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Summary

In this report we consider marine snow, one of the numerous challenges faced by
Simultaneous Localisation and Mapping (SLAM) systems in underwater environ-
ments. SLAM is used within the area of autonomy to map an agent’s surround-
ings while locating the agent within the map.

Marine snow is a broad term denoting many kinds of floating, underwater parti-
cles, both organic and inorganic, with sizes varying from hundreds of microns up
to ten centimetres. It is present throughout the open ocean at all depths and, as
its name suggests, has a similar appearance to snow. Feature-based SLAM which
uses sparse points from images to determine pose is prone to detect points on ma-
rine snow. This can severely impact its motion estimates, or even cause it to fail
completely, because the marine snow moves independently of the agent, mak-
ing any point placed on marine snow undesirable noise. Therefore, we explore
the potential of Machine Learning (ML) to mitigate the motion noise from ma-
rine snow and develop two classifiers called P-CLAS and D-CLAS. P-CLAS clas-
sifies keypoints based on the small image patch which surrounds the keypoint
coordinates, while D-CLAS classifies based on the keypoint descriptor which is
commonly used in feature based SLAM.

To train the classifiers, we collected a set of videos and performed keypoint detec-
tion to extract the training keypoints. Each video was carefully selected such that
all of its keypoints would be either exclusively ’clean’ or ’marine snow’. Further-
more, we extended this data with our novel synthetic approach, in which images
from the ’marine snow’ videos were combined with background images free of
snow through our snow extraction and superimposing pipeline. We also incor-
porate our methods into the SLAM framework pySLAM, to evaluate their impact
and include an ablation study to quantify the effect of some of our design choices.

In our conclusion, we state that both P-CLAS and D-CLAS have similar effects on
pySLAM, enabling tracking and mapping in heavy marine snow conditions where
the framework would normally either fail to initialise or lose tracking shortly after
initialisation. The quantitative results showed that both classifiers, despite their
simplicity, are highly capable of modelling our training datasets, and also high-
lighted that the choice of descriptor for D-CLAS is of particular importance. How-
ever, the lack of a diverse, non-synthetic dataset with manual labels may have im-
pacted the usefulness of the quantitative results, because the main tendencies of
the qualitative results, e.g. P-CLAS consistently outperforming D-CLAS, were not
present in real world sequences.

When qualitatively evaluating the networks’ classification outputs, we observed
that D-CLAS was more robust on a wider array of underwater sequences than
P-CLAS. While P-CLAS would on occasion mistake certain surfaces for marine
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snow or incorrectly classify marine snow on textured backgrounds, D-CLAS was
less affected. Training P-CLAS on our synthetic dataset which includes more tex-
tured backgrounds alleviated some of these issues. However, both classifiers may
need gains in computational efficiency for use in real-time SLAM, this is particu-
larly the case for P-CLAS.

ii



Oppsummering

I denne rapporten tar vi for oss marin snø, en av mange utfordringer som SLAM-
systemer møter i undervannsomgivelser. SLAM brukes innenfor området au-
tonomi for å kartlegge en agents omgivelser, samtidig som agenten lokaliseres
innenfor kartet.

Marin snø er et bredt begrep som betegner mange typer flytende undervannspar-
tikler, både organiske og uorganiske, med størrelser som varierer fra hundrevis
av mikrometer opp til ti centimeter. Marin snø finnes i hele det åpne havet, på
alle dyp, og som navnet antyder, har det et utseende som ligner på snø. Indirekte
SLAM, som bruker nøkkelpunkter fra bilder for å bestemme posisjon og orienter-
ing, er utsatt for å bruke punkter på marin snø. Dette kan ha en alvorlig innvirkn-
ing på bevegelsesestimatene, eller til og med få systemet til å svikte fullstendig,
fordi den marine snøen beveger seg uavhengig av agenten, og dermed gjør ethvert
punkt plassert på marin snø til uønsket støy. Derfor utforsker vi potensialet til
Maskinlæring (ML) for å motvirke bevegelsesstøyen fra marin snø, og utvikler to
nevrale nett kalt P-CLAS og D-CLAS. P-CLAS klassifiserer nøkkelpunkter basert
på det lille bildeområdet som omgir koordinatene til nøkkelpunktet, mens D-
CLAS klassifiserer basert på den beskrivene vektoren til nøkkelpunktet som er
vanlig i indirekte SLAM.

For å trene nettene, samlet vi et sett med videoer og utførte nøkkelpunktdeteksjon
for å lage nøkkelpunkter til trening. Hver video ble nøye utvalgt slik at alle dens
nøkkelpunkter enten var i klassen ”trygg” eller ”marin snø”. Videre utvidet vi
disse dataene med vår nye syntetiske metode, der bilder fra ”marin snø” videoer
ble kombinert med bakgrunnsbilder uten marin snø gjennom vår snøutvinning og
bilde-kombinerings metode. Vi inkorporerer også nettverkene i SLAM-rammeverket
pySLAM for å evaluere deres virkning, og inkluderer en ablasjonsstudie for å
kvantifisere effekten av noen av designvalgene våre.

I vår konklusjon slår vi fast at både P-CLAS og D-CLAS har lignende effekt på
pySLAM-rammeverket, og muliggjør sporing og kartlegging i krevende marine
snøforhold der rammeverket normalt ikke kunne initialisere eller avsluttet sporing
kort tid etter initialisering. De kvantitative resultatene viste at begge metodene, til
tross for sine enkle arkitekturer, er godt egnet til å modellere treningsdatasettene
våre, og fremhevet også at valget av beskrivende vektor for D-CLAS er av spesiell
betydning. Imidlertid kan mangelen på et variert, ikke-syntetisk datasett med
manuelt merket data ha redusert nytten av de kvantitative resultatene, ettersom
hovedtendensene i de kvalitative resultatene, for eksempel at P-CLAS overgår D-
CLAS, ikke var tilstede i virkelige sekvenser.

Når vi gjennomførte kvalitativ evaluaring av nettverkenes klassifiseringer, ob-
serverte vi at D-CLAS var mer robust på et bredere spekter av undervannssekvenser
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enn P-CLAS. Mens P-CLAS av og til forvekslet enkelte overflater med marin snø
eller feilklassifiserte marin snø fremfor teksturerte bakgrunner, var D-CLAS min-
dre påvirket. Å trene P-CLAS på vårt syntetiske datasett som inkluderer mer
teksturerte bakgrunner, reduserte forekomsten av disse problemene. Imidlertid
kan begge nettverkene ha behov for forbedret beregningseffektivitet for bruk i
sanntids SLAM, dette er spesielt tilfellet for P-CLAS.
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Chapter 1
Introduction

From its origins in the 1980s, Simultaneous Localisation and Mapping (SLAM)
has reached broad adoption within the area of autonomous navigation. SLAM
is commonly used for navigation in robot vacuums, drones, cars, martian rovers,
robotic bipeds and quadrupeds. Our work as part of the Autonomous Robots for
Ocean Sustainability (AROS) research group at NTNU is to extend the reach of
autonomy to the underwater domain. Our research which builds upon our 2021
pre-project is described in detail throughout this report.

1.1 Motivation

In the underwater domain1, the drive for autonomy is especially strong because
the need for a human operator can severely limit the capabilities of the underwater
vehicle, either because of the tether needed to remotely operate the vehicle quite
literally puts it on a leash; or the on-board pilot seat which necessitates frequent
surfacings, demands a skilled and costly operator, and makes for a bulkier vehicle,
unfit for tight spaces.

Unfortunately, underwater autonomy is subject to numerous difficulties which
are not found to the same degree in overwater environments. For example, the
image-based Visual SLAM (VSLAM) methods which have been highly successful
in overwater autonomy are less effective underwater due to the turbidity of water,
low-texture surroundings, lack of sunlight, dynamic illumination, marine snow,
shallow water caustics, and marine wildlife ([Köser and Frese 2020]), among other
things. Furthermore, GPS, which is the main mode of obtaining position in over-
water scenarios is not available underwater, and water is opaque to infrared light
which makes IR-based methods of estimating depth unusable.

1The description of the underwater domain and its challenges takes significant inspiration from
Section 1.1 of our 2021 pre-project report [Hodne and Leikvoll 2021].
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In this project, we focus on the issue of marine snow, which interferes with the
very foundation of feature-based SLAM, that is its keypoints. Feature-based SLAM
uses intermediary features from keypoint detection and matching to find corre-
spondences between images. With accurate correspondences, it can estimate both
the points’ and camera’s Three-Dimensional (3D) position as well as the relative
pose, meaning the difference in position and orientation between the two image
frames.

Due to its appearance, marine snow is frequently detected by the keypoint de-
tectors used in SLAM. This is problematic because the 3D position of the snow is
not constant between frames—the snow moves with the ocean currents. There-
fore, any correspondences which include marine snow will constitute motion noise
when the relative pose between two camera frames is estimated.

Depending on the abundance of such keypoints, the SLAM system may need ad-
ditional computation time to remove keypoint correspondences which include
marine snow or could fail completely if their numbers are too significant. Fur-
thermore, removing marine snow correspondences can be more demanding than
removing other forms of noise. While random mismatched correspondences have
little correlation with both each other and the true motion hypothesis, marine
snow correspondences are moved by the same ocean current, and therefore presents
a form of motion noise which consistent with the other marine snow correspon-
dences. Consequently, marine snow keypoints can produce a conflicting motion
hypothesis which the SLAM system must ignore.

Therefore, we are motivated to develop systems which can make feature-based
SLAM immune to marine snow motion noise. These systems should be compati-
ble with existing SLAM solutions.

1.2 Aim of Study

During the thesis, we consider the following research questions:

• RQ1: How can the effect of marine snow on keypoint detection, matching,
and real-time SLAM be mitigated?

– RQ1.1: Can Machine Learning (ML) methods mitigate the impact of
marine snow on underwater keypoint detection, matching, and real-
time SLAM?

• RQ2: How can marine snow be digitally synthesised for use in machine
learning?

– RQ2.1: What are the characteristics of marine snow?
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1.3 Contributions

We consider the meaningful contributions of this thesis to be as follows:

• We authored a peer-reviewed paper on our work. The article, titled Detecting
and Suppressing Marine Snow for Underwater Visual SLAM, was presented at
the CVPR 2022 Image Matching workshop and published to IEEE Xplore,
CVF Open Access, and the CVPR conference proceedings. The paper can be
found at CVF Open Access and Appendix A.

• We developed two classifiers for marine snow, P-CLAS and D-CLAS. While
P-CLAS works on the image area around the detected keypoint, D-CLAS
works on the binary keypoint descriptors from the ORB detector and de-
scriptor [Rublee et al. 2011]. P-CLAS and D-CLAS are designed to run in
piggy-back mode on top of any keypoint detector to limit processing to im-
age regions that are actually candidates for use as keypoints.

• We provide a novel method to create realistic marine snow datasets. This
original method extracts marine snow from images with flat backgrounds.
The resulting ’marine snow dataset’ is used to superimpose marine snow
onto ’clean’ images and video sequences. The data is publicly available2,
and as far as we know, it is the first dataset of its kind.

• We extend VAROS [Zwilgmeyer et al. 2021], an underwater pose-estimation
dataset, with superimposed marine snow to create a new benchmark dataset,
complete with marine snow motion noise, and VAROS’ accurate ground-
truths.

• We compare the performance of the descriptor-based classifier D-CLAS to
the patch-based P-CLAS, and perform an ablation study to evaluate key
design choices of our datasets and P-CLAS. We further compare different
descriptors for use with D-CLAS, and offer qualitative results on a diverse
selection of underwater videos.

• We implement both classifiers into a SLAM framework and evaluate its re-
sults on both synthetic and real-world sequences.

• We provide documented repositories of our project files and code.

1.4 Structure

In Chapter 2 Background Theory, we continue this thesis with an introduction
to important underwater phenomena, and ML and SLAM concepts. Chapter 3
Literature Review presents our extensive literature review on marine snow sup-
pression, synthesis, and modelling, as well as tangential areas such as keypoint
detection and description, and rain and snow suppression. In Chapter 4 Design,

2https://zenodo.org/record/6424752
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the design process is presented alongside the prototypes we evaluated and imple-
mented. Chapter 5 Implementation provides the implementation details required
to replicate our work. In Chapter 6 Experiments we describe our approach to eval-
uate the classifiers, while Chapter 7 Results presents our results and immediate
analysis. Chapter 8 Discussion extends on our analysis by connecting results from
the different experiments and considering what the consequences of these results
are for our methods and research questions. In Chapter 9 Future Work, we give
our ideas on how to extend our work and suggest some promising approaches
which we did not pursue. Finally, in Chapter 10 Conclusion we summarise our
work and offer our concluding remarks.
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Chapter 2
Background Theory

In this chapter, basic terms and methods used throughout the thesis are presented
and explained. The main topics are Machine Learning (ML), Neural Networks
(NNs), keypoints, Visual Odometry (VO), Simultaneous Localisation and Map-
ping (SLAM), and marine conditions.

2.1 Machine Learning

There are many definitions of the term Machine Learning (ML). A frequently en-
countered definition is offered by Mitchell:

”A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T , as measured by P ,
improves with experience E.” [Mitchell 1997]

This broad definition highlights the breadth of ML as a topic. Consequently, it is
no surprise that ML is split into sub-domains, which each have sub-domains of
their own and so on, e.g. supervised learning and its sub-domain self-supervised
learning. Besides supervised learning, the most common topics in machine learn-
ing are reinforcement learning and unsupervised learning. However, in this project,
we employ supervised machine learning.

2.1.1 Supervised Learning

Supervised learning deals with input-label pairs. The label describes the desired
output for the particular input. The ML software is meant to model the input/output
relation mathematically (e.g. with a neural network, probability distribution, or
decision tree). This is achieved through a process colloquially called training, in
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which the selected supervised ML method is provided both the input and its la-
bels, such that the method can adapt its parameters to the data. In this case, train-
ing constitutes the experience, E, coined by Mitchel, while the task, T, is to com-
pute the correct output for a given input. To be useful, the trained model must
typically extend beyond the provided training examples, such that a previously
unseen input still produces a correct or nearly correct output. This is important
to ensure that the trained model makes trustworthy predictions when the label is
unknown.

2.1.2 Datasets and Dataset Splits

Datasets are used in supervised machine learning to store labeled data samples
which can be used to optimise network parameters during training, or to evaluate
performance afterwards. To make sure the evaluation is fair, data used in training
should not be used during evaluation. This is because the ML model may overfit
to the data, meaning its parameters are optimised so thoroughly to the training
data that it is unable to accurately model anything which deviates from what is
known from training.

To make sure that a model can generalise to unseen data, i.e. it has not begun over-
fitting to the training samples, we divide the dataset into partitions, known as
dataset splits.

The training split is the largest split of the dataset and contains all of the data
used to directly optimise model parameters during training. It is the only data on
which a model is trained. This data should encompass the variety of the problem
space and is ideally well balanced in its representation of the possible labels, to
make sure that it is representative of the data on which the model will be evalu-
ated.

The validation dataset is used to assess progress during training and avoid
overfitting. If performance on the validation data starts to decrease while the
performance on the training data improves, overfitting may have begun. It is cus-
tomary to save the model parameters which perform best on the validation data.
Stored model parameters are often called checkpoints since they are made periodi-
cally during training.

The test split is used to generate unbiased metrics on data that the model has
not been optimised for. Since model parameters are selected based on their per-
formance on the validation dataset, these checkpoints will be tuned towards any
biases in the validation dataset. Therefore, the actual performance of a model will
be more accurately assessed on the test dataset, on which the model has not been
favoured due to its superiority over other checkpoints. To adhere to this principle,
the test dataset is rarely touched until the end of a project, by which time the final
model(s) have been made.
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2.1.3 Neural Networks

Neural Networks are a group of supervised ML methods that use linear algebra
and non-linear functions to compute an output vector based on a vector input.
Depending on the task T , this numerical output may correspond to a class label,
a price, an action, and much more.

The fundamental building block of neural networks is the artificial neuron, which
has an input vector and an output value called its activation. The artificial neuron
can be summarised as in Equation 2.1.

yi = ϕ

(∑

j

wijxj

)
(2.1)

In this equation, the activation yi of a neuron, i, given its inputs, xj , is given by
the sum of the individually weighted components of the input vector, where wij

represents the weight of neuron i with respect to its input j. An activation function
ϕ, also called the transfer function, calculates the activation of the neuron from the
sum of its weighted inputs. The activation function, is explained further in Section
2.1.3.

The artificial neuron is inspired by the neurons in biological brains [Fasel 2003],
a model of which is seen in Figure 2.1. Biological neurons connect with others
through dendrites which are analogous to the input vector of an artificial neuron.
The dendrites channel impulses from other neurons into the soma. The signals can
be either exciting or inhibiting which corresponds to the positive or negative sign
of the input components of an artificial neuron. The soma effectively summarises
the signals, and when their combined electrical potential exceeds a threshold, the
neuron will activate along its axon, which transmits this activated signal to other
neurons through its synapses [Fasel 2003].

Figure 2.1: A basic sketch of the biological neuron and its parallels to the artificial neuron.
Adapted from en.wikipedia.org/wiki/Artificial neuron#/media/File:Neuron3.svg
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A crucial component of both biological and artificial neurons is the ability to adjust
the contribution of each dendrite/input, such that the effect of a given input on
the summation is aligned with the purpose of that particular neuron. In neural
networks, the weights, wij , are adjusted during training through gradient descent
and back-propagation [Ruder 2016]. By using a loss function to quantify the error
of the output given by the network, gradient descent can calculate the derivative
of the loss function with respect to its inputs. Since the loss function’s inputs
depend on the network’s weights, the gradient can be used to adjust the weights
of the network by using the error between the desired activation in each layer and
the actual activation. The process which computes the error is known as back-
propagation, because it starts at the output layer, and proceeds backwards through
the network, one layer at a time.

Since the gradient is highly dependent on both the specific samples used as in-
puts and the network’s weights, the adjustment to the weights is done in small
increments, which are proportional to the learning rate scalar. Parameters such
as the learning rate are often called hyperparameters to distinguish them from
the network’s weights which are also called parameters. Unlike the parameters,
hyperparameters are not optimised during training.

In neural networks, the neurons are grouped together in layers. We usually have
an input layer, the output layer, and between them the hidden layers. The input
layer does no computation and has no weights, it only represents characteristics
of the input such as its dimensionality. In contrast, the hidden and output layers
all have weights associated with them depending on the type of network.

From the basic building block of the artificial neuron, we can create incredibly
complex and varied neural networks. In the early days of neural networks, single
layer, or even single neuron networks were the main topics of research. How-
ever, multi-layer architectures eventually became the norm as back-propagation
enabled the training of deep networks. Typically, Neural Networks use the output
of a layer of neurons as input for the next layer. For the purposes of this thesis, we
will describe two of the most common types of network architectures, the Fully
Connected Neural Network (FCNN) and Convolutional Neural Network (CNN).

Fully Connected Neural Networks

An FCNN is a network where every neuron in a layer is connected with weights
to every single neuron in both the preceding layer and the succeeding layer. Con-
sequently, the total number of weights in a fully connected network is a sum of the
products of the number of neurons in a layer neurons multiplied by the number
of neurons in the previous layer.

The activation, a, of an FCNN layer, l, with n neurons, given an input from layer
l − 1 with m neurons and an m-dimensional vector of activations x, is
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a = ϕ

(
W lx

)
(2.2)

Where a is an n-dimensional output vector, W is an n×m matrix with the weights
of each of the n neurons in layer l, and ϕ is the activation function. Using a matrix
product is desirable because this is more efficient for modern computer hardware
than calculating the weighted sum in Equation 2.1 one neuron at a time, otherwise
Equations 2.1 and 2.2 are equivalent.

The main benefit of an FCNN is its lack of assumptions about the input. Simply
add a large enough input layer, and an FCNN will work with any input vector.
FCNNs are well suited for statistically independent inputs, where the elements of
the input vector are not significantly correlated with each other. The number of
layers and their number of neurons are typical design choices for FCNNs.

Convolutional Neural Networks

CNNs are a class of neural networks often used to process visual information,
such as videos and images. They are based on the mathematical operation convo-
lution, whose kernels are the parameters that are optimised during training. Like
FCNNs, CNNs typically contain multiple layers, but instead of vector inputs and
weights, CNNs can use matrices. In a CNN, each layer in the network contains a
number of kernels (also called filters). When performing a convolution, the ker-
nels are applied at multiple locations in the input which are determined by the
convolution’s stride, s. At each location in a convolution, the input values which
belong to the current location of the kernel are multiplied with the corresponding
position in the kernel. Then, all the products from this operation are summed and
placed in the output, as seen in Figure 2.2.

Figure 2.2: An example of a 1D convolution with no padding, stride of 1, and a kernel size
of 3

Each position where the kernel is applied, matches one position in the output,
meaning when the kernel is moved with stride s, we only move one position in
the output. In a multi-dimensional convolution, we can have different strides in
the different dimensions, denoted saxis. When the kernel reaches the end of an
axis, n, in the input matrix, we return the kernel to the start of the axis and move
with stride sm in the next axis, m. With images, 2D convolutions are used, while
for videos 3D convolutions are often used to account for temporal information. In
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Figure 2.3: An example of a 2D convolution with no padding, a stride of 2, and a Gaussian
kernel with size 3× 3. The output is rounded to two decimals.

Figure 2.3, a 2D convolution is illustrated with a 5 × 5 input matrix, 3 × 3 kernel,
and stride sx = sy = 2.

CNNs are considered more suited for images than FCNNs for multiple reasons.
First of all, it is typically unnecessary for a single neuron to connect to every pixel
in an image, which would be the case for a FCNN and lead to impractically wide
layers. Second of all, CNNs have inherent weight-sharing which is not found in
FCNNs. Weight sharing means CNNs do not need to learn weights for each posi-
tion in the image. Instead, they rely on their moving kernels which will be applied
across the image because of the stride, sharing the weights across the image. Ad-
ditionally, in contrast with FCNNs which must vectorise the input image, CNNs
considers the image as a matrix input and, as a consequence, maintains the spatial
relations in the image. This is beneficial because a neuron can ”focus” on adjacent
pixels far more easily, since these will be grouped together in a matrix, unlike a
vectorised image, where adjacent pixels are separated by a fixed length.

A layer, l, in a CNN consists of cl kernels, where each kernel computes a different
channel in the layer’s output. Each kernel has cl−1 channels, where cl−1 is the
number of channels in the previous layer. A common design feature in a CNN is
that cl increases as l increases, meaning more kernels are used to compute the out-
put matrix. Simultaneously, the height and width of the input matrices typically
decrease in a CNN as the elements of the matrix encode more and more abstract
features. A high number of channels can be beneficial when a network has to
learn a lot of different abstract concepts, because each filter typically recognises
one kind of pattern within the image, and the number of pattern combinations in-
crease with the depth of the network. For example, if the network has to classify
1000 different objects, each channel can activate based on the presence of some
abstract feature related to the various objects, e.g. the contour of an animal or ve-
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hicle. The reduction in height and width is sometimes required to accommodate
an increased number of filters without introducing significant computational re-
quirements.

Max-Pooling

A common method of rapidly decreasing the height and width of a CNN-layer’s
output is Max-Pooling. Like the kernels of a CNN, max-pooling uses sliding win-
dows with a stride and given window size, however, unlike convolutional kernels,
a 2 × 2 window with stride 2 is the most common configuration, and featured in
the example in Figure 2.4.

Figure 2.4: An illustration of max pooling

As its name suggests, max-pooling aggregates the maximum value at each loca-
tion of the moving window in the input. The intuition behind max-pooling is that
for a trained network, high values will correspond to a point of interest in the
associated region of the image. Therefore, max-pooling can keep the information
relating to these points of interest, while significantly reducing the dimensional-
ity of the output. However, the fact that only the maximum value is kept can be
considered a weakness, because the other values will receive a gradient of 0, and
therefore have no influence on the training step associated with that particular
input.

Batch Normalisation

Batch normalisation [Ioffe and Szegedy 2015] is a method to fix the mean and vari-
ance of the input at each layer of a neural network. This is done to avoid internal
covariate shift, which is a phenomenon seen during training where the distribu-
tion (mean and variance) of a layer will change as the parameters of the preceding
layers are modified with back-propagation. The change in distribution necessi-
tates that the current layer repeatedly adapts its parameters until a more stable
distribution appears, thereby prolonging training.

For a batch, B, containing m inputs with mean µB and variance σ2
B , a d-dimensional

sample, xi ∈ B, has its elements, xk
i , normalised according to Equation 2.3:

x̂k
i =

xk
i − µk

B√
(σk

B)
2 + ϵ

(2.3)
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Where ϵ is a small constant added for numerical stability, and k ∈ [1, . . . , d] de-
notes the components of xi. Ignoring ϵ, this ensures 0 mean and unit variance.
Since many functions, e.g. sigmoid, cannot be modelled accurately with this mean
and variance, batch normalisation includes two learnable parameters for each el-
ement of the input, γk and βk, which transform the normalised input according to
Equation 2.4:

yki = γkx̂k
i + βk (2.4)

This normalisation scheme has been associated with faster convergence, improved
generalisation, and more stable learning at higher learning rates. However, the
mechanism with which it does so is contested [Santurkar et al. 2018].

Optimisers for Neural Networks

The specifics of how the error term from gradient descent is applied to a net-
work’s weights during back-propagation is determined by the optimiser. First of
all it must be understood that theoretically, gradient descent should be performed
on the entire dataset at once to obtain the correct gradient. Since doing so in prac-
tice is generally impossible, gradient descent is typically done on small batches
selected from the training data. This is the idea behind Stochastic Gradient De-
scent (SGD) [Robbins and Monro 1951], which uses randomly selected batches of
data.

Since SGD operates on a subset of the dataset, the gradients it gives will not be
exactly equal to the actual gradient of the full dataset. Consequently, SGD will to
some extent adjust the weights incorrectly. The use of a learning rate to control the
step size when the weights are adjusted is an important way in which this issue
is controlled. However, if the learning rate is too high, SGD may never converge,
and if it is too low convergence will be very slow.

The Adam optimiser [Kingma and Ba 2014] uses a technique called momentum to
reduce the impact of the small error in SGD’s gradients. Adam maintains running
averages of the gradients and their second moments. These are used in conjunc-
tion with the current gradient when updating the network’s weights. First, con-
sider SGD’s update rule in Equation 2.5 for the network weights, w, to optimise a
function, L(w), based on a batch with n samples, and a learning rate η:

w := w − η

n

n∑

i=1

∇L(w) (2.5)

Adam includes two more parameters, mt
w, and vtw, which, at step t, are the run-

ning averages of the gradients and the second moment of the gradients, respec-
tively. These are updated according to Equations 2.6 and 2.7, where β1 and β2 are
forgetting factors which determine how many steps the running average covers.
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mt+1
w := β1m

t
w + (1− β1)∇wL

t (2.6)

vt+1
w := β2v

t
w + (1− β2)(∇wL

t)2 (2.7)

The update rule for the weights, w, is written in Equation 2.8.

wt+1 := wt − η
mt+1

w√
vt+1
w + ϵ

(2.8)

Here, ϵ is a small constant added for numerical stability. It should be stated that
the original paper presents Adam with a bias-correction step which accounts for
the fact that the running averages are initialised to 0. It varies from framework
to framework whether or not they use the biased or bias-corrected version. Bias-
corrected Adam uses the values m̂w and v̂w in the update rule, instead of mt+1

w

and vt+1
w . These are computed with the formulas in Equations 2.9 and 2.10:

m̂w =
mt+1

w

1− βt
1

(2.9)

v̂w =
vt+1
w

1− βt
2

(2.10)

Activation Functions

Activation functions are functions used on the neuron activations in a neural net-
work to introduce non-linearity to the computation, such that the networks can be
used for problems that are not linearly separable. Without such activation func-
tions, each multi-layer network would have a single-layer equivalent which will
be limited by its inability to model non-linearly separable problems like the basic
XOR function. Therefore, such architectures are often avoided in favour of deeper,
multi-layer networks with non-linearity offered by the activation function—ϕ in
the case of Equations 2.1 and 2.2. Furthermore, the universal approximation the-
orem states that for any continuous function of a bounded set of variables, for
any given level of accuracy, there exists a neural network that can approximate
the function. This was first proven for the case of a two-layer network using the
sigmoid activation function [Cybenko 1989]. The sigmoid function is written in
Equation 2.11:

a =
1

1 + e−x
(2.11)

Of course, different activation functions have different uses, benefits, and draw-
backs. For example, sigmoid is a good choice if the output is a one-dimensional
probability distribution since its output is always between 0 and 1. A weakness
of the sigmoid function is that its derivative can be computationally expensive
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to compute compared to other alternatives. Additionally, it suffers from vanish-
ing gradients, as large positive or negative numbers will give a very small gradi-
ent. This means that gradient descent will take longer to optimise the weight of
a sigmoid layer because the small gradient makes the adjustment of each weight
similarly small.

Another alternative is the Rectified Linear Unit (ReLU) function in Equation 2.12:

a = max
(
0, x

)
(2.12)

ReLU has a much simpler derivative, being 0 if x is negative and 1 otherwise.
This can be thought of as passing the entire error of gradient descent through to
the next layer, which often leads to ReLU networks learning faster than a sigmoid
equivalent. However, ReLU still suffers from vanishing gradients, as any negative
input value will give a gradient of 0. Other variants of the ReLU function exist to
handle the problem of vanishing gradients, e.g. leaky ReLU whose gradient is 0.1
for negative numbers.

2.1.4 Loss Functions

So far we have not expanded on the performance measure, P , from Mitchell’s defi-
nition of ML. In the case of neural networks, one ubiquitous performance measure
is the loss function, L. It is ubiquitous because it is the objective that is optimised
by gradient descent during the training of neural networks. There are loss func-
tions that fulfil numerous different purposes, including ones for binary classifica-
tion. Binary classification problems are problems where the network makes one of
two classifications per sample, e.g. a positive or negative label. The binary cross-
entropy loss function is a specialised case of cross-entropy loss. Cross entropy loss
stems from information theory and is a way of quantifying the difference between
two probability distributions. For a machine learning classifier, it can be written
as in Equation 2.13:

L = − 1

N

N∑

i

yi log ŷi + (1− yi) log(1− ŷi) (2.13)

Here, N is the number of samples, yi is the ground truth of sample i, and is typi-
cally either 0 or 1. ŷi is the model’s prediction for a sample i. This assumes that the
output ŷi is between 0 and 1 and corresponds to a probability estimate of whether
the input belongs to the positive class. This allows the cross-entropy loss func-
tion to calculate the distance between the ground truth probability distribution,
and the output. We also notice that the closer the predictions are to the ground
truths, the closer L comes to 0. Since the function is differentiable, gradient de-
scent will be able to incrementally adjust the weights of the neural networks to
tune its output to the ground truth.
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2.1.5 Binary Metrics

Binary classification metrics are another form of performance measure which are
used to evaluate models for binary classification. In such tasks, the confusion
matrix is arguably the basis for most metrics as it contains all of the information
about a binary classification result. This includes False Positives (FPs), True Posi-
tives (TPs), False Negatives (FNs), and True Negatives (TNs).

To illustrate these concepts, consider a dataset in which all items are labelled 1,
and a classifier that labels these samples as ”is 1” and ”is not 1”. Should this
classifier correctly label a sample as ”is 1” this is considered a true positive since
this correctly matches the ground truth label. Should it instead make an ”is not
1” classification we consider this a false negative, since the classifier has made
a negative classification when it should have been positive. For a sample with
label 0, the negative classification ”is not 1” will be correct and therefore a true
negative. Conversely, the positive ”is 1” label would represent a false positive.
We summarise this example with an overview in Table 2.1.

Classification 1 0
Ground Truth 1 TP FN
Ground Truth 0 FP TN

Table 2.1: An illustration of the possible binary classification designations

A confusion matrix will look very similar to Figure 2.1, but instead of the TP, FP,
TN, and FN labels, it will include the number of predictions that belong in each of
these quadrants.

By using the values in each quadrant of the confusion matrix, we can calculate
more concise metrics which evaluate a binary classifier’s performance. Perhaps
the simplest to understand is accuracy, which describes the share of predictions
which were labeled correctly. Mathematically, we write:

Accuracy =
TP + TN

TP + TN + FP + FN

However, accuracy may not always be the best performance measure. For in-
stance, if the number of samples belonging to one label is far outnumbered by
the other label, or if the classifier is able to classify one label very well, but not
the other, this metric may appear misleading. For example, consider a classifier
which predicts whether it will snow in Paris on a given day. The classifier could
get a very high accuracy by always predicting no.

The aforementioned weather forecasting classifier would do significantly worse
on recall. The metric recall, also known as True Positive Rate (TPR), only focuses
on samples with a positive ground-truth label, in the sense that it computes the
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share of positive samples which are labelled positive by the classifier. Mathemat-
ically, this reads:

TPR =
TP

TP + FN

Notice how the number of true negatives, i.e. no snow in Paris predictions, does
not impact this measure. In a similar fashion, the True Negative Rate (TNR) rep-
resents the share of negative samples which are classified with a negative label:

TNR =
TN

TN + FP

Since blindly labelling everything with a positive prediction will give an ideal TPR
of 1, TPR is often used in conjunction with precision, which specifies how many
of the samples classified as positive, are in fact positive. This has the formula:

Precision =
TP

TP + FP

Since precision and TPR (recall), go so well together, some metrics use a combina-
tion of them. Perhaps the most well known being the F1-score, or more generally,
the F beta score which is as follows:

Fβ = (1 + β2)
precision ∗ recall

β2 ∗ precision + recall

In this metric, β is a parameter that weighs precision and recall. β greater than 1
values recall, while a value lower than 1 values precision. The F1-score uses β = 1,
thereby giving the harmonic mean between precision and recall.

2.2 Keypoint Detection, Description, and Matching

Image keypoints and their uses were described in Section 2.2 of our pre-project
report [Hodne and Leikvoll 2021]. This is amended with further discussion below.

Keypoints are coordinates in an image which locate prominent image patches,
distinct enough to be matched across multiple images.

Keypoint detection and matching is one of several approaches for obtaining fea-
ture correspondences between images. Many keypoint detectors exist that look for
different heuristics in the image, e.g. based on outliers in the Difference of Gaus-
sians (DoG) of an image. Typically, features such as corners, edges, and blobs are
targeted, but many keypoint detectors specifically use a subset of these.
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One desirable trait for keypoint detectors is that their keypoints should be present
regardless of image transformations, e.g. if we detect a keypoint in an image, we
can rotate, scale and translate the image and still be able to detect the same key-
point in the transformed image. More robust keypoint detectors detect similar
keypoints despite viewpoint and illumination changes. Keypoint detectors that
are immune to such conditions can be said to be invariant to scale, rotation and
illumination.

In order to pair the same keypoint across different image transformations, we
need to match them. Therefore, keypoints are often accompanied by a descriptor
that characterises the image patch at the keypoint’s coordinates. Similar to the
detector, the descriptors should also be invariant of changes in the image, for ex-
ample, to support the matching of a feature which appears large in one image but
not the other (scale invariance).

Traditionally, handcrafted descriptors have been used to match keypoints across
images. However, in recent years learned descriptors have become increasingly
common. Handcrafted descriptors are created by human experts, and are based
on their informed opinion as to what best describes a feature. This runs the risk
of there being flaws in their assumptions. On the other hand, learned feature
descriptors avoid the problems of handcrafted descriptors by learning what qual-
ities are useful in a descriptor, based on a dataset of images combined with an
objective function. Learned descriptors are also able to do away with the notion
of image patches and can learn what information from the image is needed when
describing a point with high matchability.

When matching a keypoint from one image, we often seek to find the most similar
descriptor among the keypoints in the other image. The matching step is tradi-
tionally done using nearest neighbours search on the descriptor vectors. For each
descriptor in one image, the descriptor with the smallest L2-distance away in the
second image is considered a match. Matching can also be done in 2D pixel coor-
dinate space, where each keypoint is simply matched with the keypoint closest to
its own pixel coordinates. This way of matching can be problematic as it does not
account for large camera movements and will often give incorrect matches.

Problems can arise from nearest neighbour matching, such as multiple descriptors
being so close that it seems arbitrary to consider one a match and not the others.
One way to solve this could be to find mutually nearest neighbours, however,
this doubles the computational effort and empirically does not greatly improve
matching[Hartmann, Havlena, and Schindler 2014]. Matching speed can also be a
problem, because nearest neighbours matching can be quite slow when the num-
ber of keypoints increase, as its time complexity is O(n2).

2.3 Visual Odometry and VSLAM

This section is largely based on our work in Section 2.1 of our 2021 pre-project
report [Hodne and Leikvoll 2021].
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Visual Odometry (VO) methods are a group of computer vision algorithms which
estimate the camera poses—meaning location and orientation—which relate a se-
quence of images. While VO only estimates pose, Simultaneous Localisation and
Mapping (SLAM) incorporates mapping of the surrounding environment. Map-
ping is done concurrently with the localisation of the agent within the map, sim-
ilar to the relative pose estimation in VO. Loop closing is a common distinction
between SLAM and VO, which is used to adapt the estimated trajectory such that
areas which are visited multiple times maintain the same position in each visit.
This is useful because it can eliminate most of the accumulated error between the
first and second visits.

The most common type of SLAM, known as feature-based SLAM, estimates pose
based on displacement vectors from keypoint correspondences between images.
If a sufficient number of such point-to-point correspondences are available, and
if no severe outliers (meaning incorrect correspondences) are amongst them, the
relative pose between the two images can be estimated. Furthermore, given the
relative pose, the 3D position of the image points can be estimated using trian-
gulation. Collecting these triangulated points into a 3D point cloud gives a sparse
’map‘ of the environment which represents (coarsely) the geometry of the regarded
scene.

Correspondence outliers, which can lead to incorrect estimates, appear from two
main mechanisms. First are incorrect correspondences where keypoints which
do not represent the same spatial location are matched, thus producing mislead-
ing displacement vectors. Secondly, even if keypoints are matched correctly, key-
points on dynamic objects will generate displacement vectors unfit for pose es-
timation because the motion of the moving object will change the displacement
vector such that it longer correlates with the motion of the camera.

2.3.1 Direct and Indirect SLAM

Image correspondence estimation—the basis upon which motion estimation, as
well as triangulation, is built—is divided into direct and indirect (feature-based)
methods. These methods are used by Visual SLAM (VSLAM) systems which per-
form SLAM using only image sensors. Direct methods optimise the photometric
error to obtain displacement vectors for pose estimation, meaning that transfor-
mations which can match similar-looking regions between the image pairs are
generated. These methods are called direct because they use the image patches
themselves to find correspondences, not intermediary features such as descrip-
tors. On the other hand, feature-based methods perform an additional step where
features are extracted from images which are then matched based on location, ap-
pearance, or both. With accurate correspondences, feature-based tracking can be
done using only 5 matches if the intrinsic parameters of the camera are known
([Nister 2004]). The values in the intrinsic camera matrix are usually limited to
the focal length and projective centre of the camera.

In the underwater domain, an interesting dilemma appears; since the terrain often
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is low texture, it can be difficult for feature-based methods to find reliable features
for localisation. However, direct methods which are better suited for low tex-
ture environments are negatively affected by the non-static lighting, which makes
appearance-based matching less effective since a region may be far more shaded
in one image compared to another.

2.3.2 Keypoint Rejection

In feature-based SLAM, keypoint rejection is a process intended to remove outlier
keypoints prior to pose estimation, such that they bear no effect on the estimate.
Traditionally, this is done using consensus-based methods, such as Random Sample
Consensus (RANSAC) [Fischler and Bolles 1981]. Consensus-based keypoint re-
jection operates on matched keypoints, and bases itself on the assumption that
most of the identified correspondences will be accurate and support a similar mo-
tion hypothesis, i.e. there is a general consensus in the data as to what the relative
pose is. The outliers on the other hand will be outnumbered, and conflict with the
consensus. Furthermore, in the case of outliers caused by incorrect matching, the
outliers are likely to conflict with each other.

In more specific terms, consensus-based methods create subsets of hypothetical
inliers to calculate motion hypotheses with high consensus among the data. When
a small set of hypothetical inliers are selected (randomly in the case of RANSAC),
a motion hypothesis is made from the subset. This hypothesis is tested on the re-
maining data to collect a consensus set of data points which, within some margin,
match the hypothesis. If the consensus set is sufficiently large, a refined hypoth-
esis may be generated on the complete consensus set. Of the sufficiently large
consensus sets, the one whose motion hypothesis has the lowest loss with regards
to a loss function will be considered the actual inlier set.

The main strength of consensus-based methods is their flexibility, not only do they
work with any feature-based SLAM system, they are generally compatible with
any estimation task in which outliers must not influence the estimate. However,
as the number of outliers increases, these methods become increasingly compu-
tationally demanding. Moreover, in pose estimation, computation is wasted on
matching keypoints which should be removed regardless. For example, keypoints
placed on dynamic objects must be processed by the matching algorithm before
the search for outliers, despite the fact that dynamic objects are bound to produce
outlier displacement vectors. Furthermore, if the outliers can model a consensus
set of their own, the algorithm may give the wrong output, e.g. if almost all key-
points are placed on a moving vehicle which covers most of the image.

Due to the aforementioned weaknesses, some methods propose rejecting the key-
points themselves, before the matching step. In such methods, descriptors, image
patches or hand-crafted features belonging to a keypoint are used with a classifi-
cation method to separate trusted and distrusted keypoints.

There also exists less costly heuristic approaches to reject keypoint matches. Lowe’s
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ratio test is perhaps the most well-known [Lowe 2004]. Based on the nearest
neighbour matching algorithm, the ratio test discards a keypoint if its best match
is not sufficiently better than the second-best match. The intuition behind this
heuristic relies on an assumption that there will only be one good match for a
keypoint, while the remaining matches are no more than noise. Consequently, if
the best match is not meaningfully nearer than a noisy match, it is likely noisy as
well. Therefore, the keypoint has no reliable matches and should be ignored.

2.4 Marine Conditions

Underwater odometry is subject to a number of challenges and phenomena which
are not present to the same degree in other environments in which visual odom-
etry is pursued. This section seeks to characterise these phenomena and establish
their prevalence in different regions of the water column and the world.

2.4.1 Marine Snow

Marine snow is a term which entails a broad range of particles underwater, both
organic and inorganic [Alldredge and Silver 1988]. Marine snow can be made or-
ganically from the ground up, or by repeated collisions and aggregation of smaller
particles. These colliding particles, though mostly organic, may consist of plank-
ton, clay, faeces, and other detritus. Their sizes can range from a few microns to
many centimetres, again an indication of how broad the term is. When marine
snow is discussed in this paper, it is implied that we are concerned with parti-
cles large enough to be present in recorded underwater footage used for VO and
SLAM. This is more in line with another source [Lampitt 2001], which classifies
marine snow as particles above 500 microns.

Marine snow’s presence has been described as ubiquitous throughout the pelagic
zones of the world’s oceans, meaning regions away from the coast, in which
wildlife can swim freely in any direction [Alldredge and Silver 1988]. For organ-
isms in the aphotic zone, where less than 1% of the sunlight penetrates, marine
snow acts as a significant source of nutrition as it sinks to greater depths, usually
with a velocity of about 100–500m per day.

While marine snow is present throughout the water column, it is most heavily
concentrated in the sunlit euphotic zone due to its elevated levels of marine snow
production [Lampitt 2001]. Concentrations of marine snow are also known to vary
seasonally, and can be especially high on the seabed by continental slopes, mean-
ing the region between the deep ocean and relatively shallow continental shelf ex-
tending out from land.

The appearance of marine snow on video is determined by a complex set of fac-
tors, though the primary mechanism which renders marine snow visible is light
backscattering [Boffety and Galland 2012]. In this context, backscattering is the
diffuse reflection of waves of light back into the direction they came from. Since
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Figure 2.5: Some of the different appearances of marine snow

Autonomous Underwater Vehicles (AUVs) tend to light up the area in front of
their camera, the light will backscatter from marine snow particles back towards
the camera, and thereby affect video recordings with bright white spots. The
amount of backscattering will be determined by the strength of the light source
and its wavelength(s), the amount of light absorbed or scattered by the water it-
self, as well as the qualities of the marine snow particles, like size, shape, and
material makeup [Boffety and Galland 2012]. Finally, camera settings such as fo-
cal length and aperture can have a significant effect on how sharp or blurry the
particles appear. In Figure 2.5, a diverse selection of marine snow samples is given
to present the breadth of this term. The image patches come from the same image
and are at the same scale to make size comparable across patches.

2.4.2 Other Notable Marine Conditions

The following list of challenges was compiled in Section 2.4 of the preceding mas-
ter’s pre-project[Hodne and Leikvoll 2021].

Underwater environments pose numerous challenges for feature extraction and
pose estimation. A 2020 paper describes how wavelength-dependent attenuation
and light-scattering can limit visibility to only a few meters in regions with little
or no natural light [Köser and Frese 2020]. And since the only light source is often
fixed to the robot itself, illumination shifts are both large and common. Due to the
turbidity of water, even in well-lit regions, distant objects will seem to disappear
in a haze. Additionally, marine snow and underwater wildlife can produce noisy
keypoint correspondences. These attributes of underwater environments are on
display in Figure 2.6. With the aforementioned challenges in mind, it may be
unsurprising that some authors are unaware of any purely visual SLAM method
used for live control of an underwater robot [Köser and Frese 2020].

Additionally, GPS which can find an agent’s absolute position is not available un-
derwater. And although Inertial Measurement Units (IMUs) can measure relative
motion with high frequency, due to accumulating inaccuracies, IMU-based data
should not be used on its own for SLAM [Teixeira et al. 2020]. This inevitable er-
ror accumulation is also discussed in an aforementioned paper [Köser and Frese
2020], which notes that only depth can be known absolutely using pressure sen-
sors. RGBD cameras with infra-red depth sensors do not work underwater since
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Figure 2.6: Screen capture from an underwater Eelume robot. The image displays vi-
gnetting, heavy marine snow, marine wildlife and water turbidity.

water is opaque to infrared light. However, sonar is a viable alternative for depth
data. For robots that operate close to the ground, a Doppler Velocity Log (DVL)
can be used to measure the Doppler shift of a signal aimed at the ground. This
shift can then give an accurate measurement of ground speed. Lastly, magnetic
compasses can measure some components of the earth’s magnetic field to aid in
localisation.

There is a lack of ground truths for training machine learning systems on SLAM
tasks underwater, partly because it is so difficult to know a robot’s position in such
environments. While overwater scenarios can rely on GPS to generate ground
truths, underwater systems must look to other methods, e.g., buoys with know
positions or offline, global bundle adjustment which minimises the reprojection
error between point correspondences to create more precise ground truths.

2.5 Semantic Segmentation

Semantic Segmentation is a computer vision task where each pixel in an image is
assigned a label from a set of pre-existing classes. Pixels of the same class typically
share something which relates them, e.g. that they collectively form a car within
the image. However, it is important to point out that it is rarely the individual
pixel value itself that decide its label; instead, accurate segmentation usually eval-
uates collections of pixels when applying a label, e.g., when assigning a group of
pixels the car label.
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Chapter 3
Literature Review

In this chapter, we present a review of the literature which can inform our work
to make feature-based SLAM systems indifferent to marine snow. To this end,
we present research on snow and marine snow detection; snow and marine snow
synthesis for data generation; and keypoint rejection methods.

3.1 Literature Search Method

To deliver a repeatable and transparent literature search, we include our literature
search method. We used Google Scholar to identify a preliminary list of candidate
papers with the following search terms:

• Marine Snow

• (Rain or Snow or Marine snow) and (Removal or rejection or detection)

• (Rain or Snow or Marine snow) and (Synthesis or modelling or simulation)

• (keypoint or interest point) and (rejection or removal)

• Small object segmentation

From this preliminary list of papers, we extended our literature selection by in-
cluding papers referenced in the initial batch of papers. In the upcoming litera-
ture review, we present research from this collection which passed our selection
criteria:

• The methods and research processes used are described in detail or refer-
enced

• Evaluation is based on appropriate scientific methods, and the claimed re-
sults are supported by the data
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• The paper is relevant to our research on marine snow

3.2 Marine Snow Suppression

Motivated by our goal of eliminating keypoints on marine snow, we divide marine
snow suppression into parallel methods and serial methods. Parallel methods are
those where a majority of the computation can be done in parallel with keypoint
detectors, e.g., a snow detector which segments snow while the keypoint detector
runs in parallel. Serial systems are methods which must be run before keypoint
detection because their output is needed as input for detection, or must begin
after keypoint detection because the detection is needed as input (snow removal
methods and keypoint classifiers, respectively).

Similarities between Snow, Marine Snow, and Rain

Rain and snow suppression are two areas of research which have benefited each
other, and often appear together in articles [Zheng et al. 2013; Ding et al. 2016; Xu
et al. 2012; Voronin et al. 2019]. This is despite some differences which have been
highlighted by the authors of DesnowNet [Y.-F. Liu et al. 2018]. They point out that
while rain typically falls in predictable paths, snowfall, particularly slow-moving,
can have local discrepancies in movement, snow (and marine snow) also has a
larger variation in size, shape, and velocity compared to rain, even within one
image. In this respect, marine snow is arguably more similar to snowfall than rain
is. Therefore, it is natural to consider methods from snow and rain suppression,
and especially snow detection and removal methods since rain is less likely to
match the white appearance of snow and marine snow. Consequently, we include
literature from the field of snow detection, removal, and synthesis within this
chapter.

3.2.1 Model-based Methods for Marine Snow Suppression

Model-based methods are characterised by handcrafted processes to detect and
possibly remove marine snow. Directly addressing marine snow removal has not
been a topic of research for particularly long, with all non-trivial solutions com-
ing from the last decade [Farhadifard, Radolko, and U. v. Lukas 2017; Boguslaw
Cyganek and Gongola 2018]. While some approaches existed earlier, these meth-
ods were primarily image enhancement oriented and simply modelled marine
snow as a form of additive noise, either salt and pepper or Gaussian [Arnold-
Bos, Malkasse, and Kervern 2005; Shanmugasundaram, Sukumaran, and Shan-
mugavadivu 2013; Cho and A. Kim 2017]. While these methods can be effective
against very small marine snow particles, denoising methods for marine snow re-
moval fail to address particles which occupy more than a couple of pixels, some-
what short of the largest particles which can cover a few thousand pixels if light-
ing conditions are correct [Boguslaw Cyganek and Gongola 2018]. On the topic
of salt and pepper noise for marine snow modelling, [Boffety and Galland 2012]
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argues that this model disregards properties of water such as light absorption and
scattering, as well as the varying size and shape of marine snow.

We believe that the earliest method specifically made for marine snow removal is
found in Banerjee et al. [Banerjee et al. 2014]. This claim is supported by other
sources [Farhadifard, Radolko, and U. v. Lukas 2017; Boguslaw Cyganek and
Gongola 2018]. Banerjee et al. present a basic approach which does snow removal
using median filtering and implicit snow detection based on the luminance chan-
nel of a YCbCr image representation. The image is traversed with a 7×7 window,
and locations which have high luminance centre and high luminance variance are
selected for marine snow removal. The ”high luminance” threshold is selected
based on the mean and standard deviation of the local patch. Snow removal uses
the median filter to replace the window-centre value with the median value of
the window patch. An immediate issue of this approach is the fixed filter size,
which does not model the highly diverse sizes of marine snow particles. This is
addressed by Farhadifard et al.—the authors of one of the corroborating sources
mentioned earlier [Radolko, Farhadifard, and U. F. v. Lukas 2016]. They extend
the method with multi-scale filters, however, further details are not given.

A year later, Farhadifard et al. published a median filter approach which does ac-
count for the varying size of marine snow [Farhadifard, Radolko, and U. v. Lukas
2017]. Like the original filter-based method of [Banerjee et al. 2014], the dissimi-
larity of the patch-centre value to the patch-mean is used as a selection metric. To
identify additional outliers within a patch, the patch is represented in RGB colour
space, and an outlier detection step selects all pixels which are closer to the pixel
centre than a threshold based on a weighted standard-deviation value. As final
criteria, high-saturation patches are considered false detections and consequently
removed due to the typically grayscale appearance of marine snow. Before the
detected pixels are changed to the patch median value, a voting step is conducted
to eliminate another source of false positives, namely the edges of certain objects
(presumably white). The voting scheme requires that a pixel is an outlier in terms
of luminance in 80% of the patches the pixel appears in. The number of patches
scales quadratically with the filter size.

For multi-scale detection, the algorithm is used with filter sizes up to 19x19 for an
HD image1. This has the significant disadvantage that the possibility for shared
computation is very limited across different scales, thus impacting computational
efficiency. Furthermore, the 19x19 filter size demands a great deal of computa-
tion for the voting step, where the mean and standard deviation for 361 19x19
patches must be calculated for each candidate pixel, of which there can easily be
thousands. With RGB images this effort is conducted thrice.

A later paper [Boguslaw Cyganek and Gongola 2018] highlights and addresses
one shared shortcoming of the aforementioned methods, namely their implicit
dismissal of the temporal information present in video sequences. Allegedly,
this is the first Spatio-temporal marine snow removal method. From three input

1It is not clear if this is HD (1280x720) or Full HD (1920x1080)
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frames, the method detects and removes snow in the centre frame. The method
begins with a colour saturation check using RGB distance, reminiscent of [Farhad-
ifard, Radolko, and U. v. Lukas 2017], and once more due to the grayscale appear-
ance of marine snow. Then, the average RGB distance of the 32x32 image patch
around this centre pixel in the other two frames is determined. The centre-frame
pixel is passed on to the next processing step if the RGB distance of the centre
pixel in the centre frame is approximately equal to or lower than the lowest aver-
age value. To limit the detection to fast-moving particles, the next step examines
the change in luminance between frames. The candidate pixel is passed to the next
step if it has a sufficiently greater intensity in at least one colour channel compared
to the corresponding channel in both of the other frames. This step is done with
filter sizes of 1 through 7. The final detection step uses clustering to verify that
the size of connected patches of candidate pixels is above a minimum area. Fi-
nally, median filtering is done similarly to previous methods, however using the
median pixel intensities of the surrounding frames, instead of the centre frame.

A weakness of median-filter-based methods is their somewhat crude approach
to snow removal. Since they replace the detected snow pixels with the median
value, the replaced patches will be highly uniform and featureless. Consequently,
any background gradients disappear and edges appear smeared. This helps moti-
vate the use of learning-based methods which can detect and remove snow based
on information gathered during the training process. Notably, Sato et al. state
that they are unaware of any deep learning based marine snow removal methods
[Sato, Ueda, and Tanaka 2021]. However, neural networks have been used in an
intermediate marine snow detection step before filter-based removal [Koziarski
and Bogusław Cyganek 2019].

When searching the literature on rain and snow removal for filter-based methods,
median filtering is less prevalent. A snow removal method similar to Cyganek’s
method [Boguslaw Cyganek and Gongola 2018] is provided in a 1999 paper [Hase,
Miyake, and Yoneda 1999], however without any snow detection and using a filter
size of 1. Their method replaces pixel values with the corresponding median pixel
value in an odd number of prior frames. In another paper, [H. H. Li, S. Liu, and
Piao 2016], a hardware implementation of snow removal is made on an FPGA-
chip using median filtering. This was motivated by its effectiveness against salt
and pepper noise and computational efficiency with a 3 × 3 filter. Finally, [S.-C.
Huang et al. 2020] use the Adaptive Center Weighted Median Filter (ACWMF) [T.
Chen and Wu 2001] presented at the start of the millennium to create an initial
snow-free candidate. This estimate is refined using a particle swarm optimisation
method which minimizes a patch-wise error term. Notably, the ACWMF method
is more advanced than the median-filtering currently used underwater and is less
prone to blurring edges when filtering.

Significantly more common in rain and snow removal is the guided image filter
which is considered an edge-preserving filter [He, Sun, and Tang 2013]. The guid-
ance filter filters an image based on a guidance image, often the input image itself.
This input has the effect of blurring the image, or in other words, extracting the
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low-frequency information in the image which yields the high-frequency informa-
tion through subtraction with the original image. In multi-guided methods, these
high and low-frequency components are used in further guided filtering steps,
with max, min, +, and − operators to recover a deblurred, rain- or snow-free im-
age. Other methods combine the guided filter with the l0 guided filter for image
recovery.

The guided filter has been used in snow removal [Ramaiah et al. 2021], and rain
and snow removal with the guided l0 filter [Ding et al. 2016]. A very similar
guided l0 method is used for rain removal [Gautam and Raj 2018]. Multi-guided
methods have also been used for rain and snow removal [Zheng et al. 2013; Xu et
al. 2012], with one paper using it with anisotropic gradients to preserve edges
since some smoothing of the edges still occurs [Voronin et al. 2019]. For our
purposes, one shortcoming of these methods compared to the aforementioned
median filtering methods is that they do not provide snow detection. The high-
frequency component extracted from the image will preserve information about
any snow in the image, but it can not isolate this data from other high-frequency
components to form a snow detection output.

3.2.2 Learning-based Methods for Marine Snow Suppression

Learning-based methods typically follow one of two methods, either using Gen-
erative Adversarial Networks (GANs) to learn a style transfer function between
snowy and snowless images [Z. Li et al. 2019; Jaw, S.-C. Huang, and Kuo 2021],
or what we call composite methods which combine multiple networks and algo-
rithms to remove the snow in multiple steps. Since it is not possible to extract
snow detections from the GAN approach, we choose to focus on the less opaque
composite methods.

The 2021 paper [Y. Wang et al. 2021] uses a dual-channel neural network for colour
correction, dehazing, and marine snow removal. First, images are separated into
their high and low-frequency components, using the guided filter [He, Sun, and
Tang 2013]. Each of these components are then fed through separate channels of
the neural network. A snow removal network operates on the high-frequency com-
ponent of the input, intending to remove marine snow and other high-frequency
noise in the image. An enhancement network operates on the low-frequency compo-
nent with the intention of dehazing and colour correcting the image. Afterwards,
the output of both networks are combined and fed through a refinement network,
which generates the restored output. Unfortunately, the provided examples of
restored images are so small it is difficult to assess the quality of their method.

Koziarski et. al [Koziarski and Bogusław Cyganek 2019] consider the temporal
nature of marine snow by utilising a 3D CNN. Their architecture first detects snow
using a combination of 3D and 2D convolutions, before using adaptive median
filtering to remove the snow. The authors introduce temporal summation, where
the 3D feature maps are summed along the original temporal dimension, as a
method to transform the 3D feature maps into 2D feature maps. They suspect this
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summation method is sufficient to aggregate the temporal dimension, as they only
use three frames at a time as input. Their 2D and 3D convolutional layers consists
of 64 3×3 and 3×3×3 filters, respectively. Adaptive median filtering uses the snow
detections from the CNN to remove the snow, but unlike [Boguslaw Cyganek and
Gongola 2018], the temporal information is not used directly to reconstruct the
information obscured by the snowflakes.

In another paper [P. Li et al. 2019], the authors perform multi-scale detection and
removal of regular snow using stacked, densely connected CNN. In a densely
connected CNN, the inputs of each layer are the concatenated output matrices of
all previous layers, as opposed to traditional architectures in which only the out-
put of the previous layer is used. Their system is divided into three main parts,
thereby the stacked nomenclature. First, feature maps are calculated at three dif-
ferent scales using a multi-scale CNN. At each scale, three different kernels of
sizes 3x3, 5x5 and 7x7 are used. Next, the feature maps are concatenated and fed
through a snow detection densely connected convolutional network. The snow
detection module consists of a 40-layer modified DenseNet [G. Huang et al. 2016].
Finally, to remove the snow, the output from the snow detection module is con-
catenated with the feature maps from the multi-scale convolution network and
passed through yet another densely connected convolutional network. The snow
detection and snow removal architectures are identical. For a loss function, they
utilise a weighted mean square error. During training, the snow detector mod-
ule is first trained independently to convergence, before both the detector and
removal are trained simultaneously.

DesnowNet [Y.-F. Liu et al. 2018] incorporates two modules—the translucency
module and the residual generation module—which are used to perform above-
water snow removal. The residual generation module recovers areas completely
covered by opaque snow, while the translucency module recovers areas that are
obscured by translucent snow. Inception-v4[Szegedy et al. 2016] is used to extract
multi-scale features for the modules. Instead of summing up the multi-scale fea-
tures, the authors introduce a concatenation function that is learned which intends
to preserve spatial information to a higher degree than summing.

3.3 Marine Snow Synthesis

Our interest in marine snow synthesis stems from a data scarcity issue and the
tremendous effort required to manually label marine snow in images. By synthe-
sising snow–and possibly other parts of the sequence—data scarcity is removed
entirely and ground truths have near-perfect accuracy. However, new challenges
regarding realism in synthesis must be considered. In our view, a number of quali-
ties determine the realism of synthesised marine snow, including its motion (when
applicable), translucency, sharpness, colour, shape, size, and spatial distribution.

As alluded to earlier, synthetic datasets for marine snow may be entirely synthetic
where both the marine snow and surrounding environment are simulated graphi-
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cally using Three-Dimensional (3D)-models and graphics software to generate an
entire sequence from scratch. Alternatively, the marine snow may be superim-
posed onto existing images, in which a snowless image is used as a background
with simulated snow added on top. In such methods, a 3D model is typically
not available. With these distinctions in mind, we choose to structure this section
into superimposing methods and 3D-environment-based methods. Before look-
ing at these methods, we describe formal models of marine snow which can be of
interest for both paradigms.

3.3.1 Models of Marine Snow

A marine snow model for image simulation was presented back in 2012 [Boffety
and Galland 2012]. Its stated goal was to go beyond the simple salt and pepper
noise model of marine snow and create a simulation suitable for the evaluation
of image restoration algorithms. For simplicity, they model marine snow as a
white Lambertian scatterer, meaning particles which emit white light with radi-
ance (power per unit area) being independent of the direction the particle is being
observed from. The reflectivity of the particles is determined by a Gaussian spa-
tial profile. This effectively models the marine snow with a thick centre, which
progressively gets thinner towards the edges. The work is especially rigorous in
its consideration of back-scattering, in which it models both the light absorption
and light scattering characteristics of water. However, the model has some weak-
nesses. First is the limitation posed by the spatial reflectivity profile, which only
covers one highly symmetric shape of marine snow, and therefore omits many
of the irregularities which commonly define the contour of marine snow. The
Gaussian profile, while adequate for smaller particles, also lacks realism for larger
snowflakes, which have an unnaturally wide, fuzzy border. However, the authors
note that adding different spatial profiles would introduce new shapes to the sim-
ulation. Lastly, the colour of the marine snow seems inconsistent across the exam-
ples offered in the paper, with the hue seemingly being overly determined by the
simulation background.

Sato et al. [Sato, Ueda, and Tanaka 2021] identified and described two different
types of marine snow, the highland type and the volcanic type. The highland
type appears as a solid ellipsoid in the centre encompassed by blurred edges,
thereby giving a smooth transition between snow particles and the surrounding
water. They describe the apparent pixel intensities as an elliptic conical frustum,
i.e. sliced conical cones, with a rough surface. The volcanic type appears similarly,
however, the solid centre has a sunken crater-like appearance. This gives a halo-
like effect between the blurred edge and the solid centre. The authors describe the
pixel intensities in a similar fashion, but with an overshot top edge of the frus-
tum. One weakness of this model is that especially the volcanic type appears very
blurred and out of focus, similar to the aforementioned model. Another weak-
ness is the low amount of diversity in the snowflakes modelled. Only two types
are described, both elliptical in shape. Furthermore, the paper has not been peer-
reviewed. However, this is not to say that the work is of diminished value, as it is
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the only existing, publicly available marine snow dataset which we know of. Ad-
ditionally, the highland and volcanic marine snow, while specialised, do appear
in select underwater footage in certain conditions.

3.3.2 Superimposing Methods

Superimposing methods have become common for expanding datasets with mul-
tiple types of above-water and underwater conditions like snow, fog, and rain.
This research has been motivated by the limited range of conditions present in
popular datasets. By using superimposing methods on existing data, a large num-
ber of degraded images can be generated with relative ease for use in training and
validation. Furthermore, for a number of image enhancement tasks, the presence
of the original non-degraded image offers precise ground truths for supervised
learning.

Sato et al.[Sato, Ueda, and Tanaka 2021] modelled two different types of marine
snow, the highland type and the volcanic crater type. In their work, they mod-
elled the highland type by taking two congruent ellipses of the same rotation and
translation, but different scales. The inner ellipse is then filled with pixels of value
c + ϵ, where c is a constant value that determines the transparency of the marine
snow and ϵ is a small noise factor. The pixel values between the outer and inner
ellipses are interpolated between 0 + ϵ and c + ϵ. When modelling the volcanic
crater type, the pixel values are calculated in the same way as in the highland
type, before a third ellipse is added inside the inner ellipse. The pixel values are
calculated in the same way, before a new term g is added on top, raising the pixel
values on the middle ellipsis with a smooth transition between the outer and inner
ellipses. To superimpose the snow onto an image, they select random pixels in the
image, where the ellipses are added with a random size and rotation. Before the
snow particle is added, its location in the image is replaced by a blurred version
of the original, such that the region behind the edge of the marine snow appears
translucent, not transparent.

Alongside DesnowNet [Y.-F. Liu et al. 2018], the authors introduce the Snow100K
dataset for (above water) snow removal and detection. Their dataset was gener-
ated using 5800 snow masks made in Photoshop. This method may be similar to
others using Photoshop for snow synthesis [W.-T. Chen et al. 2021], which in turn
is based on a Photoshop tutorial, but this is not clear. Each snow mask featured
snow in three different sizes: small, medium and large. Within each size, trajec-
tory, shape, density, and transparency of the particles can be randomised. For
further dataset augmentation, random cropping and brightness adjustment are
applied before superimposing with a weighted sum approach, whereby the mask
is used as both the weight and snow. To offer varying difficulties for evaluation,
easy, medium and difficult datasets are made by restricting the superimposing to
either the small masks, one small and one medium mask, or one of each mask size
per image.
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3.3.3 3D-environment Based Methods

With 3D-environment-based methods, everything from the geometry of the envi-
ronment, its illumination, snow, and physical conditions like ocean currents must
be modelled and rendered in 3D-software. Using this method gives the authors
full control of the sequences they synthesise, however with an additional need
for 3D simulation experts, high-performance computers, and possibly expertise
in physics and oceanography. Because of this, these methods have become less
common than other methods and we have found almost no literature describing
3D-modelled marine snow. However, it is still worth investigating existing under-
water 3D simulations which currently do not incorporate marine snow, because
using an existing environment and adding snow to it is far less work than creating
a 3D environment from scratch.

Hildebrandt and Kirchner [Hildebrandt and Kirchner 2010] model an underwater
scene consisting of a plain seabed with no flora, fauna or human-made objects.
They simulate a camera with 4 attached lights which almost homogeneously illu-
minate the scene. The camera moves through a 4.5 kilometer long path consisting
mostly of u-turns and straight lines. Since their simulation does not model under-
water lighting conditions such as turbidity and absorption, their system is only
suitable for a camera pointing straight down at the seabed at a relatively close
distance. They generated two datasets: one with marine snow, and the other
without. Their marine snow model is only presented in short terms, though it
is based on a particle emitter system for simulated 3D environments. When the
simulation is rendered, 5 layers of marine snow can be included in the simula-
tion. Each layer contains 100000 marine snow particles with varying speed, size,
and random movement. Our best guess is that the 5 layers model marine snow at
different distances from the camera. They state that approximately 1200 particles
will be visible from each layer in any given frame of the simulation.

While only one picture example is given, the marine snow appears slightly more
realistic than the model-based approaches from the previous section. However,
the particles’ diversity remains limited, as only small, mostly round marine snow
is visible in the example. Additionally, we can not evaluate the movement of the
marine snow based on the image, as this is not described in the paper. Lastly,
it seems unnecessary to model 500000 particles when only 6000 remain visible,
though we are unable to quantify the added cost of this.

Zwilgmeyer et al. [Zwilgmeyer et al. 2021] have created a framework for gener-
ating underwater images with physically accurate lighting and movement. Since
position and geometry are known absolutely, precise ground truths are available
for multiple tasks. The dataset includes relative poses, depth maps, simulated
IMU data, and sequences without underwater effects. Their environment consists
of a sea floor with fine-grained sand, rock, textures, and man-made objects to im-
itate the operating environment in the north sea. However, the dataset does not
include any marine snow or other dynamic objects.

TartanAir [W. Wang et al. 2020] is a diverse dataset for VSLAM that contains an
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underwater sequence. Their sequences are less focused on realism, and more fo-
cused on the diversity and difficulty of sequences. For example, the water is un-
realistically clear while there is a large presence of dynamic objects like marine
wildlife and floating bubbles. Similarly to Zwilgmeyer et al., TartanAir does not
model marine snow, however, the bubbles that float through the water might have
a similar impact.

Compared to marine snow simulation, the efforts to synthesise regular snow have
been ongoing for far longer. In 2004 [Langer et al. 2004], an early method for real-
time visual snow simulation was introduced. To improve real-time performance,
they deliberately use a low particle count when simulating snow. To make up for
this sparsity, a dynamic texture fills in the gaps based on spectral synthesis meth-
ods. This method synthesises snow based on a time-sensitive opacity function.
The function gives the density of snow at the pixel coordinates x, y at time t. The
function effectively adds sinusoidal noise throughout the image to mimic the ap-
pearance of small snow noise. Allegedly, This method offers more realistic results
than simply increasing particle counts.

3.3.4 Hybrid Methods

We theorised that an approach combining superimposed snow with a 3D model
of an existing sequence could be used to create a hybrid approach. Using 3D-
reconstruction methods, a 3D model of the background sequence could be gener-
ated and then rendered with marine snow. A 2D projection of this simulated snow
could then be used to superimpose snow onto the original sequence to achieve the
realistic backdrop of superimposing methods and accurate depth and occlusion of
3D-model-based methods.

We later discovered this approach in use for superimposing overwater snow and
fog on driving sequences [Bernuth, Volk, and Bringmann 2019]. Using either
stereo images, or single images with depth, a 3D model is generated in OpenGL
on a frame-by-frame basis. Using this 3D model, a physics-based simulation of
snow is executed in the 3D model and then projected as a 2D snow layer onto the
original sequence.

The snow particles are modelled as flat planes in light snow, and three intersecting
planes during heavy snow. Snow is superimposed using motion vectors based on
a wind and gravity model, alongside the car’s motion vector, which is known
from the dataset. On top of this, motion blur is simulated using a weighted sum
of 30 interframes to model the blurring effect which occurs when cameras record
moving objects. These methods lead to a highly realistic distribution of snow in
the still images as if the car is driving through it. However, it is not clear if this
realism remains when the images are played back as a video sequence.

Similar to [Langer et al. 2004], the authors purposefully limit the volume in which
snow particles are simulated, to an area right in front of the camera. Additionally,
because far-away particles become indistinguishable from each other, the simula-
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tion volume is further reduced since the effects of the consolidated snow can be
simulated based on their light attenuation effects. One drawback of this method
is that each frame requires its own 3D model. Using Structure from Motion (SfM),
all images could be combined to create one 3D model. Additionally, by matching
features between frames, SfM can reduce the 3D-reconstruction error to create a
more accurate reconstruction.

3.4 Keypoint Detection, Description and Rejection

This section is based on section 3.1.1 in our master’s pre-project report [Hodne and
Leikvoll 2021]. We include this section to highlight some of the detectors which
struggle to find good keypoints in the presence of marine snow, or in the absence
of defined corners. The characteristics of related descriptors are also discussed
briefly.

The Harris Corner Detector [Harris, Stephens, et al. 1988] is a rotation-invariant,
scale variant, keypoint detector based on the eigenvalues of the structure tensor.
The structure tensor describes the distribution of the gradient within a specified
window in an image. Corner detection is done with a five-step process. First, the
image is converted to grayscale values to increase the processing speed. Next, the
spatial derivative is calculated and used to make the structure tensor. Then, the
smallest eigenvalues of the structure tensor are computed. Finally, non-maximum
suppression is performed with a 3x3 filter to get the final points. The basic idea
of this scheme is that corners will correlate with a large change in intensity if
the specified window moves. This contrasts with uniform areas which will have
no change in intensity and line segments which will only change intensity when
moving across the edge.

This work was later extended to create the Harris-Laplace Detector [Mikolajczyk
and Schmid 2001]. Their system begins by calculating a multi-scale representation
for the Harris corner detector, before selecting points with a maximum Laplacian
over different scales. This way their keypoint detector is robust against scale,
rotation and translation.

In 2004, the Scale Invariant Feature Transform (SIFT) detector and descriptor [Lowe
2004] was introduced, which is invariant to image scaling and rotation, while
remaining robust to affine distortions, noise, illumination changes, and varying
viewpoints. SIFT descriptors are made to be highly distinctive which increases
the likelihood of correct matches while reducing the probability of outliers. The
efficiency of extracting SIFT descriptors is improved by a cascaded filtering ap-
proach which limits computationally expensive tasks to areas which are deemed
salient.

SIFT is based on four main steps. First, a DoG method is used at multiple scales
over all image locations to identify potential interest points. Measures of an in-
terest point’s stability determine if it is selected. Then, orientation is estimated
based on the local gradient and the point is transformed relative to orientation,
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scale and location, which offers invariance to these transformations. Finally, the
local gradients in the keypoints’ surrounding image patch are represented using
a partial illumination and 3D-viewpoint invariant representation.

Later research introduced Sped Up Robust Features (SURF) [Bay et al. 2008], a
novel scale and rotation invariant feature detector and descriptor. SURF takes
inspiration from SIFT and has the same four main steps, but is several times faster
and more robust. However, despite this increase in efficiency, both SIFT and SURF
are considered unfit for real-time SLAM applications.

This issue motivated the FAST [Rosten and Drummond 2006] detector, which was
an attempt at a real-time alternative to detectors like SIFT and SURF. To maintain
usefulness in matching, FAST prioritises a 3D scene criterion, namely that differ-
ent views of the same scene should have detections which correspond to the same
3D location. To the authors’ surprise, FAST significantly outperformed previous
methods on this metric by using a decision tree approach to corner detection. The
tree uses pixel intensity information of a 16-pixel circle around a candidate corner
p to determine the class of p.

The Oriented, Fast and Rotated Brief (ORB) feature detector and descriptor [Rublee
et al. 2011], which is prominently used in the ORB-SLAM systems [Mur-Artal,
Montiel, and Tardos 2015; Mur-Artal and Tardos 2017; Campos et al. 2021], aims
to deliver a more efficient alternative to SIFT and SURF, just like FAST. ORB is ro-
tation invariant, resistant to noise, and two orders of magnitude faster than SIFT,
while showing similar results. ORB uses a modified FAST corner detector to pro-
duce keypoints. The detector has been augmented with an orientation operator
to determine keypoints’ orientation, just like SIFT and SURF do. Furthermore, a
Harris corner filter is used to reject edges, and detection is done at different scales
to offer multi-scale keypoints.

To generate descriptors, a modified version of BRIEF [Calonder et al. 2010] is used.
BRIEF outputs a binary descriptor, based on a decision tree performing binary
tests on the keypoint. Similar to SIFT, BRIEF is robust to blur, varying illumina-
tion and perspective distortions. However, in-plane rotation is a known weakness
which worsens matching performance, even with only a few degrees of rotation.
To amend this issue, ORB introduce steered BRIEF, which uses the patch orienta-
tion from the augmented FAST detector to rotate the binary test positions into a
general frame of reference.

3.4.1 Keypoint Rejection

For snow suppression in SLAM, marine snow removal or detection effectively
acts as the second time a frame is processed since the keypoint detector and de-
scriptor have processed the frame themselves. This kind of repeated computation
can significantly slow down total processing speeds. Since the keypoint detector
highlights which regions are actually considered for matching, an alternative so-
lution to marine snow detection or removal is to filter keypoints themselves, e.g.
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based on the keypoint descriptor or the small image patch around the detected
keypoint. Consequently, in this section, we look at methods using descriptors and
image patches for keypoint rejection.

The conference paper [Hartmann, Havlena, and Schindler 2014] uses ML to pre-
dict the matchability of a keypoint based only on its SIFT descriptor. In their use
case they mainly need to reject keypoints from foliage and other dynamic objects
moving about the scene, because these are the main sources of keypoints unfit
for matching. They find that using the magnitude of the DoG response from a
keypoint detector is a poor way of predicting matchability. Instead, the authors
explore a solution based on a random forest classifier, which trains an ensemble of
decision trees to predict matchability. Their implementation has 25 decision trees,
each with a maximum tree depth of 25. To classify keypoints, the random forest
classifier received the SIFT descriptor associated with each keypoint. In scenes
with high amounts of foliage or dynamic objects, their method significantly out-
performs other methods, retaining 60% of the matches with only 30% of the key-
points.

In a later iteration of the same conference, Papadaki and Hänsch [Papadaki and
Hänsch 2020] present a similar method to Hartmann [Hartmann, Havlena, and
Schindler 2014]. To decrease the computational cost of keypoint matching, they
remove keypoints deemed unmatchable by a random forest classifier. In con-
trast with Hartmann who classified keypoint descriptors, they use a handcrafted
feature representation which can be rapidly generated from the SIFT keypoints.
Furthermore, instead of 25 trees with a depth of 25, their classifier is a meagre 5
trees, each 5 levels deep. The handcrafted input representation is intended to go
beyond just appearance-based characteristics and includes the keypoint coordi-
nates, keypoint size, and rotation, the SIFT response, octave (scale), and number
of dominant orientations (a measure of the ambiguity of the orientation), and the
intensity of the green colour channel to identify vegetation. The dataset includes
photographs from cities since building facades and vegetation are prone to pro-
duce keypoints on repetitive patterns which are difficult to match.

The method offered almost identical results to Hartmann [Hartmann, Havlena,
and Schindler 2014] on the test data, however, Hartmann’s model had slightly
improved TNR, while the proposed method had the edge in recall. However,
due to the compact feature representation and smaller architecture, the method
improved processing speed by an order of magnitude.

Another conference paper [H. J. Kim, Dunn, and Frahm 2015], uses a Support Vec-
tor Machine (SVM) to predict the suitability of an image patch in image retrieval.
To increase the discriminative power of the input, they perform classification on
bundles of descriptors belonging to the same local image region. This is motivated
specifically by a need to match larger image regions like a cityscape, as opposed
to smaller localised features.

The paper [Leonardi, Fiori, and Stahl 2020] does keypoint rejection in underwa-
ter images to mitigate the effects of lighting artefacts and dynamic phenomena,
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such as fishes and caustics. To classify keypoints, they extract their surrounding
257 × 257 image patch and scale them down to 65 × 65 pixels. Each patch is is
classified by a CNN as either suitable or unsuitable for tracking. Their architec-
ture consists of a shallow network with three convolutional layers, followed by a
fully connected layer and a softmax layer. Each of their convolutional layers also
does pooling and ReLU activation. Their training is supervised, and their data
creation is done through manual labelling of other datasets. Their results showed
strong test accuracy, at 96.7%, however, in our opinion, the manual labelling pro-
cess requires an unsustainable amount of human effort to generate data. Using
a custom labelling tool to speed up the labelling process, they labelled a total of
13158 keypoints from 110 images. We worry that this is not enough to generalise
to real-world conditions, because a SLAM pipeline can easily use 10000 keypoints
per second. It is also not clear if keypoints from one image can appear in multiple
splits of the dataset. If this is possible, the results could be skewed by similarities
in the keypoints in the training and evaluation splits.

3.5 Semantic Segmentation

Semantic segmentation is the task of separating an image into labelled regions of
pixels. This area has been the subject of considerable research which has produced
well-performing networks such as Mask R-CNN and U-net with its derivatives.
However, since these networks were originally made for large objects, marine
snow becomes too small for these networks to address [H.-K. Kim et al. 2019].
Furthermore, the computational demands, number of classes, and layers of ab-
straction present in these networks are wholly unneeded for our use case. Hence,
our literature search focused on the segmentation of small objects with a small
number of classes.

Numerous papers in small object segmentation highlight the difficulty of class im-
balance and, consequently, the need for appropriate loss functions. Small object
segmentation touches on a number of domains, including traffic light segmen-
tation [H.-K. Kim et al. 2019], satellite image segmentation [Segl and Kaufmann
2001; Kampffmeyer, Salberg, and Jenssen 2016], and bird segmentation in wind-
mill parks [Takeki et al. 2016]. Deep CNNs are heavily used among these papers,
though unsupervised image segmentation techniques are employed in the 2001
paper [Segl and Kaufmann 2001].
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Chapter 4
Design

In this chapter, we present our design decisions and their motivation. Briefly put,
the goal of all our designs is to enable SLAM front-ends which are immune to
marine snow motion noise.

4.1 Architectures

In the literature review, we divided marine snow suppression architectures into
serial and parallel designs. Serial architectures are systems which must run en-
tirely before or after keypoint detection and/or description, while parallel archi-
tectures can largely run simultaneously with detection and description. In this
section, we present our choice of architecture for marine snow suppression and
the various design choices which were made when developing these systems.

4.1.1 Chosen Approach for Marine Snow Suppression

A clear divide exists within the serial methods which must be highlighted, namely
whether the method should be used before or after keypoint detection. Before
keypoint detection, one could use marine snow removal methods. these methods
employ image enhancement techniques to eliminate marine snow (and possibly
other unwanted degradations) from the image. Using such methods before key-
point detection will ideally eliminate all marine snow particles in an image that
the keypoint detector may erroneously extract, hence sanitising the keypoints.

Alternatively, a serial approach may use keypoint rejection to remove marine
snow keypoints. Keypoint rejection methods use information about the extracted
keypoints, like their prominent image patch or descriptor, to filter away keypoints
that are deemed unreliable. This is illustrated in Figure 4.1.
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Figure 4.1: A serial pipeline, running keypoint detection first and then keypoint classifica-
tion either on the descriptors or image patches around the keypoints.

Figure 4.2: A parallel pipeline, running keypoint detection at the same time as snow de-
tection. Some computation has to be done after keypoint detection and snow detection to
filter the keypoints.

For parallel snow suppression, we propose a semantic segmentation approach
which classifies each individual pixel as snow or not snow. This segmentation
mask can be used to reject keypoints placed on snow. This approach is illustrated
in Figure 4.2.

We believe both snow removal, segmentation, and keypoint classification are vi-
able methods for snow suppression. However, we argue that keypoint classifi-
cation using descriptors or image-patches is the most promising choice. Snow
removal (and segmentation) performs work on the entire image, irrespective of
the distribution of keypoints, meaning computation is wasted in regions where
no keypoints are present. We also worry that a snow removal step can intro-
duce artifacts which disrupt the keypoint extraction, description, and matching
steps inherent in SLAM. It is also not clear to us how snow removal is preferable
to snow segmentation on the full image, since segmentation poses no risk of in-
troducing artifacts and can be run in parallel with keypoint detection, therefore
reducing cycle time to some extent.

For the segmentation approach, computation is also wasted in regions where there
are no marine snow keypoints. And although it is desireable to parallelise the
code as can be done with segmentation, the effect of this is difficult to quantify.
Furthermore, to run in parallel necessitates a vacant CPU thread, which with most
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modern segmentation networks must be paired with a GPU.

The main benefit of keypoint classification is that it limits computation to loca-
tions which are actually candidates for keypoint based pose estimation. Their in-
puts should also be significantly lower in dimensionality, which may help reduce
the complexity and computational demands of the final designs. One weakness
compared to the snow removal approach, is that for some environments, keypoint
rejection may remove so many keypoints that it is not possible to accurately per-
form SLAM without at least one more round of keypoint detection.

We have already presented our reservations about the snow removal approach,
which we fear will introduce artifacts that disturb feature based SLAM. Further-
more, because the main benefit of the segmentation design is difficult to quantify,
and because this method can pose more stringent requirements on hardware, we
are left with the serial keypoint classifier scheme which we believe is the most
computationally efficient among the three approaches. Keypoint classification did
have one weakness compared to snow removal, regarding heavy marine snow
conditions where most keypoints may be eliminated. However, since this issue
should not apply under most operating conditions, we believe keypoint classifi-
cation remains as the best approach.

We consider both keypoint classifiers based on descriptors and classifiers based on
image patches to be viable candidates in our chosen approach. Hence, we present
two designs, one for descriptor classification, the other for patch classification.
The motivation behind each scheme is detailed further in the designated sections
of each design.

4.1.2 Descriptor-based Classifier

Our reasoning to use descriptors for classification is based on the ability to reuse
information extracted during the keypoint description process. While descrip-
tor classification does necessitate a platform dependent implementation, meaning
trained models only work with one keypoint descriptor, there are multiple bene-
fits which may outweigh this negative. Descriptors are generally made with char-
acteristics such as invariance to rotation, noise, scale, and illumination changes,
all of which seem desirable for classifying marine snow. Therefore, training on
descriptors not only entails a significant dimensionality reduction and a subse-
quent computational efficiency gain, it provides a representation with numerous
qualities which the network might otherwise have to learn by itself, e.g. scale in-
variance.

To classify descriptors we considered multiple machine learning methods, for
example the random forest approach we encountered in the literature review
[Hartmann, Havlena, and Schindler 2014; Papadaki and Hänsch 2020]. Our first
steps towards descriptor classification was to evaluate our own FCNN classifier,
and scikit’s Random Forest Classifier, Support Vector Classifier, K-Nearest Neigh-
bours, Naive Bayes, and Quadratic Discriminant Analysis classifier. We evaluated
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each design on a dataset consisting of ORB descriptors. The descriptors had been
generated on video sequences in which we knew the label of all keypoints be-
forehand. Specifically, we used video sequences entirely without marine snow to
generate samples in the ’clean’ class, and video sequences whose only features
were marine snow to generate samples for the ’marine snow’ class.

The FCNN implementation surpassed the other methods with relative ease (see
Table 7.3), and was consequently positioned as the first descriptor-based classifier,
which we named D-CLAS. As our first descriptor-classifier, D-CLAS has a rather
conventional design with the ReLU activation function in the hidden layers and
the sigmoid function in the output layer. The final sigmoid function ensures that
the output is in the range [0, 1] which can be interpreted as a pseudo probability
of the input being in the positive ’marine snow’ class. The only other design con-
sideration for this initial architecture was to gradually decrease the layer sizes to
one neuron in the final layer. The architecture is described in full in Table 5.1.

4.1.3 Patch-based Classifier

The image-patch based classifier—P-CLAS—is motivated by a desire for a key-
point detector and descriptor-independent system, i.e., a system which will work
with all keypoint based SLAM pipelines without any additional training. Fur-
thermore, if we consider a patch classifier architecture using a feature extractor
+ FCNN classifier, we can immediately draw similarities to the descriptor-based
classifier. If we think of the flattened output of the feature extractor as a snow-
focused version of D-CLAS’s descriptors, it seems natural to hypothesise that
these features may be more suitable for snow classification than keypoint descrip-
tors, since the feature extractor is specifically optimised for snow detection. In our
opinion, this hypothesis is not particularly far-fetched, hence we were motivated
to develop this idea further.

In keeping with above example, we modelled our initial architecture following
the feature extractor and snow-feature classifier concept. In the first design of P-
CLAS, feature extraction was done using a conventional CNN style network with
max-pooling and batch normalisation, followed by a FCNN head with sigmoid
output for classification. This choice of architecture was made, simply to follow
the designs of basic image classification networks.

Patch-extraction was another important topic, since we made the decision of only
including images and their keypoint coordinates in the patch-dataset. This was
deliberately done to make the patch extraction method and attributes like the
size and shape of the patches an integral part of the architecture. Doing other-
wise would limit the possibilities of modifying the patches later on, something
we wanted to avoid since we believed the input patches could have a significant
impact on P-CLAS’ performance.

Based on our findings in the literature search on the characteristics of marine snow
and marine snow detection methods, we wanted to extract patches at multiple
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scales to account for the diversity of marine snow sizes. Consequently, our design
includes a patch-extraction method which, given a keypoint, image, and a list
of patch scales, can extract patches at each scale. CNNs require that the input
matrices are of the same dimensions, hence we use bi-linear interpolation to resize
the patches to the same height and width.

Since keypoints can be near the edge of the image where large patches may go
outside the bounds of the image, we zero-pad all images after loading them from
disk with the padding size equivalent to half of the maximum patch size. We later
tested with median-padding in an attempt to make patches on the border more
consistent with patches elsewhere in the image, and found that P-CLAS’s accu-
racy on keypoints which included some amount of padding increased from 0.825
to 0.843, mostly due to a decrease in the false negative rate from 0.266 to 0.228.
However, as it turns out, the number of keypoints which were actually affected
by the padding rule was only 1266, or less than 0.1% of the dataset. Hence, to us,
the cost of calculating the median did not seem to be worth the small difference,
and our designs only make use of zero-padding.

4.1.4 Keypoint Detection Masks

During the experimental stages of our work, we developed methods to gener-
ate keypoint detection masks using the classification results from our classifiers.
Keypoint detection masks tell the keypoint detector where it should and should
not look for keypoints in an image. By generating our own masks based on the
classification results from P-CLAS or D-CLAS, we would be able to direct the key-
point detector to areas with good keypoints, or make the keypoint detector avoid
areas with marine snow, or do both simultaneously. Our initial design was a rudi-
mentary one, in which we weighted areas around each keypoint detected in an
image. Keypoints labelled clean would increase the weight of their nearby area,
while keypoints labelled marine snow decreased the weight. We would then ap-
ply a threshold to the weights create a keypoint detection for a second round of
keypoint detection, e.g. to make up for the reduction of keypoints caused by the re-
moval of snow keypoints. However, we quickly noticed that our approach did not
generalise well across sequences. We believe a more complex heuristic is needed
to create useful masks, meaning something which considers the distribution of
keypoints, and does not just weigh each keypoint individually. We eventually
chose to focus on other uses of the classifiers, consequently, the methods for key-
point detection masks remain in the design stage.

4.2 Datasets

We have made four datasets for classification of keypoint patches and descrip-
tors. The first dataset extracted keypoints from images with either exclusively
marine snow or no snow at all. By collecting videos with these characteristics, we
can label keypoints in bulk based on which category the video belonged to. The
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Figure 4.3: Example frame from a ’clean’ sequence (left) and a ’marine snow’ sequence.

next datasets expanded on this idea by extracting marine snow from the under-
water images which exclusively pictured marine snow, and superimposing it onto
feature-rich backgrounds.

4.2.1 Unmodified Keypoint Classification Dataset

The unmodified dataset came from an idea to exploit the lack of texture in under-
water images which are far away from the ocean floor and man-made objects, and
therefore contain no geological or structural features of any kind. In such images,
the surrounding water will appear as blue, feature-less background, owing to the
light scattering and absorption properties of water. Consequently, any keypoint
detected in such an image must come from organic matter such as marine snow
and marine wildlife. By running keypoint detection on videos which only depict
marine snow on a flat background, we can know for certain that any detection
is a marine snow keypoint. Similarly, by collecting underwater sequences near
the ocean floor which contain no marine snow at all, we can rapidly generate la-
belled keypoints with minimal manual effort. This is important because a single
image can contain thousands of keypoints which would take a significant amount
of time to manually annotate in a sequence with mixed classes.

In Figure 4.3, an image from the ’clean’ class is seen on the left, while the im-
age containing only marine snow is on the right (keypoints have not been high-
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Figure 4.4: Data generation and filtering with pre-labelled Snowy/Snowless sequences

lighted). To find sequences for keypoint detection and description, we used the
National Oceanic and Atmospheric Administration (NOAA) Ocean Exploration
Video Portal which includes thousands of videos of expeditions conducted by
Open Educational Resources (OER) sponsored vessels. We separated these videos
into the snowy and snowless collections, and extracted frames at a fixed interval
from these sequences to limit the size of the dataset, and avoid nearly identical
frames from videos with mostly stationary cameras. With these frames, we con-
ducted keypoint detection and description using ORB, as outlined in Figure 4.4,
and stored the keypoint coordinates and descriptors separately.

4.2.2 Superimposed Snow Datasets

One weakness of the unmodified dataset is that snow is always found on very
uniform, flat image patches. If we compare this data to the snowless samples,
we notice that a model can obtain very high accuracy by only relying on basic
attributes such as the uniformity of the background, its colour, or its variance. Ex-
panding the snowy dataset with more diverse backgrounds would significantly
increase the visual complexity and diversity of the snowy training data, since their
background is no longer featureless and untextured. For example, the new back-
grounds can include a combination of man-made objects, geological features, and
wildlife. Such backgrounds may be important to train a classifier which gener-
alises to most underwater scenarios, while also being required to ensure thorough
evaluation of marine snow classifiers.

To amend the issue of predictable backgrounds, we propose a system which ex-
tracts marine snow from the flat ’marine snow’ images, and superimposes it onto
more interesting backgrounds using a weighted sum. The weighted sum ap-
proach was common in our literature review, both in superimposing based syn-
thetic datasets [Sato, Ueda, and Tanaka 2021; Y.-F. Liu et al. 2018], and as a model
for image enhancement networks [Y.-F. Liu et al. 2018; P. Li et al. 2019].
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An alternative approach to snow extraction is to model synthetic snow such that
it can be generated algorithmically and then superimposed onto underwater im-
agery. This approach can guarantee accurate ground truths for use with keypoint
classification, and potentially snow segmentation and snow removal. The chal-
lenge of this approach, however, is to create a model which is realistic enough to
make classifiers trained on such images generalise to real-world data. Our impres-
sion from the literature review is that for small marine snow particles, synthetic
approaches can retain high realism. However, these small particles are less likely
to be detected by a keypoint detector, so this benefit may be moot.

We believe that a benefit of the snow extraction and superimposing approach
is that it can yield snow which is more realistic than fully synthesised snow—
especially for larger particles—since it is based on real-world imagery. Further-
more, since snow extraction can be done on videos, this method provides a very
straight-forward path to temporally accurate motion of superimposed snow. How-
ever, a potential challenge is the level of supervision needed to extract and super-
impose snow, since individual sequences may benefit from tailored parameters.
Also, while realistic motion can be achieved when extracting snow, some of this
realism is lost when superimposing snow onto background videos, since the mo-
tion often becomes unlikely or downright impossible when displayed in front of
another video. However, it is not clear to us that this lack of realistic motion actu-
ally matters for training and evaluation of snow classification, even if a temporal
information is used for prediction, because neural networks have no notion of
what is realistic or not.

Figure 4.5: Data augmentation pipeline to superimpose snow onto snowless sequences

Our design is rooted in the following five-step process: (1) create an alpha-mask on
the snowy image based on a minimum distance from the median colour. When
combining two images into one, alpha masks provide a pixel-wise weighting of
how much information to take from each image. (2) extract snow from the ex-
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isting snowy sequences with the distance-based alpha-key, (3) perform keypoint
detection on the extracted snow and snow free background image, (4) superim-
pose the snow onto any snow free background image with summation weighted
by the alpha-mask, and (5) use this combined image to extract image patches and
descriptors with the existing keypoints.

We divide the superimposed data generation method into two pipelines, one to
extract and superimpose snow, and another to detect keypoints and generate de-
scriptors. These are outlined in Figure 4.5 and Figure 4.6, respectively.

To design our snow extraction method, we can actually exploit the textureless
background of our snowy images and use a simplified version of the implicit snow
detection methods found in the model-based snow removal algorithms from our
literature review [Banerjee et al. 2014; Farhadifard, Radolko, and U. v. Lukas 2017;
Boguslaw Cyganek and Gongola 2018]. We employ a moving window approach
which computes the distance of each pixel to the window median. This distance
serves as a weighting between background and snow, where high distances sig-
nify snow and low distances signify background. Importantly, this requires that
the window size is sufficiently large such that the median colour is not shifted
to the colour of any snow particle(s) present in the window. The distances are
scaled by the inverse of the maximum distance to give the weighting. Weights
are set to zero if the distance is below a threshold in order to remove as much of
the background as possible. Similarly, if the pixel corresponding to the weight is
particularly dim in the original image we set the weight to zero, as darker areas
with high distance to the median colour often correspond to shadows and other
illumination artefacts. The moving window traverses the image with a stride s
which is significantly smaller than the window size. Because of this, we can use
the mean weight of the overlapping windows to reduce the impact of large marine
snow particles which shift the median colour away from the background colour.

This method can be extended to multi-scale window sizes by averaging the weights
over all scales. However, we argue that prioritising larger windows is important
to avoid shifting the median colour when marine snow fills most of the window.
Furthermore, the smallest marine snow particles which may not be extracted with
an oversized filter are those which are least likely to be detected by a keypoint
detector, hence these points are less important to extract.

The final step step is to create a grayscale version of the extracted snow to de-
saturate the snowy image. This is useful because otherwise the extracted snow
retains some of the hue from its original sequence, which can give the snow and
unrealistically blue appearance after superimposing. We consider omitting this
step to be an optional data-augmentation method.

Unlike the unmodified dataset, superimposed datasets have both true positive
and false positive keypoints in each image. Consequently, some adaptations must
be made when extracting keypoints, labels, and descriptors. We first tried ex-
tracting keypoints on the combined, superimposed image with the idea that we
could use the extracted marine snow to determine if a keypoint was detected on
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Figure 4.6: Data generation pipeline with superimposed snowy sequences

marine snow or not. However, when visualising the ORB detections, we found
that only a small amount of keypoints were actually placed on the marine snow
itself, potentially leading to class imbalance issues. Consequently, we explored an
approach which detected keypoints separately on the background and extracted
snow, since we found that we could generate far more keypoints on marine snow
with this method.

Our approach to generate keypoints for superimposed datasets begins by extract-
ing ’marine snow’ keypoints on the extracted snow, and ’clean’ keypoints on the
background image. Then, we perform grid spread filtering (see Section 4.2.4) sep-
arately on each class to remove duplicate keypoints in the image. An additional
filtering step was needed to exclude snow-keypoints which, while visible in the
snow mask, become indistinguishable from the background when superimposed.
Such keypoints appear snowless when extracted as image-patches, and are likely
ignored as noise when descriptors are generated. Thus, keeping such keypoints
is akin to mislabelling the dataset. Consequently, we developed variance based
visibility filtering, which compares the variance of an image-patch extracted from
the background image with and without superimposed snow, and remove a key-
point if the variance is not sufficiently increased. The patch size is determined by
the keypoint octave, which indicates the scale of its prominent image patch.

We later noticed that keypoints in the background image were sometimes covered
or nearly covered by the superimposed snow since we detect these keypoints be-
fore superimposing. In general, nearby snow is not necessarily a negative, as both
training and evaluation data should account for the fact that good keypoints may
be in the vicinity of marine snow—after all, this is the case in real underwater
scenarios. However, after examining the superimposed data, some problematic
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Figure 4.7: An image consisting of snow on a textureless background.

keypoints were present which after superimposing were blatantly mislabelled as
’clean’. Consequently, we implemented an additional filtering step for keypoints
from the background image, in which a very small area around the keypoint’s
location in the superimposed snow is checked for snow which may put a true
positive label in question. With patch size 8, we extract information from the su-
perimposed snow and reject the keypoint if the maximum value within this patch
is above a threshold. We use a small patch size because we only want to remove
keypoints which are significantly affected by nearby snow. Therefore, keypoints
which are slightly near marine snow still remain, which we hope will teach the
classifiers to operate in conditions with particularly dense snow.

In Figures 4.7, 4.8, and 4.9, we detail three stages of our superimposing approach.
Respectively, the figures depict a marine snow image, its extracted snow mask,
and a superimposed image combining the extracted snow with an underwater
background using the snow mask as weight.
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Figure 4.8: A mask of the extracted snow from Fig. 4.7

Figure 4.9: The snow from Fig. 4.7 superimposed on a background using the snow mask
from Fig. 4.8
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4.2.3 Overwater Backgrounds

While the NOAA Video portal was a good source for videos both with and with-
out marine snow, it was relatively time consuming to collect videos from this ser-
vice due to the sparsity of videos exclusively with marine snow, and especially
videos completely without marine snow. This had the effect of reducing the di-
versity of the environments present in the snowless dataset, an issue which was
exacerbated by sequences which came from the same expedition, and others in
which the camera barely moved. This lack of diversity can harm the generality of
the dataset and increases the chance of overfitting to the data. Another weakness
is the lack of man-made objects in the sequences, which comes from the nature of
the scientific expeditions in which the sequences were recorded.

Considering the above limitations, and the fact that we had already collected a
significant amount of data from NOAA, we searched for other methods of collect-
ing background images for superimposing. It can be argued that a marine snow
detector should be able to recognise marine snow regardless of the background
which surrounds it. Therefore, we decided to use overwater images to create a
second superimposed dataset, separate from our superimposed dataset using un-
derwater backgrounds. This would drastically increase the diversity of the super-
imposed datasets, and therefore reduce the chance of overfitting. Our hypothesis
was that this added diversity would also aid the models’ ability to generalise to
unseen underwater environments since they would be unable to rely on back-
ground information to classify snow.

To maintain some degree of similarity with underwater environments, and to in-
crease the chance that the superimposed snow was actually visible in the com-
bined image, we used images from the Exclusively-Dark-Image-Dataset [Loh and
Chan 2019] as backgrounds. While most datasets with dark images are aimed
toward city-driving tasks at nighttime, and therefore mainly contain city environ-
ments with street lights, this dataset is intended for image classification of dark
images. Therefore, it presents a more varied selection of dark environments com-
pared to most night-time datasets. For example, both indoor and outdoor envi-
ronments are given, city and nature surroundings are present, as well as a range
of lighting conditions ranging from near pitch-black to sunrise.

Because the images of this dataset are in all kinds of aspect ratios and generally
lower resolution than the images we extract snow from, we upscale them to 1920×
1080 resolution to make them fit the superimposed snow. While this will in some
cases significantly distort the image ratio, e.g. from a portrait orientation to a
landscape orientation. This should not be an issue when extracting keypoints and
descriptors, as keypoint detection does not rely on true-to-life scales.

49



4.2.4 Keypoint Spread and Grid Based Filtering

When extracting keypoint coordinates with ORB, we observed that keypoints tend
to cluster together very closely, and even overlap on the exact same coordinates
since ORB extracts features independently at eight different scales. To eliminate
unintended duplicates in the coordinates, we removed keypoints based on a min-
imum Manhattan distance threshold.

We later improved this filtering step by selecting keypoints to improve their spread
in the image. By increasing the keypoints’ spread, we can utilise more of the di-
versity within the image itself, while reducing the number of duplicate keypoints
in the dataset. To spread the keypoints in the image, we employ a grid-based
selection scheme reminiscent of the bucketing method sometimes used in SLAM
and VO to select correspondences. We start by detecting a set of keypoints, larger
than the target amount of keypoints in the final output. We then divide the image
into a 10 × 10 grid and take a random keypoint from a random grid cell until the
output set reaches the target size. This filtering is done separately on true positive
and false positive keypoints since we do not want to exacerbate class imbalance
issues. Additionally, in the superimposed datasets, nearby keypoints from differ-
ent classes may highlight some of the smaller nuances that aid in classification,
meaning nearby keypoints with different classes should be kept.

Failed approach to optimise spread

Inspired by a metric we proposed in the pre-project report in 2021, we attempted
to optimise a formula related to point distributions in a grid, but we later realised
that the metric did not spread keypoints. Of course, optimising it was also quite
computationally demanding. Since we do not need a perfect spread, the heuris-
tic approach above is entirely sufficient for our needs. However, in case it is of
interest, we still present the failed approach below.

The optimisation approach is as follows: from the set K of all keypoints, we begin
with a randomly selected keypoint and add it to the set of filtered keypoints F . F
is iteratively expanded with keypoints from K, by selecting the keypoint whose
average distance to the points in F is closest to a pre-set value e. e is computed
based on the dimensions of the background image and is the expected distance
of two randomly selected points in a H × W grid [Mathai, Moschopoulos, and
Pederzoli 1999]. Mathematically, e is given by this formula, where d =

√
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Optimising this metric does not generate ”seemingly random” distributions, in-
stead, it creates a ring around the centre. We believe that this measure is simply
correlated with spread, which was the source of our misconception.
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4.2.5 Snowy-VAROS

Our last dataset is an extension of the existing VAROS dataset [Zwilgmeyer et
al. 2021] with superimposed marine snow. We name this dataset Snowy-VAROS.
Since the relative pose ground truths of VAROS still apply after superimposing
marine snow, the Snowy-VAROS dataset is still useful for quantitative evaluation
of pose estimates. Furthermore, comparing results between Snowy-VAROS and
the original, snow-free VAROS sequence allows us to evaluate the results of key-
point rejection more definitively than most experiments.

4.2.6 3D-Modeled Marine Snow Dataset

In the early stages of the master’s project, we experimented with an idea to model
snow within the 3D-environment used to render the VAROS dataset [Zwilgmeyer
et al. 2021]. This approach could obtain ground truths for both marine snow re-
moval, segmentation and detection, in addition to the existing relative pose and
depth ground truths of VAROS. This idea is different from the Snowy-VAROS
dataset in the sense that it incorporates 3D-rendering of marine snow instead of
2D superimposing.

We collected and analysed examples of marine snowflakes to use as references
when modelling our own flakes for the VAROS dataset. In our experiment, the
snowflakes were modelled as translucent, irregularly shaped ellipsoids and added
to the VAROS scene through a particle emitter. To model the translucency of a spe-
cific point on a marine snowflake, we used the angle between the normal vector
of the point on the ellipsoid and the vector between the camera and the point.
This emulates the effect of marine snow being increasingly translucent closer to
the edges. An example render is found in Figure 4.10.

The marine snow emitter was set to only emit particles close to the observer, to
eliminate the processing of particles that would not be visible, similar to meth-
ods from the literature review [Langer et al. 2004; Bernuth, Volk, and Bringmann
2019]. To emulate ocean currents, all particles were placed in a constant motion
field, while each particle had Brownian motion enabled, to simulate the motion
introduced by a marine snowflake’s unique shape interacting with local currents.
Had we continued on with this dataset, the constant motion field would eventu-
ally be replaced with one of the many alternatives in Blender which model more
complex motion fields that more accurately emulate ocean currents.

Compared to our other methods, this method of simulating marine snow had
the benefit that the motion of the marine snow was consistent with the motion
of the camera, unlike the superimposing method, where the camera motion of
two videos are forcefully combined into one video. However, the limitation of
only being able to add snow to the VAROS dataset, the limited amount of unique
snowflakes, and the uncertainty about whether the 3D modelled snow would gen-
eralise to real snow compelled us to put this method on hold in favour of the
superimposing method.
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Figure 4.10: A render of snow particles added to VAROS in blender. A particle system
emitting spheres of fixed size was used (essentially the most basic implementation).
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Chapter 5
Implementation

In this chapter, we provide more detailed descriptions of which frameworks, pa-
rameters and architectures we used in our experiments.

5.1 Architectures

Below we present the serial architectures we implemented, one using descrip-
tors (D-CLAS) and one using image patches extracted from keypoint coordinates
(P-CLAS). All deep learning architectures were implemented using the PyTorch
framework, while other binary classifiers were implemented using scikit learn.

5.1.1 Descriptor-based Classifier

D-CLAS uses a standard FCNN architecture with binary vector input, ReLu acti-
vation function in the internal layers and Sigmoid activation in the final layer. The
architecture is described in full in Table 5.1.

Layer L1 L2 L3 L4 L5 L6 L7
Activation Function ReLu Sigmoid
Dimensionality 256 196 196 128 64 16 1

Table 5.1: First experimental Neural Network architecture for the descriptor classifier.

D-CLAS was implemented in PyTorch and trained for 1 epoch on a GTX1080 GPU
with binary cross-entropy loss and the Adam optimiser with default hyperpa-
rameters. When making a classification based on the sigmoid output, we used
a threshold of 0.5, meaning outputs greater than 0.5 were considered snow, and
clean otherwise. This is the case for the P-CLAS as well.
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The other descriptor classifiers which D-CLAS is compared to in Table 7.3, such
as random forest, K-nearest neighbours, Gaussian process, linear support vector
classifier, Gaussian naive Bayes, and quadratic discriminant analysis were all im-
plemented using the scikit learn framework.

5.1.2 Patch-based Classifier

Our P-CLAS architecture stacks 5 sets of convolutional layers, each followed by
batch-normalisation and ReLu. We used 3×3 kernels with a step size, s, of 1 in all
convolutional layers. The flattened output of the last convolutional layers is given
to a fully connected layer which outputs the classification with a sigmoid activa-
tion function. Figure 5.1 illustrates the architecture of P-CLAS, and the number of
kernels in each layer.

Figure 5.1: The CNN-based P-CLAS architecture

Patch extraction was done with three scales: 64 × 64, 48 × 48, and 32 × 32 pixel
squares centred on the keypoint. These were all resized to 64× 64 using bi-linear
interpolation and stacked in the channel dimension before classification. This ar-
chitecture was implemented in PyTorch and trained for 1 epoch on an RTX2080
GPU with binary cross-entropy loss and the Adam optimiser with batch size 8
and a learning rate of 1e-4. During training, the image patches are subjected to
a rotation data augmentation step, which randomly rotates patches in increments
of 90 degrees.

5.2 Datasets

To train and evaluate our architectures, we have made three datasets for binary
classification of keypoint coordinates and descriptors. We also made a fourth
dataset—Snowy-VAROS—for evaluation of SLAM systems in marine snow con-
ditions. We present the datasets and process to create them here. The keypoint
classification datasets and their sizes are listed in Table 5.2.
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Images Snow KPs Background KPs
Unmodified 6,008 598,931 1,181,570
Underwater 10,051 1,525,556 2,227,102
Overwater 8,705 1,772,123 2,055,001
Total 24,764 3,896,610 5,463,673

Table 5.2: The keypoint classification datasets and their sizes. Train, val and test splits were
made following 80/10/10 splits

5.2.1 Data Gathering

Most of our data consist of videos from NOAA expeditions which were retrieved
from the Ocean Exploration Video Portal1. The videos, which are listed in Ap-
pendix C, were manually screened for the presence of marine snow. The ORB-
features from videos without marine snow were collectively labeled as clean key-
points, while keypoints and descriptors from sequences with exclusively marine
snow were labeled as snowy keypoints. Since the snowy sequences contain no
other features than marine snow, any detection from a keypoint detector must be
marine snow, therefore no manual labelling is required. Figure 4.3, shows one
frame from the snowy and snowless sequences. Furthermore, we received data
from our supervisors at the Autonomous Robots for Ocean Sustainability (AROS)
research group, who have collected videos with the Eelume2 robot in Trondheims-
fjorden. These sequences contained marine snow quite distinct from the marine
snow in the NOAA sequences, appearing particularly dense and large. However,
Eelume had no sequences without marine snow so only exclusively snowy se-
quences were collected from them.

Because the NOAA videos were interlaced, meaning their frames were blended
together in striped sections, we performed deinterlacing in Blender to create videos
with progressive frames to match real-time operating conditions underwater. Af-
terwards, we extracted every 20th frame from the Eelume and NOAA sequences,
and split the dataset with an 80/10/10 training, testing, and validation split, while
ensuring that each video only appeared in one of these data splits.

5.2.2 Unmodified Dataset

We first developed a dataset for classification of keypoint patches and descriptors
using the ORB keypoint detector and descriptor with default settings in OpenCV.
This detector is among the most widespread in SLAM, and its binary descriptors
are well suited for neural network classifiers. However, to make sure we made the
correct choice, we used the same ORB keypoint detections to generate three more
descriptors: SIFT, FREAK and VGG120. Since all of these were used with the ORB
detector, we could compare the abilities of each descriptor in snow classification.

1https://www.ncei.noaa.gov/access/ocean-exploration/video/
2https://eelume.com/
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Figure 5.2: Snow superimposed on Snowy-VAROS. Figure from [Hodne, Leikvoll, et al.
2022].

For the unmodified (U) dataset, which uses the collected images as they are with
no superimposing, we detected 500 keypoints per image, and used random grid
selection to limit the number of keypoints per image to 300. In total, we used 3941
background frames, and 2067 snowy images.

5.2.3 Superimposed Datasets

The superimposed datasets were intended to increase our data’s variety and gen-
erality. A weakness of our initial U dataset was the trivial characteristics of the
image patches, particularly the marine snow class which mainly featured white
blobs on blue backgrounds. Consequently, for a patch labelled snowy, we can with
high accuracy predict that its background is flat, mostly untextured and feature-
less besides the marine snow. This is undesirable because it makes the prediction
task far easier during training than in the real world.

The underwater (UW) superimposed dataset used 3941 background frames, and
superimposed 2067 snowy images from Eelume and NOAA, while the dark over-
water (OW) dataset used 6438 background images, and the same 2067 snowy im-
ages fro superimposing. With the UW dataset we superimposed each frame of ex-
tracted marine snow onto 4 random backgrounds, as opposed to 5 random back-
grounds for the OW dataset. Both datasets used two data augmentation steps:
firstly, we superimposed either a grayscale or colour version of the extracted ma-
rine snow with 50% probability each. Second, we flipped the extracted snow along
the horizontal axis, the vertical axis, both axes, or neither with equal probability.
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To create Snowy-VAROS, we used a subsequence of VAROS where the robot trav-
els above a straight pipe (see Fig. 5.2), because the full VAROS dataset, is a very
challenging sequence for traditional SLAM systems. However, the pipe subse-
quence offers better features such as corners and edges for keypoint detection
than other parts of VAROS which move primarily above mounds of sand. Addi-
tionally, the straight pipe makes it easy to judge the quality of the tracking by the
shape of the pipe in the sparse map made by the SLAM pipeline.

5.2.4 Snow Extraction

The snow extraction process was first introduced in our paper Detecting and Sup-
pressing Marine Snow for Underwater Visual SLAM, and is further discussed below.

During snow extraction, we use a 60× 60 window, P , with a stride of 10. For each
window, P , we then calculate the RGB-distance, D, between all pixel values p in
P and the median colour of the window, MP . In order to make a mask of weights,
W , between 0 and 1, we scale the distances by the inverse of the maximum dis-
tance. To further reduce the effect of the background we use a threshold to set the
weight of pixel p, Wp, to 0 if its distance to the median colour, D(MP , p), is below
the threshold value τD = 30. This threshold value was determined through ex-
perimentation, and 30 was found to be low enough to not affect snowflakes while
also being high enough to eliminate much of the background.

Because marine snowflakes usually appear as bright spots, we also use a thresh-
old, τI = 20, on the grayscale pixel intensities, IGS . This is needed because shad-
ows often appear in the snowy images and have a high distance from the median
colour which we do not want to include in our mask. We use IGS(p) to denote the
grayscale intensity of a pixel at location p. The full calculation of the mask weight
at location p in P can be seen in Equation 5.2. Equation 5.1 describes the function
used to find the distance between two pixels.

D(p, q) = |I(p)− I(q)|. (5.1)

Wp =





0 if IGS(p) < τI
0 if D(MP , p) < τD

D(MP , p)

max
q

D(MP , q)
otherwise.

(5.2)

For each pixel, its average weight from all windows is used when extracting snow.
This is to ensure that windows with large marine snow particles do not introduce
image artefacts after superimposing the snow, due to the shift in median colour
caused by the large snow particle. From a snowy image S, background image B,
and alpha-key weight W , we superimpose images following Eq. (5.3).

I = B ⊙ (1−W ) + S ⊙W. (5.3)
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5.2.5 Keypoint Filtering

For the superimposed datasets, we detect 1400 ORB keypoints per superimposed
image, where 700 clean keypoints were detected in the original background im-
age, and another 700 marine snow keypoints in the extracted snow. To remove
samples which become mislabelled after superimposing, we used our variance-
based filtering and snow proximity filtering methods.

The variance-based filtering for snow-keypoints used a variance threshold of E =
14, and patch-size twice the size of the ORB keypoints’ size parameter. The thresh-
old, E , was selected by sampling keypoints which were filtered. We then evalu-
ated their resemblance to marine snow in the combined image until borderline
acceptable cases were kept, and clearly misleading ones were removed. Formally,
a keypoint, Ks, from the extracted snow is removed if the inequality in Eq. (5.4)
is false, where PSi, and PBG are image patches around Ks in the superimposed
image and background image, respectively.

Var [PSi] > Var [PBG] + E (5.4)

The snow proximity filtering used a patch size of 8 × 8 when checking for snow
near keypoints detected in the background image. The patch, PES , is taken from
the extracted snow of the snowy image. If the patch’s maximum colour chan-
nel intensity was greater than 70 in the extracted snow, as seen in Equation 5.5,
the keypoint was removed due to a potentially misleading label as free of snow.
Again, this threshold was selected by sampling keypoints which were removed,
until a fair filtering was found.

maxPES > 70 (5.5)

Finally, after filtering the keypoints to remove misleading samples, we applied
random grid selection separately on each set of keypoints to extract up to 250
keypoints from each class.

5.2.6 Dataloaders for Limited Working Memory

It quickly became apparent that the data pipelines we made could generate far
more data than what our computers could store in 16GB of working memory.
Consequently, we made custom dataloaders which prioritised two competing ob-
jectives: minimising reading from disk, and maintaining random ordering of sam-
ples in the training dataset.

For the patch-dataset we elected to extract patches within the dataloader during
training, as opposed to extracting patches beforehand and saving them as part
of the dataset. Consequently, all images must be loaded at least once to extract
its patches, meaning memory consumption can rapidly exceed what resources
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we had. We made this decision in order to offer a more flexible dataset, where all
properties of the extracted patches were determined by the model, not the dataset.

Since one image corresponds to hundreds of keypoints, we made a Least Recently
Used (LRU)-cache which only stores a small subset of the dataset’s images. One
challenge of this approach is that caching is only effective if it has a high hit-
rate, meaning when an image is needed it should, with only a few exceptions, be
present in the cache. Since all images in the dataset must be available whenever
one of its keypoints is used for training, a completely random ordering of the
keypoints would lead to frequent misses of the cache; an LRU-cache is based on
the assumption that if an item in the cache is removed, it will not be needed for a
long time, an assumption which is completely violated with random ordering.

Thus, our objective for the patch-dataset is to order the dataset in a way which
maximises the cache hit-rate but maintains some degree of random distribution
of images and labels. Conceptually, this can be achieved with an ordering of the
dataset, D, in which the keypoints of an image, Ki are located in a subarray, Ai,
of D where the cardinality of Ai never exceeds a given size ti, and ti ∝ |Ki|. In-
creasing ti effectively increases the randomness of the keypoints since an image’s
keypoints can be present in a larger section of D. However, this increased spread
risks reducing the cache hit-rate if the cache size is not large enough to accommo-
date a higher value.

Our design follows this example by ordering the dataset before training begins.
When ordering the keypoints, keypoints are selected at random from a small, or-
dered set of images S. When an image in S has no keypoints left, it is removed,
and a new, randomly selected image is placed at the rear of S. We use a discrete
probability function when selecting which image in S to extract a keypoint from.
This distribution decreases linearly, meaning it is biased towards items at the front
of S. This is intended to prevent the subarrays, Ai, from clustering together.

Figure 5.3 shows an illustration of a probability distribution similar to ours prior
to normalisation. To create a distribution, we specify the slope of the linear func-
tion which defines the distribution, and its offset at the last sample which makes
sure the probability which corresponds to the last item in S is greater than zero.
The function is then sampled at x = 0, 1/|S|, . . . , |S|/|S| and normalised. This
means that we cannot specify t ourselves, but rather define slope, offset and the
cardinality of S, and measure ti afterwards. Testing with approximately 1.000.000
keypoints from 4417 images, |S| = 100, and a cache size of 300, we noticed a
change in hit-rate from 8% with random ordering to 99.6% with our ordering. We
later confirmed that this hit-rate was as good as it could be, meaning each image
was only missed once. We also measured the median cardinality of Ai to be 26155,
i.e., for 50% of the dataset, ti ≤ 26155.

Even with |S| = 250, the hit-rate was unchanged at 99.6%, meaning the lru cache
never loaded an image twice and works even with the median t now at 64950.
However, we stayed with the smaller value of |S| to accommodate datasets with
a greater number of keypoints per image than the one we tested.
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Figure 5.3: Example of a probability mass function used for dataset ordering (after normal-
isation). This example has a slope of −1.0, an offset of 0.4, and |S| = 6

While the descriptor dataset was less memory-intensive than the patch-dataset,
the sheer number of samples present in our datasets meant that a conservative
approach to memory use was still required. The descriptor datasets consist of
two folders—one for each label. Each folder contains .npy files which correspond
to the descriptors of an image with the same labels as the other files in the folder.
While the patch-dataset needs to load an image for every keypoint, the descriptor-
dataset does not need the image at all. Hence, it does not matter if keypoints from
one image are spaced far apart in the dataset. Consequently, our only trick to limit
memory use was to divide the dataset into multiple subsets, only loading one
subset at a time. To ensure random ordering of the data, subsets are generated at
random by scrambling the paths of all the .npy-files. After loading the descriptors
of a subset, the subset itself is scrambled, because otherwise the subset would be
grouped by image and label.

5.2.7 Other Opportunities

We made our datasets not just as a snow detection benchmark, but as a task ag-
nostic dataset that can be used for other tasks as well e.g. snow removal and seg-
mentation. Therefore, our snow extraction and superimposing implementation
make it possible to store both the extracted snow and the combined snowy image.
Alongside the original background image, these can be used to train and evaluate
snow removal and snow segmentation methods.
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Notably, as part of our published CVPR paper, we have made the documented
code for snow extraction and superimposing publicly available with 2067 snowy
images, and 3941 snowless images from our NOAA and Eelume videos. These
files were published on the Zenodo open data platform3. Consequently, the dataset’s
potential in tasks such as segmentation and snow removal can be unlocked by
others.

5.3 SLAM Evaluation Framework

We used a python-based SLAM and VO framework, named pySLAM4, to evalu-
ate the classifiers in pose estimation and mapping tasks. Pyslam is an open-source
platform originally developed for educational purposes. It offers a range of de-
scriptors, detectors, and matchers, and offers built-in mapping, keyframe man-
agement, local and global bundle-adjustment, outlier rejection, active matching
[Chli and Davison 2008] which predicts the image coordinates of existing key-
points based the inter-frame motion, and motion models to predict pose based on
the current velocity—all of which are staple SLAM-techniques.

Using this system allows us to implement the classifiers without worrying about
mixing programming languages. This also provides a highly configurable testbed
to evaluate how the classifiers complement modern SLAM techniques. One clear
downside is that pySLAM and its python implementation would never be used
for real-world SLAM, since it is too slow compared to programming languages
such as C and C++. However, we argue this is a relatively small problem given
the customiseability and simplicity pySLAM offers.

For our purposes we used pySLAM with the ORB detector and descriptor, extract-
ing 2000 keypoints per frame on the real-world sequences, and 3000 keypoints per
frame in VAROS and Snowy-VAROS. The snow classifiers were implemented im-
mediately after keypoint description to create a system which can easily swap
between the two classification schemes. With that said, for P-CLAS, the most effi-
cient implementation is to classify keypoints before description, and only generate
descriptors on keypoints which pass snow classification.

3www.zenodo.org/record/6424752
4www.github.com/luigifreda/pyslam
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Chapter 6
Experiments

Here we present the qualitative and quantitative experiments used to evaluate
the classifiers. We conducted experiments to evaluate stand-alone classification
performance, and performance in SLAM use cases. We also include an ablation
study, to verify the design choices made for the datasets and detectors.

6.1 Criteria for Research Questions

To design experiments and assess their results in relation to the research questions
(Section 1.2), we formulate evaluation strategies related to the following topics:

• Quantitative metrics on test datasets

• Qualitative results on real-world sequences

• SLAM performance

• Execution speed

An explanation of each topic and its relevance to the research questions is given
below:

Quantitative metrics on test datasets: We base the quantitative results on bi-
nary classification metrics obtained from various combinations of our test dataset
splits. These results indicate the ability of the models to generalise to the prob-
lem space they have been trained on, but do not necessarily indicate real world
abilities since most of the data is synthesised.

Qualitative results on real-world sequences: The qualitative evaluation of key-
point classification intends to document performance on real video sequences.
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Because such sequences do not have ground truth values, we must rely on visu-
alisation tools and judge the classification performance ourselves. Given a broad
selection of video material, these qualitative tests can highlight performance in
a large set of possible operating conditions. While these results clearly relate to
RQ1 (How can the effect of marine snow on keypoint detection, matching, and
real-time SLAM be mitigated?), they are also relevant for RQ2 (How can marine
snow be digitally synthesised for use in machine learning?). This is because the
contrast in performance between the quantitative and qualitative tests can high-
light the ability of the models to generalise from synthetic to real marine snow,
potentially indicating shortcomings of the datasets should they be unable to do
so.

SLAM performance evaluates how the snow classification impacts pose esti-
mation and mapping, and enables comparisons of SLAM performance with and
without marine snow classification. Additionally, it can highlight how existing
keypoint rejection methods cope with marine snow of varying severity. These
results will be substantial to our answer for RQ1.

Execution speed is important to support real time operation in SLAM pipelines,
in accordance with RQ1. Consequently, we evaluate both the keypoints processed
per second by each method, and cycle times in pySLAM with and without the
classifiers.

6.2 Experimental Setup

In this section we describe the experimental setup of each of our experiments such
that they can be reproduced by others.

6.2.1 Quantitative Experiments

For stand-alone performance, we used test splits of our U, OW, and UW datasets
and evaluated F1 score, accuracy, True Positive Rate (TPR) and True Negative Rate
(TNR). As opposed to testing on the datasets separately, we chose to combine var-
ious splits during testing, training, and validation. However, as a baseline we
included the unmodified dataset as a standalone dataset to compare results to
non-superimposed data. Alongside the U dataset, we created the UW+U dataset,
OW+U dataset, and lastly the All-dataset which combined all three datasets. These
dataset combinations were also used to train and validate multiple versions of P-
CLAS and D-CLAS.

We mainly view the superimposing process as a method of extending datasets, not
necessarily generating them from the ground up (although this is certainly possi-
ble too). Therefore, the superimposed dataset splits used in our experiments were
always paired with the corresponding split from the unmodified dataset. This ap-
proach yields the diversity of the superimposed backgrounds, guaranteed realism
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of the unmodified data, as well as the untextured backgrounds of the unmodified
’snowy’ images, which, while bland, are frequently encountered underwater.

We also did quantitative evaluation on different implementations of D-CLAS which
entailed comparing it to some default classifiers in scikit, and training it with dif-
ferent descriptors, which had all been made from the same ORB keypoints. When
training on other descriptors, the only architectural difference was to modify the
input layer to the appropriate size, and use real numbered input vectors as op-
posed to binary input vectors for the VGG120 descriptor.

6.2.2 Qualitative Evaluation on Real World Sequences

Qualitative assessments of keypoint classification were performed on six diverse
underwater sequences. For each sequence, we used ORB to extract 2000 key-
points, and then classified these, typically on every other frame from the first 20
seconds of the video. We saved the results in separate recordings with the frame-
rate halved, such that we could analyse the results afterwards at a lower playback
speed. We denote and summarise the videos as follows:

• V1: Rocky background with dense snow, both brightly lit.

• V2: Large yellow structure, with very large, dense snow.

• V3: Dark brown sand and rocks with moderate snow under dim, yellow
lighting.

• V4: Moves from a close-up of a yellow structure. Extremely dense and large
marine snow.

• V5: Flat ocean bed in the distance, with a dense cover of small, fast-moving
marine snow.

• V6: Mainly black and white colours, and silty ground with out of focus ma-
rine snow.

Here, V2, V4, and V6 are Eelume videos, the others are from NOAA. The Eelume
videos generally have lower bitrate than the others. The filenames of the publicly
available NOAA videos are given below. They can be accessed through the Open
Exploration Video Portal.

• V1: EX1202L2 VID 20120322T135148Z ROVHD COR SPO FSH.mov

• V3: EX1004L3 VID 20100722T212402Z ROVHD ROCK LEDGE SLOPE.mov

• V5: EX1304L1 VID 20130718T185323Z ROVHD SKATE.mov.

6.2.3 Evaluation of SLAM Performance

To evaluate performance in SLAM use-cases, we used our pySLAM implementa-
tion with and without keypoint classification on both real-world sequences and
synthetic sequences with and without superimposed marine snow. We visualised
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the point cloud and relative poses produced by pySLAM, the keypoints it tracked
between frames, and the keypoints rejected by its default outlier rejection scheme
based on RANSAC [Fischler and Bolles 1981] and ratio testing [Lowe 2004]. All
experiments were conducted with an RTX2080 GPU.

To select sequences for our qualitative tests with pySLAM, our main interest was
to evaluate performance under differing marine snow conditions, from no marine
snow to dense marine snow. This was done to evaluate both when snow classifica-
tion may be necessary, and when our networks are successful. A second require-
ment for the test sequences is that the robot moves sufficiently throughout the
recording, because SLAM pipelines are more accurate in sequences with mean-
ingful movement between frames. Consequently, we do not use most sequences
from our qualitative keypoint classification tests. Specifically, we evaluate our
classifiers on the following sequences:

• Sequence with Exclusively Snow - EX1902 VID 20190514T194459Z
ROVHD.mov

• Sequence with Heavy Snow - Eelume sequence, same as Video 6

• Sequence with Light Snow - EX1202L2 VID 20120322T145121Z ROVHD
CAR.mov

• Sequence with No Snow - EX1603 VID 20160228T210505Z PTMAN ROCK
SIP.mov

While the sequence with exclusively snow is not a sequence where VSLAM would
be appropriate, it is still a useful tool to evaluate the behaviour of pySLAM with
and without snow classification. Moreover, snow classification may be used to
determine when exclusively snowy scenes are encountered, and allow the SLAM
system to react to this circumstance.

6.2.4 Ablation Study

The ablation study is intended to compare results from our chosen methods, with
modified counterparts which remove certain features. From this comparison, it
is possible to better understand the effect of the modified subcomponent. In our
study we made the following comparisons:

• A1: Compare a single scale P-CLAS with the standard 3 scale P-CLAS.

• A2: Compare P-CLAS trained on grayscale images with the standard RGB
implementation.

• A3: Compare P-CLAS and D-CLAS to models trained on datasets without
snow proximity filtering and variance-based visibility filtering.
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Experiment A1 was conducted with the dataset suite from the original quanti-
tative experiments, and a new P-CLAS implementation which extracts a single
64 × 64 patch, in contrast with our standard approach which used three patches
at 64× 64, 48× 48, 32× 32.

Experiment A2 was conducted with grayscale images made through the OpenCV
BGR2GRAY grayscale transform. These models were tested on the same testsets
mentioned above.

To evaluate the effect of snow proximity filtering and variance-based visibility in
experiment A3, we trained on UW, OW and UW+OW datasets with and without
snow proximity filtering and variance-based visibility filtering. we omitted the U
dataset since this dataset has no keypoint filtering. The test results are, however,
given on testsets with filtering. This is because a difference in performance be-
tween the models must be attributed to the more varied, unfiltered dataset. We
do not include random grid selection in the ablation study, even though it can be
considered a kind of filtering. This is because it does not limit the domain of the
dataset, unlike the filtering steps we evaluate.

6.3 Limitations

The main limitation of our experimental setup is imposed by the difficulty of ob-
taining ground truths for keypoint classification. Consequently, the vast major-
ity of our quantitative results rely on our superimposing approach. This is also
true for the qualitative results obtained with pySLAM in Snowy-VAROS, a dataset
which was made with superimposing. This limits the confidence we can reason-
ably have that the quantitative results generalise to real-world scenarios, since
the superimposing approach may introduce artefacts which the networks rely on
during classification. Similarly, Snowy-VAROS may favour models trained on
our superimposed data, because Snowy-VAROS and the training data were made
with the same superimposing pipelines.

Our qualitative tests could be influenced by biases we may have when examin-
ing the visual results of our methods. However, we have made an effort to share
as much relevant video material as possible, and maintain consistent language
when characterising those videos. Another weakness of qualitative tests is that it
becomes more difficult to tell apart models which perform similarly, and qualita-
tive results are generally more subjective than quantitative results.

Another concern is similarities between our test and training data. While we made
sure to limit individual video sequences to one dataset split when we made the
datasets, such that frames from one video may not appear in training and testing
data, we did not extend this separation to include videos from similar locations
and expeditions. This could lead to unreliable results on the quantitative metrics.
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Regarding our experiments in pySLAM, we have already discussed how its python
implementation makes measurements of cycle times incomparable with SLAM
systems for real-world applications, which are typically made in C++. Another
important point is that our analysis of pySLAM’s behaviour with and without
keypoint classification can not be freely generalised to other, more broadly adopted
SLAM systems, because we can not rule out the possibility that the behaviour is
just a characteristic of pySLAM alone.
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Chapter 7
Results

Here, we present the quantitative and qualitative results of our experiments.

7.1 Keypoint Classification Metrics

This section presents the results obtained on the various test splits of our datasets.
The first subsection compares the results of P-CLAS and D-CLAS, while the sec-
ond and third sections compare D-CLAS with similar architectures based on dif-
ferent classifiers and descriptors, respectively.

7.1.1 Comparing P-CLAS and D-CLAS

In Table 7.1 we present the complete results of all P-CLAS and D-CLAS models on
all test datasets. Rows denote the classifier and its training data, while columns
denote the test dataset and metric. For simplicity, we begin by looking at Table
7.2, which only contains data related to the U dataset, and All-dataset.

Unmodified UW + U OW + U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

Pa
tc

h

U 0.999 0.999 0.999 1.0 0.617 0.792 0.446 0.999 0.47 0.687 0.309 0.997 0.402 0.692 0.252 0.998
UW + U 0.968 0.972 0.991 0.957 0.948 0.961 0.931 0.98 0.854 0.861 0.904 0.825 0.877 0.897 0.894 0.9
OW + U 0.998 0.998 0.996 0.999 0.913 0.94 0.84 0.999 0.94 0.948 0.894 0.993 0.91 0.932 0.839 0.996
All 0.996 0.996 0.996 0.997 0.975 0.982 0.955 0.998 0.961 0.965 0.954 0.975 0.964 0.971 0.95 0.985

D
es

c

U 0.945 0.951 0.98 0.929 0.778 0.848 0.712 0.929 0.809 0.833 0.784 0.873 0.763 0.82 0.707 0.899
UW + U 0.944 0.949 0.978 0.927 0.913 0.933 0.931 0.935 0.892 0.898 0.943 0.86 0.893 0.909 0.93 0.895
OW + U 0.954 0.959 0.977 0.946 0.916 0.937 0.917 0.949 0.917 0.925 0.919 0.93 0.909 0.926 0.906 0.939
All 0.955 0.961 0.964 0.958 0.935 0.952 0.926 0.967 0.919 0.928 0.912 0.941 0.921 0.936 0.909 0.955

Table 7.1: Binary classification results by the classifiers. Rows denote the network and its
training data, while columns denote the test dataset. The Unmodified dataset (U), Under-
water superimposed (UW), and Overwater superimposed (OW) were combined and used
for testing. We provide F1 scores, accuracy, True Positive Rates (TPR), and True Negative
Rates (TNR) for each case.

69



Unmodified All datasets
F1 Acc TPR TNR F1 Acc TPR TNR

Patch U 0.999 0.999 0.999 1.0 0.402 0.692 0.252 0.998
All 0.996 0.996 0.996 0.997 0.964 0.971 0.95 0.985

Desc U 0.945 0.951 0.98 0.929 0.763 0.82 0.707 0.899
All 0.955 0.961 0.964 0.958 0.921 0.936 0.909 0.955

Table 7.2: Condensed binary classification results by the classifiers. Rows denote the net-
work and its training data, while columns denote the test dataset. The Unmodified dataset
(U), Underwater superimposed (UW), and Overwater superimposed (OW) were combined
and used for testing. We provide F1-scores, accuracy, True Positive Rates (TPR), and True
Negative Rates (TNR) for each case.

In Table 7.2, starting in the left-most columns, we find that both P-CLAS and D-
CLAS achieve strikingly high scores on all metrics. P-CLAS in particular does so
well on the U dataset that it arguably is a source of worry. However, the met-
rics are accurate and are most likely caused by the highly dissimilar patches of
snow labelled samples and clean labelled samples within the U dataset. Per-
haps the most notable result is that both P-CLAS and D-CLAS models trained
on the All-dataset—i.e. 81% synthesised data—still generalise to the unmodified
dataset, with the P-CLAS model matching its U-trained counterpart, and the D-
CLAS model improving substantially on all metrics except TPR.

Moving over to the second column of Table 7.2, it is tempting to proclaim the
superimposing idea a success since the U-trained models perform significantly
worse, while the models trained on all datasets have a far more ’reasonable’ drop
in performance. However, such a conclusion assumes that the models which per-
form well on superimposed data will generalise to real-world data, something we
can only evaluate through qualitative tests.

Extending our gaze to the full binary results in Table 7.1, we will first highlight
how both All-trained classifiers are able to outperform the other checkpoints in all
test datasets except the U dataset where the results are far more even. This means
that models trained on the two superimposed datasets are able to generalise to
both domains. Moreover, the tendencies of Table 7.2 remain consistent with the
results in table 7.1.

We should also point out how the U-trained P-CLAS model fares significantly
worse than its D-CLAS comparable when considering the TPR metric on the su-
perimposed datasets. This can be taken as a sign that the superimposing approach
is not sufficiently realistic to be recognisable to this classifier. If this was the case
we would expect both classifiers to be significantly affected by lower TPR scores.
While the U-trained D-CLAS model clearly struggles with TPR, we are not entirely
convinced by this explanation. Our hypothesis is that the P-CLAS model has been
so conditioned on white dots on untextured backgrounds from training on the U
dataset, that ’marine snow’ keypoints that deviate from this in the superimposed
datasets become a large source of incorrect classifications. D-CLAS on the other
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hand may have some benefits in its ORB-encoding which alleviates some of these
issues. In the end, we will rely on qualitative tests to try to find a conclusion to
this debate.

As a final note, we found that D-CLAS exceeds speeds of 66000 keypoints per sec-
ond, compared to 14600 for P-CLAS on a GTX 1080 GPU. This partly comes down
to pre-processing which D-CLAS avoids, while P-CLAS requires patch extraction.
By adapting the multi-scale approach, these results could come closer together.

7.1.2 Comparing Classifiers for Descriptors

Table 7.3 lists the results of scikit’s MLP (a synonym for FCNN), LinearSVC, Gaus-
sianNB, QDA, and Deciscion Tree classifiers, alongside our D-CLAS architecture.

F1 Acc TPR TNR
MLP 0.921 0.926 0.991 0.876
LinearSVC 0.933 0.940 0.968 0.918
GaussianNB 0.836 0.838 0.946 0.756
QDA 0.852 0.859 0.936 0.799
Decision Tree 0.832 0.847 0.874 0.829
Ours(D-CLAS) 0.945 0.951 0.980 0.929

Table 7.3: Comparison of D-CLAS with five scikit classifiers

These results motivated our initial decision to pursue an FCNN approach to de-
scriptor classification. As we can see, D-CLAS presents a substantial improvement
of F1 score and accuracy compared to the other models. It is only beat on the TPR
metric where MLP exceeds it. Since MLP is another term for FCNN, we can assert
with confidence that the ORB descriptors are particularly well suited for classifi-
cation with neural networks. It should also be stated that the scikit models were
significantly slower to train than D-CLAS.

7.1.3 Comparing Descriptors

Our motivation behind comparing different descriptors was to see how the en-
codings used by various descriptors affected the descriptor classifier’s ability to
classify keypoints. Four different frequently used descriptors were tested—ORB,
FREAK, SIFT, and VGG120—using default settings in OpenCV to generate the de-
scriptors. In Table 7.4, the dataset and descriptor used for training can be seen by
the rows, while the data used for testing can be seen by the columns.

71



U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR

ORB U 0.945 0.95 0.984 0.923 0.77 0.821 0.719 0.893
All 0.953 0.959 0.977 0.945 0.926 0.937 0.94 0.935

FREAK U 0.981 0.984 0.992 0.979 0.61 0.784 0.463 0.968
All 0.916 0.925 0.996 0.876 0.792 0.847 0.796 0.877

SIFT U 0.935 0.942 0.965 0.925 0.466 0.684 0.33 0.938
All 0.851 0.855 0.949 0.784 0.8 0.826 0.831 0.822

VGG U 0.978 0.981 0.988 0.975 0.573 0.738 0.422 0.963
All 0.928 0.935 0.976 0.903 0.884 0.902 0.902 0.902

Table 7.4: Binary classification results with different descriptors. Rows denote the descrip-
tor and its training data, while columns denote the test dataset. The Unmodified dataset
(U), Underwater superimposed (UW), and Overwater superimposed (OW) were combined
and used for testing. We provide F1 scores, accuracy, True Positive Rates (TPR), and True
Negative Rates (TNR) for each case.

First of all, FREAK does better than the other descriptors on the U dataset by a
relatively large margin, but falls behind ORB on the All-testset. Among the de-
scriptors, ORB does the best across all remaining dataset combinations, including
ones from the full table (Table B.1) included in the appendices. Interestingly, the
U-trained ORB model is far more capable of generalising to the All-testset than
the other U-trained architectures.

On the F1 metric, the U-trained FREAK model drops by 0.189 between the U-
testset and All-testset, compared to 0.019 for ORB. Notably, on the TNR metric, U-
trained FREAK scores better than all other descriptors, even its All-trained twin.
In fact, the ORB architectures are the only ones to deviate from the observation
that U-trained models have better TPR than All-trained ones. The same is true for
all metrics if we limit ourselves to the U testset. We are unable to explain why this
is, but perhaps it is connected to why ORB does better overall.

Briefly extending our analysis to the other two descriptors, we find that SIFT does
particularly poorly on the All-testset, while VGG achieves the second-best results
overall.

7.2 Qualitative Results in Keypoint Classification

In this section, we describe the qualitative results of P-CLAS and D-CLAS on six
video sequences.
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V1: Rocky background with dense snow, both brightly lit.

Figure 7.1: A frame from video 1.

Figure 7.1 shows a frame from video 1 which features a series of rocky crests,
one prominently in the front of the picture, and one further into the shadows
on the top left. The marine snow is particularly visible in front of the shaded
rock, which can present a challenge for the classifiers, since the textured back-
ground is visible through the shadows. A playlist of the classification results
on this video is found at www.youtube.com/watch?v=-uryM93ozTc&list=
PLWEGWR7qQmlVQwQwrdSNvsLCu4EjI82Cg.

Beginning with U-trained P-CLAS the issue of textured backgrounds is high-
lighted immediately as it classifies every keypoint as clean, despite a significant
amount of keypoints being placed in the snowy, upper left region. This is pre-
cisely the kind of behaviour we wanted to avoid using our superimposing ap-
proach. OW+U-trained P-CLAS improves slightly, but still classifies a majority
of the snowy keypoints as clean, while UW+U- and All-trained P-CLAS seem to
correctly classify around 50–60% of the marine snow. None of the models had any
issue correctly classifying good keypoints, which is unsurprising given the TNR
rates observed in the quantitative tests.

The D-CLAS models fare significantly better than P-CLAS on this sequence. Be-
ginning with U-trained D-CLAS, around 70–80% of the keypoints in the challeng-
ing upper-left region are classified correctly, though a handful of false positives
are introduced on the foremost rock. These results are notable given that this
model has not been trained on any superimposed data, and suggests that the ORB
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encoding represents keypoints in such a way that marine snow descriptors can
remain similar despite differences in their keypoints’ backgrounds. This could
possibly explain why U-trained D-CLAS did better than U-trained P-CLAS on the
All-testset in our quantitative tests.

OW+U-trained D-CLAS performed similarly to the U-trained variant, while the
UW+U trained model improved on both TPR rates and the already high TNR. Cu-
riously, the All-trained model did worse than the others, approximately matching
the best performance seen by P-CLAS models, with around 50–60% correct key-
points in the upper left corner.

V2: Large yellow structure, with very large dense snow.

Figure 7.2: A frame from video 2.

Figure 7.2 shows a frame from video 2 which features a large yellow structure
supporting a pipe, engulfed by dense marine snow. A playlist of the classification
results on this video is found at www.youtube.com/watch?v=RMyoeGvfmhQ&
list=PLWEGWR7qQmlX_Q2KC7BCryX8RekE4FipK.

U-trained P-CLAS achieves near perfect accuracy on marine snow keypoints in
this sequence, only presenting occasional false negatives when the snow moves in
front of the yellow beams and the brown, inner section of the pipe. The amount
of false negatives was lower than we had expected, given the lack of coloured
backgrounds in the U training data. Most marine snow is correctly classified as
it traverses the region in front of the pipe. However, at the start of the sequence,
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the camera is close enough to the structure to capture a gray, spotted pattern on
the outer border of the pipe. All keypoints placed on this pattern were incorrectly
classified as marine snow.

While UW+U-trained P-CLAS does slightly better on the spotted pipe section,
OW+U model improves markedly, getting around 60–70% of the keypoints on the
pipe correctly labelled as clean. All-trained P-CLAS improves this even further,
but has a far larger presence of false negatives elsewhere in the sequence not seen
with the other models.

U-trained D-CLAS does better than all P-CLAS models on the deceptive spotted
pipe, although it has slightly elevated levels of false negatives, though not nearly
the extent of All-trained P-CLAS. To our eyes, all other D-CLAS models perform
similarly to the aforementioned U-trained architecture, with perhaps modestly
better TNR rates.

V3: Dark brown sand and rocks with moderate snow under dim,
yellow lighting.

Figure 7.3: A frame from video 3.

Figure 7.3 shows a frame from video 3 which features a brown environment of
sand and rock, with low to moderate levels of marine snow. Due to the angle
of the robot (which moves relatively far throughout the scene), the marine snow
appears bright over the shaded ocean floor which provides a richly textured back-
drop for the marine snow keypoints. Notably, compared to the other sequences,
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a relatively small amount of the keypoints are actually placed on the snow. A
playlist of the classification results on this video is found at www.youtube.com/
watch?v=nmNexTjtxkU&list=PLWEGWR7qQmlVyt3NTvr5RcAK6BQZaeOi8.

U-trained P-CLAS sticks to its behaviour from Video 1, where it classifies every
keypoint as clean. Overall, performance from P-CLAS is lacking on this sequence,
with the main change brought by the other models being an increase in false
positives on the ground. While all of the other models occasionally classify the
snow correctly, only the UW+U trained model is able to meaningfully improve
the snow classification results, achieving between 30–50% correct classifications
on the snow as the sequence progresses.

U-trained D-CLAS does significantly better at classifying the snow in the video,
easily getting more than 90% correct, however at the cost of a clear increase in
false positives on the ground. The models trained on superimposed data improve
upon this, of which All-trained D-CLAS does the best. Although it still has worse
false positive rates than P-CLAS models.

V4: Moves from a close up of a yellow structure. Extremely dense
and large marine snow.

Figure 7.4: A frame from video 4.

Figure 7.4 shows a frame from video 4 which moves from an extreme close up
of a yellow charging structure, back to the wide view seen in the figure. The
video features extreme amounts of very large marine snow; we have not found
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similar conditions in any other sequences. A playlist of the classification results
on this video is found at www.youtube.com/watch?v=9lwEYTOttY8&list=
PLWEGWR7qQmlVtLx8SNw97ZBv7yR5Ox_2y.

U-trained P-CLAS does very well, probably because most snowy keypoints in this
sequence match the flat backgrounds seen in its training data. However, snowy
keypoints are often classified incorrectly when they pass the shaded yellow beams
in the distance. This is also true for the start of the sequence, where a section of
gray marine snow on a darker-gray background is labelled as clean around 90%
of the time. OW+U and UW+U trained P-CLAS improve upon the results in the
gray region at the start of the sequence, classifying around 50–60% and 70–80% of
the keypoints correctly as snow, respectively. However, both models still struggle
with marine snow in front of the yellow beams later in the sequence. All-trained
P-CLAS does the worst, with significantly higher levels of false-negatives than the
other models, even in regions with flat backgrounds.

U-trained D-CLAS maintains similar performance to the best P-CLAS models,
perhaps with slightly elevated false negative rates. The same can be said for
the other D-CLAS models, although All-trained D-CLAS has higher false nega-
tive rates than the rest, almost to the same level as All-trained P-CLAS.

V5: Flat ocean bed in the distance, with a dense cover of small,
fast-moving marine snow.

Figure 7.5: A frame from video 5.
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Figure 7.5 shows a frame from video 5 which features a flat ocean floor slightly in
the distance, behind a dense sheet of small marine snow particles moving quickly
from left to right. The results are uploaded here: www.youtube.com/watch?v=
ZQNr05qZagc&list=PLWEGWR7qQmlVV2x0p-57UaySTGVXyIKCE.

U-trained P-CLAS presents no false positives that we could tell, and a modest
amount of false negatives, mainly along the vertical center of the image. UW+U
and OW+U models improved TPR rates even further, correctly classifying marine
snow well into the bottom half of the image which has a more textured backdrop.
This comes at the cost of marginally elevated false positive rates. Meanwhile, the
All-trained model has greater levels of false negatives than all other models.

U-trained D-CLAS achieves similar results on the marine snow as the best P-
CLAS models, although it has meaningfully elevated levels of false positives on
the white texture on the ocean floor. D-CLAS models trained on superimposed
datasets improve slightly on this issue, with the All-trained D-CLAS model gar-
nering the lowest false positive rates.

V6: Black and white colours, silty ground with out of focus marine
snow.

Figure 7.6: A frame from video 6.

Figure 7.6 shows a frame from video 6 which features the robot travelling close to
a small gray pipe on the silty ocean floor. The marine snow is almost motionless
as the robot moves quickly troughs it. In contrast with previous examples, the ma-

78

www.youtube.com/watch?v=ZQNr05qZagc&list=PLWEGWR7qQmlVV2x0p-57UaySTGVXyIKCE
www.youtube.com/watch?v=ZQNr05qZagc&list=PLWEGWR7qQmlVV2x0p-57UaySTGVXyIKCE


rine snow comes rapidly in and out of focus and illumination as the robot passes.
The results are uploaded here: www.youtube.com/watch?v=2fai7oGJCx4&
list=PLWEGWR7qQmlWcyxzagFroqY6jc_GA_T3O.

U-trained P-CLAS does reasonably well on this sequence, and on any given frame
correctly classifies most snow, except the bottom-most snow which appears in
front of the seabed. At one point in the sequence, the robot does a low pass over
the terrain, at which point around 20–30% of the keypoints on the ground are
classified incorrectly as marine snow. Other than this, false positives are few but
consistent. The OW+U trained model has significantly fewer false positives dur-
ing the low pass, but slightly more false positives once the manoeuvre is over. The
UW+U network did worse during the low-pass, while the All-trained model had
fewer false positives than the others, but at the same time had significantly higher
false negative rates as well.

The U-trained D-CLAS network had near perfect accuracy on the clean keypoints
on the ground, and was unaffected by the close encounter with the ocean floor.
However, false negative rates were somewhat increased compared to P-CLAS
models, with the exception of All-trained P-CLAS. The remaining D-CLAS mod-
els all performed similarly to this standard.

7.2.1 Summarising the Results on Videos 1–6

To summarise the results from the above sections, we will first begin to highlight
the performance of U-trained models, which were generally able to set competi-
tive baselines for the other models to beat, with the only exceptions being some
sequences where U-trained P-CLAS classified all keypoint as clean. In such se-
quences, training P-CLAS on superimposed data improved performance on the
incorrectly classified keypoints. Importantly, P-CLAS’s performance was far more
reliant on superimposed training data than D-CLAS which did well on textured
backgrounds, even with its U-trained checkpoint.

Another thing to note was the frequent reduction in performance when train-
ing on both superimposed datasets as opposed to only one of them. This was
observed with both architectures. Although training on the All-dataset some-
times reduced false positive rates, false negative rates were frequently signifi-
cantly higher than other models.

D-CLAS was also more competitive with P-CLAS than in the quantitative tests,
outperforming P-CLAS on at least two sequences. The fact that U-trained D-CLAS
had improved performance on textured backgrounds compared to U-trained P-
CLAS seems to indicate that the ORB encoding may process information about
the background in a way which allows D-CLAS to generalise more easily between
marine snow on textured and untextured backgrounds. Why D-CLAS often has
more false positives than P-CLAS is difficult to assert, but it could be worth ex-
ploring if ORB’s use of grayscale imagery contributes to this difference. Lastly, it
should be highlighted how D-CLAS models, on multiple occasions, performed at
a similarly high level, regardless of training data.
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7.3 Qualitative Results with pySLAM

This section details our qualitative results with pySLAM on a collection of real
underwater sequences with differing levels of marine snow density, and on the
VAROS and Snowy-VAROS datasets. The experiments were conducted with UW+U
checkpoints for both P-CLAS and D-CLAS.

7.3.1 Sequence with Exclusively Snow

Figure 7.7: A frame from the video with exclusively snow

When running pySLAM without our keypoint rejection networks on a sequence
with exclusively snow (see Figure 7.7), pySLAM both initialises and attempts to
track pose based on the motion of the snow. Tracking continues for 150 frames,
until pySLAM eventually shuts down. This tracking duration is relatively long
compared to similar sequences we have evaluated. When enabling marine snow
rejection, the system never initialises due to a lack of consistent keypoint matches.
On average D-CLAS marked 1860 out of 1966 average keypoint detections as ma-
rine snow, while P-CLAS removed 1789 out of 1873 keypoints. When running
the system without keypoint classification, the average frame timing on this se-
quence is 0.14 seconds while with D-CLAS it is 0.23 seconds—an increase of 0.09
seconds—and with P-CLAS it is 0.52, or an increase of 0.38 seconds.
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Figure 7.8: A frame from the heavy snow sequence

7.3.2 Sequence with Heavy Snow

On the sequence pictured in Figure 7.8 with heavy snow and no marine snow
rejection, pySLAM gathers a sufficient amount of keypoints on the ground to ini-
tialise tracking and estimate poses. However, a lot of snow correspondences make
it through the standard outlier rejection scheme and are added to the map. Ad-
ditionally, the tracking is highly unstable as can be seen in Fig. 7.9: when repeat-
edly running pySLAM, the initialisation and tracking can fail multiple times in a
row, meaning we have to restart the system with a new random seed to hopefully
make it track properly. Since we do not have ground truths for these real-world
sequences, we cannot evaluate the correctness of the point clouds in Fig. 7.9 or the
point clouds generated with keypoint classification.

When we enable either classifier, pySLAM’s initialisation struggles disappear;
pySLAM successfully initialises tracking on every run, and very little snow is
tracked or added to the map. The marine snow keypoints that the networks fail
to remove are usually located on a non flat background or are very large. There
was a visible difference in the number of keypoints rejected by P-CLAS and D-
CLAS, with P-CLAS removing close to all marine snow keypoints and D-CLAS
removing noticeably fewer keypoints. The keypoints that P-CLAS and D-CLAS
classified incorrectly were generally removed by pySLAM’s inherent outlier rejec-
tion scheme.

On average 294 keypoints were filtered using D-CLAS, and 657 using P-CLAS
from an average 1455 detections. Based on pySLAM’s visualisations, we have
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a clear impression that P-CLAS was better than D-CLAS at removing the snow.
However, because we do not have ground truths, we can not be sure whether or
not this was associated with an increase in false positives.

When running the system without keypoint classification, the average frame tim-
ing on this sequence is 0.97 seconds, while with D-CLAS it is 1.19 seconds and
with P-CLAS it is 3.62 seconds. Despite classifying a smaller amount of keypoints
than on the sequence with exclusively snow, the cycle times have increased sig-
nificantly with both classifiers. For D-CLAS the increase in cycle times was 0.22
seconds, or 0.13 seconds more than the previous sequence. P-CLAS increased
pySLAM’s cycle times by 2.65 seconds, or 2.27 seconds more than the earlier se-
quence.

Figure 7.9: Point clouds from 8 consecutive runs of pySLAM on the heavy snow sequence,
without keypoint classification. Out of the 8 runs, 5 initialise on the snow and fail to track,
while 3 of the runs have better initialisation and are able to continue tracking.

In other sequences with particularly heavy snow, like Video 4 in Section 7.2, the
vast majority of keypoints land on snow. Even though our methods are able to
remove most of them, there are too few remaining keypoints to initialise tracking
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and estimate poses. From the screenshot of Video 4 in Figure 7.4, this issue may be
surprising, since the yellow structure appears as a very clear landmark to track on.
However, many keypoint detectors, including ORB, are unable to detect keypoints
on most of the yellow structure. This is because parts of it are too far away from
the camera and become blurry from the water’s turbidity, and because the yellow
structure has so few defined corners to detect.

7.3.3 Sequence with Light Snow

Figure 7.10: A frame from the sequence with light marine snow conditions

On the light snow sequence seen in Figure 7.10, the ORB detector continues to
detect keypoints on the the marine snow. However, the outlier rejection schemes
implemented in pySLAM are capable of removing these outliers, with seemingly
no marine snow being added to the map.

When running with keypoint classifiers, the results are similar. Both P-CLAS and
D-CLAS manage to remove keypoints on marine snow without affecting the clean
keypoints in any meaningful way, and the generated point clouds exhibit the same
general structure. With that said, the classifiers still differ in the amount of key-
points removed; out of 2000 keypoints, P-CLAS eliminated 403 keypoints and
D-CLAS eliminated 211 keypoints. Without keypoint classification, the average
frame took 2.89 seconds to process, with D-CLAS it took 3.19 seconds, and with
P-CLAS it was 6.85 seconds.
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Figure 7.11: A frame from the sequence with no marine snow

7.3.4 Sequence with No Snow

When running pySLAM on the sequence with no snow pictured in Figure 7.11,
D-CLAS only marked on average 22 out of 2000 keypoints as marine snow and
P-CLAS marked 52 points out of 2000. This had no meaningful impact on the
pose estimates or the point cloud generated when compared to running without
keypoint classification. When running the system without keypoint classification,
the average frame timing on this sequence is 0.94 seconds while with D-CLAS it
is 1.25 seconds and with P-CLAS it is 1.83 seconds.

7.3.5 Snowy-VAROS Sequence

Evaluating SLAM performance on real underwater footage has the potential to
give the most realistic view of the effect of snow classification. However, with the
synthetic VAROS sequence and Snowy-VAROS, we are able to control the diffi-
culty of both the background sequence and snow conditions by selecting which
snow to superimpose and onto which section of VAROS. Furthermore, we can
compare pySLAM’s performance in VAROS and Snowy-VAROS which can high-
light the effect of keypoint rejection more definitively than our typical qualitative
tests. However, we should be aware that classifiers trained on superimposed im-
ages can perform disproportionately better on Snowy-VAROS, because of similar-
ities between the superimposing process of Snowy-VAROS and the training data.
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Figure 7.12: A point map from pySLAM in VAROS without snow and no classification.
The pipe is properly tracked. Figure from [Hodne, Leikvoll, et al. 2022].

We use a subsequence of VAROS in which the robot travels adjacent to a straight
pipe (see Fig. 5.2). This pipe offers more defined features for keypoint detection
compared to other sections of VAROS. We use an Eelume sequence from our test
data for superimposing. Its density and character of marine snow is comparable
to Video 4 of the qualitative test and is well within the heavy snow category.

While VAROS, and by extension Snowy-VAROS, have ground truths which we
can use to evaluate the poses given by pySLAM, we did not manage to do so
because pySLAM mainly used relative position (without orientation) and made
some assumptions on the initial orientation which were difficult to account for.
However, by travelling along the pipe section in VAROS, it should be possible to
coarsely judge the tracking quality by how accurately the straight pipe is mapped.
Consequently, our goal is to match the point cloud in Figure 7.12, which was made
with pySLAM on the VAROS dataset without superimposed marine snow, and
without snow classification.

When testing with pySLAM only on Snowy-VAROS, a large number of keypoints
are detected on the superimposed marine snow, which leads to rapid tracking fail-
ure, coupled with inconsistent behaviour between separate runs, as was observed
on the earlier heavy snow sequence. During some tests, tracking fails completely,
while in other runs tracking is closer to the movement from the source video. Vi-
sualising the sparse map from pySLAM in Figure 7.13, we find what looks like
a wall of marine snow prominently on the right. Furthermore, the pipe which is
straight in the sequence appears bent in the point cloud.

Both P-CLAS and D-CLAS facilitated stable tracking in pySLAM, to the extent that
they were hard to tell apart. Although they could not remove all unreliable points,
pySLAM could track for far longer while being more consistent between runs. A
point cloud from pySLAM with snow classification in Snowy VAROS is seen in
Figure 7.14 where the pipe appears straight, with the exception of the very end.
This is similar to the behaviour from Figure 7.12 with pySLAM in VAROS without
both marine snow and snow classification. From pySLAM’s visualisations, we
can tell that this behaviour occurs because pySLAM is unable to detect a sufficient
amount of good keypoints, irrespective of the presence of snow.
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Figure 7.13: A point cloud from pySLAM without keypoint classification in Snowy-
VAROS. The tracking fails rapidly in a wall of snow and the straight pipe appears bent,
unlike the tracked video. Figure from [Hodne, Leikvoll, et al. 2022].

Figure 7.14: A point cloud from pySLAM with keypoint classification in Snowy-VAROS.
The pipe is seemingly tracked correctly, and few snow keypoints are included in the map.
Figure from [Hodne, Leikvoll, et al. 2022].
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On Snowy-VAROS, out of 3000 features, D-CLAS removed on average 1,627 key-
points and P-CLAS removed 1,366 keypoints. For comparison, we ran pySLAM
on the original VAROS which has nothing resembling marine snow. On VAROS,
out of 3,000 keypoints, on average 36 and 201 rejections, i.e., false positives, are
made by D-CLAS and P-CLAS, respectively.

7.3.6 Summarising the Results with pySLAM

In our experiments with pySLAM, we have tried to understand the impact of
marine snow on SLAM with and without our keypoint classification methods.

When running without keypoint detection, pySLAM’s outlier rejection scheme
(ratio testing and RANSAC) was able to ignore some marine snow. However,
it was only on the light marine snow sequence that a sufficient amount of marine
snow correspondences were removed to reliably use pySLAM. On Snowy-VAROS
and the sequences with heavy marine snow, pySLAM struggles to initialise, and
on the occasions which it does, pySLAM initialises with correspondences on ma-
rine snow keypoints which impacted the motion hypotheses and typically lead to
rapid failure of the tracking.

Introducing either P-CLAS or D-CLAS seems to have equal effect on pySLAM’s
tracking. In Snowy-VAROS, the results with both classifiers were comparable to
pySLAM’s standalone results on the original VAROS sequence without marine
snow. On the heavy sequence pySLAM’s stability increases significantly, while
pySLAM’s tracking on the light sequence is not influenced by the classifiers.

The main weakness observed is the significant computational cost which is im-
posed by P-CLAS, although we are unsure of how well this generalises to other
systems. On the heavy sequence, both P-CLAS and D-CLAS were reasonably effi-
cient at classifying approximately 1800 keypoints, spending 0.38 and 0.09 seconds,
respectively. However, as other sequences were introduced, the additional time
pySLAM used with the classifiers continued to rise. For example, on the sequence
with light snow, the computational cost of D-CLAS and P-CLAS was measured in
seconds—multiple in the case of P-CLAS. This leads us to believe that the cycle
times are influenced by how pySLAM allocates compute resources under various
workloads. While the results give an important insight into how pySLAM be-
haves with our models, the timings can not be considered representative of the
actual duration spent by the networks to classify keypoints.

7.4 Ablation Study

This section contains our ablation study, beginning with an evaluation of single-
vs multi-scale P-CLAS, and continuing with results on colour versus greyscale
and our snow proximity filtering and variance-based visibility filtering.
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7.4.1 Comparing Single and Multi Scale Patch Classifiers

Table 7.5 lists the binary classification metrics of the standard Multi-Scale (MS) P-
CLAS model (meaning the same results as in Table 7.1), and the Single-Scale (SS)
P-CLAS implementation.

Unmodified UW + U OW + U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

M
ul

ti

U 0.999 0.999 0.999 1.0 0.617 0.792 0.446 0.999 0.47 0.687 0.309 0.997 0.402 0.692 0.252 0.998
UW + U 0.968 0.972 0.991 0.957 0.948 0.961 0.931 0.98 0.854 0.861 0.904 0.825 0.877 0.897 0.894 0.9
OW + U 0.998 0.998 0.996 0.999 0.913 0.94 0.84 0.999 0.94 0.948 0.894 0.993 0.91 0.932 0.839 0.996
All 0.996 0.996 0.996 0.997 0.975 0.982 0.955 0.998 0.961 0.965 0.954 0.975 0.964 0.971 0.95 0.985

Si
ng

le

U 1.0 1.0 1.0 1.0 0.589 0.781 0.418 1.0 0.463 0.685 0.302 0.999 0.373 0.684 0.23 0.999
U+UW 0.99 0.991 0.987 0.994 0.916 0.941 0.851 0.996 0.802 0.828 0.775 0.872 0.823 0.864 0.772 0.928
U+OW 0.998 0.998 1.0 0.997 0.922 0.946 0.857 0.999 0.965 0.969 0.95 0.985 0.935 0.949 0.888 0.992
All 0.966 0.969 0.995 0.949 0.962 0.971 0.981 0.965 0.949 0.953 0.965 0.944 0.956 0.963 0.969 0.959

Table 7.5: Binary classification results by the multi-scale P-CLAS compared to a single scale
version. Rows denote the network and its training data, while columns denote the test
dataset. The Unmodified dataset (U), Underwater superimposed (UW), and Overwater
superimposed (OW) were combined and used for testing. We provide F1 scores, accuracy,
True Positive Rates (TPR), and True Negative Rates (TNR) for each case.

Overall, the two P-CLAS models perform more similar than we expected. On the
unmodified dataset, the SS classifier achieves near-perfect results, only classifying
some tens of samples incorrectly. This tells us that the original results of P-CLAS
on the U dataset were not due to its multi-scale design. Therefore, the SS network
actually improves performance on the U dataset, possibly because it has to model
a less highly dimensional function than the MS network.

The All-trained SS implementation consistently outperforms all other architec-
tures on the TPR metric, although its TNR is consistently below average. The
TPR metric is particularly important because it denotes the share of snow sam-
ples which are correctly labelled snow. Since the SS models always did better on
this metric, the benefit of MS seems dubious, at least for our CNN architecture.
This is covered further in our discussion.

The All-trained SS model’s lowered TNR is interesting because it suggests that
single-scale ’clean’ patches are more easily mistaken for single-scale ’snow’. How-
ever, the reduced TNR does not manifest itself in the U+UW and U+OW trained
single-scale models, which both present comparable and even improved TNR
compared to their multi-scale counterparts.

Looking at the F1 score and accuracy, the All-trained MS models outperform the
other models with around a margin of 0.01 or more on the UW+U and All testsets,
while being a close second on the others. This could indicate that MS implemen-
tations offer a better trade-off between precision and recall. However, if that is the
case, it should be questioned if it is worth the additional computational burden of
triple patch extraction and resizing. When examining the computational cost of
multi-scale patches, we found that our three-scale solution uses on average 0.106
seconds to extract 2000 sets of multi-scale patches from one image, compared to
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0.0289s for single-scale, and 0.0646s for two-scale. At the very least, we would
consider a 2-scale approach, e.g. 64× 64 and 32× 32.

7.4.2 Comparing Colour and Grayscale

In our literature review, we found methods that relied on pixel saturation to deter-
mine the location of snow[Farhadifard, Radolko, and U. v. Lukas 2017; Boguslaw
Cyganek and Gongola 2018]. We wanted to test if our CNN classifiers were able
to make use of this heuristic, so we trained P-CLAS networks using grayscale and
RGB input. Moreover, many descriptors—including ORB—are based on grayscale
images. Consequently, these results can highlight the significance of this differ-
ence, and if D-CLAS may perform worse because of ORB’s use of grayscale im-
agery (hereby, denoted GS). The results are listed in table 7.6.

Unmodified UW + U OW + U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

R
G

B

U 0.999 0.999 0.999 1.0 0.617 0.792 0.446 0.999 0.47 0.687 0.309 0.997 0.402 0.692 0.252 0.998
UW + U 0.968 0.972 0.991 0.957 0.948 0.961 0.931 0.98 0.854 0.861 0.904 0.825 0.877 0.897 0.894 0.9
OW + U 0.998 0.998 0.996 0.999 0.913 0.94 0.84 0.999 0.94 0.948 0.894 0.993 0.91 0.932 0.839 0.996
All 0.996 0.996 0.996 0.997 0.975 0.982 0.955 0.998 0.961 0.965 0.954 0.975 0.964 0.971 0.95 0.985

G
ra

ys
ca

le U 0.998 0.998 0.999 0.998 0.671 0.814 0.505 0.999 0.495 0.685 0.343 0.965 0.455 0.702 0.304 0.978
UW+U 0.948 0.957 0.903 0.998 0.747 0.848 0.598 0.999 0.67 0.763 0.534 0.951 0.646 0.777 0.496 0.972
OW+U 0.147 0.6 0.079 1.0 0.56 0.77 0.389 1.0 0.692 0.787 0.532 0.995 0.697 0.809 0.538 0.997
All 0.981 0.983 0.992 0.976 0.939 0.955 0.914 0.98 0.952 0.956 0.953 0.959 0.94 0.951 0.925 0.97

Table 7.6: Binary classification results by grayscale P-CLAS models compared to the RGB
version. Rows denote the network and its training data, while columns denote the test
dataset. The Unmodified dataset (U), Underwater superimposed (UW), and Overwater
superimposed (OW) were combined and used for testing. We provide F1 scores, accuracy,
True Positive Rates (TPR), and True Negative Rates (TNR) for each case.

The differences here are far more substantial than those seen in the single-scale
experiment. The GS-UW+U trained models achieve relatively poor results, only
achieving somewhat good performance on the U testset. This could not be said
for the GS-OW+U network, which classifies almost all of the U-dataset as ’clean’,
and otherwise gives subpar results.

While the GS-U trained classifier still performs very poorly on the superimposed
testsets, it was consistently able to outperform the normal U-trained P-CLAS. Of
note, is that All-trained grayscale has not nearly as significant of a loss in perfor-
mance as the other synthetically trained grayscale models.

While the degree to which training on grayscale images impacts performance
seems to vary based on training data, it seems clear that models trained on RGB
data are consistently more able to model the datasets, while generalising more
effectively to other datasets. Particularly consistent is the reduction in TPR seen
on nearly all models. Considering that the computational benefit of grayscale is
mainly memory related, we believe RGB patches to be the preferable input, when
available.
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7.4.3 Keypoint Filtering

In Section 4.2.2, we introduce keypoint filtering, with which snowy keypoints are
filtered based on their visibility in the final superimposed sequence and clean key-
points are filtered based on their proximity to marine snowflakes in the final su-
perimposed sequence. Here we test the impact of keypoint filtering on the final
trained models.

To improve readability, we divide these results into separate parts for P-CLAS
and D-CLAS. Beginning with Table 7.7, we list the results of P-CLAS trained on
UW, OW, and UW+OW datasets with and without filtering (denoted F and NF,
respectively, e.g. NF-OW). All results are given on test splits with filtering.

P-CLAS’s results without keypoint filtering

P-CLAS

UW OW UW + OW
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

F
UW 0.967 0.977 0.961 0.986 0.812 0.798 0.954 0.666 0.876 0.89 0.958 0.845
OW 0.933 0.955 0.888 0.992 0.948 0.954 0.92 0.982 0.943 0.956 0.91 0.987
UW+OW 0.961 0.973 0.945 0.988 0.943 0.946 0.974 0.923 0.955 0.963 0.965 0.961

NF
UW 0.633 0.761 0.589 0.854 0.553 0.581 0.567 0.592 0.596 0.676 0.592 0.733
OW 0.934 0.955 0.912 0.978 0.951 0.956 0.944 0.965 0.945 0.956 0.933 0.972
UW+OW 0.85 0.895 0.851 0.918 0.896 0.9 0.939 0.868 0.881 0.902 0.905 0.899

Table 7.7: Results of P-CLAS from models trained on data with (F) and without filtering
(NF). The evaluation was done on test splits which did use snow proximity filtering and
variance-based visibility filtering.

Glancing at the results in Table 7.7, it may seem like keypoint filtering improves
P-CLAS’s performance, with the NF-trained models generally performing signif-
icantly worse than their F counterparts. However, looking closer at the results, a
clear difference between NF-models is apparent. Importantly, the NF-OW model
remains competitive with the F models and is seemingly unaffected by the lack
of filtering. Meanwhile, the NF-UW model’s performance is significantly lower
across all metrics, giving some of the worst results seen so far from a P-CLAS
model trained on superimposed data. The NF-UW+OW model (whose training
data is very nearly 50% UW) also shows worse than normal results, but to a lesser
extent.

This would indicate a stark difference in the effect of keypoint filtering on UW and
OW. We examined the keypoint filtering process and found that snow proximity
filtering removed on average 18.6% and 17.8% of the keypoints in UW and OW,
respectively. Variance-based visibility filtering removed 16.34% and 12.1% of the
keypoints in UW and OW, respectively. Snow proximity filtering being relatively
similar among the two datasets is not surprising given that they superimpose the
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same extracted snow. While the difference in the need for variance-based visibility
filtering is interesting, it does not seem substantial enough to confidently explain
the reduced impact of filtering on the OW models. More importantly, when visu-
alising some of the filtered keypoints, we did not find the removed OW keypoints
to be more or less visible than the UW keypoints.

D-CLAS’s Results without Keypoint Filtering

In Table 7.8, we list the results of D-CLAS when trained on datasets with and
without keypoint filtering.

D-CLAS

UW OW UW + OW
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

F
UW 0.907 0.935 0.904 0.952 0.883 0.889 0.917 0.865 0.893 0.912 0.911 0.912
OW 0.894 0.923 0.93 0.92 0.903 0.91 0.917 0.905 0.899 0.917 0.922 0.913
UW+OW 0.917 0.941 0.923 0.951 0.906 0.913 0.914 0.912 0.91 0.927 0.918 0.933

NF
UW 0.899 0.926 0.942 0.918 0.868 0.868 0.949 0.799 0.881 0.896 0.946 0.863
OW 0.911 0.936 0.928 0.941 0.9 0.91 0.891 0.925 0.905 0.923 0.907 0.934
UW+OW 0.924 0.947 0.922 0.961 0.902 0.91 0.907 0.913 0.911 0.928 0.913 0.938

Table 7.8: Results of D-CLAS from models trained on data with (F) and without filtering
(NF). The evaluation was done on test splits which did use snow proximity filtering and
variance-based visibility filtering.

These results may seem comparably uneventful; the significant differences brought
by the NF-UW dataset in Table 7.7 are not present here. Particularly the two
UW+OW-trained models perform almost identically, although the NF variant typ-
ically comes out on top. The NF-UW model consistently sees significant improve-
ments on TPR, but equally significant losses on TNR. In fact, NF-UW has the best
TPR and worst TNR on every testset. With NF-OW it is the other way around,
with gains on the TNR metric, and losses in TPR.

Again, a possible reason behind the different results from P-CLAS and D-CLAS
is the encoding of the ORB descriptor, which in this case may encode keypoint
patches in a manner which allows D-CLAS to be less influenced by unfiltered key-
points. We are not sure of what the specifics of this benefit is, but one hypothesis
is that it could be related to the illumination-invariance of ORB descriptors. Al-
ternatively, architectural differences, such as the number of network parameters,
could also explain the difference between P-CLAS and D-CLAS.

Summary of Keypoint Filtering Study

The results of our keypoint filtering study are less clear than we had hoped for.
D-CLAS’s abilities to model the datsets was consistent between NF and F models
when considering F1 and accuracy. The main difference was the balance between
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preciscion and recall of various models. P-CLAS results presented themselves
quite differently from D-CLAS, with NF-results favouring models not trained on
datasets which included the UW dataset.

In our view, further qualitative experiments are needed to fairly evaluate the fil-
tering methods and whether they behave as intended. Based on our own results,
we will only conclude that the visibility filtering has varying impact based on
training data and the kind of architecture used.
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Chapter 8
Discussion

In this section, we discuss the implications of our results and consider the research
questions introduced in the introduction. The research questions defined in Chap-
ter 1 are:

• RQ1: How can the effect of marine snow on keypoint detection, matching,
and real-time SLAM be mitigated?

– RQ1.1: Can ML methods mitigate the impact of marine snow on un-
derwater keypoint detection, matching, and real-time SLAM?

• RQ2: How can marine snow be digitally synthesised for use in machine
learning?

– RQ2.1: What are the characteristics of marine snow?

8.1 Comparing Qualitative and Quantitative Results

In our experiments, we generated quantitative results on four combinations of our
test datasets, gave qualitative evaluations of keypoint classification on 6 underwa-
ter sequences, and qualitatively evaluated pySLAM with and without keypoint
classification on 4 real-world sequences, and the synthetic VAROS and Snowy-
VAROS sequences. We also conducted ablative studies on P-CLAS’ multi-scale
design and RGB patches, and the keypoint filtering used with our synthetic datasets.

Our impression of the quantitative results is that they were less applicable to real-
world sequences than we had preferred. While the quantitative results indicated
that P-CLAS was consistently outperforming D-CLAS, and that All-trained mod-
els generalised to more data than other networks, both observations turned out to
be false in the qualitative tests. For this reason, we found it more difficult to rely
on the quantitative results used in our ablation studies. In retrospect, the issues
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with the qualitative results may have been avoided with a manually labelled test
dataset which could stand as a definitive benchmark for marine snow classifica-
tion. This would, however, present inevitable challenges related to manual effort,
and the surprising difficulty of discerning the label of some positive and negative
samples.

Since the ablation studies were largely based on quantitative metrics on the test
datsets, they too were impacted by the lack of a clear benchmark for quantitative
evaluation. With this in mind, we believe a greater focus on qualitative evaluation
may have provided better results for discussion, or alternatively, the manually
labelled dataset mentioned earlier. With that said, we still found some general
tendencies related to the networks’ ability to model the datasets on which we base
our discussion on.

The qualitative experiments, however, were very valuable in developing our un-
derstanding of P-CLAS, D-CLAS, and to an extent, the datasets. The main issue
of our qualitative results is their added subjectivity and need for approximations.
Consequently, this is a topic we discuss in the limitations section (Section 6.3). Ad-
ditionally, it can be challenging to convey observations from videos in a written
format. With that said, the broad characteristics of P-CLAS and D-CLAS, and
their impact on pySLAM appeared reasonably unambiguous, and we find the
qualitative experiments enabled us to reliably characterise the performance and
limitations of P-CLAS and D-CLAS.

One drawback which we observed during our testing of pySLAM, was that the
frame timings it produced could not be used to characterise the actual compu-
tational load imposed by P-CLAS and D-CLAS since time use was highly depen-
dent on the particular workload pySLAM was subjected to, and not the number of
keypoints which were classified by the networks. With that said, the timings pre-
sented by pySLAM give an accurate view of how pySLAM specifically performs
with P-CLAS and D-CLAS, and therefore serve as a reminder that introducing
new, computationally demanding methods in a SLAM system demands careful
integration to efficiently distribute computing resources.

Additionally, since some of our results relate to pySLAM’s point clouds, it should
be mentioned that it can be difficult to evaluate point clouds from still images,
especially when asked to compare point clouds. This is because point clouds can
appear very differently based on which position they are observed from. More-
over, understanding the 3D structure of a point cloud from a 2D image can be very
challenging. However, we have tried to maintain consistent viewpoints in our
figures which present the 3D clouds such that their structure translates well to 2D
images. Importantly, we believe that the conclusions which base themselves on
similarities between point clouds are general enough to be supported by the data.
Moreover, we have had the benefit of examining the point clouds in pySLAM’s 3D
visualisation window when making our observations, meaning we could view the
point clouds from any 3D position.

94



8.2 Classifiers

In our experiments, we evaluated two approaches to keypoint classification of
marine snow: the descriptor-based D-CLAS and the patch-based P-CLAS.

P-CLAS’s design was motivated by existing methods from the literature, where
multi-scale CNN architectures and RGB inputs were common in snow and marine
snow suppression. In our ablation study, we evaluated our multi-scale design of
P-CLAS which is one of the reasons why D-CLAS is faster than P-CLAS. While the
multi-scale implementation did surpass the single-scale implementation overall,
the margin with which it did so was, in our opinion, too small to justify the current
multi-scale design, due to its relatively significant computational burden. In the
case of RGB inputs, the results were more in favour of the current design, leading
us to the conclusion that P-CLAS benefits from RGB input.

Before we had our first results, we were uncertain whether classifying on descrip-
tors would be successful. However, the D-CLAS architecture with its ORB descrip-
tors proved it possible. With that said, our evaluation of other descriptors showed
how ORB was an exception to the norm. This is unfortunate because initially, the
main downside we could find with descriptor-based classification was the need
to tailor and train neural networks for specific descriptors. However, based on
our experiments with different descriptors, we now consider the main downside
of descriptor-based marine snow classification to be the significant limitations it
imposes on which descriptors it can be used with for SLAM.

8.2.1 Comparing P-CLAS and D-CLAS

Our qualitative tests are perhaps the most relevant for a head-to-head compari-
son of the real-world capabilities of P-CLAS and D-CLAS. While both classifiers
were generally able to accurately classify marine snow, both presented recurring
issues in certain situations. On sequences where P-CLAS models exhibited local
concentrations of false positives like the pipe in Video 2, D-CLAS was often less
affected. However, this was generally accompanied by an increased amount of
false negatives, even on flat backgrounds.

Similarly, on sequences where P-CLAS struggled with the textured backgrounds—
often signalled by U-trained P-CLAS classifying all keypoints as good—D-CLAS
presented more reasonable results on the marine snow, alongside an increase in
false positives compared to P-CLAS. All in all, D-CLAS appears to be a more
robust classifier. However, considering that P-CLAS did better on the quantita-
tive tests, we believe P-CLAS might maintain greater consistency, and potentially
surpass D-CLAS’s performance where it currently does not, if it receives even
more diverse and realistic data, and perhaps undergoes some architectural mod-
ifications. Additional forms of data augmentation may also benefit P-CLAS, e.g.
changes to the hue and saturation of the training patches.

Our main hypothesis to explain the differences between P-CLAS and D-CLAS per-
formance on the qualitative and quantitative tests is that P-CLAS’s CNN architec-
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tures makes it able to rely on contextual clues from the background which are not
available through descriptors. This could lead to P-CLAS models performing bet-
ter when encountering backgrounds familiar from training—i.e. the quantitative
tests—but worse on unfamiliar backgrounds in the qualitative tests.

We also performed an ablation study with P-CLAS where we replaced its RGB
input with grayscale. This experiment was also relevant to D-CLAS since ORB
descriptors are based on grayscale images. Ultimately our observations suggested
the differences between grayscale and RGB input were small, but consistently in
favour of RGB patches. With that said, the difference was not so large that we
think D-CLAS is held back by ORB using grayscale images.

With pySLAM, we found that both P-CLAS and D-CLAS gave similar improve-
ments to consistency and tracking performance, despite differing somewhat in the
number of keypoints they removed. This may indicate that tracking can be done
with traditional outlier rejection as long as the number of marine snow keypoints
is reduced sufficiently such that the snow is no longer dominating the RANSAC
motion hypothesis.

While the execution speed of the two methods was not the main priority, it was
still an important point of comparison, and directly related to RQ1. As discussed
earlier, D-CLAS was significantly faster in both cycle times within pySLAM and
keypoints per second, compared to P-CLAS. With modifications to P-CLAS’s patch-
based input and the use of industry-standard optimisation tools, we believe both
P-CLAS- and D-CLAS-type architectures can be used for real-time SLAM. In the
case of pySLAM, our results indicate that significant gains in computational effi-
ciency can be achieved if its computational resources are distributed more effec-
tively when using P-CLAS and D-CLAS.

Considering that D-CLAS is the most computationally efficient classifier while ap-
pearing to generalise better to different sequences, we find D-CLAS to be the pre-
ferred classifier among our two designs. If this preference should be extended to
descriptor-based classification in general, can not be determined from our results
and it should still be highlighted how descriptor-based classification seemingly
entails significant restrictions on which descriptors can be used.

8.2.2 Need For Iteration

It is no secret that the current designs of P-CLAS and D-CLAS are very similar
to the first implementations we tested, and hence present quite generic CNN and
FCNN architectures. Our initial plan was to iterate the design of the architec-
tures throughout the project, however, once the first results came in, we observed
that both P-CLAS and D-CLAS were far more capable of modelling the datasets
than we expected. Since neither architecture had trouble learning the datasets, we
found it more worthwhile to focus on the datasets themselves, because we were
confident that this would give greater returns on real-world performance than
modifying the architectures. Given the results from our experiments, we consider
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computational efficiency as the main motivation for further iteration for the clas-
sifiers. Consequently, we still view improving the datsets as the most important
way of increasing accuracy on underwater sequences.

Specifically, the ideas we had for iterating D-CLAS was mainly to examine smaller
versions of the same general FCNN architecture, i.e. reducing the number of lay-
ers, and the number of nodes within each layer. For P-CLAS, both the configu-
ration of patch extraction and the network itself would have been subject to it-
eration. The choice of the number of channels in P-CLAS’s layers, as well as the
number of layers, was somewhat improvised. Consequently, there may be consid-
erable gains in computational efficiency from modifying these attributes. Finally,
more complex learning rate schedules, different activation functions, and addi-
tional regularisation techniques could be considered for both networks, alongside
additional data augmentation for P-CLAS’s image patches.

8.3 Datasets

For this project, we developed three datasets for training, validation and testing:
U, OW, and UW. We also developed Snowy-VAROS for evaluation with pySLAM.

The results in Chapter 7 were not only intended to evaluate P-CLAS and D-CLAS,
but also the three training datasets. As we suspected, both qualitative and quan-
titative results indicated that the two classes in the U dataset were trivially sep-
arable, with their marine snow class characterised by flat backgrounds. Despite
this, U-trained D-CLAS was able to achieve competitive baselines during qualita-
tive evaluation, which other models were not always able to surpass. However,
in general training on superimposed data seemed to be a benefit.

Conceptually, using ’clean’ and ’marine snow’ videos to rapidly label ORB key-
points, and subsequently extending this data by superimposing the marine snow
images onto the clean backgrounds seems like a valid approach to the labelling
and data variety issues we faced when creating marine snow datasets. In practice,
our U and UW datasets could still benefit from more varied backgrounds and per-
haps more variations of marine snow as well. It was actually surprisingly difficult
to find background sequences for superimposing, i.e. sequences entirely without
marine snow. Of course, such sequences are not neatly labelled in NOAA’s portal,
however, a more important challenge is that many sequences which appear free
of marine snow are actually full of it. However, due to lighting conditions and
qualities of the surrounding terrain, such as brightly lit rocks, the marine snow
in these sequences is not clearly visible. Consequently, when we superimpose
marine snow on these sequences, it too becomes difficult to notice.

The challenge of finding backgrounds fit for superimposing in NOAA’s video col-
lection, motivated us to explore other datasets, eventually leading us to create the
OW dataset with backgrounds from the Exclusively Dark Images Dataset [Loh
and Chan 2019]. This was a somewhat optimistic approach since the connection
to underwater images is based on a naive argument that dark images are similar
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to underwater images. On the other hand, one may ask how relevant the back-
ground really is: shouldn’t a true marine snow detector be background-agnostic?

In practice, we could not see any clear disadvantage for models trained on the
OW dataset, and in the qualitative test, OW+U trained models were often among
the best. With that said, we do believe that more care should be taken in select-
ing backgrounds for OW. Specifically, the Exdark dataset features a large number
of images with dynamic ranges which are rarely seen underwater. This comes
from light bulbs captured in the images which can wash out superimposed ma-
rine snow. We do not know what the consequence of these images are and believe
this should be examined. However, given that these images are relatively com-
mon in Exdark and the performance of OW+U-trained models, they may not have
a particularly detrimental impact on classification performance.

One curious tendency we observed in the qualitative tests, was how training on
the All-dataset frequently degraded the accuracy of the networks. This was true
for both P-CLAS and D-CLAS models, and was often characterised by an increase
in false negatives compared to the other models. It is striking how the false neg-
atives were often found on flat backgrounds. Such keypoints often appear with a
forward-facing camera, or when facing the underwater horizon, and are therefore
common when the robot is navigating its surroundings. A possible explanation of
why All-trained models struggles with marine snow on flat backgrounds is that
the marine snow keypoints in the U dataset, which are all on flat backgrounds,
are important to ensure that P-CLAS and D-CLAS learn to recognise such key-
points. In the All-dataset, these simple patches may become too outnumbered
in the training data, such that All-trained models do not learn to reliably classify
marine snow on untextured backgrounds. This is supported by the TPR scores on
the U dataset, where All-trained D-CLAS is the worst model by a relatively large
margin, however, All-trained P-CLAS scores around the P-CLAS average.

Snowy-VAROS was made with our superimposing approach to create a dataset
with relative pose ground truths and marine snow motion noise. We believe the
use of Snowy-VAROS in our experiments was successful, and it was particularly
useful to be able to compare results with and without superimposed snow. It
should be said that the marine snow sequence we superimposed featured partic-
ularly large and dense marine snow, consistent with the Eelume sequences, which
may not be relevant for all use cases. However, with the superimposing approach,
it is straightforward to create multiple variations of Snowy-VAROS with varying
densities and types of marine snow. It would also be interesting to create a se-
quence in which the presence of marine snow gradually increases from low to
high to see how SLAM systems behave as the marine snow conditions change.

8.4 Keypoint Filtering

When designing our superimposed datasets, we observed that we could detect
substantially more keypoints on marine snow if we did detection separately on
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the extracted snow and background as opposed to the combined, superimposed
image. This approach, however, necessitated the development of our snow vicin-
ity filtering and variance-based visibility filtering to make sure the keypoints re-
mained correctly labelled in the superimposed image.

Our ablation study on keypoint filtering showed that P-CLAS models trained on
data which included the UW split had worse results without keypoint filtering.
D-CLAS’s results, however, were far less intuitive with models both improving
TPR at the cost of TNR, and vice versa. We find these results particularly diffi-
cult to analyse, other than to say that the impact of keypoint filtering varies both
depending on the dataset and the classifier. Specifically, it seems like the ORB
encoding makes D-CLAS able to handle unfiltered data better than P-CLAS, and
that visibility filtering is more used on the UW dataset. Alternatively, other ar-
chitectural differences, like the number of network parameters, may explain the
difference between P-CLAS and D-CLAS.

Unfortunately, this means that we are unable to draw any meaningful conclu-
sions about how effective our filtering methods are at improving the realism of
the dataset, and the accuracy of the labels. Additional qualitative tests of the NF-
trained classifiers, as well as the filtering schemes themselves, may be required to
understand this issue fully.

8.5 Research Questions

We now return to our research questions from Chapter 1 and discuss them in view
of our results.

Beginning with RQ1: How can the effect of marine snow on keypoint detection,
matching, and real-time SLAM be mitigated? On the topic of marine snow sup-
pression, we have listed approaches related to marine snow removal in our lit-
erature review, hypothesised an approach based on semantic segmentation (see
Chapter 9 Future Work), and, most importantly, developed and evaluated our
own keypoint classification approach.

Based on our extensive experiments, we argue that both descriptor-based classifi-
cation and patch-based classification are viable approaches to mitigate the impact
of marine snow on SLAM. With our pySLAM implementation, we demonstrated
how the use of keypoint classification enabled tracking and mapping in adverse
marine snow conditions, where pySLAM would otherwise fail immediately. Al-
though our methods are not real-time, and P-CLAS consumes a significant portion
of pySLAM’s resources, they were mainly designed to evaluate the feasibility of
their approach to marine snow suppression, meaning real-time operation was not
a high priority. Importantly, we have not observed any behaviour which suggests
that real-time performance can not be achieved with the keypoint classification
approach.

RQ2: How can marine snow be digitally synthesised for use in machine learn-

99



ing? This has been covered both by developing our own semi-synthetic approach
for marine snow superimposing and in Section 3.3 in the literature review. The
literature review divided snow and marine snow synthesis into three domains:
superimposing methods, 3D-environment-based methods, and hybrid methods.

During the early design phase of our project, we examined two schemes for syn-
thesising marine snow: one 3D-environment-based method and one superimpos-
ing method. Through these early examinations, we argued that the superimpos-
ing method is superior for machine learning use cases, as much larger data quan-
tities can be generated, with greater variety, in a shorter amount of time. This
comes from the fact that with 3D-environment methods, large underwater envi-
ronments need to be made on a per sequence basis, while with the superimposing
method all that is needed is collections of sequences exclusively with and without
snow.

From our qualitative tests, we were able to compare the results of networks trained
with and without our synthetic datasets. The results showed that classifiers trained
primarily on synthetic data were able to generalise to a greater amount of under-
water footage than classifiers trained exclusively on the non-synthetic U dataset.
Moreover, the synthetic approach accomplished our primary goal to improve the
classifiers’ performance on marine snow keypoints with textured backgrounds, al-
though this effect was far more pronounced with P-CLAS than D-CLAS. We were
also unable to draw any significant conclusions from our ablation study about
the filtering mechanisms which were developed to improve the realism of the
datasets.

For RQ2.1: What are the characteristics of marine snow, we defer to Section 2.4.1.
The most important points from this section is the diverse appearances of marine
snow, its widespread presence throughout the entire open ocean, and the complex
set of factors which determine its appearance in video recordings.
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Chapter 9
Future Work

In this chapter, we suggest ways of extending our work and some other approaches
for marine snow suppression which could be worth pursuing. To facilitate exten-
sions of our project, we have included the names of all NOAA videos we used in
Appendix C, documented our code and shared it with the AROS research group,
published our U dataset with the snow extraction and superimposing code at
https://zenodo.org/record/6424752, and published and presented our
paper for other computer vision researchers at the 2022 CVPR conference. A
recording of the presentation will be published by the workshop organisers be-
fore October 2022.

9.1 Extending our Work

This section details the most significant ways of continuing work on our classifiers
and datasets. We also include advice on how to evaluate methods like ours going
forward.

9.1.1 Keypoint Classifiers

Considering that our classifiers, despite their relative simplicity, were able to model
their training data with high accuracy and achieve high performance on the test
datasets, we argue that modifying the classifiers should not be a priority, unless
for the purpose of creating more computationally efficient models. Given the
models’ ability to approximate their data, it seems to us that the datasets them-
selves are the key to improving real-world performance in marine snow keypoint
classification. To increase computational efficiency, we would focus on simplify-
ing the pre-processing steps of P-CLAS and evaluating shallower architectures for
both classifiers.
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9.1.2 Datasets

To improve the datasets, we would look at including even more diverse back-
grounds both during dataset synthesis and possibly through data augmentation
tricks during training and dataset synthesis. One should also look at options to
improve the dataset pipelines, particularly the keypoint filtering steps which are
needed to maintain realism in the datasets. Specifically, we worry that our visi-
bility filtering approach does not generalise as well as it should due to its use of a
constant threshold. In the case of visibility filtering, we suggest both looking into
thresholds that are adapted to statistical qualities of the input. We also think it is
worthwhile to consider other filtering criteria than just variance, e.g. comparing
the pixel intensities of the background and superimposed snow.

To thoroughly evaluate the realism of synthesised data, we propose inviting mem-
bers of the public to differentiate between real and synthetic snow keypoints. With
a large enough group, their ability or inability to predict the origin of a keypoint
can quantify how effective the synthetic approach is. Likewise, the filtering meth-
ods can be evaluated by seeing if respondents would filter similarly to the filtering
approach being evaluated. However, this final suggestion can be risky because
keypoints that the respondents think should be removed may not align with what
is actually ideal for the task.

Our approach to snow extraction, while reasonably effective and robust against
artefacts, is significantly slowed down by the strided approach, and typically
needs 3–4 seconds to extract snow from the image. Consequently, a more effi-
cient way of extracting snow could save multiple hours during dataset synthesis.
Another step of our superimposing approach which may have room for improve-
ment is how we manage the hue of the marine snow sequence, which remains
very visible in the extracted snow, e.g. as a light blue colour on all of the marine
snow. Our current approach to removing this colouration is to convert the snow to
grayscale such that the hue disappears. However, a more sophisticated approach
may consider qualities of the background image, and replace the hue of the su-
perimposed snow with something which matches the background more closely.

On the subject of Snowy-VAROS, we would be interested in developing addi-
tional sequences with different severity of marine snow conditions. Furthermore,
a snowy-VAROS sequence which features gradually increasing severity of marine
snow would also be useful, e.g. to evaluate how SLAM systems react when they
initialise in good conditions, which slowly deteriorate as the sequence progresses.
This latter suggestion may necessitate superimposing marine snow from multiple
sequences with differing conditions, either in series or on top of each other.

9.1.3 Improved Evaluation

Because we are among the first to work on marine snow keypoint classification,
we had to create our own benchmarks to evaluate P-CLAS and D-CLAS. Our ap-
proach consisted of multiple synthetic testsets and one non-synthetic testset for
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quantitative evaluation and use in our ablative studies. We also performed a
qualitative evaluation of both stand-alone classification performance and SLAM
performance with pySLAM.

Our main issue with the quantitative tests is the difficulty of knowing how reli-
ably the results translate to real world scenarios. Among other things, this limited
the insights we could gather from our ablation study. Consequently, we have
highlighted our desire for a manually labelled dataset for use in quantitative eval-
uation.

We are mostly content with our qualitative experiments on keypoint classifica-
tion. However, these results could be elevated further with a graphical interface
that gives users the ability to produce quantitative metrics within a user-specified
bounding box. With this tool, users would place bounding boxes around areas
of the video where all keypoints are of a known class. Within these boxes, one
could generate metrics by counting the number of keypoints classified correctly
within the selected area, thereby offering more fine-grained comparisons of dif-
ferent classifiers.

It could also be useful to test our classifiers in other SLAM systems and even in
an actual underwater environment. We would also be interested in seeing how
the networks can complement IMU-aided VSLAM and similar systems which
use multiple sensors to estimate pose. The evaluation with VAROS and Snowy-
VAROS would also have been improved if we had managed to use their relative
pose ground truths to calculate the trajectory error of pySLAM in the synthetic
sequences. Additionally, it may have been possible to use the snow masks which
were made alongside Snowy-VAROS to quantitatively evaluate the classifications
of P-CLAS and D-CLAS on this sequence.

9.2 Other Approaches

Our datasets and snow superimposing methods can be used for other purposes
than keypoint classification. Here, we list two approaches, different from ours,
which could support SLAM front ends that are immune to marine snow motion
noise.

9.2.1 Keypoint Detector Immune to Marine Snow

Our keypoint classifiers are relatively easy to train and use with SLAM, but this
comes at the cost of requiring a new keypoint rejection step before keypoint match-
ing, and risks leaving the SLAM systems with no good keypoints after the rejec-
tion step. Although the added computation does not prohibit this approach, an
ideal solution would be a keypoint detector which does not detect marine snow
to begin with. We have a proposal for such a keypoint detector, which combines
advances in learned keypoint detection with our snow superimposing method.
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Recent research in keypoint detection has introduced neural network-based de-
tectors and descriptors. Our proposal draws inspiration from one of these archi-
tectures, named SuperPoint [DeTone, Malisiewicz, and Rabinovich 2018]. This
method is known for an approach called Homographic Adaption, in which ground
truths are automatically generated by detecting keypoints in a series of warped
versions of an image. The SuperPoint network is then trained to detect the un-
warped equivalents of these keypoints in the original image.

Our proposal is based on extracting ground truth keypoints from snow-free im-
ages, and then superimposing snow onto the snow-free image. Similar to Super-
Point, we would use Homographic Adaptation to find keypoints in the snow-free
image, and then train the keypoint detector to recognise these keypoints in the
snowy, superimposed image. This scheme is represented in Figure 9.1. An addi-
tional benefit of this approach is that it can be extended to include other challenges
of underwater keypoint detection, e.g. dynamic illumination, marine wildlife, and
water turbidity.

Figure 9.1: Our proposal for a marine snow resistant keypoint detector. The underwater
images originate from the Underwater Image Enhancement Benchmark Dataset [C. Li et al.
2020].

9.2.2 Parallel Architecture

Here, we propose a parallel architecture based on a snow segmentation approach.
Since snow segmentation does not depend on the output of keypoint detectors,
nor does keypoint detection depend on segmented snow, these processes can run
simultaneously, possibly reducing computational cycle time compared to systems
that must be run in series. Once both processes are done, their outputs combine
to reject marine snow keypoints, as seen in Figure 9.2.

The keypoint rejection could follow a similar scheme to our snow proximity filter-
ing, where a small area around a keypoint in the snow segmentation is probed for
the presence of marine snow. For the segmentation architecture, we propose the
following:

• A CNN-based semantic segmentation network made for small-object seg-
mentation.

• Training data consisting of:
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Figure 9.2: A parallel pipeline, running keypoint detection and snow detection at the same
time.

– The clean background image.

– A marine snow image from our snow extraction pipeline to generate
the ground truth.

– The combined image of snow and background to use as input.

• A loss function which accounts for extreme class imbalance within each
ground truth.

Alternatively, a hand-crafted approach could be developed by modifying our snow
extraction pipeline such that it works on both textured and untextured backgrounds.
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Chapter 10
Conclusion

This thesis has explored the challenge of marine snow for underwater Simulta-
neous Localisation and Mapping (SLAM). Marine snow is a broad term denoting
various forms of detritus found throughout the open ocean. When feature-based
Visual SLAM (VSLAM) methods operate in conditions with marine snow, their
pose estimates and mapping can be influenced—or interrupted completely—by
keypoint correspondences placed on the moving marine snow particles.

In our work, we have presented two schemes, D-CLAS and P-CLAS, which clas-
sify and remove marine snow keypoints before correspondences are generated.
D-CLAS classifies keypoints by their ORB descriptor, while P-CLAS classifies key-
points after extracting patches around their position in the image. We also devel-
oped three training datasets, two of which were made with our novel snow syn-
thesis method which removes marine snow from images with a flat background
and superimposes it onto any image.

We performed both quantitative and qualitative experiments to evaluate the per-
formance of the classifiers and their ability to generalise to real-world data based
on which combination of synthetic and non-synthetic data was used to train them.
Our quantitative results showed that our classifiers successfully learn the classi-
fication task, and also highlighted how the choice of the descriptor is particu-
larly important for D-CLAS to be useful. However, the tendencies observed in
the quantitative results, such as P-CLAS outperforming D-CLAS, and networks
trained on all datasets outperforming other networks with the same architecture,
did not match our observations of real-world performance. We believe the quan-
titative results may have been more useful if we could perform testing on a man-
ually labelled test dataset as a benchmark for the classifiers, but we do not know
the feasibility of such an approach.
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In the qualitative results, we examined the strengths and weaknesses of the two
classifiers in six underwater sequences and observed how both classifiers iden-
tified marine snow with acceptable accuracy. The most important observations
included P-CLAS being particularly dependent on synthetic data to generalise
to marine snow keypoints with textured backgrounds, the tendency of models
trained on all training datasets to perform worse on keypoints mainly covered by
the non-synthetic dataset (i.e. marine snow on a flat background), and D-CLAS’
overall superior performance compared to P-CLAS.

In another qualitative experiment, we implemented the classifiers in the SLAM
framework pySLAM and evaluated its behaviour on four underwater sequences
with varying levels of marine snow, as well as two synthetic sequences whose
only difference was the presence of superimposed snow. Our results show an
improvement in pySLAM’s ability to reliably initialise under heavy marine snow
when using our classifiers. Specifically, once P-CLAS or D-CLAS removed a large
portion of the marine snow keypoints, pySLAM’s built-in outlier rejection scheme
was able to adequately remove the remainder. Consequently, both P-CLAS and D-
CLAS had similar effects on tracking, however, P-CLAS was substantially more
computationally demanding than D-CLAS. Moreover, we observed no adverse
impact from the classifiers when operating pySLAM under lighter marine snow
conditions. On the synthetic sequences, our methods were able to produce results
on the sequence with marine snow which were comparable to the results obtained
on the snowless, synthetic sequence.

We believe the main areas to improve are computational efficiency to facilitate
real-time SLAM, and in the development of more realistic datasets for training
and evaluation to increase performance in real sequences. The latter may be ac-
companied by a survey in which participants evaluate the realism of the synthetic
data.
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Appendix A
Conference paper

On the next page we include our conference paper Detecting and Suppressing Ma-
rine Snow for Underwater Visual SLAM which was presented at the CVPR 2022 Im-
age Matching workshop and published to IEEE Xplore/CVF and the CVPR con-
ference proceedings.
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Abstract

Conventional SLAM methods which work very well in
typical above-water situations, are based on detecting key-
points that are tracked between images, from which ego-
motion and the 3D structure of the scene are estimated.
However, in underwater environments with marine snow
— small particles of organic matter which are carried by
ocean currents throughout the water column — keypoint de-
tectors are prone to detect the marine snow particles. As the
vast majority of SLAM front ends are sensitive against out-
liers, and the marine snow acts as severe “motion noise”,
failure of the regular egomotion and 3D structure estima-
tion is expected. For this reason, we investigate the struc-
ture and appearance of marine snow and developed two
schemes which classify keypoints into ”marine snow” or
”clean” based on either the image patches obtained from
usual keypoint detectors or the descriptors computed from
these patches. This way the subsequent SLAM pipeline is
protected against ’false’ keypoints. We quantitatively eval-
uate the performance of our marine snow classifier on both
real underwater video scenes as well as on simulated under-
water footage that contains marine snow. These simulated
image sequences have been created by extracting real ma-
rine snow elements from real underwater footage, and sub-
sequently overlaying these on “clean” underwater videos.
Qualitative evaluation is also done on a night-time road se-
quence with snowfall to demonstrate applicability in other
areas of autonomy. We furthermore evaluate the perfor-
mance and the effect of marine snow detection & suppres-
sion by integrating the snow suppression module in a full
SLAM pipeline based on the pySLAM system.

1. Introduction
When applied to underwater scenarios, Visual Odome-

try and Simultanous Localisation And Mapping (SLAM)

*These authors contributed equally

Figure 1. In our approach, we extract marine snow from under-
water footage with untextured background (top), and superimpose
this snow on arbitrary footage to create labelled training data (bot-
tom images) for training snowflake detectors .

face numerous challenges which appear significantly less
frequently in regular above-water applications. Such chal-
lenges are e.g. moving illumination and the reduced zone of
usable image landmarks, limited by the illumination cone
and the achievable depth of field in a low illumination, tur-
bid environment. Marine snow, the challenge in focus in
this paper, describes particles present throughout the wa-
ter column, ranging from millimeter scale up to decimeter
scale [1]. As its name suggests, marine snow can have the
appearance of snowfall; its movement is heavily influenced
by ocean currents, and under illumination it fills its sur-
roundings with bright white spots. This combination of dy-
namic motion and an appearance which contrasts with most
backgrounds makes the snowflakes salient for keypoint de-
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tectors and constitutes a significant source of motion noise.
Thus, keypoint-based SLAM runs a significant risk of pro-
ducing wrong egomotion estimates or even tracking failure
if the number of snowflakes detected, and thus the outlier
rate, becomes too high. Of course, this issue also exists for
perception in case of heavy snowfall in autonomous driving.

In this paper, we present our approach to mitigate the
effect of marine snow by developing two machine-learning
systems to filter ’false’ keypoints. The main contributions
of this paper are:

• We developed two efficient classifiers for marine snow,
P-CLAS and D-CLAS; they are designed to run in
piggy-back mode on top of arbitrary keypoint detec-
tors — this is done to limit processing to image ar-
eas which are actually candidates for being regarded as
keypoints. While classifier P-CLAS works on the im-
age area around the detected keypoint, the second clas-
sifier, D-CLAS, works on the binary keypoint descrip-
tors provided by the ORB [18] detector/descriptor.

• We investigate how the descriptor-based classifier D-
CLAS (which is computationally ’cheaper’ than the
one working on image patches) compares in perfor-
mance to the patch classifier P-CLAS. This compar-
ison is done both on a large image dataset as well as
for the case of being integrated into a SLAM pipeline.

• We provide a method to extract snow and marine snow
from images with essentially untextured backgrounds.
We have considerable underwater footage with this
characteristic, and thus could collect a huge set of
’ground truth’ marine snow examples. The resulting
’snowflake dataset’ is used by us for superimposing
marine snow on ’clean’ images or video sequences. It
is publicly available1, and to our knowledge it is the
first of its kind.

• We extend an existing underwater pose-estimation
dataset (VAROS [20]) with superimposed marine snow
to provide a new benchmark with marine snow motion
noise, and accurate ground-truth values.

• We test our method on an above-water snowy se-
quence, and demonstrate that with further fine-tuning
our results should be transferable to the above-water
domain.

2. Related Work
Marine snow mitigation for computer vision tasks is a

relatively recent research topic. Early methods aimed at a
more broad form of image enhancement modelled marine
snow as a simple form of additive noise, however, more

1https://www.ntnu.edu/arosvisiongroup/varos

recent methods aimed specifically at marine snow point
out the weaknesses of this approach, like its disregard of
properties such as water absorption, size, shape, and back-
scattering [4].

Most methods pursue marine snow removal in the inter-
est of improving object detection pipelines, and therefore
detect snow in the entire image. A family of filter-based
approaches for marine snow detection and removal can be
traced back to the work of Banerjee et al. [2]. It presents
a basic approach which does snow removal using median
filtering and implicit snow detection based on the lumi-
nance channel of a YCbCr (luminance, blue-difference, red-
difference) image-representation. The image is traversed
with a 7x7 window, and locations which have a high lu-
minance center and high luminance variance are selected
for marine snow removal. There exists an extension of this
method with multi-scale filters to address particles of vary-
ing size, however further details are not given [17].

From Farhadifard et al. [7], we find another multi-scale
approach, which like earlier filter-based methods uses the
dissimilarity of the moving window center value to the win-
dow mean as a selection metric. To identify additional out-
liers within a patch, the patch is represented in RGB color-
space, and an outlier detection step selects all pixels which
are closer to the pixel-center than a threshold based on a
weighted standard-deviation value. As a final criteria, high-
saturation patches are considered false detections, and con-
sequently removed due to the typically grayscale appear-
ance of marine snow.

The paper [6] highlights and addresses one shared short-
coming of the aforementioned methods, namely their im-
plicit dismissal of the temporal information present in video
sequences. Allegedly, this is the first spatio-temporal ma-
rine snow removal method. From three input frames, the
method detects and removes snow in the center frame.

In a 2021 paper, Sato et al. [19] state that they are un-
aware of any deep learning based marine snow removal
methods. However, neural networks have been used in an
intermediate marine snow detection step before filter-based
removal [12]. This method considers the temporal nature
of marine snow by utilising 3D neural networks. Their ar-
chitecture first detects snow using a combination of 3D and
2D convolutions, before using adaptive median filtering to
remove the snow.

In another paper [14], the authors do multi-scale detec-
tion and removal of above water snow. Their system is di-
vided into three main parts. First, feature maps are calcu-
lated at three different scales using a multi-scale Convolu-
tional Neural Network (CNN). Next, the feature maps are
concatenated and fed through the snow detection module—
a 40-layer modified DenseNet. Finally, to remove the snow,
the output from the snow detection module is concatenated
with the feature maps from the multi-scale CNN and passed
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through yet another densely connected CNN.
With our focus on keypoint classification, perform-

ing snow-detection on the full image entails a significant
amount of unnecessary computation. A more efficient ap-
proach is to only focus on those specific points which are
used by the affected SLAM pipeline, i.e. the keypoints given
by its keypoint detector. Keypoint rejection of stand-alone
keypoints is somewhat rare, as most outlier rejection meth-
ods are based on a set of matched keypoints from a pair
of images. For example, the seminal paper [8] introduces
RANSAC, an outlier rejection method which creates mo-
tion hypotheses from different subsets of the keypoint cor-
respondences, and tests these estimates against the remain-
ing data.

However, waiting until the matching step is complete
wastes resources on matching keypoints which should be
removed either way. Therefore, rejecting keypoints as soon
as possible, or not detecting them at all should be the pre-
ferred method. The workshop paper [9] uses random for-
est classifiers to predict the suitability of the keypoints for
matching, thereby implicitly evaluating keypoints for pose-
estimation. Their implementation uses a random forest with
25 decision trees with a maximum tree depth of 25. Impor-
tantly, their method classifies on the keypoint descriptors,
meaning there is no additional cost related to feature ex-
traction before classification. In scenes with high amounts
of foliage or dynamic objects their method removed 70% of
the keypoints while retaining 60% of the matches.

The conference paper [10], uses a Support Vector Ma-
chine (SVM) to predict the suitability of an image region
for image retrieval in geo-localization. To increase the dis-
criminative power of the input, they perform classification
based on bundles of descriptors retrieved from the same lo-
cal image region.

Another paper [13] does keypoint rejection in underwa-
ter images for lighting artefacts and dynamic phenomena,
such as fishes and caustics, as well as marine snow. They
take a 257 × 257 image patch around each keypoint and
scale them down to 65 × 65. Each patch is classified by
a CNN as either suitable or unsuitable for tracking. Their
architecture consists of a shallow network with three con-
volutional layers with ReLU and maxpooling, followed by
a fully connected layer and a soft-max layer. Training
is supervised, with manually labelled images from other
datasets. The proposed real time plug-and-play keypoint
rejection system has been verified by comparing drift accu-
mulated by ORB-SLAM [16] and DynaSLAM [3], a SLAM
system which accounts for dynamic environments.

3. The ANN-based Approaches to Snow Clas-
sification

We created two neural networks for snow classification
of keypoints, P-CLAS which extracts image patches from

Layer L1 L2 L3 L4 L5 L6 L7
Activation ReLu Sigmoid
Dimensionality 256 196 196 128 64 16 1

Table 1. Neural Network architecture for the descriptor classifier
D-CLAS

Layer L1 L2 L3 L4 L5 L6
Layer type CNN w/ 3x3 filters Dense
Activation ReLu Sigmoid
Input Depth 9 32 64 64 64 256
Input Height/Width 64 32 16 8 4 N/A

Table 2. Neural Network architecture for the image-patch classi-
fier P-CLAS

keypoints based on their coordinates such that it can be used
with any keypoint-based pipeline, and D-CLAS with de-
scriptors as input, meaning it must be trained for the partic-
ular descriptor it is to be combined with. Common to both
methods is the Sigmoid activation function in their last layer
which makes the final output a pseudo-probability estimate
for membership of the positive (snow) class.

D-CLAS was designed for ORB-descriptors with a Fully
Connected Neural Network (FCNN) architecture (cf. Table
1).

P-CLAS is structured as a multi-scale CNN + FCNN
architecture (cf. Table 2). The multi-scale input allows
the classifier to discriminate marine snow of different sizes,
which is significant because marine snow can vary from a
few pixels to 50×50 image regions which can contain mul-
tiple undesirable keypoints. With keypoint coordinates as
input, we extract patches at three scales ([64× 64, 48× 48,
32× 32]) and, using bilinear interpolation, rescale and sub-
sequently stack them to create a 9×64×64 input. The net-
work has 5 layers with ReLU, BatchNorm, and maxpooling,
and a 6th dense layer with 1 neuron.

Both networks were trained with the Adam optimizer
[11]. During training, we frequently validate on the vali-
dation splits of the datasets. The models with the highest
F2-score in validation were saved for further evaluation.

4. Datasets
We developed our own datasets for training and evalua-

tion. We first collected underwater sequences in which all
features are either suitable for SLAM, or all features are
marine snow. This means sequences near the ocean floor
with no visible marine snow, and sequences distant from
both the ocean surface and the ocean floor, in which only
marine snow is visible and nothing else. Such sequences
circumvent the need to manually label marine snow, which
can easily amount to thousands of samples per frame.

With these images, we generate four datasets with full
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HD images and keypoints and descriptors labeled as ”snow”
and ”clean”. The first Unmodified (U) dataset uses the im-
ages as-is to detect keypoints and store their coordinates
and descriptors. However, the U dataset has some notable
caveats. First and foremost, the presence of marine snow
can easily be determined by the colour and texture of the im-
age, since all images of marine snow inevitably come with
a background with various shades of blue. Conveniently,
we can use these untextured backgrounds to reliably extract
marine snow and superimposing it onto more varied back-
grounds, using a weighted sum (alpha-keying). With the
extracted snow, we create three datasets named Underwa-
ter (UW), Overwater (OW), and Snowy-VAROS. These are
discussed later in this section.

To extract snow, we use a strided window approach with
stride 10. In each 60 × 60 window, P , we calculate the
Euclidean RGB-distance, D, of each individual pixel value
at location p ∈ P to the median colour MP of the win-
dow. As indicated in Eqs. (1) and (2), these distances are
scaled by the inverse maximum distance to create a pixel-
wise weighting between 0 and 1. The weight, Wp, is set to
0 if D(MP , p) is below a threshold value τD = 30, or if the
grayscale intensity of p, IGS(p), is below τI = 20.

Wp =





0 if IGS(p) < τI
0 if D(MP , p) < τD

D(MP , p)

max
q

D(MP , q)
otherwise.

(1)

where
D(p, q) = |I(p)− I(q)|. (2)

For each pixel, the average weight across all windows is
used when extracting snow. This is to ensure that windows
with large marine snow particles which shift the median
colour away from the background colour do not introduce
unwanted artefacts when superimposing the snow. With a
background image B, alpha-key weight W, and snowy im-
age S, we superimpose images according to Equation 3:

I = B ⊙ (1−W ) + S ⊙W. (3)

After extracting snow from the snowy images in the U
dataset, we create the three other datasets. The Underwa-
ter (UW) dataset superimposes the extracted snow onto the
remaining images in U which are free from snow. The
Overwater (OW) dataset uses above-water images from the
Exclusively Dark Images Dataset (ExDark) [15] as back-
grounds for superimposing to introduce more variation in
the background images. Images in the ExDark dataset
which featured rain, starry skies, or snowfall were removed
because of their exceptional similarities to marine snow.

Finally, to demonstrate the flexibility of our superimpos-
ing approach we use it to add a video sequence of snow

Figure 2. Data generation pipeline with superimposed snowy se-
quences

Figure 3. Snow superimposed on the VAROS dataset

to the synthetic underwater benchmarking dataset VAROS
[20]. This has the benefit of a known camera matrix and
ground-truth pose. By superimposing snow from a video se-
quence, we ensure that the motion of the snow is consistent
between frames. A sample frame from this Snowy-VAROS
sequence is seen in Figure 3.

To create keypoint coordinates and descriptors for train-
ing, we perform keypoint detection separately on the back-
ground image, and extracted snow image, as opposed to de-
tecting keypoints on the combined, superimposed image.
This was done primarily to increase the number of key-
points on marine snow, and because it makes for a more
difficult dataset in which some of the detected snow is less
visible than normal. Figure 2 presents the pipeline used to
generate keypoints for the datasets from a three-tuple of ex-
tracted snow, background, and their combined image. A
challenge of this approach is that snow can be superim-
posed either over a good keypoint in the background image
or in an image region where the snow is not visible, mean-
ing keypoints can become mis-labeled in the combined im-
age. Consequently, a keypoint, Ks, detected on the ex-
tracted snow is rejected if inequality 4 is not true, where

5104



Images Snow KPs Background KPs
Unmodified 6,008 598,931 1,181,570
Underwater 10,051 1,525,556 2,227,102
Overwater 8,705 1,772,123 2,055,001
Total 24,764 3,896,610 5,463,673

Table 3. Datasets and their sizes. Train, val and test splits were
made following the 80/10/10 convention

PSi, and PBG are image patches of Ks in the superimposed
image and background image, respectively, and E = 14 is
an empirically selected threshold.

Var [PSi] > Var [PBG] + E (4)

Secondly, to verify that keypoints detected on the back-
ground image can not be perceived as mis-labelled after su-
perimposing due to abutting snow, we verify that the max-
imum color channel value of a small 8 × 8 neighbourhood
surrounding this keypoint within the extracted snow is be-
low an empirically selected threshold, τS = 70. Finally, we
divide the image into a 10× 10 grid and select keypoints at
random from these bins to limit the dataset size, and to re-
duce the presence of overlapping samples. Importantly, the
ORB descriptors are still generated on the combined image.

5. Experiments
We conducted experiments to evaluate stand-alone clas-

sification performance, and performance in SLAM use
cases. For stand-alone performance, we used test splits of
our U, OW, and UW datasets and evaluated F1 score, ac-
curacy, True Positive Rate (TPR) and True Negative Rate
(TNR). The datasets and their sizes are listed in Table 3.

Qualitative assessments of keypoint classification were
performed on four diverse underwater sequences, each pic-
tured in Figure 4, by extracting 2000 keypoints with the
ORB detector and classifying these frame-by-frame.

For evaluation in SLAM use-cases, we implemented our
classifiers into the pySLAM framework2 which offers a
very customiseable SLAM-platform intended for experi-
mentation and education. pySLAM features most of the
expected attributes of a modern SLAM-system, including
keyframe management, local and global bundle adjustment,
outlier rejection with RANSAC, ratio testing, and motion
models with active matching [5]. Our experiments in pyS-
LAM were done on the synthetic VAROS and Snowy-
VAROS sequences.

5.1. Binary classification metrics

While training classifiers, we store the checkpoint which
achieved the best F2 score on the validation data-split. In

2https://github.com/luigifreda/pyslam

Table 4, we list these models, and their binary classification
metrics on the separate test-splits of our datasets.

It is clear that both D-CLAS and P-CLAS have learned
the classification task successfully, yet P-CLAS maintains
remarkable results on most datasets, outperforming the de-
scriptor classifier in all datasets. However, D-CLAS has
an unavoidable benefit in that it requires no pre-processing
of the image if descriptors are present, and can operate far
more efficiently, surpassing speeds of 66000 keypoints per
second, compared to 14600 for P-CLAS, both on a GTX
1080 GPU. However, our testing shows that these differ-
ences can be explained by overhead from patch-extraction,
which can be improved compared to our implementation
since it assumes that keypoints in the same batch come from
different images, which is true for training, but otherwise is
typically false.

Both classifiers, when trained on the U dataset, score
high on the U test-split. However, we notice a decrease in
TPR when the superimposed OW and UW datasets are in-
cluded in the test data. This strongly suggests that U-trained
models only learn to recognise white blobs on an untex-
tured background, hence when more textured backgrounds
appear, the number of false negatives increase. P-CLAS in
particular, seems to rely too much on the predictable back-
grounds of the U training data, since its TNR is high on
both the U testset, and the unmodified + UW testset. This
suggests that training on varied backgrounds, and thus the
superimposed datsets, is particularly important for P-CLAS
models, since they will otherwise latch onto background
characteristics which are not encoded by the descriptors. To
be clear, the near perfect scores on U, highlight the simplic-
ity of the U datasets, rather than the prowess of the methods.

On the topic of what the descriptor encodes, it is feasi-
ble that the discrepancy which is consistently present in all
testsets between P-CLAS and D-CLAS can be explained
by the CNN being able to use more contextual clues from
the background which are not available from descriptors.
This could lead to P-CLAS models performing better than
D-CLAS models when encountering backgrounds familiar
from training, but worse on unfamiliar backgrounds.

When it comes to networks trained on superimposed
data, the models which were trained on all datasets per-
formed the best on every testset, except the U testset. Even
if the test dataset only included two of the three datasets
used in training, training on every dataset gave the best over-
all performance which could indicate an improved ability to
generalise to unseen data.

5.2. Qualitative results in Keypoint Classification

We begin with video A) in Figure 4, which features a
smooth ocean floor with small mounds of sand, and a some-
what dense cover of small and bright marine snow. Some
spots on the ground can be mistaken for marine snow in still
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Unmodified UW + U OW + U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

Pa
tc

h

U 0.999 0.999 0.999 1.0 0.617 0.792 0.446 0.999 0.47 0.687 0.309 0.997 0.402 0.692 0.252 0.998
UW + U 0.968 0.972 0.991 0.957 0.948 0.961 0.931 0.98 0.854 0.861 0.904 0.825 0.877 0.897 0.894 0.9
OW + U 0.998 0.998 0.996 0.999 0.913 0.94 0.84 0.999 0.94 0.948 0.894 0.993 0.91 0.932 0.839 0.996
All 0.996 0.996 0.996 0.997 0.975 0.982 0.955 0.998 0.961 0.965 0.954 0.975 0.964 0.971 0.95 0.985

D
es

c

U 0.945 0.951 0.98 0.929 0.778 0.848 0.712 0.929 0.809 0.833 0.784 0.873 0.763 0.82 0.707 0.899
UW + U 0.944 0.949 0.978 0.927 0.913 0.933 0.931 0.935 0.892 0.898 0.943 0.86 0.893 0.909 0.93 0.895
OW + U 0.954 0.959 0.977 0.946 0.916 0.937 0.917 0.949 0.917 0.925 0.919 0.93 0.909 0.926 0.906 0.939
All 0.955 0.961 0.964 0.958 0.935 0.952 0.926 0.967 0.919 0.928 0.912 0.941 0.921 0.936 0.909 0.955

Table 4. Binary classification results by the classifiers. Rows denote the the network and its training data, while columns denote the test
dataset. The Unmodified dataset (U), Underwater superimposed (UW), and Overwater superimposed (OW) were combined and used for
testing. We provide F1-scores, accuracy, True Positive Rates (TPR), and True Negative Rates (TNR) for each case.

Figure 4. Frames from the four videos used for visualisation of keypoint classification. Red crosses indicate a snow classification, while
blue circles indicate a clean keypoint classification. 2000 Keypoints were detected with ORB per frame.

images. Models tested on this video mainly struggled with
classifying marine snow when transitioning between the
textureless region in the upper half of the image, and the tex-
tured region below. With P-CLAS models, those trained on
the U dataset and at least one superimposed dataset seemed
to handle this issue the best. This was true also for D-CLAS
models, though these showed slightly worse False Negative
Rates, and False Positive Rates on the ground.

Video B), features a complex structure of large, jagged,
and overlapping rocks. Of particular interest is the marine
snow seen in the top left corner during the beginning of
the sequence, which is strikingly bright and visible, despite
the rocks in the background. Thus, this sequence offers
a break from the typically textureless backgrounds which
are far more common. Performance on this sequence was

particularly bad from P-CLAS models trained only on the
U-data, which labelled all keypoints as ”clean”. Other P-
CLAS models trained on superimposed data were able to
improve upon this, but none were able to compete with D-
CLAS models, not even U-trained D-CLAS models. D-
CLAS models were hard to tell apart, but it seems like the
OW-trained model did worse, and both the U-trained model
and OW-trained model did best. These results may be an
indication that P-CLAS models rely more on properties of
the background when classifying. False Positive Rates were
very low for all models on this sequence.

Video C) features a bright yellow charging station, with
extreme amounts of large marine snow particles. This se-
quence highlights a weakness of current feature detectors
underwater, in the sense that the sequence’s lack of corners
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and blobs (other than marine snow) leaves most corner de-
tectors with nearly no useful features, e.g. for pose estima-
tion. Despite a limited presence of useful keypoints, the
classifiers labelled many keypoints as clean. While TPR
rates were good on this sequence, false negatives were also
seen frequently. In the final part of this sequence, the robot
moves rapidly, giving the marine snow a stretched appear-
ance which is not present in the training data, leading to
high amounts of false negatives. While all classifiers exhib-
ited this trait, D-CLAS models were the worst afflicted.

Notably, models which were not trained exclusively on
the OW dataset showed a tendency to switch from a true
positive detection to a false negative when snow particles
moved in front of an uncommon background, e.g., the yel-
low beams of the charger sequence. However, OW-trained
models struggled more with classifying snow in textureless
regions. All classifiers struggled with the sequence’s largest
snow particles which are particularly close to the camera.

As a final test on False Positive Rates, video D) deliber-
ately features an insignificant amount of snow, yet in certain
frames, the pebbled texture of the ocean floor carries an ap-
pearance somewhat (though not completely) reminiscent of
marine snow. Most classifiers tested on this sequence, be
it patch or descriptor based, were not prone to mislabel the
ground as snow, with P-CLAS models generally achieving
near-perfect accuracy, and D-CLAS models not far behind.
However, the P-CLAS model which was trained on both
the underwater superimposed data and unmodified data was
a curious exception. Once the keypoint detector began de-
tecting on the ground, most keypoints were classified incor-
rectly as snow. This continued as the camera came closer
and the number of ground keypoints increased, but eventu-
ally stopped once the robot came even closer to the ground
and the likeness to marine snow disappeared.

To summarise these results, P-CLAS models typically
perform better than D-CLAS ones if the background is
known from training. With textured backgrounds, perfor-
mance drops off, in which case training with superimposed
datasets can help, but not completely. Compared to the
image-patches, ORB-descriptors seem to encode less in-
formation about the background, which can remove irrel-
evant information, and in certain instances help classifica-
tion, such as in video B) where D-CLAS models consis-
tently outperformed P-CLAS models. However, it could be
the case that too much information is lost through the ORB
representation, such that overall performance is reduced.

5.3. Qualitative results in an above-water sequence

To examine generalisability and applicability on a
broader range of tasks, we visualised classification on
a night-time road sequence with real snowfall, using an
OW+U-trained P-CLAS model. The sequence features a
twisting, snow-covered road with dimly lit trees on both

Figure 5. A point map from running pySLAM on VAROS without
snow and no classification. The pipe is properly tracked.

sides and snowfall illuminated by the car’s headlights. At
the bottom of the image is the contour of the car’s dash-
board. Performance on this sequence was mixed, but
showed some promise. Clean points placed on the road-
side, dashboard, and trees are typically classified correctly.
The same goes for snow keypoints in the darker regions of
the image. However, one struggle of the classifiers is the
snow just in front of the right headlight which is particularly
bright in front of a white background. This kind of image
patch is not found in the training data, so unsurprisingly it
is classified incorrectly. However, considering the overall
performance on this sequence it seems probable that given
finetuning on above-water data, our results should be trans-
ferable to the road domain as well. Generally, in above-
water scenarios snow often appears on more textured back-
grounds, which can be a source of decreased performance
not covered by this particular video. On the other hand, in-
creased illumination during the daytime can make the snow
less prominent in some footage.

5.4. Qualitative results with pySLAM

Testing SLAM performance on real-world sequences has
the potential to give the most realistic view of the effect
of snow classification. However, by using the synthetic
VAROS sequence with and without superimposed snow, we
are able to control the difficulty of both the background se-
quence and snow conditions. Furthermore, we are able to
compare results between Snowy-VAROS and the original,
snow-free VAROS sequence which lets us evaluate the re-
sults of keypoint rejection more definitively than most qual-
itative tests. However, we must expect that models trained
on superimposed images perform disproportionally better
on Snowy-VAROS, due to similarities in the superimposing
process of Snowy-VAROS and the training datasets. We
choose a subsequence of VAROS in which the robot travels
adjacent to a straight pipe (see Fig. 3). This pipe offers more
defined features for keypoint detection compared to other
sections of VAROS, and makes it easy to judge the tracking
quality by how accurately the straight pipe is mapped.

When testing with pySLAM alone on the Snowy-
VAROS sequence, a considerable amount of keypoints are
detected on snow, which lead to rapid tracking failure and
inconsistent behaviour between runs. During some runs,
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Figure 6. A point map from running pySLAM without keypoint
classification on Snowy-VAROS. The path stops in a wall of snow
and the pipe appears to bend, unlike the source video.

Figure 7. A point map from running pySLAM with keypoint clas-
sification on Snowy-VAROS. The pipe is properly tracked, and
few snow keypoints are added to the map.

tracking fails completely, while in other runs the tracking is
closer to the movement seen in the sequence. When visu-
alising the sparse map made by pySLAM, seen in Figure 6,
we see what looks like a wall of snow prominently in the
map. Furthermore, the pipe which is completely straight in
the sequence appears bent in the point cloud.

Both P-CLAS and D-CLAS stabilised tracking in pyS-
LAM, to the extent that they were difficult to tell apart.
While they were unable to remove all unreliable points,
pySLAM continued tracking for far longer and was far more
reliable, giving consistent tracking outputs between runs.
An example can be seen in Figure 7, where the pipe ap-
pears straight in the point cloud like it should, with the ex-
ception of the very end. This behaviour is similar to that
seen in the VAROS sequence without snow and no classi-
fication, as seen in Figure 5, and occurs because pySLAM
is unable to detect a sufficient amount of good keypoints,
irrespective of the presence of snow. Since P-CLAS and
D-CLAS differed in earlier testing, their comparable per-
formance with pySLAM could indicate that as long as the
number of marine snow keypoints is reduced such that the
snow is no longer dominating the RANSAC motion hy-
potheses, tracking can continue with traditional outlier re-
jection. On Snowy-VAROS, out of 3000 features, D-CLAS
removed 1,627 keypoints and P-CLAS removed 1,366 key-
points in each frame on average.

For comparison, we run pySLAM on the original

VAROS dataset, which has nothing resembling marine
snow. With snow rejection enabled on the unmodified
VAROS sequence, out of 3,000 keypoints, we see on aver-
age 36 and 201 rejections, i.e., false positives, by D-CLAS
and P-CLAS, respectively.

6. Conclusion
In this paper we have demonstrated two methods for

classification of keypoints obtained from the ORB detec-
tor [18] in order to suppress the effect of marine snow. The
methods can be used to aid pose estimation, create keypoint
detection masks or assist in underwater image restoration.
Our results show that classifying snow, either with ORB de-
scriptors or image patches, can achieve near perfect perfor-
mance for snow in front of an untextured background. To
enable snow detection also on textured backgrounds, addi-
tional training data is necessary. We created such data by
extracting snow from underwater footage with untextured
background. This allowed us to overlay real marine snow on
arbitrary image material. Despite a lack of training on such
scenes, initial experiments on a night-time driving sequence
featuring snowfall suggest that the classifiers can be ap-
plied in above-water scenarios with some further finetuning.
Using the pySLAM framework we demonstrated how our
method can be incorporated as a keypoint rejection com-
ponent in a SLAM pipeline. We showed that our methods
were able to overcome the difficulties that a SLAM system
with standard outlier removal has with underwater footage
affected by marine snow. We provide the snow dataset to
the public in order to foster further research on the challeng-
ing topic of underwater and above-water SLAM under diffi-
cult visibility conditions. Extensions of our research could
examine other descriptors than ORB, novel classifiers, and
new methods of extracting snow.
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Appendix B
Additional Results

U UW+U OW+U All datasets
F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR F1 Acc TPR TNR

O
R

B

U 0.945 0.95 0.984 0.923 0.778 0.848 0.718 0.924 0.814 0.833 0.789 0.87 0.77 0.821 0.719 0.893
UW + U 0.94 0.946 0.98 0.92 0.907 0.929 0.934 0.927 0.901 0.902 0.96 0.852 0.897 0.91 0.944 0.885
OW + U 0.956 0.961 0.975 0.95 0.921 0.942 0.921 0.954 0.939 0.943 0.951 0.935 0.927 0.939 0.932 0.944
All 0.953 0.959 0.977 0.945 0.924 0.943 0.929 0.951 0.934 0.938 0.957 0.921 0.926 0.937 0.94 0.935

FR
EA

K U 0.981 0.984 0.992 0.979 0.716 0.854 0.584 0.979 0.667 0.777 0.528 0.96 0.61 0.784 0.463 0.968
UW + U 0.922 0.931 0.997 0.885 0.766 0.852 0.769 0.89 0.808 0.837 0.808 0.858 0.762 0.829 0.752 0.873
OW + U 0.925 0.933 0.997 0.889 0.772 0.855 0.778 0.89 0.846 0.869 0.848 0.884 0.792 0.85 0.784 0.887
All 0.916 0.925 0.996 0.876 0.771 0.852 0.79 0.881 0.844 0.865 0.856 0.872 0.792 0.847 0.796 0.877

SI
FT

U 0.935 0.942 0.965 0.925 0.607 0.766 0.488 0.929 0.528 0.684 0.382 0.943 0.466 0.684 0.33 0.938
UW + U 0.862 0.869 0.941 0.814 0.775 0.826 0.809 0.836 0.793 0.807 0.796 0.817 0.77 0.807 0.777 0.829
OW + U 0.889 0.897 0.942 0.863 0.773 0.835 0.759 0.88 0.823 0.843 0.785 0.894 0.784 0.829 0.744 0.891
All 0.851 0.855 0.949 0.784 0.778 0.822 0.841 0.811 0.83 0.838 0.855 0.823 0.8 0.826 0.831 0.822

V
G

G

U 0.978 0.981 0.988 0.975 0.655 0.8 0.512 0.969 0.652 0.75 0.505 0.961 0.573 0.738 0.422 0.963
UW + U 0.935 0.942 0.957 0.931 0.88 0.912 0.872 0.936 0.87 0.879 0.87 0.887 0.863 0.887 0.855 0.909
OW + U 0.939 0.946 0.968 0.929 0.864 0.901 0.855 0.927 0.905 0.913 0.898 0.926 0.879 0.901 0.864 0.926
All 0.928 0.935 0.976 0.903 0.875 0.904 0.9 0.907 0.903 0.909 0.922 0.897 0.884 0.902 0.902 0.902

Table B.1: Binary classification results with different descriptors. Rows denote the descrip-
tor and its training data, while columns denote the test dataset. The Unmodified dataset
(U), Underwater superimposed (UW), and Overwater superimposed (OW) were combined
and used for testing. We provide F1-scores, accuracy, True Positive Rates (TPR), and True
Negative Rates (TNR) for each case.
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Appendix C
Videos from NOAA

C.1 NOAA Video collection

The following files were collected as sources for our datasets:

• EX1004L2 VID 20100629T051417Z ROVHD ROCK CROP.mov - Accessed Feb
7 2022

• EX1004L3 VID 20100724T034634Z ROVHD IRON ROCKS DETAIL.mov - Ac-
cessed Feb 7 2022

• EX1202L2 VID 20120322T161540Z ROVHD BLK BELLY ROSE CR.mov - Ac-
cessed Feb 7 2022

• EX1304L1 VID 20130724T191508Z ROVHD AUD EXPED SUMMARY.mov
- Accessed Feb 7 2022

• EX1304L2 VID 20130803T195342Z CPHD BEAUTY.mov - Accessed Feb 7 2022

• EX1402L3 VID 20140412T174503Z CPHD ROV CLOSE.mov - Accessed Feb
3 2022

• EX1402L3 VID 20140412T174846Z CPHD ROV SURVEYS.mov - Accessed
Feb 3 2022

• EX1402L3 VID 20140412T175300Z CPHD ROV OVER CARBONATE.mov -
Accessed Feb 3 2022

• EX1402L3 VID 20140427T170016Z ROVHD MARINE SNOW AUDIO.mov
- Accessed Feb 3 2022

• EX1502L3 VID 20150410T151332Z ROVHD WOOD ROCK AUD.mov - Ac-
cessed Feb 7 2022

131



• EX1504L2 VID 20150802T201839Z ROVHD ROCK SURVEY.mov - Accessed
Feb 7 2022

• EX1504L2 VID 20150802T205836Z ROVHD PILLOW ROCKS PSD.mov - Ac-
cessed Feb 7 2022

• EX1504L2 VID 20150803T233310Z ROVHD COR ROCK AUD.mov - Accessed
Feb 7 2022

• EX1504L2 VID 20150803T235626Z ROVHD ROCK AUD.mov - Accessed Feb
7 2022

• EX1504L2 VID 20150804T000217Z ROVHD ROCK AUD.mov - Accessed Feb
7 2022

• EX1504L2 VID 20150804T011544Z ROVHD ROCK LEDGE.mov - Accessed
Feb 7 2022

• EX1504L2 VID 20150804T022335Z PTMAN ROCK SAMPLE02 1.mov - Ac-
cessed Feb 7 2022

• EX1504L4 VID 20150913T192415Z ROVHD ROCK COR ACN.mov - Accessed
Feb 7 2022

• EX1504L4 VID 20150913T194155Z ROVHD ROCK SURVEY.mov - Accessed
Feb 7 2022

• EX1504L4 VID 20150914T001624Z ROVHD AUD ROCK CPEN.mov - Ac-
cessed Feb 7 2022

• EX1603 VID 20160228T202604Z ROVHD ROCK AUD.mov - Accessed Feb
7 2022

• EX1603 VID 20160229T000408Z ROVHD ROCK CRACK.mov - Accessed Feb
7 2022

• EX1605L1 VID 20160421T012731Z CPHD FIS 05.mov - Accessed Feb 3 2022

• EX1605L1 VID 20160421T040610Z CPHD ROV COR 05.mov - Accessed Feb
3 2022

• EX1606 VID 20160729T231121Z PTMAN ROCK COR SPO.mov - Accessed
Feb 7 2022

• EX1606 VID 20160729T235319Z ROVHD ROCK SLOPE.mov - Accessed Feb
7 2022

• EX1608 VID 20161203T184000Z CPHD.mov - Accessed Feb 3 2022

• EX1708 VID 20170907T230500Z ROVHD.mov - Accessed Feb 7 2022

• EX1803 VID 20180412T134000Z CPHD.mov - Accessed Feb 3 2022

• EX1803 VID 20180412T134500Z CPHD.mov - Accessed Feb 3 2022
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• EX1803 VID 20180412T135000Z CPHD.mov - Accessed Feb 3 2022

• EX1803 VID 20180428T210000Z ROVHD.mov - Accessed Feb 3 2022

• EX1903L2 VID 20190622T171459Z ROVHD.mov - Accessed Feb 7 2022

• EX1811 VID 20181110T154826Z PTMAN GEO.mov - Accessed Feb 24 2022

• EX1811 VID 20181110T155710Z PTMAN GEO HL.mov - Accessed Feb 24
2022

• EX1811 VID 20181110T160320Z PTMAN GEO WIDE.mov - Accessed Feb
24 2022

• EX1811 VID 20181110T162851Z PTMAN ROCK CRUST.mov - Accessed Feb
24 2022

• EX1811 VID 20181110T163601Z PTMAN AUD GEO.mov - Accessed Feb 24
2022

• EX1811 VID 20181112T165953Z PTMAN GEO.mov - Accessed Feb 24 2022

• EX1811 VID 20181112T192613Z PTMAN CHANNEL GEO.mov - Accessed
Feb 24 2022

• EX1904 VID 20190728T151332Z SBMAN COR SCAN.mov - Accessed Feb
24 2022

• EX1904 VID 20190731T170004Z PTMAN BIV.mov - Accessed Feb 24 2022

• EX1904 VID 20190731T175252Z PTMAN SKATE.mov - Accessed Feb 24 2022

• EX1905L2 VID 20190829T181328Z PTMAN ROC COR SPO.mov - Accessed
Feb 24 2022

• EX1905L2 VID 20190903T174545Z SBMAN SPO.mov - Accessed Feb 24 2022

• EX1905L2 VID 20190903T174546Z PTMAN SPO.mov - Accessed Feb 24 2022

• EX1905L2 VID 20190903T181537Z PTMAN ROC.mov - Accessed Feb 24 2022

• EX1603 VID 20160228T210505Z PTMAN ROCK SIP.mov - Accessed Feb 28
2022

• EX1606 VID 20160803T022516Z PTMAN COR ROCK WIDE.mov - Accessed
Feb 28 2022

• EX1606 VID 20160811T053252Z PTMAN ROCK SHI.mov - Accessed Feb 28
2022

• EX1606 VID 20160812T033213Z PTMAN COR ROCK HL.mov - Accessed
Feb 28 2022

• EX1705 VID 20170506T030036Z PTMAN COR FSH HL.mov - Accessed Feb
28 2022
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• EX1705 VID 20170511T224350Z PTMAN ROC.mov - Accessed Feb 28 2022

• EX1708 VID 20170921T231001Z PTMAN GEO.mov - Accessed Feb 28 2022

• EX1806 VID 20180701T171716Z PTMAN WALL.mov - Accessed Feb 28 2022

• EX1811 VID 20181105T163206Z PTMAN GEO.mov - Accessed Feb 28 2022

• EX1811 VID 20181110T155710Z PTMAN GEO HL.mov - Accessed Feb 28
2022

• EX1811 VID 20181110T160320Z PTMAN GEO WIDE.mov - Accessed Feb
28 2022

• EX1811 VID 20181110T163601Z PTMAN AUD GEO.mov - Accessed Feb 28
2022

• EX1811 VID 20181115T145314Z PTMAN WIDE HL.mov - Accessed Feb 28
2022

• EX1811 VID 20181115T150157Z PTMAN WIDE HL.mov - Accessed Feb 28
2022

• EX1811 VID 20181115T161656Z PTMAN ROC COR.mov - Accessed Feb 28
2022

• EX1811 VID 20181115T170015Z PTMAN LANDSCAPE.mov - Accessed Feb
28 2022

• EX1811 VID 20181115T173515Z PTMAN FSH.mov - Accessed Feb 28 2022

• EX1811 VID 20181115T181103Z PTMAN LANDSCAPE.mov - Accessed Feb
28 2022

• EX1811 VID 20181119T171402Z SBMAN ROCKS WIDE.mov - Accessed Feb
28 2022

• EX1811 VID 20181119T172703Z SBMAN WIDE ROCKS.mov - Accessed Feb
28 2022

• EX1304L1 VID 20130724T165918Z ROVHD SEAFL RUBBLE TRASH.mov -
Accessed Mar 30 2022

• EX1304L2 VID 20130807T142137Z ROVHD COR ROCK WALL.mov - Ac-
cessed Mar 30 2022

• EX1304L2 VID 20130815T141415Z ROVHD 800M TOWTRANSCT 11.mov -
Accessed Mar 30 2022

• EX1708 VID 20170908T212000Z ROVHD.mov - Accessed Mar 31 2022

• EX1803 VID 20180413T163500Z ROVHD.mov - Accessed Mar 31 2022

• EX1004L3 VID 20100722T212402Z ROVHD ROCK LEDGE SLOPE.mov - Ac-
cessed Feb 7 2022
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• EX1202L2 VID 20120320T183826Z ROVHD SPO BOTTOM WIDE 00.mov -
Accessed Mar 11 2022

• EX1202L2 VID 20120322T134828Z ROVHD CRA CAR COR FSH.mov - Ac-
cessed Mar 11 2022

• EX1202L2 VID 20120322T135148Z ROVHD COR SPO FSH.mov - Accessed
Mar 11 2022

• EX1202L2 VID 20120322T145121Z ROVHD CAR.mov - Accessed Mar 11 2022

• EX1304L1 VID 20130718T185323Z ROVHD SKATE.mov - Accessed Mar 10
2022

• EX1304L2 VID 20130804T180454Z ROVHD LANDSCAPE.mov - Accessed
Mar 10 2022

• EX1304L2 VID 20130808T185813Z ROVHD GRATE GREAT.mov - Accessed
Mar 10 2022

• EX1711 VID 20171204T162500Z CPHD.mov - Accessed Mar 10 2022

• EX1902 VID 20190514T194459Z ROVHD.mov - Accessed Mar 11 2022
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Appendix D
Marine odometry literature
collection

It was requested of us to preserve this early literature collection which was made
at the start of our master’s thesis. It includes papers relevant to our research, their
abstracts, and commentary from our side. Before this, we include our preliminary
summary of our findings.

D.1 Preliminary summary

So far, our literature search has been focused on collecting as many (possibly)
relevant papers as possible. We have mainly considered titles and abstracts for
selection. Topics include characteristics of marine snow, simulation of snow and
marine snow (movement and geometry), and methods of combating marine snow,
snow, and rain in computer vision.

D.1.1 Elimination of marine snow

• More mature field than we expected.

• Most methods are removal methods, i.e. a degraded image is processed to
remove marine snow. (Some of these methods also do other enhancement to
remove underwater effects, like discoloration and contrast improvement)

• Existing methods seem to have solid results on still images (no video exam-
ples) with low density snow.

• Filter-based methods are common, e.g, a median-filter.
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• You may have misunderstood the segmentation method we presented last
time (pixel-wise classification). We want to create a system, e.g,. a CNN,
with the entire image as input, and an output which shows the likelihood of
each pixel being snow (binary semantic segmentation).

• Some methods do the binary segmentation described above, one with a
multi-scale CNN, and one CNN with residual connections. We believe com-
bining these concepts into one may yield good results.

D.1.2 Elimination of above water snow or rain

• Unsurprisingly, more research exists in these above-water scenarios.

• Most methods are removal methods, e.g., a degraded image is processed to
remove rain.

• Rain removal is the considered easiest since snow has more variance in size,
shape, and opacity than rain. Furthermore, this variance can be present in
just one image, which is atypical for rain.

• Consequently, we believe there is more potential in adapting snow-removal
methods than rain-removal methods.

• The datasets we have found so far are all synthetic ranging from hundreds
to tens of thousands of images.

• We could consider transfer-learning on a synthetic snow dataset, but if we
can synthesize our own marine-snow data, data-scarcity should not be an
issue so there may be no benefit.

• Some methods have a primary-step similar to our segmentation-idea, where
each pixel is labelled as snow or not-snow. This information is then used to
remove the snow, e.g. by a CNN or filter-based process.

• We are unsure if removal is strictly needed for the SLAM keypoint-rejection
case, but all methods so far seem to do removal. If we do marine snow
removal, it would be before keypoint-detection, but a our worry is that the
patches of removed snow are not fit for matching and tracking.

D.1.3 Marine snow

• Marine snow is a very broad term describing micro-scale particles up to
decimeter-sizes.

• Most common around 50m depth, otherwise evenly distributed?

• Typically sink 50-100m per day.

• Marine snow can vary significantly in how it presents itself in different
video-sequences, due to camera properties and the snow itself.
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• We will need multiple sequences if we want to model most marine snow
conditions. If there is some kind of snow which is especially common in the
north sea, we could limit ourselves to these.

D.1.4 Simulation

• To model current (ocean or wind), Lattice Boltzman Models are common.

• We have only found one marine snow simulation;half of its snow did not
look like the snow we were used to. Instead, it looked like an out of fo-
cus effect like bokeh on a light-strip. The other half was reminiscent to our
method from last semester (ellipse-method)

• Should we make multiple sequences with different types of marine snow?

• How realistic does our marine-snow models need to be, to look good in
VAROS (at a distance)?

D.1.5 General questions

• Are the existing marine-snow removal methods available for comparison?

• How do we include and cite our pre-project report, e.g., can we copy para-
graphs from the background and literature chapters?

D.2 Marine Snow

Alldredge and Silver (1988): “Characteristics, dynamics and significance of ma-
rine snow”

Macroscopic aggregates of detritus, living organisms and inorganic matter known
as marine snow, have significance in the ocean both as unique, partially isolated
microenvironments and as transport agents: much of surface-derived matter in
the ocean fluxes to the ocean interior and the sea floor as marine snow. As mi-
crohabitats, marine snow aggregates contain enriched microbial communities and
chemical gradients within which processes of photosynthesis, decomposition, and
nutrient regeneration occur at highly elevated levels. Microbial communities as-
sociated with marine snow undergo complex successional changes on time scales
of hours to days which significantly alter the chemical and biological properties
of the particles. Marine snow can be produced either de novo by living plants and
animals especially as mucus feeding webs of zooplankton, or by the biologically-
enhanced physical aggregation of smaller particles. By the latter pathway, mi-
croaggregates, phytoplankton, fecal pellets, organic debris and clay-mineral par-
ticles collide by differential settlement or physical shear and adhere by the action
of various, biologically-generated, organic compounds. Diatom flocculation is a
poorly understood source of marine snow of potential global significance. Rates
of snow production and breakdown are not known but are critical to predicting
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flux and to understanding biological community structure and transformations of
matter and energy in the water column. The greatest challenge to the study of
marine snow at present is the development of appropriate technology to measure
abundances and characteristics of aggregates in situ.

Boffety and Galland (2012): “Phenomenological marine snow model for optical
underwater image simulation: Applications to color restoration”

Optical imaging plays an important role in oceanic science and engineering. How-
ever, the design of optical systems and image processing techniques for subsea
environment are challenging tasks due to water turbidity. Marine snow is notably
a major source of image degradation as it creates white bright spots that may
strongly impact the performance of image processing methods. In this context,
it is necessary to have a tool to foresee the behavior of these methods in marine
conditions. This paper presents a phenomenological model of marine snow for
image simulation. In order to highlight the interest of such a modeling for image
processing characterization, the impact of marine snow perturbation on a color
restoration technique is analyzed and a solution to improve the robustness of the
algorithm is finally proposed.

D.3 Simulating marine environments

Simulating marine environments eliminates the issues related to inaccuracy in
ground truths, but at the cost of realism. However, advances in computer graph-
ics and increasing interest from researches have steadily reduced the significance
of this trade-off.

D.3.1 Synthesis of Marine Snow

Excerpt: The marine snow is simulated by five layers of randomly moving
particles of varying size and speed, each layer consisting of 100.000 par-
ticles of which approximately 1200 are visible in each image. This fairly
closely resembles real marine snow effects under calm sea conditions.

Hildebrandt and Kirchner (2010): “IMU-aided stereo visual odometry for
ground-tracking AUV applications”

This paper addresses the problem of AUV navigation by showing the feasibility
of a stereo visual-inertial approach to odometry retrieval for an AUV. This infor-
mation is intended as input for a complete SLAM system. After its classification
among many other similar approaches in recent work is shown, the algorithm is
described in detail. A number of experiments conducted on synthetic data show
the performance in respect to precision and computational cost. As a conclusion,
future extensions and applications are briefly discussed.
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Irisson et al. (2022): “Machine Learning for the study of plankton and marine
snow from images”

Quantitative imaging instruments produce a large number of images of plank-
ton and marine snow, acquired in a controlled manner, from which the visual
characteristics of individual objects and their in situ concentrations can be com-
puted. To exploit this wealth of information, machine learning is necessary to
automate tasks such as taxonomic classification. Through a review of the litera-
ture, we highlight the progress of those machine classifiers and what they can and
still cannot be trusted for. Several examples showcase how the combination of
quantitative imaging with machine learning has brought insights on pelagic ecol-
ogy. They also highlight what is still missing and how images could be exploited
further through trait-based approaches. In the future, we suggest deeper interac-
tions with the computer sciences community, the adoption of data standards, and
the more systematic sharing of databases to build a global community of pelagic
image providers and users.

The ’bokeh-effect’ dataset mentioned earlier.

Sato, Ueda, and Tanaka (2021): Marine Snow Removal Benchmarking Dataset

This paper introduces a new benchmarking dataset for marine snow removal of
underwater images. Marine snow is one of the main degradation sources of un-
derwater images that are caused by small particles, e.g., organic matter and sand,
between the underwater scene and photosensors. We mathematically model two
typical types of marine snow from the observations of real underwater images.
The modeled artifacts are synthesized with underwater images to construct large-
scale pairs of ground-truth and degraded images to calculate objective qualities
for marine snow removal and to train a deep neural network. We propose two
marine snow removal tasks using the dataset and show the first benchmarking re-
sults of marine snow removal. The Marine Snow Removal Benchmarking Dataset
is publicly available online.

D.4 Marine Snow Detection and Removal

Three methods for snow removal. Two based on GANs and one with
U-net and partial convolutions. They make their own synthetic dataset
similar to ours, but seemingly without depth information. They do not
describe how their data was synthesised. They present results on very
difficult real-wporld data, and it seems snow removal is predictably too
difficult in these scenarios. Noise, ghosting and color changes are present
in these examples.
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L. Li et al. (2021): “Removal of Floating Particles from Underwater Images Us-
ing Image Transformation Networks”

In this paper, we propose three methods for removing floating particles from
underwater images. The first two methods are based on Generative Adversar-
ial Networks (GANs). The first method uses CycleGAN which can be trained
with an unpaired dataset, and the second method uses pix2pixHD that is trained
with a paired dataset created by adding artificial particles to underwater images.
The third method consists of two-step process – particle detection and image in-
painting. For particle detection, an image segmentation neural network U-Net
is trained by using underwater images added with artificial particles. Using the
output of U-Net, the particle regions are repaired by an image inpainting network
Partial Convolutions. The experimental results showed that the methods using
GANs were able to remove floating particles, but the resolution became lower
than that of the original images. On the other hand, the results of the method us-
ing U-Net and Partial Convolutions showed that it is capable of accurate detection
and removal of floating particles without loss of resolution.

Very basic method in regards to marine snow; they simply model snow as
additive noise. The main contributions are: dehazing considering under-
water particle physics, artificial light model for underwater robot appli-
cations, independence to channel numbers and online processing perfor-
mance. Their method for modeling image degradation is based on ”Un-
derwater image enhancement by wavelength compensation and dehaz-
ing” by Chiang et al. (TODO: Read) and they adopt light attenuation as an
exponentially decaying term, however they add a non uniform artificial
light estimation, blur modeling with point spread function, and random
noise from particles (marine snow).

Cho and A. Kim (2017): “Visibility enhancement for underwater visual SLAM
based on underwater light scattering model”

This paper presents a real-time visibility enhancement algorithm for effective un-
derwater visual simultaneous localization and mapping (SLAM). Unlike an aerial
environment, an underwater environment contains larger particles and is domi-
nated by a different image degradation model. Our method starts with a thorough
understanding of underwater particle physics (e.g., forward, back, multiple scat-
tering, blur and noise). Targeting underwater image enhancement in a real-world
application, we include an artificial light model in the derivation. The proposed
method is effective for both color and gray images with substantial improvement
in the process time compared to conventional methods. The proposed method is
validated by using simulated synthetic images (color) and real-world underwater
images (color and grayscale). Using two underwater image sets acquired from the
same area but with different water turbidity, we evaluate the proposed visibility
enhancement and camera registration improvement in SLAM.
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”Compared to underwater image enhancement methods, the devel-
opment of underwater marine snow removal methods proceed rather
slowly.” Seperates the image into high and low frequency components.
Snow removal is done on the high frequency component, while other en-
hancement techniques are performed on the low frequency component.
The marine snow removal network is a residual network. The paper
achieves seemingly good results, but seems to struggle a little with any-
thing more than light marine snow

Y. Wang et al. (2021): “Underwater image enhancement and marine snow re-
moval for fishery based on integrated dual-channel neural network”

Computer vision technology can reduce the intensity and difficulty of marine
aquaculture. Nonetheless, the degradation problems of marine fishery underwa-
ter images hamper further interpretation and analysis of underwater information
by computer vision technology. In order to comprehensively solve the problems
of degradation in marine fishery underwater images, this paper proposes an end-
to-end integrated dual-channel network model, which uses the underwater image
enhancement module based on the residual dense network to perform color cor-
rection and dehazing for the low-frequency layer of images, and the marine snow
removal module based on local residual learning strategy to remove the white
marine snow in the high-frequency layer of images. Moreover, the addition of
refinement module further improves the textual details and colors of images. Ex-
perimental results on marine fishery dataset indicate that the approach proposed
in this paper performs better than several state-of-the-art methods in quantitative
metrics, including underwater image quality measure (UIQM), blur index and
smooth index, effective in improving the contrast of underwater fishery images
and reducing marine snow noise, while achieving better visual quality in qualita-
tive evaluation such as color correction, dehazing, detail and feature restoration.
Furthermore, the generalization tests and application tests have proved its effec-
tiveness in underwater scenarios, which means it can meet the practical needs in
the field of marine aquaculture.

Works by finding areas with snow, and then blurring only those areas.
To find the snow, the authors calculate the probability (of a pixel being
snow?) solely based on the luminance. The luma channel is found by con-
verting the image from standard RGB to YCbCr, where Y is luma. Their
approach for calculating the probability is done by sliding a window over
the image and then calulating the probability of the center pixel of the
window by dividing the number of high luminance pixels in the window
over the total number of pixels in the image. a 7x7 sliding window is
used.

Banerjee et al. (2014): “Elimination of Marine Snow effect from underwater
image - An adaptive probabilistic approach”
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Along with color loss, another severe problem of underwater optical imaging is
Marine Snow effect which occurs because of back scattering from suspended or-
ganic detritus, solid particles or bubbles. Their appearance like tiny sparkling dots
often reduces the scene perception and sometimes leads to spurious features on
segmentation. This paper is concerned with removal of the marine snow effect
from underwater images by a probabilistic approach considering the local statis-
tics of luminance properties after a RGB to YCbCr transform.

This paper’s previous work left a good impression

Boguslaw Cyganek and Gongola (2018): “Real-time marine snow noise removal
from underwater video sequences”

Underwater images suffer from various degradation factors, such as blur, haze,
color degradation, and marine snow. Marine snow is a type of noise, caused
mostly by biological particles that fall into the ocean bottom, and which impedes
proper object detection in underwater vision. A method for real-time marine snow
removal from underwater color and monochrome video is presented. It is based
on the proposed marine snow model, spatiotemporal patch analysis, and three-
dimensional median filtering. The method was evaluated on a number of real un-
derwater sequences endowed with the hand-annotated ground-truth data which
were made available from the Internet. As shown by the experiments, the method
attains high accuracy and performs in real time.

Farhadifard, Radolko, and U. v. Lukas (2017): “Single Image Marine Snow Re-
moval based on a Supervised Median Filtering Scheme”

Underwater image processing has attracted a lot of attention due to the special
difficulties at capturing clean and high quality images in this medium. Blur, haze,
low contrast and color cast are the main degradations. In an underwater im-
age noise is mostly considered as an additive noise (e.g. sensor noise), although
the visibility of underwater scenes is distorted by another source, termed ma-
rine snow. This signal disturbs image processing methods such as enhancement
and segmentation. Therefore removing marine snow can improve image visibility
while helping advanced image processing approaches such as background sub-
traction to yield better results. In this article, we propose a simple but effective
filter to eliminate these particles from single underwater images. It consists of dif-
ferent steps which adapt the filter to fit the characteristics of marine snow the best.
Our experimental results show the success of our algorithm at outperforming the
existing approaches by effectively removing this phenomenon and preserving the
edges as much as possib

Supposedly a snow generating algorithm. To our eyes it looks more like
marine snow, could be very interesting.
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Zou, Xie, and Zhao (2010): “Algorithm for generating snow based on GPU”

The simulation of natural phenomena plays an important role in the area of com-
puter game, film production, simulation and so on. Snow is an important part of
the simulation of nature phenomena, so how to generate high-quality and con-
trollable snow texture is significant. Now the algorithms of generating snow are
based on triangulated surfaces, they put some triangles on multi-layer concentric
spheres to form snow. The disadvantage of these algorithms is that the edges of
snow are not smooth enough, the angles of snow are too acute. The approach is
splitting up a triangle to four, and then rendering the triangles associated with
vertexes using the rendering algorithm of Quadric Bezier Curve based on GPU,
and rendering the triangle formed by points on edges normally. Finally it can
generate high-quality snow texture with the technology of alpha blending.

Two step marine snow removal. First step similar to our semantic seg-
mentation idea, but not multi-scale.

Koziarski and Bogusław Cyganek (2019): “Marine Snow Removal Using a Fully
Convolutional 3D Neural Network Combined with an Adaptive Median Fil-
ter”

Marine snow is a type of noise that affects underwater images. It is caused by vari-
ous biological and mineral particles which stick together and cause backscattering
of the incident light. In this paper a method of marine snow removal is proposed.
For particle detection a fully convolutional 3D neural network is trained with a
manually annotated images. Then, marine snow is removed with an adaptive
median filter, guided by the output of the neural network. Experimental results
show that the proposed solution is capable of an accurate removal of marine snow
without negatively affecting the image quality.

Very early paper on motion fields for snow. Cited by many of the other
papers. Intended for above-water, but we assume it is trivial to adapt it to
underwater simulation.

Wei et al. (2003): “Blowing in the wind”

We present an approach for simulating the natural dynamics that emerge from
the coupling of a flow field to light-weight, mildly deformable objects immersed
within it. We model the flow field using a Lattice Boltzmann Model (LBM) ex-
tended with a subgrid model and accelerate the computation on commodity graph-
ics hardware to achieve real-time simulations. We demonstrate our approach us-
ing soap bubbles and a feather blown by wind fields, yet our approach is general
enough to apply to other light-weight objects. The soap bubbles illustrate Fresnel
reflection, reveal the dynamics of the unseen flow field in which they travel, and
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display spherical harmonics in their undulations. The free feather floats and flut-
ters in response to lift and drag forces. Our single bubble simulation allows the
user to directly interact with the wind field and thereby influence the dynamics in
real time.

D.5 Segmentation

H.-K. Kim et al. (2019): “Traffic Light Recognition Based on Binary Semantic
Segmentation Network”

A traffic light recognition system is a very important building block in an ad-
vanced driving assistance system and an autonomous vehicle system. In this pa-
per, we propose a two-staged deep-learning-based traffic light recognition method
that consists of a pixel-wise semantic segmentation technique and a novel fully
convolutional network. For candidate detection, we employ a binary-semantic
segmentation network that is suitable for detecting small objects such as traffic
lights. Connected components labeling with an eight-connected neighborhood
is applied to obtain bounding boxes of candidate regions, instead of the compu-
tationally demanding region proposal and regression processes of conventional
methods. A fully convolutional network including a convolution layer with three
filters of (1 x 1) at the beginning is designed and implemented for traffic light
classification, as traffic lights have only a set number of colors. The simulation
results show that the proposed traffic light recognition method outperforms the
conventional two-staged object detection method in terms of recognition perfor-
mance, and remarkably reduces the computational complexity and hardware re-
quirements. This framework can be a useful network design guideline for the
detection and recognition of small objects, including traffic lights.

Kampffmeyer, Salberg, and Jenssen (2016): “Semantic Segmentation of Small
Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using
Deep Convolutional Neural Networks”

We propose a deep Convolutional Neural Network (CNN) for land cover map-
ping in remote sensing images, with a focus on urban areas. In remote sensing,
class imbalance represents often a problem for tasks like land cover mapping,
as small objects get less prioritised in an effort to achieve the best overall accu-
racy. We propose a novel approach to achieve high overall accuracy, while still
achieving good accuracy for small objects. Quantifying the uncertainty on a pixel
scale is another challenge in remote sensing, especially when using CNNs. In this
paper we use recent advances in measuring uncertainty for CNNs and evaluate
their quality both qualitatively and quantitatively in a remote sensing context.
We demonstrate our ideas on different deep architectures including patch-based
and so-called pixel-to-pixel approaches, as well as their combination, by classify-
ing each pixel in a set of aerial images covering Vaihingen, Germany. The results
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show that we obtain an overall classification accuracy of 87%. The corresponding
F1-score for the small object class ”car” is 80.6%, which is higher than state-of-the
art for this dataset.

Takeki et al. (2016): “Detection of small birds in large images by combining a
deep detector with semantic segmentation”

This paper tackles the problem of bird detection in large landscape images for
applications in the wind energy industry. While significant progress in image
recognition has been made by deep convolutional neural networks (CNNs), small
object detection remains a problem. To solve it, we follow the idea that a detec-
tor can be tuned to small objects of interest and semantic segmentation methods
can be complementary used to recognize large background areas. Specifically, we
train a CNN-based detector, fully convolutional networks, and a superpixel-based
semantic segmentation method. The results of the three methods are combined
by using support vector machines to achieve high detection performance. Exper-
imental results on a bird image dataset show the high precision and effectiveness
of the proposed method.

The vegetation class example could pass as a marine snow segmentation.

Segl and Kaufmann (2001): “Detection of small objects from high-resolution
panchromatic satellite imagery based on supervised image segmentation”

A new concept for the detection of small objects from modular optoelectronic
multispectral scanner (MOMS-02) high spatial resolution panchromatic satellite
imagery is presented. The authors combine supervised shape classification with
unsupervised image segmentation in an iterative procedure which allows a target-
oriented search for specific object shapes.

D.6 Other

Like many other papers, the paper’s removal process and ground truths
are modelled as rainy image = rainless background + rain.

H. Wang et al. (2020): “A Model-Driven Deep Neural Network for Single Image
Rain Removal”

Deep learning (DL) methods have achieved state-of-the-art performance in the
task of single image rain removal. Most of current DL architectures, however, are
still lack of sufficient interpretability and not fully integrated with physical struc-
tures inside general rain streaks. To this issue, in this paper, we propose a model-
driven deep neural network for the task, with fully interpretable network struc-
tures. Specifically, based on the convolutional dictionary learning mechanism for
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representing rain, we propose a novel single image deraining model and utilize
the proximal gradient descent technique to design an iterative algorithm only con-
taining simple operators for solving the model. Such a simple implementation
scheme facilitates us to unfold it into a new deep network architecture, called rain
convolutional dictionary network (RCDNet), with almost every network module
one-to-one corresponding to each operation involved in the algorithm. By end-
to-end training the proposed RCDNet, all the rain kernels and proximal operators
can be automatically extracted, faithfully characterizing the features of both rain
and clean background layers, and thus naturally lead to its better deraining per-
formance, especially in real scenarios. Comprehensive experiments substantiate
the superiority of the proposed network, especially its well generality to diverse
testing scenarios and good interpretability for all its modules, as compared with
state-of-the-arts both visually and quantitatively.

Does above water snow removal and introduces the Snow100k synthetic
snow dataset. Begins to describe why snow removal is more challenging
than rain removal (more varied size, shape and opacity. Less predictable
trajectories and uneven density in the image). Tow modules are used to
remove snow, the translucency recovery module which recovers areas ob-
scured by translucent snow, and the residual generation module which
recovers areas completely covered by opaque snow. Inception-v4 is used
to get multi-scale features for the modules. Instead of summing up the
multi-scale features, a concatenation function is learned which intends to
preserve spatial information to a higher degree than summing.

Y.-F. Liu et al. (2018): “DesnowNet: Context-Aware Deep Network for Snow
Removal”

Existing learning-based atmospheric particle-removal approaches such as those
used for rainy and hazy images are designed with strong assumptions regard-
ing spatial frequency, trajectory, and translucency. However, the removal of snow
particles is more complicated because it possess the additional attributes of par-
ticle size and shape, and these attributes may vary within a single image. Cur-
rently, hand-crafted features are still the mainstream for snow removal, making
significant generalization difficult to achieve. In response, we have designed a
multistage network codenamed DesnowNet to in turn deal with the removal of
translucent and opaque snow particles. We also differentiate snow into attributes
of translucency and chromatic aberration for accurate estimation. Moreover, our
approach individually estimates residual complements of the snow-free images
to recover details obscured by opaque snow. Additionally, a multi-scale design
is utilized throughout the entire network to model the diversity of snow. As
demonstrated in experimental results, our approach outperforms state-of-the-art
learning-based atmospheric phenomena removal methods and one semantic seg-
mentation baseline on the proposed Snow100K dataset in both qualitative and
quantitative comparisons. The results indicate our network would benefit appli-

148



cations involving computer vision and graphics.

The first part of the stacked network is very similar to our original 2-class
semantic segmentation idea. Using densely connected CNN’s, this paper
used a stacked approach which improves performance. The bottom part
of the stack performs a binary semantic segmentation task which identi-
fies snow. This data is then concatenated to the image features and sent
to the next part of the stack which removes the snow.

P. Li et al. (2019): “Stacked dense networks for single-image snow removal”

Single image snow removal is important since snowy images usually degrade the
performance of computer vision systems. In this paper, we deduce a physics-
based snow model and propose a novel snow removal method based on the snow
model and deep neural networks. Our model decomposes a snowy image into a
nonlinear combination of a snow-free image and dynamic snowflakes. Inspired
by our model and DenseNet connectivity pattern, we design a novel Multi-scale
Stacked Densely Connected Convolutional Network (MS-SDN) to simultaneously
detect and remove snowflakes in an image. The MS-SDN is composed of a multi-
scale convolutional sub-net for extracting feature maps and two stacked modi-
fied DenseNets for snowflakes detection and removal. The snowflake detection
sub-net guides snow removal through forward transmission, and the snowflake
removal sub-net adjusts snow detection through back transmission. In this way,
snowflake detection and removal mutually improve the final results. For train-
ing and testing our method, we constructed a large-scale benchmark synthesis
dataset which contains 3000 triplets of snowy images, snowflakes, and snow-free
images. Specifically, the snow-free images are captured from snow scenes, and
the snowy images are synthesized by using our deduced snow model. Our ex-
tensive quantitative and qualitative experimental results show that our MS-SDN
performs better than several state-of-the-art methods, and the stacked structure is
better than multi-branch structures in terms of snow removal.

Snow synthesis, with a promising method for creating a flow field. Wind
interaction is based on a discrete form of the Boltzmann equation and
works in 3D. Says wind-interaction has two main possible approaches,
assuming that the fluid is continuous in both time and space, we can use
the Navier-Stokes equations. However, the authors consider a statisti-
cal physics based approach with the Boltzman eq. to be easier (but not
easy). Since the flow field is a macroscopic effect, discrete kinetics in time
and space are used. ”The wind field is sampled at many grids, and the
moving state of air particles at the grid nodes is described by distribu-
tion functions. Let those particles move along the grid lines, and collide
with each other at the grid according to certain rules. The evolution of the
distribution function reflects the motion law of wind macrocosmically.”

149



C. Wang et al. (2006): “Real-time snowing simulation”

A snowing scene has a unique fascination for people due to its incomparable
beauty. However, little work has been presented on the real-time generation of a
dynamic snowing scene, partially due to the difficulty that the simulation of a dy-
namic snowing process involves the complex modeling of the wind field and the
interaction between wind and snow. In this paper, by fully considering the physi-
cal characteristics of wind and snow, we construct a three-dimensional wind field
based on the discrete form of the Boltzmann equation. According to the interac-
tion laws between wind and snow, we simulate the falling of snow, deposition and
erosion in 3D space. Experimental results show that realistic wind-driven snow
scenes under different speeds of wind with different amounts of snowfall can be
rendered in real-time.

Important paper on snow-synthesis going by the number of citations,
however the snowy graphics look outdated. To improve efficiency and
realism, Langer’s particle system intentionally keeps the particle count
low. To ’fill in’ the gaps, a dynamic texture, made using a spectral syn-
thesis method, is composited into the scene. This method generates more
convincing results than simply increasing the particle count. Wind-snow
interaction is not explicitly handled.

Langer et al. (2004): “A Spectral-particle hybrid method for rendering falling
snow.”

Falling snow has the visual property that it is simultaneously a set of discrete
moving particles as well as a dynamic texture. To capture the dynamic texture
properties of falling snow using particle systems can, however, require so many
particles that it severely impacts rendering rates. Here we address this limitation
by rendering the texture properties directly. We use a standard particle system to
generate a relatively sparse set of falling snow ak es, and we then composite in
a dynamic texture to ll in between the particles. The texture is generated using a
novel image-based spectral synthesis method. The spectrum of the falling snow
texture is dened by a dispersion relation in the image plane, derived from linear
perspective. The dispersion relation relates image speed, image size, and particle
depth. In the frequency domain, it relates the wavelength and speed of moving 2D
image sinusoids. The parameters of this spectral snow can be varied both across
the image and over time. This provides the e xibility to match the direction and
speed parameters of the spectral snow to those of the falling particles. Camera
motion can also be matched. Our method produces visually pleasing results at in-
teractive rendering rates. We demonstrate our approach by adding snow effects to
static and dynamic scenes. An extension for creating rain effects is also presented.
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Does snow synthesis and claims that rendering snow or fog onto exist-
ing images has never been covered before in the literature. ”Introducing
snow into an existing real scene requires the reconstruction of that scene
– otherwise depth effects and occlusion of both snow flakes and road ob-
jects will not unfold.[...]Since single snow flakes become indistinguishable
to an optical sensor as soon as they are far enough away, only a limited
space in front of the camera has to be populated with flakes. Light atten-
uation effects that are caused by the consolidated snow masses are taken
care of in a later step. Depending on the general motion vector of the
snow, the space behind and left and right of the camera may be ignored
as well”

Bernuth, Volk, and Bringmann (2019): “Simulating Photo-realistic Snow and
Fog on Existing Images for Enhanced CNN Training and Evaluation”

Verification and robustness testing of machine learning algorithms for autonomous
driving is crucial. Due to the increasing complexity and quantity of those systems
in a single vehicle, just driving the required distance with a newly developed ve-
hicle is not feasible anymore: billions of hours on the street without failure are
necessary to qualify for industry standards like ISO 26262. That is where simu-
lation comes into play: machine learning algorithms are trained and evaluated
on well known image data sets like KITTI or Cityscapes. But today’s data sets
mostly contain images taken under perfect weather conditions and therefore do
not harden optical object detection algorithms against various weather conditions.
This paper focuses on reusing these established and labeled data sets by augment-
ing them with adverse weather effects like snow and fog. Those effects are ren-
dered physically correct and life like while being added to existing real world
images. Thanks to easy parametrization the weather influences may be varied as
necessary and allow for finely tuned learning and optimization processes. The
weather effects are evaluated with regard to realism and impact on an established
object detection algorithm. These newly created weather-influenced images may
be used to validate or train new object detection algorithms.

Use depth to simulate rain and fog

Sen, Das, and Sahu (2021): “Rendering Scenes for Simulating Adverse Weather
Conditions”

Most of the object detection schemes do not perform well when the input im-
age is captured in adverse weather. Reason being that the available datasets for
training/testing of those schemes didn’t have many images in such weather con-
ditions. Thus in this work, a novel approach to render foggy and rainy datasets
is proposed. The rain is generated via estimation of the area of the scene im-
age and then computing streak volume and finally overlapping the streaks with
the scene image. As visibility reduces with depth due to fog, rendering of fog
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must take depth-map into consideration. In the proposed scheme, the depth
map is generated from a single image. Then, the fog coefficient is generated by
modifying the 3D Perlin noise with respect to the depth map. Further, blending
the corresponding density of the fog with the scene image at a particular region
based on precomputed intensities at that region. Demo dataset is available in this
https://github.com/senprithwish1994/DatasetAdverse.
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