
A sem
i-supervised approach to bird song classification

Em
anuele Caprioli

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Emanuele Caprioli

A semi-supervised approach to bird
song classification

Master’s thesis in Computer Science
Supervisor: Keith L. Downing
June 2022

M
as

te
r’s

 th
es

is

Emanuele Caprioli

A semi-supervised approach to bird
song classification

Master’s thesis in Computer Science
Supervisor: Keith L. Downing
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Ecosystems have, in the last years, seen dramatic changes than at any other times
in human history. Bioindicators like birds are monitored by ornithologists, to screen
the environment’s quality. Deep learning methods showed promising results in the
field of polyphonic sound events and bird song recognition. Nevertheless, such
methods require extensive datasets, requiring many hours of field research as well
as substantial domain knowledge to collect and label bird sound recordings. With
the advance of electronics and microphone technology, recording units capable of
recording 24/7 can be deployed virtually anywhere, reducing the need of human
presence on site, and easily building big unlabeled datasets.

In this thesis, a Semi-Supervised (SSL) approach to bird song classification
based on FixMatch is presented. FixMatch is a novel SSL method developed with
the image classification domain in mind, and with the purpose of exploiting un-
labeled recordings in order to increase a classifier performance.

Results showed that FixMatch is indeed both applicable to the domain of bird
song classification and compatible with Transfer Learning, using weights com-
puted on an image dataset. The findings showed that raw-audio augmentation
yielded no particular advantages against audio-sensitive image augmentation. The
method managed to increase the classifier performance, also when presented with
an unlabeled set composed by half unknown classes. The system built in this thesis
showed potential, suggesting that future work like building a model capable of
classifying more bird types and testing on real soundscape recordings, should be
investigated.

iii

Sammendrag

Økosystemer har sett mer dramatiske endringer enn noen annen gang I mennes-
kets historie. Bioindikatorer som fugler overvåkes av ornitologer, for screening av
miljøets kvalitet. Dyplæringsmetoder har produsert lovende resultater innen poly-
foniske lyderhendelser og gjenkjenning av fuglesangfeltet. Likevel krever slike
metoder omfattende datasett, som krever mange timer med feltforskning samt
betydelig domenekunnskap for å samle inn og merke fuglelydopptak. Med frem-
skritt innen elektronikk og mikrofonteknologi kan opptaksenheter som er i stand
til å ta opp 24/7 plasseres praktisk talt overalt, noe som reduserer behovet for
menneskelig tilstedeværelse og kan enkelt bygge store umerkede datasett.

I denne oppgaven presenteres en Semi-Supervised (SSL) løsning til klassifiser-
ing av fuglesang basert på FixMatch. FixMatch er en ny SSL-metode utviklet for
bildeklassifisering, og med omfanget av å utnytte umerkede opptak for å øke klas-
sifiseringsytelsen.

Resultatene viste at FixMatch er både anvendelig for fuglesangsklassifiserings-
domenet og kompatibel med Transfer Learning, ved å bruke vekter beregnet på
et bildedatasett. Funnene viste at rålyd augmentering ikke ga noen spesielle for-
deler mot lyd-tenkte bilde augmentering. Metoden klarte å øke klassifiseringsy-
telsen, også når den ble presentert med et umerkede datasett der halvparten av
lydsporene stammer fra ukjente klasser. Systemet som ble laget i denne oppgaven
viste potensiale, og antydet at fremtidig arbeid som å bygge en modell som er i
stand til å klassifisere flere fugletyper og teste på ekte lydlandskapsopptak, bør
undersøkes.

v

Preface

This work is the culmination of the Master’s program TDT4900 at the Norwegian
University of Science and Technology (NTNU), Department of Computer Science
(IDI).

This thesis was supervised by professor Keith L. Downing, whom I would like
to thank for all the invaluable guidance and feedback I received during the last
year. I would like to thank the Xeno-Canto community for the retrieval of the high-
quality bird recordings, and the people at Cornell Lab of Ornithology for compiling
the dataset that makes this thesis possible. Lastly, I would like to thank my friends
and family for all the support I have received, with a special thanks to my twin
sister Licia.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 3
1.4 Thesis Outline . 3

2 Background Theory . 5
2.1 Sound Representation . 5

2.1.1 Signals and Sampling . 5
2.1.2 Frequency Domain . 7
2.1.3 Short Time Fourier Transform 7
2.1.4 Mel Spectrograms . 8

2.2 Bird Songs Variations . 8
2.3 Deep Learning Architectures . 10

2.3.1 Convolutional Neural Networks 10
2.3.2 Deep Residual Networks . 12
2.3.3 Transfer Learning . 14
2.3.4 Data Augmentation . 15

2.4 Semi-Supervised Learning . 16
2.4.1 Pseudo-Labeling . 16
2.4.2 Consistency Regularization . 17

2.5 Evaluation Metrics . 18
2.5.1 Binary Classification . 18
2.5.2 F1-Score . 19
2.5.3 Multi-Class Classification . 19

2.6 Chapter Summary . 20
3 Related Work . 21

3.1 Deep learning Approaches in Audio Domain 21
3.2 Semi-Supervised and Unsupervised Approaches in Audio Domain . 24

ix

x Emanuele Caprioli: Master Thesis

3.3 Structured Literature Review Protocol 26
3.4 Chapter Summary . 27

4 Method . 29
4.1 Data . 29

4.1.1 Dataset . 29
4.1.2 Dataset Selection . 32

4.2 Frameworks and Libraries . 33
4.2.1 Pytorch . 33
4.2.2 Data Augmentation Libraries 33

4.3 System Pipeline . 35
4.3.1 Dataset Preprocessing . 35
4.3.2 Dataloader . 36
4.3.3 Mini-Batch Processor . 37
4.3.4 Model Architecture . 37
4.3.5 Hyperparameter Search . 39

4.4 FixMatch . 41
4.4.1 Algorithm . 41
4.4.2 Mini-Batch Learning . 42
4.4.3 Confidence Decay . 45

4.5 Baselines Implementation . 45
4.6 Chapter Summary . 45

5 Results . 47
5.1 Experiments Plan . 47
5.2 Experiment Results . 49

5.2.1 Augmentation Techniques Categorization 49
5.2.2 Main Experiment . 53
5.2.3 Long Training . 58
5.2.4 All Labels Comparison . 58
5.2.5 Variations to FixMatch . 61
5.2.6 Various Unlabeled Ratios . 63
5.2.7 Unknown Classes in the Unlabeled Set 67
5.2.8 Other Choice of Augmentation Techniques 69
5.2.9 Best Models . 71

5.3 Results Analysis . 72
5.3.1 Use of Pretrained Weights . 72
5.3.2 FixMatch Effect on Bird Sounds Dataset 75

5.4 Chapter Summary . 76
6 Conclusion . 81

6.1 Discussing Around the Research Questions 81
6.2 Future Work . 82

6.2.1 Increasing the Dataset Balance 83
6.2.2 Changes in the FixMatch Implementation 83
6.2.3 Accuracy Improvements . 83
6.2.4 Testing on Real Landscape Recordings 84

Contents xi

Bibliography . 85
A Data . 89

Figures

2.1 A signal example . 6
2.2 Digital sampling of Audio signal . 6
2.3 Fourier Transform . 7
2.4 Blue Jay call representation . 9
2.5 Mel Scale . 10
2.6 Spectrograms example of dialects similarities 11
2.7 CNN Architecture . 12
2.8 Convolutional Layer . 13
2.9 Residual Layer . 14
2.10 Data augmentation . 15
2.11 Semi-supervised Learning example . 16
2.12 Confirmation Bias example . 17
2.13 Confusion matrix - metric . 19

4.1 Subset classes balance . 31
4.2 Dataset types energies . 32
4.3 Dataset locations plotted . 33
4.4 System Pipeline . 36
4.5 Mini-batch processing . 38
4.6 Model Architecture . 40
4.7 FixMatch . 41
4.8 Pseudo-label generation . 43
4.9 Included examples in FixMatch . 44
4.10 Total system pipeline . 46

5.1 Audio augmentation study results . 50
5.2 Image augmentation study results . 52
5.3 Main Experiment plots results . 54
5.4 Main Experiment pseudo-labels study 56
5.5 Main Experiment pseudo-labels study with pretrained weights . . . 57
5.6 Long training plots results . 59
5.7 Long training pseudo-labels study . 60
5.8 All labels comparison plots . 62
5.9 FixMatch variations plots results . 64

xiii

xiv Emanuele Caprioli: Master Thesis

5.10 FixMatch-Image variations pseudo-labels study 65
5.11 FixMatch-Image-Pretrained variations pseudo-labels study 66
5.12 FixMatch-Image-Pretrained pseudo-labels study with various labeled

ratios . 68
5.13 FixMatch-Image 50% external unlabeled set pseudo-labels study . . 70
5.14 FixMatch-Image final models pseudo-labels study 73
5.15 F1-score in function of labels used . 74
5.16 Most common data-sets types . 77
5.17 Data-sets types - 5% and 10% labels 78
5.18 Heatmap of 5% labels trained models 79
5.19 Spectrograms example of Mallar3 and Amerob 80

A.1 Dataset classes balance . 89
A.2 Samples-Rating distribution . 90

Tables

4.1 Ratings statistics . 31

5.1 Audio augmentation time utilization 51
5.2 Image augmentation time utilization 51
5.3 Chosen data augmentations . 53
5.4 Main experiment 25 epochs results . 53
5.5 100 epoch study of SL and FixMatch 58
5.6 Theoretical maximum accuracy . 61
5.7 Comparisons between FixMatch variations 67
5.8 Various unlabeled ratios . 67
5.9 Comparisons between FixMatch variations 69
5.10 Alternative FixMatch augmentations 71
5.11 Comparisons between FixMatch with different augmentations . . . 71
5.12 Final trained models results . 72
5.13 SL training with different lr . 73

xv

Chapter 1

Introduction

This chapter introduces the research area and its relative difficulties, along with
the steps this thesis is taking towards solving it. The problem background and
some of the related work is presented in section 1.1, the research questions and
goal for this thesis are formulated in section 1.2, the research method is introduced
in section 1.3, and, finally, the thesis outline is listed in section 1.4.

1.1 Motivation

In modern times, both managed and natural ecosystems have seen dramatic changes
more than in any other times in human history, leading to habitat destruction, soil
erosion, pollution, climate change and species extinction [1]. Monitoring of all bi-
otic and abiotic factors leads to a better understanding of the situation of the
given environment. Nevertheless, due to the complexity of such task, bioindic-
ators are instead monitored for screening of the environment’s quality. The term
bioindicator refers to living organisms such as animals, plants and microbes. Their
high position in the food chain [2], capability of reflecting changes in other anim-
als and plants, and high sensitivity to environmental contaminants make birds a
valid bioindicator [3].

Domain experts traditionally mark the presence of birds in an environment
either by asserting their visual traits or by listening to their sounds. Some limit-
ation comes with this method, for instance the inability for humans to reach or
operate in some environments with relative comfort and the requirement of a do-
main expert on the scene. With electronics becoming more affordable, increasing
cellular coverage and the advancing of microphone technology, the positioning of
recording units capable of 24/7 recording seems the most sensible way of monitor-
ing birds [4]. Such units can have either local storage with months-worth capacity
of audio recordings, or even transmitting high quality streams in real time, redu-
cing the time a domain expert needs to employ on the field in order to classify
bird species.

1

2 Emanuele Caprioli: Master Thesis

In the recent years, deep learning methods like CNN (e.g. [5] [6]), CRNN (e.g
[7] [8]), ResNet (e.g. [4]), CapsNet (e.g. [9]) and pretrained architectures (e.g
[10]) showed potential in classifying polyphonic sound events,i.e., sounds that
can overlap. Deep learning methods require substantial quantity of labeled data
to train in a Supervised Learning (SL) fashion, as data is not always available, or
expensive to acquire. Alternatives lie within utilization of unlabeled data to im-
prove the accuracy of the models. Such methods, called Semi Supervised Learn-
ing (SSL), yielded comparable state-of-the-art performance within image domain
(e.g., [11] [12]) and audio domain (e.g., [13] [14][15]).

Xeno-Canto [16] is a community driven platform where ornithologists and
bird watchers can share recordings of bird sounds. The data collection, contain-
ing over ten thousands different species, is weakly labeled, i.e., each recording is
tagged with only the foreground and some of the recognized background species,
lacking information such as on-offset, i.e., start and stop of the bird song in the
recording. This limitation amplifies the need to explore alternative methods that
rely on weakly labeled data, with motivation in both improving classifiers train-
ing on this specific dataset and developing classifiers for other audio domains,
where sufficient labeled examples are resource-heavy to acquire, as opposed to
unlabeled examples.

1.2 Goals and Research Questions

The project goal and review of the research questions are presented as it follows:

Goal Reducing the labeled data needed to reach baseline performance on classifica-
tion of bird sounds.

The goal of this project is to test SSL methods on training a classifier that
achieves the same performance of the baseline methods, while utilizing less labeled
data.

Research question 1 How do SSL methods applied in other domains perform on
bird songs in comparison to a sensible baseline?

Semi Supervised Learning methods have been extensively applied on image clas-
sification tasks. While some work in the sound classification task has been conduc-
ted, few and outdated works benchmark purely on bird songs, where similarities
between calls and intraspecies dialectal differences can have an impact on learn-
ing from unlabeled features.

Research question 2 To which extent can the labeled-to-unlabeled examples ratio
be reduced before degradation of the system?

Chapter 1: Introduction 3

Semi-supervised learning methods utilize both labeled and unlabeled examples
during training, where the ratio of labeled-to-unlabeled can be tweaked and adap-
ted to the dataset available. In the case where the unlabeled set includes external
sounds and noises, reducing the aforementioned ratio could result to a worse clas-
sifier performance compared to only using labeled examples.

1.3 Research Method

The project will focus on FixMatch, a rather novel algorithm for training models
in a semi-supervised fashion, and its applicability on the bird song domain. The
performance of such model will be benchmarked against a baseline trained only
on the labeled subset and fine-tuning of a pretrained model, due to the similarity
of application between transfer learning and semi-supervised learning.

1.4 Thesis Outline

The rest of this thesis is organized as follows: theoretical knowledge required for
a better understanding of the concepts discussed in this thesis are presented in
chapter 2, related research regarding the problem area of bird sound classifica-
tion and semi-supervised learning approaches are briefly listed in chapter 3, the
system pipeline is described in chapter 4, while the experiment plan, results and
analysis are presented and discussed in chapter 5. Finally, this thesis’ conclusion,
final remarks and suggestions for future work is available in chapter 6.

Chapter 2

Background Theory

This chapter presents the background knowledge this thesis is based on. Audio sig-
nal theory is introduced in section 2.1, and an insight into the bird song domain is
presented in section 2.2. Deep learning architectures are explained in section 2.3,
while Semi-supervised learning methods are discussed in section 2.4. Finally, the
evaluation metrics used in this thesis are presented in section 2.5.

2.1 Sound Representation

2.1.1 Signals and Sampling

Sound is the repetition of a signal during time. In Figure 2.1, a sinus wave is
plotted over time. Here, the "Period" represents the time needed for the signal to
repeat itself, while the "Amplitude" shows the signal’s intensity from the reference
point. The "Frequency" of the signal is 1 over period and it represents the number
of times the signal repeats itself in the span of one second.

A continuous signal consists of infinite data points and is impossible to repres-
ent on a digital medium without any kind of manipulation. "Sampling" is a tech-
nique where the signal is divided in evenly spaced samples and one data point
per sample is saved for the digital representation of the signal. The number of
samples per one second is defined as "Sampling Rate", while the length of a sample
is defined as "Sampling Period" [17]. Figure 2.2 exemplifies a sampling, where the
same signal is sampled with a lower sample rate on the left and a higher rate on
the right.

Good sound representations are required in order to construct a good machine
learning system.A good representation is simultaneously small in size and rich
in information. To put things in perspective, a five-second-long clip sampled at
44.1kHz produces 220500 data points, a representation too big for the majority
of applications.

5

6 Emanuele Caprioli: Master Thesis

Figure 2.1: A sinus signal plotted over time, with its period and amplitude marked
out.

Figure 2.2: Digital sampling of the same audio signal. In the graph on the left,
the sampling rate is lower than in the right. It can be noticed that more of the
signal features are retained when a higher sample rate is used.

Chapter 2: Background Theory 7

2.1.2 Frequency Domain

The majority of audio signals are not periodic signals. Fourier Theorem states
that every non-periodic signal is composed of sums of multiple periodic signals,
each with their own frequency and intensity. Fourier Transform is a mathematical
function that decomposes a signal into its distinct components, resulting in the
"Spectrum", namely a plot of all of the frequencies of a signal and their intensities
within a given time frame. The Fourier Transform maps a signal from the time
domain to the frequency domain. An example of such mechanism can be seen in
Figure 2.3, where the original non-periodic signal is plotted in red. Fourier Trans-
form then proceeds by separating each of the composing periodic signals, plotted
in different shades of purple, producing the frequency spectrum, plotted in blue.

Figure 2.3: Fourier Transform maps the signal from the time domain to the fre-
quency domain. Illustration by Phonical [18], shared under the CC BY-SA 4.0
license.

2.1.3 Short Time Fourier Transform

In the case of non-periodic signals, the frequencies that compose said signal change
over time, making the spectrum of the entire audio signal a poor representation.
Short Time Fourier Transform (STFT) is an algorithm that divides a signal into
overlapping windows of time and computes the Fast Fourier Transform of each
window, resulting in a "spectrogram" [19]. Fast Fourier Transform efficiently im-
plements the Discrete Fourier Transform, a mathematical function that applies
the Fourier Transform on discrete signal rather than continuous, such as the res-
ult of sampling of signal, discussed in subsection 2.1.1. Figure 2.4a shows a 7.5
seconds-long signal corresponding to the call of a Blue Jay, sampled at 22.050kHz.

8 Emanuele Caprioli: Master Thesis

Applying the STFT to the signal, with a window size of 2048 and 25% overlap,
the 7.5 seconds long signal produces a resulting vector of 7.5s∗22.050kHz

2048∗0.25 = 323
columns, as seen in Figure 2.4b. Each column of the spectrogram includes the
magnitude - also referred to as energy levels - of all the frequencies present dur-
ing that specific window of time.

2.1.4 Mel Spectrograms

The Mel Spectrogram is a spectrogram of a signal where the frequencies are
mapped to the "mel scale". The mel scale is a scale of pitches and perceived fre-
quencies where humans asses them to be equally distant [20]. The Mel scale,
illustrated in Figure 2.5, has a quasi-logarithmic nature compared to a linear
Hertz scale, due to the fact that humans perceive the change between 100Hz
and 200Hz to be of higher significance over, for instance, between 1000Hz and
1100Hz or between 10000Hz and 10100Hz, despite them being of the same dif-
ferential quantity. The reference point between the Mel and Hertz scale is set by
equating a pitch of 1000 Mels to 1000Hz. Mels can be computed by converting
Hz frequencies using the formula found in Equation 2.1.

m= 2595log10(1+
f

700
) (2.1)

Energy levels in the mel spectrogram are mapped to decibels (dB), a logar-
ithmic scale expressing relative change between two signals, where each 3dB in-
crease represents a doubling of the intensity.

2.2 Bird Songs Variations

Birds produce a large variation of sounds, each for a different occasion. Some
of those variations are: calls, mating calls, songs and duets. At the same time,
more variations of such sounds exists, like between male and female exemplars of
the same species, during different life stages, and dialects, making the bird song
domain a non trivial one.

An example of dialectal differences can be observed in the blujay call spec-
trograms showed in Figure 2.4b and Figure 2.6a, where the former is computed
on a recording retrieved just outside Montréal (Canada), while the latter was re-
trieved in Florida (USA), a distance of around 2500Km between the two locations.
The two spectrograms differ greatly, with almost no similarities, even though they
represent the same species call. On the other hand, the spectrogram of the brown-
crested flycatche call from the Honduras, shown in Figure 2.6b, shares some sim-
ilarities with the blujay call from Florida. Similarly to the blujay example, the
brown-crested flycatche call from Arizona, shown in Figure 2.6c, differs also from
the counterpart from the Honduras, and shows resemblance to the Canadian blu-
jay call.

Chapter 2: Background Theory 9

(a) Signal when magnitude plotted against time. Sampling rate of
22.050kHz.

(b) Short Time Fourier Transform computed with a window length of
2048 samples (about 93ms of length) and energy levels normalized
against the dB scale.

Figure 2.4: "Blue Jay call from Canada" signal (a) and it’s spectrogram repres-
entation (b). Clip from the Xeno-Canto collection.

10 Emanuele Caprioli: Master Thesis

Figure 2.5: Mel scale plotted against the linear Hertz scale.

2.3 Deep Learning Architectures

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a subset of machine learning designed
for processing grid like data, by learning spacial invariant features from lower to
higher level patterns [21]. Convolutional, Pooling and Fully Connected (FC) lay-
ers are the building blocks of the CNN architecture: the first two are repeatedly
stacked, followed by one or multiple FC layers, as seen in Figure 2.7. Their design
is inspired by the animal visual cortex, where the first layers learn low level fea-
tures like lines and edges, while the subsequent layers detect progressively more
complex features such as eyes, nose and faces. In CNNs, convolutional and pooling
layers are responsible for feature extraction, while the FC layers are utilized as a
classifier head. Training occurs with the "Backpropagation" algorithm, where the
network updates its learnable parameters in order to minimize the loss, computed
via a "Loss fuction" from the network output and the ground truth.

The convolutional Layer performs a linear convolutional operation by apply-
ing a small array of numbers called "kernel" on its input tensor. The Input tensor
has a dimension of C x W x H, where C is the number of channels. In an image
classification task, the input channel C represents the number of color channels,
while W and H are the pixel width and height of the image, respectively. Each con-
volutional layer has K "Kernel stacks" of a predefined shape of I x N x M, where I
is the number of channels of the input (for the first layer I = C applies), while N
and M are the size of the convolutional filter, as shown in Figure 2.8. Each kernel
stack is then translated over the input tensor, computing an element-wise product
of each element of the input tensor and the kernel, summing it up along the I

Chapter 2: Background Theory 11

(a) Blujay "call" from Florida

(b) Brown-crested Flycatcher "call" from the Hon-
duras

(c) Brown-crested Flycatcher "call" from Arizona.

Figure 2.6: Dialects differences showed in the spectrograms computed on the
blujay and brown-crested flycatcher calls. A strong resemblance between the blu-
jay call from Florida and the brown-crested flycatcher from the Honduras can be
observed here. On the other hand, those similarities do not apply when inspect-
ing the intraspecies calls retrieved from samples found in different locations, like
between the brown-crested flycatcher calls from the Honduras and Arizona, and
between the blujay calls from Florida and Canada, the latter blujay call shown in
Figure 2.4b.

12 Emanuele Caprioli: Master Thesis

Figure 2.7: The CNN architecture is achieved by stacking multiple convolutional
and pooling layers, to then finish with one or muliple fully connected (FC) layers.

dimension, to then produce K outputs called feature map. The output of a convo-
lutional layer is then of shape K x P x Q, where P and Q are dependent on the size
of the kernel, the hopping length "stride" and the input padding technique used.
The equations for calculating the output P and Q are shown in Equation 2.2 and
Equation 2.3.

P =
W − N + 2 ∗ padding

st ride
+ 1 (2.2)

Q =
H −M + 2 ∗ padding

st ride
+ 1 (2.3)

Each kernel can be thought of as a feature extractor.
The output of the convolutional operation is then passed through a non-linear

activation function that maps the output values to another scale. Example of non-
linear functions are Sigmoid, where outputs get mapped between 0 and+ 1, Tahn,
between -1 and +1, and ReLU, where negative values are set to zero while the
positive ones are left unchanged.

Pooling layers are responsible for selecting the extracted features from the
previous layer, while simultaneously reducing the dimensionality of the input and
therefore the number of learnable parameters in the subsequent layers [21]. Pool-
ing layers have the capability of selecting "translational invariant features", fea-
tures that are resilient to small shifts and distortions. Analogously to convolutional
layers, the output of a pooling layer is dependent on the stride, the filter size and
the padding technique, and therefore the calculations of the output shape are the
same as in Equation 2.2 and Equation 2.3.

2.3.2 Deep Residual Networks

Deep Residual Network (ResNet) [22] is a CNN based architecture, born from
the assumption that very deep networks should perform at least as good as their

Chapter 2: Background Theory 13

Figure 2.8: Inside the first convolutional layer of the network showed in Fig-
ure 2.7. The convolutional layer has a predefined number of kernels K that, ap-
plied to the input tensor, produce K output feature maps. In this example, six ker-
nels of shape 3x5x5 (same amount of channels as the input, I = C) are applied
to the input of shape 3x32x32 to produce an output tensor of shape 6x28x28,
when a stride of 1 is used and no padding is being applied. Marked in blue is the
component used to produce one feature map.

14 Emanuele Caprioli: Master Thesis

shallow counterpart. The introduction of residual blocks, depicted in Figure 2.9,
allows the network to skip connection within the block and acting as an identity
layer when needed, by so avoiding degradation of the network performance. With
this design, very deep networks can be conceptualised that are not subject to the
vanishing gradient problem, namely a learning freeze in the earlier layers of the
network due to gradients updates becoming smaller during backpropagation. The
original ResNet architecture designed for solving the ImageNet dataset incorpor-
ated a total of 152 layers, while newer and popular variants are less deep, like
ResNet50 and ResNet18 which incorporate 50 and 18 layers, respectively.

Figure 2.9: Illustration of a Residual block. The input x is passed trough a function
f() composed by two convolutional layers with a ReLU activation in between. The
input x is then added directly to the function output F(x) and the result activated.

2.3.3 Transfer Learning

Traditionally, a model is trained from scratch on a specific task, but in a scen-
ario where not enough labeled training examples nor enough resource exist, good
performance can be challenging to achieve. Transfer learning (TF) is the concept
of transferring the knowledge acquired from a task in a domain to another task
in another domain [23]. In neural networks-based architecture like CNN, trans-
fer learning can be applied by utilizing a state-of-the-art architecture design like
VGG-16 or ResNet, "pretrained" on a vast and balanced dataset like ImageNet. As
seen in subsection 2.3.1, CNNs are build ups of convolutional and FC layers with
each its trainable parameters called weights. An implementation of TL is freezing

Chapter 2: Background Theory 15

all the convolutional layers of the pretrained model, stopping weights update at
these levels, and design a new classifier head of FC layers on top of it that matches
the desired application domain, discarding the old one. The transferred layers are
in this case utilized as the feature extractor, while only the new classifier head is
permitted to update weights.

CNNs learn to extract simpler features in the earlier layers. Another applica-
tion of transfer learning is "fine-tuning", where only the weights from the earlier
layers of the pretrained model are transferred and frozen, leaving other feature
extraction and FC layers able to update the weights. This is particularly useful
the more the domains differs, for instance when applying knowledge from a pre-
trained model on an image domain to a sound classification task: features learned
in the earlier layers, like lines, curves, angles and points can be useful, while higher
level and more complex features like eyes, faces and cars are irrelevant.

2.3.4 Data Augmentation

Data augmentation is a technique used in order to increase the number of ex-
amples in a small dataset, without the need of creating new synthetic data. It does
so by applying a single transformation, or a combination thereof, to the original
data, producing more or less altered versions that the model can utilize during
training, making it more capable of generalizing. Figure 2.10 shows an example
of data augmentation, where a figure of a dog has been flipped and cropped, res-
ulting in three times the amount of training data. Even after the application of the
transformation, the label "dog" has not been changed. Other noteworthy image
augmentation techniques apply rotation, translation, flipping, and change of con-
trast, or brightness, to the input. The only constraint to data augmentation is that
the transformed output must retain enough information for the model to make a
sensible prediction.

(a) Original (b) Flipped (c) Cropped

Figure 2.10: A sample picture for a class "dog". Transformations have been ap-
plied to the original sample to produce two new samples, by flipping and crop-
ping.

16 Emanuele Caprioli: Master Thesis

2.4 Semi-Supervised Learning

Deep learning architectures learn by backpropagating the gradients update ob-
tained by minimizing the loss computed through a loss function, the network
output and the ground truth. In "Supervised Learning (SL)", the ground truth is
available for the training set in its entirety. In "Unsupervised Learning (UL)", al-
gorithms discover patterns and similarities without the need of labeled examples.
Situated between SL and UL, "Semi-Supervised Learning (SSL)" utilizes a small
amount of labeled examples and a larger amount of unlabeled examples during
training [24]. SSL methods are often applied to domains where labeled examples
are costly to acquire, while, at the same time, an abundance of unlabeled examples
exist. SSL is based on the assumption that points that are close to each other are
likely to share the same label. The top half of Figure 2.11 shows the separation
function found when only two labeled example (one for each class) is utilized.
Despite it being a valid separation, when unlabeled examples are introduced, a
more correct separation evolves out of the assumption that the points close to
each other share the same label, better separating the two clusters.

Figure 2.11: Learned separation function when only labeled examples are used
versus introducing unlabeled data in a semi-supervised fashion.

2.4.1 Pseudo-Labeling

Pseudo-Labeling [25] is a semi-supervised technique where unlabeled data is util-
ized during training in a supervised fashion. Firstly, the model is trained with SL
on a labeled subset. Secondly, for each weight update, pseudo-labels for the un-
labeled subset are generated by selecting the class with the highest value out of
the probability produced by the same model: see Figure 4.8 for a graphic visualiz-
ation of this mechanism. The pseudo-labels are then incorporated in the training
set if above a predefined threshold, meaning that the model is confident enough

Chapter 2: Background Theory 17

about those predictions. Lastly, the loss is calculated by the loss function in Equa-
tion 2.4, where the first part is the averaged labeled mini-batch loss and the second
part is the averaged unlabeled mini-batch loss adjusted by a coefficient α. Such
coefficient is adjusted to leverage the importance of the unlabeled data. A good
strategy is to gradually increase the value with the training epoch, due to the fact
that pseudo-labels should be more accurate as the model trains.

L =
1
n

n
∑

m=1

C
∑

i=1

L(ym
i , f m

i) +α(t)
1
n′

n′
∑

m=1

C
∑

i=1

L(y
′m
i , f

′m
i) (2.4)

Pseudo-labeling struggles in situations where datasets are of higher dimen-
sionality and clusters are more complex than the one showed in Figure 2.11. This
is due to a a phenomenon called "Confirmation Bias", namely overfitting on in-
correct pseudo-labels predicted by the model [26]. In such cases, the network
wrongly labels unlabeled examples and incorporates such examples into the learn-
ing process, leading to incorrect boundaries being learned, seen in Figure 2.12.

Figure 2.12: A confirmation error example. In the training epoch 0, the model
is presented with one labeled example from each class, and many unlabeled ex-
amples. In epoch 1, the model mislabels one of the unlabeled examples, assign-
ing the class green. The error is propagated in epoch 2, where the green label is
wrongly assigned to the neighbouring unlabeled examples, leading to learning a
more incorrect separation function than the one found in Figure 2.11.

2.4.2 Consistency Regularization

Consistency Regularization is a SSL method that encourages the network to pro-
duce consistent output probabilities between an unlabeled example and a per-
turbed version of it [27]. The perturbed example is generated by applying some

18 Emanuele Caprioli: Master Thesis

kind of transformation to the original example. The model is trained by trying
to minimize the distance between predictions of augmented versions of the same
unlabeled example, using the loss function shown in Equation 2.5, where α() rep-
resents a stochastic augmentation function.

µB
∑

b=1

∥pm(y|α(ub))− pm(y|α(ub))∥
2
2 (2.5)

2.5 Evaluation Metrics

When training a machine learning model, a metric for knowing how well that
model is performing is required.

2.5.1 Binary Classification

In binary classification, each instance to be predicted is member of either the "pos-
itive" or "negative" class, two arbitrary and non-overlapping classes. Predictions
and the true labels can be plotted together in a confusion matrix, as in Figure 2.13,
where:

True Positive The classifier correctly predicts the positive class

False Positive The classifier incorrectly predicts the positive class (also
called Type 1 error)

False Negative The classifier incorrectly predicts the negative class (also
called Type 2 error)

True Negative The classifier correctly predicts the negative class

Precision and recall are metrics for evaluating a classifier. Formulas for calcu-
lating the aforementioned metrics are the following:

Precision=
TruePosi t ive

TruePosi t ive+ FalsePosi t ive

Recal l =
TruePosi t ive

TruePosi t ive+ FalseNegative

Precision is the ratio of correctly identified instances of the positive class over
all the positive predictions. Recall, also referred to as sensitivity, tests the classifier
ability of identifying the true positive.

Chapter 2: Background Theory 19

Figure 2.13: Confusion matrix representing the relation between predictions and
their true label. The case where the classifier incorrectly predicts a positive class,
a False Positive conclusion has been committed, also known as Type 1 Error in
statistics. When the classifier fails to identify the positive class, a False Negative
is produced, analogous to Type 2 Error in statistics.

2.5.2 F1-Score

It is not possible to maximize both precision and recall, as increasing the one will
often decrease the other. However, precision and recall can be combined into a
single number, called F1-score, that can be maximized to increase the classifier
performance. The formula for the F1-score is the following:

F1score = 2 ∗
Precision ∗ Recal l
P recision+ Recal l

2.5.3 Multi-Class Classification

When dealing with multi-class classification problems, techniques called "micro
averaging" and "macro averaging" are introduced. In micro averaging, the preci-
sion is the ratio of all the true positive against all of the true positive and false
positive instances. Analogously, the micro-recall is the ratio of all the true posit-
ives against all the true positives and false negatives instances. Micro-precision
and micro-recall equations are thus the following:

microPrecision=

∑C
c TruePosi t ive(c)

∑C
c TruePosi t ive(c) + FalsePosi t ive(c)

microRecal l =

∑C
c TruePosi t ive(c)

∑C
c TruePosi t ive(c) + FalseNegative(c)

where c represents one of the C classes the classifier is able to identify.
The downside of micro-F1-score is the inability of dealing with imbalance

datasets, as it combines all the instances without any class considerations, hiding

20 Emanuele Caprioli: Master Thesis

the model performance on the minority classes. On the other side, in macro av-
eraging", the precision and recall are calculated for each class (the positive class)
against all the other classes combined (representing the negative class). Macro-
Precision and macro-recall are then the non weighted averaged of each class re-
spective precision and recall, as shown in the equations:

macroPrecision=

∑C
c Precision(c)

C

macroRecal l =

∑C
c Recal l(c)

C
The macro/micro F1-score is thus the combination of macro/micro precision

and recall, as described in subsection 2.5.2.

2.6 Chapter Summary

This chapter presented how relevant features are extracted from audio signals,
thus producing spectrogram images. Some examples of intra-/interspecies differ-
ences and similarities have been presented and discussed. Then, an insight into
the works of CNN and ResNet blocks, popular modern architectures used in im-
age and audio classification, has been provided. Given the data-hungry nature
of deep learning methods, relevant strategies for increasing the amount of data
and taking advantage of existing datasets have been presented: data augmenta-
tion and transfer learning, respectively. Additionally, this chapter discussed basic
semi-supervised learning concepts and approaches such as pseudo-labeling and
consistency regularization, and concluded with the theory behind evaluation met-
rics for machine learning models.

Chapter 3

Related Work

Due to famous open machine learning competitions having been available each
year since 2014, like LifeCLEF Bird task, later BirdCLEF [28] and, since 2016,
DCASE task 3 [29], many methods have been tested and results published, tack-
ling the monophonic and polyphonic sound event detection problem (SED). Support-
vector machines, Bayesian classifiers and random forest-based solutions were sub-
mitted with discrete results. In the recent years, a number of submissions based
on deep learning methods, like Convolutional Neural Networks, Recurrent Neural
Networks (RNN), Convolutional Recurrent Neural Networks (CRNN) and ResNet
[4] increased, ultimately dominating the solutions landscape for this kind of prob-
lem.

Each year, new submissions are heavily based on the previous years’ winner
approach, often a deep learning method. Because of this, the need of big datasets
is crucial, albeit labour and domain-knowledge expensive to acquire.

In this chapter, some of the deep learning aproaches to audio classification
are presented in section 3.1, while semi-supervised and unsupervised learning
research in this domain discussed in section 3.2. Finally, the structured literature
review protocol is presented in section 3.3.

3.1 Deep learning Approaches in Audio Domain

Convolutional Neural Network (CNN) was the first deep learning method to be
applied to the LifeCLEF Bird task, which later became BirdCLEF, laying stepping
stones for the majority of the succeeding attempts. Sprengel et al. [5] won the
LifeCLEF 2016 Bird task with a rather shallow five-layers CNN and multiple data
augmentation techniques. The authors split each training audio file into a pure
signal part and a noise part, computed the Short Time Fourier Transform (STFT)
of each part and divided the resulting spectrograms into chunks of three seconds
in length. Different data augmentation techniques were implemented, such as
time and pitch shift, shifting the spectrograms on the X and Y axes, respectively,
and with the purpose of teaching the network irregular patterns and that the oc-
currence of the song could be at anytime within the frame. Combination of the

21

22 Emanuele Caprioli: Master Thesis

same-class bird sounds was introduced in order to simulate multiple instances of
the same species vocalizing at the same time, while adding noise arbitrary chosen
from previously separated training files reported good results and reduced the
generalization error. The trained network by Sprengel et al. [5] performed well
on classification of the foreground species, winning first price. When classifying
the background species, other approaches performed better due to less sounding
species being classified as noise earlier in the preprocessing pipeline. The model
performed poorly during the landscape test, since it was only trained on examples
of simultaneous vocalization of multiple same-species birds, rather than of differ-
ent species [30].

A noteworthy point is that, in the approach by Sprengel et al. [5], each spec-
trogram was fed to the network singularly, as in an image classification task. The
temporal context of the audio sequence is then discarded with this type of learn-
ing. Cakir et al. [7] combined the CNNs capabilities of extract translational in-
variant features with the Recurrent Neural Networks (RNN) temporal features
recognition. STFT spectral representations were produced from the raw sounds,
but the calculated energies were converted on the MEL scale. When training, each
spectrogram is divided into overlapping sequences, giving the model the possib-
ility to sample sound like in an NLP problem. Cakir et al.[7] composed a hybrid
Convolutional Recurrent Neural Network (CRNN) by chaining the output of the
CNN to the input of the RNN and subsequently to a fully connected layer (FC). In
the CNN, Max Pooling was allowed to downsample only on the frequency domain,
in order to feed the extracted features on the original time representation to the
RNN. The CRNN was compared to plain CNN, RNN, feedforward neural network
(FNN) and Gaussian mixture model (GMM). All models were tested on four SED
datasets (TUT Sound Events Synthetic 2016, TUT-SED 2009, TUT-SED 2016 and
CHiME-Home), showing improvements of CRNN over all the other tested meth-
ods. Performance of all tested models was noticeably worst on one of the datasets
(TUT-SED 2016), due to the considerably smaller size. Transfer learning and Semi
supervised learning have been suggested by the authors as future improvements
regarding this problem, although no image augmentation methods were used on
any of the datasets.

Boddapati et al. [6] successfully applied GoogLeNet and AlexNet CNNs, de-
signed with image classification in mind, to the polyphonic SED classification
problem. Testings were conducted over three datasets (ESC-50, ESC-10, and Urban-
Sound8K), with different sampling rates and feature representation fed to the net-
works, such as Spectrograms, Mel-Frequency Cepstral Coefficients (MFCC), Cross
Recurrence Plot (CRP) and a mixture of the three, a different feature representa-
tion for each input color channel. GoogleLeNet performed the highest when pure
STFT spectrograms were fed to the network. Boddapati et al. [6] theorizes that
the results could be due to GoogleLeNet being deeper than AlexNet, the two being
22 and eight layers long, respectively. Poorer accuracy was yielded when feeding

Chapter 3: Related Work 23

the network with the mixed feature representation, rather than each feature rep-
resentation alone. The pre-designed networks were then compared with a CRNN
originally intended for an input of the size 96 x 1366, adapted to accept a 256 x
256 sized input representation. The results were not impressive, with GoogleLe-
Net and AlexNet performing better. This is probably due to feeding the network
a single image per sound event, instead of a series of images. Due to the limited
size of the two ESC datasets, "Time stretching" was implemented as an augmenta-
tion technique, producing six samples with different degrees of stretching for each
training frame.

The task of SED is a non-trivial one, especially within the bird song domain,
where hundreds of species exist and dialects and different songs are developed
both intraspecies-wise and between males and females [31]. All those nuances can
be learned in longer networks with a superior weight count, but longer networks
suffer the vanishing gradient problem. Kahl et al. [4] implemented a ResNet with
157 layers to solve the task of monophonic and polyphonic SED of bird songs.
The dataset used for training was a set of 984 classes with the highest number of
samples obtained from Xeno-canto and Macaulay Library of Natural Sounds. This
approach was heavy on the preprocessing and augmentation side, due to previous
results leading to acknowledge that incorporating ornithology domain knowledge
at those stages was crucial for achieving best results. For each sample, the Fast
Fourier Transform (FFT) was computed and the frequency range restricted to the
bird vocalizing range, with some wiggle room for image augmentation (150 Hz
- 15 kHZ). Due to the weakly-labeled nature of the dataset, only the focal part
of the recordings were used in the training, discarding the background species.
Kahl et al. implemented three different data augmentation techniques, namely:
"Vertical Roll", shifting the spectrogram along the Y (frequency) axis, "Warping",
due to the popularity achieved within speech recognition application, and adding
arbitrary noise from other examples, as seen in the work of Sprengel et al. [5]. The
network has been tested on focal recording of high quality (high sound-to-noise
ratio SNR) and landscape recordings with both higher and lower SNR. Results
demonstrate that short FFT windows frames performed better when it comes to
bird sounds, Mixup training [32] improved training on all scenarios, while deeper
networks did not perform better than wider networks, albeit still outperforming
their shallow counterparts. Due to the imbalanced nature of the datasets, over-
sampling improved the overall scores whereas cost-sensitive learning did not.

Vesperini et al. [9] and Iqbal et al. [33] evaluated Capsule Neural Network
[34] (CapsNet) for the audio classification task. The motivation behind this was
to exploit the architectural advantage CapsNet held over CNN, namely the ability
of identifying both invariant and equivariant features without any loss of inform-
ation as a consequence to Max Pooling operations. CapsNet therefore performs
better than traditional CNNs on less data and without the need of image aug-
mentation, making it a reasonable approach for acoustic domain where labeled

24 Emanuele Caprioli: Master Thesis

data is expensive and few augmentation methods can be utilized due to domain
constrains. Vesperini et al. compared the performance of CapsNet with those of
CNN, previous DCASE challenge baseline model, and the state-of-the-art CRNN.
No image augmentation was implemented on the three evaluated datasets (TUT
Sound Events 2016, TUT Sound Events 2017, TUT Rare Sound Events 2017),
and preprocessing consisted of generating STFT and logMel STFT spectrograms,
with regular STFT performing better on CapsNet. The vanilla version of routing
by agreement was implemented, with the sole change of initialization of the coef-
ficient Bi j to be equal to the calculated value for the previous frame, retaining
temporal information. Results showed that CNN performed better on monophonic
SED, while CapsNet outperformed previous methods on the polyphonic SED with
overlapping sounds, being consistent with the results of CapsNet on the MultiM-
NIST dataset found in the work of Sabour et al. [34]. Additionally, CapsNet per-
formed better on the TUT Sound Event 2016 due to the considerably smaller size
of this dataset, as seen in the work of Cakir et al. [7], consolidating the fact that
a lot of labeled data is needed in order to achieve decent results when training in
a Supervised Learning fashion.

Henri et al. [10] evaluated different pretrained CNN architectures on a small
subset of bird sounds retrieved from the Xeno-Canto collection. The subset was
limited to 36 bird species found in the republic of Mauritius. Due to the imbal-
anced nature of the dataset, classes with less than five instances were collected
together under the "Other Mauritius Bird" label, resulting in a total of 19 classes.
The data augmentation techniques "Time Stretching" and "Pitch Scaling" were im-
plemented into the work with the purpose of increasing the training set. Details
pertaining the aforementioned augmentations can be observed in chapter 4. Henri
et al. finetuned three pretrained models (Inception V3, MobileNet V2 and Res-
Net50) and trained a custom model from scratch, all for an amount of 20 epochs
and different parameter combinations. Except for the poor results of ResNet50
(not discussed in the work), the best pretrained model (MobileNet V2) yielded an
accuracy on the validation set of 84.21%, over 2% higher than the custom CNN
model trained from scratch, proving that transfer learning can indeed be applied
to the domain of classifying bird songs. Future work presented by the authors in-
clude the retrieval of more data meant to increase the robustness of the model,
test other data augmentation techniques and increase the dataset by producing
synthetic bird sounds.

3.2 Semi-Supervised and Unsupervised Approaches in Au-
dio Domain

Rowe et al. [35] utilized autoencoders to explore other feature representations
than Spectral Acoustic Indices and MFCC spectrograms, with the goal of small
scale analysis of long continuous recordings. The audio was split into non-overlapping

Chapter 3: Related Work 25

one-second-long clips, FFT computed for each clip and each resulting spectrogram
converted to 128x128 pixel. The features produced with the autoencoders were
proven to be more separable than Spectral Acoustic Indices, but outperformed by
MFCC spectrograms. The models were trained only a few epochs due to hard-
ware constraint, but the time to produce the feature representation after training
is comparable to producing MFCC spectrograms, thus having the potential to be
a valuable alternative, if trained more.

Zhong et al. [13] evaluated transfer learning and pseudo-label on a multi-label
classification task on self collected data. One VGG16 CNN and two ResNet50 ar-
chitectures were compared, with both ResNet50 being pretrained on ImageNet
dataset and one of the networks finetuned with pseudo-labeling. Preprocessing
consisted in generating Mel spectrograms with energies converted to dB scale
and resized to 224x224 pixels. Image augmentation methods were not utilized
in the work of Zhong et al. Both ResNet architectures outperformed the VGG16
CNN, with the combination of transfer learning and pseudo-labeling yielding the
highest accuracy. The results show that there is a latent potential within unlabeled
data and that pre-learned features from other domain like images can be utilized
on sound classification tasks. Nonetheless, a comparison with a non-pretrainined
ResNet50 instead of VGG16 CNN would have been more fair.

Grollmisch et al. [14] evaluated the performance of Semi-supervised (SSL)
methods that reached state-of-the-art level on image classification, when applied
to the audio domain. The chosen SSL methods, FixMatch [36] and Mean Teacher
[37], were tested against Transfer Learning (TL) and Supervised Learning (SL).
The methods were evaluated on three datasets (IDMT ISA METAL BALL, TUT2017
and NSynth), and the same preprocessing pipeline and CNN architecture were
utilized across all datasets. Performance was tested with different ratios of labeled
data (1%, 5%, 10% and 20%) and, for some of the datasets, one-shot-learning
was also tested. In order for FixMatch to work properly, weak augmentation tech-
niques were to be selected for each datasets. Grollmisch et al. included a novel
approach for categorizing augmentation techniques by training a model on a non-
augmented training set, and, for each augmentation technique, evaluating the
model’s accuracy on the augmented training set. Augmentation methods with a
resulting averaging accuracy of less than 5% of the non-augmented result, were
categorized as weak. Results showed that selection of the right weak augmenta-
tion technique is critical to the performance of FixMatch. FixMatch always per-
formed better than Mean Teacher and the baseline CNN trained from scratch. On
TUT2017, the most difficult of the datasets, FixMatch was outperformed by the
transfer learning method, while, on the other two datasets, FixMatch reached the
upper baseline results with less than 5% of the labeled data. For future work,
Grollmisch et al. suggests testing raw-audio augmentation techniques, and com-
bining FixMatch with transfer learning, the latter in order to take advantage of
more confident pseudo-labels being generated at the beginning of training, and

26 Emanuele Caprioli: Master Thesis

possibly reducing the confirmation bias of the pseudo labeling process.

On the unsupervised training front, Denton et al. [38] utilized a novel tech-
nology to unmix different sources from a sound signal based on the Xeno-Canto
dataset . The recently developed method Mixture Invariant Training (MixIT) [39]
differs from the supervised counterparts mainly in training on mixture of mixtures
(MoMs), and on artificially mixed signals from pure sources. The model estimates
a predefined number of different sources, assigns them to one of the original mix-
ture and tries to minimize the loss. The model is also capable of separating less
than the predefined numbers of sources, by generating signals that are close to
zero. MixIt trains on mixtures of sounds which the Xeno-Canto repository already
provides (as weakly-labeled recordings, with always one foreground species and
one or multiple background species, if any), and can estimate the original sources
from one signal alone. In comparison, Independent Component Analisys (ICA)
[40] requires as many signals as separable sources in order to work, a constraint
that limits its applicability within bioacustic monitoring, due to signals being at
most stereo and recorded from the same microphone. Denton et al. compared the
efficiency of MixIT as a separator for bioacustic monitoring when training on do-
main data (Xeno-Canto dataset) and on general sounds datasets (AudioSet [41]),
proving that training on domain data guarantees indeed a performance boost to
the system. The method was then tested on three fully-labeled polyphonic data-
sets from previous BirdClef competitions. Denton et al. compared the classifier
accuracy on original (mixed) audio, unmixed sources (a channel for each source)
and on both unmixed and original signal (one channel per source + original au-
dio as an extra channel). Employing both unmixed and original sources yielded
the best accuracy in almost all the datasets, showing that there is indeed a latent
potential in unlabeled data for this problem. Future works include tests on other
audio domains and improving classifier accuracy by separation on the classifier
training data.

3.3 Structured Literature Review Protocol

The research in its entirety was conducted with the aid of the Google Scholar
search motor, while the keywords were evolved and changed during the time of
the research. The project description was based on the task description formulated
in the Cornell Birdcall Identification task [2], with loose boundaries on what to
develop or which part of the task to focus on. The initial research was conducted
using the keywords "Cornell Birdcall Identification", "Cornell Kaggle" and "Cornell
Challenge". Some of the Kaggle competition deliveries were published in form of
code notebook and papers. The "snowball effect" method was initiated from these
papers, evaluating the related work, ultimately bringing up the knowledge of a
yearly Kaggle competition called LifeClef bird task (later BirdClef), and DCASE,
a similar yearly challenge on Detection and Classification of Acoustic Scenes and
Events [29].

Chapter 3: Related Work 27

A search with the keyword "BirdClef" and "LifeClef bird" reported many res-
ults regarding delivery publications as well as review papers of the winning ap-
proaches, the latter published by the competition organizers. After a thorough
reading of those papers it became clear that the shared motivation was to achieve
best classification accuracy. A broader search around methods to evaluate was con-
ducted by the participants in the first years, narrowing down to the area around
the previous years’ winning methods. Deep learning methods governed the scene
after showing prominent results in 2016, becoming the base for the majority of the
following deliveries. Due to the astonishing number of published work, research
and related work covered in papers around BirdClef and DCASE were treated as
a time lapse of the bird song classification scene.

In this phase, as new terminology appeared in the reviewed papers, new keywords
were added to the search, for instance "Sound event detection", "Polyphonic", "Au-
dio classification" and "Audio Tagging". The stopping criteria followed were limit-
ing the research to bird sound classification or polyphonic event classification, as
well as papers not older than 2016, the latter due to the majority of papers pub-
lished later this time period being based on deep learning methods. An evaluation
of the problems found in the works led to a change of motivation for this project,
namely discovering the potential of semi-supervised learning on the domain of
bird song classification.

Popular Semi-supervised (SL) methods were researched when applied to au-
dio classification and bird songs classification, using the keywords "SSL Semi-
supervised methods", "Pseudo-labeling", "Mean Teacher", "audio classification" and
"Bird sounds". Research showed fewer papers in comparison to supervised meth-
ods on bird songs domain or other audio sound domains, with interesting results
regarding the "FixMatch" method published by google in 2020. A research using
the keywords "FixMatch" and "bird song", on the other hand, showed no published
papers.

3.4 Chapter Summary

The bird songs classification has seen multiple solutions throughout the years,
mainly due to yearly competitions since 2014. Deep learning methods dominate
the audio classification scene, with CNN, RNN, CRNN or CapsNet architecture
designed from scratch, or popular designs initially thought for image classification
tasks, like Inception V3, VGG16 and ResNet. Even though images were fed to such
networks, different image representations of sounds were tested, such as FFT, mel
and MFCC spectrograms, and unsupervised autoencoders vector representations.

The audio domain showed to be more closely related to the image domain,
with research findings in the latter being applicable to the former. Some of the
works managed to apply transfer learning to an audio classification task, using

28 Emanuele Caprioli: Master Thesis

weights computed on a bigger image dataset. Another example of domain correl-
ation is the advantage CapsNet holds over CNN in recognising overlapping digits,
analogously seen in its superiority regarding classifying overlapping sounds.

FixMatch, SSL method initially developed on the image domain, showed po-
tential when applied to an audio classification task, and was only defeated by
transfer learning on the most difficult dataset. The author suggests to combine
transfer learning with FixMatch, and to test audio augmentation techniques.

Chapter 4

Method

The technical work done and the design choices taken in regard to designing the
system are presented in this chapter. The dataset used is presented in section 4.1.
In section 4.2, the used libraries and frameworks are discussed. Section 4.3 con-
veys the common system pipeline shared by the chosen method FixMatch and
baselines, giving an insight into each custom written component and a motiv-
ation behind their design choices. FixMatch is discussed in section 4.4, where
the algorithm from the original publication is presented, and more in-depth im-
plementational notes and assumptions are provided. Finally, the baselines imple-
mentation are discussed in section 4.5.

4.1 Data

4.1.1 Dataset

The dataset is a collection of clips retrieved from the Xeno-Canto website and
compiled by Cornell Lab of Ornithology for the "Cornell Birdcall Identification"
Kaggle challenge [2]. It contains around 63k recordings divided into 397 folders,
each representing a different species. The dataset is imbalanced, with some classes
having more than 400 examples while others as little as 30, as shown in Figure A.1.
All the sound recordings are digitally sampled at 22.050kHz. Each recording only
has one track, meaning that they are mono sound.

Each recording has metadata attached to it, containing the following inform-
ation:

29

30 Emanuele Caprioli: Master Thesis

Primary_label The main species identified in the recording.

Secondary_labels Background species with low Signal to Noise Ratio (SNR).

Type The type of sound, like ’song’, ’call’ or ’begging call’.

Latitude Latitude of the site of the recording.

Longitude Longitude of the site of the recording.

Scientific_name Scientific name of the main species in the recording.

Common_name Common name of the main species in the recording.

Author Full name of the author of the recording.

Date The recording date of the sample.

Filename The filename of the recording.

License The license under which the recording is released.

Rating The quality of the recording.

Time The time of recording of the sample.

Url The unique Xeno Canto url of the recording.

The recordings in this dataset have differing lengths, varying from being a
few seconds long to multiple minutes long. Each example has one primary label,
i.e., species whose sounds can be heard in the foreground with a high Sound-to-
Noise Ratio (SNR), while some may have one or multiple secondary labels, i.e.,
species whose sounds can be heard in the background with a low SNR. The data-
set is weakly-labeled, since the label of the recording lacks temporal reference,
i.e., timestamps of where the primary (or secondary) species can be heard in the
recordings, similarly to boundary-boxes labels in an object recognition task.

Each sample has a rating from 0.5 to 5, with 5 being the main species vocaliz-
ation loud and clear, and 0.5 being barely audible. Recordings that do not have a
rating are grouped under the rating 0. Figure A.2 shows rating distribution of the
dataset. The dataset includes high quality examples with high SNR signals, with
75% of all examples being rated at 3.50 or higher, as seen in Table 4.1.

The primary label is a unique identifier for the species. Ulterior metadata can
be recovered in the ebird.org website (https://ebird.org), by typing "/species/"
followed by the label name in the url-bar.

Chapter 4: Method 31

Table 4.1: Statistics regarding the ratings of the samples in the dataset.

count 62874.00
mean 3.76
std 1.22
min 0.00
25% 3.50
50% 4.00
75% 4.50
max 5.00

Figure 4.1: Number of recordings per class within the selected subset of the data-
set. The figure shows some lingering imbalance between classes.

32 Emanuele Caprioli: Master Thesis

4.1.2 Dataset Selection

The entire dataset contains a high number of different classes, requiring a no-
ticeable amount of time and computing power in order to run the experiments,
therefore only a subset of 15 classes is chosen. The top 15 classes with the highest
amount of recordings of high quality, i.e., with a rating of 4 or higher, are selec-
ted. Figure 4.1 shows the 15 classes selected for the experiment. The subset is still
skewed, with some classes having as much as double the amount of recordings
than others.

The metadata "type" of a recording is compiled by the bird watcher upon up-
loading, whom don’t follow any standard regarding on how to fill this info, lead-
ing to 254 distinct types with only a few occurring multiple times, like "call" or
"song", visible in Figure 4.2. Some of the other types registered are unsure, such as
"mimicking?", "not known", "duet?", or multiple types included in the same string,
namely "alarm-call and nestlings".

All of the recordings are tagged with positional data. When plotted on a world
map, Figure 4.3, it can be noticed that some of the 15 selected species are uniquely
found in a specific region, as demonstrated in the case of "carwre" in North Amer-
ica.

Figure 4.2: All the found instances of metadata "type" for the 15 classes used in
this thesis, sorted by number of occurrences. The metadata "type" is assigned by
the bird watcher that collects the sample. There are 254 different "type" assigned
in the subset, of which only a handful occur multiple times. On the X-axis, the
metadata "type" text has been replaced by a number ID. The energies of this plots
represent the amount of occurrences, with 315 being the most for a given "type".

Chapter 4: Method 33

Figure 4.3: Locations included in the dataset for the 15 chosen classes plotted
against the world map.

4.2 Frameworks and Libraries

4.2.1 Pytorch

The Pytorch framework allows the user to efficiently set up pipelines for pre-
processing either image or sound files. Since image classification tasks are more
popular than audio tasks, the included methods and functions in the framework
do not allow the user the same degree of freedom in the two cases. For this reason,
many of the included functions have been rewritten to handle audio files, and al-
low a higher degree of manipulation "under the hood" of the system. The downside
to this approach is that the loss of the advantages provided by the available built-in
functions, thus leading to higher execution time. Some of those advantages be-
ing implementational tricks and utilization of workers for parallelizing the code.
Trying to include such functionality, developed and optimized by a community of
over 2000 contributors, is out of the scope for this thesis. Therefore, some com-
promises and design choices have been made in order to run the experiments in
a reasonable amount of time.

4.2.2 Data Augmentation Libraries

Data augmentation is performed on the audio spectrograms and raw audio data
using both the Albumentation and Audiomentation libraries. The former is a fast
open source python library with many image augmentation methods, while the
latter is a GitHub project inspired by Albumentation that provides a set of audio
specific data augmentation methods. The Librosa library is utilized to load and ma-
nipulate the audio files. Audioaugmentation methods also employ imports from
Librosa. Not every image augmentation method can reasonably be applied onto

34 Emanuele Caprioli: Master Thesis

a spectrogram, therefore only a small subset of the available transformations are
chosen, namely:

Cutout Removing rectangular regions from the spectrogram, leading
to masking some frequencies for a random amount of time.

Shear Shear transform of the spectrogram, similar to warping of a
sound.

Random
Brightness

Randomly changing the brightness of the energies in the spec-
trogram corresponds to increasing/decreasing the volume
when seen in the audio domain.

Random
Contrast

Randomly changing the contrast of the spectrogram leads to
similar results as manipulating the brightness, but the incre-
ment is not as linear, meaning that background noise, repres-
ented with lower energies, will increment/decrement not as
much as the main signal.

Affine-
Translate

Translating the spectrogram along the X- and Y-axis corres-
ponds to changing the pitch of the audio signal and moving
the audio back and forth on the time domain, respectively.

Grid Distortion Grid Distortion is a non rigid transformation used in medical
imaging problems. The spectrogram is divided into a grid.
Time and frequency are distorted differently in each area of
the grid.

The audio augmentation methods chosen from the Audiomentation library are
the following:

Chapter 4: Method 35

Add Gaussian
Noise

This transformation adds Gaussian noise to audio data.

Add Gaussian
Noise SNR

This transformation applies Gaussian noise to input with a
randomly picked Signal-to-Noise Ratio (SNR) chosen on a
logarithmic scale.

Gain Increasing or decreasing the audio sample volume by mul-
tiplying the data-point by a random factor.

Time Mask Randomly masking all the frequencies of a part of the audio,
resulting in muting said part of the audio.

Shift Translating the audio back and forth along the time domain.

Pitch Shift Increasing or decreasing the pitch of the audio.

Time Stretch Stretching the audio along the time domain without changing
the pitch.

Some of the selected audio augmentations, like "Add Gaussian Noise SNR" and
"Time Stretch", do not have a counterpart present in the selected image transform-
ation for this thesis: although implementations of such augmentations are feasible
in the spectrograms domain, the choice of exclusively employing augmentation
available in already published libraries has been made in order to meet the dead-
lines for this project. Other libraries and frameworks used in this project worth
mentioning are Numpy, Python Imaging Library (PIL) fork called Pillow, OpenCV,
Sklearn, Matplotlib and Optuna.

4.3 System Pipeline

The System Pipeline for both the baselines and the FixMatch methods overlap
greatly: Figure 4.4 shows the common components of these pipelines. The "Data-
Loader" component is responsible for loading the audio files in memory and serving
mini-batches of data when requested. The "Mini-batch Processor" prepares the
data as specifically required by each method, making it ready to be ingested by
the PyTorch model. The "Method Training Routine" is the specific learning routine
for each of the baselines and FixMatch methods.

4.3.1 Dataset Preprocessing

Due to the abundance of data from this dataset, recordings from the 15 chosen
categories are split into "train" and "test" with a ratio of 80% and 20% before
any run of the experiments, so that the system is tested on the same validation
examples throughout all the experiments run. As seen in section 4.1, all the re-

36 Emanuele Caprioli: Master Thesis

Figure 4.4: A black-box diagram of the system pipeline, showing the shared com-
ponents by all the methods. The dataset is loaded in memory only once per run,
and the "Method Training Routine" is specific for each method, pictured with a
segmented box.

cordings are of differing lengths, but they all share the same sampling rate. The
audio files have been processed upon submission to the Xeno-canto website by
each bird watcher, so that the main species can be identified within the first ten
seconds of the recordings. For this reason, each file longer than ten seconds will
be trimmed to that length and shorter files will be padded. The padding mode
chosen is "wrap", meaning that recordings shorter than ten seconds will simply
start again from the beginning of the file, and end when the total length is ten
seconds.

The Librosa library is utilized for loading and processing the audio files. It
does so by converting the audio files to numpy-arrays of the shape C x S, where
C is the numbers of channels (1 for mono and 2 for stereo) and S is the number
of sampling-points, the latter being the sampling ratio by the length of the audio
file in seconds, as described in subsection 2.1.1.

4.3.2 Dataloader

The custom "Dataloader" component is responsible for loading the audio data
and serving mini-batches to the model during training. The dataset is balanced
by loading 274 recordings of each label, 274 being the amount of recordings for
the class with the less available examples, giving a total of 4110 examples divided
equally into 15 classes. The reason behind this choice is that generating new syn-
thetic audio data to balance the classes is not a trivial task, requiring additional
advanced machine learning methods like GANs, ultimately resulting in increasing
the number of variables in this experiment. Alternatively, more examples could
have been retrieved from each audio recording. Nevertheless, since the number
of samples seemed to be sufficient in order to test the system, none of those afore-
mentioned methods were explored. Each audio file is then converted to a numpy
array of shape C x S and stacked together, making a unique array of shape N x C
x S, where N is the total number of examples.

At the beginning of each system run, the training set is randomly split into
labeled and unlabeled sub-sets, and each sample affiliation to either sub-set re-
mains unaltered for the entire duration of the run. During each epoch of the train-
ing phase, the model encounters each sample of both sub-sets exactly once; how-

Chapter 4: Method 37

ever, the order of which mini-batch they appear in is randomized. Setting the ratio
of labeled-to-unlabeled examples to zero results in only one set being generated.

4.3.3 Mini-Batch Processor

This component is in charge of processing each mini-batch of numpy arrays served
by the DataLoader component. The process is shown in Figure 4.5, and run se-
quentially for each sample of the mini-batch. First, if required by the method,
audio augmentation is applied to the one-dimensional numpy array using the Au-
diomentations library. Successively, the Short Time Fourier Transform (STFT) of
each audio recording is computed using a "Hann" window function with a size
of 2048 samples, corresponding to a signal length of 93ms when the recording is
sampled at 22050Hz, and a hop length of 512 samples, meaning an overlap of 25%
between adjacent computed fourier transforms. The resulting two-dimensional
numpy array is then converted to an Image object with the Pillow library. The
Image object is resized to 384x224 pixels using the nearest neighbor re-sampling
method, converted back to a numpy array and then flipped: the flipping is not
necessary to train the model correctly, if all the samples are consistently oriented
toward the same direction, but it is useful if human eyes are to inspect the spec-
trograms during the run of the system. At this rate, if required, image augment-
ation is applied using the Albumentations library. The two-dimensional numpy
array is now duplicated and stacked along a new dimension three times, simulat-
ing the three color channels in an RGB image. Finally, all the three-dimensional
samples are converted to PyTorch tensors, normalized with a mean of (0.485,
0.456, 0.406) and a standard deviation of (0.229, 0.224, 0.225), as required by
the PyTorch model. The resulting tensors are thus stacked together along a fourth
dimension in order to produce a single mini-batch ready to be processed by the
model.

4.3.4 Model Architecture

The chosen network for this experiment is ResNet18, due to its established yield-
ing of good results regarding research, leading it to become a staple in the field of
bird song classification. The variation of ResNet with 18 layers is then chosen for
implementational reasons: Pytorch framework includes a good range of ResNet
architectures, ranging from 18 to 152 layers, and with pretrained weights on the
ImageNet dataset. Regarding the choice of depth of the network, the assumptions
here are that: ResNet18 provides more than enough weights to learn feature rep-
resentations of the 15 classes, is less prone to overfitting than the deeper variants,
and will save a considerate amount of computational time during all phases of
the experiment on the utilized hardware (Intel i5 9600K CPU, Nvidia RTX 2070
and 64GB RAM). Both the baselines and the new methods implementation will
share the same architecture and common hyperparameters. The goal is to com-
pare the method against a sensible baseline: minimizing the degrees of freedom is

38 Emanuele Caprioli: Master Thesis

Figure 4.5: Inside the Mini-batch Processor. The mini-batch gets loaded as a
numpy array and audio augmentation is applied if needed. The array represent-
ing audio datapoints gets converted to a spectrogram array, resized and flipped.
Image augmentation is applied on this step if required, then the array is expan-
ded to three identical channels and finally converted to a tensor and normalized,
ready to be ingested by the model.

Chapter 4: Method 39

crucial to achieving comparable results, despite the fact that better configuration
can exist for each of the methods.

The ResNet18 architecture adapted for this thesis is shown in Figure 4.6, and
is composed of an initial convolutional layer with 64 filters of shape 7x7 and a
stride of 2, eight convolutional blocks with filters of shape 3x3, and, on the end, a
fully connected head with 15 nodes, one for each class. The convolutional blocks
are portrayed with four different colors, each representing a different amount
of filters at each convolutional layer, doubling every two convolutional blocks.
The ResNet architectures allow the model to skip over a convolutional block, a
mechanism previously described in subsection 2.3.2.

Pretrained weights tuned on the ImageNet dataset can be loaded in ResNet18:
this model includes a fully connected head of 1000 nodes, one for each of the
classes in the ImageNet dataset. In this thesis, the last fully connected layer is
deleted and substituted with a new head of 15 fully connected nodes with ran-
domly initialized weights. Due to the high domain difference between ImageNet
and bird songs, none of the feature extraction layers are frozen.

4.3.5 Hyperparameter Search

A search for effective hyperparameter configurations is conducted using the Op-
tuna library, an optimization framework for Python. The aim is not to maximize
the accuracy of the model, but rather finding a good combination of hyperpara-
meters with which the model can perform adequately, leading to a feasible com-
parison.

All phases of the main experiment were conducted separately for ResNet18
with randomly initialized weights and with pretrained weights. When loading
pretrained weights, instead of randomly initialized, the network could prefer a
smaller learning rate in order to reach a local optima. For this reason, two separate
hyperparameter searches are conducted.

As mentioned in subsection 4.3.4, the methods share the same model archi-
tecture, ResNet18, as well as common hyperparameters, therefore the only hyper-
parameters chosen to tune are the network optimizer and the learning rate. The
choice of optimizer is between "Stocastic Gradiant Descent (SDG)" with a fixed
momentum of 0.9 and "Adam", with the range for the learning rate set between
1e-6 and 1e-2, using a log-uniform distribution. Each model is trained ten times
with a randomly picked optimizer and learning rate. A second search, with ten
attempts, was then held around the learning rate of the trained model with the
highest score from the previous search, with a fixed choice of optimizer, corres-
ponding to one of the aforementioned models.

The Adam optimizer yielded best results for both the randomly initialized and
the pretrained model. The best learning rate found were 0.00153 and 0.00032,
for ResNet18 with random and pretrained weights, respectively.

40 Emanuele Caprioli: Master Thesis

Figure 4.6: ResNet18 architecture used in this experiment. The model consists of
four layers, with each having two identical convolution blocks with the possibility
of connection skip. Each convolutional block includes two identical convolutional
layers. A 15-node fully connected layer sits on top of this architecture.

Chapter 4: Method 41

4.4 FixMatch

4.4.1 Algorithm

FixMatch is the combination of two Semi-Supervised Learning methods, namely
Pseudo-Labeling and Consistency Regularization [36]. Consistency Regularization
is implemented by image augmentation. The image augmentation techniques are
categorized in "weak" and "strong" augmentation, where the results of the former
are more closely related to the input than the latter’ s are. The model is trained
to generate consistent predictions between weak and strong augmentation of the
same example. The total FixMatch dataflow can be observed in Figure 4.7.

The loss function used in FixMatch is L = ls + λulu, composed by the cross-
entropy loss applied to the labeled batch and a cross-entropy loss on the unlabeled
batch multiplied by a scalar λu, the latter used to adjust the importance of the
unlabeled examples during the training.

Figure 4.7: FixMatch learning pipeline shown with one labeled and one un-
labeled example. The hard pseudo-label is generated from the model prediction
of the weakly augmented image, but only if the highest class is predicted with a
value higher than the confidence threshold τ. Cross-entropy loss is computed us-
ing the aforementioned pseudo-label and the strongly augmented version of the
same unlabeled image. The labeled loss is the cross-entropy loss of the weakly
augmented labeled image and its label. The labeled and unlabeled loss are com-
bined and minimized by the model.

The labeled loss ls, showed in Equation 4.1, is the cross-entropy loss calculated

42 Emanuele Caprioli: Master Thesis

on the model output prediction on the weakly augmented examples pm(y|α(xb))
and their relative labels pb. The notation utilized in Equation 4.1 includes α(), a
stochastic weak augmentation function, B, the total amount of examples in the
labeled batch, and H(), the cross-entropy loss function.

ls =
1
B

B
∑

b=1

H(pb, pm(y|α(xb))) (4.1)

The unlabeled loss, shown in Equation 4.2, is the cross-entropy loss calcu-
lated on the model prediction of the strongly augmented unlabeled examples
pm(y|A(ub)) and the model generated pseudo-labels q̂b. The notation utilized in
strongly augmented includes A(), a stochastic strong augmentation function, and
µ, the ratio of unlabeled-to-labeled examples. The pseudo-labels are generated
by one-hot-encoding the model output probability of the weakly augmented un-
labeled examples, but only if the dominant class in each output probability distri-
bution has a value greater than the confidence threshold τ. An example of produ-
cing a pseudo-label out of the model prediction can be seen in Figure 4.8, while
the mechanism of deciding which training example to include in each training
epoch is shown in Figure 4.9.

lu =
1
µB

µB
∑

b=1

¨

H(q̂b, pm(y|A(ub))) max(qb)> τ
skip− example max(qb)≤ τ

(4.2)

4.4.2 Mini-Batch Learning

Some implementational changes to the FixMatch algorithm have to be made due
to the limited hardware capability of the available resources. The FixMatch al-
gorithm is based on batch learning, a learning method where, during each epoch,
the total loss is achieved by averaging all the training example losses and the
model weights are updated exactly once. The total labeled and unlabeled losses
are computed separately, by passing all the labeled and unlabeled examples through
the model, and then added together to produce the total loss. Since the PyTorch
framework keeps computational graphs in memory for each of the passed example
tensors, batch learning with these many training examples is not feasible, since
it will require to have all the training examples computational graphs loaded in
memory. On the other hand, in mini-batch learning each training epoch is divided
into different steps. During each step, the loss is calculated on a small amount of
examples, also called mini-batch, and the models weights updated.

In this FixMatch implementation with mini-batch learning, each mini-batch
will contain both the labeled and unlabeled examples in the desired ratio. The
mini-batch size in this system is set to 40, giving four labeled examples and 36
unlabeled examples when a ratio of 90% unlabeled examples is utilized. This setup
is in line with the FixMatch method by Sohn et al. [36], where the labeled loss is
computed on B labeled examples at each epoch, and the unlabeled loss computed

Chapter 4: Method 43

Figure 4.8: Example of pseudo-label generation. On the left the model prediction
of a weakly augmented unlabeled example can be observed, where "class 2" is
predicted with a confidence of 0.95. Since 0.95 is greater than the confidence
threshold τ of 0.90, the one-hot-encoded pseudo-label is produced by setting the
predicted "class 2" value to 1 and 0 for the other classes. This is also defined as
"hard label". If the predicted class had a lower value than τ, then the unlabeled
example would have been discarded during this training epoch.

44 Emanuele Caprioli: Master Thesis

(a)

(b)

(c)

Figure 4.9: How FixMatch chooses the examples to include in a training epoch.
The entire labeled batch is always included in the training examples in its entirety.
In epoch 0 (a), no predictions on the weakly augmented unlabeled batch were
of high enough confidence (the dotted red line being the confidence threshold),
hence no pseudo-label were produced, leading to all the unlabeled example being
excluded during this training epoch. In epoch 1 (b), the model, previously trained
on a labeled example of the "amoreb" class, recognized an unlabeled "amoreb"
spectrogram and generated the right pseudo-label, that led to the inclusion of
the strongly augmented "amoreb" spectrogram in the training pool. Finally, in
epoch 2 (c), the model became more confident about the "amoreb" class, as it
recognised and produced two pseudo-labels of the unlabeled "amoreb" examples.

Chapter 4: Method 45

on µB unlabeled examples, respectively, 4 and 36, when the labeled batch size
B is 4 and the unlabeled to labeled ration µ is 9. The entire system pipeline is
presented in Figure 4.10.

4.4.3 Confidence Decay

One of the components of FixMatch is the generation of pseudo-labels with a high
confidence threshold. In the original publication experiments by Sohn et al., this
threshold parameter is set to 95% for the entire duration of the experiment. In this
system, the confidence threshold is set to 98% and it can be decayed with time,
accepting more unlabeled data as training examples with the passing training
epochs. This comes with the assumption that the model becomes more precise
with the training epochs passing, therefore increasing the trust of the model at
every epoch will allow multiple examples to be included as training examples.
Since the unlabeled set can contain examples of other classes than the 15 in this
experiment, a higher confidence threshold than the work by Sohn et al. is chosen.

4.5 Baselines Implementation

To reduce the number of variables when comparing the FixMatch trained method
against the baselines, the same pipeline showed in Figure 4.10 is employed. Each
mini-batch is weakly augmented, since data augmentation works as a regulariz-
ation technique and prevents overfitting. In order to keep a sensible comparison,
the mini-batch size is set to be the same as the labeled part when training with
FixMatch, meaning that, in the case of 10% labels being used, a mini-batch size of
4 is set for Supervised Learning, 10% of the total mini-batch size used in FixMatch.
The metric used to evaluate the baselines and FixMatch is F1-score with micro av-
eraging, as the dataset does not contain any imbalanced classes.

4.6 Chapter Summary

In this chapter the details of the system build for this thesis were described. Cus-
tom modules for loading, serving and processing mini-batches were developed,
the latter with the possibility of applying either data augmentation on either the
raw audio or the processed spectrogram of each recording.

FixMatch was implemented as of the original publication, with the sole ex-
ception of exchanging batch learning with mini-batch learning. FixMatch and the
SL baseline share the same pipeline, with the latter ignoring the unlabeled ex-
amples. Both methods will be tested on the same model architecture and hyper-
paramenters: pretrained and non-pretrained ResNet18 models differ only in the
learning rate value used during training.

46 Emanuele Caprioli: Master Thesis

Figure 4.10: The entire system pipeline when training using FixMatch. In SL,
the unlabeled part of the mini-batch is discarded and only the labeled loss ls
computed.

Chapter 5

Results

This chapter presents the findings and analysis of the experiments conducted
using the system discussed in chapter 4. The experiments plan is presented in
section 5.1, while the results of each experiment and immediate remarks in sec-
tion 5.2. Analysis and discussion follows in section 5.3.

5.1 Experiments Plan

A detailed experiment plan is described in this section. The hyperparameters for
learning and the model architectures are commonly shared by all the experiments,
in line with subsection 4.3.5.

Augmentation techniques categorization Categorizing image and audio augment-
ation techniques as "weak" or "strong".

The Fixmatch method is based on the application of a "weak" and a "strong" aug-
mentation technique at different stages of the method’s pipeline. When applied,
a "weak" augmentation technique does not particularly differentiate the ultimate
results from the original. On the contrary, a "strong" augmentation technique will
produce more distorted and manipulated results. This experiment is based on the
work of Grollmisch et al. [14] and consists in training a model on the labeled part
of the dataset without the use of augmentation techniques. Then, for each aug-
mentation technique there is to test, the model’s predictions on the augmented
training set will be evaluated: "weak" augmentation techniques are expected to
perform similarly to the case in which no augmentation is utilized, while "strong"
augmentation technique to allegedly perform worse.

Main experiment Comparing the performance of SL and FixMatch on 10% of the
labels , with and without the use of pretrained weights.

All of the FixMatch runs will be performed both with audio and image augmenta-
tion techniques. The "weak" and "strong" augmentation techniques for both audio

47

48 Emanuele Caprioli: Master Thesis

and spectrogram images are chosen from the results of the "Augmentation tech-
niques categorization" experiment, and shall thus be utilized for this and all suc-
ceeding experiments. Each model will be trained for 25 epochs on a 10 % labeled
dataset, for 20 runs.

The data augmentation variation type, either image or sound, providing the
best performance will be utilized as a base for all upcoming runs.

Long Training Convergence test by training best models configuration for a longer
time.

To test convergence, the best models will be allowed to train for 100 epochs.

All labels comparison Comparison of FixMatch performance against a theoretical
maximum.

FixMatch performance will be benchmarked against two theoretical maximums:
the case where the amount of generated pseudo-labels during FixMatch training
are added as regular labels to the available total in SL, and that in which 100% of
the labels are available.

Variations to FixMatch Testing FixMatch performance with different confidence threshold
and loss weighting strategies.

Confidence threshold is one of the main mechanisms in FixMatch. The tweaking
of this parameter leads to the inclusion of different amounts of pseudo-labels in
the training batch.

Three strategies will be compared: fixed confidence threshold, continuous de-
cay of the confidence threshold, and increase of the unlabeled loss weight. Re-
spectively, they work as such:

• the confidence threshold remains unchanged during the entire training.
• the confidence threshold will be reduced by 0.0006 after each epoch, reach-

ing a lowest of 92% in the last training epoch.
• the unlabeled weight is linearly increased, starting from 0 and reaching 1

in the last epoch, meaning that, in the latter, the labeled and unlabeled loss
will weight the same on the total loss calculation.

All the models are allowed to train for a total of 100 epochs on 10% of the
labels. The starting confidence threshold is set to 98% for all the models.

Various unlabeled ratios FixMatch and baselines performance on different ratios
of available labels.

FixMatch as a Semi-Supervised method shows its potential when fewer labeled
examples are available. In this experiment, the best configuration will be bench-
marked at 5%, 10% and 20% of the available labels.

Chapter 5: Results 49

Unknown classes in unlabeled set FixMatch performance benchmarked on an un-
labeled set with unknown classes.

The FixMatch algorithm is tested on a dataset that includes unlabeled samples
which don’t belong to any of the 15 classes the model is trained to recognize.
Only 50% of the unlabeled set will consist of examples of the 15 chosen classes,
simulating a scenario where spectrograms are retrieved from soundscape record-
ings, as the presence of examples of only relevant classes within the unlabeled set
cannot always be guaranteed. Since less than 4% of all the classes found in the
dataset are utilized in this thesis, building a 50% unknown unlabeled set from the
available recordings seemed to be the most sensible approach for this experiment.

Other choice of augmentation techniques FixMatch performance using different
strategies for choosing the augmentation techniques.

The FixMatch algorithm will be evaluated using a less strong and a less weak
augmentation technique.

5.2 Experiment Results

5.2.1 Augmentation Techniques Categorization

For each of the two data augmentation experiments, ten ResNet18 models are
trained for 25 epochs on 10% of the labels using SL. No data augmentation meth-
ods are used during training. Of these models, five have random initialization
weights, whereas the remaining five have pretrained weights. Figure 5.1 shows
the averaged model F1-score when evaluating on the same set used in the train-
ing phase, this time applying audio augmentation techniques on each sample. The
results show that ResNet18, with random weights, achieves a training F1-score of
83.33% when no augmentation is used. The weakest augmentation technique is
"Gain", with an accuracy of 83.33%, performing similarly to not applying any aug-
mentation, while the strongest is "PitchShift", with an F1-score of 62.00%.

Models with pretrained weights achieve a 100.00% F1-score on the training
set, recognizing all the training examples when no augmentation techniques are
used. The weakest augmentation technique is still "Gain", with 100.00% accuracy.
Analogously, the strongest remains "Pitch Shift", with an F1-score of 85.00%.

Figure 5.2 shows the averaged model F1-score when tested on the same set
used in the training phase, this time applying image augmentation techniques
on all samples. The average F1-score of ResNet18 with random weights on the
non-augmented training set is 78.67%: the difference between the latter and the
83.33% score seen in Figure 5.1a is due to different initialization seeds being
utilized when training the ten ResNet18 models under the audio augmentation
study and the ten ResNet18 models for the image augmentation study.

50 Emanuele Caprioli: Master Thesis

(a)

(b)

Figure 5.1: Percentage of correctly predicted labels of the audio augmented train-
ing dataset using ResNet18 model with randomly initialized weights (a) and with
pretrained weights (b).

Chapter 5: Results 51

The weakest image augmentation is "Shear Y" with 77.33%, while the strongest
is "Random Brightness" with 31.33%. When loading pretrained weights, the Res-
Net18 models reaches 100.00% accuracy on the training set. The weakest aug-
mentation is "Shear Y" with 99.67%, and the strongest is "Random Brightness"
with 71.00%, consistent with the results found when no pretrained weights are
loaded.

Audio augmentation from the Audiomentation library is apparently slower
to apply than their image counterpart from the Albumentation library. Table 5.1
shows the time needed to apply each audio augmentation to the entire training set,
with "PitchShift" being the slowest at 1 minutes and 43 seconds. The image aug-
mentation techniques have a consistent time utilization of 10 seconds, as showed
in Table 5.2.

Table 5.1: Time needed for each Audio augmentation technique to be applied to
all examples of the training set. The time performance of the different Audioment-
ations augmentation methods seems to vary, with "TimeStretch" and "PitchShift"
being the slowest.

Technique Time Utilization
AddGaussianNoise 0m 11s

TimeStretch 0m 43s
PitchShift 1m 39s

Shift 0m 10s
TimeMask 0m 10s

Gain 0m 10s
AddGaussianSNR 0m 12s

Table 5.2: Time needed for each Image augmentation technique to be applied
on every example of the training set. Albumentation augmentation methods re-
portedly utilize the same amount of time.

Technique Time Utilization
GridDistortion 0m 10s

Random Brightness 0m 10s
Affine-Translate X 0m 10s
Affine-Translate Y 0m 10s
Random Contrast 0m 10s

Affine-Translate X Y 0m 10s
Shear X 0m 10s
Shear Y 0m 10s
Cutout 0m 10s

Flip 0m 10s

The data augmentation techniques chosen as basis for training with FixMatch
and SL in the upcoming experiments, are the weakest and strongest of each data

52 Emanuele Caprioli: Master Thesis

(a)

(b)

Figure 5.2: Percentage of correctly predicted labels of image augmented training
dataset using ResNet18 model with randomly initialized weights (a) and with
pretrained weights (b).

Chapter 5: Results 53

augmentation type, as shown in Table 5.3.

Table 5.3: The chosen audio and image augmentation techniques when training
with FixMatch (both weak and strong) and SL (only weak)

Type Weak Strong
Audio Gain Pitch Shift
Image Shear Y Random Brightness

5.2.2 Main Experiment

Table 5.4: Averaged F1-score of the model after 20 runs with different initial-
ization seeds. Either Audio or Image augmentation techniques are utilized in
FixMatch. Each model trained on a dataset with 10% of labels.

Model Accuracy P-value

SL 48.53% -
FixMatch-Audio 45.37% 1.04e-2%
FixMatch-Image 41.22% 1.97e-4%
SL-Pretrained 62.83% -
FixMatch-Audio-Pretrained 65.63% 2.79e-3%
FixMatch-Image-Pretrained 67.07% 1.72e-5%

Each of the models is trained for 25 epochs on a dataset composed of 10% of
the labeled examples. The results shown in Table 5.4 are the averaged F1-score
obtained from 20 runs using different initialization seeds. When training with
Supervised Learning (SL), the model achieves an F1-score of 48.53% with ran-
dom initialization weights and 62.83% when loading pretrained weights. Train-
ing with FixMatch, using only the audio augmentation techniques "Gain" as weak
and "Pitch Shift" as strong, yielded an accuracy of 45.37%, as opposed to 65.63%
when loading pretrained weights.

Applying the two-tailed unequal variance Student-T test on the population of
20 SL samples and 20 FixMatch-Audio samples resulted in a P-value of 1.04e-2%.
Student-T test applied on 20 samples of SL-Pretrained and pretrained FixMatch-
Audio-Pretrained produced a P-value of 2.79e-3%. Applying the same test on the
20 samples of FixMatch-Image and FixMatch-Image-Pretrained showed similar
results, with P-values of 1.97e-4% and 1.72e-5%, respectively. Because the result-
ing P-values are lower then 5%, the null-hypothesis can be rejected and the results
deemed statistical relevant.

A higher sample population is preferable, since a study with 20 samples for
each population has a low statistical power. Nevertheless, the number of samples
is limited by the hardware resources available as well as the lower performing
custom components written for this experiment and used in lieu of higher per-
forming modules included in Pytorch. Since the total computational time needed

54 Emanuele Caprioli: Master Thesis

(a) Methods comparison with randomly initialized weights

(b) Methods comparison with pretrained weights

Figure 5.3: Main experiment. Results of training with FixMatch using either
audio or image augmentation and SL are shown in this picture. The plots show
train and validation F1-score for each method when training a ResNet18 model
with randomly initialized weights (a) and with pretrained weights (b). For each
method, the model with the medial F1-score is picked to be plotted.

Chapter 5: Results 55

to retrieve one sample for each model is about six hours, a trade-off has been
made where only 20 samples per model are generated.

The results shown in Table 5.4 picture two different situations perfectly split
according to whether pretrained weights are employed or not. The performance
the FixMatch trained models with randomly initialized weights are worse than us-
ing Supervised Learning (SL) in both the case where audio and image augment-
ation methods are used, as seen in Figure 5.3a. FixMatch-Audio models have a
lower average F1-score of 3.16% compared to SL, while FixMatch-Image models
performed on average 7.31% lower than SL.

Only few pseudo-labels are produced and included in the training routine dur-
ing FixMatch, shown in Figure 5.4, with an approximate peak of about half the
number of labeled examples. The number of pseudo-labels produced during each
training epoch is consistent when utilizing either audio augmentation or image
augmentation.

A similar amount of correct pseudo-labels is produced by both FixMatch-Audio
and FixMatch-Image, explainable by the fact that weak augmentation performs
similarly to no augmentation being used. The ability of the model to handle spec-
trograms augmented with the strong augmentation technique is the major factor
in explaining the worse performance of FixMatch-Image compared to FixMatch-
Audio: ResNet18 model trained only on labeled examples appears to correctly
classify spectrograms augmented using "Random Brightness" with 31.33% accur-
acy, as shown in Figure 5.2a, against the 62.00% of "Pitch Shift", shown in Fig-
ure 5.1a.

When pretrained weights are loaded, the FixMatch trained models perform
better than SL trained ones, both when using audio or image augmentation, as
seen in Figure 5.3. FixMatch-Audio-Pretrained and FixMatch-Image-Pretrained
seem to be simultaneously better at generalizing and less prone to overfitting.
The ability of pretrained model to be more confident about its prediction from
the start translates in more pseudo-labels being produced and thus included in
the training phase, as shown in Figure 5.5. FixMatch-Audio-Pretrained manages
to produce over 1250 pseudo-labels in the later training epochs, while FixMatch-
Image-Pretrained manages to produce almost 1500 pseudo-labels, approximately
four times the amount of labeled examples used. The correctness ratio of the gen-
erated pseudo-labels converges in both models, laying just below the training ac-
curacy curve.

Results in Table 5.4 show that training ResNet18 using FixMatch with either
augmentation type provides a worse performance than SL when no pretrained
weights are loaded, and better than SL when they are. Due to similar patterns seen
in pseudo-labels generation and accuracy performance, only image augmentation
will be used in the upcoming experiments, as it is the less time-demanding data
augmentation method, as seen in Table 5.1 and Table 5.2.

56 Emanuele Caprioli: Master Thesis

(a) FixMatch-Audio (b) FixMatch-Image

Figure 5.4: Main Experiment. Pseudo-labels produced during training with
FixMatch with either Image or Audio augmentation. Plots with FixMatch-Audio
are shown in figure A, while plots using FixMatch-Image are showed in figure B.
In each figure, the upper graph shows the amount of wrong and correct pseudo-
labels. Train and validation accuracy are plotted in the lower graphs, along with
the accuracy of the pseudo-labels used for training. For each method, the model
with the medial F1-score is picked to be plotted.

Chapter 5: Results 57

(a) FixMatch-Audio-Pretrained (b) FixMatch-Image-Pretrained

Figure 5.5: Main experiment. Pseudo-labels produced during training with
FixMatch with either Image or Audio augmentation. Plots regarding FixMatch-
Audio-Pretrained are shown in figure A, while for FixMatch-Image-Pretrained in
figure B. In each figure, the upper graph shows the amount of wrong and correct
pseudo-labels produced. Train and validation accuracy are plotted in the lower
graphs along with the accuracy of the pseudo-labels used for training. For each
method, the model with the medial F1-score is picked to be plotted.

58 Emanuele Caprioli: Master Thesis

5.2.3 Long Training

Training for 25 epochs does not show convergence, as it can be observed in the
graphs from Figure 5.3. Results of training the model for 100 epochs are presented
in Table 5.5, while plots accounting for the development of the models’ accuracy
and error rate are shown in Figure 5.6. All the models show convergence on both
training and validation accuracy. All models except FixMatch-Image manage to
learn the training set. SL and FixMatch models show signs of overfitting from
around the 30th epoch, as shown in Figure 5.6b, where the validation error starts
to increase as the training error converges close to 0, meaning that the model is
memorizing the training set instead of learning general knowledge from it.

FixMatch-Image-Pretrained still performs better than SL-Pretrained, with an
F1-score curve laying almost always over the SL-Pretrained curve, with a P-Value
of 1.24%. This result can be deemed statistically relevant. Regarding FixMatch-
Image, the average of ten runs showed an F1-score of 49.11%, lower than SL
and its 49.84%, but with a P-Value of 17.64%. This result has a high chance of
being achieved due to randomness, and therefore to not be considered statistically
relevant.

The number of pseudo-labels generated and model accuracy are plotted in
Figure 5.7. FixMatch-Image sees an increase of pseudo-labels generated after 25
epochs of training, rising to just above 400 in the later training epochs. FixMatch-
Image-Pretrained manages to generate more than 1750 pseudo-labels in the later
training epochs. Pseudo-labels accuracy converges in both configurations.

Table 5.5: Averaged F1-score of the model after 10 runs with different initializ-
ation seeds. All the models are trained for 100 epochs on 10% labeled dataset.
During each training, the weights of the best model are saved and utilized in the
calculation.

Model Accuracy P-Value

SL 49.84% -
FixMatch-Image 49.11% 17.64%
SL-Pretrained 68.44% -
FixMatch-Image-Pretrained 71.22% 1.24%

5.2.4 All Labels Comparison

The performance of FixMatch-Image and FixMatch-Image-Pretrained is compared
to training with Supervised Learning (SL) on a labeled set corresponding to the
sum of labels and pseudo-labels used by FixMatch in the later epochs of training.
As shown in Figure 5.7, FixMatch-Image manages to produce around 400 pseudo-
labels when trained for 100 epochs, while FixMatch-Image-Pretrained produces
around 1750 pseudo-labels. Adding these amounts of pseudo-labels to the 328
labeled examples brings the total ratio of labeled examples to 22% and 63%, re-
spectively.

Chapter 5: Results 59

(a) Models train and validation accuracy during training.

(b) Models train and validation error during training.

Figure 5.6: Long training. Performance comparison of FixMatch-Image against
Supervised Learning with and without the use of pretrained weights.Each model
is trained for 100 epochs on a train set composed of 10% labeled examples. All
but the FixMatch model manage to learn the training set, with SL showing signs
of overfitting after around the 30th epoch.

60 Emanuele Caprioli: Master Thesis

(a) FixMatch-Image (b) FixMatch-Image-Pretrained

Figure 5.7: Long training. Pseudo-labels produced during training with
FixMatch-Image. Figure A shows plots of FixMatch-Image while figure B shows
plots of FixMatch-Image using pretrained weights. In each figure, the upper graph
shows the amount of wrong and correct pseudo-labels produced. Train and val-
idation accuracy are plotted in the lower graphs along with the accuracy of the
pseudo-labels used for training.

Chapter 5: Results 61

The results presented in Table 5.6 show that the pseudo-labels generated by
FixMatch-Image-Pretrained do increase the accuracy of the model, with it going
from 68.44% to 71.22%, but their impact on the training is not equivalent to in-
cluding the same amount of labeled examples in SL-Pretrained, the latter reaching
an accuracy of 84.36% and using 68% of labels. The SL-Pretrained model accur-
acy converges to 84.66% when using the entire labeled dataset, making it the
theoretical maximum model accuracy for ResNet18 using pretrained weights and
training for 100 epochs with this choice of hyperparameters. Figure 5.8b shows
validation F1-score plots for all the models. FixMatch-Image-Pretrained valida-
tion F1-score is plotted just above SL-Pretrained, leaving room for possible future
improvements.

Figure 5.8a shows that every SL model reaches an F1-score of around 100% on
the train set except for FixMatch-Image. Validation accuracy of FixMatch-Image
is inferior to SL with the chosen hyperparameters, when it is supposed to lay
between SL and SL-22%, similarly to the pretrained counterpart shown in Fig-
ure 5.8b. The theoretical maximum of FixMatch-Image is 76.12%, achieved in
this case as well by using 100% of the dataset as labels.

Table 5.6: Averaged F1-score of the models after ten runs with different initializ-
ation seeds. Fixmatch-Image performance on 10% of labels is compared against
SL when 10%, 22% and 100% of the labels are included in the training phase.
Fixmatch-Image-Pretrained performance on 10% of labels is compared against
SL-Pretrained when 10%, 63% and 100% of the labels are included in the train-
ing phase. Performance of FixMatch-Image is inferior to all the SL trained mod-
els, while performance of FixMatch-Image-Pretrained is inbetween SL-Pretrained
with 10% labels and SL-Pretrained with 63% labels.

Model Labels used Accuracy

FixMatch-Image 10% 49.12%

SL
10% 49.84%
22% 57.07%
100% 76.12%

FixMatch-Image-Pretrained 10% 71.22%

SL-Pretrained
10% 68.44%
63% 84.36%
100% 84.66%

5.2.5 Variations to FixMatch

Three variations of FixMatch-Image are benchmarked in this experiment. In FixMatch-
Image-uLoss, the unlabeled loss is multiplied by a scalar weight that increases
linearly for each passing epoch by 1%. In FixMatch-Image-Decay, the confidence
threshold decays in a linear manner from 98% to 92% by the end of 100 epochs.
The same variation are tested on FixMatch-Image-Pretrained.

62 Emanuele Caprioli: Master Thesis

(a) Methods comparison with randomly initialized weights

(b) Methods comparison with pretrained weights

Figure 5.8: All labels comparison. Train and Validation F1-score comparisons
of FixMatch-Image against SL when including 10%, 22% and 100% of the labels
during training are shown in figure A, while F1-score comparisons of FixMatch-
Image-Pretrained against SL with 10%, 63% and 100% of the labels are plotted
in figure B.

Chapter 5: Results 63

Results in Table 5.7 show that the two new variations of FixMatch-Image per-
form better on the test set than the SL models. When averaging the ten runs of
each model, FixMatch-Image-uLoss and FixMatch-Image-Decay outperform the
FixMatch-Image on the test set, proved by the increased number of pseudo-labels
produced, shown in Figure 5.10. The FixMatch-Image-uLoss model produces more
incorrect pseudo-labels, but the lower weight of the unlabeled loss pushes the
model to focus the training, in the beginning, more towards the labeled set, achiev-
ing a higher train accuracy, as seen in Figure 5.9a. On the contrary, FixMatch-
Image-Decay pushes the training of the model towards the unlabeled part, as
more pseudo-labels are produced, scoring lower accuracy on the train set. Nev-
ertheless, a P-Value study indicates that improvement of FixMatch-Image-uLoss
and FixMatch-Image-Decay over SL is not statistically relevant and can be due to
randomness.

The study regarding the pretrained models pictures a different situation. Each
FixMatch-Pretrained configuration achieves a higher F1-score than SL-Pretrained,
as shown in Table 5.7, and with lower P-Values than 5%, those results are to be
deemed statistically relevant. All the pretrained models manage to learn the train
set, as seen in Figure 5.9b. FixMatch-Image-Pretrained-uLoss scores a lower ac-
curacy than regular FixMatch-Image-Pretrained; this is proved by the model’s loss
function weighting the unlabeled loss less, even though the model is able to gener-
ate many high quality pseudo-labels from the beginning of the training. The lower
accuracy reached by the models translates to a lower number of pseudo-labels
generated, which also contributes to a lower accuracy, as seen in Figure 5.11a.

FixMatch-Image-Pretrained-Decay performs better than all of the other trained
models, with an average F1-score of 71.95%. The model shows stability when the
confidence threshold is lowered over time: in the beginning of the training, few
pseudo-labels of high-quality are produced, thus contributing to reaching a high
accuracy. As the confidence threshold is lowered, more pseudo-labels are included
in the training, as seen in Figure 5.11b, but since the model performance is already
high, the new examples can be trusted to be included in the training set without
risking the deterioration of the system.

5.2.6 Various Unlabeled Ratios

The results presented in Table 5.8 show the impact of using the FixMatch al-
gorithm when the ratio of labeled examples varies between 5%, 10% and 20%.
Results show that in each different ratio configuration, FixMatch-Image fails to
produce a higher validation F1-score than SL. All the calculated P-Values, retrieved
from analyzing the results distributions, are higher than 5%, thus consistent with
the previous experiments. FixMatch-Image-Pretrained, instead, manages to reach
a higher performance than SL-Pretrained on all the different ratio configurations.
It is worth noticing that the performance increase seen using FixMatch varies with
the different labels’ ratios, with an F1-score increase of 9.07%, 2.78% and 5.53%
when using 5%, 10% and 20% of the labels, respectively. Those results show that

64 Emanuele Caprioli: Master Thesis

(a) FixMatch-Image Variations against SL

(b) FixMatch-Image-Pretrained Variations against SL

Figure 5.9: Variations to FixMatch. Training and validation accuracy perform-
ance of three FixMatch-Image variations against SL. The plots show train and
validation F1-score for each FixMatch-Image variation when using randomly ini-
tialized weights (a) and with pretrained weights (b).

Chapter 5: Results 65

(a) FixMatch-Image-uLoss (b) FixMatch-Image-Decay

Figure 5.10: Variations to FixMatch. Pseudo-labels produced during training us-
ing FixMatch-Image with linearly increasing unlabeled loss weight (a), and with a
continuous decay of the confidence threshold (b). In each figure, the upper graph
shows the amount of wrong and correct pseudo-labels produced. Train and val-
idation accuracy are plotted in the lower graphs along with the accuracy of the
pseudo-labels used for training.

66 Emanuele Caprioli: Master Thesis

(a) FixMatch-Image-Pretrained-uLoss (b) FixMatch-Image-Pretrained-Decay

Figure 5.11: Variations to FixMatch. Pseudo-labels produced during training
using FixMatch-Image-Pretrained with linearly increasing unlabeled loss weight
(a), and with a continuous decay of the confidence threshold (b). In each figure,
the upper graph shows the amount of wrong and correct pseudo-labels produced.
Train and validation accuracy are plotted in the lower graphs along with the ac-
curacy of the pseudo-labels used for training.

Chapter 5: Results 67

Table 5.7: Averaged F1-score after ten runs with different initialization seeds.
Every model is trained for 100 epochs on 10% of the labels. The P-Value study
indicates that the results regarding the FixMatch-Image variations have a high
chance of being such due to randomness. Decaying the confidence threshold of
each epoch proves to be a better strategy for training using FixMatch on a pre-
trained model.

Model Validation P-Value

SL 49.84% -
FixMatch-Image 49.11% 17.64%
FixMatch-Image-uLoss 50.16% 77.67%
FixMatch-Image-Decay 49.89% 95.28%
SL-Pretrained 68.44% -
FixMatch-Image-Pretrained 71.22% 1.24%
FixMatch-Image-Pretrained-uLoss 69.65% 4.81%
FixMatch-Image-Pretrained-Decay 71.95% 0.44%

there is much to gain by using FixMatch on a small labeled dataset when a high
number of unlabeled examples are available. At the same time, the performance
boost given by FixMatch is not constant, but rather increases with the model’s ac-
curacy, as it produces more pseudo-labels with a higher accuracy: in Figure 5.12b
it is evident that FixMatch-Image-Pretrained produces more pseudo-labels with
20% labels than with 10%, as seen in Figure 5.7b.

Table 5.8

Labels used Model Accuracy P-Value

5%

SL 44.17% -
FixMatch-Image 36.34% 4.38%
SL-Pretrained 53.27% -
FixMatch-Image-Pretrained 62.34% 0.03%

10%

SL 49.84% -
FixMatch-Image 49.11% 17.64%
SL-Pretrained 68.44% -
FixMatch-Image-Pretrained 71.22% 1.24%

20%

SL 59.59% -
FixMatch-Image 59.30% 74.45%
SL-Pretrained 73.43% -
FixMatch-Image-Pretrained 78.96% 0.003%

5.2.7 Unknown Classes in the Unlabeled Set

In this experiment, 50% of the unlabeled set is exchanged with high quality ex-
amples from the other 382 classes available in the original dataset, as seen in

68 Emanuele Caprioli: Master Thesis

(a) FixMatch-Image-Pretrained 5% Labels (b) FixMatch-Image-Pretrained 20% Labels

Figure 5.12: Various unlabeled ratios. Pseudo-labels produced during training
using FixMatch-Image-Pretrained with 5% labels (a), and with 20% labels (b).
In each figure, the upper graph shows the amount of wrong and correct pseudo-
labels produced. Train and validation accuracy are plotted in the lower graphs
along with the accuracy of the pseudo-labels used for training.

Chapter 5: Results 69

section 4.1, meaning that the dataset used for training contains 10% labels of the
chosen 15 classes, 45% unlabeled examples of the 15 chosen classes and 45%
unlabeled examples from unknown classes. The premise behind this experiment
is to simulate an unlabeled set retrieved from soundscape recordings, where the
unlabeled examples affiliation to the classes the model tries to classify cannot be
guaranteed.

The findings presented in Table 5.9 show that including unknown unlabeled
examples results in a small degradation of the system, when compared to using the
unlabeled set composed exclusively of examples from the 15 classes. FixMatch-
Image-Pretrained-External50% reaches a validation F1-score of 70.04%, lower
than FixMatch-Image-Pretrained but still higher than SL-Pretrained. Figure 5.13b
shows that FixMatch-Image-Pretrained-External50% produces less pseudo-labels
than FixMatch-Image (showed in Figure 5.7b), but the pseudo-labels generated
are from a majority of unlabeled examples originally taken from the chosen 15
classes, since the pseudo-labels accuracy lays around 60%. The rest are either
wrongly labeled examples or examples that do not fall into any of the 15 classes.

Table 5.9: Averaged F1-score of the model after ten runs with different initializa-
tion seeds. All models are trained for 100 epochs and show convergence. Decaying
the confidence threshold by 0.0006 per epoch proves to worsen the performance
on the model.

Model Accuracy P-value

SL 49.84% -
FixMatch-Image 49.11% 17.64%
FixMatch-Image-External50% 49.26% 46.42%
SL 68.44% -
FixMatch-Image-Pretrained 71.22% 1.24%
FixMatch-Image-Pretrained-External50% 70.04% 4.06%

5.2.8 Other Choice of Augmentation Techniques

In this experiment, FixMatch is tested in pairing with a less weak/strong aug-
mentation technique, chosen out of the results of the study conducted in subsec-
tion 5.2.1. The augmentation techniques previously utilized in FixMatch-Image
and FixMatch-Image-Pretrained are shown in Table 5.10, along with the tech-
niques used in the "AlternativeAug" variants.

Results, presented in Table 5.11, show an increment in the F1-score when the
alternative augmentation techniques are utilized. FixMatch-Image-AlterativeAug
perform better than FixMatch-Image, reaching the same performance of SL. The
P-Value calculated is 100%, meaning that this result is totally due to randomness
and there is absolutely no difference in utilizing FixMatch or SL when training
with the chosen parameters on a non-pretrained ResNet18 model.

Regarding pretrained models, there is a performance boost, with FixMatch-

70 Emanuele Caprioli: Master Thesis

(a) FixMatch-Image-External50% (b) FixMatch-Im.-Pretrained-External50%

Figure 5.13: Unknown classes in unlabeled set. Pseudo-labels produced during
training FixMatch-Image with 50% of the unlabeled set consisting of examples
from external classes, on a randomly initialized model (a), and pretrained model
(b).

Chapter 5: Results 71

Image-Pretrained-AlternativeAug reaching an average F1-score of 73.60%. The
calculated P-Value is 0.02%, meaning that this result has high statistical relevance.

Table 5.10: Weak and strong augmentation chosen for each model. A less weak-
/strong augmentation is chosen for each model, based on results in Figure 5.2.

Model Weak Strong
FixMatch-Image Shear Y Random Brightness

FixMatch-Image-Pretrained Shear Y Random Brightness
FixMatch-Image-AlternativeAug Affine-Translate X Random Contrast

FixMatch-Image-Pretrained-AlternativeAug Random Contrast Affine-Translate Y

Table 5.11: Averaged F1-score of the models after ten runs with different initial-
ization seeds. Each model is trained for 100 epochs on 10% labels.

Model Accuracy P-value

SL 49.84% -
FixMatch-Image 49.11% 17.64%
FixMatch-Image-AlternativeAug 49.84% 100.0%
SL 68.44% -
FixMatch-Image-Pretrained 71.22% 1.24%
FixMatch-Image-Pretrained-AlternativeAug 73.60% 0.02%

5.2.9 Best Models

The final models are trained by collecting the findings in the previous experi-
ments. Since the performance of FixMatch-Image is not satisfactory, with every
experiment leading to non statistically relevant results, only the pretrained vari-
ant are trained.

FixMatch models trained using the alternative augmentation techniques (less
strong and weak), did perform better and became therefore consolidated as the
new augmentation choice. The unlabeled set provided to FixMatch contains only
50% of relevant classes, as assuring the purity of an automatically recorded un-
labeled set is highly improbable in a realistic scenario, so this design choice will
therefore increase the credibility of the results. Confidence threshold decay is
tested against a fixed threshold, as it is unsure how the combination of the former
with a 50% unlabeled set performs.

The results, available in Table 5.12, shown that the FixMatch trained models
performed better on a dataset with 5%, 10% and 20% labeled examples, respect-
ively.

Lowering the confidence threshold during training has shown to be a good
strategy, as it includes more examples from the unlabeled set on the right time,
without disturbing the stability of the system. The combination of 50% external
unlabeled data and decay of the confidence threshold does not produce the same

72 Emanuele Caprioli: Master Thesis

results as when each component is tested by itself: as the threshold is lowered,
the model includes more mislabeled unlabeled examples into training, worsening
the performance. In Figure 5.14, it can be observed that linearly lowering the
confidence threshold results almost entirely in the inclusion of incorrect pseudo-
labels, while the amount of correct pseudo-labels remains almost unaltered.

Table 5.12: Averaged results of ten runs with different initialization seeds. All
models are trained for 100 epochs and the FixMatch models are trained both with
a fixed confidence threshold decay and with a decay of 0.0006 at each epoch,
starting from 98%. FixMatch is paired with the alternative augmentation, and
50% of the unlabeled set has been swapped with examples from unknown classes.

Labels used Model Conf. Decay Accuracy P-Value

5%
SL-Pretrained-Final - 53.27% -
FixMatch-Image-Pretrained-Final No 60.80% 0.11%
FixMatch-Image-Pretrained-Final Yes 59.52% 0.25%

10%
SL-Pretrained-Final - 68.44% -
FixMatch-Image-Pretrained-Final No 70.06% 3.96%
FixMatch-Image-Pretrained-Final Yes 68.85% 9.28%

20%
SL-Pretrained-Final - 73.43% -
FixMatch-Image-Pretrained-Final No 78.11% 0.03%
FixMatch-Image-Pretrained-Final Yes 77.38% 0.03%

5.3 Results Analysis

5.3.1 Use of Pretrained Weights

A common denominator in every experiment is the failure of training a model
without the use of pretrained weights. It has become clear that this failure is due to
some other factor that has been left unchanged in all the experiments performed.
In Figure 5.15 the validation F1-score of the best strategy for both non-pretrained
models and pretrained models when trained on a dataset with 5%, 10% and 20%
of labeled examples is plotted. When pretrained weights are not loaded in the
model, the performance of FixMatch is at most as good as SL. On the other hand,
the pretrained version of the model always performed better with FixMatch, even
when the unlabeled set contained many "impure" examples from other 382 bird
classes.

There is no difference between the pretrained model and the randomly initial-
ized model other than the pretrained weights computed on the ImageNet dataset
and the Learning Rate (lr), the latter being selected as result of the hyperpara-
meter search in subsection 4.3.5. Training an SL model using the same lr used in
training the pretrained models (lr= 0.00032), resulted only in a worsening of the
performance, as seen in Table 5.13.

Chapter 5: Results 73

(a) FixMatch-Image-Pretrained-Final with
Confidence Threshold Decay

(b) FixMatch-Image-Pretrained-Final
without Confidence Threshold Decay

Figure 5.14: Best models. Pseudo-labels produced during training using the best
FixMatch-Image-Pretrained configuration with (a) and without (b) continuous
decay of the confidence threshold. When decaying the confidence threshold, a
higher amount of examples from external classes or wrongly labeled are intro-
duced, reducing the pseudo-label accuracy. The models are trained on 10% of
labels.

Table 5.13: Averaged F1-score of ten runs with different initialization seeds. All
models are trained for 100 epochs on 10% of the labeled set.

Model Learning Rate Accuracy
SL 0.00153 49.84%
SL 0.00032 44.77%

74 Emanuele Caprioli: Master Thesis

(a) Non-pretrained models trained on
100% of the unlabeled set composed of ex-
amples of the 15 known classes and no con-
fidence threshold decay.

(b) Pretrained models trained on 50% of
the unlabeled set composed of examples of
other 382 classes, alternative augmentation
techniques, and no confidence threshold de-
cay.

Figure 5.15: average validation F1-score of the models configurations plotted
against the amount of labels used during training. The plots show F1-score of
the best discovered training strategy, when pretrained weights are not loaded (a)
and when they are loaded in the model (b). In each of the plots, the discovered
theoretical maximum, i.e., training the same model on 100% of labels using SL,
is plotted in green.

Chapter 5: Results 75

5.3.2 FixMatch Effect on Bird Sounds Dataset

Bird sounds classification has proved to be a non-trivial task to solve. Using only
high quality recordings, a modern and robust network architecture, pretrained
weights, and limiting the dataset to 15 classes, the highest validation F1-score
reached is 84.66%, training on the entire dataset, composed of 219 examples per
class.

When reducing the amount of labeled examples, the accuracy of the model
reduces drastically. One of the reasons of this being that bird sounds differ highly
intraspecies, with dialects, male/female differentiation and sounds produced dur-
ing special events such as fights, mating calls or duets. For a model to learn feature
representation for all those cases, the train set should include enough examples
for each case, increasing the need of domain knowledge required.

Analyzing the dataset split shows that the validation set is balanced regard-
ing the amount of training examples per class, but not regarding the metadata
"type" included in each class. Figure 5.16 shows that the training dataset contains
many fewer examples of metadata types, like "sex uncertain" and "life stage uncer-
tain", than the validation dataset, even though they were split 80-20% from the
original dataset, respectively. For the "gbwwre1" class, the validation set includes
many examples without any metadata type, plotted in the rightmost column of
Figure 5.16b, while the training set includes almost no such examples.

The 10 most used metadata types in a randomly picked 10% and 5% subset of
the training dataset is plotted in Figure 5.17. A severe "thinning" of the number of
examples per metadata type can be observed, with some having no representative
examples for some of the classes. In these cases, using SSL methods like FixMatch,
increases the performance by giving the model a chance of seeing more examples
of each class.

When taken as example, an SL-pretrained model and a FixMatch-Image-Pretrained
model, both trained on 5% labels and using the same initialization seed, the class
"mallar3" gets correctly predicted 16 out of 55 times by the SL-Pretrained model,
shown in the confusion matrix in Figure 5.18a: of these wrong predictions, the
model outputs the class "amoreb" ten times. A closer look at the spectrograms of
the "amerob" and "mallar3" classes, visible in Figure 5.19, shows some similarit-
ies between the two metadata types "alarm-call", while spectrograms representing
the "call" of the two shows clearly distinctive features.

In Figure 5.16a, it can be observed that the training dataset includes 15 ex-
amples of "alarm-call" for "mallar3" and 19 of the "amerob" class. When randomly
retrieving the 5% of the labels (same sub-set used when training both models, as
the initialization seed is the same), only one "alarm-call" example of each of the
two classes is included in the labeled training set, shown in Figure 5.17b, leaving
the model confused about how to separate the two similar types.

Training with FixMatch, the model managed to include enough unlabeled ex-
amples of "mallar3" and "amerob", ultimately learning to separate the two classes.
The model predicted the class "mallar3" correctly 41 out of 55 times, of which

76 Emanuele Caprioli: Master Thesis

none of the wrongly predicted class includes the class "amerob", as visible in the
confusion matrix in Figure 5.18b.

In the case where no labeled "alarm-call" spectrogram of the "mallar3" class
were included in the training set, the FixMatch training routine would have as-
signed all of the "mallar3" unlabeled examples, of the type "alarm-call", the pseudo-
label "amerob", due to them being the closest labeled examples it has seen, propagat-
ing the error in the successive training epochs. Similarly, using FixMatch has yiel-
ded a minimal improvement for the class "carwre", going from 14 to 15 correct
predictions out of 55. The FixMatch trained model began mismatching "carwre"
for "eursta", even though it did not when training with SL (Figure 5.18). The model
receives labeled examples of only two types of spectrograms for "carwre", while
seeing six different types of "eursta" (Figure 5.17b), leading to the mislabeling of
the unlabeled examples.

5.4 Chapter Summary

This chapter presented the experiments plan, experiments results with initial re-
marks, as well as the analysis of the results. The data augmentation experiment
resulted in the classification of each audio and image augmentation technique
into weak and strong. Opting to pair a less weak/strong augmentation technique
to FixMatch yielded better results rather than the weakest/strongest one. Results
showed that audio augmentation techniques yield comparable results to image
augmentation, but costing a higher computational time.

All the FixMatch models without the use of pretrained weights failed to surpass
the F1-score achieved by the SL baseline. Additionally, all results regarding non-
pretrained FixMatch models are to be deemed non statistically relevant, due to
the resulting P-values being higher than 5%.

On the other hand, pretrained FixMatch scored always better than the pre-
trained SL baselines. Decaying the confidence threshold with time proved to be
a good strategy, if the unlabeled set is guaranteed to exclusively include relevant
examples. When 50% of the unlabeled spectrograms were exchanged with spec-
trograms of unknown classes, the performance of pretrained FixMatch dropped
as the confidence threshold was lowered, due to more unknown examples being
accepted as training examples.

The performance boost of FixMatch showed to be non-linear, with a higher
increase when providing 5% and 20% of the labels, the former due to more ex-
amples being introduced in an otherwise too little labeled set, while the latter due
to the increased model accuracy, reached by training on the bigger labeled set, led
to more precise pseudo-labels being produced. The best FixMatch configuration
reached F1-scores of 60.80%, 70.06% and 78.11%, whereas SL scored 53.27%,
68.44% and 73.43%; in both cases, pretrained weights were used, and training
was performed on 5%, 10%, and 20% of the labels.

Chapter 5: Results 77

(a) Training set

(b) Validation set

Figure 5.16: Occurrence of each metadata "type", distinct by labels, for the en-
tire Training and Validation set, in (a) and (b), respectively. On the y-axis the
labels of the examples is plotted, and on the x-axis lay the ten more common type
descriptors available in the dataset. The "energies" show the amount of examples
of that type for a specific label and are normalized between 0 and 315, the latter
being the highest amount of examples of all the type/class combinations. It can
be observed that the validation set is not representative of the training set, with
some metadata "type" present in the Validation set being absent in the Training
set.

78 Emanuele Caprioli: Master Thesis

(a) Training set: 10% labels

(b) Training set: 5% labels

Figure 5.17: Occurrence of each metadata "type", distinct by label, for a random
subset of 10% and 5% of the training set, in (a) and (b), respectively. On the
y-axis the labels of the examples is plotted, while, on the x-axis, the ten more com-
mon type descriptors available in the dataset are shown. The "energies" show the
amount of examples of that type for a specific label and are normalized between
0 and 315, the latter being the highest amount of examples of all the type/class
combination. A "thinning" of the metadata "type" energies can be observed here,
with some "type" disappearing in the 5% subset.

Chapter 5: Results 79

(a) Heatmap SL-Pretrained model with 5% labels

(b) Heatmap FixMatch-Pretrained model with 5% labels

Figure 5.18

80 Emanuele Caprioli: Master Thesis

(a) Amerob "alarm-call" (b) Mallar3 "alarm-call"

(c) Amerob "call" (d) Mallar3 "call"

Figure 5.19: Spectrograms examples from the Amerob and Mallar3 classes. A
strong resemblance between the "alarm-call" of Amerob and Mallar3 can be ob-
served here. On the other hand, those similarities do not apply when inspecting
the "call" of the two species.

Chapter 6

Conclusion

This chapter concludes the work done in this thesis. The research questions and
goal are discussed in section 6.1, and some ideas of possible future work are
presented in section 6.2.

6.1 Discussing Around the Research Questions

To answer the research questions posed in this thesis, a balanced subset of 15
classes has been retrieved from the data available in the Xeno-canto collection.
Then, a custom pipeline has been built in order to preprocess the examples with
either audio or image augmentation.

Different FixMatch configurations have been tested against SL on different
label-ratios, by loading pretrained weights or starting training from scratch.

Research question 1 How do SSL methods applied in other domains perform on
bird songs in comparison to a sensible baseline?

FixMatch, an SSL method developed around image classification, has shown
to be applicable on an audio classification task with the right adjustments. The
choice of data augmentation to use with FixMatch has to be carefully picked out
of a relevant selection of transformations, since not every image augmentation
technique is applicable to an audio spectrogram. Audio augmentation is also com-
patible with FixMatch, with comparable performance to image augmentation, but
requires more time to compute.

FixMatch has proved to be able to take advantage of pretrained weights re-
trieved on an image dataset, and fine-tune a model for an audio classification
task. By not freezing any of the layers, the model manages to optimize the whole
feature space, finding a better optimum.

The best FixMatch configuration reached F1-scores of 60.80%, 70.06% and
78.11%, whereas SL scored 53.27%, 68.44% and 73.43%; in both cases, pre-
trained weights were used, and training was performed on 5%, 10%, and 20%
of the labels.

81

82 Emanuele Caprioli: Master Thesis

These findings are partially in line with the results presented in the work of
Grollmisch et al. [14], where it was found that FixMatch always improved the
accuracy compared to SL, and was outperformed by SL-pretrained only on the
most difficult dataset. Results from the experiments in this thesis showed that only
by loading pretrained weights FixMatch managed to outperform the SL baselines.
This is due to the more complex nature of the dataset used in this thesis.

Research question 2 To which extent can the labeled-to-unlabeled examples ratio
be reduced before degradation of the system?

Reducing the amount of labels used to 5%, 11 examples per class, the best FixMatch
configuration, using pretrained weights, reaches an average accuracy of 60.80%,
a 7.53% increase over using SL with the same amount of labels. This thesis has
shown that FixMatch is still able to generate enough good quality pseudo-labels
from an impure unlabeled set using a limited amount of labels, leading the model
to find a better optimum. The performance worsened when some of the bird song
"types" were neglected in the labeled set, as the model mislabeled more unlabeled
examples and increased the confirmation bias.

Goal Reducing the labeled data needed to reach baseline performance on classifica-
tion of bird sounds.

Training a ResNet18 model using FixMatch yielded better results than using su-
pervised learning on all the labeled to unlabeled ratios tested. Nevertheless, none
of the models managed to reach the same performance of using the entire labeled
dataset during SL training. The results showed that including pseudo-labels dur-
ing FixMatch training does not yield the same F1-score as if they were the real
labels, leading to believe that a new strategy for selection and optimization of the
strong augmentation technique ought to be developed.

A non-pure unlabeled set is a reasonable scenario for SSL within audio clas-
sification, when the unlabeled dataset is a collection of audio retrieved from a
not human-supervised recorder unit. Lowering the confidence threshold level as
the model trains proves to be a good strategy when the unlabeled set exclusively
includes examples of the selected classes, but the performance drops when half of
the unlabeled set is composed of unknown examples. Therefore, a better strategy
in this case is to keep a fixed high threshold, such that only pseudo-labels of high
enough confidence are included. This general approach can be applied to other
audio domain classification tasks, but also to an image classification task, where
the unlabeled set is retrieved using an automatic pipeline, like a camera and mo-
tion sensor setup.

6.2 Future Work

The results presented in this thesis are promising and represent a step further
into building good classifiers using less domain knowledge. Nevertheless, some

Chapter 6: Conclusion 83

improvements to the system can be made, and new areas can be explored. Some
are presented in this section.

6.2.1 Increasing the Dataset Balance

The pseudo-labels accuracy can be increased by balancing the supervised set both
class-wise and type-wise, and including as many different "type" spectrograms
for each class as possible. For a more accurate validation of the system, in the
case where the validation set is not balanced type-wise, cross validation can be
implemented instead of a fixed split of the dataset. NLP methods for analyzing,
clustering and cleaning the manually-assigned "type" in the dataset could be ex-
plored.

6.2.2 Changes in the FixMatch Implementation

The implementation of FixMatch presented in this thesis is based on minibatch-
learning, and each minibatch is divided into a labeled and an unlabeled part:
in the case of 5% of the labels being used, each minibatch of size 40 contains
only two labeled examples, with the rest being unlabeled. This implementation
makes it difficult to try different ratios of labels and optimize the minibatch-size
parameter.

Alternatively, at the beginning of each training epoch, the model can gen-
erate the hard pseudo-labels of all of the unlabeled examples predicted with a
higher confidence than τ. Then, the weakly augmented supervised examples and
the strongly augmented unlabeled examples, of higher confidence than τ, can
be combined into the same batch. For each step of the training epoch, a random
minibatch can be retrieved from this new batch and continue with regular min-
ibatch training. The results of this thesis showed that weighting the labeled and
unlabeled loss the same yielded best results, therefore there is no need to separate
the examples when calculating the total loss. The minibatch-size parameter can
now be chosen indifferently from the labels ratio.

6.2.3 Accuracy Improvements

The model can produce more accurate pseudo-labels by including positional data,
as it is part of the metadata of the utilized dataset. Positional data is easy to retrieve
for an unlabeled recording, as it corresponds to the longitude and latitude position
of the recording unit utilized. By including this information during training, the
model should be able to distinguish similar spectrograms of different species that
do not appear in the same geographic location. The same applies to the time of the
recording, as some of the species are, for instance, nocturnal or produce different
types of sounds at specific times during the day.

Allowing the model to experience multiple weak and strong augmentation
technique pairs should also be explored, as it shows more scenarios of possible
sounds.

84 Emanuele Caprioli: Master Thesis

6.2.4 Testing on Real Landscape Recordings

A natural next step is to test the efficiency of FixMatch by training using unlabeled
landscape recordings. A new model capable of recognizing more species than the
15 mentioned in this thesis needs to be set up, in order to ensure a good repres-
entation of the classifiable species in the unlabeled landscape recordings.

For filtering exclusively bird sound spectrograms generated from the unlabeled
soundscape recordings, a simpler classifier could be built to recognize the "bird"
class, using bigger datasets like AudioSet.

In this thesis, experiments with impure unlabeled sets were performed by
exchanging 50% of the aforementioned set with audio recordings of unknown
classes, namely the other 382 classes available in the dataset. Only examples with
a high SNR ratio have been utilized in this thesis, both in the labeled set and
the unlabeled set with unknown examples. Soundscape recordings will probably
include species sounds with lower SNR ratios, in comparison to ones manually re-
trieved by bird watchers. As the model is trained only on high quality examples, it
can fail to recognize low quality unlabeled examples, assigning the wrong pseudo-
label, if any at all. Lower quality examples could be introduced in the labeled set
to mitigate this problem.

Bibliography

[1] B. D. Sparrow, W. Edwards, S. E. Munroe, G. M. Wardle, G. R. Guerin,
J.-F. Bastin, B. Morris, R. Christensen, S. Phinn and A. J. Lowe, ‘Effective
ecosystem monitoring requires a multi-scaled approach,’ Biological Reviews,
vol. 95, no. 6, pp. 1706–1719, 2020. DOI: https://doi.org/10.1111/brv.
12636. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
brv.12636. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1111/brv.12636.

[2] C. L. of Ornithology, Kaggle competition: Cornell Birdcall Identification, https:
//www.kaggle.com/c/birdsong- recognition/overview, [Online; ac-
cessed 5-December-2021], 2020.

[3] S. Mekonen, ‘Birds as biodiversity and environmental indicator,’ Indicator,
vol. 7, no. 21, 2017.

[4] S. Kahl, C. M. Wood, M. Eibl and H. Klinck, ‘Birdnet: A deep learning solu-
tion for avian diversity monitoring,’ Ecological Informatics, vol. 61, p. 101 236,
2021, ISSN: 1574-9541. DOI: https://doi.org/10.1016/j.ecoinf.2021.
101236. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1574954121000273.

[5] E. Sprengel, M. Jaggi, Y. Kilcher and T. Hofmann, ‘Audio based bird species
identification using deep learning techniques,’ in CLEF, 2016.

[6] V. Boddapati, A. Petef, J. Rasmusson and L. Lundberg, ‘Classifying envir-
onmental sounds using image recognition networks,’ Procedia Computer
Science, vol. 112, pp. 2048–2056, 2017, Knowledge-Based and Intelligent
Information Engineering Systems: Proceedings of the 21st International
Conference, KES-20176-8 September 2017, Marseille, France, ISSN: 1877-
0509. DOI: https://doi.org/10.1016/j.procs.2017.08.250. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1877050917316599.

[7] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen and T. Virtanen, ‘Convo-
lutional recurrent neural networks for polyphonic sound event detection,’
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25,
no. 6, pp. 1291–1303, Jun. 2017, ISSN: 2329-9304. DOI: 10.1109/taslp.
2017.2690575. [Online]. Available: http://dx.doi.org/10.1109/TASLP.
2017.2690575.

85

https://doi.org/https://doi.org/10.1111/brv.12636
https://doi.org/https://doi.org/10.1111/brv.12636
https://onlinelibrary.wiley.com/doi/pdf/10.1111/brv.12636
https://onlinelibrary.wiley.com/doi/pdf/10.1111/brv.12636
https://onlinelibrary.wiley.com/doi/abs/10.1111/brv.12636
https://onlinelibrary.wiley.com/doi/abs/10.1111/brv.12636
https://www.kaggle.com/c/birdsong-recognition/overview
https://www.kaggle.com/c/birdsong-recognition/overview
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101236
https://www.sciencedirect.com/science/article/pii/S1574954121000273
https://www.sciencedirect.com/science/article/pii/S1574954121000273
https://doi.org/https://doi.org/10.1016/j.procs.2017.08.250
https://www.sciencedirect.com/science/article/pii/S1877050917316599
https://www.sciencedirect.com/science/article/pii/S1877050917316599
https://doi.org/10.1109/taslp.2017.2690575
https://doi.org/10.1109/taslp.2017.2690575
http://dx.doi.org/10.1109/TASLP.2017.2690575
http://dx.doi.org/10.1109/TASLP.2017.2690575

86 Emanuele Caprioli: Master Thesis

[8] G. Gupta, M. Kshirsagar, M. Zhong, S. Gholami and J. Lavista Ferres, ‘Com-
paring recurrent convolutional neural networks for large scale bird species
classification,’ Scientific Reports, vol. 11, Aug. 2021. DOI: 10.1038/s41598-
021-96446-w.

[9] F. Vesperini, L. Gabrielli, E. Principi and S. Squartini, ‘Polyphonic sound
event detection by using capsule neural networks,’ IEEE Journal of Selec-
ted Topics in Signal Processing, vol. 13, no. 2, pp. 310–322, May 2019,
ISSN: 1941-0484. DOI: 10.1109/jstsp.2019.2902305. [Online]. Available:
http://dx.doi.org/10.1109/JSTSP.2019.2902305.

[10] E. J. Henri and Z. Mungloo–Dilmohamud, ‘A deep transfer learning model
for the identification of bird songs: A case study for mauritius,’ in 2021 In-
ternational Conference on Electrical, Computer, Communications and Mechat-
ronics Engineering (ICECCME), 2021, pp. 01–06. DOI: 10.1109/ICECCME52200.
2021.9590917.

[11] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri and D. Mahajan, Billion-scale
semi-supervised learning for image classification, 2019. arXiv: 1905.00546
[cs.CV].

[12] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor and K. McGuinness, ‘Pseudo-
labeling and confirmation bias in deep semi-supervised learning,’ in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.
DOI: 10.1109/IJCNN48605.2020.9207304.

[13] M. Zhong, J. LeBien, M. Campos-Cerqueira, R. Dodhia, J. Lavista Ferres, J. P.
Velev and T. M. Aide, ‘Multispecies bioacoustic classification using transfer
learning of deep convolutional neural networks with pseudo-labeling,’ Ap-
plied Acoustics, vol. 166, p. 107 375, 2020, ISSN: 0003-682X. DOI: https://
doi.org/10.1016/j.apacoust.2020.107375. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0003682X20304795.

[14] S. Grollmisch and E. Cano, ‘Improving semi-supervised learning for audio
classification with fixmatch,’ Electronics, vol. 10, no. 15, 2021, ISSN: 2079-
9292. DOI: 10.3390/electronics10151807. [Online]. Available: https:
//www.mdpi.com/2079-9292/10/15/1807.

[15] K. Lu, C.-S. Foo, K. Teh, T. Dat and V. Chandrasekhar, ‘Semi-supervised au-
dio classification with consistency-based regularization,’ Sep. 2019, pp. 3654–
3658. DOI: 10.21437/Interspeech.2019-1231.

[16] Xeno-canto, xeno-canto. Sharing bird sounds from around the world, https:
//xeno-canto.org/, [Online; accessed 12-December-2021].

[17] T. Giannakopoulos and A. Pikrakis, ‘Chapter 2 - getting familiar with audio
signals,’ in Introduction to Audio Analysis, T. Giannakopoulos and A. Pikra-
kis, Eds., Oxford: Academic Press, 2014, pp. 9–31, ISBN: 978-0-08-099388-
1. DOI: https://doi.org/10.1016/B978-0-08-099388-1.00002-9. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/B9780080993881000029.

https://doi.org/10.1038/s41598-021-96446-w
https://doi.org/10.1038/s41598-021-96446-w
https://doi.org/10.1109/jstsp.2019.2902305
http://dx.doi.org/10.1109/JSTSP.2019.2902305
https://doi.org/10.1109/ICECCME52200.2021.9590917
https://doi.org/10.1109/ICECCME52200.2021.9590917
https://arxiv.org/abs/1905.00546
https://arxiv.org/abs/1905.00546
https://doi.org/10.1109/IJCNN48605.2020.9207304
https://doi.org/https://doi.org/10.1016/j.apacoust.2020.107375
https://doi.org/https://doi.org/10.1016/j.apacoust.2020.107375
https://www.sciencedirect.com/science/article/pii/S0003682X20304795
https://www.sciencedirect.com/science/article/pii/S0003682X20304795
https://doi.org/10.3390/electronics10151807
https://www.mdpi.com/2079-9292/10/15/1807
https://www.mdpi.com/2079-9292/10/15/1807
https://doi.org/10.21437/Interspeech.2019-1231
https://xeno-canto.org/
https://xeno-canto.org/
https://doi.org/https://doi.org/10.1016/B978-0-08-099388-1.00002-9
https://www.sciencedirect.com/science/article/pii/B9780080993881000029
https://www.sciencedirect.com/science/article/pii/B9780080993881000029

Bibliography 87

[18] Phonical, FFT-Time-Frequency-View.png, Nov. 2017. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png.

[19] T. Giannakopoulos and A. Pikrakis, ‘Chapter 3 - signal transforms and fil-
tering essentials,’ in Introduction to Audio Analysis, T. Giannakopoulos and
A. Pikrakis, Eds., Oxford: Academic Press, 2014, pp. 33–57, ISBN: 978-0-
08-099388-1. DOI: https://doi.org/10.1016/B978- 0- 08- 099388-
1 . 00003 - 0. [Online]. Available: https : / / www . sciencedirect . com /
science/article/pii/B9780080993881000030.

[20] Mel scale, https://en.wikipedia.org/wiki/Mel_scale, [Online; ac-
cessed 12-December-2021].

[21] R. Yamashita, M. Nishio, R. Do and K. Togashi, ‘Convolutional neural net-
works: An overview and application in radiology,’ Insights into Imaging,
vol. 9, Jun. 2018. DOI: 10.1007/s13244-018-0639-9.

[22] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recog-
nition, 2015. arXiv: 1512.03385 [cs.CV].

[23] S. J. Pan and Q. Yang, ‘A survey on transfer learning,’ IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.
DOI: 10.1109/TKDE.2009.191.

[24] O. Chapelle, B. Schölkopf and A. Zien, Eds., Semi-Supervised Learning. The
MIT Press, 2006, ISBN: 9780262033589. [Online]. Available: http : / /
dblp.uni-trier.de/db/books/collections/CSZ2006.html.

[25] D.-H. Lee, ‘Pseudo-label : The simple and efficient semi-supervised learning
method for deep neural networks,’ ICML 2013 Workshop : Challenges in
Representation Learning (WREPL), Jul. 2013.

[26] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor and K. McGuinness, Pseudo-
labeling and confirmation bias in deep semi-supervised learning, 2020. arXiv:
1908.02983 [cs.CV].

[27] K.-H. Tsai and H.-T. Lin, Learning from label proportions with consistency
regularization, 2019. arXiv: 1910.13188 [cs.LG].

[28] ImageCLEF, ImageCLEF - The CLEF Cross Language Image Retrieval Track,
https://www.imageclef.org/, [Online; accessed 12-December-2021].

[29] DCASE, Detection and Classification of Acoustic Scenes and Events, http:
//dcase.community/, [Online; accessed 5-December-2021].

[30] A. Joly, H. Goëau, H. Glotin, C. Spampinato, P. Bonnet, W.-P. Vellinga, J.
Champ, R. Planqué, S. Palazzo and H. Müller, ‘Lifeclef 2016: Multimedia
life species identification challenges,’ in Experimental IR Meets Multilingual-
ity, Multimodality, and Interaction, N. Fuhr, P. Quaresma, T. Gonçalves, B.
Larsen, K. Balog, C. Macdonald, L. Cappellato and N. Ferro, Eds., Cham:
Springer International Publishing, 2016, pp. 286–310, ISBN: 978-3-319-
44564-9.

https://commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png
https://commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png
https://doi.org/https://doi.org/10.1016/B978-0-08-099388-1.00003-0
https://doi.org/https://doi.org/10.1016/B978-0-08-099388-1.00003-0
https://www.sciencedirect.com/science/article/pii/B9780080993881000030
https://www.sciencedirect.com/science/article/pii/B9780080993881000030
https://en.wikipedia.org/wiki/Mel_scale
https://doi.org/10.1007/s13244-018-0639-9
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TKDE.2009.191
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
https://arxiv.org/abs/1908.02983
https://arxiv.org/abs/1910.13188
https://www.imageclef.org/
http://dcase.community/
http://dcase.community/

88 Emanuele Caprioli: Master Thesis

[31] C. K. Catchpole and P. J. Slater, Bird song: biological themes and variations.
Cambridge university press, 2003.

[32] H. Zhang, M. Cisse, Y. N. Dauphin and D. Lopez-Paz, Mixup: Beyond empir-
ical risk minimization, 2018. arXiv: 1710.09412 [cs.LG].

[33] T. Iqbal, Y. Xu, Q. Kong and W. Wang, Capsule routing for sound event detec-
tion, 2018. arXiv: 1806.04699 [cs.SD].

[34] S. Sabour, N. Frosst and G. E. Hinton, Dynamic routing between capsules,
2017. arXiv: 1710.09829 [cs.CV].

[35] B. Rowe, P. Eichinski, J. Zhang and P. Roe, ‘Acoustic auto-encoders for biod-
iversity assessment,’ Ecological Informatics, vol. 62, p. 101 237, 2021, ISSN:
1574-9541. DOI: https://doi.org/10.1016/j.ecoinf.2021.101237.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1574954121000285.

[36] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin,
H. Zhang and C. Raffel, Fixmatch: Simplifying semi-supervised learning with
consistency and confidence, 2020. arXiv: 2001.07685 [cs.LG].

[37] A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results,
2018. arXiv: 1703.01780 [cs.NE].

[38] T. Denton, S. Wisdom and J. R. Hershey, Improving bird classification with
unsupervised sound separation, 2021. arXiv: 2110.03209 [eess.AS].

[39] S. Wisdom, E. Tzinis, H. Erdogan, R. J. Weiss, K. Wilson and J. R. Hershey,
Unsupervised sound separation using mixture invariant training, 2020. arXiv:
2006.12701 [eess.AS].

[40] T.-W. Lee, ‘Independent component analysis,’ in Independent Component
Analysis: Theory and Applications. Boston, MA: Springer US, 1998, pp. 27–
66, ISBN: 978-1-4757-2851-4. DOI: 10.1007/978-1-4757-2851-4_2. [On-
line]. Available: https://doi.org/10.1007/978-1-4757-2851-4_2.

[41] Google, AudioSet: A large-scale dataset of manually annotated audio events,
https://research.google.com/audioset/, [Online; accessed 4-December-
2021].

https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1806.04699
https://arxiv.org/abs/1710.09829
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101237
https://www.sciencedirect.com/science/article/pii/S1574954121000285
https://www.sciencedirect.com/science/article/pii/S1574954121000285
https://arxiv.org/abs/2001.07685
https://arxiv.org/abs/1703.01780
https://arxiv.org/abs/2110.03209
https://arxiv.org/abs/2006.12701
https://doi.org/10.1007/978-1-4757-2851-4_2
https://doi.org/10.1007/978-1-4757-2851-4_2
https://research.google.com/audioset/

Appendix A

Data

Figure A.1: Number of recordings per class. The figure shows high imbalance
between classes. Around 35 of the 397 labels are shown along the y-axis.

89

90 Emanuele Caprioli: Master Thesis

Figure A.2: Rating distribution: number of example per rating.

A sem
i-supervised approach to bird song classification

Em
anuele Caprioli

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Emanuele Caprioli

A semi-supervised approach to bird
song classification

Master’s thesis in Computer Science
Supervisor: Keith L. Downing
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Goals and Research Questions
	Research Method
	Thesis Outline

	Background Theory
	Sound Representation
	Signals and Sampling
	Frequency Domain
	Short Time Fourier Transform
	Mel Spectrograms

	Bird Songs Variations
	Deep Learning Architectures
	Convolutional Neural Networks
	Deep Residual Networks
	Transfer Learning
	Data Augmentation

	Semi-Supervised Learning
	Pseudo-Labeling
	Consistency Regularization

	Evaluation Metrics
	Binary Classification
	F1-Score
	Multi-Class Classification

	Chapter Summary

	Related Work
	Deep learning Approaches in Audio Domain
	Semi-Supervised and Unsupervised Approaches in Audio Domain
	Structured Literature Review Protocol
	Chapter Summary

	Method
	Data
	Dataset
	Dataset Selection

	Frameworks and Libraries
	Pytorch
	Data Augmentation Libraries

	System Pipeline
	Dataset Preprocessing
	Dataloader
	Mini-Batch Processor
	Model Architecture
	Hyperparameter Search

	FixMatch
	Algorithm
	Mini-Batch Learning
	Confidence Decay

	Baselines Implementation
	Chapter Summary

	Results
	Experiments Plan
	Experiment Results
	Augmentation Techniques Categorization
	Main Experiment
	Long Training
	All Labels Comparison
	Variations to FixMatch
	Various Unlabeled Ratios
	Unknown Classes in the Unlabeled Set
	Other Choice of Augmentation Techniques
	Best Models

	Results Analysis
	Use of Pretrained Weights
	FixMatch Effect on Bird Sounds Dataset

	Chapter Summary

	Conclusion
	Discussing Around the Research Questions
	Future Work
	Increasing the Dataset Balance
	Changes in the FixMatch Implementation
	Accuracy Improvements
	Testing on Real Landscape Recordings

	Bibliography
	Data

