
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Daniel Nilsen
Aleksander Simmersholm

Leveraging Natural Language
Processing in Data Synthesis for use
in Entity Matching

Master’s thesis in Master of Science in Informatics
Supervisor: Jon Atle Gulla
Co-supervisor: Nils Barlaug
July 2022

M
as

te
r’s

 th
es

is

Daniel Nilsen
Aleksander Simmersholm

Leveraging Natural Language
Processing in Data Synthesis for use in
Entity Matching

Master’s thesis in Master of Science in Informatics
Supervisor: Jon Atle Gulla
Co-supervisor: Nils Barlaug
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Leveraging Natural Language Processing
in Data Synthesis for use in
Entity Matching

Daniel Nilsen
Aleksander Simmersholm

Masters thesis in Informatics
Supervisor: Jon Atle Gulla
July 2022

M
as
te
r’s
 th
es
is

NT
NU

No
rw
eg
ian
 U
niv
er
sit
y o
f S
cie
nc
e a
nd
 Te
ch
no
log
y

Fa
cu
lty
 of
 In
fo
rm
at
ion
 Te
ch
no
log
y a
nd
 El
ec
tri
ca
l E
ng
ine
er
ing

De
pa
rtm
en
t o
f C
om
pu
te
r S
cie
nc
e

Abstract

Entity Matching (EM) is a difficult task which not long ago had to be performed
manually. Now, Artificial Intelligence methods have been created to automate this
process. They are, however, dependent on good training data to achieve good re-
sults. Acquiring good labeled data can be hard, expensive or in some cases, even
impossible. We test whether Artificial Intelligence methods can be used to gener-
ate artificial data which to be used to improve EM model performance. Using the
GPT-2 language model, the CTGAN method and a data augmentation method of
our own we generate artificial data which is used to supplement the training data of
the EM models. We also test how the models fare when their training data is wholly
replaced with artificial data. Our results show that performance of EM models can
be improved when supplementing. When using the artificial data alone to train the
EM models, the results did not improve. We argue that with more refined methods,
the results in both cases can be further improved.

i

Sammendrag

Entity Matching (EM) er en vanskelig oppgave som tidligere måtte bli utført manuelt.
Metoder som benytter Kunstig Intelligens har siden blitt utviklet for å automatisere
denne prosessen, men for å prestere bra er de avhengig av god treningsdata. God
merkede data kan være vanskelig og dyrt å anskaffe, og i noen tilfeller kan det
være umulig. Vi utforsker om Kunstig Intelligens kan bli benyttet for å produsere
kunstig data som kan forbedre prestasjonen til EM modeller. Ved å bruke GPT-
2 språkmodellen, CTGAN metoden og en data augmenteringsmetode vi selv har
utarbeidet, vi genererer data som blir brukt til å supplere treningsdataen til mod-
ellene. Vi utforsker også om den genererte dataen kan alene bli brukt til å trene
EM modellene. Våre resultater viser at EM modellene kan prestere bedre når deres
treningsdata er supplementert med kunstig data. EM modellene presterte derimot
ikke like bra når de var kun trent på kunstig data. Vi foreslår at ved å raffinere
metodene for datagenerering kan resultatene bli enda forbedret.

ii

Acknowledgements

This master’s thesis was submitted to the Norwegian University of Science and
Technology (NTNU), Department of Computer Science (IDI) as part of the Master
of Science in Informatics study program.

We would like to thank our supervisor, Prof. Jon Atle Gulla, and our co-supervisor,
PhD Nils Barlaug, for all the assistance, feedback and guidance they have provided
us during the writing of this thesis.

We would also like to extend our thanks to our friends and family for their contin-
uous encouragement and support.

iii

Contents

Abstract i

Sammendrag i

Acknowledgements ii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2
1.3 Approach . 3
1.4 Results . 3
1.5 Thesis outline . 4

2 Background Theory 5
2.1 Artificial Data . 5
2.2 Entity Matching . 6

2.2.1 History . 6
2.2.2 Challenges in Entity Matching 7
2.2.3 Entity Matching process 11
2.2.4 Current State of the Art 13

2.3 Language Models . 17
2.3.1 History . 17
2.3.2 GPT-2 . 20

2.4 Data distribution . 20
2.5 Generative Adversarial Networks 22

2.5.1 History . 22
2.5.2 GAN . 23
2.5.3 CGAN . 24
2.5.4 Conditional Tabular Generative Adversarial Network . . . 25

v

vi CONTENTS

3 Related work 28
3.1 Ditto data augmentation using BERT 28
3.2 TVAE model . 29
3.3 TGAN . 30
3.4 TableGAN . 30

4 Data 31
4.1 Term definitions . 31
4.2 Describing data used . 31
4.3 Other datasets . 32

5 Methods 33
5.1 Data augmentation method . 33

5.1.1 Generation of non-matches 33
5.1.2 Generation of matches 34

5.2 Standard GPT-2 . 34
5.3 Fine tuning GPT-2 . 36
5.4 CTGAN . 37
5.5 Implementation details . 38

5.5.1 Hardware used . 38
5.5.2 Ditto data parser . 39
5.5.3 Data generation using GPT-2 40
5.5.4 The Synthetic Data Vault 41
5.5.5 Auxiliary data parser . 41
5.5.6 Ensure data method . 42

6 Experiments 44
6.1 Supplementing artificial data . 44
6.2 Simulating small amounts of data 47
6.3 Replacing real data with artificial data 51

7 Discussion 54
7.1 Rationalising the results . 54

7.1.1 Are artificial matches better? 54
7.1.2 Is CTGAN the best method? 56
7.1.3 Is Augmentation the worst method? 56
7.1.4 Is it worth to fine-tuning the GPT-2 model? 57
7.1.5 Why the use of only artificial data lead to poor performance? 58
7.1.6 Time investment to generate data 58
7.1.7 Answering the research questions 59

8 Conclusion 61

CONTENTS vii

9 Further work 62
9.1 More datasets . 62
9.2 Mixing generation methods . 62
9.3 Implementing an insurance step 62
9.4 Ensuring the matching status of entries 63
9.5 Attribute approach . 63
9.6 Other language models . 63
9.7 GPT-3 . 63
9.8 Variational Autoencoder approach 63
9.9 Introducing a classifier . 64

Bibliography 65

Appendix 71

A Source code 71
A.1 Ditto results . 71
A.2 Magellan results . 71
A.3 Ditto data parser . 71
A.4 Auxiliary data parser . 71
A.5 CTGAN data generation generation source code 72

List of Figures

1.1 Two Distinct Eras of Compute Usage in Training AI Systems . . . 2

2.1 Examples of fuzzy data . 8
2.2 Data before and after normalisation 8
2.3 Some entities under different schemas 9
2.4 2d vectors in a vector space . 10
2.5 The traditional EM process, as laid out by Barlaug and Gulla . . . 12
2.6 The Magellan architecture . 14
2.7 The modified architecture of the language model Ditto uses 15
2.8 EM architecture with Ditto as the matcher 15
2.9 F1 scores on the WDC datasets of different versions of Ditto. DM:

DeepMatcher . 16
2.10 A basic Recurrent Neural Network network 17
2.11 The Long Short-Term Memory (LSTM) cell can process data se-

quentially and keep its hidden state through time. 18
2.12 The Transformer - model architecture 19
2.13 Example of a binomial distribution 21
2.14 Example of a joint probability distribution with two variables . . . 21
2.15 Mode-normalization in a complex distribution. 25

3.1 Data augmentation with MixDA 29

5.1 Recombination of two individuals 33
5.2 Individual mutating the marked letters, creating a new individual . 34
5.3 Construction of the prompt to be sent into the model 35
5.4 The prompt is sent into the GPT-2 model, and generates the miss-

ing entity in the new entry . 35
5.5 Creating a prompt out of an entry and sending it to the model which

generates a new entry . 36
5.6 Data is reformatted into a tabular format. CTGAN trains on the

data, and the resulting models are stored when finished. 37
5.7 A specific CTGAN model generates data and the resulting data is

filtered. This continues until a sufficient amount is reached. . . . 38
5.8 The parser validating an entry and generating a string 40

ix

x LIST OF FIGURES

5.9 The data parser converting between different formats. 41
5.10 Attributes between two entities in an entry are compared. If the

threshold is not reached, the entry is discarded. 42

6.1 The pipeline for generating and testing the datasets in the first ex-
periment. 45

6.2 Real dataset supplemented with artificial non-matches which were
generated using the full real dataset ran on Ditto 45

6.3 Real dataset supplemented with artificial non-matches which were
generated using the full real dataset ran on Magellan 46

6.4 Real dataset supplemented with artificial matches which were gen-
erated using the full real dataset ran on Ditto 46

6.5 Real dataset supplemented with artificial matches which were gen-
erated using the full real dataset ran on Magellan 46

6.6 Real dataset supplemented with both artificial matches and non-
matches which were generated using the full real dataset ran on
ditto . 47

6.7 Real dataset supplemented with both artificial matches and non-
matches which were generated using the full real dataset ran on
Magellan . 47

6.8 The pipeline for generating and testing the datasets in the second
experiment. 48

6.9 Real dataset supplemented with artificial non-matches which were
generated using the 10% real dataset ran on Ditto 49

6.10 Real dataset supplemented with artificial non-matches which were
generated using the 10% real dataset ran on Magellan 49

6.11 Real dataset supplemented with artificial matches which were gen-
erated using the 10% real dataset ran on Ditto 50

6.12 Real dataset supplemented with artificial matches which were gen-
erated using the 10% real dataset ran on Magellan 50

6.13 Real dataset supplemented with both artificial matches and non-
matches which were generated using the 10% real dataset ran on
Ditto . 50

6.14 Real dataset supplemented with both artificial matches and non-
matches which were generated using the 10% real dataset ran on
Magellan . 51

6.15 The pipeline for generating and testing the datasets in the third
experiment. 51

6.16 The data generated using the full real dataset ran on Ditto 52
6.17 The data generated using the full real dataset ran on Magellan . . 52
6.18 The data generated using the 10% dataset tested against both the

10%- and the full real datasets ran on Ditto 53
6.19 The data generated using the 10% dataset tested against both the

10%- and the full real datasets ran on Magellan 53

List of Tables

3.1 Data augmentation operators in Ditto 28

4.1 Datasets used in the DeepMatcher study 32

7.1 The amount of matches and non-matches in the real training sets.
Last column shows the ratio of non-matches to matches in each
dataset. 55

xi

Chapter 1

Introduction

In this section we present our motivation for the thesis before introducing three
research questions. An overview of our approach, as well as a summary of our
results is then given, before ending with the outline of the thesis.

1.1 Motivation

Ever since Frank Rosenblatt discovered the perceptron model in the 1950’s, a shift
in the field of artificial intelligence started to occur. More and more research has
been directed into machine learning and neural networks. As time went on, new
powerful techniques such as Boosting and Deep Learning started emerging and
taking over the field of AI by storm. These techniques, while powerful, are com-
putationally expensive and data-hungry [1].

Further research into deep nets and machine learning have yielded tremendous re-
sults, producing highly accurate and sophisticated models. However, the computa-
tional requirements, as well as the data needed for them has only been increasing.
According to OpenAI [2], the computational complexity has been increasing in
accordance to Moore’s law up until around 2012, after which it started increas-
ing exponentially [fig. 1.1]. While it is amazing to see such rapid and bountiful
progress in the field, if it keeps increasing at this pace, the computational require-
ments might become too great, making the progress vain. Some even postulate that
this might be a factor for a new AI winter coming [3].

Current trends in AI show that deep learning is extremely popular due to its great
results. Besides deep learning, reinforcement learning seems to be on the rise as
well [4]. While reinforcement learning does achieve impressive results with little
to no data, it’s hard, and sometimes even impossible to formulate a task in a way
that makes reinforcement learning a viable strategy [5].

Entity matching is a problem that is extremely domain specific, which makes it very
hard to solve. While research into using reinforcement learning for this problem
is being conducted, interest seems to be more on the machine learning and deep

1

2 Chapter 1. Introduction

Figure 1.1: Two Distinct Eras of Compute Usage in Training AI Systems (figure
by OpenAI)

learning side, which means that the computational complexity and data problems
are still as relevant as ever. We believe that generating artificial data to use as
supplement to real data for these models may help alleviate both of these problems.

Often times, the more data you train machine learning or deep learning models on,
the better they will perform [6]. This implies that generating synthetic data to train
these models on could increase their performance, without necessarily increasing
the resources needed to use them. Besides alleviating the need for data and the
complexity of the models, there are also other advantages of using artificial data.
In his book, Nikolenko mentions that artificial data is often used in other fields
such as computer vision [5]. Some benefits he mentions are that by using artificial
data as supplementary to the real data, a fuller dataset can be created that is more
suited for training the model. Synthetic data can also be used to resolve privacy or
legal issues that make the use of real data prohibitively hard or even impossible.

Currently, there seems to be little research put into artificial data generation in the
field of entity matching, which is why we would like to contribute to this field.

1.2 Research questions

Both Entity Matching (EM) and Artificial Data (AD) Generation are huge fields.
Because of their size, trying to merge them without a focused approach is unreal-
istic. We therefore devise three research questions which this thesis focuses on:

1.3. Approach 3

Research question 1: What is the state of the art in the fields of EM and AD?

By researching state of the art methods, we can get a better understanding on how
the technologies work. We can then get a selection of methods that we can use to
explore the next research questions.

Research question 2: How does supplementing real data with AD affect the per-
formance of EM models?

Annotated data is very valuable for data-hungry methods, but it can also be very
expensive. Generating annotated data is therefore an interesting prospect for re-
ducing both the amount of data needed for good performance of models and the
cost of the data collection.

Research question 3: How does training EM models solely on AD affect their
performance?

Some applications of EM might require the use of sensitive data, which is both hard
to acquire and hard to use while upholding GDPR rules. It is therefore interesting
to see whether good results can be achieved by completely substituting real data
for artificial data.

1.3 Approach

To approach the research questions, we first investigate the state of the art entity
matching systems and methods for data generation. We then use these generation
methods as well as a data augmentation method of our own to generate both match-
ing and non-matching entries using the datasets at our disposal. These artificial
data are then combined together with the real data to generate new supplemented
datasets, which are then tested on state of the art EM systems. By testing these new
supplemented datasets against the real datasets used we gain insight into how the
artificial data affects the results of the EM systems.

We also attempt to simulate small quantities of data by randomly selecting 10% of
the data available to us and using it to generate artificial data. By doing so, we can
gain even more insight into how the data affects the systems when tested against
both the 10% real datasets and the full real datasets.

Finally, the generated data is also tested on these same EM systems without being
combined with the real data. This is done to see whether comparable results can be
achieved when replacing the real data entirely and using purely the artificial data.

1.4 Results

Our experiments showed that when supplementing real data with artificial data,
performance of the Entity Matching systems can indeed be improved. However,

4 Chapter 1. Introduction

performance of the systems suffered when replacing the real data with artificial
data, and no improvements were achieved. We believe that with more refined meth-
ods, better performance can be achieved both when supplementing and replacing
real data with artificial data.

1.5 Thesis outline

The structure of the thesis is as follows: Chapter 2 introduces the necessary back-
ground theory this thesis uses and builds upon. Chapter 3 provides an overview of
the related work in the field of artificial data generation. Then chapter 4 showcases
the datasets used in this project. Chapter 5 presents our proposed methods of data
generation used in the project. Subsequently, chapter 6 describes the experiments
that were ran on the Ditto and Magellan EM systems, as well as the results achieved
by these experiments. In chapter 7, the results of the experiments are discussed,
before a conclusion is presented in chapter 8. Finally, chapter 9 presents possible
further work following this thesis.

Chapter 2

Background Theory

This section introduces relevant background theory for this project. The introduc-
tions of these topics are followed by some of the state of the art methods that are
used in this project.

2.1 Artificial Data

Data is often the fuel for mathematical modeling of real-world functionality. Say
we want to train a robot on folding paper. To train this robot, we would have to
give it examples and further elaboration on these examples. We give it an image of
an A4 paper, followed by the label “unfolded”. Then we give it another image of
the same paper, however, this time the paper is folded and labeled “folded”. With
enough examples, the robot would understand what an unfolded paper would look
like, and vice versa with a folded paper.

It’s a simple example but yields the understanding that every model needs train-
ing, and the training needs data. The most common practice today is to measure
real-world examples manually, or by some other automatic means. The result-
ing dataset is then manually processed for formatting, labeling, and/or removal of
inconsistencies. Data gathering and pre-processing is a vital step of any model
training procedure. However, sometimes data cannot be gathered because of input
limitations, or privacy concerns. An attractive option then becomes the generation
of synthetic data.

We define synthetic data as “any data that is not obtained by direct measurements.”
More specifically, any data that is generated by an algorithm with the intent to train
machine learning models. Synthetic data can help with mending specific needs or
certain conditions in data sets that lack severe requirements. This can range from
data fidelity to data quantity. In our scenario, this will be the matcher of an EM
system.

5

6 Chapter 2. Background Theory

2.2 Entity Matching

Entity matching (EM) is the problem of matching together instances of data that
pertain to the same real-world entity. To illustrate, matching a list of company
names to their respective Wikipedia articles could be considered an EM problem.
There are however many factors that make this problem, like many others in the
field of AI, extremely difficult.

2.2.1 History

Entity matching has been a topic of discussion and research for over 75 years now,
with the first publication about the subject dating all the way back to 1946. In his
paper [7], Halbert L. Dunn poetically describes the problem as

”EACH person in the world creates a Book of Life. This Book starts with birth
and ends with death. Its pages are made up of the records of the principal events
in life. Record linkage is the name given to the process of assembling the pages of
this Book, into a volume.”.

As evident in the quote, the subject of EM is called different names depending on
the context and domain. Some of the names are:

Entity matching Record linkage Data matching
Object identity problem List washing Merge/purge processing

Entity resolution Duplicate detection De-duplication

Unfortunately, because of the breadth of terminology used in different domains,
there has been little cross-reference between different research communities, which
may have stunted research on the subject.

In his paper [7], Dunn outlines the importance of EM in the context of a persons
information, as a singular record containing all information about some person
would be valuable to many different actors, including the person in question. While
that is true, the entity in question does not need to be a person. Any domain that
has multiple different data sources which pertain to the same real-world entities
can benefit from aggregating that data into one source.

In 1959, Howard Borden Newcombe published an article in the Science Maga-
zine journal titled Automatic Linkage of Vital Records [8]. In this article, New-
combe presented their approach of automating the process of record linkage by us-
ing probabilistic methods to calculate likelihood of true matches between instances
of data. While their methods were quite simple, they still achieved impressive re-
sults, which showed that the advancements in computing technology could indeed
be leveraged in this field.

In 1969 Ivan Fellegi and Alan Sunter formalised a theory for record linkage based
on the same probabilistic principles explored 10 years prior [9]. By making the

2.2. Entity Matching 7

assumption that the comparison attributes are conditionally independent from one
another, they can be added together to form a compound probability for the match
being true or not true, with a corresponding probability for the prediction to be
false. The Fallegi-Sunter theory remains the mathematical foundation for many
entity matching applications to this day [10].

Much research into using machine learning and AI models in entity matching
started happening during the second AI boom in the 1990’s. Most of the atten-
tion however was put on optimising the feature selection in applications that used
the Fallegi-Sunter theory [11, 12]. While these methods did improve performance
using Fallegi-Sunter, they did not explore whether other machine learning and AI
methods would or could work better.

At the International Joint Conference on Neural Networks, in 2011, D. Randall
Wilson showed that the Fallegi-Sunter theory is comparable to the naı̈ve Bayes
classifier [13]. In his findings, he showed that results could be drastically improved
by using even a simple perceptron algorithm instead of the probabilistic approach.
This meant that research into new methods of entity matching by using these more
complex methods of machine learning are indeed beneficial, and worth pursuing.

In the current EM landscape, many methods are researched, from traditional clas-
sifiers that ”learn” what a matching set of instances is, to using language models to
simulate ”understanding”. The current state of the art is discussed further in 2.2.4
Current State of the Art.

2.2.2 Challenges in Entity Matching

Some of the challenges in automating the EM process were noticed since the very
beginning. In the 1959 paper [8], Newcombe mentions some of the challenges they
faced, such as fuzzy and unreliable data, as well as differences in formatting. These
challenges have yet to be fully solved, and have to be addressed even in today’s EM
applications. There are also new challenges that have made themselves apparent
as the methods grew in complexity and the domain of EM grew to encompass all
sorts of entities and data sources.

Fuzzy data

Fuzzy data is a term used to describe datasets that are prone to small inconsistencies
or mistakes that make them difficult to use. These can range from small errors such
as spelling mistakes, to outright missing data and empty fields.

The figure below [fig. 2.1] shows some examples of fuzzy data. While the data
depicts the same entity, that being John Jackson, it is difficult for a computer to
discern that because of the fields being inaccurate or missing.

8 Chapter 2. Background Theory

Figure 2.1: Examples of fuzzy data

A common way to avoid this issue is to pre-process the data in some way. Some
methods, including Fallegi-Sunter, use normalisation on the data before calculating
the probabilities. This normalisation typically includes things like:

• Turning all text to lower-case
• Utilizing stemming or lemmatization techniques
• Replacing missing values with some token

Such measures tend to increase performance, but are susceptible to issues stem-
ming from unknown edge cases. Sometimes, an unpredictable issue in the data
might arise, which does not get covered by the normalisation techniques. Figure
[fig. 2.2] shows data before and after normalisation.

Figure 2.2: Data before and after normalisation

When using neural network based approaches, one could disregard the normalisa-
tion of data, and attempt to teach the network to recognise these types of errors.
This might improve resilience and performance of the model when introduced to
such perturbations, as well as edge cases not previously seen, however, it could
also take longer to train the model to a point of acceptable performance.

Schema differences

A schema is a model used to organise data. These models are usually set up accord-
ing to the primary use of the data, as well as the preference of the people creating
the datasets. While there are standards for schemas, there are no set-in-stone rules
to follow, which presents some problems when trying to match entities together.

2.2. Entity Matching 9

The figure below [fig. 2.3] shows how data about the same entity might be put into
differing schemas. The format of the data is also somewhat decided by the schema,
meaning that differing formatting can cause issues. This is easily seen in the date
fields, but can also refer to abbreviations of names, conglomerations of fields, etc.

Figure 2.3: Some entities under different schemas

A different issue can also arise when the datasets are in different formats all to-
gether. An example of this could be trying to match a list of products with pictures
of said products. As the datasets differ from each other this drastically, conven-
tional methods of comparison will not work.

Similarity measures

When matching entities, the similarity measure is what determines whether or not
two records are a match. This is usually done by somehow comparing the two
records, but this is not always a straight forward process.

The Fellegi-Sunter theory outlines a general approach for probabilistic record com-
parison [9]. Their theorem is as such:

Let L0(µ, λ,Γ) be the linkage rule defined by (15). Then L is a best linkage
rule on Γ at the levels (µ, λ).

Where µ is the error rate for false-positives, λ is the error rate for false negatives, Γ
is the set of all comparisons of the comparison variables between the two records.
The comparison variables can be things like name, date of birth, address, etc. The
comparing of the variables takes into account that the variables themselves might
be misspelled, missing or otherwise wrong.

The accumulation of these probabilities will give some probability of the records
being a match, taking into account the probabilities of false-positive and false-
negative matches µ and λ respectively.

Another popular similarity measure used by many state of the art models is vector
space modeling, or vector encoding. The records are encoded into vectors, with
each vector component being a comparison variable. The figure below illustrates
this with 2-dimensional vectors [fig. 2.4]

10 Chapter 2. Background Theory

Figure 2.4: 2d vectors in a vector space (Image courtesy of IEEE Engineering in
Medicine & Biology Society)

By converting the records into vectors that inhabit the same vector space, similarity
can be calculated by calculating the dot product of the vectors [14]. Other methods
of calculating similarity can be done as well, such as calculating the euclidean
distance between the vectors.

While indeed effective, both approaches discussed above suffer from the problems
discussed in 2.2.2 Fuzzy data and 2.2.2 Schema differences. This is because at
their core, they compare the different fields of data together and see whether the
information is the same in both. To mitigate this, most approaches usually rely
on sophisticated data pre-processing, or intelligent ways of comparing the data
integrated into the similarity measure.

Domain specificity

Since EM is a problem that involves real-world entities, it becomes extremely dif-
ficult to find a solution that works in every context. This is because the real world
is non-discrete, and a real-world entity can be described in an infinite amount of
ways. In other words, there is no limit to the amount of different types of data that
can be used to describe the same real-world entity. This puts a limit on how much
we can generalize until a tailor-made solution is needed.

The problems that are mentioned above are also compounded and made worse by
this, because new methods of data pre-processing are needed for each type of data.
The new data might also have schemas that the application has never encountered
before. On top of this, the similarity measures that are in place might not fit the
types of data used, meaning new measures are needed. Every domain has their own
uses for EM, meaning that the domain also dictates what kind of results are needed
from the application.

2.2. Entity Matching 11

Dearth of labeled data

A problem that emerged together with the advancements in machine learning tech-
nology is the need for good data. A majority of the leading machine learning meth-
ods use a supervised learning approach [15], and most of the EM methods that use
machine learning use these methods. The leading machine learning methods are
notoriously data-hungry [16], which means huge amounts of data are needed to
achieve good results.

The data used for these machine learning models needs to come from somewhere,
and regardless of the method of data gathering, some human intervention is needed.
Humans need to either to quality control the data to ensure that the labeling meth-
ods do what they’re supposed to, or brute-force label it themselves, which is time-
consuming and costly [15].

Personal data

As Dunn said, the ultimate goal of record matching was to put together the infor-
mation of a person into a singular volume he called ”the book of life” [7]. While
entity matching has evolved beyond just information about people, the problem of
matching personal data is still prevalent.

With this however, the problem of privacy and confidentiality needs to be consid-
ered. As outlined by Peter Christen, matching data between different organisations
might lead to undesirable outcomes such as discrimination or differential treatment
based on outside factors such as race, gender, socioeconomic conditions, etc.

”For example, the outcomes of analysing matched health and population data-
bases can potentially lead to discrimination against certain groups of individuals,
if it is discovered that these people have a higher risk of getting a certain serious
or infectious disease. The discrimination could be in the form of higher life insur-
ance premiums, or even that these individuals would find it much harder to gain
employment due to their potentially increased risk of long-term illness.”[17]

2.2.3 Entity Matching process

EM is traditionally depicted as a pipeline of steps that are needed before some
result is reached. These steps are however not specified anywhere, meaning that
many different approaches can be taken. In their study [18], Nils Barlaug and Jon-
Atle Gulla compiled a general list of steps that most methods use, and visualised
them as a pipeline model which is depicted in the figure below [fig. 2.5].

12 Chapter 2. Background Theory

Data A

Data B
Pre-preocessing

Pre-preocessing

Schema
matching Blocking Record pair

comparison Classification
Matches M

Figure 2.5: The traditional EM process, as laid out by Barlaug and Gulla

Pre-processing, Schema matching, Blocking, Record pair comparison and Clas-
sification are the steps common to EM methods. Some methods, however, skip
some of these, as they achieve the effect of those steps through other means. Some
methods also add other steps to increase performance. It is however useful to
have a general idea of what these steps are, as that will help understand the gen-
eral pipeline, as well as why some methods choose to veer away from the general
method somewhat.

Pre-processing

The pre-processing step is, as the name implies, meant to pre-process the data. This
step is usually done to fix or mark errors in the data, such as discussed in the Fuzzy
data subsection, and is often a vital step in the EM process [19].

The methods of pre-processing vary across EM methods. These are usually picked
based on the data that is to be matched. Some methods (also discussed in Fuzzy
data):

• Normalization of attribute values
• Missing value handling
• Removal of unwanted characters

Schema matching

In this step, attributes from each dataset are matched together. Structural differ-
ences in the data, such as field concatenation or formatting, can cause issues when
matching data together. This issue is discussed in more detail in the Schema dif-
ferences subsection. Some actions that might be beneficial to this process:

• Splitting attributes into multiple attributes
• Changing formatting of fields into one consistent format
• Find correlating fields in the data through analysis.

Blocking

After the previous steps are completed, the matching process can technically begin.
It is however unwise to just start matching records together, especially as the size

2.2. Entity Matching 13

of the datasets grows. This is because, at this point, any record in the first dataset
can potentially be a match to any record in the second dataset, which means that the
operation approaches quadratic complexity. The blocking step is meant to reduce
the amount of potential matches by splitting the datasets into blocks, in which all
obvious non-matches are disregarded [20].

Some traditional blocking techniques include:

• Standard blocking [21]
• Q-gram blocking [22]
• Sorted neighborhood blocking [23]

Record pair comparison

This step is essentially very similar to blocking. However, the difference is that
blocking uses less computationally expensive methods to discard obvious non-
matches. This allows for more sophisticated and computationally expensive meth-
ods to be used, as they will need to check less potential pairs. This step usually
produces a set of similarity vectors with the attributes being the similarity measures
used in the EM solution. Some similarity measures are discussed in the Similarity
measures subsection.

Classification

Finally, the records are classified as matches, or non-matches. This is done based
on the similarity measures produced by the previous step.

2.2.4 Current State of the Art

Magellan

Many EM solutions focus on one or more aspects of EM, such as blocking or
matching. Magellan tries to encompass the entire EM pipeline, creating a full EM
system [24].

As discussed in Domain specificity, a generic EM system will not work as well in
every context, which is why Magellan provides tools and how-to guides for many
EM scenarios. The Magellan approach is split up unto two stages, the development
stage and the production stage. The figure below [fig. 2.6] shows the Magellan
architecture.

14 Chapter 2. Background Theory

Figure 2.6: The Magellan architecture (Image courtesy of Konda et. al[24])

In the development stage, the user is to develop a good EM workflow for the spe-
cific EM task. A good workflow is one that yields high matching accuracy. The
user is proposed a how-to step-by-step guide which will help the user with develop-
ing the workflow. The steps in the guide can be achieved by use of the supporting
tools in Magellan. Magellan also supports creating custom python scripts, which
can be used as supporting tools.

In the production stage, the user is provided a how-to step-by-step guide on how
to implement the workflow on the entirety of the data. This is again done with the
help of the supporting tools.

Ditto

Ditto is an EM solution based on pre-trained transformer-based language models
[25]. By utilising such pre-trained language models, and fine-tuning them when
training the model based on the available data, Ditto is able to encode contextual
nuance and understanding into its entity encoding.

The figure below [fig. 2.7] illustrates how Ditto fine-tunes the language models
by adding task-specific layers to the language model, initialising the network and
training it on the labeled data available for the EM task until the network converges
[25]. The resulting model keeps the complex language understanding obtained
from training on huge language corpora, and also develops further understanding
on what it means that a record matches another based on the data available.

2.2. Entity Matching 15

Figure 2.7: The modified architecture of the language model Ditto uses (Image
courtesy of Li et al. [25])

The figure below [fig. 2.8] shows a typical EM architecture with Ditto as the
matcher. The dotted box shows all the discreet parts of Ditto, including the op-
tional optimizations that increase Ditto’s performance labeled 1, 2 and 3.

Figure 2.8: EM architecture with Ditto as the matcher (Image courtesy of Li et al.
[25])

The serialisation part of Ditto is a necessary part that translates the entries to be
matched into serialised tokens that are accepted by the language model. It does
this like so [25]:

For each data entry (2.1) , we let the serialised entry be defined as (2.2) , where
[COL] and [VAL] are special tokens for indicating the start of attribute names and
values respectively.

16 Chapter 2. Background Theory

e = {(attri, vali)}1<i<k (2.1)

serialise(e) ::= [COL]attr1[V AL]val1...[COL]attrk[V AL]valk (2.2)

After serialisation, the data entries can be sent into the matcher, and determined
whether they are a true match or not.

The first optimisation, labeled 1 in [fig. 2.8], is injecting the model with domain
knowledge. In some circumstances, EM applications can benefit greatly from do-
main knowledge. An example of this could be matching publications and paying
extra close attention to the DOI numbers of these publications. Ditto allows for
specific tags to be placed on the data during pre-processing, that signalise that the
fields with the tags hold greater weight than those without.

The second optimisation, labeled 2 in [fig. 2.8], is summarising long entries. Some-
times, if the entry is too long, then the language model struggles with understand-
ing what is of importance. The Ditto implementation described in [25], uses a
TF-IDF-based summarisation technique which retains non-stopword tokens with
the high TF-IDF scores. That way, the most informative tokens are fed into the
language model.

The third optimisation, labeled 3 in [fig. 2.8], is augmentation of training data.
Ditto uses augmentation of training data to make the system more robust against
dirty data, as well as preventing the system against overfitting. They achieve this
by artificcially creating new data based on the data they have, and sometimes in-
troducing errors into the data, such as missing, misplaced or corrupted attributes.

Ditto looks to be very good at entity matching when not alot of training data is
available. In the tests that Li et al. performed [25], it is clear that Ditto outperforms
other EM models when supplied with little training data. Figure below [fig. 2.9]
shows the F1 scores of Ditto compared to DeepMatcher with different data sets and
different amounts of data supplied.

Figure 2.9: F1 scores on the WDC datasets of different versions of Ditto. DM:
DeepMatcher (Figure courtesy of [25])

2.3. Language Models 17

2.3 Language Models

A language model is a probability distribution over words or sequences of words
[26]. This makes language models a part of the Statistical Natural Language Pro-
cessing field. Simply put, a language model assigns probabilities to words or se-
quences of words. These probabilities denote the likelihood of appearing next in
some sequence of words. Language models are usually trained on large text cor-
pora.

2.3.1 History

The early history of language models, much like the early history of AI, was gov-
erned by rule-based systems. In 1948, Claude Shannon published his now famous
paper ”A Mathematical Theory of Communication” [27], in which he demon-
strated the use of n-grams in language modelling.

An n-gram is a collection of n words which is assigned a total probability of ap-
pearing. It is defined as the joint probabilities of each of the word in the collection,
given that the words prior have appeared in that order:

P (ω1, . . . , ωm) =
m∏
i=1

P (ωi|ω1, . . . , ωi−1) ≈
m∏
i=2

P (ωi−(n−1)|ω1, . . . , ωi−1)

(2.3)

Research focused mainly on n-gram and rule-based language models, but with
the rise in computational power available, new computational methods were intro-
duced. In 1982, John Hopfield introduced the Recurrent Neural Network (RNN)
[28] which processes the inputs of the network along a temporal sequence [fig.
2.10].

Figure 2.10: A basic Recurrent Neural Network network (figure courtesy of
fdeloche)

This means that the order of appearance of the inputs becomes important for the
output of the neural network. Since many languages rely on specific placement

18 Chapter 2. Background Theory

of words to convey semantic meaning, such a network works well as a language
model.

Already in 1986 ideas on representing words as vectors started to arise [29, 30].
The reasons for why this came about are not immediately obvious. Many lan-
guages, such as the English language, have words that stem from the same word,
but slight alteration gives them extra semantic meaning. An example of this might
be the words ”text” and ”texting”, where one denotes an object while the other de-
notes an action. By switching to a vector representation, such semantic alterations
can be embedded in a vector representation. The model can then be trained on less
data, as it doesn’t need to train on all of the variations of the same word. Other
advantageous properties can also be encoded into the vector representation, such
as close proximity of words in vector space that are semantically similar, such as
”Cat” and ”Lion” being closer together than ”Cat” and ”Microwave”.

While effective, the RNN networks are prone to forgetting important contextual
clues when working with longer time series data with arbitrarily long gaps between
important data. In 1997 Hochreiter and Schmidhuber proposed the Long Short-
Term Memory (LSTM) cells [31] as a solution to this problem.

Figure 2.11: The Long Short-Term Memory (LSTM) cell can process data se-
quentially and keep its hidden state through time. (Figure courtesy of Guillaume
Chevalier)

RNNs using the LSTM cells [fig. 2.11] can allow for the gradients of the network
to flow freely unchanged, meaning that the network has a reference to important
parts in the time sequence. This property also solves the vanishing gradient prob-
lem, which occurs when the gradients tend towards zero while back-propagating.
LSTM does still suffer from the exploding gradient problem, which occurs when
the gradients tend towards infinity.

2.3. Language Models 19

While solving the forgetting problem, the LSTM approach was limited by the hard-
ware of the time. A different approach to the forgetting problem was introduced
in 2015 by Bahdanau et al., the Attention Model [32]. Attention-like mechanisms
were introduced in the 1990s under names like multiplicative modules, sigma pi
units, and hypernetworks [33].

In lay terms the model is based on the idea that humans don’t usually remember
the whole sequence of words before preforming a task, but rather find and focus
on the important parts of the text. It achieves this by assigning weights to the
input sequence, enhancing some parts of the text, while diminishing others. The
Attention Model was introduced specifically in the context of machine translation,
but the attention model has proven useful in other contexts since its introduction.

In 2017, researchers at Google proposed a new model that deals away with RNNs
completely and is solely based on the attention mechanism. The new model was
called the Transformer [34].

The Transformer processes the entire input at once, using its attention mechanism
to provide context for any position in the sequence [fig. 2.12]. This allows for
more parallelization than RNNs and therefore reduces training times. The usage
of attention yields the self-sufficiency without the need for recurrence and convo-
lutions.

Figure 2.12: The Transformer - model architecture (Figure courtesy of Vaswani et
al. [34])

20 Chapter 2. Background Theory

2.3.2 GPT-2

While there are other state of the art Language Models, such as, BERT [35], ELMo
[36], etc., we chose to use GPT-2 [37] for this project.

The Generative Pre-trained Transformer 2 (GPT-2), proposed by Alec Radford et
al. in 2019 [38], is a transformer-based pre-trained language model. The original
model has 1.5 billion parameters and is trained on a giant corpus of textual data
gathered from the internet (40GB). However, due to concerns about malicious ap-
plications, the full model is not available to the public, and only a small version of
the model has been released.

The model uses a Transformer-based architecture which is similar to its predeces-
sor, GPT [39]. It is however slightly modified, with layer normalizations moved to
the input of each sub-block and an additional layer normalization was added after
the final self-attention block. A modified initialization which accounts for the ac-
cumulation on the residual path with model depth is used. The weights of residual
layers are scaled at initialization by a factor of 1/

√
N where N is the number of

residual layers. The vocabulary is expanded to 50,257. The context size is also
increased from 512 to 1024 tokens and a larger batchsize of 512 is used [38].

The idea behind GPT-2 is to be a general language model that can be used for a
multitude of Natural Language Processing tasks without needing large amounts of
specialised data to be trained on. The GPT-2 model is therefore an example of an
unsupervised learning model. The model is also an example of transfer learning,
as the idea is to have this model be trained to do the general task, and then using
the pre-trained model on some specific task.

2.4 Data distribution

In probability theory, probability distribution is a mathematical function used to
describe the probabilities of possible outcomes of some inherently random situa-
tion occurring [40]. One such random situation is a coin toss. Given that there are
only two possible outcomes of a coin toss (heads or tails), the probabilities of each
outcome are P (h) = P (t) = 1

2 , with P (h) being the probability for heads and
P (t) being the probability for tails.

In data science and computer science, this concept of probability distribution is
applied to datasets, producing a data distribution. Data distribution is used to model
the frequency at which each unique data point appears in the dataset. To use the
coin toss example again, if we tossed a coin n amount of times and recorded each
outcome, we would end up with a dataset containing these outcomes. We can could
then derive a distribution of outcomes from this dataset, which would show the
frequency with which heads or tails appeared in the dataset. The data distribution
is not equivalent to the probability distribution of each outcome, as one might get
unlucky and get heads 100 times in a row. Data distribution is expected to approach

2.4. Data distribution 21

the probability distribution as the amount of data in the dataset grows. This is in line
with the Central Limit Theorem, which states that as the amount of data increases,
the set tends towards a normal distribution [41].

Many types of distributions can be derived based on what metrics are used. One
of these types is the Univariate distribution. The univariate distribution is achieved
by grouping the data entries together based on one attribute of the data [42]. Given
a dataset which contains the attributes Job Title, Salary and Company, a univatiate
distribution method could be used to observe the frequency of appearance of one
of these attributes throughout the dataset. Some univariate distribution methods in-
clude binomial, geometric, negative binomial, and Poisson distributions [43]. The
figure below shows an example of one of these distributions, namely the binomial
distribution [fig. 2.13].

Another type of distribution is the Multivariate Distribution. As the name suggests,
this distribution combines multiple attributes and creates a compound distribution
out of them. In other words, it is a generalization of the univatiate distribution into
higher dimentions [44]. This is typically done by assuming that the attributes are
conditionally independent, which means that P (a|b) = P (a)∗P (b) is valid. Then,
a matrix of compound probabilities for each of the attributes is computed, creating
the multivariate distribution. The figure below shows an example of a multivariate
distribution [fig. 2.14].

Figure 2.13: Example of a binomial dis-
tribution (Figure by Cflm001)

Figure 2.14: Example of a joint prob-
ability distribution with two variables
(Figure by IkamusumeFan)

22 Chapter 2. Background Theory

2.5 Generative Adversarial Networks

Generative Adversarial Networks (GAN) are architectures that use two neural net-
works pitted against each other to outperform the other model. When optimal per-
formance is achieved, the result is a generative model which can generate realistic
data samples.

The purpose of this architecture is most often to generate new, synthetic instances
of varying types of data that can be estimated as real data. The use-case ranges
widely in correspondence to tasks and desired data type. Some examples are image
generation [45] [46] [47], video generation [48] [49] [50], and voice generation
[51] [52].

2.5.1 History

An adversarial game is a concept in game theory that considers a problem for which
we try to plan ahead in an environment where other players are planning against us.
Take, for example, a game of chess. Both players have the goal of achieving check-
mate against their opponent. We consider the board which scores us checkmate to
have the maximum utility value. One player aims to maximize its score, while
the other minimizes. Since the total gain of the two players is zero, we consider
it a zero-sum game. The utility value is the opposite of each other and creates an
adversarial situation. The solution then becomes the strategy of winning the game
while also considering the optimality of the opponent. We often treat this problem
as a search problem, finding the optimal action for the current situation with some
intuition of how the opponent will act [53].

While adversarial machine learning is considered somewhat young [54], the idea of
pitting two algorithms against each other can be seen in 1959, when Arthur Samuel
devised his now-famous Samuel Checkers game [55]. Samuel’s algorithms played
by performing heuristic search methods from each current position, inspired by
Claude Shannon’s minimax procedure [56]. As such, it was possibly the first pro-
gram to self-learn by estimating each player’s chance of success at a given position.

In the domain of probability and statistical theory, a paradigm often used in ma-
chine learning is statistical classification modeling. Two main approaches are the
generative and discriminative approaches. Some inconsistencies lie in the termi-
nology, but we distinguish only the discriminatory and generative approaches for
the sake of clearance.

The generative model aims to model the joint probability distribution P (X,Y) on
the known data points X and target labels Y . In contrast, the discriminative model
aims to model the conditional probability P (Y |X) between the unknown labels Y
and the known data points X .

In a more immediate sense, the discriminative model aims to “discriminate” or
rather classify the data points X by learning the boundaries between data classes

2.5. Generative Adversarial Networks 23

to better predict the classification Y of X. On the other hand, the generative model
attempts to model the distribution of classes Y by modeling the underlying distri-
bution of the data points X. Because the model learns the probability distribution
of the data points X, it can also utilize this statistical property to generate new data
instances. Since the generative approach models the distribution of the data points,
it tends to be more computationally expensive.

As the discriminative approach aims to efficiently predict the label of a given data
point X with label Y, we train it by giving examples of inputs X and correct the
model to make the predictions more accurate. The lack of correction means that
the method of learning is the unsupervised learning approach. This method of
learning is the supervised learning approach. On the other hand, the generative
approach aims to replicate a summarization of the pattern from the given inputs X
[57].

GANs were introduced by Ian Goodfellow and fellow researchers at the Depart-
ment of Informatics Research at the University of Montreal in 2014. Since then,
GANs have become a staple architectural model in data generation and are of-
ten considered state-of-the-art in some domains, if not the baseline against newer
methods.

At the time of the article, deep learning models most prevalent for modeling high-
dimensional data were the discriminative models, which utilized backpropagation
and dropout algorithms on neural nets to achieve sufficient gradients. The problem,
however, for the deep generative model was the difficulty of approximating many
intractable probabilistic computations during maximum likelihood estimations and
related strategies. As such, they initially could not leverage the same benefits as
their deep learning counterpart. However, the GAN architecture uses two neural
nets distinguished by their tasks to combat this and leverage the same benefits of
the discriminative models [58].

2.5.2 GAN

Essentially, the GAN model consists of two neural nets. Because of its architecture,
both neural nets can be trained using backpropagation and dropout algorithms in
unison, while the generative model is also trained by forward propagation. This
creates the added benefit of turning the generative part of the architecture into a
supervised learning approach while the algorithm as a whole remains unsupervised.

The core idea of GANs can be interpreted as an adversarial game between two
players. More specifically, one player constitutes the generator, with its opposing
player being the discriminator. The generator attempts to generate data samples
based on its ability to model the data distribution of the real dataset. The discrimi-
nator then receives a batch of data samples where it tries to distinguish between the
data generated by the generator and the data from the real dataset. The goal of the
generator is to capture the data distribution of the real dataset to a point where the

24 Chapter 2. Background Theory

discriminator can no longer effectively distinguish the artificial data from its real
counterpart.

The generator’s distribution Pg(x) is trained on the training sample data x, with
a prior distribution on input noise variables Pz(z) where z is the random variable
from the prior distribution, mapped to the data space G(z; θg). G is the generative
neural network with the parameter θg. The goal for G is to train Pg(x) to be as
similar as Pdata(x) such that Pg = Pdata. For the generator, the target is to find G
such that:

G = argmin
G

div(Pg, Pdata) (2.4)

To calculate the difference between the two distributions Pg and Pdata, the dis-
criminative model is used. The discriminator is a binary classifier D(x; θd) that
outputs a single scalar. D(x) represents the decision boundary for deciding if x
came from the real dataset or Pg. We train D to maximize the probability to predict
the correct label for each category. The discriminator uses the binary cross entropy
for its prediction. The function for the discriminator is then:

V (D,G) = Ex∼Pdata
[logD(x)] + Ex∼Pg [log(1−D(x))] (2.5)

G is simultaneously trained to minimize log(1−D(G(z))). The value function of
the GAN model is then the two-player minimax game between D and G as shown
below.

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]

(2.6)
The discriminator tries to maximize V (D,G) while the generator tries to minimize
V (D,G). During training, the parameters θd and θg are continuously updated
in an iterative, numerical approach to deter overfitting. When the generator and
the discriminator reach an equilibrium, the ideal models have been formed on the
training set.

2.5.3 CGAN

The Conditional Generative Adversarial Network (CGAN) proposed by Mehdi Mi-
raz [59], was another important extension to the GAN model. By conditioning both
models on some extra input, the GAN model can be extended to be a conditional
model.

The generative model receives another input with its random variable z, to be con-
ditioned by some additional input y. The discriminator is also conditioned by the
additional input, receiving its data either from the real dataset or the generator out-
put x and the additional input y. This in turn yields that the discriminator expects
the input data x to be of the certain type that the additional input specifies. When

2.5. Generative Adversarial Networks 25

the error gets backpropagated, the generator is taught to generate data pertaining to
the additional input y in order to fool the discriminator.

2.5.4 Conditional Tabular Generative Adversarial Network

The Conditional Tabular Generative Adversarial Network model (CTGAN) is one
of the current state-of-the-art methods for generating artificial tabular data. Pro-
posed by Xu et al. in the “Modeling Tabular Data using Conditional GAN” paper
[60], it further expands on the TGAN model by the same author (See 3.3 TGAN for
more information on this model). It remedies some of TGANs shortcomings and
as a result, shows key improvements on common challenges of modeling tabular
data using GANs.

One of the shortcomings that CTGAN improves on is the challenge of normaliz-
ing continuous data without information loss. With complex distributions, using
a min-max transformation to normalize these distributions might lead to the van-
ishing gradient problem, making the generator see no improvements based on the
information gained from the discriminator.

Figure 2.15: An example of mode-normalization (Figure courtesy of Xu et al. [60])

While TGAN attempts to effectively sample continuous numerical values from
non-Gaussian and multimodal distributions by using a Gaussian Mixture Model,
CTGAN remedies this issue by applying mode-specific normalization. More specif-
ically, it converts continuous values of complex distributions into a bounded vector
by using the Variational Gaussian Mixture Model (GMM) on every individual con-
tinuous column separately. The GMM finds m modes relating to each Gaussian in
the complicated distribution parameterized by some weight µk and standard devia-
tion ϕk. It then computes the probability of each continuous value in a continuous
column to be coming from each mode inferred by the GMM. You can see an ex-
ample of this illustrated above.[fig. 2.15].

Another problem that CTGAN improves on is the issue of class imbalance in cate-
gorical columns. Class imbalance pertaining to the challenge of leveraging GANs
in generating tabular data puts focus on the generative model. More specifically,
the imbalance happens when the number of some classes is significantly higher

26 Chapter 2. Background Theory

than other classes. If the training data are randomly sampled during training, the
rows which hold categorical values minorly represented would not be sufficiently
represented, leading to the generator not capturing these values in its modeled dis-
tribution. If it resamples, the real distribution is not kept.

Here is where CTGAN takes inspiration from CGAN[59], leveraging training-by-
sampling coupled with a conditional generator to handle categorical imbalance
when modeling discrete columns. Using a conditional input vector allows for the
conditioning of a value on a specific column via one-hot encoding. The condition
is chosen through training-by-sampling.

This results in the data to be sampled during the training procedure to include
all possible categories of discrete columns such that every category of discrete
columns occurs evenly. The conditional generator takes a prior random noise as
well as the conditional vector to force the desired condition, such that the distribu-
tions generated by the generator are the same as the real data distributions.

Finally, the training uses generator loss by adding the cross-entropy between the
conditional vector and the generated sample to the loss expression. This makes the
generator follow the conditioning.

The output of the generator is then evaluated by the discriminator to calculate
the difference between the generator and the real conditional distribution and uses
WGAN loss with gradient penalty[61] to further train the model.

The network structure is described in the paper like so:

We use fully-connected networks in generator and critic to capture all possible
correlations between columns. Specifically, we use two fully-connected hidden
layers in both generator and critic. In generator, we use batch-normalization and
Relu activation function. After two hidden layers, the synthetic row representation
is generated using a mix activation functions. The scalar values αi is generated by
tanh, while the mode indicator βi and discrete values di is generated by gumbel
softmax. In critic, we use leaky relu function and dropout on each hidden layer.

Finally, the conditional generator G(z, cond) can be formally described as

h0 = z ⊕ cond
h1 = h0 ⊕ ReLU

(
BN

(
FC|cond |+|z|→256 (h0)

))
h2 = h1 ⊕ ReLU

(
BN

(
FC|cond |+|z|+256→256 (h1)

))
α̂i = tanh

(
FC|cond |+|z|+512→1 (h2)

)
1 ≤ i ≤ Nc

β̂i = gumbel0.2
(
FC|cond |+|z|+512→mi

(h2)
)

1 ≤ i ≤ Nc

d̂i = gumbel 0.2

(
FC|cond |+|z|+512→|Di| (h2)

)
1 ≤ i ≤ Nd

We use the PacGAN [62] framework with 10 samples in each pac to prevent
mode collapse. The architecture of the critic (with pac size 10) (C(r1, . . . , r10, cond1,
. . . , cond10) can be formally described as:

2.5. Generative Adversarial Networks 27

h0 = r1 ⊕ . . .⊕ r10 ⊕ cond 1 ⊕ . . .⊕ cond 10

h1 = drop
(

leaky 0.2

(
FC10|r|+10| cond |→256 (h0)

))
h2 = drop (leaky 0.2 (FC256→256 (h1)))
C(·) = FC256→1 (h2)

We train the model using WGAN loss with gradient penalty [61]. We use Adam
optimizer with learning rate 2× 10− 4.

Chapter 3

Related work

This section introduces work done by others that is related or is similar to our
project.

3.1 Ditto data augmentation using BERT

As briefly mentioned in 2.3.2 GPT-2, BERT is a state of the art language model
which Ditto uses in their data augmentation method. The method is described in
detail in the Ditto paper [25] and is summarised below.

Firstly, ditto applies one of the operators described in the table below [tab. 3.1]
to an entry. The BERT Language Model is then used to interpolate between the
augmented entry and the original entry [fig. 3.1] to create an entry that is ”in-
between” the two entries. Li et al. call this method ”MixDA”.

Operator Explanation
span del Delete a randomly sampled span of tokens

span shuffle Randomly sample a span and shuffle the tokens’ order
attr del Delete a randomly chosen attribute and its value

attr shuffle Randomly shuffle the orders of all attributes
entry swap Swap the order of the two data entries e and e’

Table 3.1: Data augmentation operators in Ditto. The operators are 3 different lev-
els: span-level, attribute-level, and entry-level. All samplings are done uniformly
at random.

This is done because the augmented entries might end up with wrong labels as a
result of their augmentation. By interpolating between the original and the aug-
mented entries, the resulting partial entry is expected to be less distorted, and more
likely to have the correct label.

28

3.2. TVAE model 29

Figure 3.1: Data augmentation with MixDA. (Figure courtesy of Li et al.[25])

3.2 TVAE model

In the CTGAN paper [60], Xu et al. propose another model to create tabular data
with. They adapted the Variational Auto-Encoder to be able to generate tabular
data, and called it TVAE. The architecture is described in the paper like so:

The design of the network pθ (rj | zj) that needs to be done differently so
that the probability can be modeled accurately. In our design, the neural network
outputs a joint distribution of 2Nc + Nd variables, corresponding to 2Nc + Nd

variables rj . We assume αi,j follows a Gaussian distribution with different means
and variance. All βi,j and di,j follow a categorical PMF. Here is our design.

h1 = ReLU (FC128→128 (zj))

h2 = ReLU (FC128→128 (h1)) 1 ≤ i ≤ Nc

ᾱi,j = tanh (FC128→1 (h2)) 1 ≤ i ≤ Nc

α̂i,j ∼ N (ᾱi,j , δi) 1 ≤ i ≤ Nc

β̂i,j ∼ softmax (FC128→mi (h2)) 1 ≤ i ≤ Nd

d̂i,j ∼ softmax
(
FC128→|Di| (h2)

)
pθ (rj | zj) =

∏Nc
i=1 P (α̂i,j = αi,j)

∏Nc
i=1 P

(
β̂i,j = βi,j

)∏Nd
i=1 P (α̂i,j = αi,j)

Here α̂i,j , β̂i,j , d̂i,j are random variables. And pθ (rj | zj) is the joint distri-
bution of these variables. In pθ (rj | zj), weight matrices and δi are parameters in
the network. These parameters are trained using gradient descent. The modeling
for qϕ (zj | rj) is similar to conventional VAE.

30 Chapter 3. Related work

3.3 TGAN

Earlier work by Lei Xu introduces the Tabular Generative Adversarial Network
(TGAN) [63], a GAN model which attempts to generate artificial tabular data for
general purposes. It uses LSTM with attention to its generative mode to generate
data column by column.

While the paper focuses on the generation of tabular data with mixed variable types
such as discrete and continuous, their model would only support generation of
tabular data containing numerical and categorical features. This would later be
improved on in CTGAN [60]. TGAN was however still an important stepping
stone for generation of tabular data and put focus on efficiently modeling marginal
distributions.

3.4 TableGAN

Another paper that tackled the issue of generating tabular data was the tableGAN
[64]. Not to be confused with TGAN [63], this paper puts focus on privacy con-
cerns regarding personal identifiable information (PII) and re-identification attacks.
While some common methods like adding noise to real data, anonymization, or
other modifications can be used, it often degrades the data quality. Privacy level
and data utility are often the inverses of each other in regards to usability. It at-
tempts to resolve this by generation of artificial tabular data.

TableGAN aims to generate data that stay statistically similar to its real counterpart,
while also not incurring information leakage. It handles categorical, discrete, and
continuous variables while leaving other types for further work. It is inspired by
the Deep Convolutional Generative Adversarial Network and uses convolutional
neural networks for its architecture. It consists of three neural networks, with the
third neural network being a classifier to add semantic integrity. It uses cross-
entropy loss to optimize its prediction accuracy on synthetic data for its end goal
of exhibiting optimum results with the balance of trade-off between privacy and
machine learning efficiency.

Chapter 4

Data

In this project, we use 12 datasets that were used in the DeepMatcher study [65].
These datasets were chosen because of their manageable yet varying size. Using
these datasets also allows us to compare our findings to the results found in the
Ditto and Magellan papers [25, 24].

As mentioned in 2.2.4 Ditto, Ditto uses a specific schema for its datasets. All of the
datasets used have been formatted to this schema and split up into train/test/validate
sets when we got them.

4.1 Term definitions

When talking about data used in this project, to avoid vagueness and misunder-
standings, we define two terms:

Entity: In this project, we define an entity to be a collection of attributes that
describe a distinct real-world object. This definition is in line with the definition of
an entity in the context of entity matching.

Entry: We define an entry to be a set of two entities and an indicator on whether
those entities match or not. This definition is in line with the schema that ditto
uses, meaning that a line in the dataset is the same as an entry in a dataset.

4.2 Describing data used

This collection of 12 datasets is split into three categories, Structured, Dirty and
Textual. The datasets in the Structured and Textual categories are comprised of
data crawled from websites and then pre-processed to fit the format 1.

1Detailed information about each dataset and how they were made can be found here: https:
//github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

31

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

32 Chapter 4. Data

The Dirty datasets were made using the Structured datasets, and inserting other
attribute values into the title attribute value with a 50% probability. This simulates
a common kind of dirty data.

Both the Dirty and Structured categories contain entries with entities that have
several attributes and fairly short string values for those attributes. The Textual cat-
egory, on the other hand, contains entries with entities that consist of few attributes
with fairly long string values.

The datasets vary greatly in size, with the biggest being at 28707 entries while the
smallest being 450 entries. Each dataset and its size is detailed in the table below
[tab. 4.1].

Type Name Size Attributes

Structured

Amazon-Google 11460 3
Beer 450 4

DBLP-ACM 12363 4
DBLP-GoogleScholar 28707 4

Fodors-Zagats 945 6
iTunes-Amazon 539 8

Walmart-Amazon 10242 5
Textual Abt-Buy 9577 3

Dirty

DBLP-ACM 12363 4
DBLP-GoogleScholar 28707 4

iTunes-Amazon 539 8
Walmart-Amazon 10242 5

Table 4.1: Datasets used in the DeepMatcher study

4.3 Other datasets

Ditto [25] evaluated on 6 additional datasets. One of these datasets is the ”Com-
pany” dataset, which is in the Textual category. The other 5 datasets come from
the WDC Product Data Corpus [66]. The datasets each contain four versions of the
same dataset in different sizes.

All datasets contain the same type of entries as the Textual dataset from the Deep-
Matcher study datasets, meaning that the entries consist of entities with few at-
tributes and fairly long string values for those attributes.

Chapter 5

Methods

In this section we outline the methods we use for generating data, and each method
is given a high-level explanation. Following the method explanations, some imple-
mentation details are given.

5.1 Data augmentation method

Data augmentation methods have been used in the fields of computer vision for a
long time [67]. The Ditto system also have their own data augmentation method
which, according the their paper [25], improves the matcher’s results when used to
augment the data while the model is learning. We came up with our own simple
data augmentation method to compare it against other more complex data genera-
tion methods.

5.1.1 Generation of non-matches

To generate a non-match entry, we borrowed a technique from the field of evo-
lutionary algorithms, namely recombination [68]. By regarding each entry in the
data as an individual in the context of evolutionary algorithms, one can perform
random recombination of two (or more) individuals to produce new individuals.

Each column can be viewed as a gene, and the value of that column, the value of
the gene. The new individual will consist of a random combination of attributes
from its parents, as illustrated in the figure below [fig. 5.1].

Choose two parents Copy the first individual
Replace random genes
with the genes from the

second individual

Figure 5.1: Recombination of two individuals

33

34 Chapter 5. Methods

Creating a non-matching entry this way may result in an accidental creation of a
matching entry that is wrongly labeled as a non-matching entry. To reduce the
chance of this happening, we pick parent individuals only from the set of non-
matching entries in the dataset. We believe that by doing so, the chances of any
further wrongly labeled matches being created are negligible and can be chalked
up to noise in the dataset.

5.1.2 Generation of matches

The same method as described in the non-match subsection will not work in gener-
ation of matching entries in the data. This is because counter to before, the content
of the genes has to match. Recombining two entries, even if they are only picked
from the set of matching entries, does not guarantee that the new individual will in-
deed be a matching entry. Following the inspiration from evolutionary algorithms,
we borrowed the mutation method [68].

By selecting only one entry from a set of matching entries, the values of each
column may be viewed as genomes, with each symbol (such as letters, numbers,
etc) as individual genes. Some of these genes can then be randomly selected and
changed into some pre-determined counterpart, or a random symbol, as shown in
the figure below [fig. 5.2].

C N R e d I m p e r i a l A l e

Matching individual

C N R e d I m p e r i a l A l eA L c b

Mutated matching individual

Figure 5.2: Individual mutating the marked letters, creating a new individual

The more symbols are altered, the higher the chance to loose the matching property
of the entry. By keeping this number low, we minimize the chance of a wrongly
labeled matching entry being created. We believe this chance is negligible and can
be chalked up to noise in the dataset.

5.2 Standard GPT-2

The standard GPT-2 model can be used to generate a response to a textual prompt
based on its language understanding and the context of the prompt. We leverage
this context awareness by creating prompts that encompass the information we
want the new entries to contain, such as any special key-words or other quirks of
the data.

5.2. Standard GPT-2 35

To create such a prompt we select several entries from the dataset at random, and
concatenate them into one string. These entries serve as the context that GPT-2
needs to generate a response. A new random entry is selected from the dataset
which will have one of the entities removed from it. This bisected entry will serve
as the basis for the new entry to be generated. The new bisected entry is then
concatenated to the context string, creating the prompt that will be sent into the
model [fig. 5.3]. When done so, the model should generate the missing entity
based on the context of the previous entries. The amount of entries used for the
context varies due to the length of these entries. GPT-2 has a maximum length for
the text it can process. If the prompt exceeds this length, then there is no space to
fill in the missing entity and unexpected behaviour can occur, such as the model
not filling in the bisected entry, the model cutting off some of the context, etc.

Prompt

(Name: John Doe) (Name: J. Doe)

(Name: Max Power) (Name: M. Power)

(Name: Ryan Lockwood) (Name: R. Lockwood)

 (Name: Ligma Boules)

Entries

Entities

Figure 5.3: Construction of the prompt to be sent into the model

Prompt

(Name: John Doe) (Name: J. Doe)

(Name: Max Power) (Name: M. Power)

(Name: Ryan Lockwood) (Name: R. Lockwood)

 (Name: Ligma Boules)

GPT-2

Prompt

(Name: John Doe) (Name: J. Doe)

(Name: Max Power) (Name: M. Power)

(Name: Ryan Lockwood) (Name: R. Lockwood)

 (Name: Ligma Boules) (Name: L. Boules)

Sent into the model

Figure 5.4: The prompt is sent into the GPT-2 model, and generates the missing
entity in the new entry

36 Chapter 5. Methods

The process of creating matches and non-matches using this method is the same.
The only difference is that when selecting entries from the dataset for the prompt,
we select from a set of matching entries when generating matches, and a set of
non-matching entries when generating non-matches. This is done to ensure that
the context in the prompts reflects what we want the model to do. The hope is
that the model recognises what a match is, and when filling in the missing entity, it
generates data that will result in the reformed entry remaining a match. Similarly,
when creating a non-matching entry, the model should fill in the missing entity
with information that creates a non-matching entry [fig. 5.4].

5.3 Fine tuning GPT-2

To fine-tune the standard GPT-2 model, additional neural network layers can be
added on top of it. This makes it so we can keep all of the semantic knowledge of
language the GPT-2 model has. Training these new outer layers on our data makes
the GPT-2 model generate strings that are structurally similar to the training data
supplied. This is usually used to emulate different types of the same language, like
a regional dialect for instance. We use this instead to emulate the ditto dataset entry
structure.

Two separate models are created for generating matches and non-matches. Pre-
dictably, the match model is trained on the set containing only matching entries,
while the non-match model is trained on the set containing only non-matching en-
tries.

When generating new entries, a random entry is selected from the dataset, and one
of the entities is removed. This bisected entry is then given to the model as the
prompt. The model then generates in the missing entity based on the training the
model has undergone, as well as the semantic understanding of language [fig. 5.5].

Entries

GPT-2

Prompt

(Beer Name: American Red Ale) (Beer Name: Red Ale)

Prompt

(Beer Name: American Red Ale) (Beer Name: American Crimson Ale)

Figure 5.5: Creating a prompt out of an entry and sending it to the model which
generates a new entry

5.4. CTGAN 37

5.4 CTGAN

The CTGAN model sees improvements in the generation of tabular data, taking
into consideration how to handle class imbalance on discrete columns, and better
model data distributions of continuous values with mode-normalization. With this
in mind, expectations to see good results on most datasets mentioned in 4 Data were
high, as most of them follow the expected characteristics which CTGAN are made
to handle. Moreover, we left the existing non-values from the real datasets as is to
explore how CTGAN handles these values for its generation step, coincidentally
also introducing fuzzy data into the data distribution.

In earlier experiments when training on datasets with both matching and non-
matching entries, CTGAN’s ability to capture correct labels for each class seemed
to be a vain attempt. We consider this a result of the nature of the entity matching
task. More specifically, it struggles to see the correlation of the label column to the
added task of inference for similarity over the attributes between the two entities in
an entry. Later in our experiments, we concluded to separate the training set on the
match and non-match types to capture the data distribution of these sets individu-
ally. This was also done with the intent of generating better examples for training
the EM system where the distinction between matching and non-matching entries
is at focus.

Data in Ditto
format

Reformat data
to Dataframe Train CTGAN

Models

Figure 5.6: Data is reformatted into a tabular format. CTGAN trains on the data,
and the resulting models are stored when finished.

We give the CTGAN model its training set and perform training [fig. 5.6]. After
the training step, the resulting model is used to generate our required data [fig.
5.7]. The sample size is the size of the original dataset variant when generating the
artificial dataset. We do this to generate a sample set that has the required room to
project as much of its modeled data distribution as possible.

38 Chapter 5. Methods

Artifical
Data

Ensure data

Generate data
Models

"is amount X?"

No

Yes

Figure 5.7: A specific CTGAN model generates data and the resulting data is fil-
tered. This continues until a sufficient amount is reached.

The CTGAN model sometimes struggles with correlating the attributes of both
entities in a data entry. This in turn yields “matching” entries that can include
entities too dissimilar. Because of this, we implement an insurance method for the
generated set which considers the entity’s likeness of an entry and filters through
only adequate results. More on this in 5.5.6 Ensure data method.

Because of the insurance method, the data distribution in the sample set can often
be skewed in generation of matching entries. The insurance step is more active
during the generation of matching entities as the correlation between the attributes
is more important in those scenarios. In contrast, the insurance method during the
generation of non-matching entities remains almost non-active.

5.5 Implementation details

This section covers some implementation details, like the hardware used during the
project, additional helper code, or other things we deem worthy of mention.

5.5.1 Hardware used

While working on the data generation methods, we discovered that our personal
computers are not powerful enough to efficiently run these models. Deep Learning
is known for being computationally expensive, and since GPT-2 and CTGAN are
both deep learning methods, this posed a problem during this project. To decrease
the time used to run the models, we therefore pivoted to using Google Colaboratory
and Idun.

Google Colaboratory

Google Colaboratory, or ’Colab’, is a free tool made by Google which allows users
to run their code in a cloud environment with access to CPU and GPU resources1.
The resources available fluctuate, and sometimes are even unavailable, due to them

1More information at: https://research.google.com/colaboratory/faq.html

https://research.google.com/colaboratory/faq.html

5.5. Implementation details 39

being shared across all users. The platform also allows for easy code execution by
not needing any setup. This is because Colab is a browser based Jupyter notebook.

The reasons above make the platform good for research and development purposes.
However, not only is it not suited for running many programs that are meant to run
for long, but such actions are also prohibited by Google.

Idun

The Idun cluster is a project at NTNU that aims to provide a highly available com-
puting platform. The cluster uses the Slurm Workload Manager [69] to schedule
program execution and allocate resources to those programs. The cluster consists
of 2 login nodes and 15 compute nodes. The login nodes are are mainly used for
system setup and other user interactions with the server, such as queuing Slurm
jobs. The compute nodes, as the name suggests, are used for computational pur-
poses. All of the nodes have powerful multi-core CPUs. All but 6 of the compute
cores also have access to several powerful GPUs with each having at least 12GB
of VRAM2.

Google Colab was used for research and development, and Idun was used to run
the code in bulk operations. Both the Ditto and Magellan Entity Matching systems
were also ran on the Idun cluster, which significantly decreased the time needed to
run these models.

5.5.2 Ditto data parser

GPT-2, as many other language models, is primarily meant for natural language
generation. As a side-effect of this, the model had a tendency to sometimes gener-
ate unrelated texts, rather than just new data entries. To mitigate this, we wrote a
data parser.

The way our parser for ditto data works, is by first taking in the data generated by
the GPT-2 model. Since we always use a real entity from an entry when generating
new data, we split the generated text into two parts. The real part of the new entry
gets scanned for the fields that are present in the entry. The generated part is then
scanned for those same fields. The new entry is considered valid if the generated
part has those fields and values for those fields. The parser then creates a string
which is in the correct schema out of the entry data [fig. 5.8]. The code for this
parser can be viewed on our github page linked in Appendix A.3 Ditto data parser.

2More information at: https://www.hpc.ntnu.no/idun/

https://www.hpc.ntnu.no/idun/

40 Chapter 5. Methods

Country

England

EN

Name

John Doe

Jonathan Doe

COL Name VAL John Doe COL Country VAL England COL Name VAL Johnathan Doe COL Country VAL EN

1. Getting the attributes

from the real entity

2. Filling in the attributes from both entities

COL Name VAL John Doe COL Country VAL England COL Name VAL Johnathan Doe COL Country VAL EN

3. Generate new string out of the attributes

Figure 5.8: The parser validating an entry and generating a string

The data generated for Ditto can be used with Magellan with minimal pre-process-
ing, as Magellan only needs the data to be in a pandas dataframe. However, other
models might not play as nice with this schema. Because of this issue of differ-
ing schemas used by the different models, a data parser will need to be written
specifically for these models.

5.5.3 Data generation using GPT-2

When implementing the GPT-2 model for data generation, we used the Hugging-
Face Transformer library. The library includes a ”pipeline” object, which can either
use a standard GPT-2 model or a fine-tuned GPT-2 model to generate text. It takes
a prompt as an argument, and takes care of tokenizing the text and initializing the
model, and when it is done, it returns the text generated by the model.

The GPT-2 model however has a limit on the length of texts it can process. Both
the prompt and the eventually generated text all have to fit within this maximum
length limit. This was slightly problematic when generating data from the prompts
made for the standard GPT-2 model. The prompt needs to have some complete
data entries in it for the method to work, but sometimes a set amount of entries
might produce a prompt that is too long to generate text out of. To solve this issue,
we ensure that the prompt does not exceed the maximum length of 512 tokens,
accounted for the missing entity that will be generated.

Sometimes the generated data does not result in a new entry that is valid. When
this happens, the generated text is disregarded and the generation starts again. This
is done for both the fine-tuned and non-fine-tuned GPT-2 models. To validate the
entry, a method in the data parser is used. This validation method is outlined in
5.5.2 Ditto data parser. The generation and validation cycle is repeated until a
valid new entry is generated.

5.5. Implementation details 41

5.5.4 The Synthetic Data Vault

The Synthetic Data Vault (SDV) is a collection of libraries for creating artificial
data. The SDV Project was originally developed in 2016 at MIT’s Data to AI Lab.
With the intention of expanding the project further, DataCebo was founded in 2020
and became the sole proprietor of the SDV project. [70]

SDV includes tools for modeling datasets in order to create new artificial data
which aims to be as identical as possible to the original dataset in terms of format
and statistical characteristics. From this library, we have utilized their implemen-
tation of CTGAN. [71]

5.5.5 Auxiliary data parser

The specific implementation of CTGAN that we utilize takes in a training set as
a data frame structure. However, the entire data repository exists solely in Ditto
format. To mitigate this and be able to freely exchange data between CTGAN
and Ditto, we created a simple data reformatter. This script can also be viewed in
Appendix A.4 Auxiliary data parser.

The auxiliary data parser converts our data files between the Ditto format and Mag-
ellan format [fig. 5.9]. Magellan and CTGAN operate on data frame structures,
while GPT-2, the Augmentation algorithm, and Ditto operate on specifically for-
matted strings. To correctly read the data from the base data repository for Magel-
lan and CTGAN, and exchange data between the generators for each EM matcher,
this script is utilized.

Right

Jonathan Doe

EN

Left

John Doe

England

COL Name VAL John Doe COL Country VAL England COL Name VAL Johnathan Doe COL Country VAL EN

COL Name VAL John Doe COL Country VAL England COL Name VAL Johnathan Doe COL Country VAL EN

2. Generate new string out of the attributes

1. Splitting entities into data frames

Figure 5.9: The data parser converting between different formats.

To parse ditto formatted strings to a data frame structure, it first collects each col-
umn name from the first line of text. It then iterates over each line of text, switch-
ing between the left side and right side of the line. While doing so, it captures
the column name following “COL” and appends the data following “VAL” to the
corresponding column name in the data frame.

To parse data frame structured data to ditto formatted strings, it first collects the
column name of the original dataset to make sure no column name gets inadver-

42 Chapter 5. Methods

tently renamed. It then iterates for every row in the data frame, creating a string
with the values of the row prepended with the paired column name and prepended
“COL” and “VAL” tokens.

5.5.6 Ensure data method

The insurance method is mainly used for over the CTGAN generated data. The
CTGAN implementation from SDV allows for a rejection policy. This lets the user
create their own conditions on what the model can generate as output. It does not
help the training of the model but acts more like a filtering process for what the
model is allowed to output from the sample set. As the implementation of this is
awkward, we instead opted to run the filtering process over the generated output
and generate new sample sets until the total amount of data reached the amount of
the original dataset.

After CTGAN has finished generating a sample set, it gets sent to the data insur-
ance method with a threshold. The insurance method iterates over each entry in the
sample set, comparing each attribute of both entities. It uses the Levenshtein dis-
tance between the two attributes to determine their similarity. The distance between
the two attributes is the minimum number of single-character changes required for
both attributes to be identical, with added weight on substitution. The result is nor-
malized to a decimal value between 0 to 1. The distance for each attribute is added
up while the threshold is multiplied by the number of attributes to compare, with
some allowed variance dependent on the total attributes. If a data entry does not
pass the threshold, it gets removed [fig. 5.10].

Ensure data

rtable_name rtable_addresse rtable_phone

Phil Snore This Ave. 52 +47 1881

ltable_name ltable_addresse ltable_phone

Jack Moore Leming Ln. 2 456 188 531

"0.4" "0.42" "0.63"+ + =

Sample set
from CTGAN

rtable_name rtable_addresse rtable_phone

Micheal B. Riverwood Street 15 456 912 453

"0.86" "1.00"+"0.78" + =

ltable_name ltable_addresse ltable_phone

Micheal Boore Riverwood St. 15 456 912 453

 2.641.45

Threshold
(0.7 x 3)

2.1Filtered data

Figure 5.10: Attributes between two entities in an entry are compared. If the thresh-
old is not reached, the entry is discarded.

With some attributes being identical, giving it a distance of 1, while others being
less comparable yet maintaining a matching nature for both entities, we add vari-
ance to give wiggle-room for what constitutes a matching entry. The method as
a whole is a simple approach as we do not want to put too much weight on the
insurance of data generated, but rather give a simple nudge to what constitutes

5.5. Implementation details 43

a “match”. The a link to its implementation can also be found in Appendix A.5
CTGAN data generation generation source code.

Chapter 6

Experiments

In this section, we outline the experiments that were performed in this project, as
well as showing their results.

6.1 Supplementing artificial data

This experiment was meant to test whether the Ditto and Magellan entity matching
models can achieve better performance by increasing the amount of data they train
on. This was achieved by generating artificial data and using it to supplement the
original data.

By using the methods of data generation described in 5 Methods, three datasets
were created using each of the datasets described in 4 Data:

• Real dataset supplemented with artificial non-matches only
• Real dataset supplemented with artificial matches only
• Real dataset supplemented with both artificial matches and non-matches

We generated the same amount of matches and non-matches as in the original
datasets. This doubled the amount of data after supplementation. By supplement-
ing the real data with either artificial matches or non-matches, effects of increasing
each of them separately on the performance of the models can be observed [fig.
6.1].

The 3 generated datasets were then each used to train Ditto and Magellan. The
entity matching models were also trained on the real datasets as a baseline perfor-
mance measure. This baseline was used to compare the results. It is important
to note that only the training data was supplemented with artificial data, while
the testing and validation sets were left 100% real. Supplementing these datasets
would corrupt the results obtained, as comparing artificial data to other artificial
data made the same way would surely introduce unwanted effects.

Given that Ditto is a deep learning-based system, the results of the model might
vary due to random weight initialisation when training the model. Because of this,

44

6.1. Supplementing artificial data 45

Real data

Data
Generation

method
Artificial

Data

Combining
Real and

Artificial Data

Entity
Matching

model

Figure 6.1: The pipeline for generating and testing the datasets in the first experi-
ment.

the Ditto model was ran 3 times on each of the created datasets, as well as the real
dataset, and the average f1 score was used when comparing the results.

When supplementing the real datasets with only the generated non-matching en-
tries, most of the generation methods are generally on par with the baseline mea-
surement, with a couple of notable exceptions. On the Ditto system, the Dirty and
Structured iTunes-Amazon datasets when supplemented with generated data per-
form noticeably better than the non-supplemented dataset [fig. 6.2]. The Magellan
system generally performs worse across the board when compared to Ditto. This
is especially apparent when looking at the Augmentation method, which under-
performed on all datasets except the Structured DBLP-ACM and the Structured
iTunes-Amazon datasets [fig. 6.3].

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.98
0.95

0.70

0.78

0.71
0.75

0.98
0.95

1.00

0.67

0.80
0.82

0.98

0.92

0.87

0.69 0.69
0.73

0.98

0.93 0.94

0.90

0.74

0.79

0.98

0.94 0.93

0.73

0.68

0.76

0.98
0.94

0.99

0.94

0.69

0.78

0.98

0.93

0.69
0.65

0.68

0.53

0.98

0.93

0.99

0.93

0.66

0.78

0.98
0.94

0.92

0.79

0.73

0.85

0.99
0.95

0.99

0.90

0.80
0.82

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.2: Real dataset supplemented with artificial non-matches which were gen-
erated using the full real dataset ran on Ditto

46 Chapter 6. Experiments

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0
f1

 sc
or

es
0.91

0.83

0.62

0.38

0.56

0.85

0.98
0.95

1.00
0.96

0.74

0.50

0.70

0.58
0.54

0.12

0.18

0.70

0.99

0.89

0.78

0.98

0.56

0.10

0.91

0.82

0.54

0.31

0.58

0.87

0.99

0.93

1.00
0.98

0.67

0.44

0.91

0.83

0.55

0.28

0.48

0.79

0.99
0.94

1.00
0.96

0.53

0.48

0.91

0.83

0.72

0.36

0.59

0.85

0.99
0.95

1.00
0.98

0.73

0.50

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.3: Real dataset supplemented with artificial non-matches which were gen-
erated using the full real dataset ran on Magellan

When supplementing the real datasets with only the generated matching entries,
the Ditto system again outperforms Magellan on almost all datasets. However,
compared to the datasets that were supplied with generated non-matches, the per-
formance seems to have improved across the board on both systems [fig. 6.5, 6.4].

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.98
0.95

0.70

0.78

0.71
0.75

0.98
0.95

1.00

0.67

0.80
0.82

0.98
0.95

0.91

0.78

0.72

0.65

0.99
0.95

0.98

0.92

0.76

0.82

0.98
0.95

0.85

0.77

0.70

0.77

0.98
0.95

0.98

0.92

0.79 0.80

0.98

0.94 0.94

0.72 0.71

0.85

0.98
0.95

0.98
0.96

0.79 0.80

0.98
0.95 0.93

0.77

0.71

0.77

0.98
0.94

0.98

0.86

0.80
0.82

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.4: Real dataset supplemented with artificial matches which were gener-
ated using the full real dataset ran on Ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.91

0.83

0.62

0.38

0.56

0.85

0.98
0.95

1.00
0.96

0.74

0.50

0.91

0.83

0.69

0.39

0.62

0.81

0.97
0.94

0.98 0.96

0.75

0.54

0.91

0.83

0.72

0.38

0.57

0.85

0.98
0.95

0.98 0.96

0.76

0.50

0.91

0.83

0.72

0.41

0.59

0.85

0.99
0.95 0.94

0.98

0.76

0.52

0.89

0.81

0.75

0.39

0.59

0.85

0.97
0.95

1.00

0.93

0.75

0.49

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.5: Real dataset supplemented with artificial matches which were gener-
ated using the full real dataset ran on Magellan

6.2. Simulating small amounts of data 47

When supplementing the real datasets with both the generated matching and non-
matching entries, performance is once again mixed, either being better than the
baseline measurement, getting close to it, or underperforming. This holds true for
both Ditto [fig. 6.6] and Magellan [fig. 6.7]. The results do seem to be slightly
better than when supplementing with only the generated non-mathcing entries.

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.98
0.95

0.70

0.78

0.71
0.75

0.98
0.95

1.00

0.67

0.80
0.82

0.98

0.92

0.86

0.68
0.70

0.76

0.98

0.93 0.93
0.90

0.70

0.79

0.98

0.93

0.86

0.62
0.66

0.68

0.98
0.94

0.96

0.89

0.60

0.74

0.98

0.92

0.83

0.60

0.65 0.65

0.98

0.93
0.96

0.79

0.57

0.73

0.98
0.94 0.94

0.77

0.70

0.80

0.98
0.94

0.99

0.91

0.81 0.82

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.6: Real dataset supplemented with both artificial matches and non-
matches which were generated using the full real dataset ran on ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.91

0.83

0.62

0.38

0.56

0.85

0.98
0.95

1.00
0.96

0.74

0.50

0.74

0.68

0.56

0.15

0.24

0.77

0.98

0.92 0.90

0.98

0.62

0.14

0.92

0.82

0.67

0.34

0.54

0.90

0.98

0.94
0.98 0.96

0.68

0.44

0.91

0.82

0.47

0.28

0.50

0.79

0.98

0.94

1.00 1.00

0.51

0.47

0.89

0.81

0.75

0.37

0.60

0.84

0.98
0.94

1.00

0.93

0.73

0.50

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.7: Real dataset supplemented with both artificial matches and non-
matches which were generated using the full real dataset ran on Magellan

6.2 Simulating small amounts of data

This experiment was meant to test how the generated data affects the performance
of the entity matching models. This was achieved by using 10% of the real data for
artificial data generation and then generating enough data to reach the full amount
of data in the dataset used. This means that when the generated data is combined
with the real data, 90% of the data in the resulting dataset is artificial.

For this experiment we used only the datasets that are larger than 1000 entries.
This is because the smaller datasets already have little amounts of data, and further
decreasing them would leave an extremely small amount of data to generate entries
out of. Because of this, we deemed them uninteresting for this experiment.

48 Chapter 6. Experiments

We combined the 10% of the real data that was used for generation together with
the generated data to create these three datasets:

• Real dataset supplemented with artificial non-matches only
• Real dataset supplemented with artificial matches only
• Real dataset supplemented with both artificial matches and non-matches

By having the dataset supplemented with both artificial matches and non-matches
be the same size as the original dataset, we could observe how the f1 score is
affected when 10% of the data is real versus when 100% is real [fig. 6.8]. The entity
matching models were trained on each of the 3 datasets. The baseline performance
measures were achieved by training the models on both 10% and 100% of the real
dataset. These baseline performance measures allowed us to observe how the f1
scores were affected by increasing the amount of data, and also compare them to
the same amount of real data. As in the previous experiment, the entity matching
systems were both evaluated on the full real testing and validation sets as to not
corrupt the results.

10% Real
data

Data
Generation

method
Artificial

Data

Combining
Real and

Artificial Data

Entity
Matching

model

Real data

Figure 6.8: The pipeline for generating and testing the datasets in the second ex-
periment.

Like in the previous experiment, due to the random initialisation of the weights the
Ditto system was trained 3 times and the results were averaged.

When supplementing the data with only the generated non-matches, none of the
methods managed to perform as well as the full real dataset. However, the GPT-2
and CTGAN methods did come close on some datasets, such as the Structured
DBLP-ACM dataset. Noteably, the augmentation method was consistently the
worst performing method on both Ditto [fig. 6.9] and Magellan [fig. 6.10]. All
methods except for the CTGAN method performed badly on both systems on
four of the datasets, those being the Dirty Walmart-Amazon, Structures Amazon-
Google, Structured Walmart-Amazon and Textual Abt-Buy. The methods only
reached half of the 10% real dataset f1 score, while CTGAN either matched it or
exceeded it.

6.2. Simulating small amounts of data 49

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.95
0.92

0.38

0.54

0.97

0.92

0.37 0.38

0.65

0.44

0.17 0.16

0.79

0.68

0.17 0.18

0.95

0.86

0.20

0.36

0.96

0.88

0.15

0.19

0.94

0.87

0.20

0.32

0.96

0.89

0.15

0.19

0.94
0.91

0.49
0.52

0.97

0.92

0.46

0.51

0.98
0.95

0.78

0.71

0.98
0.95

0.80
0.82

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.9: Real dataset supplemented with artificial non-matches which were gen-
erated using the 10% real dataset ran on Ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.90

0.80

0.36 0.35

0.98

0.91

0.70

0.30

0.05
0.03

0.00 0.00

0.40

0.23

0.01 0.00

0.86

0.78

0.05

0.28

0.98

0.87

0.42

0.22

0.87

0.79

0.04

0.28

0.98

0.88

0.12 0.11

0.89

0.80

0.36

0.42

0.98

0.91

0.71

0.31

0.91

0.83

0.38

0.56

0.98
0.95

0.74

0.50

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.10: Real dataset supplemented with artificial non-matches which were
generated using the 10% real dataset ran on Magellan

When supplementing the data with the generated matches, results across all meth-
ods and both systems improved. Each dataset on both systems had at least one
method which exceeded the 10% real data f1 score. In the case of Dirty Walmart-
Amazon on the Magellan system, the non-fine-tuned GPT-2 method even slightly
exceeded the full real data f1 score. Just as when supplementing the datasets with
generated non-mathces, the same four datasets have the worst f1 scores overall
on both Ditto [fig. 6.11] and Magellan [fig. 6.12], those datasets being the Dirty
Walmart-Amazon, Structures Amazon-Google, Structured Walmart-Amazon and
Textual Abt-Buy.

50 Chapter 6. Experiments

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0
f1

 sc
or

es
0.95

0.92

0.38

0.54

0.97

0.92

0.37 0.38

0.96
0.92

0.25

0.51

0.97
0.93

0.24

0.60

0.95
0.91

0.33

0.47

0.95
0.93

0.31

0.45

0.95

0.90

0.42

0.51

0.97

0.92

0.51

0.60

0.96
0.92

0.30

0.57

0.97

0.92

0.33

0.55

0.98
0.95

0.78

0.71

0.98
0.95

0.80
0.82

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.11: Real dataset supplemented with artificial matches which were gener-
ated using the 10% real dataset ran on Ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.90

0.80

0.36 0.35

0.98

0.91

0.70

0.30

0.83

0.75

0.34

0.43

0.95

0.87

0.63

0.44

0.88

0.79

0.39

0.48

0.96

0.91

0.72

0.38

0.89

0.80

0.38
0.42

0.96

0.92

0.72

0.39

0.88

0.80

0.35

0.45

0.97

0.92

0.69

0.31

0.91

0.83

0.38

0.56

0.98
0.95

0.74

0.50

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.12: Real dataset supplemented with artificial matches which were gener-
ated using the 10% real dataset ran on Magellan

When supplementing the data with both the generated matches and non-matches,
the performance dropped on both systems throughout all datasets. It is still however
better than when only supplementing the data with the generated non-matches [fig.
6.13] [fig. 6.14].

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.95
0.92

0.38

0.54

0.97

0.92

0.37 0.38

0.52

0.39

0.17
0.21

0.75

0.60

0.17 0.19

0.84

0.78

0.18

0.33

0.87

0.80

0.17 0.16

0.86 0.85

0.22

0.27

0.84
0.86

0.21

0.14

0.96
0.92

0.44

0.51

0.97

0.92

0.43

0.48

0.98
0.95

0.78

0.71

0.98
0.95

0.80
0.82

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.13: Real dataset supplemented with both artificial matches and non-
matches which were generated using the 10% real dataset ran on Ditto

6.3. Replacing real data with artificial data 51

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.90

0.80

0.36 0.35

0.98

0.91

0.70

0.30

0.36
0.34

0.06
0.08

0.56
0.58

0.09

0.02

0.86

0.77

0.05

0.34

0.98

0.88

0.55

0.23

0.87

0.79

0.05

0.28

0.98

0.89

0.08
0.11

0.88

0.79

0.35

0.41

0.97

0.91

0.71

0.32

0.91

0.83

0.38

0.56

0.98
0.95

0.74

0.50

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.14: Real dataset supplemented with both artificial matches and non-
matches which were generated using the 10% real dataset ran on Magellan

6.3 Replacing real data with artificial data

In the previous experiments, the data generated was used as supplementation to
the real data. In this experiment we excluded the real data, and trained the Ditto
and Magellan models only on the artificial datasets. The datasets created for this
experiment were:

• Matches and non-matches generated out of the full real dataset.
• Matches and non-matches generated out of the 10% real dataset.

By training the Ditto and Magellan entity matching systems on these datasets, we
could see whether or not artificial data can replace real data when training models
[fig. 6.15]. As in the previous experiments, the entity matching systems were both
evaluated using the full real testing and validation datasets as to not corrupt the
results.

Real data

Data
Generation

method
Artificial

Data

Entity
Matching

model

Figure 6.15: The pipeline for generating and testing the datasets in the third exper-
iment.

The Ditto system was again trained 3 times and the results were averaged.

When only using the generated data which was created from the full real datasets,
almost none of the methods performed well apart from a few exceptions, those be-
ing one on the Ditto system and a few on the Magellan system. The one which
performed best on the Ditto system was the CTGAN method on the Dirty iTunes-
Amazon dataset, where it even outperformed the real dataset [fig. 6.16]. While
the Magellan system had no methods which outpreformed the real dataset, the

52 Chapter 6. Experiments

non-fine-tuned GPT-2 method came close on three datasets, Structured DBLP-
ACM, Structured Fodors-Zagats and Structured iTunes-Amazon. The augmen-
tation method on the Magellan system also came close to the real dataset on the
Structured iTunes-Amazon dataset [fig. 6.17].

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.98
0.95

0.70

0.78

0.71
0.75

0.98
0.95

1.00

0.67

0.80
0.82

0.30 0.31

0.50

0.17 0.19

0.27
0.30 0.31

0.21

0.44

0.17
0.19

0.57

0.70

0.48

0.18

0.23

0.48

0.75
0.73

0.78

0.52

0.16
0.13

0.64 0.63

0.50

0.15
0.12

0.23

0.59

0.82

0.36

0.42

0.08

0.18

0.50

0.67

0.77

0.27

0.44

0.34

0.60

0.72 0.73

0.42

0.32

0.19

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.16: The data generated using the full real dataset ran on Ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty iTunes-Amazon

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured Beer

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Fodors-Z
agats

Structured iTunes-Amazon

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.91

0.83

0.62

0.38

0.56

0.85

0.98
0.95

1.00
0.96

0.74

0.50

0.29 0.30

0.37

0.04
0.01

0.13

0.20

0.35

0.09

0.96

0.07
0.04

0.36
0.33 0.34

0.00 0.00

0.13

0.93

0.68

0.96 0.96

0.00
0.02

0.33

0.09

0.00 0.00

0.11

0.00

0.22

0.65

0.00 0.00
0.02

0.07

0.31

0.38
0.35

0.11

0.18

0.35
0.39

0.56

0.88

0.40

0.54

0.23

Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN

Figure 6.17: The data generated using the full real dataset ran on Magellan

When only using the generated data which was created from the 10% real datasets,
none of the methods outperformed the 10% real datasets. However, CTGAN on
the Ditto system came quite close to matching the 10% real data score on most of
the datasets [fig. 6.18]. On the Magellan system however, only one dataset had
methods that came anywhere close to the 10% real data f1 score, those being the
non-fine-tuned GPT-2 and CTGAN methods on the Structured DBLP-ACM dataset
[fig. 6.19].

6.3. Replacing real data with artificial data 53

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.95
0.92

0.38

0.54

0.97

0.92

0.37 0.38

0.30 0.31

0.17 0.19

0.30 0.31

0.17
0.19

0.29

0.40

0.08
0.12

0.45
0.43

0.10

0.17

0.26

0.46

0.07

0.15

0.30

0.57

0.05

0.19

0.83

0.51

0.19

0.44

0.84
0.81

0.25

0.17

0.98
0.95

0.78

0.71

0.98
0.95

0.80
0.82

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.18: The data generated using the 10% dataset tested against both the 10%-
and the full real datasets ran on Ditto

Dirty DBLP-ACM

Dirty DBLP-GoogleScholar

Dirty Walmart-A
mazon

Structured Amazon-Google

Structured DBLP-ACM

Structured DBLP-GoogleScholar

Structured Walmart-A
mazon

Textual Abt-Buy
0.0

0.2

0.4

0.6

0.8

1.0

f1
 sc

or
es

0.90

0.80

0.36 0.35

0.98

0.91

0.70

0.30
0.27 0.28

0.09 0.08

0.15

0.38

0.06
0.04

0.50

0.25

0.00

0.11

0.92

0.67

0.01 0.00

0.07

0.30

0.00 0.00 0.00

0.53

0.00 0.01

0.31
0.29

0.18

0.30

0.80

0.36

0.20 0.20

0.91

0.83

0.38

0.56

0.98
0.95

0.74

0.50

10% Real data Augmentation GPT-2 non-fine-tuned GPT-2 fine-tuned CTGAN Real data

Figure 6.19: The data generated using the 10% dataset tested against both the 10%-
and the full real datasets ran on Magellan

Chapter 7

Discussion

In this section we discuss the results of our experiments and try to understand them.

7.1 Rationalising the results

When analysing our experiment results which are described in 6 Experiments, we
made 5 observations:

• The best f1 scores were achieved when real data was supplemented with
artificial matches

• CTGAN seemed to be the best performing generation method throughout all
tests

• Augmentation method seemed to be the worst performing generation method
throughout all tests

• Fine-tuning the GPT-2 model seemed to generate data that performed either
slightly better or much worse than the non-fine-tuned model.

• Using only the artificial data yielded bad results

In the following pages, we attempt at rationalising, explaining and understanding
these observations.

7.1.1 Are artificial matches better?

When examining the results from the first and second experiments, a clear pat-
tern emerged. All datasets across both entity matching systems and all generation
methods achieved the best results when the real data was supplemented with the
generated matches only. Does this mean that the artificial non-matches are unnec-
essary, or even detrimental in some way?

The results in these experiments do not support this claim. In fact, the results sug-
gest that the artificial non-matches also have a positive effect on the f1 scores of

54

7.1. Rationalising the results 55

the entity matching models, either matching or even exceeding the baseline mea-
surement. We believe that this effect is related less to the quality of our generated
data, and more to a quality of the original data itself.

The table below shows each test dataset, the number of matching and non-matching
entries in the datasets and the ratio of non-matches to matches in each dataset [tab.
7.1]. The table clearly shows that non-matches are extremely over-represented in
each dataset. When the real data is supplemented with non-matches, the ratio be-
tween the matches and non-matches in the supplemented dataset only becomes
bigger, making it difficult for the model to learn the differences between matching
and non-matching entries and effectively overfitting the model. When new matches
are added, however, the ratio becomes more balanced, which would allow the mod-
els to differentiate between the different entries more effectively. When the data is
supplemented with both new matches and non-matches, the ratio stays the same,
but there is more information in the dataset, which again would allow the models
to learn better. We believe that this explains the results we are getting.

Type Name Matches Non-matches Ratio

Structured

Amazon-Google 699 6175 8.8 : 1
Beer 40 228 5.9 : 1

DBLP-ACM 1332 6085 4.6 : 1
DBLP-GoogleScholar 3207 14016 4.3 : 1

Fodors-Zagats 66 501 7.6 : 1
iTunes-Amazon 78 243 3.1 : 1

Walmart-Amazon 676 5568 8.2 : 1
Textual Abt-Buy 616 5127 8.3 : 1

Dirty

DBLP-ACM 1332 6085 4.6 : 1
DBLP-GoogleScholar 3207 14016 4.3 : 1

iTunes-Amazon 78 243 3.1 : 1
Walmart-Amazon 576 5568 8.2 : 1

Table 7.1: The amount of matches and non-matches in the real training sets. Last
column shows the ratio of non-matches to matches in each dataset.

Should we then only generate new matching entries and not bother with the non-
matches? The results would imply this to be the case, but we believe this to be
the wrong takeaway. Should the ratio reach 1:1, meaning that there is exactly one
match to each non-match in the dataset, then supplementing only new matches
would invert the ratio, and the same problem would occur. We think that supple-
menting the data with both matches and non-matches to keep the ratio as close to
or at 1:1 would be the ideal course of action.

56 Chapter 7. Discussion

7.1.2 Is CTGAN the best method?

Throughout our experiments, the CTGAN method stands out as the best method on
average. It usually outperforms or matches the f1 scores of the baseline measure-
ment when supplementing real data, and is noticeably better than any other method
when training the Entity Matching systems only on the generated data. Does this
mean that it is the best method of generation?

CTGAN is designed to try keeping the data distribution of its generated entries as
close to the distribution of the original data as possible. This has the effect of never
over-representing the data that has a high frequency of appearance in the original
data, which helps to avoid overfitting the Entity Matching systems when training
them. The CTGAN generation method is described in more detail in 5.4 CTGAN.

The data, while representative of the original distribution, is not necessarily all
correctly labeled. This is because when generating the data, some of the new at-
tributes might make a match into a non-match and vice versa. To mitigate this
problem, the generation method implements an insurance step which uses the Lev-
enshtein similarity metric to discard generated data that does not hold the matching
or non-matching quality. This insurance step is more active during the generation
of matching entries, while remaining almost non-active during the generation of
non-matches, keeping the data distribution modelled by CTGAN. When some of
the data is discarded, new data needs to be created, and in the process, the data
distribution might not match the real data as well any more. We pose however that
the data distribution, due to the way CTGAN works, is still good enough that the
most frequent entries don’t get too over-represented.

These two qualities of the generation method together make the method perform
really well in our experiments. This means that the CTGAN generation method is
indeed the best method out of the ones we have tested. However, we do not believe
that this method is generally the best method to use, due to it never generating
completely new data in contrast to methods like the GPT-2 approach. With novel
data in the datasets, the Entity Matching systems would acquire new information
to learn from, but since the CTGAN method in a way reshuffles the attributes mod-
elled from the real dataset, at a certain point the systems would overfit the matcher
to the specific data that is in the training set.

7.1.3 Is Augmentation the worst method?

In all of our experiments, the Augmentation method had a tendency to perform the
worst out of all of the generation methods. This was most apparent on Magellan,
but the pattern is observable in both Entity Matching systems. Despite it’s poor per-
formance in most cases, the method did achieve similar scores to the other methods
on select datasets. We believe that the reason for the Augmentation method’s poor
performance can be attributed to two factors which compound to lower the overall
performance.

7.1. Rationalising the results 57

When generating non-matching entries, the method replaces some of the attributes
in one entry with the attributes of another. The process is detailed in 5.1 Data aug-
mentation method. The generation could be somewhat compared to how CTGAN,
the method which performs the best in our tests, generates new entries, but with
one fundamental difference. The Augmentation method has no regard for the data
distribution within the dataset when generating new entries. As a result of this,
the Augmentation method ends up inflating the amount of the most represented
entries in the dataset, which can overfit the entity matching models, lowering their
performance.

The approach is wholly different when generating new matching entries. The
method introduces noise into the dataset by changing, or mutating, some charac-
ters in a randomly selected entry. The process is detailed in 5.1 Data augmentation
method. Depending on how different the new entries may be, little or no new infor-
mation might be added to the dataset. This means that the model might not get any
new information to learn what a matching entry is, and can in fact become overfit
on the matching entries that are in the new combined dataset, which again lowers
the method performance.

Is the Augmentation method the worst then? The results don’t seem to suggest it
on every experiment we ran. When supplementing real data with only matches,
the method achieved f1 scores that were comparable to the other methods, and in
some cases the method outperformed the baseline measurements. This means that
despite the flaws of the method, it still has circumstances in which it can achieve
good results. It is however on average the worst performing method out of the ones
we have tested.

7.1.4 Is it worth to fine-tuning the GPT-2 model?

The results of our experiments show that when using the fine-tuned GPT-2 model,
the performance is either improved slightly, or not at all. In some cases, the
fine-tuned generation method even performs worse than the non-fine-tuned model.
Does this mean that fine-tuning the GPT-2 model is unnecessary? We believe this
not to be the case.

When generating new entries with the non-fine-tuned GPT-2 method, a prompt
containing context needs to be provided. The more context the GPT-2 model gets,
the better data it will generate. However, as mentioned in 5.5.3 Data generation
using GPT-2, the GPT-2 model has a maximum amount length of the prompt which
cannot be exceeded. This can become a problem when the data to be generated has
many attributes or very long strings. The prompt has to also leave space for the
generated text to appear in, meaning that the entire length of the prompt can’t be
used for the context alone. This issue is alleviated by fine-tuning the GPT-2 model,
as the context becomes baked into the model itself.

When looking at the generated data, we see that the fine-tuned GPT-2 model can
sometimes falsely generate matching entries when they are supposed to be non-

58 Chapter 7. Discussion

matching, and vice versa. As the method was designed to rely on the deep learn-
ing model to produce the entries, there are no mechanisms in place to ensure the
matching or non-matching status of the generated entries, such as in the CTGAN
method. We believe this does not happen as often in the non-fine-tuned GPT-2
method because the length of the entries is short enough in the available datasets,
which allows for sufficient context to be provided within the prompts.

We believe that with a more refined method, the strengths of the language model
can be better utilised, making the fine-tuned generation method perform better than
the non-fine-tuned one. The current implementation of the methods is however a
bit underwhelming.

7.1.5 Why the use of only artificial data lead to poor performance?

When training the Entity Matching systems on artificial data only, the results were
subpar. None of the methods managed to exceed or even match the f1 scores of
the real data, apart from one instance on the Magellan system, where the Augmen-
tation- and the non-fine-tuned GPT-2 methods achieved almost identical f1 scores
to the real data. These good results don’t seem to be reflected in the Ditto En-
tity Matching system. A theory we have is that the generated entities in matching
entries are very similar if not identical, and in the non-matching entries are com-
pletely different. The Magellan system seems to react well to such data when
trying to differentiate matches from non-matches. This is however just a theory,
and because of time constraints, we could not investigate this further.

We believe that the main reason for such poor performance is the aforementioned
data distribution. When generating new entries, the CTGAN preserves the data
distribution better than any other method, which is especially clearly reflected in
the results for when testing data generated from 10% of the real data on the Ditto
system. The Augmentation method totally disregards the data distribution when
generating new entries, which is reflected in the results as well. As for the GPT-2
methods, when generating a new entry, they use a randomly selected entry from
the dataset as the seed for generation. This process is explained in more detail in
5.2 Standard GPT-2 and 5.3 Fine tuning GPT-2. Doing it this way also disregards
the distribution of the original dataset, as the most common attributes will be rep-
resented more. However, we believe that the new information generated by the
language model allows the Entity Matching systems to learn more about how to
match entries, which results in better results than the Augmentation method.

7.1.6 Time investment to generate data

When running the experiments, we wanted to also measure the time it took to
generate the artificial data. The effectiveness of a generation method would mean
nothing in practice if it takes too long to generate the data needed to improve the
Entity Matching system performance. Unfortunately, due to some technical diffi-
culties, we were unable to measure the time it takes to generate data exactly. We

7.1. Rationalising the results 59

do have an idea on the amount of time it takes to generate the data, so some obser-
vations can still be made.

In essence, the Augmentation method only manipulates strings, meaning that no
complex calculations are done while generating data. This makes the method really
fast. Also, because there isn’t any post-processing of the generated entries and no
retries of generation, the time used to generate a dataset scales linearly with the
amount of data needed to generate. We usually ran all generation methods in bulk
operations, and the entirety of data generated for all experiments we ran took about
10 seconds to generate.

Comparatively, the GPT-2 methods are both quite slow. The generation of a single
entry usually takes around 5-10 seconds, but as mentioned in 5.5.3 Data generation
using GPT-2, the GPT-2 model might produce unwanted text in the string. Each
generated entry must therefore be validated and if invalid, must be discarded and
generated again. This means that in worst case, the time can scale exponentially
with the amount of data needed to be generated. Interestingly, GPT-2 fine-tuning
needs to be brief by design, because otherwise the GPT-2 model can become over-
fit, so the training time is negligible. On the biggest datasets, it took both GPT-2
methods between 36 and 48 hours to generate data.

The CTGAN method is also slow compared to the Augmentation method, but it
is in theory a lot faster than the GPT-2 method. With the usage of mode-specific
normalization and batch normalization, the training procedure on larger textual
datasets can become shorter. The training time ranges from 30 minutes on small
structured discrete-like datasets, to 24 hours on large textual-based datasets. An
interesting observation is the generation time in relation to amount of data trained
on. On small datasets, with the use of the insurance method, which is described
in 5.5.6 Ensure data method, generation time can reach up to 48 hours in relation
to sufficient data attributes in accordance to matching or non-matching entries.
However with larger datasets, the model has a larger attribute corpora to sample
from and as such generates sufficient datasets in less than 2 hours.

Whether or not the time used by these generation methods is an important factor or
not is highly domain specific, and should be evaluated in each situation. However,
we do not think that the time usage discussed above is unreasonable, and therefore
argue that these methods could prove viable in a real-world setting.

7.1.7 Answering the research questions

In the Introduction section, we posed three research questions, which we attempted
to find answers to through our experiments. Throughout this section we also dis-
cussed several points which all contribute to the answers. For the readers conve-
nience, the questions will be repeated bellow before we provide the answers we
came up with.

60 Chapter 7. Discussion

Research question 1: What is the state of the art in the fields of EM and AD?

Through our research, we found several different methods we could implement
or use in our experiments. By using a collection of these methods, we hoped to
discover patterns in the results, which would indicate that the results we achieve
are repeatable and reliable.

The state of the art Entity Matching systems we ended up using are, as previously
mentioned, Ditto and Magellan. Ditto is a system which utilises Deep Learning
to perform Entity Matching. Magellan is a traditional method, relying on several
different artificial intelligence methods such as, naı̈ve Bayes, logistic regression,
linear regression, support vector machines, decision trees, random forest, and xg-
boost matcher. By using both a traditional- and a deep learning method, we wanted
to ensure that the results were not affected by some unknown variable, such as for
example a quirk in one of the methods.

The Artificial Data field has many different methods of generating artificial data,
but these are usually made for some specific purpose, and were not suitable to
reliably generate textual data. While researching, we ended up finding out about
language models and generative adversarial networks being used to generate good
quality textual data, and decided to use them in our thesis. As previously men-
tioned, we ended up using the GPT-2 and CTGAN models to generate our data.

Research question 2: How does supplementing real data with AD affect the per-
formance of EM models?

As discussed prior, when supplementing real data, the best results were achieved
when the artificial data only consisted of matching entries. We argue however that
these results are circumstantial, as the real data has a very skewed ratio of matching
to non-matching entries, which we believe affects the results. When taking a step
back and taking into account what we discussed in the prior sections, the results do
seem to point towards the artificial data improving the model performance when
supplemented to the real training data.

Research question 3: How does training EM models solely on AD affect their
performance?

In our discussion about artificial data performing badly in prior sections, we men-
tion data distribution being a large factor that may contribute to these poor results.
The results achieved by the CTGAN method, which by design tries to model the
data distribution of the original dataset, while subpar, are indeed promising. We
argue therefore that generating data with more refined methods might allow for the
replacement of real training data, if that is a necessity of the task.

Chapter 8

Conclusion

In this section we present our conclusions which are based on the results of our
experiments and the discussion done in the section 7 Discussion.

In supplementation scenarios, our methods either do indeed improve the Entity
Matching systems or match their f1 scores. However, generating artificial data that
can replace real data when training the models has not been achieved in this thesis.

Even though CTGAN performs well with its ability to capture the data distribution
of the original datasets in correspondence to their matching label, GPT-2’s ability
to introduce data fidelity makes it perform as well if not even better in certain
scenarios. With this in mind, a model which manages to deal with the obstacles of
class imbalance in discrete columns and non-Gaussian distributions in continuous
columns, with the added benefit of data variance under certain conditions could
become a powerful tool in regards generation of artificial data.

While the improvements in our results are slight, we argue that with more refined
methods and further research, bigger improvements can be made. As of the time
of writing not a lot of research has been conducted in this field, and so with our
results we open the doors to other researchers. We argue that our research can help
pave the way to less data-hungry models, primarily in the field of Entity Matching,
but also in other fields where data is a concern.

61

Chapter 9

Further work

In this section, we present some ideas for further work following this thesis.

9.1 More datasets

As mentioned in 4.3 Other datasets, Ditto evaluated on 6 other datasets. These
datasets all resemble the Textual category of datasets, meaning that they have few
attributes with long strings of text as their values. Given that only one Textual
dataset is tested in this project, testing these other datasets would provide more
insight into the generation methods’ performance on data of this type.

9.2 Mixing generation methods

Our experiment results showed that the different methods performed differently
when real data was supplemented with only the artificial matches as opposed to the
artificial non-matches, with the same method of data generation rarely performing
best in both cases.

We pose that the entity matching model performance could potentially be improved
by supplementing real data with matches and non-matches generated by different
methods.

9.3 Implementing an insurance step

A big contributor into why the CTGAN method was on average the best throughout
our experiments was the insurance step which attempted to ensure the matching and
non-matching qualities of the generated entries. By implementing such a step into
all other generation methods, we believe that the performance of those methods
can be increased.

62

9.4. Ensuring the matching status of entries 63

9.4 Ensuring the matching status of entries

The CTGAN generation method implemented a simple insurance using the Leven-
stein similarity metric to try and keep the mathcing and non-mathcing status of the
generated entries. As seen in the results, this greatly increased the performance of
the generation method. Such a metric should be implemented for the other methods
in the future as well, as it could greatly increase the performance of those methods.

9.5 Attribute approach

When generating new entries using the GPT-2 language model, we supplied the
model with a prompt containing an entity and made the model fill in the whole
missing entity. While effective, as shown by our results, we believe this method
could be improved by attempting a different approach of generating the new entity.

Instead of using the entire entity as a prompt, one could use one of the attributes
of the entry, and have the model produce a similar attribute. This can be done
repeatedly with each attribute of the entity until a new entity is constructed. We
believe that this approach could potentially achieve better results by taking better
advantage of the knowledge base that the language model has.

9.6 Other language models

While GPT-2 is a state of the art language model, as briefly mentioned in 2.3.2
GPT-2, there are other state of the art language models. In the future, our methods
should be implemented using these other language models such as BERT or ELMo
to compare them to the GPT-2 model.

9.7 GPT-3

The GPT-3 model is reportedly more powerful than it’s predecessor GPT-2 [72].
Because of this, we believe that our methods could achieve better performance if
they would be implemented using the GPT-3 model. Currently, the OpenAI GPT-3
model is only available as an API web service.

9.8 Variational Autoencoder approach

The Ditto model uses an interesting augmentation method with the use of the BERT
language model, as mentioned in 3.1 Ditto data augmentation using BERT. This
method is somewhat similar to how a Variational Autoencoder works, where the
language model is used to encode the augmented and true entry and then interpolate
between the two.

64 Chapter 9. Further work

We propose a system which uses a language model to encode an entry, and then in
the resulting latent space, slightly perturb the entry, which should result in a slightly
different, but similar entry when decoded. Such a method has been most famously
used in generating new faces by traversing the latent space which is generated
by the network [73]. We believe that such a method for data generation would
be an interesting application of the Variational Autoencoder and could potentially
produce good results.

9.9 Introducing a classifier

In the TableGAN paper[64], Park et al. utilize a classifier to keep semantic in-
tegrity when generating artificial tabular data for classification problems. While
it is unclear if this addition would be able to tackle generating both matching and
non-matching data in usage for Entity Matching tasks, it would be an interesting
feature to research. The task of matching entities is a multi-layered problem con-
sisting of knowing when attributes are alike, while being contextually aware of
other attributes in each entity, how attributes relate to each other, what should be
considered similar, and what attributes should be put weight on in relation to the
domain which the datasets comes from.

Couple this with the task of modelling data distributions efficiently and generating
new data with high fidelity, a more focused approach might be necessary.

Bibliography

[1] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The Compu-
tational Limits of Deep Learning,” arXiv:2007.05558 [cs, stat], July 2020.
arXiv: 2007.05558.

[2] OpenAI, “AI and Compute,” May 2018.

[3] K. Jebari, P. Strimling, and I. Vartanova, “AI winter is coming?,” Mar. 2021.

[4] T. R. MIT, “We analyzed 16,625 papers to figure out where AI is headed
next.”

[5] S. I. Nikolenko, Synthetic Data for Deep Learning, vol. 174 of Springer Op-
timization and Its Applications. Cham: Springer International Publishing,
2021.

[6] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of
Data,” IEEE Intelligent Systems, vol. 24, pp. 8–12, Mar. 2009.

[7] H. L. Dunn, “Record Linkage,” American Journal of Public Health and the
Nations Health, vol. 36, pp. 1412–1416, Dec. 1946.

[8] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James, “Automatic
Linkage of Vital Records,” Science, vol. 130, no. 3381, pp. 954–959, 1959.
Publisher: American Association for the Advancement of Science.

[9] I. P. Fellegi and A. B. Sunter, “A Theory for Record Link-
age,” Journal of the American Statistical Association, vol. 64,
pp. 1183–1210, Dec. 1969. Publisher: Taylor & Francis eprint:
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1969.10501049.

[10] H. Köpcke and E. Rahm, “Frameworks for entity matching: A comparison,”
Data & Knowledge Engineering, vol. 69, pp. 197–210, Feb. 2010.

[11] P. Christen, M. Hegland, S. Roberts, O. Nielsen, T. Churches, K. Lim, and
S. Branch, “Parallel Computing Techniques for High-Performance Proba-
bilistic Record Linkage,” ResearchGate, Apr. 2002.

65

66 BIBLIOGRAPHY

[12] W. E. Winkler, “Methods for Record Linkage and Bayesian Networks,” Cen-
sus Bureau, p. 29, Apr. 2002.

[13] D. R. Wilson, “Beyond probabilistic record linkage: Using neural networks
and complex features to improve genealogical record linkage,” in The 2011
International Joint Conference on Neural Networks, pp. 9–14, July 2011.
ISSN: 2161-4407.

[14] K. Abou-Moustafa, “What Is the Distance Between Objects in a Data Set? –
EMBS,” 2016.

[15] J. Prendki, “Are you spending too much money labeling data?,” Mar. 2020.

[16] A. Adadi, “A survey on data-efficient algorithms in big data era,” Journal of
Big Data, vol. 8, p. 24, Jan. 2021.

[17] P. Christen, “Introduction,” in Data Matching: Concepts and Techniques for
Record Linkage, Entity Resolution, and Duplicate Detection (P. Christen,
ed.), Data-Centric Systems and Applications, pp. 3–22, Berlin, Heidelberg:
Springer, 2012.

[18] N. Barlaug and J. A. Gulla, “Neural Networks for Entity Matching: A Sur-
vey,” arXiv:2010.11075 [cs], May 2021. arXiv: 2010.11075.

[19] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration - 1st Edition.
Morgan Kaufmann, 1st ed., June 2012.

[20] P. Christen, “Data Matching Systems,” in Data Matching: Concepts and
Techniques for Record Linkage, Entity Resolution, and Duplicate Detec-
tion (P. Christen, ed.), Data-Centric Systems and Applications, pp. 229–242,
Berlin, Heidelberg: Springer, 2012.

[21] F. Azzalini, S. Jin, M. Renzi, and L. Tanca, “Blocking Techniques for En-
tity Linkage: A Semantics-Based Approach,” Data Science and Engineering,
vol. 6, pp. 20–38, Mar. 2021.

[22] R. Baxter, P. Christen, and T. Churches, “A Comparison of Fast Blocking
Methods for Record Linkage,” KDD, p. 6, 2003.

[23] M. A. Hernández and S. J. Stolfo, “The merge/purge problem for large
databases,” ACM SIGMOD Record, vol. 24, pp. 127–138, May 1995.

[24] P. Konda, S. Das, P. Suganthan G. C., A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, H. Zhang, J. Naughton, S. Prasad, G. Krishnan, R. Deep, and
V. Raghavendra, “Magellan: toward building entity matching management
systems,” Proceedings of the VLDB Endowment, vol. 9, pp. 1197–1208, Aug.
2016.

BIBLIOGRAPHY 67

[25] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep Entity Matching
with Pre-Trained Language Models,” Proceedings of the VLDB Endowment,
vol. 14, pp. 50–60, Sept. 2020. arXiv: 2004.00584.

[26] Dan Jurafsky and James H. Martin, “Speech and Language Processing.”

[27] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell Sys-
tem Technical Journal, p. 55, Oct. 1948.

[28] John J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities.,” Apr. 1982.

[29] J. L. McClelland, D. E. Rumelhart, and G. E. Hinton, “Parallel Distributed
Processing,” Stanford, p. 42, 1986.

[30] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, p. 4, 1986.

[31] Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,”
1997.

[32] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” Tech. Rep. arXiv:1409.0473, arXiv, 2015.
arXiv:1409.0473 [cs, stat] type: article.

[33] Alfredo Canziani, “Week 6 – Lecture: CNN applications, RNN, and atten-
tion,” Apr. 2020.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Tech. Rep.
arXiv:1706.03762, arXiv, Dec. 2017. arXiv:1706.03762 [cs] type: article.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” Tech. Rep.
arXiv:1810.04805, arXiv, May 2019. arXiv:1810.04805 [cs] type: article.

[36] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” Tech. Rep.
arXiv:1802.05365, arXiv, Mar. 2018. arXiv:1802.05365 [cs] version: 2 type:
article.

[37] OpenAI, “Better Language Models and Their Implications,” Feb. 2019.

[38] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage Models are Unsupervised Multitask Learners,” OpenAI, p. 24, Feb.
2019.

[39] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Lan-
guage Understanding by Generative Pre-Training,” OpenAI, p. 12, June 2018.

68 BIBLIOGRAPHY

[40] B. S. Everitt and A. Skrondal, The Cambridge Dictionary of Statistics. UK:
Cambridge University Press, 3rd ed., 2006.

[41] H. Fischer, A History of the Central Limit Theorem. New York, NY: Springer
New York, 2011.

[42] “Univariate distribution,” Feb. 2021. Page Version ID: 1006262861.

[43] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions.
Jogn Wiley & Sons, 3rd ed., 2005.

[44] “Joint probability distribution,” June 2022. Page Version ID: 1094503297.

[45] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learn-
ing with Deep Convolutional Generative Adversarial Networks,” arXiv, Nov.
2015.

[46] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “CVAE-GAN: Fine-Grained
Image Generation Through Asymmetric Training,” in CVAE-GAN: Fine-
Grained Image Generation Through Asymmetric Training, pp. 2745–2754,
2017.

[47] B. Zhang, S. Gu, B. Zhang, J. Bao, D. Chen, F. Wen, Y. Wang, and B. Guo,
“StyleSwin: Transformer-Based GAN for High-Resolution Image Gener-
ation,” in StyleSwin: Transformer-Based GAN for High-Resolution Image
Generation, pp. 11304–11314, 2022.

[48] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos with Scene
Dynamics,” arXiv, Sept. 2016.

[49] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro,
“Video-to-Video Synthesis,” arXiv, Aug. 2018.

[50] A. Clark, J. Donahue, and K. Simonyan, “Adversarial Video Generation on
Complex Datasets,” arXiv, July 2019.

[51] C. Donahue, J. McAuley, and M. Puckette, “Adversarial Audio Synthesis,”
arXiv, Feb. 2018.

[52] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts,
“GANSynth: Adversarial Neural Audio Synthesis,” arXiv, Feb. 2019.

[53] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern ap-
proach. Prentice Hall series in artificial intelligence, Upper Saddle River:
Prentice Hall, 3rd ed ed., 2010.

[54] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adver-
sarial machine learning,” in Proceedings of the 4th ACM workshop on Secu-
rity and artificial intelligence, AISec ’11, (New York, NY, USA), pp. 43–58,
Association for Computing Machinery, Oct. 2011.

BIBLIOGRAPHY 69

[55] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction,” IEEE
Transactions on Neural Networks, vol. 9, pp. 1054–1054, Sept. 1998. Con-
ference Name: IEEE Transactions on Neural Networks.

[56] C. E. Shannon, “XXII. Programming a computer for playing chess,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, vol. 41, pp. 256–275, Mar. 1950. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/14786445008521796.

[57] T. Mitchell, “GENERATIVE AND DISCRIMINATIVE CLASSIFIERS:
NAIVE BAYES AND LOGISTIC REGRESSION Machine Learning,” 2005.

[58] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Networks,”
arXiv, June 2014.

[59] “Conditional Generative Adversarial Nets,” Nov. 2014. arXiv:1411.1784 [cs,
stat].

[60] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Model-
ing Tabular data using Conditional GAN,” aarXiv, July 2019.

[61] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Im-
proved Training of Wasserstein GANs,” arXiv, Mar. 2017.

[62] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “PacGAN: The power of two samples
in generative adversarial networks,” arXiv, Dec. 2017.

[63] L. Xu and K. Veeramachaneni, “Synthesizing Tabular Data using Generative
Adversarial Networks,” arXiv, Nov. 2018.

[64] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, “Data
Synthesis based on Generative Adversarial Networks,” arXiv, June 2018.

[65] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep Learning for Entity Matching: A
Design Space Exploration,” in Proceedings of the 2018 International Confer-
ence on Management of Data, (Houston TX USA), pp. 19–34, ACM, May
2018.

[66] L. Barbosa, “Learning representations of Web entities for entity resolution,”
International Journal of Web Information Systems, vol. 15, pp. 346–358, Aug.
2019.

[67] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation
for Deep Learning,” Journal of Big Data, vol. 6, p. 60, July 2019.

70 BIBLIOGRAPHY

[68] A. E. Eiben and J. E. Smith, “Representation, Mutation, and Recombination,”
in Introduction to Evolutionary Computing (A. Eiben and J. Smith, eds.),
Natural Computing Series, pp. 49–78, Berlin, Heidelberg: Springer, 2015.

[69] “Slurm Workload Manager - Documentation.”
https://slurm.schedmd.com/documentation.html.

[70] “Overview — SDV 0.15.0 documentation.”

[71] “CTGAN Model — SDV 0.15.0 documentation.”

[72] K. Vu, “GPT-2 (GPT2) vs. GPT-3 (GPT3): The OpenAI Showdown - DZone
AI,” May 2022.

[73] D. Kamath, “Generating new faces with Variational Autoencoders,” Jan.
2021.

Appendix A

Source code

The full source code can be found here:

https://github.com/upforde/Idun

For ease of access and better reference, we will refer to specific files and directories
in the github repository.

A.1 Ditto results

The graphs generated out of the results from the Ditto Entity Matching system:

https://github.com/upforde/Idun/tree/main/ditto/Writer_o
utput/Xfigures

A.2 Magellan results

The graphs generated out of the results from the Magellan Entity Matching system:

https://github.com/upforde/Idun/tree/main/CTGAN/plots

A.3 Ditto data parser

The ditto data parser source code:

https://github.com/upforde/Idun/blob/main/GPT-2/ditto_pa
rser.py

A.4 Auxiliary data parser

The Auxiliary data parser, which changes Ditto data in to Magellan compatible csv
files and vice-versa:

https://github.com/upforde/Idun/blob/main/CTGAN/parse_da
ta.py

71

https://github.com/upforde/Idun
https://github.com/upforde/Idun/tree/main/ditto/Writer_output/Xfigures
https://github.com/upforde/Idun/tree/main/ditto/Writer_output/Xfigures
https://github.com/upforde/Idun/tree/main/CTGAN/plots
https://github.com/upforde/Idun/blob/main/GPT-2/ditto_parser.py
https://github.com/upforde/Idun/blob/main/GPT-2/ditto_parser.py
https://github.com/upforde/Idun/blob/main/CTGAN/parse_data.py
https://github.com/upforde/Idun/blob/main/CTGAN/parse_data.py

72 Chapter A. Source code

A.5 CTGAN data generation generation source code

The source code for the CTGAN generation process:

https://github.com/upforde/Idun/blob/main/CTGAN/CTGAN_ge
neration.py

https://github.com/upforde/Idun/blob/main/CTGAN/CTGAN_generation.py
https://github.com/upforde/Idun/blob/main/CTGAN/CTGAN_generation.py

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Daniel Nilsen
Aleksander Simmersholm

Leveraging Natural Language
Processing in Data Synthesis for use
in Entity Matching

Master’s thesis in Master of Science in Informatics
Supervisor: Jon Atle Gulla
Co-supervisor: Nils Barlaug
July 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research questions
	Approach
	Results
	Thesis outline

	Background Theory
	Artificial Data
	Entity Matching
	History
	Challenges in Entity Matching
	Entity Matching process
	Current State of the Art

	Language Models
	History
	GPT-2

	Data distribution
	Generative Adversarial Networks
	History
	GAN
	CGAN
	Conditional Tabular Generative Adversarial Network

	Related work
	Ditto data augmentation using BERT
	TVAE model
	TGAN
	TableGAN

	Data
	Term definitions
	Describing data used
	Other datasets

	Methods
	Data augmentation method
	Generation of non-matches
	Generation of matches

	Standard GPT-2
	Fine tuning GPT-2
	CTGAN
	Implementation details
	Hardware used
	Ditto data parser
	Data generation using GPT-2
	The Synthetic Data Vault
	Auxiliary data parser
	Ensure data method

	Experiments
	Supplementing artificial data
	Simulating small amounts of data
	Replacing real data with artificial data

	Discussion
	Rationalising the results
	Are artificial matches better?
	Is CTGAN the best method?
	Is Augmentation the worst method?
	Is it worth to fine-tuning the GPT-2 model?
	Why the use of only artificial data lead to poor performance?
	Time investment to generate data
	Answering the research questions

	Conclusion
	Further work
	More datasets
	Mixing generation methods
	Implementing an insurance step
	Ensuring the matching status of entries
	Attribute approach
	Other language models
	GPT-3
	Variational Autoencoder approach
	Introducing a classifier

	Bibliography
	Appendix
	Source code
	Ditto results
	Magellan results
	Ditto data parser
	Auxiliary data parser
	CTGAN data generation generation source code

