessed images on a square mesh face.
Finally, subfigures 13.1c, f, and i shows the respective results after applying plane-
to-plane homography to the unprocessed images.

Figure 13.2 shows the result of performing exposure and saturation correc-
tion to a stitched texture. Furthermore, Figure 13.3 shows the manually textured
buildings introduced in Figure 10.5 and Table 10.1. The buildings in the images
have been automatically downloaded from Clip&Ship (see Chapter 8), and are
shown with both roof textures and manually applied wall textures (see Chapters
9 and 10 respectively).
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(a) Before

(b) After

Figure 13.2: Before and after performing exposure and saturation correction on
a stitched image textures.

13.2 Photogrammetric Wall Texturing

Figure 13.4 shows the results of projecting parts of a photogrammetry mesh onto a
building mesh. The meshes in question represent the main building of Gløshaugen
campus at NTNU, more specifically the building located at address Høgskoleringen
1. The figure shows both textured and untexture versions of the photogrammetry
mesh, the latter for a clearer visualization of the geometry. Furthermore, Figure
13.5 shows the processed mesh with unprocessed vertices removed, again tex-
tured and untextured. Figure 13.6 shows the finished photogrammetry mesh geor-
eferenced in Omniverse Create. Finally, Figure 13.7 compares closeups between
the projective and the photogrammetric texturing methods.

Some timing measurements were also performed in order to given an answer
to Research Question RQ4, specifically if we can use photogrammetry for real-time
processing of textures. A video taken from the front-facing camera of NAPLab’s car
was used. Every 10th frame of the video was extracted and grouped into batches
of 16 images each. Photogrammetry was performed on each of the batches sep-
arately. Figure 13.8 shows the running time for an arbitrary selection of batches,
taken from batches that succeeded in outputting geometry.
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(a) Building 1

(b) Building 2

(c) Building 3

Figure 13.3: All three manually textured buildings shown in Omniverse Create
(see Figure 10.5 and Table 10.1 for reference).
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(a) Before, textured

(b) After, textured

(c) Before, untextured

(d) After, untextured

Figure 13.4: The photogrammetry mesh before and after projecting to the build-
ing mesh, textured and untextured.
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(a) Textured

(b) Untextured

Figure 13.5: The photogrammetry mesh after removing unprocessed vertices,
textured and untextured.

Figure 13.6: The processed photogrammetry mesh alongside the corresponding
building mesh.
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(a) Projective method

(b) Photogrammetric method

Figure 13.7: Comparison of closeup textures between the projective and the pho-
togrammetric methods.
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Figure 13.8: Graph showing the photogrammetry running time for an arbitrary
selection of image batches. The red line shows the assumed upper limit for how
long a batch should take to process, on average, in order for real-time processing
to be possible (see Section 14.4 for more details).

13.3 Combined Results

A video displaying several aspects of the development was created. The video
consists of an animation displaying two cars in Omniverse driving on the scene’s
RoadRunner road network. The cars’ positions are updated in real-time with the
connector developed in Chapter 7. Along their path, they pass two manually tex-
tured buildings from Chapter 10. The video can be found here: https://www.
youtube.com/watch?v=QouP4eRdQ78

The same scenario was also recorded in VR using the Omniverse XR applic-
ation. The video is evidence that real-time data can be received and the scene
updated in real-time while simultaneously running in VR. It also illustrates the
most common movement options available in the scene. The video is found here:
https://www.youtube.com/watch?v=8BxljpSVJo4

Because of the presence of simulation metadata, the road network can be used
for vehicle simulation. The network was imported into the CARLA vehicle simu-
lator,1 and a short video was created showing a simulation running. The video
can be found here: https://www.youtube.com/watch?v=FVghWQggE0g

1https://carla.org/

https://www.youtube.com/watch?v=QouP4eRdQ78
https://www.youtube.com/watch?v=QouP4eRdQ78
https://www.youtube.com/watch?v=8BxljpSVJo4
https://www.youtube.com/watch?v=FVghWQggE0g
https://carla.org/


Chapter 14

Discussion

This chapter will mainly present practical challenges encountered during devel-
opment, as well as theoretical implications. At the end of the chapter, the research
questions will be revisited and answered.

14.1 Position Data

In the implementation of the position data connector introduced in Section 7, a
number of precision issues in the data were uncovered. In areas where the line
of sight between the car and navigation satellites is occluded, the GNSS readings
are largely imprecise, causing jitter in the car model’s travel path. Figure 14.1b
shows examples of this (compare with Figure 14.1a for an example of accurate
readings). Considering that the GNSS readings are used to orient the car as well,
these imprecisions cause the vehicle model to rotate unpredictably.

In some areas, the GNSS signals are missing completely, causing the GNSS
readings to have a value of 0 in all spatial dimensions. In practice, this is en-
countered by visible gaps in the car’s travel path, making the vehicle model virtu-
ally disappear from the scene. Examples of this are shown in Figure 14.1c.

In addition, errors in altitude readings were encountered, especially with the
car staying still in the horizontal plane. The altitude readings slowly but steadily
increased to the point of the car hovering several meters above ground. Examples
are shown in Figure 14.1d. This issue can largely be avoided using a height map
to set a vehicle model’s altitude (see Chapter 7 for more details).

For the purpose of correct positioning relative to road lanes, GPS technology
as used on NAPLab’s car can be imprecise, at least if used in isolation. Ideally,
readings should at least be precise to a few centimeters, while GPS technology
can have an error of several meters [18]. This is especially true in dense, high-rise
cities, where both aerial occlusion as well as reflective surfaces affect the quality of
the signal [40]. This gap in accuracy can be closed using the Galileo GNSS, created
by the European Space Agency. Galileo operates with a horizontal accuracy of less
than 20 cm and a vertical accuracy of less than 40 cm [19]. Additionally, using 5G
network signals or CPOS technology may further improve accuracy [20] [21].
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(a) Example of an accurate GNSS signal. Readings are evenly spread,
and changes in spread occur gradually when the vehicle drives normally
without any sudden stops or accidents.

(b) Jitter in the GNSS readings
caused by obstacles between the
vehicle and GNSS satellites.

(c) Missing GNSS readings
caused by obstacles between the
vehicle and GNSS satellites.

(d) Errors in altitude readings occurring while the vehicle stands still.

Figure 14.1: Examples from Omniverse showing inaccuracies in GNSS signals.
Individual GNSS readings are indicated by green squares with orange borders.



Chapter 14: Discussion 81

14.2 Building Texture Quality

The topic of building texture quality requires special attention. The main reason
for images and, by extension, building textures to be indistinguishable from reality
is that they should be as recognizable as possible for neural networks. There exist
several methods for validating the performance of an NN. However, comparing
numerical evaluation methods was deemed out of scope for this thesis. Because
neural networks are meant to mimic humans in their object recognition capab-
ilities, the evaluation method used for texturing merely relies on qualitative and
subjective object recognition capabilities to that of a human being. The following
list of factors impacting the quality of a building texture is not exhaustive, but is
rather meant to give a general sense of what aspects are important to assess the
quality of building textures:

• Resolution — Resolution is deemed to be high enough if individual texels
are indistinguishable from each other looking from any location on any road
or pavement.

• Proportions — Features on the digital texture should be equally propor-
tioned compared to the real-world wall—for example, equally sized win-
dows should be equally sized in the texture.

• Completeness — The entire texture should be present on the correspond-
ing wall, and all parts of the wall should be covered by the corresponding
texture.

• Parallel lines — Lines that are parallel in real life should also be parallel
in the texture. The opposite suggests that the texture has been erroneously
warped in some way.

14.3 Projective Wall Texturing

Applying building textures is arguably the most difficult problem encountered
during this thesis. Having accurately textured buildings is an integral part of a
digital twin, especially one used for training neural networks with scene renders.
It is important that the wall textures in the scene mimic the look of real-world
walls accurately, and that no unnatural phenomena occur that can confuse the
NNs and cause them to learn erroneous features.

The process of manual wall texturing proved to be a tedious and laborious
one. However, it produces satisfactory results given that the camera used is of
sufficient quality. In most cases, buildings will be distant enough from the car that
the applied textures, and the lack of subtle geometric features like window sills
and door knobs, are near indistinguishable from an actual building wall. However,
the process unearthed many issues, many of which are addressed in the rest of
this section.
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14.3.1 Perspective Correction

Perspective correction is important in order to fulfill the requirement regarding
parallel lines from Section 14.2. Based on the results in Figure 13.1, we observe
that the size of the texture’s diagonal artefact is proportional to the angle between
the facing of the wall and the heading of the camera. This artefact happens be-
cause all texel values between the four vertices are linearly interpolated. This
method of interpolation is called affine texture mapping. A common way to solve
this by dividing the u and v coordinates with a depth value z [41]. However, the
images taken are RGB images without depth information. One way to solve the
problem is by supplying the RGB images with LiDAR readings; another is by using
plane-to-plane homography as shown in Section 10.2.

However, usage of homography can bring its own set of problems. Figure 14.2
shows a corrected image with varying resolution. This can occur if the angle θ
between the wall’s normal vector n⃗ and the camera’s orientation vector c⃗ is large
(see Figure 14.3 for reference). The example used is the image from Figure 13.1i.
The rightmost square shows a section of the wall having a satisfactory resolution.
This section was located closest to the camera. The leftmost square shows a sec-
tion with considerably lower resolution, located further away from the camera.
This section of the wall does not fulfill the resolution requirement from Section
14.2. This result suggests that pixel density in the corrected image is inversely
proportional to the distance between the camera and the corresponding point on
the wall’s surface. It also suggests that in order to achieve a uniform pixel density
within the texture, all parts of the texture should be located at roughly the same
distance from the camera. In other words, the camera should be oriented as par-
allel to the wall’s normal vector as possible. Using side-facing vehicle cameras will
mostly solve this problem, as they will be pointing approximately parallel to most
walls located at the side of the road.

A high, uniform resolution is important in order to keep all parts of the wall
recognizable for a neural network. If parts of a wall are severely impacted by
resolution loss stemming from perspective correction, then the NN may wither
fail to recognize the wall, or worse, label it incorrectly.

Objects protruding from the wall can also cause artefacts after applying homo-
graphy. Figure 14.4 shows an example of lamps extending perpendicularly from
a wall. Subfigure 14.4a constitutes a section from Figure 13.1c, and shows lamps
extending from a wall in an image taken nearly perpendicularly to said wall. Sub-
figure 14.4b constitutes a section from Figure 13.1i, and shows the same lamps
where the image has been taken at a large angle from the wall. In this case, the
lamps are warped across large portions of the texture, giving the appearance of
the lamps being rotated from its real-world perpendicular angle. This can be a
source of confusion for neural networks, potentially causing false predictions.
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Figure 14.2: Illustration emphasizing the difference in resolution within an image
that has been perspective corrected from an image taken at a sharp angle.

14.3.2 Obstructing Geometry

Often, the line of sight between the camera and the building walls can be ob-
structed. For example, Figure 14.5 shows a walking bridge obstructing the view
of two different walls. This causes the bridge to become part of the texture that
is applied to the building mesh. One possible way to remedy this is to sample
the wall from different points of view. The effectiveness of this method depends
on the distance between the obstacle and the wall—the larger the distance, the
greater the effect of moving the camera. This has to do with the parallax effect,
where faraway object will, if projected to a plane, move slower across the plane
compared to closer objects. Figure 14.6 illustrates this phenomenon and shows
how it solves the problem with obstructing geometry.

Obstacles can appear in many variants with varying degrees of problematic-
ness. Stationary objects, like trees and other buildings, will obstruct walls over
longer periods of time. Movable objects like cars, pedestrians, and smaller sea-
sonal vegetation can pose less of a problem. Artefacts caused by these obstacles
can be remedied simply by making another pass when they are absent.

From an NN standpoint, minimizing occlusion is particularly important. If
there are many objects present within categories that a typical traffic NN is trained
on (like people and cars), this can cause an autonomous vehicle to misunderstand
the traffic situation, causing it to behave unpredictably.
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(a) Small θ , small distortions.
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(b) Large θ , large distortions.

Figure 14.3: Illustration of how the angle θ between a wall’s normal vector n⃗ and
the camera’s orientation vector c⃗ affects distortions arising from plane-to-plane
homography.

(a) Texture without protrusion distortion (taken from Figure 13.1c).

(b) Texture with protrusion distortion (taken from Figure 13.1i).

Figure 14.4: Illustration showing how objects protruding from walls can cause
inaccuracies in photos taken from sharp angles from a wall.
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(a) Untreated image with walking bridge.

(b) Textures with obstructing walking bridge applied to building mesh.

Figure 14.5: Example of a walking bridge obstructing building walls, and the
result of applying the corresponding textures to the building mesh.
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(a) (b)

Figure 14.6: Illustration of how the parallax effect can solve parts of the obstruct-
ing geometry problem. The red overlay in one subfigure represents areas revealed
from the other subfigure by panning the camera.

14.3.3 Missing Geometry

Sometimes, the available building meshes lack important geometric features. Fig-
ure 14.7 shows how textures for building corner—where the corner has an over-
hang not present in the 3D model—are applied to said 3D model. Not only does
the resulting texture respond improperly to movement in terms of parallax; it also
contains visual information that is not part of the building itself. For example, as
shown in Figure 14.7d, both street signs, humans, vegetation, and other buildings
are erroneously textured onto the 3D mesh.

14.3.4 Incremental Updates

In the case of walls being too large to be textured from a single image, multiple
images need to be combined. A solution is to use image stitching to expand the
texture continuously as new video frames are taken. There are a number of exist-
ing software and algorithms that can be used for this purpose [42].

14.3.5 Incomplete Texture Coverage

In many cases, buildings will be incompletely textured, both with manual and
automatic approaches. Figure 14.8 shows an example of an untextured area us-
ing the manual approach in Chapter 10. Here, missing textures are shown as
black areas. In automatic approaches, this phenomenon can frequently occur if
only side-facing vehicle cameras are used. Such cameras will most often record
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(a) Building mesh. The corner closest to the viewer is missing an overhang and pillars.

(b) Corner, looking north (c) Corner, looking west

(d) textures applied to a building with missing geometry.

Figure 14.7: Example of a building missing large amounts of geometry compared
to its real-life counterpart and the acquired image textures. The building shown
is Building 2 from Table 10.1.
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Figure 14.8: Example from the manual texturing process showing Gløshaugen’s
IT building (Building 1 from Table 10.1) with a missing part of its texture.

walls located close to the road. Only small sections of said walls will be recor-
ded, meaning that large parts, especially on tall buildings, can be left untextured.
One solution is using automatically generated textures, like those exported from
CityEngine in Brekke’s thesis [1].

14.3.6 Lens Distortion

Very often, because camera lenses are not able to capture its surroundings per-
fectly, there will be lens distortion present in the images. The most common way
for lens distortion to manifest itself is by curving originally straight lines. This can
cause curved texture segments to be applied to straight mesh edges, giving an
erroneous texture mapping. This distortion can be reversed by applying mathem-
atical distortion models to the distorted image. One of the most basic equations
for distortion correction is the polynomial equation [43]

r2 = r1

�

k0 + k1r1 + k2r2
1 + · · ·+ kn−1rn−1

1

�

(14.1)

where r1 is the original radius of a point along the image’s radial direction, r2 is the
new radius after correction, and k0, . . . , kn−1 is a series of n distortion coefficients.
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14.3.7 Difficult Weather Conditions

Autonomous vehicles perform best in clear weather with bare roads. However,
weather conditions can vary wildly, not only between seasons, but also on a day-
to-day basis. Winters, for example, can be characterized by occasional heavy snow-
fall, reducing the visible range around the vehicle. This can lead to NNs not re-
cognizing vehicles in front of it, which in turn can cause traffic accidents. This is
also true for heavy rainfall during warmer conditions, which is predicted to be-
come worse as the effects of climate change worsen. Also, snow-covered roads is
a cause for road lanes being invisible to the cameras, meaning that vehicles may
have difficulties navigating safely.

Special care must be taken in order to avoid dangerous scenarios. Neural net-
works should be trained with low-visibility images taken in difficult weather con-
ditions. These images should be collected initially with a human driver controlling
the vehicle. In addition, a digital twin with precise and accurate lane positionings
can be used to guide the autonomous vehicles using GNSS signals, in case lane
markings should be occluded.

14.3.8 Automation

The method and experiments performed in Chapter 10 were largely manual. In
order to automate the process, there are a number of additional obstacles to over-
come. Firstly, a method for determining which parts of an image belong to a wall
needs to be designed. This can be done with an AI method called keypoint extrac-
tion to detect the corners of a wall. Technologies proposed by D. Jeong and Y. Kim,
modified for use on street-level images, can be used [44] for this purpose. Once
four keypoints are identified, plane-to-plane homography can be performed auto-
matically, with special handling of images containing partial walls. Image stitch-
ing algorithms can optionally be used to compose a set of partial textures before
performing keypoint extraction. Alternatively, GNSS coordinates—along with azi-
muth and accelerometer readings from the car—can be used for pose estimation.
This, in turn, can be used to determine where the texture should be applied [25].

14.4 Photogrammetric Wall Texturing

As mentioned in Section 11, there were inaccuracies in the Y scaling component
of the photogrammetry mesh after georeferencing. There are two hypotheses for
why this occurs. The first stems from the fact that camera locations often lie very
close to each other in the Y direction. A car moves predominantly in the horizontal
plane, with only small increments of change in altitude. The resulting transform-
ation may contain numerical imprecisions. The other hypothesis involves the alti-
tude measurements received from the car’s GNSS unit. These readings may them-
selves be inaccurate, considering that are measured with only two decimal digits.
Both of these reasons may influence each other to create an inaccurate scaling.
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Using a single monocular image sequence may also give too little data for the
photogrammetry algorithms to produce accurate results. The output meshes and
textures occasionally contain large amounts of distortion, as shown in Figure 13.7.
This figure also illustrates the phenomenon where different parts of the texture
have been sampled with differing distances between the camera and the building.
The lower part of the texture has been sampled at closer range compared to the
upper part, giving a non-uniform resolution within the texture. These result do not
fulfill the requirements that textures should preserve parallel lines and proportions
(see Section 14.2. If textures are sampled long-range, the method may also not
fulfill the resolution requirement.

Photogrammetry is also prone to a range of different situations that commonly
arise. For example, one single-colored wall may contain too few distinguishing
features for the algorithms to compare with, especially if the image resolution is
low. This may cause reconstruction to be inaccurate at best, or completely missing
at worst. Inaccuracies can also arise where there are many similar or repeating
features. Also, reflective surfaces can cause the algorithm to recognize areas of
interest in the mirrored images, making it ‘reconstruct’ non-existing geometry.

Finally, the process may be too time-consuming for real-time processing. We
assume that in order to achieve real-time processing, the time used for processing
one batch of images is less than or equal the amount of time spanned by the frames
in that batch. Using n for the total number of video frames per batch, f for the
video framerate, and that every ith frame from the video is used, the total number
of seconds s used to process the photos from each batch is

s =
ni
f
=

16 · 10
30s−1

≈ 5.33 s (14.2)

The condition we wish to fulfill is

s ≤ p (14.3)

where p is the average processing time per batch. As seen in Figure 13.8, all selec-
ted batches use a running time of almost two minutes or more, with an average
running time of p ≈ 197 seconds. This is considerably larger than the 5.3 seconds
needed to achieve real-time processing.

14.5 Other Topics

14.5.1 Privacy

When it comes to digital twins in general, large amounts of data from a multi-
tude of sources is often required. This can have negative implications concerning
the privacy of individuals. This is especially true for digital twins in the medical
domain, where patients’ health conditions are subject to data collection [5].

In the case of a traffic-oriented digital twin, privacy is usually related to the
possibility of identifying pedestrians and cyclists, and connecting them to a digital
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record of their location at any point in time. It is also related to vehicle license
plates being identified, and similarly the possibility to locate these in space and
time as well. One way of keeping the identities of individuals and vehicles hidden
is to perform blurring on the relevant areas of the images recorded by cameras.
This can be automated by utilizing NNs to segment the images, and subsequently
blurring the segmented areas. Non-visual data should also be aggregated in order
to decouple it from personal identities.

14.5.2 Upscaling

In order for a digital twin to be fully functional regarding predictions and accur-
acy, a vast amount of data is necessary. In order to give an accurate representation
of traffic flow and congestion, one needs an accurate up-to-date record of the loc-
ations of vehicles, cyclists, and pedestrians. Connectors should be designed with
special consideration of large data volumes—for example, they can be configured
to collect updates from multiple sources in close temporal proximity, and update
multiple in-scene objects in a single scene update. Connectors may also need to
run on datacenter-type hard drives in order to handle the large amount of disk op-
erations necessary to support large-scale multi-entity operations. Additionally, in
order to run predictions when simulating changes in the road network, one needs
an accurate and vast history of driving patterns, likely coupled with an artificial
intelligence for learning said patterns.

For building textures to be accurate and high-resolution, a large amount of
data needs to be collected. Both projective and photogrammetric wall texturing
suffer from the fact that images from street-level actors only may not be suffi-
cient. Ideally, camera-equipped Unmanned Aerial Vehicles can sweep the area
with regular spatial and temporal intervals. The resulting images can then either
be projected onto buildings using GNSS locations and pose estimation, or they
can be used in a photogrammetry pipeline. Using projective texturing may be
considerably faster, although building geometry needs to be updated in a separ-
ate process. Using photogrammetric texturing, although slower, will give updated
building geometry in addition to textures.

14.6 Research Questions

RQ1: Can dynamic location data of a physical entity be transferred to a digital
3D scene in order to update it in real-time?

In Chapter 7, a script was created to update the Omniverse scene automatically
with position data. Even though values were read from CSV files, the positions of
the vehicles were updated in real-time as data was received.
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RQ2: Can a three-dimensional model of a geographical area be acquired or
created, especially with terrain, buildings, and roads; and to what degree
can this be automated?

A road network model manually created in RoadRunner was used as part of
this project’s foundation. Some options exist for automating this (see Section
15.2). Using the Clip&Ship service from Geodata, 3D buildings and terrain models
can be automatically acquired as shown in Chapter 8. In Chapter 9, a proof-of-
concept code was developed for automatically applying roof textures to building
meshes. Wall textures can be acquired manually using projective wall texturing
(see Chapter 10), or automatically with photogrammetry (see Chapter 11). An
automatic method using keypoint extraction was also briefly discussed in Section
14.3.8.

RQ3: Can any photo of a building be applied as a texture to a corresponding
3D object so that the building looks realistic enough to be near indistinguish-
able from reality?

In Chapter 10, we examined the viability of performing wall texturing manually.
By taking photos with high enough resolution and performing perspective correc-
tion, most photos of a building wall can be applied to the corresponding 3D mesh.
However, photos that are taken at a sharp angle compared to the facing direction
of the wall might not be suitable for texturing.

RQ4: Can we use photos taken from a driving car to update building textures
automatically in real-time?

In Chapter 11, a method was designed that uses photogrammetry and GNSS read-
ings to automatically texture buildings. Section 13.2 shows that photos taken from
a car can indeed be used for reconstructing a textured building mesh. However,
as discussed in Section 14.4, the results often have undesirable distortions. Of-
ten, parallel lines become warped, proportions are not always preserved, and the
resolution is often too low. The process may also be too time-consuming to be
suitable for real-time processing.

RQ5: Can a digital twin be visualized in VR alongside real-time scene up-
dates?

As shown in Chapter 12, the scene was successfully rendered using VR techno-
logy, while the position of multiple vehicle models were updated in real-time. For
this thesis’ simple setup, using SteamVR above CloudXR gave the more satisfying
results and may be more suited for the purpose of digital twin visualization.



Chapter 15

Conclusion & Future Work

15.1 Conclusion

This thesis revolved around research and development into digital twins, and
used an area around Gløshaugen in Trondheim, Norway as a case example. The
main topics of interest were real-time scene updates, especially regarding the po-
sitioning of entities; wall and roof texturing; and virtual reality. The aspect of
wall texturing was examined in particular depth. A manual method using hand-
picked photographs, perspective correction, and careful stitching was conducted.
An automatic method using photogrammetry was also explored.

Results show that real-time position updates, retrieval of building geometry,
and roof texturing were relatively straightforward to accomplish. Conversely, wall
texturing proved to be particularly difficult, and deserves further research and de-
velopment. The projective method produces satisfactory results when performed
manually, and acts as a solid foundation for exploring further possibilities re-
garding real-time automation. The photogrammetric method, although possible
to automate without artificial intelligence, is prone to visual distortions, at least
when input is limited to only one front-facing camera recording while driving.
The process is also too slow to be used for real-time purposes.

VR was also briefly explored in this thesis. SteamVR provided the best navig-
ation options using a VR headset. It was also proved that VR could be combined
with a digital twin’s real-time updates.

15.2 Future Work

One aspect in particular that deserves more thorough explorations is the simu-
lation aspect. NVIDIA has developed a vehicle simulation software called DRIVE
Sim.1 Road networks developed with RoadRunner can be used alongside DRIVE
Sim to provide a vehicle simulation environment within Omniverse, that in turn
can be combined with the rest of the digital twin. The road network itself can

1https://developer.nvidia.com/drive/drive-sim
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also be further developed, for example by settings speed limits and creating signs
and traffic lights. Some automation can possibly be performed, for example by
using data from OpenStreetMap2 and Geonorge. Alternatively, aerial and street-
level photography combined with AI and conventional algorithms could be used
for detecting road features such as road dimensions, lane markings, signage, and
traffic lights [45] [46] [47].

As of this thesis, the position data connector only reads prerecorded data
points from a file. The first logical improvement would be for the connector to
accept real-time data from a driving car. This could be achieved by configuring
the vehicle to post its data to a web server, which in turn can do optional data
processing and then forward the data to the connector. Another option could be
to utilize the Robot Operating System (ROS)3 that is already equipped on NA-
PLab’s vehicle to collect and send the data.

Roof texturing can be easily improved by changing the method of segmenting
the roof from the rest of the mesh. A roof can be interpreted as a set of faces
that have an angle of less that 90° from the world’s up axis. This means that roof
texturing is only dependent on the geometry of the mesh, and not on the presence
of pre-applied textures.

Photogrammetric texturing can also benefit from improvements. Although
probably unsuitable for real-time processing, photogrammetry has the potential
to create highly realistic and complete building models, especially when using
camera-equipped UAVs [27] [48].

The VR implementation in this thesis, although functional, is minimal. It serves
as a proof of concept, and can be greatly expanded. One example is implementing
overlays that can display information like text and figures. Overlays could show
the temperature at a specific location time. Alternatively, one could navigate a
timeline showing both previously recorded and predicted temperatures in the near
future. Warnings about traffic congestion or road work could appear where rel-
evant. Construction workers could be informed about damages to buildings that
have been identified using either manual inspection of collected 3D models or
by trained artificial intelligences. Property developers could visualize new build-
ings, as well as move them and change their dimensions without performing any
preliminary construction.

2https://www.openstreetmap.org/
3https://www.ros.org/

https://www.openstreetmap.org/
https://www.ros.org/
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Part IV

Appendices

‘But how will people get around? They
will have to buy my latest invention! It’s
like a car, but it can drive on the surface
of water! Behold! You like it? I call it the
“Buoyancy Operated Aquatic Transport”,

or “BO-AT” for short.’

— Dr. Heinz Doofenshmirtz
PHINEAS AND FERB





Appendix A

Code

All the code used for this thesis is written in Python, and can be found at https:
//github.com/al3xknutsen/tdt4900-master. Note that the code will not run as-
is—file paths have been anonymized, and certain asset files like height maps and
orthophotos are not distributed due to copyright laws. Nonetheless, the repository
contains package requirements and some simple instructions if running the code
is deemed desirable.

103

https://github.com/al3xknutsen/tdt4900-master
https://github.com/al3xknutsen/tdt4900-master




Appendix B

Meta Quest 2 Controls

Figure B.1 gives a reference to the control bindings available for the controllers
of the Meta Quest 2 VR headset.

Left controller Right controller

Right stickLeft stick

Right gripLeft grip

Left trigger Right trigger

Y button

X button

B button

A button

Menu button Oculus button

Figure B.1: Map of input controls and their names belonging to the controllers
of the Meta Quest 2 VR headset.
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Appendix C

3D Clip&Ship API Reference

This appendix contains a reference to the usage of the 3D Clip&Ship REST API.
Table C.1 contains an attribute reference for acquiring access tokens to the ser-
vice.1 Likewise, Table C.2 contains a reference for the building export itself. List-
ing C.1 contains an example string used for retrieving access tokens. Furthermore,
Listing C.2 contains an example of a geometry object used to define the borders
of the geographical area to export. Finally, Listing C.3 shows an example string
used for performing the building export.2

Code listing C.1: Example message sent to the Geodata Online API in order to
receive an access token.

1 {"username": "olanormann",
2 "password": "verysecurepassword123",
3 "client": "requestip",
4 "expiration": 1440,
5 "f": "pjson"}

Code listing C.2: An example of a geometry object used for specifying the border
of the Clip&Ship export. This object is used as a value for the omrade attribute.
Text in SMALL CAPS are variables—EPSG is the EPSG code of the chosen coordinate
system, and COORDS is a list of coordinate pairs in that coordinate system defining
the outer boundary of the area to export.

1 {{"geometryType": "esriGeometryPolygon",
2 "features": [{{
3 "geometry": {{
4 "rings": [COORDS],
5 "spatialReference": {{
6 "wkid": EPSG,
7 "latestWkid": EPSG}}}}}}],
8 "sr": {{
9 "wkid": EPSG,

10 "latestWkid": EPSG}}}}

1URL: https://services.geodataonline.no/arcgis/tokens/generateToken
2URL: https://services.geodataonline.no/arcgis/rest/services/Geoeksport/

3DClipAndShip/GPServer/ClipAndShip3D/submitJob
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Attribute name Description Data type Possible values

username
Geodata Online
username

String —

password
Geodata Online
password

String —

client
What client the
token should be
valid for

String
• ip1

• referer2

• requestip3

ip†
Client IP address
(use only if client
= ip)

String —

referer†
Client web URL
(use only if client
= referer)

String —

expiration
Token validity (in
minutes)

Integer ∈ [0,525 600]

f Response format String • pjson

† Only used if client ̸= requestip, i.e. for this thesis, they were ignored.
1 Token should only be valid for one explicitly given IP address.
2 Token should only be valid for one explicitly given URL.
3 Token should only be valid for the IP address that requested the token.

Table C.1: Attribute reference for obtaining access tokens for the Clip&Ship ser-
vice. All other API calls must have a valid token. Values marked in bold were used
for this thesis.

Code listing C.3: Example message sent to the Clip&Ship API to export buildings.

1 {"omrade": {{"geometryType": "esriGeometryPolygon", "features": [{{"geometry": {{"
rings": [[[270635.22491466044, 7040341.124050389], [270682.85000991065,
7040212.800877076], [270612.73528634786, 7040183.035192545],
[270559.1570541914, 7040316.650043108], [270635.22491466044,
7040341.124050389]]], "spatialReference": {{"wkid": "25833", "latestWkid":
"25833"}}}}}}], "sr": {{"wkid": "25833", "latestWkid": "25833"}}}},

2 "innhold": ["3D Bygg med taktekstur"],
3 "format": ["Wavefront OBJ"],
4 "navn": "bygninger1",
5 "projeksjon": "EPSG:25833 (UTM33N)",
6 "epost": "emailaddr@emailprovider.extension",
7 "Web_projeksjon": "Samme som leveranseprojeksjon",
8 "min_vegetasjon_hoyde": 2, "f": "pjson", "env:outSR": "25833",
9 "token": "fdeuphpg94qu2put2942v1q0kr"}
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Attribute name Description Data type Possible values

omrade
Outer bounds
of the area to
export

Geometry
object

see Listing C.2

navn
Name of
export

String —

innhold
What type of
data to
export

List of
strings

• FKB (bygg, vann, veg)
• 3D Bygg
• 3D Bygg med taktekstur
• 3D Bygg med taktekstur

og veggtekstur
• Overflateobjekter (gjerder,

stolper, etc.)
• Ortofoto
• Vegetasjon (laserdata)
• Tre/skog (generert fra

laserdata)
• Detaljert terrengmodell

format
Export’s file
format

List of
strings

• ArcGIS Online
• ArcGIS Pro
• AutoCAD DWG
• IFC
• 3D-PDF
• Collada
• Sketchup
• 3ds
• CityGML
• LandXML
• Wavefront OBJ
• ArcGIS Enterprise

epost
Destination
e-mail
address

String —

Continued on next page.
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(Continued)

Attribute name Description Data type Possible values

projeksjon
Export’s map
projection

String

• EPSG:25832 (UTM 32N)
• EPSG:25833 (UTM 33N)
· · ·

• EPSG:25836 (UTM 36N)
• EPSG:3857 (Web

Mercator)
• Lokal UTM-sone
• Lokal NTM-sone
• EPSG:5105 (NTM sone 5)
· · ·

• EPSG:5130 (NTM sone
30)

• EPSG:4326 (WGS 1984)

Web
_projeksjon*

Map
projection of
web delivery

String

• EPSG:25833 (UTM 33N)
• EPSG:3857 (Web

Mercator)
• Samme som

leveranseprojeksjon

min_vegetasjon
_hoyde*

Minimum
altitude of
vegetation
data (in
meters)

Integer > 0

f
Response
format

String • pjson

env:outSR

EPSG
number of
the chosen
projeksjon
value

String
∈ {3857, 4326} ∪
[5105,5130]∪
[25832,25836]

token Access token String —

* Attributes need a value in order for the export to succeed, but their values are irrelevant
for this thesis.

Table C.2: Attribute reference for exporting data from Clip&Ship. Values marked
in bold were used for this thesis.



Index

3
3D Clip&Ship 30, 34, 35, 45, 51, 92
3D transformation . . . . . . . . . . . . . . see

transformation

A
Adobe Photoshop . . . . . . . . . . . 29, 60
affine texture mapping . . . . . . . . . . 82
affine transformation . . . . . . . . 56, 61
artificial intelligence . . 3, 11, 89, 93
autonomous vehicle . . 3, 11, 23, 35,

89

B
bicubic interpolation . . . . . . . . . . . . 41
Blender . . . . . . . . . . . . . 29, 38, 54, 60

C
camera-equipped vehicle . 3, 11, 30,

35, 53, 86
camera-equipped vehicles . . . . . . . 23
CityEngine . . . 28, 30, 35–37, 53, 86
Clip&Ship . . . . . . . . see 3D Clip&Ship
CloudXR . . . . . . . . . . . . . . . . . . . . 29, 67
coordinate system

UTM . . . . . . . . 13, 37, 41, 51, 61
UV . . . . . . . . . . . . . . 17, 51, 58, 60
WGS84 . . . . . . . . . 13, 16, 37, 41
XYZ . . . . . . . . . . . . . 17, 42, 64, 65

D
digital twin . . . . . . . . .3, 9, 23, 90, 93
dot product . . . . . . . . . . . . . . . . . . . . . 66

E
Euler angle . . . . . . . . . . . . . . . . . . . . . 20

G
georeferencing . . 37, 46, 51, 61, 62,

73, 78, 89
gimbal lock . . . . . . . . . . . . . . . . . . . . . 20
GNSS . . . . 16, 30, 41, 61, 79, 89, 92
GPS . . . . . . . . . . . . . . . . . . . . . . . . .16, 79

H
HD map . . . . see high-definition map
height map . . . . . . . . . see terrain map
high-definition map . . . . . . . . . 11, 37
homogeneous coordinates . . . . . . .18
homography . . . . . . . . see perspective

correction

I
image stitching . . . . . . . . . . 23, 60, 86
irregular quadrilateral . . . . . . . . . . .53

K
keypoint extraction . . . . . . . . . . . . . 89

L
lens distortion . . . . . . . . . . . . . . . . . . 88
linear interpolation . . . . . . . . . . . . . 61

M
material . . . . . . . . . . . . . . . . . 17, 51, 58
Meshroom . . . . . . . . . . . . . . . . . . 28, 61
mosaicking . . . . . see image stitching

N
neural network 3, 4, 11, 30, 53, 81,

82, 89, 90
Norge i bilder . . . . . . . . . . . . . . . 34, 51
normal

face – . . . . . . . 17, 54, 62, 64–66
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vertex – . . . . . . . . . . . . . 17, 62, 66

O
OBJ . 30, 33, 34, 38, 46, 51, 58, 60,

61
object space . . . . . . . . . . . . . . . . . . . . .20
Omniverse

connector . . . . . . . . . . . . . . .27, 41
Create . . . 28, 36, 45, 58, 60, 61
Drive . . . . . . . . . . . . . . . . . . . . . . . 45
Nucleus . . . . . . . . . . . . . 27, 45, 58
XR . . . . . . . . . . . . . . . . . . 28, 29, 67

orthophoto . . . . 5, 33, 34, 36, 45, 51

P
parallax . . . . . . . . . . . . . . . . . . . . . . . . .83
perspective correction . . .54, 56, 58,

71, 82, 89, 92, 93
photogrammetry 21, 23, 28, 35, 61,

73, 89, 90, 92–94
photorealistic rendering . . . . . . 3, 27
plane-to-plane homography . . . . . see

perspective correction
point cloud . . . . . . . . . . . . . . . . . . . . . 61
point-in-polygon test . . . . . . . . . . . . 66
pose estimation . . . . . .23, 28, 61, 89
Pythagorean equation . . . . . . . . . . . 54
Python . . . . . . . . . . . . . . . . . 41, 54, 103

Q
quaternion . . . . . . . . . . . . . . . . . . 20, 42

R
raytracing . . . . . . . . . . . . . . . . . . . . . . 27

real-time . . . . . . . 3, 4, 10, 11, 92, 93
RoadRunner .28, 30, 34, 36, 37, 92,

93

S
simulation . . . . . . . . . . . . . 3, 4, 28, 93
SteamVR . . . . . . . . . . . . . . . . . . . .29, 67
stitching . . . . . . . . see image stitching

T
terrain map . . . . . . . . . . . . . . . . . 34, 41
transformation . . 18, 42, 48–50, 62,

64
affine . see affine transformation

U
Universal Scene Description see USD
USD . . . . . . . . . . . . . 27, 30, 33, 36, 37
UTM . . . see coordinate system, UTM
UV . . . . . . see coordinate system, UV

V
virtual reality . 4, 21, 24, 28, 30, 67,

92–94, 105
VR . . . . . . . . . . . . . . . see virtual reality

W
WGS84 . . . . . .see coordinate system,

WGS84
world space . . . . . . . . . . . . . . . . . 20, 48

X
XYZ . . . . see coordinate system, XYZ



‘...and if you were to ask me
after all that we’ve been through:

“Still believe in magic?”
Oh, yes I do.

Yes, I do.
Yes, I do.
Yes, I do.

Of course I do.’

— Coldplay
‘MAGIC’
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