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Abstract

The use of nanophotonics in biosensing is an interdisciplinary area of science that
has gained significant attention and has evolved rapidly in recent years. The ability
to integrate several photonic structures on a single semiconductor chip as a label-free
optical biosensor is of particular interest. Due to advances in fabrication techniques
in micro-and nanotechnology, improved miniaturization of such photonic devices
yields more detailed structures, lower costs and lower energy consumption. The
Mach-Zehnder interferometer-assisted ring resonator configuration (MARC) sensor
is such an optical biosensor which can achieve a tailored spectral response, which
can be refined to yield a low detection limit and a large dynamic range.

In this thesis, transmission signals of different MARC devices are examined. The
current characterization setup has also been examined to find possible improvements
in the data acquisition process, such as increasing the reproducibility and accuracy
of each measurement. Furthermore, different signal processing approaches have been
utilized to investigate the transmission curves and the accompanying noise. The
sensing capabilities of the MARC sensor relies on the detection of resonance shifts
occuring upon the presence of an analyte. A method has been developed through
the course of this work for automatically calculating these resonance shifts.
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Sammendrag

Bruken av nanofotonikk i anvendelsen av biosensorer er et tverrfaglig vitenskapsom-
råde som har tiltrukket mye oppmerksomhet, samt utviklet seg hurtig i senere år.
Muligheten å integrere flere fotoniske strukturer på en enkel halvlederbrikke til bruk
av ’label-free’ optiske biosensorer er av spesiell interesse. Forbedret miniatyrisering av
slike enheter, grunnet fremskritt i fabrikasjonsteknikker i mikro- og nanoteknologi, gir
mer detaljerte strukturer, lavere kostnader og lavere energiforbruk. Sensorer basert
på en Mach-Zehnder interferometerassistert ringresonatorkonfigurasjon (MARC) er
en slik optisk biosensor som kan oppnå en skreddersydd spektralrespons, som kan gi
lav deteksjonsgrense og en høy dynamisk respons.

I denne avhandlingen vil transmisjonssignaler av ulike MARC-enheter bli undersøkt. I
tillegg har det nåværende karakteriseringsoppsettet blitt undersøkt for å finne mulige
forbedringer i datainnsamlingsprosessen, slik som en økning i reproduserbarheten og
nøyaktigheten av hver måling. Videre har ulike fremgangsmåter i signalbehandling
blitt brukt for å undersøke transmisjonskurvene og den medfølgende støyen. Sen-
soregenskapene til MARC-enhetene avhenger av deteksjonen av resonansskift som
følge av tilstedeværelsen av en analytt. En metode har blitt utviklet i løpet av dette
arbeidet for automatisk utregning av slike resonansskift.
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1 | Introduction

Throughout the last century, the life expectancy of humans has been steadily increas-
ing due to an extensive health transition, in which medical technology has played
an integral part [1]. As the medical field still advances at a tremendous pace, the
field of biosensing and its capability to detect bacteria, viruses, and other toxins has
become an essential tool in fighting disease and global pandemics [2–6].

A biosensor is a device that utilizes a biological recognition element in order to detect
the presence of a chemical or biological species, called an analyte [2]. A subfield of
the broad topic of biosensors is the interdisciplinary field of optical biosensing, where
optical techniques are utilized for detecting and identifying analytes [2]. Besides the
use mentioned above in the medical field, optical biosensors also find a wide range
of applications in clinical diagnostics, drug development, environmental monitoring,
and food quality control [2, 7, 8].

An optical biosensor operates by detecting a change in a physical, observable quantity
such as intensity, phase, frequency, or polarization of light. To observe such a change
a biological recognition element is utilized, which creates a response based on the
presence of a species, or a physiological change [2]. This response is subsequently
converted into a signal by using a transducer, which can be detected. By immobilizing
the biorecognition element on an optical element, such as an optical fiber or a
waveguide, the sensitivity and selectivity of the optical response can be significantly
improved [2, 7]. The main components of an optical biosensor can be divided into
five parts, which are summarized by

(i) a light source,

(ii) an optical transmission medium,

(iii) a biological recognition element,

(iv) a transducer, and

(v) an optical detection system.

The photonics group at NTNU is developing a specific type of optical biosensor, known
as a Mach-Zehnder interferometer assisted ring resonator configuration (MARC).
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Chapter 1. Introduction

The device is a lab-on-a-chip (LOC) device capable of measuring concentrations in
various fluids [9]. As the name suggests, the sensor comprises microring cavities that
act as resonators causing a phase shift of the incoming light. An interferometer is
used to detect this phase shift physically. Additionally, the device allows for label-free
biosensing, which helps overcome the problems of reliability and stability found in
the detection of labeled molecules [10].

Thesis Objectives

In this thesis, the interest lies in component (v) of an optical biosensor, namely the
optical detection system. This interest comprises not only the necessary experimental
setup for detecting such physical changes in a system but also the subsequent data
processing. The goal of this work is twofold; to outline the characterization techniques
used for data collection of MARC devices and the development of an automated
data processing technique that measures the observed change in intensity caused by
a change in refractive index. Performing transmission measurements as a function
of varying wavelengths on a MARC sensor yields a characteristic signature of the
specific device. When the recognition element detects an analyte, the signature will
experience a resonance shift of the corresponding ring resonator peaks. This work
will explore a method of automatically calculating this resonance shift. Although
the device allows for complex functionalizations and specific biological recognition
elements, only bulk refractive index changes will be considered in this work.

Thesis Outline

In chapter 2, the fundamentals of light propagation in waveguides will be covered to
the extent needed to understand the observed transmission signatures produced by
MARC structures properly. Additionally, the chapter briefly introduces the different
minimization algorithms utilized in this work. In chapter 3, an overview of the
experimental setup used by the photonics group at NTNU will be given, in addition
to an explanation of different software used and developed throughout this work.
Chapter 4 contains the methods and procedures utilized to arrive at the final results,
which will be given along with a discussion regarding their significance and validity.
To conclude, a thesis summary will be provided in chapter 6.

2



2 | Theory

As the results of this work rely on an understanding of a range of different physical
phenomena and digital algorithms, this chapter aims to give a fundamental review
of the theory required in order to explain the results adequately. First, some basic
theory of electromagnetic waves and waveguides will be presented such that the
intensity output of a MARC sensor can be described mathematically. This part will
closely follow the development of the material as done in the work by Saleh and
Teich [11]. The main chapters of interest in this work are chapter 5, which concerns
electromagnetic optics, and chapter 9, which concerns guided-wave optics. The last
part of this chapter describes the minimization algorithms used in this work.

2.1 Electromagnetic Waves
The foundation of most advanced discussion about electromagnetic theory is Maxwell’s
equations. The general theory will be briefly discussed to clarify the notation used
when discussing more advanced topics later on. As most of the discussion in this
work concerns the propagation of light through waveguides, a natural starting point
of the discussion is the equations for light traveling through a linear, nondispersive,
homogeneous, isotropic and source-free medium. Using the notation E(r, t) for
the complex electric vector field and H(r, t) for the complex magnetic vector field,
Maxwell’s equations are given by [11]

∇×H = ε
∂E
∂t

(2.1)

∇× E = −µ∂H
∂t

(2.2)

∇ · E = 0 (2.3)
∇ ·H = 0. (2.4)

In this context, ε = εrε0 is called the electric permittivity of the medium and µ = µrµ0
the magnetic permeability of the medium. These two material properties are here
described in terms of their relative value to their vacuum counterparts, denoted by

3



Chapter 2. Theory

the subscript 0. As the materials used in this work are assumed to be non-magnetic,
the permeability of vacuum µ0 is used.

2.1.1 Speed of Light and Refractive Index
The two properties ε and µ of a material can be used to define a constant known
as the speed of the electric field in the given material, usually denoted by c. The
constant determines the speed at which light travels in a dielectric medium and given
by [11]

c = 1
√
εµ
. (2.5)

It is also common to use the notation c0 to describe the value in a vacuum. As with
its material property constituents, it is useful to consider the ratio between the speed
of light in a vacuum and the speed of light in a given medium. This ratio describes
how the speed of light changes as it crosses a boundary between vacuum and the
given material and is termed the refractive index. The refractive index is usually
denoted by the symbol n and described mathematically as [11]

n = c0

c
. (2.6)

A planar boundary between two materials can be considered, where the two materials
have refractive indices n1 and n2, with n1 > n2. When an electromagnetic wave is
incident on the boundary at an angle θ1 in the material with refractive index n1, the
wave will refract when travelling across the boundary according to Snell’s law, which
is given by [11]

n1 sin θ1 = n2 sin θ2. (2.7)
A special case occurs when θ1 reaches a certain value θc, called the critical angle, in
which θ2 reaches 90° and refraction no longer occurs. The critical angle is given by
[11]

θc = sin−1 n2

n1
. (2.8)

When this happens, a phenomenon called total internal reflection occurs in which all
the light is reflected at the boundary and stays within the material with refractive
index n1. Light incident on the boundary with angles above, at, and below the
critical angle are shown in figure 2.1. The complementary critical angle θ̄c = π/2− θc
is also often used when discussing the total internal reflection.

2.1.2 Wave Equation and Helmholz Equation
By denoting any vector component of either E or H by u, it can be shown that all
components satisfies the wave equation, which is given as [11]

∇2u− 1
c2
∂2u

∂t2
= 0. (2.9)

4



2.1. Electromagnetic Waves

n1

n2

θc θ1 θ1
θ1

θ2

Figure 2.1: Illustration demonstrating total internal reflection. Assuming n1 > n2, light rays
hitting the boundary between the two media are either refracted or reflected depending on the
incident angle θ1 of the ray. The dotted lines represent reflected waves when refraction of ray occurs.
Adaptation of a figure found in [11]

If we consider electromagnetic waves that are monochromatic, i.e. of only one
wavelength ν, the complex vector fields E and H can be described as harmonic
functions as

E(r, t) = Re {E(r) exp(jωt)} (2.10)
H(r, t) = Re {H(r) exp(jωt)} , (2.11)

where ω = 2πν is the angular frequency corresponding to the frequency ν, and j
is the imaginary unit. The vectors E and H describes the complex amplitude of
their field counterparts. Inserting equations 2.10-2.11 into equation 2.9 yields the
wave equation describing monochromatic waves, better known as Helmholtz equation.
This is given as [11]

∇2U(r) + k2U(r) = 0. (2.12)

Here the function U(r) describes the complex amplitude of u, similar to what is
done in equations 2.10-2.11, where u is the vector component of either E or H. The
constant k = ω

√
εµ = nk0 is called the angular wavenumber, or more commonly just

the wavenumber [11]. The quantity k0 = 2πν/c0 = 2π
λ0

is the vacuum wavenumber,
while λ0 is the wavelength of the electrimagnetic wave in vacuum. Another concept
related to the wavenumber is the vector quantity known as the wavevector k. The
wavevector determines the direction of propagation of the electromagnetic waves and
has the property |k| = k [11].

2.1.3 Polarization
For an electromagnetic wave E propagating in time t, the curve traced out by the
amplitude of the field vector at a given position in space r is called the polarization of
light. If we consider a monochromatic plane wave as described in equation 2.10, the
two orthogonal vector components of E, which in general differ in both amplitude
and phase, will draw out an ellipse characterizing the wave as an elliptically polarized
wave [11]. Depending on the amplitudes and phases of the vector components, this
ellipse may reduce to a circle or a straight line.

5



Chapter 2. Theory

Waves propagating along the optical axis of the wave are approximated as transverse
electromagnetic (TEM) waves, where the propagation direction, electric field, and
magnetic field are all perpendicular to each other. TEM waves are modeled as plane
waves, where only a single polarization ellipse describes the polarization of the wave.
The orientation and ellipticity of the ellipse determine the polarization state, while
the size of the ellipse determines the optical intensity [11].

2.1.4 Dispersion
Some dielectric materials are characterized by a frequency-dependent behavior of
some of its material properties, such as the electric permittivity ε(ν), the refractive
index n(ν) and thus the speed c(ν) = c0/n(ν) [11]. As the wavelength λ is related to
the frequency ν by λ = c/ν, dispersive media changes its behaviour depending on
the wavelength of the incoming light as well. An empirical model of the refractive
index n(λ) of a dispersive material depending on the wavelength λ of the incoming
light is the Sellmeier equation, which is given by [11]

n2(λ) = 1 +
∑
i

Biλ
2

λ2 − Ci
. (2.13)

The coefficients Bi and Ci for i = 1, 2, . . . are called the Sellmeier coefficients.
Although the model allows for an arbitrary high value for i, it is often enough to use
i = 1 to get a good enough approximation.

2.1.5 Waveguides
An optical waveguide is a structure that can confine electromagnetic waves and carry
the light over some distance [11]. The basic principle for this confinement is that of
total internal reflection, as described previously. Although many types of waveguides
exist, the one of interest in this work is a type that utilizes a dielectric material for
the confinement of light.

Electromagnetic waves traveling in a waveguide cannot be TEM waves due to
the boundary conditions imposed on Maxwell’s equations [11]. Instead, the wave
propagating through a waveguide can be either transverse electric (TE) or transverse
magnetic (TM), depending on whether the electric or magnetic field is transverse to
the direction of propagation. As the waveguides used in this project are constructed
for the propagation of TE waves, the following theory on wave propagation in
waveguides will only consider these.

Surrounding a dielectric material of width d and refractive index n1 by other media of
some lower refractive index n2 produces what is called a planar dielectric waveguide
[11]. In such a waveguide, the confined light is guided in the z-direction, with light
rays making angles θ in the y − z plane, as shown in figure 2.2.

6



2.1. Electromagnetic Waves

y

zx

n2

n1

n2

d

Figure 2.2: An illustration of wave propagation in a dielectric waveguide. The red line illustrates
the beam, which oscillates along the z-axis between two media of refractive index n2. The x-axis
goes into the plane. The length d is the height of the dielectric medium of refractive index n1.

Modes

A monochromatic TE wave of wavelength λ = λ0/n1, wavenumber k = n1k0,
wavevector k = [kx, ky, kz]T = [0, n1k0 sin θ, n1k0 cos θ]T , phase velocity c = c0/n1
and the electric field in the x-axis will propagate through the dielectric slab by
oscillating between the upper and lower boundaries of the material [11]. As the wave
bounces from boundary to boundary in the waveguide, a phase shift is introduced to
the wave equal to (2π/λ)2d sin θ after bouncing off the boundaries twice. This phase
shift arises because the oscillating wave has traveled a distance 2d sin θ further than a
wave only traveling along the z-axis. In addition, there is a second phase contribution
ϕr caused by each internal reflection at the dielectric boundaries [11]. For a wave
to maintain propagation thoughout the waveguide, it needs to reproduce itself after
two reflections. This is to avoid the destructive interference caused by the phase
difference [11]. This condition imposed on the waves is called the self-cconsistency
condition [11]. Reproduction means that the phase must be an integer multiple m of
2π after two reflections, i.e.

2π
λ

2d sin θ − 2ϕr = 2πm. (2.14)

The fields that satisfy the self-consistency conditions are called the modes of the
waveguide [11]. The modes of a waveguide maintain the same transverse distribution
and polarization along the whole waveguide. The phase shift ϕr depends on the
angle θ and whether the polarization of the incident wave is TE or TM. Solving
equation 2.14 for θ yields a set of discrete bounce angles θm ∈ (0, θ̄c) for which the
wave can propagate [11].

These angles have corresponding wavevectors km = [0, n1k0 sin θm, n1k0 cos θm]T ,
where each component corresponds to the propagation constant for that direction.
Since the wave is travelling in the z-direction, the z-component of km gives rise to
an effective refractive index for mode m, given by [11]

neff,m = n1k0 cos θm, (2.15)

7



Chapter 2. Theory

which the propagating wave is experiencing as it travels through the waveguide.

When the waveguide is sufficiently thin, only one mode can propagate through the
waveguide. In this case, the waveguide is called single-mode [11]. The effective
refractive index is then given as neff.

Coupling

When two waveguides are sufficiently close to one another, the electromagnetic
radiation can be coupled, i.e. the radiation travels from one waveguide to the other
[11]. An approximation known as coupled-mode theory is used to describe the
phenomenon of weak coupling. This theory assumes that the mode of each waveguide
is calculated as if the other waveguide was absent. The coupling is assumed only to
affect the amplitudes of the modes [11]. In order to make the exposition given here
more clear, some further assumptions are made. Namely that the waveguides are
phase matched, i.e. have identical material properties, and that they are single-mode.
By making these assumptions, the input and output amplitude fields are related
by the transmission matrix T , such that the output electric field Eo is given by
[11]

Eo = TEi, (2.16)
where Ei denotes the input field. The fields Eo and Ei correspond to the fields at the
waveguides marked by output and input in figure 2.3, respectively. The transmission
matrix is given by [11]

T =
[
A(z) B(z)
C(z) D(z)

]
=
[

cos Cz −j sin Cz
−j sin Cz cos Cz

]
, (2.17)

where the constant C is called the coupling coefficient. This coefficient determines
how much power is transferred while the waveguides are close to one another. The
coupling length L0 = π/2C is the length at which all the power is transferred from
one waveguide to the other [11]. At a length L0/2, half the power is transferred.
Such a coupling is called a 3 dB coupler and is shown in figure 2.3.

Input Output
L0/2

Figure 2.3: A schematic of a 3 dB coupler, where the two lines illustrate two different waveguides.
The blue rectangles indicate the input and output ports of the waveguides. The waveguide coupling
occurs in the area in the middle, where the waveguides are close to each other. The coupling length
is marked as L0/2, which defines the 3 dB coupler.
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2.1. Electromagnetic Waves

2.1.6 Intensity and Interference
It is often useful to consider the energy related to a harmonic wave U , as this energy
is a physical quantity that can be measured. A parameter known as the intensity
I of such a wave can be defined as the time average of the amount of energy that
crosses a unit area, where the area is perpendicular to the direction of energy flow of
the wave [12]. For a plane wave, this quantity can be given as

I = c

4π

√
ε

µ
〈U2〉, (2.18)

where 〈.〉 denotes the time average over some interval. This quantity can be simplified
by modifying the scaling constant of the amplitude-dependent term, such that the
intensity is expressed instead as 2 〈U2〉 [11]. Although the calculated value will
not be the same using the different scaling constants, the expression is often useful
when the exact value of the intensity is not of interest, such as when comparing
different intensities against one another. The expression can be further simplified if
the average is taken over a time interval which is large compared to the period T
of the wave, in which case the intensity can be expressed as I = 2 〈U2〉 = |U |2[11,
12].

Superposition of electromagnetic waves follows from the linearity of the wave equation,
meaning that the total wavefunction of a wave comprising two or more waves in
the same region will be the sum of the individual wavefunctions [11]. However, this
principle does not apply to intensity, meaning that the sum of two or more waves
does not necessarily equal the sum of their individual intensities [11, 12]. The lack
of this principle in intensity gives rise to the concept of interference, which describes
this phenomenon [11].

Suppose a wave U(r) = U1(r) + U2(r) comprises two superposed monochromatic
waves with complex amplitudes U1(r) and U2(r). The resulting wave U will be
monochromatic with the same frequency as the two waves it is composed of. Using
the notation Ui =

√
Ii exp{(jϕi)} where i ∈ {1, 2}, the intensity of this wave can be

described by the interference equation, which is given by [11]

I = |U1 + U2|2

= I1 + I2 + 2
√
I1I2 cosϕ,

(2.19)

where ϕ = ϕ2 − ϕ1 describes the phase difference between the two waves. From
equation 2.19 it is apparent that the intensity of a wave comprising two waves is not
equal to the sum of the intensities of the two waves, as the expression contains a
phase-dependent term. It is this term which describes the interference of the two
waves, and is a measure of the correlation between the two different waves [12]. In
general will two waves originating from the same source be correlated, meaning
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interference will be observed of the superposed wave. For two waves originating from
different sources, the superposed wave will in general not exhibit interference.

An interferometer is a device that utilizes the phenomenon of interference by splitting
a wave into two waves using a beamsplitter, changing the phase of one of the two
split waves, and subsequently recombining the two waves back into one [11]. The
intensity of the superposed waves at the output is then detected. Using such a device
makes it possible to experimentally detect the phase difference induced on one of the
waves. A basic illustration of the operation of an interferometer is shown in figure
2.4 The phase difference can be induced by various methods, such as different optical
path lengths or different propagation directions [11]

ϕ

Input Output

Figure 2.4: A basic illustration of an interferometer. An incoming wave enters the interferometer at
the input and is split into two waves by a beamsplitter. The wave in one of the arms is subject to a
phase shift ϕ before the waves are superposed together before detection at the output.

2.1.7 Ring Resonators
An optical resonator is a device that is capable of accumulating and confining light
of specific resonant frequencies, which are determined by the different parameters
of the device [11]. There is a large variety of different configurations which enable
this capability, such as the planar-mirror, rectangular-cavity, and photonic-crystal
resonator configurations [11]. In this text, only the ring resonator will be discussed
in detail.

A ring resonator is a circular waveguide capable of sustaining resonating modes.
While not very interesting on its own, the ring can be coupled with other straight
waveguides to couple light in and out of the ring. The simplest such structure consists
of only a single ring and a single waveguide and is known as a all-pass ring resonator
[13]. In order to describe the input and output electric fields of the structure, some
basic assumptions have to be made. These assumptions are that: [13]

• only a single unidirectional mode of the resonator is excited,

• the coupling is lossless,

• only single polarization is considered,

10



2.1. Electromagnetic Waves

• the different waveguide segments and coupler elements do not couple waves of
different polarizations,

• the attenuation constant contains all the propagation losses through the ring
resonator.

As long as these assumptions hold, the electric field can be described quite similarly
as for two coupled waveguides, which is described in equation 2.16. For the structure
containing only one ring and one waveguide, the coupling is described by [13][

Et1
Et2

]
=
[
t κ
−κ∗ t∗

] [
Ei1
Ei2

]
, (2.20)

where t and κ are the coupler parameters, which are required to satisfy |κ2|+ |t2| = 1
because of the symmetry of the matrix [13].

For a given ring of radius r with a light of period T passing through it, the light will
experience a phase shift ϕ = 2πτ/T , where 0 ≤ τ < T is the time spent in the ring.
This time is found by dividing the circumference of the ring, 2πr, by the speed at
which the wave travels c = c0/neff, where c0 is the speed of light in vacuum and neff
is the effective refractive index. Relating the period T of a wave with the wavelength
yields the relation T = λ/c0. Combining all this gives the total phase shift for a
round trip in the ring as [13]

ϕ = 4π2neff
r

λ
. (2.21)

Parallel Add-Drop Ring Resonators

Adding another waveguide to the all-pass ring resonator yields what is called an
add-drop ring resonator, which is shown in figure 2.5 [13]. Here the names of the
input and output ports are shown, namely the add, drop, throughput, and input
ports.

To simplify the model of the output electromagnetic field of the ring it is assumed
that Ei1 = 1. It can then be shown that the electric field at the drop port is given
by [13]

Et2 = −κ
∗
1κ2α1/2e

jϕ1/2

1− t∗1t∗2αejϕ
. (2.22)

The parameters α1/2 and ϕ1/2 are used to denote the change in loss and phase after
a half round trip around the ring, respectively. To achieve a maximum intensity at
the resonance wavelengths, the coupling parameters t1 and t2 need to be adjusted so
that [13]

α =
∣∣∣∣t1t2
∣∣∣∣ . (2.23)

. This phenomenom is called critical coupling [13]. The intensity output at the drop
port can then be calculated using It2 = |Et2|2, which is shown under critical coupling
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2r

Ei1

Et1

Er

−κ∗
1

κ1

t1 t∗1

Ei2

Et2

−κ∗
2

κ2

t2t∗2

Input

Throughput

Drop

Add

Figure 2.5: Illustration of an add-drop ring resonator of radius r. The black lines illustrate
waveguides, with the arrows indicating the propagation direction. The red lines indicate the
waveguide coupling. The notation used for the electric field at different positions throughout the
structure is shown, in addition to the names used for the various waveguide ports. The illustration
is based on a figure in [13].

in figure 2.6 for a ring of radius 25 µm.The intensity of a resonator is recognized by
its distinct periodic peaks, which are separated by a wavelength distance known as
the free spectral range (FSR) [11]. For a ring resonator with circumference L = 2πr
and a resonance peak at the vacuum wavelength λ0 the FSR can be approximated
as [13]

FSR ≈ λ2
0

neffL
. (2.24)

Non-Parallel Add-Drop Ring Resonators

The two waveguides coupling with the ring in an add-drop ring resonator need not
be parallel. They can be separated by an arbitrary angular separation θ, as shown
in figure 2.7. The amplitude transmission at the drop port can then be given as
[14]

Et2 = −

√
1− t21

√
1− t22αθ exp{jϕ θ

2π}
1− t1t2α exp{jϕ} . (2.25)

The round-trip phase shift is the same as given in equation 2.21, while αθ is the
fraction of the round-trip amplitude transmission factor between the input and
output coupler [14].

The main difference between the different configurations created by using different
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Figure 2.6: Normalized drop port transmission for a add-drop ring resonator with a ring of radius
25 µm and angular separation 180°. The wavelength distance corresponding to the FSR is indicated.

θ

Throughput

Input

Add

Drop

Figure 2.7: Illustration of a non-parallel ring resonator with angular separation θ. The arrows
indicate the propagation direction of light in the waveguides. The special cases for this configuration
are when θ = 0° or θ = 180°. In these cases the structure is an all-pass or a parallel add-drop ring
resonator, respectively.
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angular separations is the difference in phase accumulation between resonances. For
a parallel add-drop ring resonator, i.e. θ = 180°, this phase changes monotonically as
a function of wavelength, where the phase accumulation between resonances equals
π. This accumulated phase difference is reduced in accordance with the angular
separation angle reduction. The phase of the light transmitted at the drop port is
shown in figure 2.8 and is described matematically as [14]

φ = arctan Im{Et2}
Re{Et2}

= π + ϕ
θ

2π + arctan t1t2 sinϕ
1− t1t2α cosϕ. (2.26)

1530 1535 1540 1545 1550
Wavelength [nm]

-17.5
-15.0
-12.5
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-5.0
-2.5
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e
sh
ift
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θ = 45° θ = 90° θ = 180°

π

π/2

π/4

Figure 2.8: A plot showing the phase at the drop port of three different add-drop ring resonators of
angular separations 45°, 90° and 180°.

2.2 MARC Devices
A Mach-Zehnder interferometer assisted ring resonator configuration (MARC) is a
device combining a Mach-Zehnder interferometer with a ring resonator by placing
the ring resonator in the phase-shifting arm of the interferometer [8, 14]. The
intensity output detected will change at different wavelengths depending on the
angular separation of the ring resonator drop port with respect to the throughput, as
shown in figure 2.8. A simple schematic of a MARC device with angular separation
90° is shown in figure 2.9

In a simplified situation with only a single ring resonator, which is lossless (α = 1)
and critically coupled ( t1 = t2), the intensity of such a device can be found using the
interference equation 2.19 equation. By assuming the intensity I1 in the unaffected
arm to be one, and that the intensity in the phase shifted arm is given as |Et2|2, as
derived in equation 2.25, the final expression for the transmitted light at the drop
port can be written as

I = 1
4(1 + |Et2|2 + 2|Et2| cosφ), (2.27)
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Input Output

Throughput

Drop port

Figure 2.9: Schematic of a MARC device with one ring of angular separation 90°

The phase shift ϕ is assumed to be the phase shift caused by the ring resonator
configuration as derived in equation 2.26. Additionally, the scaling factor 1/4 has
been added to ensure that the maximum intensity of the expression is 1. A plot of
such a transmission output across a range of wavelengths is shown in figure 2.10
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Figure 2.10: Drop port transmission output of a MARC with 90° angular separation. The intensity
is given in normalized units. The FSRe is indicated for this particular MARC device.

2.2.1 Spectral Line Shapes
As can be seen from figure 2.10, a unique signature is created when sweeping across
a wavelength range for a MARC of a specific ring radius and angular separation of
the ring. Although the familiar symmetrical Lorentzian line shape, which is common
in resonators, and the inverse Lorentzian can be recognized, other more unusual,
asymmetric line shapes can be seen as well. This asymmetric line shape is known
as a Fano resonance line shape [15–17]. This asymmetric line shape is not seen in
conventional resonators, as it occurs when a discrete quantum state interferes with
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a continuum band of states [18]. In photonics, this can be caused by scattering
involving two channels, where one of the channels is nonresonant broadband, and
the other is resonant narrowband [19]. An example of such a system is the MARC
sensor, which is a type of side-coupled waveguide-resonator system [15].

In fact, it turns out that both the Lorentzian and inverse Lorentzian line shapes are
just special cases of the Fano line shape, depending on the asymmetry factor q [18,
20]. The Fano line shape is given by

σ(ω) = D2 (q + Ω)2

1 + Ω2 . (2.28)

Here, ω is the angular frequency, D = 2 sin(φ/2) is a scaling factor, q = cot(φ/2) is
the Fano asymmetry parameter, φ is the phase shift, Ω = 2(ω − ω)/γ is the reduced
frequency, where γ and ω0 are the resonance width and frequency, respectively [18,
19]. The phase scaling factor 1/2 is added to accommodate the periodicities for both
the phase shift and the cotangent function [20]. As the phase shift φ varies, the
asymmetry parameter changes, which causes the apparent line shape to change as
well. As φ reaches a multiple of 2π, the asymmetry parameter reaches either +∞ or
−∞, and the line shape becomes Lorentzian, as shown in figure 2.11 (a). In figure
2.11 (b), the characteristic asymmetric Fano line shape can be seen, which occurs
when the asymmetry parameter reaches 1, i.e. the phase shift equals π/2. Lastly,
the inverse Lorentzian line shape, shown in figure 2.11, occurs when the phase shift
equals π, which yields an asymmetry parameter of 0. As the cotangent function has
a period of π, these line shapes repeat as the phase shift increases. For the values of
φ between all those stated, other line shapes will manifest, which can be interpreted
as intermediate states between the ones discussed.

Ω

σ

(a) φ = 0, 2π

Ω

(b) φ = π/2

Ω

(c) φ = π

Figure 2.11: Plots illustrating different line shapes produced by equation 2.28, with the corresponding
phase shifts φ within the period. (a) Lorentzian line shape, which occurs when the phase shift
φ = 0 or φ = 2π. (b) The characteristic asymmetric Fano line shape, which occurs when φ = π/2.
(c) The inverse Lorentzian line shape, which occurs when φ = π. All three line shapes are shown as
the scattering cross-section σ as a function of the reduced frequency Ω.

To exemplify; the wavelength-dependent phase shift of a 90° ring resonator shown
in figure 2.8 can be related to the transmission output of a MARC with angular
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separation 90°, as shown in figure 2.10. As the phase accumulates step-wise, with
each step increasing by π/2, the MARC signature exhibits peaks corresponding to
the same steps at each peak. A Lorentzian line shape, given by φ = 0, is followed by
an asymmetrical Fano line shape, which occurs when φ = π/2 is again followed by
an inverse Lorentzian, and so on.

These different line shapes result in the unique MARC signatures, which will repeat
when the accumulated phase difference reaches an integer multiple of 2π . The period
of the repeating transmission spectrum is defined as the effective free spectral range
FSRe [14], and is indicated for a 90° MARC in figure 2.10. As the name suggests, it
is related to the FSR of the ring resonator in the device. To explain this relation
a parameter L needs to be introduced. The parameter is calculated as L = 2π/θ,
where θ is the angular separation of the MARC given in radians [8]. There are two
possibilities for the resulting value of L, depending on the angular separation of the
MARC, where L is either a rational number or a positive integer. In the case where
L is a rational number, the reduced fraction of L can be expressed as N/M , for
some positive integers N and M . In the case L is a positive integer, the integer N is
given as N = L[14]. The relation of FSR and FSRe can then finally be expressed as
[14]

FSRe = N · FSR. (2.29)

2.2.2 Parameter Effect on Signature
As many parameters affect the final transmission response of the MARC device,
there are many ways in which the signature can be affected. A general resonance
shift of the signature may be caused by different factors, such as temperature change
[14, 21, 22] or an externally applied electric field [23].

As the radius r of the ring resonator varies, the FSR of the ring will experience a
change according to 2.24. This means that a smaller ring radius will result in a
larger FSR, as shown in figure 2.12. By varying the angular separation θ of the ring
resonator in the MARC, the resonance peaks will stay in the same positions, but the
line shapes of the resonance peaks will change according to 2.28, as can be seen in
figure 2.12.

Changes in the loss coefficient α will result in a vertical shift of the whole signature,
as seen in figure 2.13. Likewise, variations in the coupler parameter t1 will result in
changes in the sharpness of the resonance peaks, as seen in the middle graph of figure
2.13. Lastly, a change in the effective refractive index of the ring results in both a
horizontal shift of the signature and a change in the FSR, as seen in the bottom
graph of figure 2.13. This results from the effective refractive index dependency of
equation 2.24.
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Figure 2.12: Overview of the effects on the signature caused by adjusting different paramters. The
top plot shows a general resonance shift, which may be caused by different factors. The middle plot
shows the effects of variations of the ring radius. The bottom plot shows the effects of variations of
the angular separation of the ring resonator.
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Figure 2.13: Overview of the effects on the signature caused by adjusting different parameters. The
top plot shows a the effects of the loss coefficient α. The middle plot shows the effects of variations
of coupler parameter t1. The bottom plot shows the effects of variations of the effective refractive
index.
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2.2.3 MARC Devices as Sensors

Utilizing a MARC as a sensor involves exposing the ring resonators of the structures
to some fluid containing the analyte to be detected. This exposure is performed
for the effective refractive index to change, resulting in a phase difference [24]. As
mentioned in chapter 1, this work will focus on bulk refractive index changes of
MARC sensors, which relies only on a change in the refractive index of the fluid, and
not on detecting specific analytes present. The effective refractive index of the ring
resonator will then be sensitive to a bulk refractive index change in the surrounding
fluid, which will result in a resonance shift of the transmission signature [8]. The
total shift of the transmission signature, which is also known as the sensitivity, is
given as [8]

S = ∆λ
∆n = m

L

(
∂neff
∂nbulk

)−1

, (2.30)

where L is the circumference of the ring resonator, m is the cavity mode order, neff is
the effective refractive index of the guided mode and nbulk is the bulk refractive index
change of the fluid [8]. Another parameter to consider of a sensor is the measurement
range ∆nmax, which is the highest detectable change in refractive index, and is given
as

∆nmax = FSRe

S
. (2.31)

2.3 Optimization Algorithms
Mathematical optimization is the process of minimizing a scalar objective function
with respect to its design variables, which is normally given as a vector [25]. As
the objective function is calculated based on its design variables, a minimum of
the function is found when the optimal design variables are found. The method of
acquiring these optimal variables is usually based on an algorithm that iteratively
minimizes the objective function value [25]. The algorithm ends when some optimality
criterion has been satisfied. There are many different minimization algorithms, which
all differ in how they operate and what problems they solve. One way of bisecting such
algorithms is whether they are mathematical or heuristic. Mathematical algorithms
are often gradient-based and use some mathematical principle for the optimality
principle [25]. This means that the algorithm ensures that the objective function
is at a minimum when the optimal variables have been found. On the other hand,
heuristic algorithms will often not require the gradient of the objective function.
However, the optimality criteria for heuristic algorithms do not ensure that the
optimal variables found give an actual minimum of the objective function, but rather
a point that is "close enough" [25].
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2.3.1 Data Fitting
Given a set of n observations, where each observation consists of an independent
variable Xi and a dependent variable Yi, where i = 1, . . . , n, it is often of interest to
fit the data points to a model. In general, such a model can be represented by finding
a fitted value yi for observation Yi which is an approximation of the observation value,
given by yi = Yi + ri, where ri is called the residual [26]. In practice, the fitted value
yi is often calculated from some specific function y(Xi,x), which depends on the
independent variable Xi in addition to an arbitrary number of other parameters x,
often represented as a vector. The task of finding the best curve fit of of the points
yi = y(Xi,x) to the observations Yi then turns into minimizing the residuals ri, such
that the values yi and Yi are as close to each other as possible. The residuals can be
represented as [26]

ri(x) = Yi − y(Xi,x). (2.32)

The residuals are used to construct an objective function, such that a minimization
algorithm can be used for optimizing the curve fit. In this work, two different mini-
mization algorithms are explored for such use, namely the Nelder-Mead minimization
algorithm and non-linear least squares regression. The Nelder-Mead algorithm is a
heuristic algorithm, while least squares is a mathematical one [25]. Although the
derivative can not be found for the residuals, they can be approximated.

2.3.2 Nelder-Mead
One of the most common derivative-free optimization algorithms for solving uncon-
strained problems is the Nelder-Mead algorithm [27]. In this algorithm, a function
f : Rn → R called the objective function (also called a cost function) is minimized by
generating a sequence of simplicies and iteratively approximates the minimum of f
[25, 27]. A simplex, denoted ∆, is a geometric structure which is the convex hull1 of
n+ 1 vertices x1,x2, . . . ,xn+1 ∈ Rn in n dimensions[27]. To provide a visualization
of simplices it should be noted that in one dimension a simplex is a line, and in two
dimensions the simplex is a triangle [25].

For each iteration of the algorithm a simplex is iteratively generated using four
possible operations called reflection, expansion, contraction and shrinking [27]. These
operations are associated with the scalar parameters α > 0, β > 1, 0 < γ < 1 and
0 < δ < 1, respectively. The values commonly used for the simplex operation
parameters are[27]

[α, β, γ, δ] = [1, 2, 0.5, 0.5]. (2.33)

To perform the different simplex operations, the vertices of the simplex first needs
to be ordered from what is called the best vertex x1 to the worst vertex xn+1 [27].

1A subset of R is convex if it contains the straight line segment between any two points in the
subset [28]. A convex hull of a set of points is the intersection of all convex sets containing the set.
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Figure 2.14: Illustration of the n = 2 simplex and the simplex operations. (a) Initial simplex (b)
reflection, (c) expansion, (d) outside contraction, (e) inside contraction and (f) shrinking. Figure
adapted from [25].

The idea behind this is to determine which vertex yields the lowest function value,
in order to replace it with a more optimal vertex. The ordering is thus found by
calculating the function value of every vertex of the simplex and ordering them as
follows [27]:

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (2.34)

After sorting the vertices, the centroid x̄ of the simplex can be calculated using
the vertices x1, . . . ,xn[27], which will be used for further simplex operations. The
centroid can be viewed as an average of all vertices except the worst one, and is
calculated by [27]

x̄ = 1
n

n∑
i=1

xi. (2.35)

An illustration of the simplex when n = 2, in addition to the position of the centroid
can be seen in figure 2.14 (a). After the centroid has been calculated, the four
operations can be described more precisely [27]:

1. Reflection. The reflection point xr can be understood as reflecting the simplex
away from the worst vertex, in hopes of finding a more optimal vertex. This
new vertex is calculated using [27]

xr = x̄ + α(x̄− xn+1). (2.36)

An illustration of this operation for the case n = 2 is shown in figure 2.14 (b).
Which operation to perform next depends on the objective function value of
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the reflection point.

2. Expansion. The expansion point is calculated when the reflection point
yields a lower function value than the previous worst simplex [27]. It can be
understood as testing a point further away from the simplex in the direction of
the reflection point, in order to see if this point yields an even lower function
value. The expansion point is given by [27]

xe = x̄ + β(xr − x̄). (2.37)

An illustration of this operation for the case n = 2 is shown in figure 2.14 (c).

3. Contraction There are two variations of the contraction operations, which
are performed depending on the objective function value of xr [27]. They are
called outside and inside contraction, and described as follows [27]:

3.1. Outside Contraction. If the reflection point yields a function value
f(xn) ≤ f(xr) < f(xn+1), the region inside the simplex formed with the
reflection point is investigated for a vertex with a possible smaller function
value [27]. The outside contraction point is given by

xoc = x̄ + γ(xr − x̄). (2.38)

An illustration of this operation for the case n = 2 is shown in figure 2.14
(d).

3.2. Inside Contraction. If the reflection point has a higher function value
than all other vertices, the inside of the simplex is probed for a vertex
with a possible lower function value [27]. The inside contraction point is
given by

xic = x̄− γ(xn+1 − x̄). (2.39)
An illustration of this operation for the case n = 2 is shown in figure 2.14
(e).

4. Shrink . If all other tested vertices yields higher function values, the algorithm
assumes that the simplex surrounds the optimal vertex. To better approximate
this value, the simplex is reduced in size around its best vertex [27]. The new
vertices of the simplex are then given by [27]

xi = x1 + δ(xi − x1) (2.40)

for 2 ≤ i ≤ n+ 1. An illustration of this operation for the case n = 2 is shown
in figure 2.14 (f).

Using the different simplex operations the algorithm procedure is best understood
by following a flowchart, such as the one shown in figure 2.15, where the shorthand
notation fi = f(xi has been used for convenience.
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Figure 2.15: Flowchart of the Nelder-Mead minimization algorithm. The starting point of the
algorithm is the top left box named initial simplex, and the algorithm ends when the minimization
criterion has been reached. This flowchart is based on the one presented in [29] and developed
further to reflect more modern implementations of the algorithm.
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Data Fitting

Although the Nelder-Mead algorithm is an algorithm for finding the minimum of a
function, it can be used to fit a given line to a set of data points given an appropriate
objective function. Given a set of residuals ri, a general objective function for data
fitting can be given as

f(x) = ‖r(x)‖p =
(∑

i

|ri(xi)|p
) 1

p

, (2.41)

where ‖.‖p is the p-norm 2

2.3.3 Least Squares Regression
In nonlinear least squares data fitting, the objective function to be minimized can be
written as [26]

f(x) = 1
2

m∑
i=1

ri(x) = 1
2r(x)T r(x), (2.42)

where ri(x) is the residual at datapoint i. The best curve fit is the local minimum
point x0, which is the point where f(x0) ≤ f(x) for all x such that ‖x − x0 < ε,
where ε is some small positive number [26]. It can be shown that if x0 is a local
minimum, then ∇f(x0) = 0 and ∇2f(x0) is positive definite [26].

Gauss-Newton Method

Newton’s method is a method for solving equations of the form [26]

f(x) = 0. (2.43)

This is done by finding the Taylor series approximation for f at the point xka, which
is given by [26]

f(xk + p) ≈ f(xk) +∇f(xk)Tp. (2.44)
Equation 2.44 represents a linear approximation of the function f . Setting this
equation equal to 0 and solving for p yields an approximation for equation 2.43 [26].
To further improve the approximation of the value, however, the same process can
be repeated by finding the Taylor series approximation for f at the point p. This
iterative process for finding successively better approximations xk+1 given a previous
approximation xk is usually written as [26]

xk+1 = xk −∇f(xk)−T f(xk). (2.45)
2More common names for the different p-norms are the boxcar norm, denoted ‖.‖1, the Euclidian

denoted ‖.‖2, and the max norm, denoted ‖.‖∞. The latter is the maximum value of a vector
element in a vector.
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Returning to the case of nonlinear least squares data fitting, Newton’s method can
be applied to find the approximation of the zero value of the gradient of f . The
gradient of f can be found to be [26]

∇f(x) = ∇r(x)r(x). (2.46)

The Gauss-Newton method is this implementation of Newton’s method combined
with the approximation [26]

∇2f(x) ≈ ∇r(x)r(x)T , (2.47)

which assumes that r(x) ≈ 0 for x ≈ x0 if r(x0) = 0 [26]. This approximation
assumes that the residuals are small, meaning this method will perform poorly when
the initial guess of the iteration is a poor fit of the data. Given a step xk, the next
step of the iterative process is given by xk+1 = xk + pk, where pk is the solution to
[26]

∇r(x)r(x)Tpk = −∇r(x)r(x). (2.48)

This original form of the Gauss-Newton method is rarely used directly to find the
best fit. One method of calculation is using trust region methods [26].

Trust Region Method

Trust-region methods are ways of solving the problem stated in the Gauss-Newton
method while guaranteeing convergence. In essence, this method creates a model
of the objective function, and only trusts this model within some specified bounds
of the input parameters. Using the trust region method on Newton’s method, the
model of the objective function is given as the second order Taylor series of f about
the point xk [26]

qk(p) = f(xk) +∇f(xk)Tp + 1
2pT∇2f(xk)p, (2.49)

where the bounds of the parameter p are given by

‖p‖2 ≤ ∆k. (2.50)

The value of ∆k depends on how well the model q fits the objective function f .

The trust region algorithm is as follows [26]

1. Initiate the algorithm with an initial guess x0 and some initial trust-region
bound ∆0 > 0. Additionally some constants 0 < a and b < 0 need to be
specified.

2. For k = 0, 1, . . . :
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(a) If xk is optimal, the algorithm is finished.

(b) Solve the constrained optimization problem

min
p

qk(p), where ‖p‖2 ≤ ∆k. (2.51)

The function qk is the same as the one stated in equation 2.49. The
solution to this problem will be termed pk.

(c) To indicate how well the model predicts a reduction in the objective
function, the value ρk is introduced, which can be computed as [26]

ρk = actual reduction
model reduction = f(xk)− f(xk + pk)

f(xk)− qk(pk)
. (2.52)

If ρk is small, the actual function value is smaller than the model, meaning
that the trust region ∆k is too large and needs to be reduced. If ρk is
large, the trust region can be increased to include even further possible
values.

(d) Calculate whether the step is a successful one or not. If ρk < a, the step
is considered unsuccessful and the value xk is kept for the next iteration.
If the step is successful, the next iteration uses the value xk+1 = xk + pk

(e) Lastly, the value of ∆k is updated according to the following rules:

ρk ≤ a→ ∆k+1 = 1
2∆k (2.53)

a < ρk < b→ ∆k+1 = ∆k (2.54)
ρk ≥ b→ ∆k+1 = 2∆k (2.55)
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This section aims to provide an overview of the experimental setup used to acquire
data from a MARC device and the software used to analyze such data. First, a
brief explanation of the laboratory setup is given, where an account of the different
components required for data acquisition of a MARC device is given. The flowchart
in figure 3.1 gives an overview of how the components are related, although a more
descriptive explanation of how each part of the setup works will be given. Table 3.1
gives an overview of which specific components were used in this work. The next
part of this section will discuss the software used for data acquisition and analysis .
Most of this section will focus on the implementation of different functions which
have been used for the data analysis.

Tunable laser

Temperature
controller

Wavelength
controller

Laser diode
driver

Polarizer Input fiber MARC
Device

Microscope

IR Camera

Computer

Output fiber Photodetector

Amplifier

DAQ

Signal generation

Intensity detectionCoupling with device

Figure 3.1: Flowchart of the experimental setup. Red arrows indicate a photonic signal, while black
arrows indicate an electronic signal.
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3.1 Components for Data Acquisition of MARC
Device

Producing meaningful data sets from a MARC sensor requires various components.
For simplicity, these components can be categorized into three essential parts, namely
the signal generation, the coupling in and out of the device, and a method of detecting
the output intensity. The data desired from a MARC device are transmission spectra
showing the output intensity of the drop port of the MARC as a function of wavelength
over a specified range. To achieve such a signal a tunable laser can be used, which
can vary the wavelength of the output light by using a wavelength controller.

To power the laser diode in the tunable laser, a laser diode driver is required to achieve
the desired current to the semiconductor diode. This current is passed through a
TEC temperature controller that controls the temperature of the diode [30]. The
tunable laser used in this work uses an external cavity laser in a Littmann-Metcalf
configuration to tune the wavelength [31]. The laser diode is integrated into a larger
resonator, which is referred to as the external cavity [32]. The beam resonates
between the diode and a mirror, where it is passed through a collimating lens [32].
The Littmann-Metcalf configuration utilizes a diffraction grating within this external
cavity [31, 32]. Figure 3.2 shows the different parts of the configuration. The mirror
is mounted on a plate connected to a pivot point on one end and a DC servo motor on
the other. The motor can retract or expand some distance δx, which adjusts the angle
between the mirror and the grating. As this angle changes, a different diffraction
mode will resonate within the external cavity. For a more in-depth explanation of
how this works, the original article introducing the configuration can be consulted
[33]. The DC servo motor has a travel distance of 12 mm and a calculated resolution
of 29 nm [34], which corresponds to a wavelength shift of about 0.45 pm.

After the desired wavelength has been set, the ray exits the tunable laser in an
optical fiber, which subsequently is passed into a manual fiber polarization controller.
The polarization controller is a device that transforms the polarization of a beam
propagating in a single-mode optical fiber [35]. The polarization change is achieved
by utilizing stress-induced birefringence, which is caused by looping the fiber around
three separate spools [35]. These three spools, called paddles, act as fiber retarders
which respectively; change an arbitrary polarization state into a linear polarization,
rotate the linear polarization, and transform the rotated linear polarization into an
arbitrary elliptical polarization [35]. The three paddles can be manually rotated to
achieve the desired output polarization. The polarized laser signal is subsequently
focused into the input of the device waveguide by aligning the optical fiber with
the facet of the input waveguide of the MARC. The optical fiber used in this work
has a working distance of 14 µm and a spot diameter of 2.5 µm [14]. The light is
transmitted through the device and exits at the drop port of the MARC. Next,
another optical fiber is aligned at the output waveguide of the MARC device, which
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guides the light into a biased photodetector.

The intensity detection consists of a biased photodetector and a photodiode am-
plifier. The biased photodetector converts the optical signal into a current, which
is subsequently amplified with a photodiode current amplifier. The amplifier then
transmits the current to the data acquisition system (DAQ), which samples the
detected current and converts the data into a digital signal sent to the computer
for further processing. Another component of the setup used in this work is an
optical microscope mounted atop the coupling part of the setup. The microscope
is not a required component of the setup but significantly simplifies the process of
aligning the input and output fibers with the photonic device. This microscope is,
in turn, connected to an infrared-sensitive camera, which further helps to ensure
that the fibers are aligned adequately by enabling the user to see when infrared light
is transmitted through the device. A flowchart of the laboratory setup is shown in
figure 3.1, while an overview of the components and model numbers of the equipment
used in this work is shown in table 3.1.

δx

Motor

Pivot point

Mirror

Laser diode

Collimator

Grating

Output fiber

Figure 3.2: A simplified schematic of the tunable laser used in this work. The laser is an external
cavity laser using the Littmann-Metcalf configuration. The distance δx illustrates the retractable
distance of the servo motor, which makes the mirror adjust its angle around the pivot point marked
in the schematic. The red lines indicate the laser beam moving throughout the configuration.
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Table 3.1: Components and model numbers of the equipment in the experimental setup.

Component Manufacturer Model Number
Tunable laser Thorlabs TLK-L1550M
DC servo motor Thorlabs Z812
DAQ National Instruments PCI-6024E
Laser diode driver Newport 505
Temperature controller Newport 325
Polarizer Thorlabs FPC561
IR Camera Hamamatsu C14041-10U
Microscope Olympus BXFM
Photodetector Thorlabs DET10C2
Amplifier Thorlabs PDA200C
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3.2 Software
All programming and data analysis in this work has been done using the Python
3.10 programming language [36]. Although most of the code which analyses the
data has been written as a part of this work, some common libraries and algorithm
implementations have been used. Of note are the implementations of the minimization
algorithms Nelder-Mead and least squares regression, which were described in section
2.3.

3.2.1 Labview
To move the motor and record data using the experimental setup a Labview program
written by Ph.D. student Jens Høvik has been used. This program works by specifying
two wavelengths and subsequently drives the motor continuously from one to the
other. The DAQ will continuously record data while the motor moves at a frequency
of approximately 60 Hz. The user can set the motor speed, although the speed
0.01 mm/s has been used throughout this project. This continuous collection method
will be referred to as the sweep method. As the two wavelengths which serve as
endpoints of the sweep can be any wavelength within the range of the tunable laser,
the measurement performed can be done in two different directions, depending on
whether the initial wavelength is smaller or larger than the final wavelength. If
the initial wavelength is smaller than the final wavelength, the direction will be
referred to as increasing. If the opposite is true, the direction will be referred to as
decreasing.

3.2.2 External Code Packages
External code has been used as a part of this work and will be quickly reviewed in
this section. The most important code utilized is the Scipy implementations of the
minimization algorithms used and the code calculating the transmission output.

Scipy Implementation of Nelder-Mead Algorithm

The Nelder-Mead implementation is the one from the Scipy package [37]. Based on
the initial guess input x0 of size n given to the algorithm, this implementation will
create an initial simplex whose dimension is n+ 1, as described in section 2.3.2. The
first vertex of this initial simplex is just the initial guess x0 itself. The following
n vertices are the initial guess vector x0 with variable x0,i multiplied by 1.05 [38]
. The notation x0,i is used here to denote the ith vector component of x0, where
i = 1, . . . , n. The only exception is when x0,i = 0, in which case the vector component
will be exchanged with the value 0.00025 instead of being multiplied with 1.05.

The algorithm will run for a maximum of 200 × n times and will stop only if the
termination criteria have been reached. The termination criteria in this implemen-
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tation are that the absolute difference between two consecutive simplices must be
below the value xatol and the absolute difference between the function values of
these simplices must be less than the value fatol. Both of these values default to
10−4. The default simplex operation parameters take the same values as those given
in equation 2.33.

Scipy Implementation of Least Squares Regression

The Scipy package is also utilized for its non-linear least squares implementation,
which provides a wide range of possible implementations of the regression technique
[39]. The default approach uses a method called subspace trust region interior
reflective (STIR) method. This algorithm for solving least squares problems is
similar to the trust region algorithm outlined in section 2.3.3. However, due to the
complexity of the mathematical framework required to explain this adequately, a
further elaboration on the approach is considered out of scope for this thesis. The
interested reader is advised to consult the paper in which the approach was initially
proposed [40]. As can be seen from equation 2.49, the Jacobian of the objective
function is required for this computation. Since an analytical expression for the
derivatives of the residuals is impossible to acquire, a numerical approximation is
required to complete the computation. In the Scipy package, this is done by using a
finite difference approximation [41].

This implementation of least squares uses the same termination criteria as the
implementation of Nelder-Mead, though with different default values. These are
100 × n for the number of function evaluations and 10−8 for ftol and xtol. The
least squares implementation has an additional termination criterion which acts in
the same way as ftol and xtol, although it depends on the difference in the norm
of the gradient. This criterion is called gtol and has the same default value as ftol
and xtol.

Analytical Model for MARC Devices

To simulate the transmission responses of different MARC devices a script calculating
this as described in equation 2.27 was used. Mukesh Yadav originally wrote the script
in Matlab, while Espen Hovland translated the script to Python during his work on
his project thesis in the Fall of 2021. This script has also been used for simulations
in this work, with some minor additions added. These modifications include adding
the option to retrieve zero-centered intensity and the ability to input an array of
refractive indices (i.e. refractive index that changes depending on wavelength) instead
of only having a fixed refractive index. The entirety of the script can be found in
appendix A.
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3.2.3 Code Written in This Work
The code written in this work consists of three different Python files. One which reads
a folder containing MARC sensor measurements and returns the resonance shift of
each ring, one which contains the framework behind the file just mentioned, and lastly,
a file that controls the DAQ and motor. This last file enables the user to perform
measurements based on a step approach rather than a sweep approach. These three
files are given in their entirety in appendices B, C and D, respectively.

Curve Fitting

The approach employed in this work to estimate the resonance shift of a ring in a
MARC sensor is by finding the best curve fit to each measurement exhibiting the
shift and calculating the shift based on the values of these curve fits. In order to
find such a curve fit, the equation calculating the MARC intensity output given
in equation 2.27 is used together with the minimization algorithms discussed in
section 2.3. For the minimization algorithms to work correctly, a residual function
has to be defined, which accepts a vector x of parameters to be optimized by the
algorithms.

The parameters to be improved must be chosen so that the minimization algorithms
can adequately fit the curve to the data. As seen in the discussion in section
2.2.2, several parameters are determining this signature. The number of parameters
depends on the number of rings in the sensor and the refractive index approximation
used.

The parameters chosen to be improved upon are the ring radius ri, angular separation
θi and horizontal shift δλi of each ring i ∈ {1, 2, . . . }. Additionally, an assumption is
made that each ring has the same coupler coefficient t1 and loss coefficient α, which
are treated as parameters to be improved upon as well. Lastly, the refractive index
neff is used as a parameter. However, as different approximations for the refractive
index were tested throughout this work, this last parameter of the vector x has a
variable length as well. This is because the different neff models require a different
number of paramters. The vector x can then be expressed mathematically as

x = [r1, θ1, δλ1, . . . , rn, θn, δλn, t, α, n1, . . . , nm]. (3.1)

where n is the number of rings in the device, and m depends on the approximation
of the refractive index. If a constant approximation is chosen, m = 1 and n1 = neff.
If the Sellmeier approximation is selected, m varies with the number of Sellmeier
coefficients chosen, but is in this program either 2, 4 or 6. In this case the elements
in the vector are n1 = B1, n2 = C1, n3 = B2, n4 = C2, . . . .

This vector x is passed to the minimization algorithms. The minimization algorithms
then use the analytical model for the intensity, provided in equation 2.27, to find the
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best curve fit for the data. The minimization algorithms will return the parameters in
the same form as is shown in equation 3.1 which gives the optimized curve fit.

Calculating Resonance Shift

The complete process of calculating the resonance shift of a MARC device is shown in
figure 3.3. The process starts with collecting transmission measurements exhibiting
a resonance shift, where each data set has resonance peaks at different wavelengths.
The transmission measurements are then preprocessed, where unwanted data points
are removed. Such unwanted data points include duplicate measurements at the start
and end of each file, resulting from how the Labview program saves the measurements.
The data points are then sorted such that wavelengths and intensities are in the
correct order, independent of the sweep direction. The final step of the preprocessing
is normalizing the data between −1 and 1.

Next, the a priori information known about the MARC needs to be entered. This
information is the radius of each ring in the device and their angular separation.
Additionally, information concerning the effective refractive index needs to be entered
here, regardless of whether the constant or the Sellmeier approximation is used.
Next, a horizontal wavelength shift of the whole signature must be found to achieve
a better starting point for the minimization algorithms. This shift could be due to
frictional hysteresis or calibration inaccuracy of the laser, but it is not known for sure.
However, an estimation of such a shift is required to achieve a good fit with each
resonance peak. Lastly, an iteration is performed where the Sellmeier coefficients are
improved to fit the data better.

After the preceding steps have been performed on the first transmission measurement
of the data set, the final curve fit can be made for the data, yielding optimized
parameters. The optimized parameters for this measurement can then be used as an
initial guess for the subsequent measurement in the data set. An assumption is then
made that none of the parameters will change between measurements, except the
resonance shift. Finally, a curve fit is found for all transmission measurements in the
data set by restricting the bounds on all parameters except the resonance shift. The
difference in peak positions is recorded for each iteration of curve fitting. When the
first such shift has been recorded, this can be used to estimate the next resonance
shift, providing the subsequent curve fit an improved initial guess. When a curve fit
has been made to all transmission measurements, the program exits and yields the
calculated resonance shifts.

Motor Control

A Python program was written as part of this thesis to move the motor a set
distance before taking a measurement and moving on further. This approach ensures
that each data point has a set wavelength, making repeated measurements possible
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Figure 3.3: Flowchart showing the procedure to calculate a resonance shift across a collection of n
data sets.
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where the intensity is measured at the same wavelength each time. This method of
acquiring data will be referred to as the "step" method. The code of this program is
shown in appendix D. To communicate with the DAQ the API provided by National
Instruments was used [42]. For interaction with the servo motor, the API provided
by Thorlabs was used [43].
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This chapter aims to describe the methods and procedures employed in this work.
These are divided into three sections, the contents of which are described as

1. Using the experimental setup described in section 3.1 in order to acquire
transmission spectra for MARC sensors.

2. Investigating the limitations of the experimental setup, where special attention
has been paid to the sampling techniques.

3. Improving the procedures relating to the data analysis of the transmission
spectra.

4.1 Data Acquisition
In this section, the procedures for performing measurements will be described. Each
step required to acquire transmission spectra are listed as follows:

1. Powering on all the equipment described in 3.1, except the output power of
the laser driver.

2. Placing the device on the sample holder, and using the microscope to approxi-
mately align the input and output fibres to the waveguide counterparts.

3. The laser driver output is then turned on, with an output current of 396 mA.
Positioning the IR camera at the output ports of the device, the position of the
input fibre is carefully adjusted until light is seen exiting the ports, as shown
in figure 4.1a. This light is due to scattering from the waveguide, and may
not always be as visible depending on the waveguide. Figure 4.1b shows an
example of a properly aligned input optical fiber.

4. Next, the position of the output fibre is adjusted until a maximum signal
strength is observed on the amplifier display.

5. To further maximize the signal strength, the polarization of the input light
can be adjusted by changing the angles of the paddles on the manual fiber
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polarization controller.

6. When the maximum signal strength has been found, measurements can be
taken using either the Labview program or the python program, as explained
in section 3.2.

250 µm

(a)

250 µm

(b)

Figure 4.1: Coupling of lensed fiber and waveguide structure for (a) the output coupling and (b)
the input coupling. Both images are taken with the camera described in table 3.1, using an IR lens.
This makes it possible to observe the IR light, which can be seen at the output coupling as bright
spots as the light scatters from the waveguide.

4.2 Investigation of the Limitations of the
Experimental Setup

The laboratory setup shown described by the flowchart in figure 3.1 has been used
previously for transmission measurements of waveguides by the research group. In
this thesis, the workings of the setup have been investigated to identify weaknesses
in the acquisition procedures, and to implement improvements. In particular, issues
concerning the spacing of data points and the performance of the DC servo motor
have been of special interest.

First, the different noise contributions in the setup need to be outlined. The different
noise sources considered were the detector, coupling losses, losses due to scattering
in the waveguide, and inconsistencies in the servo motor.

4.2.1 Hysteresis
Signs of hysteresis were observed when performing transmission measurements as a
function of wavelength. As described in section 3.2.1, the transmission measurement
can be performed by sweeping the wavelength in an increasing or a decreasing
manner. The observed signs are that the resonating peaks of the transmission spectra
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appeared at different wavelengths depending on the sweep direction. This causes
an inaccuracy in determining the position of the resonating peaks, in addition to
reducing the reproducibility of the transmission measurements acquired using the
setup.

Frictional hysteresis can be observed in servo motors, where the hysteresis can be
classified into two different regimes: pre-sliding friction and gross-sliding friction
[44, 45]. The pre-sliding friction is primarily dependent on the displacement before
sliding, while the gross-sliding friction is due to the sliding velocity [44, 45].

It will be investigated if the system suffers from hysteresis, and if so, whether this
hysteresis is position- or velocity dependent. To determine whether the system
suffers from hysteresis transmission measurements will be performed while sweeping
in the forwards and backwards directions using the Labview program. If hysteresis is
present in the actuator, a distinct discrepancy will be observed in the position of the
resonating peaks. To determine whether the frictional hysteresis is due to position
or velocity, the same transmission measurement will be performed using the step
method. The step method will alleviate the hysteresis if the friction is caused by the
velocity, as the method stops completely before performing each measurement.

4.2.2 Spacing of Data Points
When performing transmission measurements as a function of wavelength on a
waveguide device using the Labiew program described in section 3.2.1, the data
points procured are not equally spaced. To gain a better understanding of the
cause of this effect the specific wavelengths sampled are investigated to identify any
inconsistencies between separate measurements. The consequences of the effect are
mainly that repeated measurements under the same conditions yield data sets with
a different number of samples. This is due to measurements are taken between a set
range of wavelengths, and when the spacing between two sampled wavelengths vary
between each measurement, the number of samples within a set range will differ.
There are two possible explanations for this discrepancy in the spacing of data which
will be explored. These possible causes for unequal spacing are due to the acceleration
of the motor when doing a sweep measurement, and the synchronization of the DAQ
and the wavelength controller. A way to mediate the unequal spacing of data is to
use the step method, which will alleviate both these problems. However, due to the
step method using a very long time to perform measurements involving many data
points, it is useful to consider other remedies for the unequal spacing as well. One
such option is to interpolate the data acquired using the Labview program.

To investigate the problems concerning the spacing of data points transmission
measurements will be performed using both the Labview program and the step
method. The mean and standard deviation of these measurements will be calculated
and compared againt one another. Additionally, an interpolation will be performed
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using the interp function, which is built in with the Numpy library [46] The mean
and standard deviation of the interpolated measurement will also be calculated and
compared with the corresponding values of the two data acquisition techniques. The
peak position of a resonance peak will be compared before and after interpolation,
to investigate whether the interpolation will affect this.

4.3 Development of Data Processing
Procedures

After retrieving data sets from the experimental setup, the measurements will be
analysed. The goal of this analysis is to develop a program which automatically
detects a resonance shift caused by a change in the refractive index of the media
surrounding the ring resonator of the MARC device. To arrive at this final product,
there are several considerations concerning the data processing which have to be
taken into account.

4.3.1 Normalization
The first consideration to take is that the transmission measurements performed over
a specified wavelength range have different intensity values depending on how much
light is transmitted through the waveguide. This results in different measurements
having a varying peak intensity value, making both comparisons and data fitting
more difficult. A solution to this issue is normalizing the data between 0 and 1, which
essentially makes the intensity units arbitrary when examining the plots. However,
as the interesting property of these plots are the given signature, and not the specific
intensity value this is of no issue. Thus, such normalization will be applied to
all measurements. Such a normalization can easily be obtained by dividing every
intensity measurement by the maximum intensity value obtained.

Another normalization strategy is zero-centering the data and restricting it between
the range −1 and 1. Zero-centering is performed by subtracting every data point
by the mean of the data set. This shifts the plot down vertically, so that the mean
of the data set is 0. The reason for investigating this normalization is that it has
shown improved results for other types of data sets [47–49]. Both these normalizaion
strategies will be evaluated.

4.3.2 Data Fitting Using a priori Knowledge
An analytical model of the MARC sensor can be calculated using equation 2.27. By
inserting a priori knowledge such as the ring radius r and angular separation θ of the
measured device, the model should theoretically compare nicely with the recorded
data. In practice, however, this is not the case. Only inserting this a priori knowledge
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does not compare well with the collected data.To be able to match the analytical
model to the data, a curve fit can be performed. However, since the analytical model
is calculated by a non-linear function, some more advanced techniques are required
compared to a normal linear fit.

As there exists a plethora of different non-linear minimization algorithms, a wide
selection of such algorithms could be investigated in order to find one which is
optimal for this category of data sets. However, to fit the scope of this work only two
algorithms were investigated, namely the Nelder-Mead algorithm and the non-linear
least squares approach. These were chosen to see if there is any signaificant difference
in using a mathematical and a heuristic minimization approach, as explained in
section 2.3. Methods for further improving the initial guess in addition to using the
a priori information is investigated. This helps to improve the performance of the
minimization algorithms.

4.3.3 Comparison of Different Norms in Objective Func-
tion

Although the least squares approach only works on a 2-norm objective function, the
Nelder-Mead algorithm can use any function as its objective function. As the general
p-norm of the residuals is chosen, as explained in section 2.3.2, different values for p
can be selected to see how they affect the curve fitting. The norms which will be
tested are the boxcar, Euclidian and max norms, i.e. p = 1, 2 and ∞.

4.3.4 Comparison of Refractive Index Models
An approximation used when calculating the analytical transmission response of a
MARC device is to ignore dispersion, i.e. using a constant refractive index across the
different wavelengths of the laser. An investigation will be done to see whether better
approximations to the data can be achieved by using a more accurate model of the
dispersion, such as the Sellmeier equation, which is described in section 2.1.4.

4.3.5 Residual Analysis for Noise Characterization
As the objective functions used for curve fitting are determined by the residuals of
the measurements, it is of interest to investigate the resiudals after a good curve
fit has been found. This will indicate whether the curve fit is a good one, and will
describe the noise present in the measurements. It is assumed that the noise present
in the measurements is white noise, i.e. normally distributed noise. The least squares
approach assumes this. It is good to have an idea of what to expect from a data set
containing normally distributed noise. This can be achieved by using the analytical
mode to produce an ideal, noise-free intensity curve, which white noise can be added
to. By adding white noise with µ = 0 and σ = 0.05, and comparing this with a
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curve fit of the same analytical model, yields the residuals shown in figure 4.2. These
values for the noise are chosen as they produce noise of similar size as those found in
the experimental data.
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Figure 4.2: Top image shows a good curve fit with low cost-value. The bottom left image shows
the residuals plotted against wavelength. The bottom right image shows the probability density
against residual value, with a best fit Gaussian curve.

4.3.6 Validity of Model
To test the validity of the preceding considerations, the program developed will be
performed on a set of transmission measurements exhibiting a resonance shift. The
calculated resonance shift will be compared against the calculations made in the
article Multiplexed Mach-Zehnder interferometer assisted ring resonator sensor [8]
by Mukesh Yadav. The goal is to compare the resonance shift calculated by the
algorithm devised in this work with the resonance shift calculated by Yadav in his
article.

As stated in the article, solutions of different saline concentrations were pumped
through a microfluidic channel covering the ring resonators of the MARC sensor. The
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pump rate at which the saline flowed through the channels was 20 µL/min [8]. As
the concentrations of the saline increases, a resonance shift of the MARC signature
is expected. The results in the article which will be compared are the resonance
shifts observed for a MARC device with a single ring of angular separataion 135°,
corresponding to sample 2 in table 5.1 and a resonance shift observed in a MARC
with two rings of angular separations 135° and 180 degree, corresponding to sample 3.
In the experiment using sample 2, the only ring present in the MARC was exposed
to the different saline concentrations. In the experiment using sample 3 only the
135° ring was exposed to different saline concentrations, while the 180° ring was
continually exposed to water.

Both experiments performed resulted in four different data sets, one for each concen-
tration of the saline. The different concentrations investigated were 0 %, 6 %, 12 %
and 18 %. The results found by Yadav are repeated in table 4.1

Table 4.1: Paramters for resonance shift obtained in article by Yadav [8]

Ring (180°) Ring (135°) ∆λ180° [nm] ∆λ180°,eff[nm] ∆λ135°[nm] ∆λ135°,eff[nm]
Water Water 0 0 0 0
Water 6% Saline ∼0.02 ∼0.02 0.52 0.52
Water 12% Saline 0 ∼0.02 0.47 0.99
Water 18% Saline 0 ∼0.02 0.50 1.49

The goal of the comparison is to see whether the calculated resonance shifts are the
same, and if not, how much they differ. As the resonance shift of the 180° ring is
only given approximately, some differences are expected to be found. However, if the
calculations are done correctly, the calculated shifts should be approximately the
same.
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The results will follow the outline described in section 4, namely first investigating
possible limitations of the experimental setup before reviewing methods of processing
the data sets obtained from the experimental setup. Lastly, the validity of the
algorithm described in figure 3.3 will be determined. As there are different areas
of interest in the results, it has been considered more useful to present the results
combined with the discussion. This makes it easier to relate the different parts of
the discussion to the corresponding parts of the results.

In this section, comparisons of minimization algorithms will be considered, in addition
to comparisons of variations of the same minimization algorithm. When such
comparisons are made, the term cost value will be used, which is the value of the
objective function of the minimization algorithm after the optimized parameter has
been found. When comparing cost values, i.e. the return value of the objective
function of a minimization algorithm, some considerations have to be taken. For the
Nelder-Mead algorithm, the cost value will be the value returned of the objective
function, given in equation 2.41. However, due to the way the least squares algorithm
is implemented, the value given by equation 2.42 cannot be directly compared to
the Nelder-Mead cost value. In order to compare these, the cost value of the least
squares algorithm will be given as

√
2f(x), where f is given by 2.42. By doing this,

the cost values of the two objective functions will be the same if the p-norm used in
equation 2.41 is the 2-norm, i.e. the Euclidian norm.

Three different MARC sensors will be considered when presenting the results, which
will be referred to as samples 1, 2 and 3. Their specific characteristics are outlined in
table 5.1. The data from sample 1 is gathered as a part of this project using the setup
and procedure explained previously. The transmission measurements of the following
two samples are performed by Mukesh Yadav using the same experimental setup.
On sample 3, a sensor measurement was performed, resulting in a resonance shift of
the MARC signature. The measurements exhibiting this shift consisted of four data
sets and were used by Yadav in his article Multiplexed Mach-Zehnder interferometer
assisted ring resonator sensor [8].
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Table 5.1: The different MARC samples used for data collection. The sample number is arbitrary,
and serves only as a convenient way of referencing the individual samples.

Sample no. No. of rings Ring radius [µm] Ang. sep. [°]
1 1 20 180
2 1 45 135

3 2 25
45

180
135

5.1 Concerning the Experimental Setup
Different aspects of the experimental setup will be considered. As the experimental
setup comprises many components, there is room for error from several sources. First,
some different sources of noise contributions will be considered. Next, the issues
concerning actuator hysteresis will be considered before ending the section with a
discussion regarding the spacing of data points.

5.1.1 Noise Contributions
In the detection and recording part of the setup, three components are the main
sources of noise and inaccuracies in the measurements taken. In particular, the
components are the InGaAs detector, the amplifier, and the DAQ.

DAQ Precision

The data detected by the photodetector is recorded by transmitting the detected
light to the amplifier, which subsequently sends the signal to the DAQ. The DAQ,
in turn, sends the signal to the computer, as was explained in section 3.1. According
to the user manual of the amplifier, it will deliver a DC voltage proportional to the
display reading of the photodiode current [50].This linear relationship is between
the voltage range [0 V,10 V] and the display reading range [0,10000]. The display
reading depends on which of the current display options are set, where the options
are nA,µA and mA. Additionally, for each order of magnitude of the unit, there
is different options as to how accurate the measured current is. For nA there are
two options, namely 000.00 and 0000.0. For µA there are three options, which are
00.000,000.00 and 0000.0, while for mA there is only one option, which is 00.000.
This means a detected current of 20 nA, which can be observed as 020.00 in the
display, will be received by the DAQ as a voltage current of 2 V. While the same
detected current with the other display option for nA will be observed as 0020.0 in
the display and thus be read by the DAQ as a voltage of 0.2 V

The DAQ manual reports a precision of 4.88 mV for the input range [ −10 V, 10 V]
[51]. The precision of the measured current thus depends on the display option chosen
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on the amplifier. A current read as 020.00nA will thus have a precision of 0.0488 nA,
while the same current read as 00.020µA will have a precision of 0.0488 µA

Amplifier Noise

The noise caused by the amplifier and detector were investigated. First, a mea-
surement was taken with only the amplifier and DAQ turned on before a second
measurement was taken with the detector turned on as well. This was done to
determine the noise caused by the amplifier and detector separately. The data of
the two measurements can be seen in figure 5.1, while the mean µ and standard
deviation σ of the measurements are shown in table 5.2.

Table 5.2: Mean and standard deviation of signal detected in amplifier, measured separately with
the detector either turned on or off.

Detector state Mean [nA] Standard deviation [nA]
Off 0.00114 0.00653
On 0.829 0.0189

5.1.2 Hysteresis
Transmission measurements were performed to determine if frictional hysteresis is
present in the servo motor. As shown in figure 5.2, there is a clear indication of
hysteresis. This is seen as the resonance peaks differ in their position depending on
the direction of the wavelength sweep. An indication as to why this is a product of
hysteresis and not some other factor causing resonance shifts is that the resonance
shift is only present at some of the resonance peaks. This is further corroborated by
the fact that the step method yields similar hysteresis, as shown in figure 5.3. The
fact that the step method yields similar hysteresis as the data procured using the
Labview program shows that the hysteresis is position-dependent and not velocity-
dependent.

Although compensation techniques for hysteresis can be found in the literature [52,
53], such methods have not been explored in this thesis due to time constraints.
However, when performing repeated measurements, the direction of the sweep should
be consistent to avoid unexpected shifts of resonance peaks. Additionally, it is
advised to lubricate the rotational element of the servo motor [34], which can be
further investigated to see whether this affects the hysteresis.

5.1.3 Spacing of Data Points
To mitigate the discrepancy in step lengths between data points, three alternatives
are investigated, namely the sweep method, an interpolation of the sweep method
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Figure 5.1: The detected current by the amplifier with no input optical signal. The top image
shows the current detected with the photodetector turned off, while the bottom image shows the
current detected with the photodetector turned on.
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Figure 5.2: Hysteresis in a transmission measurement captured with the Labview program. The
hysteresis can be seen when comparing an increasing wavelength sweep to a decreasing wavelength
sweep. The top image shows the transmission data for measurements performed in an increasing
and a decreasing direction. The bottom left image shows a magnified view of the hysteresis observed
in the top image. The bottom right image shows the normalized area between the curve and a
horizontal line at 0.4 intensity.
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Figure 5.3: Hysteresis in a transmission measurement captured using the step method. The
hysteresis can be seen when comparing an increasing wavelength sweep to a decreasing wavelength
sweep. The top image shows the transmission data for measurements performed in an increasing
and a decreasing direction. The bottom left image shows a magnified view of the hysteresis observed
in the top image. The bottom right image shows the normalized area between the curve and a
horizontal line at 0.4 intensity.
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and the step method. The mean and standard deviation of the spacing between data
points for the three methods are shown in table 5.3.

The sweep method shows a significant standard deviation in its gathered data, with
the standard deviation being approx. 25 % of the mean value. By comparison, the
standard deviation of the interpolated data is approximately zero, while the step
method has a standard deviation which is 3.8 % of its mean value.

Table 5.3: Mean and standard deviation of spacing of points

Method Mean spacing [nm] Standard deviation [nm]
Sweep 0.0125 0.00317

Interpolation 0.0100 9.29× 10−14

Step 0.0100 0.000

Although the interpolation yields a very low standard deviation of the data spacing,
other considerations need to be taken into account. When doing sensing experiments,
the exact position of the peaks is essential. Figure 5.4 shows a zoomed-in image of
such a peak, with both the raw data and the interpolated line. As can be seen in the
figure, the peaks are very close, but a slight difference occurs during the interpolation.
The peak of the raw data is at wavelength 1542.666 nm, while the interpolated peak
is at 1542.679 nm, meaning the interpolation results in a 13 pm shift. Considering
that the exact position of the resonance peak is of interest, this shift is preferably
avoided.

5.2 Optimization of Curve Fitting
In order to arrive at the algorithm presented in figure 3.3, several aspects of data
processing need to be considered, as discussed in section 4.3. To summarize, the main
aspects to consider are the normalization, the norm used in the objective function,
and the refractive index approximation. The results of these considerations will be
described in this section.

5.2.1 Curve Fitting Using Few Variables
As a naive first approach, one can use the analytical model as stated in equation
2.27 to curve fit the data. The minimization algorithms can be used to find a curve
fit using only the knowledge of the ring radius and the angular separation of the
drop port and throughput port of the ring resonator in the MARC. Some values
necessary to perform the calculation are t1 = 0.95, α = 0.98 and neff = 3.9, which
are some approximate values for a non-ideal waveguide. The resulting curves by the
minimization algorithms performed on sample 1 are shown in figure 5.5. As seen
here, neither of the curves fit very well with the data.
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Figure 5.4: A magnified view of a resonance peak in a transmisison response. The data was acquired
using the Labview program, which has data points of unequal spacing. The interpolated data has
equally spaced data points, but slightly shifts the resonance peak value.

The Nelder-Mead algorithm fits some resonance peaks well, though the overall fit of
the curve is not good. This can be seen as the rest of the resonance peaks of the
calculated curve do not align with the transmission measurement. As explained in
section 2.2.2, several parameters may cause this. The ones of note for the separation
between peaks to fit well are the ring radius and the effective refractive index.

For the least squares algorithm, the curve does not appear to fit well. This is due
to the algorithm finding some local minimum which minimizes the cost function,
but which is not a good fit overall for the function. Although small residuals are
desired, the noisy data will yield very fluctuating residuals. This causes there to be
many local minima for the minimization algorithms to yield as a final answer. To
ensure that the local minimum which the algorithms finalize on is the best curve fit,
a better starting point is needed.

5.2.2 Improvement of Initial Guess
In order to provide the minimization algorithms with a better starting point, an
initial horizontal wavelength shift can be estimated. A simple way to find this is to
test a range of different values and choose the one with the lowest cost value. By
doing this and subsequently performing the two different minimization algorithms,
the curves shown in figure 5.6 are produced. This is a vast improvement over the
ones produced in figure 5.5. It should be noted that this horizontal shift is not due to
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Figure 5.5: Curve fitting performed using both minimization algorithms on sample 1, with only the
ring radius and the angular separation of the drop port and throughput port of the ring as initial
guess.

a resonance shift but rather that the resonance peaks appear at a different position
than expected by the transmission calculations. The exact reason for the shift is
unknown but can be attributed to errors occurring due to the hysteresis found in
the actuator or poor calibration of the laser.
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Figure 5.6: Curve fitting performed using both minimization algorithms on sample 1, with a
horizontal wavelength shift estimated to provide the minimization algorithms with a better starting
point. The curve produced by the Nelder-Mead algorithm is barely shown, due to the minimization
algorithms yielding similar curves.

5.2.3 Zero-Centering
A simple comparison testing whether zero-centering of the transmission measurement
data is beneficial is shown in figure 5.7, with the corresponding cost values shown
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in table 5.4. Although both normalizations yield similar curve fits, the cost values
found using zero-centering are generally higher.

Table 5.4: Cost values of the different minimization algorithms with and without zero-centering the
data.

Minimization algorithm ZC Cost value Non-ZC Cost value
Nelder-Mead 2.602 1.620
Least squares 2.602 1.619

5.2.4 Comparison of p-norms in Objective Function
Performing the Nelder-Mead algorithm with the three different p-norms 1, 2 and ∞
on sample 1 yields the best-fit curves shown in figure 5.8. On this data set, very
little difference can be found between the different norms. This might be because
the analytical model fits very well with the data so that the different norms will
arrive at similar optimal parameters. The same procedure was tested on sample 2 to
investigate this further. The curves produced by the different algorithm variations
are shown in figure 5.9. Here, a more significant difference is seen between the
different approaches. The norm with the most significant deviation from the others
is the∞-norm, which has very large residuals across the whole function. Considering
that the ∞-norm only seeks to minimize the maximum residual value, having a set
of residuals all being close to this maximum value is possible. The 1- and 2-norm
operates on a sum of all residual values, allowing some outlier large residual values
as long as the majority are small.

5.2.5 Comparison of Refractive Index Approximations
The Sellmeier approximation of the wavelength-dependent refractive index was
compared against a constant approximation. The amorphous phase of silicon has
been intensively studied, and it is well known that the electronic and optical properties
of the films are strongly influenced by deposition technique and conditions [54]. The
Sellmeier coefficients of the waveguide used in this work are therefore unknown,
and so an estimation of these is needed. This was done using Sellmeier coefficients
for amorphous silicon as a starting point, as the waveguide in the MARC device is
fabricated using this material. Amorphous silicon is a widely used material, and its
Sellmeier coefficients can be found in the literature [55, 56]. However, the silicon used
for the fabrication of the MARC devices does not yield the same effective refractive
index as the one in the literature. Therefore, their value was estimated by iteratively
using the minimization algorithms. The resulting cost values of the curves fitted
with these parameters are shown in table 5.5. As can be seen in the table, the cost
values are not significantly affected by this and are only reduced in the case when six
coefficients are used. It is thought, however, that the curve fits can attain a lower
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Figure 5.7: Curves fitted using the Nelder-Mead algorithm. In the top image the normalization
of data is between 0 and 1, while in the bottom image the data is zero-centered and normalized
between −1 and 1.
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Figure 5.8: Comparison of different norms of the objective function in the Nelder-Mead algorithm.
For this measurement, the different norms yield very similar best-fit curves.
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Figure 5.9: Comparison of different norms of the objective function in the Nelder-Mead algorithm.
For this measurement, the differences in the fitted curve is more significant depending on the norm
used.

cost value if more accurate coefficients are used. It would therefore be of interest to
pursue a more detailed investigation to approximate the Sellmeier coefficients more
accurately.

Table 5.5: Cost values of curve fits performed using different refractive index aprroximations. The
lowest cost value is found when using 6 coefficients.

neff approximation No. of coefficients Cost value
Constant 1 1.620
Sellmeier 2 1.622
Sellmeier 4 1.629
Sellmeier 6 1.616

5.2.6 Residuals
After the preceding considerations, a Nelder-Mead curve fit can be made, using
nonzero-centered, the Euclidian norm in the objective function, and Sellmeier approx-
imation of the dispersion. Performing this on sample 1 yields the curve fit, residual
plot, and residual distribution shown in figure 5.10. It is immediately apparent that
the noise is not normally distributed as expected but follows a sinusoidal pattern.
By performing a Fourier transform of the residuals, the sinusoidal pattern is found
to have a frequency of ∼30 Hz, although the cause for this oscillation in intensity
value is unknown. As this value is close to 25 Hz, it is thought this oscillation is a
result of electrical noise from the equipment. Poorly isolated wires are close to one
another throughout the setup, and can interfere with one another.
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Figure 5.10: Top image shows a good curve fit with low cost-value. The bottom left image shows
the residuals plotted against wavelength. The bottom right image shows the probability density
against residual value, with a best fit Gaussian curve.
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5.3 Resonance Shift in Single Ring MARC
In the experiment examining the resonance shift caused by increasing the saline
concentration, Yadav reports a total resonance shift of the signature by 1.45 nm
from the original position measured at 0 % to the final measurement made at a
saline concentration 18 % [8]. He also calculates a MARC sensitivity to the saline
concentration as 80.4 pm/%. By performing the algorithm shown in figure 3.3 on
the data sets of sample 2, the resulted resonance shift of the MARC signature is
shown in table 5.6. As seen here, the total resonance shift from saline concentrations
0 % to 18 % is calculated to be 1.449 nm, which is off by only 1 pm to the resonance
shift calculated by Yadav. Performing a simple linear fit on the resonance shifts
and saline concentrations yields a MARC sensitivity of 80.6 %. The reason for the
0.2 % discrepancy here is probably due to the variance caused by the errors included
in the calculations by Yadav. The drop port intensities of the MARC at saline
concentrations 0 % and 18 % are shown in figure 5.11. Here, it is clearly seen that
the whole signature shifts to the right as the saline concentration is increased.

Table 5.6: Parameters for resonance shift for one ring, using the data set provided by Yadav.
The effective wavelength shift ∆λ135°,eff denoted the cumulative wavelength shift from the original
position given at saline concentration 0 %

.

Ring (135°) ∆λ135°[nm] ∆λ135°,eff[nm]
Water 0 0

6% Saline 0.511 0.511
12% Saline 0.486 0.997
18% Saline 0.451 1.449

5.4 Resonance Shift in MARC Containing Two
Rings

For the measurements performed on a MARC sensor containing two ring resonators,
Yadav presents a more detailed description of the wavelength shift observed than for
the single ring MARC. The values provided in the article for the wavelength shift at
different saline concentrations are given in 5.7.

As discussed in the article, there is a small variation in the resonance shift of
the reference channel, i.e. the ring resonator with angular separation 180°. As
the experiment was performed without a temperature controller, it is difficult to
determine the exact effects of the temperature in the room on the resonance shift.
However, experiments have been done showing wavelength shifts of MARC signatures
??, where the MARC sensitivity of the temperature is found to be 0.119 nm/°C,
assuming a linear relationship between the two variables. A resonance shift of 20 pm
then corresponds to a temperature change of 0.17 °C. As this temperature change is
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Figure 5.11: Resonance shift of MARC signature caused by an increasing saline concentration. The
MARC specifications are the same as those of sample 2, shown in table 5.1. The top plot shows the
original signature at 0 % saline concentration, while the bottom plot shows the shifted signature at
18 % saline concentration.
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very small, it is no surprise that the reference channel varies between measurements.
Therefore, a TEC temperature controller should be considered to ensure that the
temperature is consistent between measurements so that the signature position stays
the same.

In the article, this reference channel resonance shift is only given approximately as ∼
20 pm. The algorithm used in this work calculates a total resonance shift of 33.2 pm
between the first and last measurement. The exact variations at each measurement
taken are shown in table 5.7, where it can be seen that the calculated resonance shift
varies in both directions. This might not be a bad approximation as the temperature
change needed to cause a shift on the pm scale. It is difficult to determine precisely
how much the temperature changes between measurements.

For the 135° ring, the algorithm calculated a total horizontal shift of 1.44 nm across
the saline concentration difference of 0 % to 18 %, which only differs by 0.05 nm
below the value calculated by Yadav.

Table 5.7: Parameters for resonance shift for two rings, using the data set provided by Yadav

Ring (180°) Ring (135°) ∆λ180° [nm] ∆λ180°,eff[nm] ∆λ135°[nm] ∆λ135°,eff[nm]
Water Water 0 0 0 0
Water 6% Saline 0.0157 0.0157 0.511 0.511
Water 12% Saline -0.0448 -0.291 0.489 1.00
Water 18% Saline 0.0332 0.00415 0.445 1.44
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Figure 5.12: Resonance shift caused by increase in saline concentration across a ring with angular
separation 135° of the drop port with respect to the throughput port. The sample corresponds to
sample 3 in table 5.1. The top image shows the first measurements, where both rings are in contact
with only water. The bottom plot shows the final measurement with 18% saline flowing across the
135° ring.
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6 | Conclusion

Through the course of this work, two main aspects of transmission measurements of
MARC devices have been explored. These are the limitations of the experimental
setup used for performing measurements on waveguide structures by the photonics
group at NTNU, and the processing of transmission data acquired when perform-
ing such measurements. Despite being able to acquire meaningful data using the
experimental setup, some factors reducing the reproducibility and accuracy have
been identified. These include sources of noise in the data, frictional hysteresis of the
actuator in the tunable laser, and the spacing of data points acquired. Interpolation
of data points has been considered to mitigate the unequally spaced data points.
Additionally, a program has been developed which moves the actuator and performs
measurements step-wise, in contrast to the sweep technique previously used.

Curve fitting techniques have been explored to process the data acquired from a
transmission measurement as a function of wavelength. This has been achieved
by using the various parameters required to calculate the theoretical transmission
output of a MARC device as input in two different minimization algorithms. The
minimization algorithm will then find optimized parameters which will fit the curve
well to the acquired data. Several aspects of such curve fitting have been considered
to fit the curves as accurately as possible to the acquired transmission data. These
considerations include the normalization of the data, which parameters to use, and
the effective refractive index approximation.

Lastly, a program has been developed using the optimized curve fit of the transmission
data, which automatically detects the resonance shift in a MARC device. Although
the program only has been tested on a resonance shift caused by increasing the saline
concentration, the results pair well with the same calculations performed on the same
data set of transmission measurements. The values of the calculated resonance shift
in this work differ only by 0.05 nm of the same calculations performed by Yadav. The
program offers the ability to automatically calculate this shift, as opposed finding
this shift manually.
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7 | Further Work

For the experimental setup, the next step would be to find ways of better mitigating
the noise contributions and frictional hysteresis. A significant improvement to the
setup would be to increase the step method speed or synchronize the DAQ and servo
motor clocks. This would significantly improve the frequency of the measurement
points. Another possibility to improve performance is to utilize a piezoelectric
transducer for wavelength sweeping ranther than a servo motor. However, price and
availability must be considered, in addition to achieving a similar wavelength range
as to the servo motor.

Although the programs developed in this work show promising results, their accuracy
and run time can be improved. A thorough experiment to determine the Sellmeier
coefficients for the amorphous silicon should be performed to approximate the
wavelength-dependent refractive index accurately. Finding these values for the
specific material used for the waveguides fabricated by the group would be beneficial.
The time spent finding the initial guess of the minimization algorithms is quite long
and would benefit from an improvement. If this time is reduced, a natural next step
would be to test the method in live sensing.
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A | MARC Intensity Simulation

1 '''
2
3 This package is converted from a Matlab script provided by Mukesh Yadav.
4 Translated and expanded upon by Espen Hovland, 2021, as part of his specialization project at␣

↪→NTNU.
5 Some minor changes are added by Nikolai Stensø, 2022, as part of his master's thesis.
6 These changes are:
7 - Added array compatibility for n_eff
8 - Removed MARC dependence on wavelength
9 - Added the option to retrieve zero-centered wavelength

10
11 '''
12 import numpy as np
13 from fractions import Fraction
14
15 class Ring:
16 """
17 Add-drop ring resonator class. Calculates all relevant data when an instance is created.
18
19 Parameters:
20 wavelengths (np.array): Wavelength sweep
21 radius (float): Ring radius
22 angular_separation (float): Angular separation of drop- and through-port waveguides
23 coupling_coefficient (float): Self-coupling coefficient of the input waveguide
24 loss_coefficient (float): Round-trip loss coefficient of the ring
25 n_eff (float): Effective refractive index of the ring waveguide
26
27 Static methods:
28 FSR(ring_radius, n_eff, lambda_0) -> FSR in [m]
29
30 Available data (member variables):
31 .r (float): Radius of ring
32 .ang_sep (float): Angular sep. of through- and drop-port
33 .a (float): Round-trip loss coefficient of the ring
34 .n_eff (float): Effective refractive index
35 .t1 (float): Self-coupling coefficient of input waveguide
36 .t2 (float): Self-coupling coefficient of drop-port waveguide
37 .fsr (float): Free spectral range
38 .fsr_eff (float): Effective FSR (single-ring MARC)
39 .dp_amplitude (np.array): Drop-port amplitude response
40 .tp_amplitude (np.array): Through-port amplitude response
41 .dp_intensity (np.array): Drop-port intensity response
42 .tp_intensity (np.array): Through-port intensity response
43 .dp_phase (np.array): Drop-port phase response
44 .tp_phase (np.array): Through-port phase response
45 """
46 def __init__(self,
47 wavelengths,
48 radius: float,
49 angular_separation: float,
50 coupling_coefficient: float = 0.95,
51 loss_coefficient: float = 1,
52 n_eff: np.array = 3.9) -> None:
53 self.r = radius # [m] Radius of ring
54 self.ang_sep = angular_separation # [deg] Angular sep. of drop- and through-port
55 self.a = loss_coefficient # [1] Round-trip loss coefficient
56 self.n_eff = n_eff # [1] Effective refractive index
57 self.t1 = coupling_coefficient # [1] Self-coupling coeff. of input waveguide
58 self.t2 = self.t1 / self.a # [1] Self-coupling coeff. of drop waveguide
59
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60 phi = 2 * np.pi * self.n_eff * 2 * np.pi * self.r / wavelengths # Round-trip phase shifts
61 traversed = self.ang_sep / 360 # Proportion of ring travelled
62 act_shift = phi * traversed # Actual phase shift
63
64 # Amplitude response at drop-port
65 self.dp_amplitude = np.asarray(
66 (-(np.sqrt(1-self.t1**2) * np.sqrt(1-self.t2**2) * np.power(self.a, traversed)
67 * np.exp(1j*act_shift)) / ( 1 - (self.t1 * self.t2 * self.a * np.exp(1j * phi)))),
68 dtype=complex
69 )
70
71 # Amplitude response at through-port
72 self.tp_amplitude = np.asarray(
73 (self.t1 - self.t2 * self.a * np.exp(1j * phi))
74 / (1 - self.t1 * self.t2 * self.a * np.exp(1j * phi)),
75 dtype=complex
76 )
77
78 # Intensity response
79 self.dp_intensity = np.asarray(np.abs(self.dp_amplitude)**2, dtype=float) # Drop-port
80 self.tp_intensity = np.asarray(np.abs(self.tp_amplitude)**2, dtype=float) # Through-port
81
82 # Phase response
83 self.dp_phase = np.unwrap(np.angle(self.dp_amplitude)) # Drop-port
84 self.tp_phase = np.unwrap(np.angle(self.tp_amplitude)) # Through-port
85
86 # Get the FSR, as if the center frequency is resonant frequency (approximation)
87 if isinstance(self.n_eff, np.ndarray):
88 self.fsr = self.get_FSR(self.r, self.n_eff[len(wavelengths)//2],␣

↪→wavelengths[len(wavelengths)//2])
89 else:
90 self.fsr = self.get_FSR(self.r, self.n_eff, wavelengths[len(wavelengths)//2])
91
92 # Calculate effective FSR (for single-ring MARCs)
93 L = 1 / traversed
94 frac = Fraction.from_float(L).limit_denominator() # Find the reduced fraction N/M
95 N = frac.numerator
96 self.fsr_eff: float = N * self.fsr # [nm]
97
98 return
99

100 @staticmethod
101 def get_FSR(ring_radius: float, n_eff: float, lambda_0: float = 1550e-9) -> float:
102 """
103 Calculate the (approximate) FSR.
104 Parameters:
105 ring_radius (float): [m] Radius of ring
106 n_eff (float): [1] Effective refractive index of ring
107 lambda_0 (float): [m] Resonance wavelength of ring.
108 Defaults to 1550 nm
109 Returns:
110 Calculated FSR [m]
111 """
112 return lambda_0**2 / (n_eff*2*np.pi*ring_radius)
113
114 class MZI:
115 """ Mach-Zehnder interferometer base class """
116 def __init__(self, initial_phase: float = 0) -> None:
117 self.initial_phase = initial_phase # Phase imbalance of MZI
118
119 @staticmethod
120 def get_trans(amplitude, phi_1, phi_2) -> np.array:
121 """
122 The interference equation, for calculating the amplitude transmittance.
123
124 Parameters:
125 amplitude (np.array): The complex amplitude of the signal from the affected arm.
126 phi_1 (np.array): The phase of the affected arm.
127 phi_2 (np.array): The phase of the unaffected arm.
128
129 Returns:
130 t (np.array): The transmittance of the MZ interferometer.
131 """
132 t = 0.5*np.exp(0.5j*(phi_1+phi_2+np.pi))*(np.abs(amplitude)*np.exp(0.5j*(phi_1-phi_2))
133 + np.exp(-0.5j*(phi_1-phi_2)))
134 return t
135
136 class MARC(MZI):
137 """
138 Multi-ring MARC class. Calculates all data upon creating an instance.
139
140 Parameters:
141 rings (Ring): Rings to include in the MARC
142 initial_phase (float): Phase imbalance from MZI
143
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Appendix A. MARC Intensity Simulation

144 Available data (member variables):
145 .num_rings (int): number of rings in MARC
146 .rings (list): list of rings in device
147 .amplitude (np.array): output amplitude response of device
148 .intensity (np.array): output intensity response of device
149 .zc_intensity (np.array): zero-centered intensity response of device
150 .tp_intensity (np.array): through-port intensity response of device
151 .phase_output (np.array): output phase response of device
152 """
153 def __init__(self, *rings: Ring, initial_phase: float = 0) -> None:
154 super().__init__(initial_phase=initial_phase)
155
156 self.num_rings = len(rings)
157 self.rings = [r for r in rings]
158
159 amp_post_rings = np.zeros(len(rings[0].dp_amplitude), dtype="complex") # Amplitude resp.␣

↪→of all rings
160 amp_tp = np.ones(len(rings[0].dp_amplitude), dtype="complex") # Amplitude resp.␣

↪→of through-port
161
162 for idx, ring in enumerate(self.rings):
163 amp_ring = ring.dp_amplitude # Drop-port amplitude transmission of last ring
164 for i in range(0, idx):
165 amp_ring *= self.rings[i].tp_amplitude
166
167 amp_post_rings += amp_ring
168
169 for ring in self.rings:
170 amp_tp *= ring.tp_amplitude
171
172 amplitude = self.get_trans(amp_post_rings, np.unwrap(np.angle(amp_post_rings)), initial_

↪→phase)
173
174
175 self.amplitude = amplitude / np.max(np.abs(amplitude)) # Normalize the amplitude
176 self.intensity = np.asarray(np.abs(self.amplitude)**2, dtype=float)
177 self.tp_intensity = np.asarray(np.abs(amp_tp)**2, dtype=float)
178 self.phase_output = np.unwrap(np.angle(self.amplitude))
179 zc_intensity = (self.intensity - self.intensity.mean())/self.intensity.std()
180 self.zc_intensity = zc_intensity/np.max(np.abs(zc_intensity))
181 return
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B | Horizontal shift approxima-
tion

1 import os
2 from getdata import GetData
3 from tkinter.filedialog import askdirectory
4 import copy
5
6
7 directory = askdirectory()
8 data_list = []
9 for filename in sorted(os.listdir(directory)):

10 data_list.append(GetData(directory +'/'+filename,zc = 0))
11
12 data_list[0].no_of_rings, data_list[0].n_eff_method, data_list[0].initial_guess = GetData.ask_

↪→initial_guess()
13 initial_angles = data_list[0].initial_guess[1:3*data_list[0].no_of_rings+1:3]
14 data_list[0].set_bounds()
15 if_init = input('Do you wish to initialize the guess? [y/n] ')
16 if if_init == 'n':
17 data_list[0].initial_guess = list(map(float,input("Enter initial guess, each value separated␣

↪→by a space: ").strip().split()))[:len(data_list[0].initial_guess)]
18 data_list[0].set_strict_bounds()
19 else:
20 data_list[0].init_nm()
21 data_list[0].improve_sellmeier()
22 data_list[0].find_nm()
23
24 x_shift_list = [ [0] for i in range(data_list[0].no_of_rings)]
25
26 for i in range(1,len(data_list)):
27 data_list[i].interp_to(len(data_list[0].wavelengths))
28
29 for i in range(1,len(data_list)):
30 data_list[i].no_of_rings = data_list[0].no_of_rings
31 data_list[i].n_eff_method = data_list[0].n_eff_method
32 data_list[i].initial_guess = copy.deepcopy(data_list[i-1].nm_params)
33
34 for ring_no in range(data_list[0].no_of_rings):
35 data_list[i].initial_guess[3*ring_no + 2] += x_shift_list[ring_no][i-1]
36 data_list[i].set_strict_bounds()
37 data_list[i].find_nm()
38
39 for ring_no in range(data_list[0].no_of_rings): # appends the difference in x-shift variable␣

↪→for each ring
40 x_shift_list[ring_no].append(
41 data_list[i].nm_params[3*ring_no + 2] -
42 data_list[i-1].nm_params[3*ring_no + 2]
43 )
44
45 cumulative_shift = [[] for i in range(data_list[0].no_of_rings)]
46 for ring_no in range(data_list[0].no_of_rings):
47 for i in range(len(x_shift_list[ring_no])):
48 if i==0:
49 cumulative_shift[ring_no].append(x_shift_list[ring_no][i])
50 else:
51 cumulative_shift[ring_no].append(x_shift_list[ring_no][i]+cumulative_shift[ring_no][i-

↪→1])
52
53 for ring_no in range(data_list[0].no_of_rings):
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Appendix B. Horizontal shift approximation

54 print("Total resonance shift for ring with angle ",initial_angles[ring_no],": ",sum(x_shift_
↪→list[ring_no]))

55 print("Cumulative shift array for ring with angle ",initial_angles[ring_no],": ",cumulative_
↪→shift[ring_no])
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C | Data Analysis

1 import numpy as np
2 import pandas as pd
3 from MARC import MARC, Ring
4 from scipy import optimize
5 import numpy as np
6 from tqdm.contrib.itertools import product
7 from tkinter.filedialog import askopenfilename
8 import os
9 import copy

10
11
12 class GetData:
13 """
14 Class for inspection of MARC transmission response data.
15
16 Parameters:
17 filename (str): Filename of .txt MARC data file. Datafile should contain two␣

↪→lines. The first line is a list of wavelengths, the second a list of intensities. Separation is
↪→<tab>.

18 norm (bool): Boolean value to determine whether the data should be␣
↪→normalized or not. Defaults to 1.

19 zc (bool): Boolean value to determine whether the data should be zero-
↪→centered or not. Defaults to 0.

20
21 Static methods:
22 .ask_initial_guess()
23
24 Instance methods:
25 .set_file(filename,norm,zc)
26 .interp_to(new_length)
27 .get_n_eff(wavelengths, *coefficients)
28 .marc_curve(parameters)
29 .init_guess()
30 .residuals(parameters)
31 .residuals_ls(parameters,magnification)
32 .cost_function(parameters,norm)
33 .find_nm()
34 .find_ls()
35 .find_ls2()
36
37 Private methods:
38 ._require(args)
39 ._to_ls_bounds()
40
41 Available data (member variables):
42 .wavelengths (np.array): Wavelengths of chosen data file
43 .intensities (np.array): Intensities of chosen data file
44 .n_eff_method (str):
45 .no_of_rings (int):
46 .initial_guess (list):
47 .bounds (tuple):
48 .zero_centered (bool):
49 .normalized (bool):
50 .bounds_confidence (float):
51 .guess_confidence (float):
52 .old_wavelengths (np.array):
53 .old_intensities (np.array):
54 .nm_params (list):
55 .nm_cost (float):
56 .nelder_mead (np.array):
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Appendix C. Data Analysis

57 .ls_params (list):
58 .ls_cost (float):
59 .least_squares (np.array):
60 """
61
62 def __init__(self,
63 filename: str = '',
64 norm: bool = 1,
65 zc: bool = 1,) -> None:
66 self.n_eff_method = None
67 self.no_of_rings = None
68 self.initial_guess = None
69 self.bounds = None
70 self.zero_centered = zc
71 self.normalized = norm
72 self.filename = filename
73 self.bounds_confidence = 0.5 # percent
74 self.guess_confidence = 0.05 # percent
75
76 self.set_file(filename,self.normalized,self.zero_centered)
77
78
79 def set_file(self,filename = '', norm: bool = None, zc: bool = None) -> None:
80 """
81 Reads .txt MARC data file and returns wavelength and intensity as numpy arrays
82 Parameters:
83 filename (str): Filename of .txt MARC data file. Datafile should contain␣

↪→two lines. The first line is a list of wavelengths, the second a list of intensities.␣
↪→Separation is <tab>.

84 norm (bool): Boolean value to determine whether the data should be␣
↪→normalized or not. Defaults to 1.

85 zc (bool): Boolean value to determine whether the data should be zero-
↪→centered or not. Defaults to 0.

86 Returns:
87 wavelengths (np.array): Numpy array containing the wavelengths.
88 intensities (np.array): Numpy array containing the intensity values.
89 """ # redo this comment
90 if filename == '':
91 filename = askopenfilename()
92 if norm == None:
93 norm = self.normalized
94 if zc == None:
95 zc = self.zero_centered
96
97 # use pandas to read file. separated by <tab>
98 df = pd.read_csv(filename,sep = " ",header = None)
99

100 #save wavelength and intensity as nunmpy arrays
101 wavelengths, intensities = df.iloc[0].to_numpy(),df.iloc[1].to_numpy()
102
103 while wavelengths[-1] == 0 or wavelengths[0] == 0: # adressing a problem where the␣

↪→endpoint wavelengths were 0 in the data files
104 if wavelengths[0] == 0:
105 wavelengths = wavelengths[1:]
106 intensities = intensities[1:]
107 if wavelengths[-1] == 0:
108 wavelengths = wavelengths[:-1]
109 intensities = intensities[:-1]
110
111 # save number of data points at each wavelength into the Series counts
112 counts = df.iloc[0].value_counts()
113
114 # checks how many times the first and last wavelength are repeated, then removes all␣

↪→except one
115 for i in range(len(counts)):
116 if counts.index[i] == wavelengths[0]:
117 no_starting_wl = counts.iloc[i]
118 if counts.index[i] == wavelengths[-1]:
119 no_final_wl = counts.iloc[i]
120
121 # check if there are duplicate starting or end data points, in the case there are none:␣

↪→keep the original. this could be made better to account for repeat data points in either end,␣
↪→and not just both

122 if not no_starting_wl == 1 and not no_final_wl == 1:
123 wavelengths = wavelengths[no_starting_wl-1:-no_final_wl+1]
124 intensities = intensities[no_starting_wl-1:-no_final_wl+1]
125
126
127
128 # check scanning direction. if from high WL to low, removes any WLs over the initial␣

↪→(highest) WL. then flips array so that lowest WL is first
129 if wavelengths[0] > wavelengths[-1]:
130 entries_to_remove = np.where(wavelengths > wavelengths[0])
131 intensities = np.delete(intensities, entries_to_remove , None)
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132 wavelengths = np.delete(wavelengths, entries_to_remove , None)
133 wavelengths = np.flip(wavelengths)
134 intensities = np.flip(intensities)
135
136 # if scanning direction is low WL to high, removes any WL below the initial WL
137 else:
138 entries_to_remove = np.where(wavelengths < wavelengths[0])
139 intensities = np.delete(intensities, entries_to_remove , None)
140 wavelengths = np.delete(wavelengths, entries_to_remove , None)
141
142 #check if zero-centering is wanted. returns intensities with a mean (close to) zero and a␣

↪→standard deviation (close to) 1.
143 if zc:
144 intensities = (intensities - intensities.mean()) / intensities.std()
145
146 # check if intensity normalization is wanted. returns the normalized intensities with␣

↪→maximum 1. will keep a mean of 0, but will not keep std of 1.
147 if norm:
148 intensities = intensities/np.max(np.abs(intensities))
149 self.wavelengths = wavelengths
150 self.intensities = intensities
151
152 def interp_to(self, new_length):
153 # interpolation to new set of data points
154 self.old_wavelengths = copy.deepcopy(self.wavelengths)
155 self.old_intensities = copy.deepcopy(self.intensities)
156 self.wavelengths = np.linspace(self.old_wavelengths[0], self.old_wavelengths[-1], new_

↪→length)
157 self.intensities = np.interp(self.wavelengths, self.old_wavelengths, self.old_intensities)
158
159 @staticmethod
160 def _require(*args):
161 for arg in args:
162 if arg is None :
163 raise ValueError("Not all required parameters for this operation are set.␣

↪→Examples of parameters are .initial_guess and .no_of_rings")
164
165 @staticmethod
166 def ask_initial_guess():
167 no_of_rings = int(input("How many rings? "))
168 initial_guess = []
169 # Ask for radius and angle for each ring in device
170 for i in range(no_of_rings):
171 initial_guess.append(1e-6*float(input("Ring radius (in micrometers) of ring number

↪→"+str(i+1)+"? "))) # Ring number i radius guess [m]
172 initial_guess.append( float(input("Ring angle (in degrees) of ring number

↪→"+str(i+1)+"? "))) # Ring number i angle guess [deg]
173 initial_guess.append(0) ␣

↪→ # x-shift guess [nm]
174
175 initial_guess.append(0.95) # Coupling coefficient [1]
176 initial_guess.append(0.98) # Loss coefficient guess [1]
177
178 match int(input("Which refractive index approximation? (Enter number) \n [1] Constant\t␣

↪→[2] Cauchy\t [3] Sellmeier\n")):
179 case 1:
180 n_eff_method = 'constant'
181 initial_guess.append(3.9) # Constant n_eff [1]
182
183 case 2:
184 n_eff_method = 'cauchy'
185 initial_guess.append(3.89) # Cauchy A coefficient [1]
186 initial_guess.append(0.02402) # Cauchy B coefficient [1]
187
188 case 3:
189 n_eff_method = 'sellmeier'
190 match int(input("How many Sellmeier coefficients? (Enter number) \n [2]\t [4]\t␣

↪→[6]\n")):
191 case 2:
192 initial_guess.append(1.34400913e+01) # Sellmeier B_1 coefficient [1] 10.

↪→1456
193 initial_guess.append(3.02564647e-03) # Sellmeier C_1 coefficient [1] 0.

↪→10611
194
195 case 4:
196 initial_guess.append(10.1456) # Sellmeier B_1 coefficient [1]
197 initial_guess.append(0.10611) # Sellmeier C_1 coefficient [1]
198 initial_guess.append(0.6378) # Sellmeier B_2 coefficient [1]
199 initial_guess.append(0.10515) # Sellmeier C_2 coefficient [1]
200
201 case 6:
202 initial_guess.append(10.6684293) # Sellmeier B_1 coefficient [1]
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203 initial_guess.append(0.301516485**2) # Sellmeier C_1 coefficient [1]
204 initial_guess.append(0.0030434748) # Sellmeier B_2 coefficient [1]
205 initial_guess.append(1.13475115**2) # Sellmeier C_2 coefficient [1]
206 initial_guess.append(1.54133408) # Sellmeier B_3 coefficient [1]
207 initial_guess.append(1104**2) # Sellmeier C_3 coefficient [1]
208
209 case _:
210 raise ValueError('Invalid refractive index approximation')
211 case _:
212 raise ValueError('Invalid refractive index approximation')
213 return no_of_rings, n_eff_method, initial_guess
214
215 def _to_ls_bounds(self) -> tuple:
216 self._require(self.bounds)
217 return ([self.bounds[i][0] for i in range(len(self.bounds))],[self.bounds[i][1] for i in␣

↪→range(len(self.bounds))])
218
219 def set_bounds(self):
220 self._require(self.initial_guess, self.no_of_rings)
221
222 # Initialize bounds with infinite range
223 bounds = [[-np.inf, np.inf] for i in range(len(self.initial_guess))]
224
225 # Change upper bound of coupling and loss coefficient to 1
226 bounds[3*self.no_of_rings][1] = 1
227 bounds[3*self.no_of_rings+1][1] = 1
228
229 # Setting bounds on the radii of the rings, to avoid huge changes in minimization␣

↪→algorithms
230 for i in range(self.no_of_rings):
231 bounds[3*i] = [
232 min(
233 self.initial_guess[3*i] * (1 - self.guess_confidence),
234 self.initial_guess[3*i] * (1 + self.guess_confidence)),
235 max(
236 self.initial_guess[3*i] * (1 - self.guess_confidence),
237 self.initial_guess[3*i] * (1 + self.guess_confidence))
238 ]
239 self.bounds = tuple(bounds) # minimization␣

↪→algorithms expect tuples
240
241 def set_strict_bounds(self, strict_val: float = 0.00000000001):
242 self._require(self.initial_guess, self.no_of_rings)
243
244 # Setting strict bounds for all variables
245 bounds = [[
246 min(
247 self.initial_guess[i] * (1 - strict_val),
248 self.initial_guess[i] * (1 + strict_val)),
249 max(
250 self.initial_guess[i] * (1 - strict_val),
251 self.initial_guess[i] * (1 + strict_val))]
252 for i in range(len(self.initial_guess))]
253
254 # Allowing infinite range on x-shift
255 for ring_no in range(self.no_of_rings):
256 bounds[3*ring_no+ 2] =[-np.inf,np.inf]
257 self.bounds = tuple(bounds)
258
259 def set_init_bounds(self, strict_val: float = 0.2):
260 self._require(self.initial_guess, self.no_of_rings)
261
262 # Setting strict bounds for all variables
263 bounds = [[
264 min(
265 self.initial_guess[i] * (1 - strict_val),
266 self.initial_guess[i] * (1 + strict_val)),
267 max(
268 self.initial_guess[i] * (1 - strict_val),
269 self.initial_guess[i] * (1 + strict_val))]
270 for i in range(len(self.initial_guess))]
271
272 # Change upper bound of coupling and loss coefficient to 1
273 bounds[3*self.no_of_rings][1] = 1
274 bounds[3*self.no_of_rings+1][1] = 1
275
276 # Allowing larger range on x-shift
277 for ring_no in range(self.no_of_rings):
278 bounds[3*ring_no+ 2] =[-100,100]
279 self.bounds = tuple(bounds)
280
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281 def set_init_sellmeier_bounds(self, strict_val: float = 0.1):
282 self._require(self.initial_guess, self.no_of_rings)
283
284 # Setting strict bounds for all variables
285 bounds = [[
286 min(
287 self.initial_guess[i] * (1 - strict_val),
288 self.initial_guess[i] * (1 + strict_val)),
289 max(
290 self.initial_guess[i] * (1 - strict_val),
291 self.initial_guess[i] * (1 + strict_val))]
292 for i in range(len(self.initial_guess))]
293
294 # Change upper bound of coupling loss coefficient to 1
295 if bounds[3*self.no_of_rings][1] > 1:
296 bounds[3*self.no_of_rings][1] = 1
297 if bounds[3*self.no_of_rings+1][1] > 1:
298 bounds[3*self.no_of_rings+1][1] = 1
299
300 # Allowing larger range on sellmeier coefficients
301 for value in range(len(self.initial_guess[3*self.no_of_rings+2:])):
302 bounds[3*self.no_of_rings+ 2 + value] =[0,100]
303 self.bounds = tuple(bounds)
304
305 def get_n_eff(self,wavelengths, *coefficients):
306 # Expecting *coefficients to be of the form *initial_guess[3*no_of_rings+2:]
307 self._require(self.n_eff_method)
308
309 # Check which approximation method is chosen
310 match self.n_eff_method:
311 case 'constant':
312 return coefficients*np.ones(len(wavelengths))
313 case 'cauchy':
314 wavelength = wavelengths*1e6 # m to um
315 return coefficients[0] + coefficients[1]/wavelength**2
316 case 'sellmeier':
317 wavelength = wavelengths*1e6 # m to um
318 sum_coeff = 0
319 for i in range(0,len(coefficients), 2):
320 sum_coeff += (coefficients[i]*wavelength**2)/(wavelength**2 -␣

↪→coefficients[i+1])
321 return np.sqrt(1 + sum_coeff)
322
323 def marc_curve(self, parameters):
324 self._require(self.no_of_rings,self.n_eff_method)
325 ring_list = []
326 for ring_no in range(self.no_of_rings):
327 shifted_wavelengths = (self.wavelengths - parameters[ 3*ring_no + 2 ]) *␣

↪→1e-9
328 ring_list.append(
329 Ring(
330 wavelengths = shifted_wavelengths,
331 radius = parameters[ 3 * ring_no ],
332 angular_separation = parameters[ 3 * ring_no + 1 ],
333 coupling_coefficient = parameters[ 3 * self.no_of_rings ],
334 loss_coefficient = parameters[ 3 * self.no_of_rings +1],
335 n_eff = self.get_n_eff(shifted_wavelengths, *parameters[ 3␣

↪→* self.no_of_rings + 2:])
336 )
337 )
338
339 sensor = MARC( *ring_list )
340 if self.zero_centered:
341 return sensor.zc_intensity
342 else:
343 return sensor.intensity
344
345
346 def init_nm(self, norm = None):
347 tmp_min = 100000
348 range_list = []
349
350 # Create ranges to test for x-shift
351 for ring_no in range(self.no_of_rings):
352 range_list.append(range(-50,50,5))
353
354 # Setting relatively strict bounds on the a priori values
355 self.set_init_bounds(0.1)
356
357 # Nested for loop for the different possible x-values
358 for x_values in product(*range_list):
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Appendix C. Data Analysis

359 for ring_no in range(self.no_of_rings):
360 self.initial_guess[3*ring_no + 2] = x_values[ring_no]
361 nm_opt = optimize.minimize(
362 fun = self.cost_function,
363 x0 = self.initial_guess,
364 method = 'Nelder-Mead',
365 bounds = self.bounds,
366 args = (norm)
367 )
368 tmp_cost = nm_opt['fun']
369 if tmp_cost < tmp_min:
370 tmp_min = tmp_cost
371 tmp_variables = nm_opt['x']
372
373 self.initial_guess = tmp_variables
374
375 def improve_sellmeier(self,norm = None):
376 tmp_min = 100000
377 range_list = []
378
379 # Magnify values to get least squares to perform better
380 magnification = 10**(-np.floor(np.log10(self.initial_guess))+2)
381
382 self.guess_confidence = 0.3
383 for value in range(len(self.initial_guess[3*self.no_of_rings + 2:])):
384 a = int(magnification[3*self.no_of_rings + 2 + value] * self.initial_guess[3*self.no_

↪→of_rings + 2 + value] * (1 - self.guess_confidence))
385 b = int(magnification[3*self.no_of_rings + 2 + value] * self.initial_guess[3*self.no_

↪→of_rings + 2 + value] * (1 + self.guess_confidence))
386 # in an attempt to reduce time spent going through ranges, the invervals in the ranges␣

↪→depend on the length of the range
387 range_list.append(range(a,b, int((b-a)/4)))
388
389
390
391 self.set_init_sellmeier_bounds(0.0000000001)
392 print(range_list)
393 print(magnification)
394 for coeff in product(*range_list):
395 for value in range(len(self.initial_guess[3*self.no_of_rings+2:])):
396 self.initial_guess[3*self.no_of_rings + 2 + value] = coeff[value]/

↪→magnification[3*self.no_of_rings + 2 + value]
397 nm_opt = optimize.minimize(
398 fun = self.cost_function,
399 x0 = self.initial_guess,
400 method = 'Nelder-Mead',
401 bounds = self.bounds,
402 args = (norm)
403 )
404 tmp_cost = nm_opt['fun']
405 if tmp_cost < tmp_min:
406 tmp_min = tmp_cost
407 tmp_variables = nm_opt['x']
408 print(tmp_variables)
409
410 self.initial_guess = tmp_variables
411
412
413 def residuals(self,parameters) -> np.array:
414 return self.intensities - self.marc_curve(parameters)
415
416 def residuals_ls(self,parameters,magnification) -> np.array:
417 return self.intensities - self.marc_curve(np.divide(parameters,magnification))
418
419 def cost_function(self, parameters, norm = None) -> float:
420 return np.linalg.norm(self.residuals(parameters), ord = norm)
421
422 def find_nm(self, norm = None) -> None:
423 self._require(self.bounds,self.initial_guess)
424
425 nm_opt = optimize.minimize(
426 fun = self.cost_function,
427 x0 = self.initial_guess,
428 method = 'Nelder-Mead',
429 bounds = self.bounds,
430 args = (norm)
431 )
432 self.nm_params = nm_opt['x']
433 self.nm_cost = nm_opt['fun']
434 self.nelder_mead = self.marc_curve(self.nm_params)
435 print("Nelder-Mead fit found.")
436
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437 def find_ls(self):
438 self._require(self.bounds,self.initial_guess)
439
440 # Magnify values to get least squares to perform better
441 magnification = 10**(-np.floor(np.log10(self.initial_guess))+1)
442 # Keep original x-shift values
443 magnification[2:3*self.no_of_rings+3:3] = 1
444
445 least_squares_opt = optimize.least_squares(
446 self.residuals_ls,
447 np.multiply(self.initial_guess,magnification),
448 bounds = tuple(map(list,np.multiply(self._to_ls_bounds(),magnification))),
449 args = ([magnification])
450 )
451 self.ls_cost = np.sqrt(2*least_squares_opt.get('cost'))
452 self.ls_params = np.divide(least_squares_opt.get('x'), magnification)
453 self.least_squares = self.marc_curve(self.ls_params)
454 print("Least squares fit found.")
455
456 if __name__ == '__main__':
457 d = GetData(zc=0)
458 d.no_of_rings, d.n_eff_method, d.initial_guess = GetData.ask_initial_guess()
459 d.set_bounds()
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D | Motor Control

1 print("Importing packages takes a little while...")
2 import nidaqmx
3 import numpy as np
4 import thorlabs_apt as apt
5 import time
6 import datetime
7 print("Finished importing packages")
8
9 def wavelength_to_pos(wavelength):

10 # returns the motor position for a given wavelength. based on the calibration sheet for TLK-
↪→L1550M from THORLABS

11 #return 1.6+((10.4-1.6)/(1482.24-1618.37)*(wavelength-1618.37))
12 #below is the values after calibration by Jens
13 return ((6.0663)/(1550-1643.7)*(wavelength-1643.7))
14
15 def pos_to_wavelength(pos):
16 # returns the wavelength for a given motor position. based on the calibration sheet for TLK-

↪→L1550M from THORLABS
17 #return 1618.37+((1482.24-1618.37)/(10.4-1.6)*(pos-1.6))
18 #below is the values after calibration by Jens
19 return 1643.7+((1550-1643.7)/(6.0663)*(pos))
20
21 def get_initial_wavelength():
22 initial_wavelength = int(input('Enter initial wavelength of sweep [nm]: '))
23 if 1450 < initial_wavelength <1650:
24 return initial_wavelength
25 else:
26 print('Wavelength not in range')
27 return get_initial_wavelength()
28
29 def get_final_wavelength():
30 final_wavelength = int(input('Enter final wavelength of sweep [nm]: '))
31 if 1450 < final_wavelength <1650:
32 return final_wavelength
33 else:
34 print('Wavelength not in range')
35 return get_final_wavelength()
36
37 def get_no_of_steps():
38 no_of_steps = int(input('Enter number of steps (datapoints): '))
39 if no_of_steps > 0:
40 return no_of_steps
41 else:
42 print('Number of steps must be a positive integer')
43 return get_no_of_steps()
44
45 def get_no_of_measurements():
46 no_of_measurements = int(input('Enter number of measurements (files): '))
47 if no_of_measurements > 0:
48 return no_of_measurements
49 else:
50 print('Number of measurements must be a positive integer')
51 return get_no_of_measurements()
52
53 def get_filename():
54 filename = input('Enter filename (without file extension): ')
55 return filename
56
57 def main():
58 # set initial parameters for measurement
59 #initial_wavelength, final_wavelength, no_of_steps,no_of_measurements,filename = 0,0,0,0,''
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60 initial_wavelength = get_initial_wavelength()
61 final_wavelength = get_final_wavelength()
62 no_of_steps = get_no_of_steps()
63 no_of_measurements = get_no_of_measurements()
64 filename = get_filename()
65
66
67 # find size of each step to move. might cause extra rounding errors due to moving back and␣

↪→forth between wavelengths and positions so often
68 distance_to_move = wavelength_to_pos(final_wavelength) - wavelength_to_pos(initial_wavelength)
69 step_size = distance_to_move/(no_of_steps)
70
71 # initiate motor
72 motor = apt.Motor(83865265)
73 print("Homing started")
74 motor.move_home(blocking = True) # use blocking to prevent the rest of the code running until␣

↪→homing is complete
75 print("Homing finished")
76 print("Current wavelength: ",pos_to_wavelength(motor.position))
77 motor.set_velocity_parameters(0,1.5,1.5) # velocity parameter doesn't matter too much when␣

↪→measuring using this script, but probably doesn't need to be max value. to change velocity,␣
↪→change the last number in parantheses. ***** max value = 2.3 *****

78
79
80 # initiate detector
81 task = nidaqmx.Task()
82 task.ai_channels.add_ai_voltage_chan("Dev1/ai2")
83 try:
84 task.start()
85 except DaqError: # in case the detector was not properly closed the last time it was used
86 task.stop()
87 task.start()
88 print("Detector successfully connected")
89 initial_time = time.time()
90 # initiale measurement loop
91 for measurement_no in range(no_of_measurements):
92 start_time = time.time() # start time for rough estimation of measurement duration
93
94 wavelength_list = []
95 amplitude_list = []
96
97 motor.move_to(wavelength_to_pos(initial_wavelength),blocking = True)
98 print('Initial position set')
99 print("Current wavelength: ",pos_to_wavelength(motor.position))

100
101
102 # sweeping loop. makes no_of_steps amout of datapoints, moves the motor a tiny distance␣

↪→for each iteration of the loop.
103 for i in range(no_of_steps):
104 if i == 1: start_time2 = time.time()
105 if i == 2: print('Estimated time until sweep is finished: ', datetime.

↪→timedelta(seconds = (time.time() - start_time2)*(no_of_steps-2)*(no_of_measurements-
↪→measurement_no))) # only to give a rough estimation of the total duration of the measurement

106 moving_pos = wavelength_to_pos(initial_wavelength) + step_size*i # find the next␣
↪→position for the motor

107 motor.move_to(moving_pos,blocking = True) # move to next position
108
109 # add wavelength and measured amplitude to separate lists
110 wavelength_list.append(pos_to_wavelength(motor.position))
111 amplitude_list.append(task.read())
112
113
114 print("Final position of sweep reached. Current wavelength: ",pos_to_wavelength(motor.

↪→position))
115 # write wavelength and amplitude lists to file. if several measurements, the filename is␣

↪→appended by "_i" where i is the number of the measurement
116 if no_of_measurements == 1:
117 f = open(filename+".txt","w")
118 else:
119 f = open(filename+"_"+str(measurement_no+1)+".txt","w")
120 for i in range(no_of_steps):
121 if i == no_of_steps -1:
122 f.write(str(wavelength_list[i]))
123 else:
124 f.write(str(wavelength_list[i]) + "\t")
125 f.write("\n")
126 for i in range(no_of_steps):
127 if i == no_of_steps -1:
128 f.write(str(amplitude_list[i]))
129 else:
130 f.write(str(amplitude_list[i]) + "\t")
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Appendix D. Motor Control

131 f.close()
132 print("Total time elapsed: ",datetime.timedelta(seconds = time.time() - initial_time))
133 # stop using the intensity measurement task
134 task.stop()
135 task.close()
136
137 # homing the motor before finishing
138 print("Measurements finished, initiating homing")
139 motor.move_home(blocking = True)
140 print("Homing finished")
141
142 if __name__ == "__main__":
143 main()

88





N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Nikolai Stensø

Characterization and Signal
Processing of Mach-Zehnder Assisted
Ring Resonator Configuration
Sensors

Master’s thesis in Nanotechnology
Supervisor: Astrid Aksnes
Co-supervisor: Arnfinn Aas Eielsen, Jens Høvik
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	Contents
	Introduction
	Theory
	Electromagnetic Waves
	Speed of Light and Refractive Index
	Wave Equation and Helmholz Equation
	Polarization
	Dispersion
	Waveguides
	Intensity and Interference
	Ring Resonators

	MARC Devices
	Spectral Line Shapes
	Parameter Effect on Signature
	MARC Devices as Sensors

	Optimization Algorithms
	Data Fitting
	Nelder-Mead
	Least Squares Regression


	Experimental Setup
	Components for Data Acquisition of MARC Device
	Software
	Labview
	External Code Packages
	Code Written in This Work


	Methods
	Data Acquisition
	Investigation of the Limitations of the Experimental Setup
	Hysteresis
	Spacing of Data Points

	Development of Data Processing Procedures
	Normalization
	Data Fitting Using a priori Knowledge
	Comparison of Different Norms in Objective Function
	Comparison of Refractive Index Models
	Residual Analysis for Noise Characterization
	Validity of Model


	Results and Discussion
	Concerning the Experimental Setup
	Noise Contributions
	Hysteresis
	Spacing of Data Points

	Optimization of Curve Fitting
	Curve Fitting Using Few Variables
	Improvement of Initial Guess
	Zero-Centering
	Comparison of p-norms in Objective Function
	Comparison of Refractive Index Approximations
	Residuals

	Resonance Shift in Single Ring MARC
	Resonance Shift in MARC Containing Two Rings

	Conclusion
	Further Work
	References
	Appendices
	MARC Intensity Simulation
	Horizontal shift approximation
	Data Analysis
	Motor Control

