
Department of Marine Technology

TMR4520 - Marine Hydrodynamics

Thrust loss due to interaction
with ship hull and bottom for

ships in shallow waters

Author:
Brage Møller-Pettersen

16.05.2022

NTNU Trondheim
 Norwegian University of Science and Technology

Department of Marine Technology

MASTER THESIS IN MARINE TECHNOLOGY

SPRING 2022

FOR

Brage Møller-Pettersen

Thrust loss due to interaction with ship hull and bottom for ships in shallow

waters

It is suspected that wind turbine installation ships and ships for wind turbine service, might experience
severe thrust loss during operations in shallow water. It is believed that the thrust loss is caused by
interaction between the propeller slip-stream (propeller jet) with both ship hull and the sea bottom.
Interaction between hull, propeller and sea bottom is relevant also for other types of ships and operations,
like ships travelling in rivers and inland waterways. It is important to understand the interaction effects,
both to dimension the propulsion system properly, and to take the right actions to reduce those detrimental
effects. The overall aim of the combined project and master thesis is to get an understanding of the physics
of the effects, and establish simple methods to quantify the interaction.

To investigate the interaction between propeller slip-stream, ship hull and bottom, the following activities
are foreseen in the master thesis: a thorough literature review of both literature on thrust loss and propeller
hull interaction, as well as a review of the theory of turbulent jets and how they interact with boundaries.
The main work will focus on numerical investigations using CFD..

The project and master will be performed in co-operation with Kongsberg Maritime University
Technology Centre (UTC) at NTNU.

In the thesis the candidate shall present his personal contribution to the resolution of problem within the
scope of the thesis work.

Theories and conclusions shall be based on mathematical derivations and/or logic reasoning identifying the
various steps in the deduction.

The thesis work shall be based on the current state of knowledge in the field of study. The current state of
knowledge shall be established through a thorough literature study, the results of this study shall be written
into the thesis. The candidate should utilize the existing possibilities for obtaining relevant literature.

The thesis shall be organized in a rational manner to give a clear exposition of results, assessments, and
conclusions. The text should be brief and to the point, with a clear language. Telegraphic language should
be avoided.

The thesis shall contain the following elements: A text defining the scope, preface, list of contents, summary,
main body of thesis, conclusions with recommendations for further work, list of symbols and acronyms,
reference and (optional) appendices. All figures, tables and equations shall be numerated.

NTNU Trondheim
 Norwegian University of Science and Technology

Department of Marine Technology

The supervisor may require that the candidate, in an early stage of the work, present a written plan for the
completion of the work. The plan shall include a budget for the use of laboratory or other resources that will
be charged to the department. Overruns shall be reported to the supervisor.

The original contribution of the candidate and material taken from other sources shall be clearly defined.
Work from other sources shall be properly referenced using an acknowledged referencing system.

The thesis shall be submitted electronically (pdf) in Inspera:
- Signed by the candidate
- The text defining the scope (this text) (signed by the supervisor) included

Supervisor : Professor Sverre Steen
Advisors : Leif Vartdal, Geir Åge Øye (Kongsberg Maritime)
Start : 17.01.2022
Deadline : 10.06.2022

Trondheim, 17.01.2022

Sverre Steen
Supervisor

ABSTRACT

The result envisioned for this project is a clear answer to the question: Is there
a particular effect, or a combination thereof occurring in shallow waters that could
cause severe thrust loss?

After studying a broad spectrum of literature and discussing the impact of the
different ways thrust loss might be achieved in shallow waters, the Coanda effect
seems the most likely candidate to affect the thrust directly. Both ventilation and
thruster-to-thruster effects might be equally possible, but are not a specific danger
for shallow waters, which has remained the main focus of this thesis project.

The hypothesis proposes no thrust loss specifically related to shallow waters. How-
ever, thrust loss due to the Coanda effect is considered since the propeller jet may
interact with the new surface, namely the sea bottom, implying a counter interaction
to the Coanda effect interacting with the hull.

By studying CFD techniques and analyzing a 2D flow case, the thesis attempts
to demonstrate the Coanda effect with a RANS simulation; the goal has been to
investigate the impact of shallow waters on the Coanda effect. In addition, the thesis
focuses on simulating the flow realistically and considering the debate regarding the
limits of the approach.

Besides a thorough dive into CFD methods, the thesis is concerned with the essence
of the problem. Mainly what types of thrust loss are typical and known from the
literature. The primary considerations are towards the nature of the interaction and
if and how shallow water might impact the interaction.

Thruster-to-thruster interaction is here considered mainly a design problem. Ventil-
ation is a possibility and has been a subject of interest, but since the relevant vessels
considered are service or installation ships operating in dynamic positioning with
strict restrictions regarding the climate ahead of operations, the necessary climate
for ventilation to occur is an unlikely encounter.

iii

SAMMENDRAG

Målet med denne master avhandlingen er et klart svar p̊a spørsm̊alet: Er det
en spesifikk effekt, eller kombinasjon av flere som forekommer p̊a grunt vann og
for̊arsaker thrust tap?

Etter et relativt bredt litteratursøk og diskusjoner om forskjellige måter thrust tap
kan forekomme p̊a grunt vann, er Coanda effekten ansett for å være den mest tro-
lige kilden til interaksjon med propellen. B̊ade ventilasjon og thruster-til-thruster
effekter er mulige, men interaksjonene forblir det samme p̊a grunt vann som p̊a dypt
vann, og blir derfor nedprioritert.

Hypotesen foresl̊ar at det ikke blir noe thrust tap spesifikt relatert til grunt vann,
men thrust tap relatert til Coanda effekten blir vurdert. Ettersom propellstr̊alen kan
interagere med den nye overflaten som blir introdusert ved grunt vann, havbunnen.
Impliserer dette en motreaksjon til eventuelle thrust tap fra interaksjon mellom
propellstr̊ale og skrog.

Ved å studere metoder brukt innen CFD og analysere en 2D strømning, blir det
gjort et forsøk p̊a å demonstrere Coanda effekten med en RANS simulasjon. Målet
har vært å undersøke effekten av grunt vann p̊a Coanda effekten. Det rettes fokus
mot å simulere strømningen realistisk og diskutere begrensningene til tilnærmingen.

I tillegg til mye bakgrunn innen CFD er det lagt innsats i hva slags typer thrust tap
som er kjent eller typisk fra literatur. Fokuset er da p̊a opphavet til interaksjonen,
for å kunne ansl̊a hva grunt vann vil kunne bety for effekten.

Thruster-til-thruster interaksjoner er hovedsakelig vurdert som et design problem.
Ventilasjon er av stor interesse, men med bakgrunn i de skipene som denne studien
retter seg mot, service og installasjonsskip som opererer med dynamisk posisjonering,
er det s̊apass strenge reglementer som dikterer handlingsrommet for en operasjon,
at forholdene som skal til for at ventilasjon skal kunne forekomme er usannsynlig å
møte p̊a.

iv

PREFACE

This thesis represents the last piece of the puzzle for my Master of Science in Mar-
ine Technology specializing in Marine Hydrodynamics. The project was conducted
throughout the spring semester of 2022 at the Norwegian University of Science and
Technology (NTNU) in Trondheim.

First and foremost, I would like to express my gratitude to Professor Sverre Steen at
the department of Marine Technology. He provided essential insight and guidance
in the effort through weekly meetings, which I have enjoyed a lot. Furthermore, I
would like to thank Professor Lars Erik Holmedal for assisting with the theoretical
background and introducing me to Postdoctoral Fellow Jianxun Zhu. He provided
essential insight into the different solvers and techniques for mesh construction.

Furthermore, I greatly appreciate the help from Leif Vartdal and Geir Åge Øye from
Kongsberg Maritime for taking the time to discuss the project and share earlier
studies on the subject.

Lastly, I would like to thank my fellow office colleagues and my girlfriend Lise for
all the support, patience, and attention this last semester, not to mention the last
five years.

v

TABLE OF CONTENTS

Project description i

Abstract iii

Sammendrag iv

Preface v

List of Figures ix

List of Tables xii

Nomenclature xiii

1 Introduction 1

2 Theoretical background 4

2.1 Reynolds Averaged Navier Stokes . 4

2.2 Generalized eddy viscosity . 6

2.2.1 k − ε model . 9

2.2.2 k − ω model . 9

vi

2.2.3 SST k − ω model . 10

2.3 Jet flow . 12

2.3.1 Plane jet . 12

2.3.2 Circular jet . 14

3 Known sources of thrust loss 15

3.1 Ventilation . 15

3.2 Thruster to thruster interaction . 17

3.3 The influence of current . 18

3.4 Increased resistance in shallow waters 18

3.5 Interactions related to the Coanda effect 19

4 Computational Fluid Dynamics Experiment 21

4.1 Experimental setup for 2D simulation 22

4.2 Numerical solver . 25

4.3 Boundary conditions . 27

4.4 Mesh sizes . 29

4.5 Validation . 31

5 Results 37

5.1 Mesh refinement analysis . 37

5.1.1 The drag coefficient . 38

5.1.2 Lift coefficient . 39

5.1.3 Roll moment coefficient . 39

5.1.4 Velocity profiles from mesh refinement analysis 40

5.2 Validation . 42

6 Discussion 47

6.1 Mesh refinement analysis . 48

6.1.1 Drag coefficients . 48

6.1.2 Lift and roll moment coefficients 48

vii

6.1.3 Thoughts on the improvement of mesh convergence analysis . 49

6.2 Validation . 49

6.3 The applied method . 49

7 Conclusion 51

Bibliography 52

A Kongsberg products used for comparison I

B Figures produced in paraView IV

C Codes used in OpenFoam VIII

C.1 Equal for both solvers the 0 directory VIII

C.2 The constant directory . XV

C.3 The system directory . XVI

C.3.1 Used in pimpleFOAM . XVI

C.3.2 Used in simpleFOAM . XX

D Codes used in GMSH XXVI

D.1 Mesh of 2D hull with propeller . XXVI

D.2 Mesh of 2D hull . XLVI

viii

LIST OF FIGURES

2.1 Early development of a turbulent jet, copy of a figure found in F. M.
White and Majdalani 2006 . 13

3.1 Schematic presentation of different ventilation zones, Koushan 2004 . 16

3.2 The limit for ventilation at bollard condition, for n = 16Hz, from
Kozlowska and Steen 2017 . 17

4.1 Conceptual drawing of the domain for numerical experiment 22

4.2 A conceptual plot of the velocity profile along a wall, along with
the plotted wall functions when applied correctly; created by user
Aokomoriuta 2022 . 24

4.3 Some named properties to avoid confusion 29

4.4 The different meshing line groups, r symbolises the expansion ratio
for each consecutive cell. All meshing lines are defined so that the
clustering of cells happen towards the hull. 30

4.5 Influence of rounding radius upon the drag coefficient of various blunt
bodies; Hoerner 1965 . 32

4.6 A mirrored rectangular cross section 32

4.7 Influence of splitter plates (and similar devices) on the drag coeffi-
cients without wake interference. ℜe ∈ [104, 105]; Hoerner 1965 . . . 33

4.8 Simple vortex system with an image flow above the free surface so
the rigid free surface condition is satisfied, from Faltinsen 1993 34

ix

4.9 Wake development for a particular hull cross section. Calculations
are shown for different time instants t and area based on numerical
calculations by Aarsnes et al. 1985 with a thin free shear layer model;
found in Faltinsen 1993 . 34

4.10 Calculated and estimated drag coefficients CD for two dimensional
cross flow past cross sections along a particular ship; from Faltinsen
1993 . 35

4.11 The different meshing line groups, r symbolises the expansion ratio
for each consecutive cell. All meshing lines are defined so that the
clustering of cells happen towards the hull. 36

5.1 Average CD for the front of the hull, with plotted divergence from
mean of the last four calculated values 38

5.2 Average CD for the rear part of the hull, with plotted divergence from
mean of the last four calculated values 38

5.3 Average CD for the entire hull, with plotted divergence from mean of
the last four calculated values . 39

5.4 Average CL for the hull, with plotted divergence from mean of the
last four calculated values . 39

5.5 Average CmRoll for the hull, with plotted divergence from mean of the
last four calculated values . 40

5.6 Velocity profile of u2 = v from the transient solver pimpleFoam with
WD

T
= 1.85, t = 39s, the lowest resolution with 104 cells 40

5.7 Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 23s, second lowest resolution with 2.5 · 104 cells 41

5.8 Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 87s, third largest resolution with 5 · 105 cells 41

5.9 Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 69s, second to largest resolution with 7.5 · 104 cells 42

5.10 Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 16s, the largest resolution with 105 cells 42

5.11 The validation results from the pimpleFoam solver, with the expected
value of the drag coefficient outlined 43

5.12 Instantaneous snapshot of the velocity field from pimpleFoam transi-
ent simulation, ℜe = 107, WD

T
= 4 and t = 100s 44

5.13 The validation results from the simpleFoam solver, with the expected
value of the drag coefficient outlined 44

x

5.14 Snapshot of the steady state velocity field from the simpleFoam sim-
ulation, ℜe = 105, WD

T
= 3 and t = 100s 45

5.15 CD as a function of time plotted with expected value range found in
4.5, computed with the pimleFoam solver, WD

T
= 3, ℜe = 107, nnodes

is the number of nodes used and k is meant to symbolize 103 46

A.1 Example vessel used to create generic hull shape III

B.1 Instantaneous snapshot of the velocity field from pimpleFoam transi-
ent simulation, ℜe = 107, WD

T
= 3 and t = 100s IV

B.2 Instantaneous snapshot of the velocity field from pimpleFoam transi-
ent simulation, ℜe = 105, WD

T
= 3 and t = 100s V

B.3 Instantaneous snapshot of the velocity field from pimpleFoam transi-
ent simulation, ℜe = 105, WD

T
= 4 and t = 100s V

B.4 Snapshot of the steady state velocity field from the simpleFoam sim-
ulation, ℜe = 105, WD

T
= 3 and t = 100s VI

B.5 Snapshot of the steady state velocity field from the simpleFoam sim-
ulation, ℜe = 107, WD

T
= 3 and t = 100s VI

B.6 Snapshot of the steady state velocity field from the simpleFoam sim-
ulation, ℜe = 107, WD

T
= 4 and t = 100s VII

xi

LIST OF TABLES

1.1 Different transition Reynolds numbers predicted by an assortment of
methods . 3

2.1 Constants of incorporated k − ω model 11

2.2 Constants of incorporated k − ε model 12

4.1 Example ship main dimensions . 22

4.2 Flow domain characteristics . 22

4.3 Boundary types . 28

4.4 Initial conditions . 28

4.5 Characteristic sizes for mesh refinement process 31

5.1 Amount of time required for each simulation to reach 100 simulated
seconds . 37

A.1 Kongsberg US TYPE AZIMUTHING THRUSTER II

xii

NOMENCLATURE

Abbreviations

overbar The line over a certain quantity signifies the mean component, page 5

BP Bollard pull, page 25

DNS Direct Numerical Simulation, page 27

DP Dynamic positioning, page 1

NS Navier-Stokes equations , see equation (2.2), page 5

prime′ The prime symbol is used to signify the fluctuating component of the quant-
ity, page 5

RPM Revolutions per minute, almost always converted to RPS, page 16

RPS Revolutions per second , page 16 Hz

Dimensionless numbers

Fn Froude number , see equation (4.6), page 25

St The Strouhal number, page 33

We The Weber number , see equation (3.2), page 16

ℜe The Reynolds number, page 2

ℜex,tr Reynolds number signifying the fully turbulent flow transition, page 2

J The advance coefficient , see equation (3.1), page 16

y+ The y-pluss value , see equation (4.1), page 23

xiii

Empirical constants

α Empirical constant used in the k − ω method, page 10

β Empirical constant used in the k − ω method, page 10

β∗ Empirical constant used in the k − ω method, page 10

ϕ Representing the combination of constants in the k − ω SST method , see
equation (2.23), page 11

ϕ1 Representing the constants of the k − ω method incorporated in the k − ω
SST method , see equation (2.23), page 11

ϕ2 Representing the constants of k − ε method incorporated in the k − ω SST
method , see equation (2.23), page 11

σω Empirical constant used in the k − ω method, page 10

σ∗
ω Empirical constant used in the k − ω method, page 10

σε One of five empirical constants used in the k − ε method, page 9

σk Constant related to diffusion when applying the Kolmogorov-Prandtl relation,
page 8

c1ε One of five empirical constants used in the k − ε method, page 9

c1 The factoring of constants Cµ and Cdi results in one of the five empirical
constants used in the k − ε method, page 9

c2ε One of five empirical constants used in the k − ε method, page 9

Cµ Constant from Kolmogorov-Prandtl relation , see equation (2.10), page 7

Cdi Constant related to dissipation when applying the Kolmogorov-Prandtl rela-
tion, page 8

F1 Blending function representing the amount priority given to the k−ω method
incorporated in the k − ω SST method, page 11

Other symbols

ṁS Mass flow through propeller in full scale, page 25

L A characteristic length , page 2 m

QJ Jet flow momentum , page 13 kgm/s

νCFD Kinematic viscosity used in CFD simulations, page 24

νT The eddy viscosity. For the formulation used in CFD experiments see equa-
tion (2.27), for earliest mention , see equation (2.8), page 6

τij The stress tensor , page 10 N/m2

xiv

τw Wall shear stress , see equation (4.1), page 23

ε Dissipation terms for the turbulent kinetic energy , see equation (2.14), page 7

B Beam or breadth of hull, page 24

bJ The half width of the jet , page 13 m

Dk Diffusion terms for the turbulent kinetic energy , see equation (2.12), page 7

dp Propeller diameter , page 16 m

I Turbulence intensity , page 27 %

lm Characteristic length scale of the largest turbulent eddies , page 6 m

n Revolutions per second , page 16 Hz

nthruster Number of thrusters, page 25

p Pressure , page 5 N/m2

Pk Production terms for the turbulent kinetic energy , see equation (2.13), page 7

T Draft or draught , page 1 m

uτ The friction velocity , see equation (4.1), page 23

ui Velocity components in Cartesian coordinates, using Einstein summation con-
vention , page 5 m/s

Vm Characteristic velocity scale of the largest turbulent eddies , page 6 m/s

WD Water depth , page 1 m

xi Cartesian coordinates using Einstein summation convention, page 5

z Vertical coordinate with origin at the fluid surface, page 19

Physics constants

δij The Dirac delta function, page 6

ν Kinematic viscosity , page 2 m2/s

ρ Density of seawater, considered constant throughout the thesis, page 5

S Fluid surface tension , page 16 N/m

xv

CHAPTER

1

INTRODUCTION

In most marine operations, available thrust and global loads are paramount for po-
sitioning and performance. Deep water conditions are typically the only considered
environment during the design phase and model testing. Meaning many systems in
use are optimized for deep water maneuvering. In shallow water, where this report
refers to a water depth to draft ratio WD

T
< 3, blockage of the flow underneath the

hull leads to increased global loads applied to the hull. During operations involving
dynamic positioning, or DP, thruster systems are the primary tool to counteract the
effects of waves and currents. A thorough understanding of potential risks related to
thruster performance reinforces operational safety, especially during DP. This thesis
aims to study the effects of shallow water and attempt to describe how the jet of a
thruster might interact with the shallow water conditions. The primary tool used
in CFD simulations is OpenFOAM.

In order to achieve the goal, numerical investigations will be made towards a 2D gen-
eric hull experiencing cross-flow at different depths of water, with a control volume
underneath the hull simulating a propeller disk. Furthermore, by studying the jet
flow behind the hull, the effect of the bottom concerning the Coanda effect will be
assessed.

The flow domain is considered to be turbulent. In F. M. White and Majdalani 2006
a few different methods for computing the transitional Reynolds numbers over a
flat plate was demonstrated. By comparing different methods, namely Michel 1952,
Granville 1953, Cebeci and Smith 1974 and Wazzan et al. 1981 the final onset of
turbulent flow can be predicted, ℜex, tr, the results are displayed in table 1.1. The
predicted values are noticeably lower than equation (1.1). As this project revolves
around jet flow and otherwise displaced flow between the hull and the sea bottom,
the flows of interest are always considered turbulent due to the large velocities and
length scales involved. For example, the least turbulent flow considered will be a

1

transverse flow underneath a vessel using DP, where the characteristic length is the
vessel’s beam, assumed for typical service ships to be larger than 15 m. Current
velocity is assumed to be 1m/s, and kinematic viscosity of water, ν can be found
for simplicity in 28th ITTC 2011.

L ≥ 15m , u ≥ 1m/s → ℜe =
u · L
ν

> 107 (1.1)

Although theoretical velocity distribution of plane and three-dimensional jets exists,
these mathematical representations assume calm surroundings. The influence of, for
example, a transversal flow crossing the jet is not as easily predicted. According to
F. M. White and Majdalani 2006, higher-order CFD solvers are expected to be
able to predict the mean velocity in turbulent flows and model the turbulence to a
satisfactory degree. As found in Cutler and J. White 2001 there are limitations to
the reliability of the results, but it is undoubtedly a valuable tool concerning flow
behavior.

An important simplifaction for the CFD analysis is the rigid free surface, modeled as
a frictionless rigid wall instead of a free surface. The potential impact of free surface
waves is only considered theoretically through experiments and studies performed
and published by others, for example, Koz lowska 2019. The significant thrust loss
associated with the free surface is ventilation, which can be avoided by demanding
certain submergence of the propeller and avoiding operations in overly difficult en-
vironmental conditions. Furthermore, according to Erik Rotteveel et al. 2017, the
wave resistance is typically increased in shallow water, which is a vital aspect to
consider, meaning, although thrust loss might not occur, an increased amount of
resistance will undoubtedly require more thrust.

Considering small clearances between the keel and bottom has shown to increase the
current loads due to blockage of the flow underneath the hull. In turn, this increases
the flow velocities closer to the surface. Hence, increasing resistance and altering
the pressure distribution around the hull, as described by the experiments and CFD
simulations performed in Koop 2015. However, how this change in pressure and
velocity distribution might impact a thruster underneath the hull is unclear.

Accelerated flows tend to cling or be attracted by surrounding surfaces. In the case
of a jet flow, this clinging can lead to a displaced momentum, where entrainment
of surrounding fluid creates a low-pressure region between the surface and the jet,
enabling the flow to curve along the outside of convex geometry. This clinging effect
is often called the Coanda effect and is known to cause loss of thrust, as discussed
in Vartdal and Garen 2001. Free shear flows can be predicted in CFD, although the
interaction with solid surfaces does pose a real challenge.

This report seeks to combine previous knowledge acquired from model and CFD
experiments with some CFD experiments conducted by the author to assess the
effects that might make a difference in shallow water. The effects mentioned above
will be the subjects of interest for this report. Hopefully, combining the knowledge
of how each of these acts on the vessel performance will lead to a conclusion towards

2

how the resulting combined effects might make a difference in practice.

Table 1.1: Different transition Reynolds numbers predicted by an assortment of
methods

Method predicted ℜex, tr

Granville 1953 2.505 · 106

Michel 1952 2.525 · 106

Cebeci and Smith 1974 2.027 · 106

Wazzan et al. 1981 4.753 · 106

This thesis studies the potential thrust losses that might impact performance when
operating in shallow waters. The first topic of interest is a theoretical background
for CFD computations, explaining the background for the theory of the methods
applied later. Equally important is knowledge about the limitations of CFD. A
theoretical discussion of free shear flows is also included in order to be able to discuss
the impact of the difference between two and three-dimensional effects. After the
purely theoretical part, there is a discussion regarding the different sources of known
thrust loss, resulting in a hypothesis describing the possible interactions and how
best to test their validity in shallow water. Most of the time invested in this thesis
has gone into establishing a working CFD model.

3

CHAPTER

2

THEORETICAL BACKGROUND

This chapter is included to clarify the background of applied theory later in the
thesis. It covers the essential background for CFD, leading up to the specific methods
used. The background for the CFD theory is, to a large extent, a rewritten account
of the theoretical background covered in Holmedal 2002. The formulation of the
equations is kept the same, and the general story interpreting the equations is told
the same way. The specific portion rewritten from Holmedal 2002 is section 2.1 until
the end of section 2.2.1. The author has tried to keep the general formulation and
use of variable names as constant as possible throughout the theoretical background
chapter, as well as in later chapters to avoid confusion, as well as conform to the
wish of co-supervisor professor Holmedal that the theoretical background should be
formulated as done in Holmedal 2002.

Following the background and formulation of the methods used in the CFD experi-
ment, a short discussion of two-dimensional and three-dimensional free shear flows
is presented, mainly to serve as background for later arguments regarding the results
and validity of eventual results achieved from CFD analysis.

2.1 Reynolds Averaged Navier Stokes

Big whirls have little whirls
that feed on their velocity,
and little whirls have lesser whirls
and so on to viscosity.

–Lewis Fry Richardson

4

The ocean water, which makes out the fluid flow encountering the hull, is considered
a homogeneous, isotropic Newtonian fluid. The fluid is also assumed incompressible
with a density ρ and kinematic viscosity ν. Considering conservation of mass and
momentum (Newton’s second law), the incompressible Navier Stokes equations can
be derived. Considering zero external body forces and the absence of temperature
fields, using Cartesian coordinates with the Einstein summation convention, xi(i =
1, 2, 3) = (x, y, z) we can write the Navier Stokes equations as follows

∂ui

∂xi

= 0 (2.1)

∂ui

∂t
+

∂uiuj

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

(2.2)

In equation (2.1) and (2.2), ui(i = 1, 2, 3) = (u, v, w) signify the velocity components
in Cartesian coordinates and p is the pressure.

Since Navier Stokes equations are derived from such fundamental theory, it is gen-
erally assumed to encompass every aspect of information about the flow. However,
since the computational cost of directly solving them is substantial, simplifications
and approximations are commonly used to lessen the effort needed to find a solution.

Due to the diversity in cases of interest, most flows are turbulent. A turbulent flow is
characterized by velocity and pressure fluctuations in three dimensions. Reminiscent
of a chaotic or random system. A common way to decompose the flow is

u(xi, t) = u(xi, t) + u′(xi, t) (2.3)

p(xi, t) = p(xi, t) + p′(xi, t) (2.4)

Where the overbar signifies the mean, or average value, and the prime′ signifies the
turbulent, or fluctuating component. Ideally, the averaging should be an ensemble
average, but in experiments, the more practical time average is often used once the
turbulent flow is independent of time. By inserting equations (2.3) and (2.4) into
the Navier Stokes equations (2.1) and (2.2) yields the Reynolds averaged Navier
Stokes equations, abbreviated RANS equations

∂ui

∂xi

= 0 (2.5)

∂ui

∂t
+

∂uiuj

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

−
∂u′

iu
′
j

∂xj

(2.6)

5

Important to note in equation (2.6) is the last term, which is a single-point correl-
ation that acts as a stress on the fluid and is therefore called the Reynolds stress.
The stress is a flow property determined by the fluctuating velocity components, not
the fluid. In order to predict this term, modeling has to be applied. There are sev-
eral ways to model this term, and each particular way introduces a new turbulence
model.

2.2 Generalized eddy viscosity

The first method for modeling the Reynolds stress was made by Boussinesq 1877, as-
suming proportionality between the Reynolds stress and the mean velocity gradients
of the flow. The most common method today is the generalized eddy viscosity

−u′
iu

′
j = νT

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
kδij , k =

1

2
u′
iu

′
i (2.7)

Where δij is the Kroenecker delta function, which equals zero for j ̸= i, and one for
j = i. k is the turbulent kinetic energy.

The advantage of formulating the equation with the use of the δij function is that the
normal and transverse stresses are separated, enabling the last term in equation (2.7)
to be absorbed into the pressure term when the equation is substituted into equation
(2.6). The resulting formulation reduces the problem of turbulence modeling to the
specification of an appropriate eddy viscosity νT .

The fundamental form of the eddy viscosity used is the one assumed by Prandtl
1925

νT = lmVm (2.8)

lm is the characteristic length scale, and Vm is the velocity scale of the largest
turbulent eddies.

There are several ways to resolve the eddy viscosity; the different methods are
classified into three groups. zero-, one- and two-equation models. The zero-equation
model specifies Vm and lm from experiments or empirical formulas. A one-equation
model means a transport equation is applied to Vm, while lm is specified differently.
Lastly, a two-equation model involves transport equations for both factors. Zero-
equation models are often used for simplified versions of the Navier Stokes equations.
One and two-equation models are more often used with RANS equations.

For the first eddy viscosity distribution Prandtl 1925 used the well-known Prandtl’s
mixing length hypothesis

6

νT = l2m

∣∣∣∣∂u∂z
∣∣∣∣ (2.9)

The mixing length concept assumes that turbulent eddies interact by collisions, much
like molecules collide in a gas, making the mixing length lm comparable to the mean
free path from kinetic gas theory. The more modern view is that turbulent eddies
interact more or less continuously. Eddies can also encompass the same length or
width as the flow domain leading to the conclusion that the hypothesis is false, as
described by Mathieu and Scott 2000. It should be noted that the mixing length
models have successfully predicted many flows.

The biggest limitation of zero-equation models is that they do not account for the
transport of the turbulent length and velocity scale from equation (2.8), which would
be insufficient to describe, for example, boundary layer turbulence produced close to
the body and then diffusing outwards from the body. The diffusive and convective
transport of the velocity scale is taken into account in one-equation models, but it is
not before two-equation models are used that we see both velocity and length scales
diffusion and convection taken into account. Both Kolmogorov 1941 and Prandtl
1945 independently suggested to use the turbulence velocity scale Vm ∼

√
k, giving

us the Kolmogorov-Prandtl relation

νT = Cµ

√
klm (2.10)

Where Cµ is an empirical constant. The relation leads to new transport equations,
which can be found by manipulating the Navier Stokes equations, (2.6) to get

∂k

∂t
+ uj

∂k

∂xj

= Dk + Pk − ε (2.11)

where the diffusion Dk, the production Pk and the dissipation ε of turbulent kinetic
energy is specified in equations (2.12), (2.13) and (2.14) respectively

Dk = − ∂

∂xj

(
u′
i

(
p′

ρ
+ k

))
+ ν

∂

∂xi

(
u′
j

(
∂u′

i

∂xj

+
∂u′

j

∂xi

))
(2.12)

Pk = −u′
iu

′
j

∂ui

∂xj

(2.13)

ε = ν

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
(2.14)

7

Each of these equations has to be modeled, utilizing the concept of eddy viscosity
shown in equation (2.7), as well as the averaged version of Poisson’s equation for
incompressible fluids in equation (2.5). Resulting in the modeled production term

Pk = νT

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

(2.15)

The diffusion term is treated a little differently, especially for higher Reynolds num-
bers, where the last term in equation (2.12) is often assumed negligible. The tur-
bulent transport is assumed to be proportional to the gradient of k. Moreover, the
proportionality constant is also assumed to be proportional to the eddy viscosity.
Resulting in the modeled diffusion term

Dk =
∂

∂xj

(
νT
σk

∂k

∂xj

)
(2.16)

Where σk is an empirical constant.

The poem shown at the beginning of this chapter may best exemplify the dissipation
term. The dissipation is constantly positive, meaning that turbulent kinetic energy
is at all times deteriorating from the largest whirls or eddies down to such small
eddies that the viscosity, which is negligible for large eddies, becomes the dominant
factor. All turbulent energy is, in the end, dissipated into heat. Using dimensional

analysis as discussed in Tennekes et al. 1972, we have ε ∼ V 3
m

lm
, using Vm ∼

√
k, the

modeled dissipation becomes

ε = Cdi
k

3
2

lm
(2.17)

Where Cdi is an empirical constant.

Substituting equation (2.15), (2.16) and (2.17) into equation (2.11), we get the
modeled turbulent transport equation

∂k

∂t
+ uj

∂k

∂xj

=
∂

∂xj

(
νT
σk

∂k

∂xj

)
+ νT

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

− Cdi
k

3
2

lm
(2.18)

A characteristic length lm must still be specified, depending on the flow. In ad-
dition, Cµ and Cdi need to be determined from experiments. Even though these
constants also depend on the flow, for engineering purposes, most reference values
are determined from experiments of steady flow over a flat plate, which is a trade-off
that enables an easier way to assess the method’s robustness.

8

2.2.1 k − ε model

By specifying a set characteristic length, as earlier discussed in chapter 2.2, a one-
equation method is chosen. Which is considered to be less realistic than a two-
equation method. When a two equation method is utilized, a transport equation
for kalbm is used, not a transport equation for lm by itself, where the constants a
and b are decided through dimensional analysis. Using equation (2.17) and equation
(2.10) we get another relation for the eddy viscosity

νT = CdiCµ
k2

ε
≡ c1

k2

ε
(2.19)

The transport equation for the dissipation ε can, similarly to the turbulent kinetic
energy transport equation, be deduced from the RANS equations (2.6), as done in
Harlow and Nakayama 1967. However, it is subject to heavy modeling, as discussed
in Ueda and Hinze 1975. The most common form of the high Reynolds number k-ε
model is

∂ε

∂xj

+ uj
∂ε

∂xj

=
∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ c1ε

ε

k
νT

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

− c2ε
ε

k
(2.20)

Both equation (2.18) and equation (2.20) must be solved simultaneously with the
RANS equations. Important to note is the five constants that need to be determined
from experiments.

{
c1 σk σε c1ε c2ε

}
The flow will still influence the appropriate initial values for k and ε. Near solid
walls, wall functions are used to approximate the boundary layer with a logarithmic
velocity profile (in the direction that’s normal to the wall), as well as demand equi-
librium between production and dissipation of turbulent kinetic energy.

2.2.2 k − ω model

According to F. M. White and Majdalani 2006, The k-ε model predicts the mean
velocity, growth rate, and shear stress moderately well and are only fair to poor
for the turbulence components. In order to avoid those shortcomings Wilcox 1988
created another model, called the k-ω model. It is a two-equation model, just like the
k-ε model, but instead of using the transport equation for ε, the specific dissipation
ω is given the transport equation

∂ω

∂t
+ uj

∂ω

∂xj

= α
ω

k
τij

∂ui

∂xj

− βω2 +
∂

∂xj

[
(ν + σωνT)

∂ω

∂xj

]
(2.21)

9

τij = νT

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
− 2

3
kδij (2.22)

Involving a new set of constants that needs to be validated through experiments

{
α β β∗ σω σ∗

ω ε
}

More of a physical interpretation of the specific turbulent dissipation ω might be
that it is the ratio of the turbulent dissipation rate ε to the turbulent mixing energy.
In other words, ω is the rate of turbulence dissipation per unit of energy.

2.2.3 SST k − ω model

The shear stress transport (SST) formulation, proposed by Florian R. Menter 1993
and improved for engineering purposes by Florian R Menter 1994, attempts to com-
bine the best of two worlds regarding the weaknesses mentioned at the beginning of
section 2.2.2. First, using a k − ω formulation in the inner parts of the boundary
layer could enable a higher accuracy down to the wall through the viscous sub-layer,
avoiding extra damping functions. The SST formulation then switches to a k − ε
behavior in the free stream region, which is advantageous since the k − ω model is
susceptible to the inlet free-stream turbulence properties.

Following the reasoning from Florian R Menter 1994, the k − ω model does not
involve damping functions and allows simple Dirichlet boundary conditions to be
specified. Due to its simplicity, the k−ω model is superior to other models, especially
concerning numerical stability. Furthermore, it is as accurate as any other model
in predicting the mean flow profiles. However, the k − ω model cannot predict the
asymptotic behavior of the turbulence as it approaches the wall, and it does not
accurately represent the k and ε distribution.

Conclusively, Florian R Menter 1994 argues that in the sublayer and the logarithmic
part of the boundary layer, the k − ω model is superior to the k − ε model in
equilibrium adverse pressure gradient flows and incompressible flows. Therefore, in
the wake region of the boundary layer, the k−ω model is abandoned in favor of the
k − ε model.

In order to achieve the desired features, the k− ε model is transformed into a k−ω
formulation and then multiplied with a blending function, equation (2.23), and
added to the original k−ω model multiplied with F1. The blending function is then
created so that the value of F1 equals 1 in the sublayer and parts of the logarithmic
region of the boundary layer. Followed by a gradual decrease to 0 towards the wake
region. Lastly, the definition of the eddy viscosity is modified to account for the
transport of the principal turbulent shear stress

10

ϕ = F1ϕ1︸︷︷︸
k−ω

+ (1 − F1)ϕ2︸ ︷︷ ︸
k−ε

(2.23)

ϕ represents the constants from each set combined, ϕ1 constants of the incorporated
k − ω method, and ϕ2 the constants of the manipulated k − ε method.

The transport equation for the turbulent kinetic energy (2.18) and specific dissipa-
tion are therefore modeled a little differently from both 2.2.1 and 2.2.2

∂k

∂t
+ uj

∂k

∂xj

= τij
∂ui

∂xj

− β∗ωk +
∂

∂xj

(
(ν + σkνT)

∂k

∂xj

)
(2.24)

∂ω

∂t
+ uj

∂ω

∂xj

=
γ

ρνT
τij

∂ui

∂xj

− βω2 +
∂

∂xj

[
(ν + σωνT)

∂ω

∂xj

]
+ 2 (1 − F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj

(2.25)

Where

τij = νT

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
− 2

3
kδij (2.26)

The definition of the eddy viscosity is defined as

νT =
a1k

max
(
a1ω ωF2

) , F2 = tanh

((
max

(
2
√
k

0.09ωy
500ν
y2ω

))2)
(2.27)

where Florian R Menter 1994 has suggested an optimized value for each constant,
see tables 2.1 and 2.2. These values are found mainly by comparing direct numerical
simulation (DNS) results to that of the model, but at the same time also state that
adding small changes to the constants can lead to significant improvement or deteri-
oration of the model predictions. None of the available empirical tools, including
DNS, can provide constants to that degree of accuracy. The only way to establish
the validity is to carefully test the resulting model against several challenging and
well-documented research flows. Even this is hard, as it is unclear if improvements
in one type of flow, for example, boundary layer flow, might lead to deterioration of
results for other types of flows, like free shear flow.

Table 2.1: Constants of incorporated k − ω model

Constant σk1 σω1 β1 a1 β∗ κ γ1
Value 0.85 0.5 0.075 0.32 0.09 0.41 β1

β∗ − σω1
κ2
√
β∗

11

Table 2.2: Constants of incorporated k − ε model

Constant σk2 σω2 β2 β∗ κ γ2
Value 1.0 0.856 0.0828 0.09 0.41 β2

β∗ − σω2
κ2
√
β∗

As a more pointed remark towards the work described in chapter 4, according to
Florian R Menter 1992, it has been shown that the eddy viscosity in boundary and
free shear layers can change by more than 100% by simply reducing the value of ω
that is applied at the inlet, while also showing that the k − ε model does not suffer
from the same deficiency. According to Florian R Menter 1994 there does not seem
to be a model that accurately predicts the free shear flows, so the k−ε model seems
to be a fair compromise.

2.3 Jet flow

For this part of the theory chapter, the RANS equations (2.6) are no longer con-
sidered. Therefore the notation will change a little, even though the velocities dis-
cussed are arguably the same. However, the velocities used from here on out will be
the instantaneous velocity, i.e., following the same form as the regular NS equations
(2.2).

2.3.1 Plane jet

The following theoretical considerations are mainly collected from F. M. White and
Majdalani 2006. Most steps between assumptions and results will be omitted to
avoid a lengthy and elaborate derivation. In figure 2.1 there is a depiction of how
the initial formation of a 2D jet is formed. In theoretical considerations, it is the
self-preserving region that is considered.

12

Potential
core

Developing

flow

Self-
preserving

flow

Mixing

layers

bJ

Figure 2.1: Early development of a turbulent jet, copy of a figure found in F. M.
White and Majdalani 2006

The potential core represents an area where the jet issues at a nearly flat, fully
developed, turbulent velocity. As the jet emerges, mixing layers of both still ambient
flow and the nearly inviscid potential core form at the edge of the source. These
mixing layers increase in size until approximately one diameter length downstream
is reached. Further downstream, the potential core has vanished, and the velocity
profile assumes the ”typical” jet velocity profile. Eventually, at around 20 diameters
downstream, the velocity profile achieves and maintains a self-preserving shape.
Which can be formulated with a flow-dependent function f , as in equation (2.28).
Important to note here is that the velocity profiles at two different locations have
the same momentum but not the same mass flow because of entrainment of the
surrounding fluid.

u

Umax

≃ f

(
y

bJ

)
(2.28)

The central assumption for the self-similar region is that the centerline velocity and
jet width should only depend upon jet momentum, density, and distance. Not upon
molecular viscosity due to the absence of walls. Since there is no pressure gradient,
the jet momentum QJ must remain constant at each cross-section. By dimensional
analysis, the width can only have a linear growth.

QJ =

∫ ∞

−∞
ρu2dA = C ∨ = CρbJu

2
max (2.29)

C represents an arbitrary constant.

13

The maximum flow velocity and jet half-width are functions of the distance from
the source in the flow direction, momentum, and density. By dimensional analysis,
the plane jet can only experience linear growth, that is, regardless of the Reynolds
number

bJ = Cx , umax = C

(
J

ρ

) 1
2

x− 1
2 (2.30)

There are different ways to derive the jet half-width and deterioration of velocity.
In F. M. White and Majdalani 2006 the forms of the maximum flow velocity and bJ
are used to solve turbulent boundary layer continuity and momentum relations, i.e.
equation (2.5) and (2.6) for two dimensions. The resulting half-angle is calculated
to 13◦.

bJ
x

= tan (13◦) (2.31)

2.3.2 Circular jet

The analysis for the circular jet is quite similar to the plane jet. However, the
deterioration of the velocity and the boundary condition for axisymmetric jets look
a little different. These results are also found in F. M. White and Majdalani 2006.
The velocity profile is again formulated by using the maximum flow velocity

QJ =

∫ ∞

−∞
ρu2dA = C ∨ = Cρb2Ju

2
max (2.32)

bJ = Cx , umax = C

(
J

ρ

) 1
2

x−1 (2.33)

The resulting form is similar to the laminar jet, although some discrepancies in the
outer regions exist, quite possibly due to the intermittency of turbulence. Because of
the long time it takes for the turbulence components to develop, the jet cannot reach
the self-preserving region before 50 ≥ x

D
≥ 70. Along the centerline, the maximum

velocity decreases as if the flow began from a virtual origin seven diameters ahead of
the source. That would result in a nozzle exit angle of 4◦. The basis for these results
is a comparison of the results of Wygnanski and Fiedler 1969 with calculations of
F. M. White and Majdalani 2006.

14

CHAPTER

3

KNOWN SOURCES OF THRUST LOSS

Dynamic positioning has been increasing in importance for different types of marine
operations. Different kinds of propulsors are used, and the characteristics of the
propulsors are usually known only for the open water case. An important aspect
to consider, especially regarding dynamic positioning, are environmental and inter-
action effects, which might affect the characteristics known from the open water
case.

3.1 Ventilation

As described in Kozlowska and Steen 2017, a ship propeller, performing under a
significant loading condition, might develop unsteady line vortex cavitation between
the propeller tip and the hull, known to cause significant vibrations and noise near
the stern of the ship. In addition, a vortex might form between the propeller and
the free surface if the propeller is situated with low submergence. Through such
a vortex, air can be drawn down into the propeller, resulting in ventilation of the
propeller. Typically this scenario occurs for propellers subjected to high loading
conditions, with limited submergence, and subjected to large relative motions due
to heavy seas.

Propeller ventilation depends primarily on submergence, propeller loading, and for-
ward speed, as concluded in Koz lowska 2019. A closely related cause of severe thrust
loss is the emergence of the propeller.

The phenomena can be categorized through three zones, following the description
by Koushan 2004, sub-critical, critical, and super-critical. The dependence is illus-
trated by the thrust and torque over the advance coefficient, J in figure 3.1. The

15

advance coefficient is defined in equation (3.1). Thrust reduction becomes a time-
dependent function of relative motion, wave direction, and propeller loading. The
figure shows a hysteresis for the critical zone, depending on which direction the pro-
peller is evolving. If the propeller moves from sub-critical to critical, the ventilation
phenomenon is delayed while the thrust is increased. In the other case, the propeller
evolves from fully developed ventilation in the super-critical zone and reasserts into
the critical zone. The critical advance coefficient becomes higher, resulting in lower
thrust.

J

KT
KQ

Super critical Critical Sub critical

Figure 3.1: Schematic presentation of different ventilation zones, Koushan 2004

J =
u

nD
(3.1)

Where n is RPS and dp is the propeller diameter.

From the extensive tests, considering different immersion ratios and rate of revolu-
tions, performed by Shiba 1953. It was found that the effect of the Weber number,
equation 3.2, becomes insignificant for a Weber number over 180

We = nDp

√
ρ

S
Dp (3.2)

S is the fluid surface tension.

Seeing as most propellers operate at a Weber number much larger than 180, this
might not be as useful. For example, a propeller with a diameter of 2.5 m running
at 120 RPM will have a Weber number of around 924. Therefore the Weber number
effect might be ignored for practical purposes regarding full-scale vessels considered
in this project.

Considering some of the experiments presented in Kozlowska and Steen 2017, it was
found that ventilation does not occur for bollard condition J = 0, when the propeller

submergence
(

hp

Rp

)
is larger than 3.4. Where hp is the distance from the propeller

16

axis to the surface, and Rp is the propeller radius. Plotted for different diameters
in figure 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4

Propeller diameter, D
p

0

1

2

3

4

5

6

7

P
ro

p
e

lle
r

d
e

p
th

,
h

p

Figure 3.2: The limit for ventilation at bollard condition, for n = 16Hz, from
Kozlowska and Steen 2017

3.2 Thruster to thruster interaction

In Lehn 1985, it is argued that for a propeller operating behind another propeller, a
considerable amount of thrust is forfeit if the thruster in front directs the propeller
race towards the hindmost propeller. It also causes a loss of torque, which is a
source of problems with regards to systems that control the RPM. The worst case
scenario is the so-called tandem configuration, i.e. the propellers are mounted in
front of each other. This implies a larger advance coefficient, and as can be seen
from figure 3.1 a loss of thrust can indeed be expected. Intuitively an increase in
incoming flow to the propeller, wrt. J , equation (3.1), can be compensated for by
a higher number of revolutions per second. An obvious problem arises of course for
very high velocity in the incoming flow.

From experimental results, achieved by Lehn 1985, it was found that at a distance
of 5 · dp from the foremost to hindmost propeller in tandem configuration, an ap-
proximate 50% of the thrust is lost in bollard condition. It was also found that at
a distance of 6 · dp, there was no loss of thrust, if the hindmost propeller was direc-
ted at a 15◦ angle to the incoming propeller race. At 3 · dp distance, the hindmost
propeller had to be directed at an angle between 25◦ − 30◦ in order to avoid thrust
loss.

In Koushan 2004 it is recommended to make serious evaluation of propulsion units
placement relative to each other and operational limits wrt. the direction of the
propeller races, in order to avoid the interaction between a propeller race and another
propeller. The penalty is not just with regards to the available force, but the overall
efficiency of the propeller as well. In the end, this is an important problem to
consider at the time of design and placement of the propellers, not after the vessel

17

is fully seaborne. It is also an independent effect from the WD

T
ratio.

3.3 The influence of current

According to Lehn 1985 the largest contribution from interaction losses occur for
thruster to thruster interactions, or when a propeller race impedes onto parts of the
hull. The propeller race can in this regard be compared to a very speedy current or
an obstacle that that the jet interacts with. Since currents rarely, if at all achieves
speeds comparable to that of a propeller race, the increase in advance coefficient can
most likely be compensated for by an increase in RPM. What remains with regards
to current interaction is a potential deflection of the propeller race, which therefore
is important to consider.

As argued by Lehn 1985, the propeller race can be diverted by 2◦ − 4◦ in vertical
direction when encountering a pontoon. Depending on the velocity and direction of
the current, a similar result could be achieved with the right parameters. However,
the influence is unique for every heading and velocity.

Another angle to consider is the bottom boundary layer at sea, which is very difficult
to measure, not at all a controlled environment. From Johns 1983,

Nevertheless, as far as can be judged, the boundary layer beneath tidal and other
currents on the continental shelf appears to exhibit many similarities with boundary
layers in the atmosphere and the laboratory. However, it would be presumptuous to
suppose that every facet of the marine boundary layer is an identical analogue to
those found in better known boundary layers.

An important difference from typical lab conditions is the so called bursting phe-
nomenon, which describes an event where series of turbulent fluctuations contain
more energy than the average flow turbulence. Despite considerable research into
the bursting phenomenon, a practical and usable method that incorporates the pro-
cesses involved into a theoretical framework for the bottom boundary layer does not
exist, as stated in Johns 1983. For the present work, this implies a certain uncer-
tainty for the exact WD

T
ratio involving interactions between the bottom boundary

layer, propeller jet and hull.

3.4 Increased resistance in shallow waters

Similarily explained as in Amdahl et al. 2015, where an analogy for a vessel moving
in deep water is used to explain how the hull is able to produce the waves that result
in wave resistance. The analogy is a body floating on the surface, and instead of
moving with a forward velocity, a current or flow is encountering and moving past
the hull. The displacement of the hull alter the movement of the water particles,
displacing their movement to the side and below the hull.

Near the bow the flow is retarded due to the encounter with the hull, although this

18

intuitively indicates an increase in pressure, the pressure at the surface (atmospheric
pressure) remains constant, according to Bernoullis1 equation (3.3), the only possible
compensation for a lower velocity is an increase in elevation z. Indicating a wave
crest near the bow. The volume displacement influences the velocity along the hull,
forcing the flow outwards, effectively increasing the velocity which then indicates a
decrease in elevation or a wave trough. In reality waves are formed all along the
hull, but they become ”visible” only where there are changes in the curvature of the
hull.

ρ

2
u2 + ρgz + p = constant (3.3)

Where z is the vertical distance from the calm water surface.

According to Rotteveel and Hekkenberg 2015 the increase of ship resistance in shal-
low water can be divided into two parts. The increase in wave resistance and ad-
ditional resistance related to blockage of the flow underneath the hull. In Koop
2015 the blockage effect was investigated by the use of both CFD and experiments.
For shallow water, and incoming current from a heading between 40◦ − 130◦ the
resistance was found to increase by 30%−50%. However, these experiments utilized
basin side walls, meaning the fluid had very little available space when encountering
the hull. For deeper water, and basin side walls, the increase was found to be less
than 5%.

An interesting find, with regards to the blockage effect from Koop 2015, was the
difference between towing and current experiments. The boundary layer present for
the current case seems to increase the blockage of the flow, resulting in 10% increase
in resistance. Since all of these experiments were conducted with basin side walls,
the implications for shallow water without the presence of side walls become much
less specific. Regardless, an argument can be made for the importance of increased
resistance, not only decrease in thrust.

3.5 Interactions related to the Coanda effect

Due to entrainment of the surrounding fluid in a free shear flow, as discussed in
section 2.3.1 the velocity of the surrounding fluid around the jet is accelerated.
When a surface of some kind happens to be in the vicinity of a free shear flow,
or jet, the larger velocities decrease the pressure between the surface and the jet,
pulling on the flow. This phenomenon is often described as a tendency to cling to
surrounding surfaces, and called the Coanda effect. The consequence of clinging to
e.g. the surface of the hull could be deflection of the jet, and in some cases include
impingement on parts of the hull.

The coanda effect is just as particularly flow dependent as currents are in 3.3. And
the effects therefore vary in character. If the flow clings to the hull in a way that

1For incompressible flow along a streamline

19

results in impingement on the hull, the thrust loss could potentially be dramatic.
However, that is very avoidable through design considerations. From Lehn 1985 it
is found that the simple redirection of mass flow, caused by propeller jet clinging to
the hull can cause around 5% thrust loss.

20

CHAPTER

4

COMPUTATIONAL FLUID DYNAMICS
EXPERIMENT

At this stage in the project, a hypothesis has had the time to develop and be
formulated, motivating a strategy for testing, ideally generating results that either
support or oppose the statement: thruster, hull, and bottom interactions in shallow
water causes thrust loss. The primary sources of thrust loss are ventilation, thruster-
to-thruster, thruster-to-current, and thruster-to-hull interactions. The thruster-to-
hull interactions involve various types, like additional frictional loss, impingement
on the hull surface, and Coanda effect losses.

Firstly the issue of ventilation is detrimental but assumed not to be typical for
shallow waters. As shortly discussed in Erik Rotteveel et al. 2017 regarding the
design of a ship stern, measures are taken to prevent ventilation at the small draft,
which occurs in case the ship is empty, partially loaded, or if the ship cannot be
fully loaded due to limited water depth. For service vessels, which plan to operate
at a certain depth, a minimum draft should be an acceptable solution to avoid the
ventilation unless rough seas intervene. At which point service operations should be
postponed. Therefore ventilation is not considered part of the scope of this thesis.

Thruster-to-thruster interactions can be pretty severe. As discussed in 3.2, dur-
ing critical conditions, thruster-to-thruster interaction could be catastrophic but
is avoidable through automated systems and clever design. These effects are also
considered not particularly typical for shallow waters since they can occur anywhere.

However, the Coanda effect needs surfaces for the interaction to occur. Since shallow
waters introduce a new surface to the flow domain, the implication for the Coanda
effect is an exciting topic to explore.

The computational fluid dynamics (CFD) experiment attempts to simulate the jet’s

21

behavior ahead and behind the thruster. In order to derive a relatively generic
model, both for the thruster and the hull, actual ship dimensions have been used
to derive a scaled-down generic version with fitting dimensions. The ship chosen is
shown in figure A.1, and the propeller used as a model is seen in table A.1. The
main particulars of the hull can be seen in table 4.1, while data regarding the domain
surrounding the hull is found in table 4.2.

Table 4.1: Example ship main dimensions

Length over all LOA 82.0 m
Length between perpendiculars LPP 72.1 m
Breadth B 18.0 m
Draft T 5.0 m
Propeller diameter dp 2.5 m

Table 4.2: Flow domain characteristics

Transverse current velocity U∞ 1.0 m/s
Turbulence intensity I 2 %
Scale ratio C 1 : 20 [−]

4.1 Experimental setup for 2D simulation

A discretization scheme is put in place, first involving the domain’s meshing. Con-
ceptually, see figure 4.1, the domain will consist of a generic hull cross-section, with
a propeller disk situated right underneath with a forced amount of volume flow en-
tering and exiting. In 2D, the disk will essentially be a small box. A current will
be forced to enter through an inlet, and the same amount of fluid will have to exit
at an outlet. The top or surface of the domain would ideally be a free surface but
will instead be modeled as a slip-wall boundary for the flow since the goal will be to
study the interactions underneath the hull. The hull and bottom will be modeled
as walls, generating a boundary layer demonstrating how the flow interacts with the
two surfaces at different levels of depth.

hullinlet

bottom

propeller

top

outlet

y

z

x

Figure 4.1: Conceptual drawing of the domain for numerical experiment

The hull and bottom boundary will be modeled as a solid wall. The specific func-
tions and restrictions used are discussed in the following section about boundary

22

conditions; 4.3. The thing that sets the characterization of a wall in CFD apart is
the so-called wall functions. They represent the means to approximate the flow in
the viscous sub-layer as described near the end of 2.2. From Murad 2022, the wall
functions all rely on the universal law of the wall, first formulated by Von Kármán
1931. Which in essence states that sufficiently close to a wall, nearly all turbulent
flows have similar velocity profiles. The most common parameter to define the valid
region for a wall function is the y-plus value, y+; see equation (4.1). The equation
is comparable in form to a ℜe number for the boundary layer itself. Both Professor
Lars Erik Holmedal and Murad 2022 suggests a 30 > y+ > 300.

y+ =
yuτ

ν
, uτ =

√
τw
ρ
, τw = ρν

(
du

dy

)
y=0

(4.1)

In this particular instance, y is the distance away from the wall, not as defined in
figure 4.1. uτ is the frictional velocity, and τw is the wall shear stress.

The big drawback with wall functions is the loss of flexibility. The wall functions
themselves are optimized from experiments based on flat plates. For similar reasons,
as mentioned in the discussion below, equation (2.18) simplifies the method’s general
use when standardized constants are used. Considering figure 4.2, the wall functions,
when applied correctly, can provide excellent results. Unfortunately, the velocity
profile looks quite different when, for example, an adverse pressure gradient is acting
on the flow or if the boundary layer contains backflow for some other reason.

23

Figure 4.2: A conceptual plot of the velocity profile along a wall, along with the
plotted wall functions when applied correctly; created by user Aokomoriuta 2022

The y+ value can only be obtained upon completion of the analysis and can therefore
often be a source of lost computing time, as discussed later in 6.

The inlet, outlet, and propeller are modeled as sinks and sources. To read about the
specific functions used on the boundaries, a more detailed discussion is found in 4.3.
An essential characteristic of a control volume in a CFD analysis is that the flow
obeys the conservation laws; in essence, the same amount of flow that enters the
domain must also exit. Regarding the flow parameters, it is not common practice
to alter the Reynolds number by changing the incoming flow velocity; instead, the
more common way is to change the kinematic viscosity of the flow. This way, the
incoming flow velocity can remain 1m/s for all desired Reynolds numbers. This
way, the desired Reynolds number is found from equation (1.1), and the kinematic
viscosity used in the analyses become

νCFD =
u ·B · scaleRatio

ℜe
= 6.802 · 10−8m2/s (4.2)

νCFD is the applied kinematic viscosity used in the analyses, and B is the beam or
breadth of the hull.

The total amount of fluid can also be necessary to consider, in this case, essential for
the propeller disk. The propeller is modeled after a real propeller as a control volume.

24

The chosen model can be found marked in red in table A.1. As an appropriate
scenario, one thruster performs at 80% bollard condition, BP. Meaning the mass
flow through the propeller in full scale is

ṁS =
BP

2 · nthrusters

· 0.8 (4.3)

Where ṁS is the mass flow through the propeller in full scale, and nthruster is the
number of thrusters.

In order to find an approximate propeller flow velocity, the mass flow, equation (4.3),
is divided by the area of the propeller disk and the density

uS =
ṁS

π
d2

4
· ρ

(4.4)

d is the diameter of the propeller chosen as a model in full scale

The Froude number, equation (4.6) is a dimensionless relation that can be used to
relate similarity for all inertial forces at different scales. The process of adapting
the velocities is called Froude scaling, and in equation (4.5) the velocity is adapted
to the model size.

uM = uS ·
√
scaleRatio (4.5)

Fn =
u√
gL

(4.6)

The volume and mass flow rate becomes

uM · π (d · scaleRatio)2

4

{
·1 = V̇M

·ρ = ṁM
(4.7)

It does not matter which, but one of these values is then used as a boundary condition
for the control volume used to simulate the propeller, where an equal amount of flow
volume has to enter and leave the control volume per unit of time.

4.2 Numerical solver

The program used to resolve the flow system is OpenFOAM, which is free and open-
source software released under the GNU General Public License. It is a C++ toolbox
created for developing customized numerical solvers and pre-/post-processing util-
ities to solve continuum mechanics problems. In order to visualize the results, a

25

program called ParaView has been used, which is an open-source multiple-platform
application for interactive, scientific visualization.

As a solver, the initial choice was PimpleFOAM, a transient solver, meaning it takes
time dependence into account and solves the equations for each time step. Postdoc-
toral Fellow Jianxun Zhu recommended the solver due to uncertainty regarding
vortex shedding. However, large velocities are present in the analysis, which might
hinder the development of vortex shedding. Therefore, a transient solver is picked to
check if the analysis produces any vortex shedding, which calculates all coefficients
for each volume for every timestep. These solvers require more time to compute
but provide a more realistic simulation if the flow changes over time, for example,
experience cyclic changes like that of vortex shedding.

Another solver is chosen if no vortex shedding is apparent from these simulations.
Namely SimpleFOAM, which is a steady-state solver. It calculates the steady-state
solution for each timestep, which results in much faster computations.

SimpleFOAM uses a so-called segregated solution strategy, meaning the velocity field,
pressure field, and the variables characterizing the turbulence are solved sequentially.
The solution of the preceding equations is then inserted into the following equation.
The algorithm starts by approximating a velocity field from the momentum equa-
tion. The velocity field is likely not divergence-free, meaning it does not satisfy the
continuity equation. Therefore the momentum and continuity equations are used to
construct an equation for the pressure. Then it generates a pressure field, which,
if inserted into the momentum equation, delivers a divergence-free velocity field.
After correcting the velocity field, the equations for turbulence are solved. The
above iterative solution procedure is repeated until convergence. 1

As a general method, the applied model is described in 2.2.3. The SST k−ω model
has been chosen first and foremost due to recommendations from co-supervisor Pro-
fessor Holmedal, but also due to online statements on forums where people with more
experience than the author write down their opinion of the perceived performance
of each model.

Authors who use the SST k−ω model often merit it for its good behavior in adverse
pressure gradients and separating flow 2

The method’s appeal is mainly based on the combination of k−ε and k−ω models.
By using the strengths of each model for different parts of the domain, a better result
is most likely achieved than using a full-fledged model of either variant. The result
depends on the flow in question, and even though k − ε supposedly outperforms
the k − ω model for free shear flows, the hull is a blunt body that the flow has
to encounter, where the k − ω model outperforms the k − ε model. Therefore the
choice seems clear-cut, given the minimal presentation of methods described in this
thesis. Other methods do exist, although there are certain drawbacks to all of them.
For example, the ideal solution would be to use direct numerical simulation, DNS,
where the governing equations, i.e., equation (2.2), are solved numerically, without
turbulence modeling; this implies that the whole range of the energy cascade, i.e.,

1Found on OpenFOAMWiki
2Found on CFD wiki

26

https://openfoamwiki.net/index.php/SimpleFoam
https://www.cfd-online.com/Wiki/SST_k-omega_model

all of the spatial and temporal scales, needs to be resolved. In other words, by
utilizing discretization only, the mesh must contain small enough volumes and be
resolved over small enough time steps to resolve the behavior of the smallest eddies
where dissipation from kinetic energy to heat occurs. The method also requires
the computational power to cover a large enough grid to encompass the largest
eddies, where most of the turbulent kinetic energy exists. This method is very
demanding computationally and, essentially for the scale within the scope of this
project, impossible to compute due to the lack of computational resources.

4.3 Boundary conditions

The boundary conditions are given for all necessary components of the numerical
solver, meaning k, νT , ω, p and u. The conditions have to be imposed on every single
surface bordering the domain. For a general overview of the conditions imposed, see
tables 4.3 and 4.4.

The inlet is given a simple and constant entry velocity, uniform across the depth.
The inlet is also given the property of introducing turbulence to the flow entering the
domain. From Tian et al. 2013 expressions for the two initial conditions that have
to be specified can be found in equation (4.8), with a chosen turbulence intensity I.
The turbulence intensity used can be found in table 4.2.

kinlet = 1.5 (u∞I)2 , ωinlet =

√
kinlet

C0.25
µ · 0.07L

(4.8)

As an initial condition, the values extracted from equation (4.8) are also applied
to the internal field, which in OpenFOAM indicates the entire volume inside the
domain that is not specified as anything but a patch of volume, i.e. all volume
except the propeller and hull.

For the top, or surface boundary, which in this project is kept static needs to be
modeled as a barrier, but without the boundary layer near the surface. Therefore
the top boundary is given a slip condition, meaning it does not affect the velocities
close to the surface.

The bottom and hull boundaries are modeled identically. As described in 2.2.3, the
model is able to simulate the flow all the way down to the boundary, the purely
modeled part, based on experiments are the wall-functions used to determine the
flow dependent coefficients, like k, νT and ω.

27

Table 4.3: Boundary types

Boundary type

inlet patch

top patch

hull wall

outlet patch

bottom wall

propInlet patch

propOutlet patch

propTopAndBottom patch

frontAndBack empty

• The patch class is a basic condition that contains no geometric or topological
information about the mesh.

• The wall class defines the border similarily as a patch, but defines a distance
from the wall of the cell centers next to the wall, so that the cells are stored
as part of the patch, not the wall. Also needed for the use of wall functions in
turbulence modeling.

• The empty class defines which directions where no flow occurs for 2D or 1D
flow. OpenFOAM always generates geometries in 3 dimensions, but it can be
used to solve in 2 (or 1) dimensions by specifying a special empty condition on
each patch whose plane is normal to the 3rd (and 2nd) dimension for which
no solution is required.

Table 4.4: Initial conditions

Boundary k νT ω p u
inlet fV calc fV zG fV

top zG zG zG zG zG

hull wF wF wF zG nS

outlet zG calc zG fV zG

bottom wF wF wF zG nS

propInlet zG zG zG zG fR

propOutlet zG zG zG zG fR

propTopAndBottom zG zG zG zG s

frontAndBack empty empty empty empty empty

fV fixedValue: This boundary condition assignes a fixed value constraint through-
out the simulation.

calc calculated: This boundary condition is not designed to be evaluated; it is
assmued that the value is assigned via field assignment

zG zeroGradient: This boundary condition applies a zero-gradient condition
from the patch internal field onto the patch faces

28

wF wallFunction: There are different wall functions for each flow property.

kqRWallFunction: This boundary condition provides a simple wrapper
around the zero-gradient condition, which is used for the turbulent kinetic
energy k

nutUSpaldingWallFunction: This boundary condition provides a wall
constraint on the turbulent viscosity, νT , based on velocity

omegaWallFunction: This boundary condition provides a wall constraint
on the specific dissipation rate, ω

nS noSlip: This boundary condition fixes the velocity to zero at walls

s slip: This boundary condition provides a slip constraint

fR flowRateInletVelocity: This boundary condition specifies a volumetric or
mass flow rate

empty This boundary condition provides an ”empty” condition for reduced dimen-
sions cases

4.4 Mesh sizes

In order to determine the most fitting mesh size distribution, a mesh convergence
study is performed. In order to determine the convergence, an arbitrary coefficient
calculated by the algorithm is compared for each mesh refinement. The meshes are
characterized by the smallest cell length in spanwise direction. The smallest cell
side-wall lengths are shown in table 4.5.

patch

Meshing-lines

Figure 4.3: Some named properties to avoid confusion

The mesh sizes are scaled evenly, increasing the number of cells or volumes used
gradually. They can be categorized through the smallest cell side-wall, or by the
number of cells. The meshing is based on the smallest cell side-wall length, which
are used around the hull. The meshing-lines make out the boundaries of each patch
of volume and cells, the ends have to be located at the outer boundaries. Essen-
tially stretching from boundary to boundary. This implies some limitations, with
regards to the cell sizes in different regions. Two patches that share a border, must
necessarily also share a mesh refinement in the normal direction to that border. To
view a visual representation of the mesh patches and lines, see figure 4.3.

29

Each meshing line have to cross from one boundary to another, and due to a desire
to mesh the immediate area around the hull as accurately as possible, the mesh cell
sizes are set to different values throughout the mesh. The cells nearest the hull are
defined by having the ”finest”, or smallest cell length of the mesh. Some mesh lines
are also given the attribute that each consecutive cell length, away from the hull is
enlarged a little in size. This stepwise scaling is termed the expansion ratio, rexp.
The meshing lines given an expansion ratio, and what the ratio is, becomes more
apparent in figure 4.4.

For clarity, the arrows symbolize the direction of the meshing lines, the density of
the lines are determined at the boundaries, and are different for each color. The blue
arrows indicate the meshing lines placed perpendicular to the hull surface, these lines
have the highest density, with equally distributed lines. The red arrows indicate the
meshing lines oriented parallel to the hull surface. They start with the same density
as the blue lines near the hull, and expands gradually outwards. The expansion is
also constant across the borders of the patches. Notice that the expansion is in a
perpendicular direction to the arrows. For the red arrows, meaning expansion in
the direction away from the hull. The green arrows indicate the outer regions of the
domain, from top to bottom along the inlet and outlet. The mesh density here is
determined by matching the spacing for the outermost region of the red arrows, and
quite a bit larger expansion ratio. This way the computational power is focused on
the hull and propeller. The last set of meshing lines are represented by the cyan
arrow. The region that stretches from inlet to outlet over the bottom. This region
has the least dense mesh, but especially for shallow water, as in figure 4.4, the region
becomes a little packed close to the bottom. The lines are equally spaced, meaning
the expansion ratio equals zero.

r = 0

blue

r = 1.0125

red

r = 1.1

green

r = 0

cyan

Figure 4.4: The different meshing line groups, r symbolises the expansion ratio for
each consecutive cell. All meshing lines are defined so that the clustering of cells
happen towards the hull.

When it comes to deriving the number of cells in the domain, and the size of each
cell, a convenient parameter is the Courant-Friedrich-Lewy number; equation (4.9).
It is a non dimensional parameter that reveals the length traveled over a single
time step in terms of the cell size. In essence, when the CFL number equals 1, it
means a fluid particle traverses the entire length of a cell during one timestep. If
the CFL number exceeds the value of 1, entire cell volumes can be surpassed by a
fluid particle during a single timestep, which leads to inaccuracy and untrustworthy

30

results. For the present analysis the correct CFL number is not easily predicted
correctly. The inlet velocity is applied, and therefore known, but the accelerated
flow inside the domain on the other hand is not. That is for the analysis to derive.

CFL = ∆t

(
n∑

i=1

ui

∆xi

)
≤ CFLmax (4.9)

Where n is symbolizing the number of dimensions for the simulation to take place.

In practice, many configurations of cell sizes and distributions will simply be tested.
As the cell sizes change, so does the CFL number, and in order to avoid the simula-
tion exploding3, or the consequences of untrustworthy results the timestep is altered
parallel to the mesh refinement. This is achieved by a simplified CFL number com-
puted for one dimension, using the known inlet velocity and the size of the smallest
cell in the mesh. Shown for clarity in equation (4.10). The mesh sizes that are run
in the mesh refinement analysis, see 5.1, are posted in table 4.5.

Table 4.5: Characteristic sizes for mesh refinement process

Smallest cell size Number of cells Order
6.400 · 10−3 9966 1.00 · 104

3.550 · 10−3 24965 2.50 · 104

2.250 · 10−3 49467 5.00 · 104

1.710 · 10−3 75149 7.50 · 104

1.400 · 10−3 100366 1.00 · 105

∆tmax =
CFLmax · ∆y

U∞
(4.10)

Where CFLmax is the desired CFL number for the analysis, ∆y is the size, or really
the length of the smallest cell in the domain and U∞ is the free stream velocity. As
discussed earlier, even though a desired CFL number is chosen, it will not equal
the actual CFL number from the analysis. Emphasizing that this is a simplified
approach to find an appropriate timestep.

4.5 Validation

The present case is difficult to validate, much because of the presence of the pro-
peller. In order to properly validate a CFD experiment, a comparison to an actual
experiment should be conducted. Therefore a propellerless case is considered. Then
the drag coefficient of the hull can be compared to a conducted experiment, like one
of the many described in Hoerner 1965.

For the 2D case the experimental results described in figure 4.5 are considered. The
hull considered in the CFD experiments has a defined curvature on the corners of

3meaning that the derived values asymptotically approach infinity

31

the hull, and from the draft and curvature of the model, a fitting case for comparison
can be made.

Figure 4.5: Influence of rounding radius upon the drag coefficient of various blunt
bodies; Hoerner 1965

Considering figure 4.6, a possible way to think of this is the hull mirrored along
the waterline. Assuming the flow traverses past the hull with a particular drag
coefficient. If the entire mirrored body were submerged and surrounded by water,
the drag coefficient would be equal to the rectangular cross-section, figure 4.5 for
a certain rounding radius, and h equal to two times the draft. By considering half
the drag coefficient at the submerged level, with half the reference area in equation
(4.11), the drag coefficient of the hull floating on the surface is found, as in equation
(4.12).

u

Figure 4.6: A mirrored rectangular cross section

CD =
FD

1
2
ρu2A

(4.11)

r

h
=

3m

2 · 5m
= 0.3

figure 4.5⇒ CD ≃ 0.5 (4.12)

By applying a rounding radius, the drag of the original geometry is reduced, but
according to Hoerner 1965, it is a less than perfect method of reducing drag. A
cause of worry is how it affects the separation of the flow and a potential vortex
street following in the wake. It makes complete sense that the frictional drag is split

32

in half, as half of the geometry is removed, but if there is a presence of a vortex
street for the entire geometry and not for the half of it, the pressure drag would not
be simply half the original value.

In Hoerner 1965 there are some measurements of the drag coefficient, CD for some
vortex-street producing shapes, where a ”trick” to avoid vortex shedding has been
applied. The trick is a so-called, ”splitter” plate, which prohibits or delays the
vortex shedding process for higher ℜe than otherwise. The splitter plates effectively
reduce the Strouhal number, equation (4.13) to the order of half the usual value,
and the drag coefficient is noticeably decreased.

Figure 4.7: Influence of splitter plates (and similar devices) on the drag coefficients
without wake interference. ℜe ∈ [104, 105]; Hoerner 1965

St =
fL
u

(4.13)

According to Faltinsen 1993, the free surface tends to act as an infinitely long splitter
plate, and a simple way to explain this behavior is by using figure 4.8. Let the
shed vortex be called Γ, which is a function of time. Then, an image vortex is
applied above the surface to explain how the free surface effect can decrease the
drag coefficient. This image vortex has a more decisive influence over the motion of
the natural vortex than vortices in a vortex street have on each other. Since it is
known that a splitter plate reduces the drag, and we know that there is a correlation
between the velocity of the shed vortices and the force experienced by the vessel,

33

it becomes clear that the free surface will influence the drag coefficient. Thereby
reducing it, compared to the whole body submerged.

u Γ(t)

Γ(t)

Figure 4.8: Simple vortex system with an image flow above the free surface so the
rigid free surface condition is satisfied, from Faltinsen 1993

It was early discovered that the flows of interest in this project are turbulent, see
equation (1.1). Furthermore, turbulence does affect the separation point of the
boundary layer, as well as the drag coefficient. According to Faltinsen 1993, the
critical Reynolds number for a smooth cylinder is 2 · 105, which is around the same
value as the drag coefficients in figure 4.5, which means the geometries are most likely
experiencing laminar separation. In Aarsnes et al. 1985 the results of drag coefficient
are separated into three regions, defined by different ranges of the Reynolds number,
subcritical, transcritical and supercritical.

Figure 4.9: Wake development for a particular hull cross section. Calculations are
shown for different time instants t and area based on numerical calculations by
Aarsnes et al. 1985 with a thin free shear layer model; found in Faltinsen 1993

In Faltinsen 1993, it is shown how the boundary layer separates as early as the
leading edge for subcritical flow based on a numerical study on a particular hull
by Aarsnes et al. 1985, see figure 4.9. Turbulent boundary layers, on the other
hand, have a more remarkable ability to sustain adverse pressure gradients before
separation occurs. According to Faltinsen 1993, this is the reason why there is no

34

separation at the leading bilge for transcritical flow, which is the case for most hulls
in full scale. From Aarsnes et al. 1985 some calculations were performed to find the
2D drag coefficient for a hull section in cross-flow conditions, see figure 4.10

Figure 4.10: Calculated and estimated drag coefficients CD for two dimensional cross
flow past cross sections along a particular ship; from Faltinsen 1993

The advantage of the results in figure 4.10 relies on taking into account the free
surface and turbulent boundary layer that impacts the value of CD. The major
drawback is the lack of consideration for the rounding radius applied to the hull
used in the experiments, which is a significant advantage when considering the plot
from Hoerner 1965 in figure 4.5. Since splitter plates, and thereby the free surface,
decrease the drag of vortex street-producing shapes, CD ought to be a bit lower than
what is presented in figure 4.10.

The goal of the validation is to check that the established method solves the equa-
tions correctly and can be trusted to a higher degree to solve the equations correctly
for other cases; this is a necessary assumption as long as additional model tests are
not performed, although it is not a guarantee for reliable results. The simulation in
question utilizes turbulence modeling, and the applied method of turbulence model
is the desired target for validation. For this reason, there is no point in creating
a laminar flow model for validation with the results shown in figure 4.5. The easi-
est solution is to alter the rounding radius of the hull to conform with the results
presented in figure 4.10; since the rounding radius is not presented, a couple of close
relatives must therefore be constructed, and from there be compared in likeness to
the results of figure 4.10. A second alternative that can also be implemented is a
drag coefficient found by comparing the results of figures 4.5 and 4.10.

Considering equation (4.12), CD seems to achieve about the same value as the
transcritical drag coefficient from figure 4.10. Since the large rounding radius chosen
in the project implies a certain reduction in drag, combined with the fact that due
to the surface and turbulent boundary layer, the drag coefficient should be even
lower. By considering the difference between subcritical and transcritical in figure

35

4.10, an estimate for the ”improvement” in drag can be extracted

CD, sub ≃ 0.95
CD, trans ≃ 0.5

}
→ CD, trans

CD, sub

≃ 0.5 ⇒ 50% decrease (4.14)

Now there are two different drag coefficients available for comparison, based on
equations (4.12) and (4.14). These results will be used as a lower and upper bound
for what to expect of the drag coefficient found in the CFD experiment.

Since both cases from Hoerner 1965 and Aarsnes et al. 1985 are for shapes in free-
flow conditions, the WD

T
ratio needs to be large enough to avoid the influence of

the bottom boundary layer, i.e., deep water conditions. Therefore this test also
provides a valuable opportunity to define what deep water conditions are for the
main test subject. The mesh should be kept as similar as possible to the original
mesh, and the number of cells used will be the same as found to be necessary from
the mesh refinement analysis discussed in 4.4, the meshing line composition and
expansion ratio are shown in figure 4.11. The main difference lies in the removal
of the propeller. The inner meshing line situated parallel to the hull replaces the
propeller, while the cells’ expansion remains the same to keep the mesh as similar
as possible. The curvature is adapted to the experiments measured against the drag
coefficient from figure 4.10.

r = 0

blue

r = 1.0125

red

r = 1.1

green

r = 0

cyan

Figure 4.11: The different meshing line groups, r symbolises the expansion ratio for
each consecutive cell. All meshing lines are defined so that the clustering of cells
happen towards the hull.

36

CHAPTER

5

RESULTS

In this chapter plots and figures generated from the results in OpenFoam are presen-
ted. First the results of the mesh refinement analysis is posted; 5.1, and then the
results from the validation of the method; 5.2. All of the results have a short de-
scription, before a more thorough discussion is considered in chapter 6.

5.1 Mesh refinement analysis

The mesh refinement was performed for the 2D hull with incoming current flow,
as well as a constant volume flow through the propeller disk for the smallest WD

T

ratio that did not outright crash, or explode during computations. The number of
cells tested are visible in table 4.5, and in the horizontal axis of the plots. All of
the simulations was programmed to stop when a 100 seconds of simulated time was
computed. The amount of time required for each simulation to reach this limit is
shown in table 5.1.

Table 5.1: Amount of time required for each simulation to reach 100 simulated
seconds

Number of nodes days hours minutes
1.00 · 104 0 5 39
2.50 · 104 0 22 44
5.00 · 104 1 12 39
7.50 · 104 1 23 34
1.00 · 105 2 18 21

37

5.1.1 The drag coefficient

OpenFoam separates the coefficients into two components along the defined direction
in the code. Figure 5.1 demonstrates drag coefficient for the front of the hull, or
side closest to the inlet. The values of the drag are uncharacteristically large, which
will be further discussed in 6.1.

Line through datapoints
Avg of last measurements
Datapoints

Figure 5.1: Average CD for the front of the hull, with plotted divergence from mean
of the last four calculated values

Figure 5.2 demonstrates the drag coefficient for the hindmost part of the hull, or side
closest to the outlet. The values are in the ballpark of an expected drag coefficient
for the entire hull, i.e. to large, this is part of the discussion in 6.1.

Line through datapoints
Avg of last measurements
Datapoints

Figure 5.2: Average CD for the rear part of the hull, with plotted divergence from
mean of the last four calculated values

Figure 5.3 demonstrates the drag coefficient for entire hull. The values of the drag
are uncharacteristically large, which will be further discussed in 6.1.

38

1/N, N = number of cells

A
ve

ra
ge

 $
C

D
$ Line through datapoints

Avg of last measurements
Datapoints

Figure 5.3: Average CD for the entire hull, with plotted divergence from mean of
the last four calculated values

5.1.2 Lift coefficient

Figure 5.4 shows the derived lift coefficient for the hull. The coefficient itself does
not offer much usefull information, but is included to support the assessment of
convergence of the method. The result is further discussed in 6.1.

Line through datapoints
Avg of last measurements
Datapoints

Figure 5.4: Average CL for the hull, with plotted divergence from mean of the last
four calculated values

5.1.3 Roll moment coefficient

The roll moment is defined the same way as for a full scale ship, rotation around
the x-axis. This is also a value that is mainly included for the assessment of the
convergence.

39

Line through datapoints
Avg of last measurements
Datapoints

Figure 5.5: Average CmRoll for the hull, with plotted divergence from mean of the
last four calculated values

5.1.4 Velocity profiles from mesh refinement analysis

A velocity profile is extracted for each mesh at an arbitrary point in time in order
to show how these profiles look in terms of flow velocity. Important to note that
these profiles are just snapshots, and therefore unable to represent the entire time
series.

Figure 5.6 shows the least refined resolution. An event in the time series where the
jet flow appear to curve towards the surface. The rest of the flow domain seems to
be still or moving slightly backwards.

Figure 5.6: Velocity profile of u2 = v from the transient solver pimpleFoam with
WD

T
= 1.85, t = 39s, the lowest resolution with 104 cells

Figure 5.7 is an attempt to capture the same event as in figure 5.6. The event seems
to happen a little earlier in this simulation, and the surrounding fluid in the rest of

40

the domain seems to be, if not still, almost still. Some regions are also moving in
negative y-direction.

Figure 5.7: Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 23s, second lowest resolution with 2.5 · 104 cells

Figure 5.8 displays another event, much later in the simulation. This event also
involves the jet flow curving upwards towards the surface, while the rest of the
domain stays either still or moving in negative y-direction. Note that the largest
velocity found in the domain is in negative direction.

Figure 5.8: Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 87s, third largest resolution with 5 · 105 cells

Figure 5.9 depicts the second largest refinement tested. The same events seem to
happen, but earlier for finer mesh refinements. The same sort of curving motion,
while the rest of the domain is either still or moving in negative y-direction. This
snapshot also shows that the largest velocity component is in negative direction.

41

Figure 5.9: Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 69s, second to largest resolution with 7.5 · 104 cells

Figure 5.10 shows a snapshot from the last mesh refinement simulation. In this snap-
shot the curve seems less pronounced, clinging a bit more against the bottom. The
velocities in the rest of the domain are still, or contain almost the same magnitude
in negative y-direction.

Figure 5.10: Velocity profile from the transient solver pimpleFoam with WD

T
= 1.85,

t = 16s, the largest resolution with 105 cells

5.2 Validation

The following figures display a comparison between the drag coefficient computed
by the altered simulation without the propeller disk underneath the hull. The same
mesh density as found favorable through the mesh refinement analysis; 5.1 has been
used. The plots are further discussed in the next chapter; 6.

Figure 5.11 shows the numerically computed drag coefficients from the transient

42

pimpleFoam solver, in the form of a tower diagram. Unfortunately, all of the drag
coefficients were found to equal zero by the algorithm, indicating some error, further
discussed in 6.2. The gray outlined area is the range of the expected value of the
drag, discussed in 4.5.

The pimpleFoam solver

Figure 5.11: The validation results from the pimpleFoam solver, with the expected
value of the drag coefficient outlined

Figure 5.12 shows the velocity profile through a contour plot, generated in paraView.
The profile is generated at the last second of simulated time. The plot demonstrates
at least one error apparent in the method, since no apparent flow seems to actually
traverse the domain. The figure is further discussed in 6.2.

43

Figure 5.12: Instantaneous snapshot of the velocity field from pimpleFoam transient
simulation, ℜe = 107, WD

T
= 4 and t = 100s

Figure 5.13 shows the numerically computed drag coefficients from the steady state
simpleFoam solver, in the form of a tower diagram. The analysis was created to ex-
plore a more efficient, and different approach to the flow simulation. Unfortunately,
all of the drag coefficients were found to equal zero by the algorithm, indicating that
the same error is most likely present for this case too, further discussed in 6.2. The
gray outlined area is the range of the expected value of the drag, discussed in 4.5.

The simpleFoam solver

Figure 5.13: The validation results from the simpleFoam solver, with the expected
value of the drag coefficient outlined

44

Figure 5.14 shows the velocity profile through a contour plot, generated in paraView.
The profile is generated at the last second of simulated time. The plot confirms that
at least one of the same problems apparent in 5.12 is still present with the steady
state solver. The figure is further discussed in 6.2.

Figure 5.14: Snapshot of the steady state velocity field from the simpleFoam simu-
lation, ℜe = 105, WD

T
= 3 and t = 100s

Due to the lack of conclusive results, another attempt was made at validating the
method, see figure 5.15. The alterations made to the analysis are discussed in 6.2.
With regards to the test regime, the experiments have moved into a debugging
phase. The drag coefficients seem to converge towards a too large value.

45

Figure 5.15: CD as a function of time plotted with expected value range found in
4.5, computed with the pimleFoam solver, WD

T
= 3, ℜe = 107, nnodes is the number

of nodes used and k is meant to symbolize 103

46

CHAPTER

6

DISCUSSION

As stated in the introduction, the thesis aims to explore the influence of shallow
waters on thrust loss using CFD simulations and knowledge from the literature.
Thrust loss proved to be a pretty diverse subject, as many possible ways for thrust
loss to occur were explored in 3.

Ventilation is influenced by the wave elevation, as discussed in 3.1, and therefore a
subject of interest since both wave dynamics and global forces change for shallow
waters. However, the regulations for service and installation vessels are rigorous
concerning the safety of any operations. Therefore, nearly all conditions where
ventilation is possible are avoided altogether, not only due to the risk of ventilation.
Ventilation becomes impossible in a calmer environment with certain submergence
on the propeller.

Thruster-to-thruster interactions can be detrimental for thrust capacity, as discussed
in 3.2. However, the effects are mostly caused by weaknesses in the configuration
and placement of the thrusters. These effects can be completely, or at least to a
satisfactory degree, removed by decent design solutions. Therefore these effects are
not considered to be of any interest to shallow water interactions.

Currents will also be able to interact with the propeller race, as discussed in 3.3.
The flow will, at specific flow velocities and heading angles, be able to divert the
propeller jet, but to what extent is fully flow-dependent and therefore very difficult
to quantify. Although it is not directly relevant to thrust loss, an important aspect
to consider is the increased resistance related to currents in shallow waters. As
discussed in 3.4, the blockage of the flow might, in some cases, lead to substantially
increased resistance, but an emphasis should be directed to the small likelihood of
these extreme situations of blockage described in Koop 2015. However, the influence
of the bottom boundary layer is an interesting aspect that could interact with the

47

propeller and increase the blockage.

6.1 Mesh refinement analysis

As the CFD computations were completed, the author quickly found the required
time for OpenFOAM to complete the simulations very demanding for the strict
thesis schedule, as seen in table 5.1. The next refinement level of the analysis was
also attempted to be run, as only five data points were considered insufficient when
assessing the method’s convergence level. After 12 hours of running, OpenFOAM
computed no more than 0.5 seconds of simulated time. At that point, the author
aborted the mesh refinement analysis for more exemplary mesh distributions to test
how the method performed for other parameters, namely the validation case.

6.1.1 Drag coefficients

The drag coefficients’ value seems too large and is, at this stage, a significant cause
of worry. CD for the entire hull, figure 5.3, almost seems to start converging at a
value of around 8, which is unrealistic, even with the higher velocities stimulated
by the propeller disk. An alternative interpretation is that the method converges
extremely slowly wrt the number of elements, which is very unfortunate when each
analysis takes up so much time to compute. In figure 5.1, it is clear where the
main contribution to the total drag coefficient comes from, as this value seems to
make up about 90% of the total drag coefficient. As discussed in section 4.5, the
drag coefficient is expected to be below 1, especially in a turbulent flow. The drag
coefficient for the rear; figure 5.2 is only slightly larger than the expected drag for
the entire hull. The fact that it is larger than the expected value for the whole hull
is an indication that something is most likely wrong.

6.1.2 Lift and roll moment coefficients

The other plots from the mesh refinement, figure 5.4 and 5.5 are not subject to
comparison with any known results. They are mainly included to assess the con-
vergence of the method. That said, they display a very similar likeness to the drag
coefficient results. Essentially they seem large and not completely converged. From
the last four data points in both analyses, it appears that if the author had plotted
the method with a higher resolution between the existing points, it would oscillate
around some value close to the average. In both plots, the average of the last four
values is also plotted, indicating some oscillation around the final value, given by a
sufficiently large mesh density.

48

6.1.3 Thoughts on the improvement of mesh convergence
analysis

In hindsight, these results are only valuable when the method functions correctly. In
other words, without any values to compare against, it is more difficult to determine
if something is faulty or wrong with the method. The amount of time available for
debugging was debilitated by the amount of time required to complete an analysis,
which the author should have handled differently. In this case, it was the lack of
experience that impacted the decisions of the author. This entire process should have
been omitted until a correct method for the case described in 4.5 was completed.

6.2 Validation

The validation results all show 0 drag. The unrealistic result is due to an error in the
simulation, proving that the applied method is not ready and needs repair before
more experiments are conducted. Contrary to the mesh refinement, these values are
useful regardless of whether the method is working. The resulting drag coefficients,
plotted for both solvers used, namely PimpleFOAM in figure 5.11 and SimpleFOAM in
figure 5.13.

After some debugging a fatal and embarrassing error was discovered. The current
velocity was defined to move 1m/s in the x-direction, and 0m/s in the correct y-
direction, as defined in figure 4.1. Correcting the mistake resulted in figure 5.15.
The values are all much larger than the expected drag coefficient range derived in
4.5, and strangely the value seems to increase for finer mesh resolutions.

6.3 The applied method

Turbulence is a three-dimensional effect. Fluctuations have a chaotic nature and
act, therefore, in all directions. The three-dimensionality of turbulence is part of
why circular and plane jets spread at different angles, as discussed in 2.3.1 and 2.3.2.
The two cases are fundamentally different, which is the reason the original goal of
the thesis was to investigate the interactions with a 3D CFD simulation. As may
be evident from the results, producing reliable results in CFD is challenging and
time-consuming.

Simulating this flow with CFD was initially chosen as an exciting way to study the
effects involved in thrust loss. The potential of CFD may be substantial, but as
the results are pointing out, very time-consuming to produce and possibly useless
if some detail in the discretization or method is imprecise. From the authors’ point
of view, more experience in the subject was the secondary goal of this project and,
therefore, worth the effort no matter the results. However, the project lost a lot of
time due to inexperience.

The step down from 3D to 2D propeller and hull was an insufficient simplification.

49

Considering the time necessary to run the mesh refinement analysis and the lack of
results to compare, it would have been much more efficient to start with the more
straightforward case described in 4.5 and debug the method from there.

A reoccurring problem during the experiments has been analyses that crash due to
asymptotic values in the results, especially regarding the SimpleFOAM solver. As if
a steady-state solution of the 2D flow does not exist. Since pimpleFOAM was able to
complete the simulation, it may imply that the flows are unsteady and subject to
oscillations. However, the more likely scenario is something wrong with the method
or discretization. Unfortunately, no solution to the problem has been found, and
the analysis will remain incomplete.

The CFD solvers are built with complex algorithms, which this project has treated
to some extent as a black box, considering input and output without enough consid-
eration for the method applied. Why the results appear to be wrong is so far only
speculation. One hypothesis is the influence of the wall functions applied to the
specific dissipation ω, eddy viscosity νT and turbulent kinetic energy k. The wall
functions are based upon boundary layer flow tests on flat plates and might therefore
influence the results quite drastically due to the lack of compatibility with the blunt
impact on the hull. The y+ value discussed in 4.1 should have been optimized so
that a value between 30 > y+ > 300 was achieved.

Another possible source of errors in the results could be the integration scheme.
The integration algorithms are inadequately covered by the thesis, even though
they matter for the results. However, the integration should not increase the value
of the drag as drastically as seen in the results. The solver algorithms are only
compatible with specific integration schemes, so different algorithms were used for
each solver; see C for the codes used, and specifically C.3 to view the integration
algorithms used.

Although it is fascinating due to the implied potential of CFD simulations, we should
remember that the alternative to CFD was model tests, which could have been a
more efficient approach to this subject. Nevertheless, model tests are noted since
every CFD method is susceptible to the input variables and therefore needs to be
validated by comparing it to a model experiment subjected to the same kind of
flow.

50

CHAPTER

7

CONCLUSION

Shallow water affects the flow domain around the hull, influencing some but not
all thruster interactions that cause thrust loss. For example, the Coanda effect will
be influenced by the bottom surface, although the degree of influence and distance
required for an interaction to occur is still unclear.

A vessel’s total resistance will increase upon entering shallow waters and there-
fore require more thrust available to maneuver as effectively as in deeper waters,
depending on the conditions.

Studying the interactions through CFD is an inefficient approach due to the lack
of model test results available for use in the validation of the code. Simple model
experiments with a propeller underneath a curved surface, preferably a hull, and
little clearance between the surface and the bottom are advised to achieve decent
results for comparison.

The results of this thesis are inconclusive due to a lack of validation and bugs.
Therefore, debugging of the code should focus on integration schemes and optimizing
the y+ value for the wall functions.

51

BIBLIOGRAPHY

28th ITTC, Quality Systems Group of the (2011). ‘ITTC–Recommended Procedures
Fresh Water and Seawater Properties’. In: Proceedings of ITTC.

Aarsnes, JV, O Faltinsen and B Pettersen (1985). ‘Application of a vortex tracking
method to current forces on ships’. In: Proceedings of Proc. Conf. Separated Flow
around Marine Structures, Trondheim. Vol. 309346.

Amdahl, Jørgen et al. (2015). ‘TMR4105 - Marin Teknikk Grunnlag Kompendium’.
In: Marin Teknisk Senter, NTNU 6, pp. 10.14–10.17.

Aokomoriuta (2022). Law Of The Wall. Wikipedia. url: ’https://en.wikipedia.org/
wiki/File:Law of the wall (English).svg’ (visited on 8th June 2022).

Boussinesq, Joseph (1877). Essai sur la théorie des eaux courantes. Vol. 2. Im-
primerie nationale.

Cebeci, T and AMO Smith (1974). ‘Analysis of turbulent boundary layers’. In:
NASA STI/Recon Technical Report A 75, p. 46513.

Cutler, A and J White (2001). ‘An experimental and CFD study of a supersonic
coaxial jet’. In: 39th Aerospace Sciences Meeting and Exhibit, p. 143.

Faltinsen, Odd (1993). Sea loads on ships and offshore structures. Vol. 1. Cambridge
university press.

Granville, Paul S (1953). The calculation of the viscous drag of bodies of revolution.
Tech. rep. DAVID TAYLOR MODEL BASIN WASHINGTON DC.

Harlow, Francis H and Paul I Nakayama (1967). ‘Turbulence transport equations’.
In: The Physics of Fluids 10.11, pp. 2323–2332.

Hoerner, Sighard F (1965). ‘Fluid Dynamic Drag, published by the author’. In:
Midland Park, NJ, pp. 3.6–3.13.

Holmedal, Lars Erik (2002). ‘Wave-current Interactions in the Vicinity of the Sea
Bed’. In: pp. 3–8.

Johns, Bryan (1983). Physical oceanography of coastal and shelf seas. Elsevier, pp. 189–
262.

Kolmogorov, Andrej Nikolaevich (1941). ‘Equations of turbulent motion in an in-
compressible fluid’. In: Dokl. Akad. Nauk SSSR. Vol. 30.

52

'https://en.wikipedia.org/wiki/File:Law_of_the_wall_(English).svg'
'https://en.wikipedia.org/wiki/File:Law_of_the_wall_(English).svg'

Koop, Arjen (2015). ‘Shallow water current loads on a LNG carrier using CFD’.
In: International Conference on Offshore Mechanics and Arctic Engineering.
Vol. 56482. American Society of Mechanical Engineers, V002T08A037.

Koushan, K (2004). ‘Environmental and interaction effects on propulsion systems
used in dynamic positioning, an overview’. In: Proceedings of 9th International
Symposium on Practical Design of Ships and other Floating Structures PRADS,
pp. 1013–1020.

Koz lowska, Anna Maria (2019). ‘Hydrodynamic Loads on Marine Propellers Subject
to Ventilation and Out of Water Condition’. In.

Kozlowska, Anna Maria and Sverre Steen (2017). ‘Experimental analysis on the risk
of vortex ventilation and the free surface ventilation of marine propellers’. In:
Applied Ocean Research 67, pp. 201–212. issn: 0141-1187. doi: https://doi.org/
10.1016/j.apor.2017.07.006. url: https://www.sciencedirect.com/science/article/
pii/S0141118717300445.

Lehn, Erik (1985). On the propeller race interaction effects. NSFI.
Mathieu, Jean and Julian Scott (2000). An introduction to turbulent flow. Cambridge

University Press.
Menter, Florian R (1992). ‘Influence of freestream values on k-omega turbulence

model predictions’. In: AIAA journal 30.6, pp. 1657–1659.
— (1994). ‘Two-equation eddy-viscosity turbulence models for engineering applica-

tions’. In: AIAA journal 32.8, pp. 1598–1605.
— (1993). ‘Zonal two equation kw turbulence models for aerodynamic flows’. In:

23rd fluid dynamics, plasmadynamics, and lasers conference, p. 2906.
Michel, Roger (1952). ‘Etude de la transition sur les profils d’aile-establissment d’un

point de transition et calcul de la tranée de profil en incompressible’. In: ONERA
publication 58.

Murad, Jousef (2022). What is y+ (yplus)? Ed. by SimScale Team. SimScale. url:
’https://www.simscale.com/forum/t/what-is-y-yplus/82394’ (visited on 8th June
2022).

Prandtl, L (1925). ‘Uber die ausgebildete Turbulenz’. In: ZAMM, 5p 136.
— (1945). ‘Uber ein Neues Formel-System fur die Ausgebildete Turbulenz, Nachr

Akad Wiss, Gottingen, Math’. In: Phys. Kl 1945, p. 6.
Rotteveel, E and RG Hekkenberg (2015). ‘The influence of shallow water and hull

form variations on inland ship resistance’. In: IMDC 2015: Proceedings of the
12th International Marine Design Conference, Tokyo, Japan, 11-14 May 2015.

Rotteveel, Erik, Robert Hekkenberg and Auke van der Ploeg (2017). ‘Inland ship
stern optimization in shallow water’. In: Ocean Engineering 141, pp. 555–569.

Shiba, Hisamitsu (1953). ‘Air-drawing of marine propellers’. In: Report of transport-
ation technical research institute 9.

Tennekes, Hendrik, John Leask Lumley, Jonh L Lumley et al. (1972). A first course
in turbulence. MIT press.

Tian, Xinliang et al. (2013). ‘Unsteady RANS simulations of flow around rectangular
cylinders with different aspect ratios’. In: Ocean Engineering 58, pp. 208–216.

Ueda, H and Julius Oscar Hinze (1975). ‘Fine-structure turbulence in the wall region
of a turbulent boundary layer’. In: Journal of Fluid Mechanics 67.1, pp. 125–143.

Vartdal, Leif and Rune Garen (2001). ‘A thruster system which improves position-
ing power by reducing interaction losses’. In: Dynamic Positioning Conference,
Houston, TX, USA.

53

https://doi.org/https://doi.org/10.1016/j.apor.2017.07.006
https://doi.org/https://doi.org/10.1016/j.apor.2017.07.006
https://www.sciencedirect.com/science/article/pii/S0141118717300445
https://www.sciencedirect.com/science/article/pii/S0141118717300445
'https://www.simscale.com/forum/t/what-is-y-yplus/82394'

Von Kármán, Theodore (1931). Mechanical similitude and turbulence. 611. National
Advisory Committee for Aeronautics.

Wazzan, Ahmed R, C Gazley Jr and Apollo Milton Olin Smith (1981). ‘HR/x/-
method for predicting transition’. In: AIAA Journal 19.6, pp. 810–812.

White, Frank M and Joseph Majdalani (2006). Viscous fluid flow. Vol. 3. McGraw-
Hill New York. Chap. 6-9, pp. 473–479.

Wilcox, David C (1988). ‘Reassessment of the scale-determining equation for ad-
vanced turbulence models’. In: AIAA journal 26.11, pp. 1299–1310.

Wygnanski, Israel and Ho Fiedler (1969). ‘Some measurements in the self-preserving
jet’. In: Journal of Fluid Mechanics 38.3, pp. 577–612.

54

APPENDIX

A

KONGSBERG PRODUCTS USED FOR
COMPARISON

I

Table A.1: Kongsberg US TYPE AZIMUTHING THRUSTER

US Thruster Propeller Dia. Max. power. Bollard Pull [mtons]
Type Ducted [mm] [kW] with 2 x AZM, max Power

55 1050 350 11
105P6 1300 500 17
105P9 1500 750 24

1600 750 25
155P12 1600 900 29

1800 1100 35
155P14 1800 1150 37

2000 1370 45
165 2200 1471 50

2400 1340 50
205 2300 1870 60

2400 2000 65
2500 2000 67
2800 2000 70

255 2600 2390 77
2700 2560 81
2800 2560 85
3000 2600 91

265 3000 2800 99
35 2800 2790 91

3000 2900 97
305 3000 3200 104

3200 3300 111
355 3200 3600 117

3500 4050 135
3600 4050 140

60 3800 5500 174
4000 5500 180

II

MAIN DIMENSIONS

• Length overall 82.0 m

• Length between p.p. 72.1 m

• Breadth moulded 17.0-18.0 m

• Depth main deck 7.4 m

• Design draught 5.0 m

CAPACITIES (PRELIMINARY)

• Deadweight 1500 t

• Fuel oil 890 m3

• Fresh water 500 m3

• Cargo store (Main deck) 400 m2

• Cargo deck (A-deck) 340 m2

PERFORMANCE

• Max. speed 13.5 kn

• Service speed 10-11 kn

01.UT-2 of 2-03.09.16 V.1

Switchboard: +47 815 73 700
Global support 24/7: +47 33 03 24 07
E-mail sales: km.sales@km.kongsberg.com
E-mail support: km.support@km.kongsberg.com

Kongsberg Maritime
P.O.Box 483, NO-3601
Kongsberg, Norway

MANOEUVRABILITY ENHANCEMENT

• Diesel-electric with four variable RPM main
generator sets

• Twin azimuthing thrusters aft

• Three (super-silent) tunnel thrusters
forward

• Optional: Retractable azimuthing thruster
replacing 3rd tunnel thruster

OTHER PARTICULARS

• One 9-1 1m daughter craft/workboat

• One fast rescue craft

• Cargo and personell lift

• Deck crane 3 t at 16 m

• 3D-motion compensated crane (1 t at 25 m)

• Two CTV landing areas

• Optional helicopter landing deck

ACCOMMODATION

• Up to 60 person accommodation,
(40 technicians and 20 crew)

• Optional above 60 persons

• Comfort Class V(2)C(2)

UT 5400 WP vessel range
Windfarm Service Operation Vessel (SOV)

Figure A.1: Example vessel used to create generic hull shape

III

APPENDIX

B

FIGURES PRODUCED IN PARAVIEW

Figure B.1: Instantaneous snapshot of the velocity field from pimpleFoam transient
simulation, ℜe = 107, WD

T
= 3 and t = 100s

IV

Figure B.2: Instantaneous snapshot of the velocity field from pimpleFoam transient
simulation, ℜe = 105, WD

T
= 3 and t = 100s

Figure B.3: Instantaneous snapshot of the velocity field from pimpleFoam transient
simulation, ℜe = 105, WD

T
= 4 and t = 100s

V

Figure B.4: Snapshot of the steady state velocity field from the simpleFoam simu-
lation, ℜe = 105, WD

T
= 3 and t = 100s

Figure B.5: Snapshot of the steady state velocity field from the simpleFoam simu-
lation, ℜe = 107, WD

T
= 3 and t = 100s

VI

Figure B.6: Snapshot of the steady state velocity field from the simpleFoam simu-
lation, ℜe = 107, WD

T
= 4 and t = 100s

VII

APPENDIX

C

CODES USED IN OPENFOAM

C.1 Equal for both solvers the 0 directory

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 arch "LSB;label=32;scalar=64";

6 class volScalarField;

7 location "0";

8 object k;

9 }

10 // * //

11 dimensions [0 2 -2 0 0 0 0];

12 internalField uniform 0.0006;

13 boundaryField

14 {

15 frontAndBack

16 {

17 type empty;

18 }

19 top

20 {

21 type zeroGradient;

VIII

22 }

23 inlet

24 {

25 type fixedValue;

26 value uniform 0.0006;

27 }

28 hull

29 {

30 type kqRWallFunction;

31 value uniform 0.0006;

32 }

33 propTopAndBottom

34 {

35 type zeroGradient;

36 }

37 outlet

38 {

39 type zeroGradient;

40 }

41 propInlet

42 {

43 type zeroGradient;

44 }

45 propOutlet

46 {

47 type zeroGradient;

48 }

49 bottom

50 {

51 type kqRWallFunction;

52 value uniform 0.0006;

53 }

54 }

55 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 arch "LSB;label=32;scalar=64";

6 class volScalarField;

7 location "0";

8 object nut;

9 }

10 // * //

IX

11 dimensions [0 2 -1 0 0 0 0];

12 internalField uniform 1.25e-07;

13 boundaryField

14 {

15 frontAndBack

16 {

17 type empty;

18 }

19 top

20 {

21 type zeroGradient;

22 }

23 inlet

24 {

25 type calculated;

26 value uniform 1.25e-07;

27 }

28 hull

29 {

30 type nutUSpaldingWallFunction;

31 value uniform 1.25e-07;

32 }

33 propTopAndBottom

34 {

35 type zeroGradient;

36 }

37 outlet

38 {

39 type calculated;

40 value uniform 1.25e-07;

41 }

42 propInlet

43 {

44 type zeroGradient;

45 }

46 propOutlet

47 {

48 type zeroGradient;

49 }

50 bottom

51 {

52 type nutUSpaldingWallFunction;

53 value uniform 1.25e-07;

54 }

55 }

X

56 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 arch "LSB;label=32;scalar=64";

6 class volScalarField;

7 location "0";

8 object omega;

9 }

10 // * //

11 dimensions [0 0 -1 0 0 0 0];

12 internalField uniform 2.5555063;

13 boundaryField

14 {

15 frontAndBack

16 {

17 type empty;

18 }

19 top

20 {

21 type zeroGradient;

22 }

23 inlet

24 {

25 type fixedValue;

26 value uniform 2.5555063;

27 }

28 hull

29 {

30 type omegaWallFunction;

31 blended true;

32 value uniform 2.5555063;

33 }

34 propTopAndBottom

35 {

36 type zeroGradient;

37 }

38 outlet

39 {

40 type zeroGradient;

41 }

42 propInlet

XI

43 {

44 type zeroGradient;

45 }

46 propOutlet

47 {

48 type zeroGradient;

49 }

50 bottom

51 {

52 type omegaWallFunction;

53 blended true;

54 value uniform 2.5555063;

55 }

56 }

57 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 arch "LSB;label=32;scalar=64";

6 class volScalarField;

7 location "0";

8 object p;

9 }

10 // * //

11 dimensions [0 2 -2 0 0 0 0];

12 internalField uniform 0;

13 boundaryField

14 {

15 frontAndBack

16 {

17 type empty;

18 }

19 top

20 {

21 type zeroGradient;

22 }

23 inlet

24 {

25 type zeroGradient;

26 }

27 hull

XII

28 {

29 type zeroGradient;

30 }

31 propTopAndBottom

32 {

33 type zeroGradient;

34 }

35 outlet

36 {

37 type fixedValue;

38 value uniform 0;

39 }

40 propInlet

41 {

42 type zeroGradient;

43 }

44 propOutlet

45 {

46 type zeroGradient;

47 }

48 bottom

49 {

50 type zeroGradient;

51 }

52 }

53 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 arch "LSB;label=32;scalar=64";

6 class volVectorField;

7 location "0";

8 object U;

9 }

10 // * //

11 dimensions [0 1 -1 0 0 0 0];

12 internalField uniform (0 0 0);

13 boundaryField

14 {

15 frontAndBack

16 {

XIII

17 type empty;

18 }

19 top

20 {

21 type zeroGradient;

22 }

23 inlet

24 {

25 type fixedValue;

26 value uniform (0 1 0);

27 }

28 hull

29 {

30 type noSlip;

31 }

32 propTopAndBottom

33 {

34 type slip;

35 }

36 outlet

37 {

38 type zeroGradient;

39 }

40 propInlet

41 {

42 type flowRateInletVelocity;

43 volumetricFlowRate constant -0.001227;

44 value uniform (0 0 0);

45 }

46 propOutlet

47 {

48 type flowRateInletVelocity;

49 volumetricFlowRate constant 0.001227;

50 }

51 bottom

52 {

53 type noSlip;

54 }

55 }

56 // *** //

XIV

C.2 The constant directory

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object transportProperties;

7 }

8 // * //

9 transportModel Newtonian;

10 nu 6.802e-08;

11 rho 1025;

12 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object turbulenceProperties;

7 }

8 // * //

9 simulationType RAS;

10 RAS

11 {

12 RASModel kOmegaSST;

13 turbulence on;

14 printCoeffs on;

15 }

16 // *** //

XV

C.3 The system directory

C.3.1 Used in pimpleFOAM

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object controlDict;

7 }

8 // * //

9 application pimpleFoam;

10 startFrom latestTime;

11 startTime 0;

12 stopAt endTime;

13 endTime 50;

14 deltaT 1e-4;

15 writeControl adjustableRunTime;

16 writeInterval 0.5;

17 purgeWrite 0;

18 writeFormat ascii;

19 writePrecision 7;

20 writeCompression no;

21 timeFormat general;

22 timePrecision 6;

23 runTimeModifiable no;

24 adjustTimeStep no;

25 maxCo 1;

XVI

26 maxDeltaT 1;

27 functions

28 {

29 // #include "relVelocity"

30 forceCoeffs1

31 {

32 // -----------------

33 // Mandatory Entries

34 // -----------------

35 type forceCoeffs;

36 libs ("libforces.so");

37 patches (hull);

38 // ----------------

39 // Optional Entries

40 // ----------------

41 // Field names

42 pName p;

43 Uname U;

44 rho rhoInf;

45 rhoInf 1000;

46 // Reference pressure [Pa]

47 pRef 0;

48 // Porosity effects

49 porosity no;

50 writeControl adjustableRunTime;

51 writeInterval 0.5;

52 // Freestream velocity magnitude [m/s]

53 magUInf 1.00;

54 log true;

55 // Lift direction

56 liftDir (0 0 1);

57 // Drag direction

58 dragDir (0 1 0);

59 // Centre of rotation for moment calculations

60 CofR (0 0 0);

61 // Pitch axis

62 pitchAxis (0 1 0);

63 // Reference length [m]

64 lRef 0.25;

65 // Reference area [m²]
66 Aref 0.025;

67 }

68 }

69 // *** //

1 FoamFile

XVII

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object decomposeParDict;

7 }

8 // * //

9 numberOfSubdomains 10;

10 method scotch;

11 scotchCoeffs

12 {

13 // processorWeights

14 //(

15 // 1

16 // 1

17 // 1

18 // 1

19 //)

20 //writeGraph true;

21 //strategy "b";

22 }

23 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object fvSchemes;

7 }

8 // * //

9 ddtSchemes

10 {

11 default Euler;

12 }

13 gradSchemes

14 {

15 default Gauss linear;

16 }

17 divSchemes

18 {

XVIII

19 default none;

20 div(phi,U) Gauss linearUpwind grad(U);

21 div(U) Gauss linear;

22 div(phi,k) Gauss linearUpwind grad(U);

23 div(phi,omega) Gauss linearUpwind grad(U);

24 div((nuEff*dev2(T(grad(U))))) Gauss linear;

25 }

26 laplacianSchemes

27 {

28 default Gauss linear corrected;

29 }

30 interpolationSchemes

31 {

32 default linear;

33 }

34 snGradSchemes

35 {

36 default corrected;

37 }

38 wallDist

39 {

40 method meshWave;

41 }

42 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object fvSolution;

7 }

8 // * //

9 solvers

10 {

11 "(p|pcorr)"

12 {

13 solver GAMG;

XIX

14 smoother DICGaussSeidel;

15 tolerance 1e-06;

16 relTol 0.1;

17 }

18 "(p|pcorr)Final"

19 {

20 $p;

21 tolerance 1e-06;

22 relTol 0;

23 }

24 "(U|k|omega)"

25 {

26 solver smoothSolver;

27 smoother symGaussSeidel;

28 tolerance 1e-06;

29 relTol 0.1;

30 }

31 "(U|k|omega)Final"

32 {

33 $U;

34 tolerance 1e-06;

35 relTol 0;

36 }

37 }

38 PIMPLE

39 {

40 momentumPredictor yes;

41 nOuterCorrectors 3;

42 nCorrectors 1;

43 nNonOrthogonalCorrectors 0;

44 }

45 // *** //

C.3.2 Used in simpleFOAM

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object controlDict;

XX

7 }

8 // * //

9 application simpleFoam;

10 startFrom latestTime;

11 startTime 0;

12 stopAt endTime;

13 endTime 100;

14 deltaT 1e-4;

15 writeControl adjustableRunTime;

16 writeInterval 0.5;

17 purgeWrite 0;

18 writeFormat ascii;

19 writePrecision 7;

20 writeCompression no;

21 timeFormat general;

22 timePrecision 6;

23 runTimeModifiable no;

24 adjustTimeStep no;

25 maxCo 1;

26 maxDeltaT 1;

27 functions

28 {

29 // #include "relVelocity"

30 forceCoeffs1

31 {

32 // -----------------

33 // Mandatory Entries

34 // -----------------

35 type forceCoeffs;

XXI

36 libs ("libforces.so");

37 patches (hull);

38 // ----------------

39 // Optional Entries

40 // ----------------

41 // Field names

42 pName p;

43 Uname U;

44 rho rhoInf;

45 rhoInf 1000;

46 // Reference pressure [Pa]

47 pRef 0;

48 // Porosity effects

49 porosity no;

50 writeControl adjustableRunTime;

51 writeInterval 0.5;

52 // Freestream velocity magnitude [m/s]

53 magUInf 1.00;

54 log true;

55 // Lift direction

56 liftDir (0 0 1);

57 // Drag direction

58 dragDir (0 1 0);

59 // Centre of rotation for moment calculations

60 CofR (0 0 0);

61 // Pitch axis

62 pitchAxis (0 1 0);

63 // Reference length [m]

64 lRef 0.25;

65 // Reference area [m²]
66 Aref 0.025;

67 }

68 }

69 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object decomposeParDict;

7 }

8 // * //

9 numberOfSubdomains 10;

XXII

10 method scotch;

11 scotchCoeffs

12 {

13 // processorWeights

14 //(

15 // 1

16 // 1

17 // 1

18 // 1

19 //)

20 //writeGraph true;

21 //strategy "b";

22 }

23 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object fvSchemes;

7 }

8 // * //

9 ddtSchemes

10 {

11 default steadyState;

12 }

13 gradSchemes

14 {

15 default Gauss linear;

16 }

17 divSchemes

18 {

19 default none;

20 div(phi,U) bounded Gauss linearUpwindV grad(U);

21 div(U) Gauss linear;

22 div(phi,k) bounded Gauss upwind;

23 div(phi,omega) bounded Gauss upwind;

24 div((nuEff*dev2(T(grad(U))))) Gauss linear;

25 }

XXIII

26 laplacianSchemes

27 {

28 default Gauss linear corrected;

29 }

30 interpolationSchemes

31 {

32 default linear;

33 }

34 snGradSchemes

35 {

36 default corrected;

37 }

38 wallDist

39 {

40 method meshWave;

41 }

42 // *** //

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object fvSolution;

7 }

8 // * //

9 solvers

10 {

11 "(p|pcorr)"

12 {

13 solver GAMG;

14 smoother DICGaussSeidel;

15 tolerance 1e-06;

16 relTol 0.1;

17 }

18 "(p|pcorr)Final"

19 {

20 $p;

21 tolerance 1e-06;

22 relTol 0;

XXIV

23 }

24 "(U|k|omega)"

25 {

26 solver smoothSolver;

27 smoother symGaussSeidel;

28 tolerance 1e-06;

29 relTol 0.1;

30 }

31 "(U|k|omega)Final"

32 {

33 $U;

34 tolerance 1e-06;

35 relTol 0;

36 }

37 }

38 SIMPLE

39 {

40 nNonOrthogonalCorrectors 0;

41 consistent yes;

42 }

43 relaxationFactors

44 {

45 equations

46 {

47 U 0.9;

48 k 0.7;

49 omega 0.7;

50 }

51 }

52 cache

53 {

54 grad(U);

55 }

56 // *** //

XXV

APPENDIX

D

CODES USED IN GMSH

D.1 Mesh of 2D hull with propeller

1 //--

2 // Helpfull function for deciding mesh size

3 //--

4 // a1: mesh size of the first cell

5 // aN: mesh size of the last cell

6 Macro CalExpansionRatio

7 NumGrid = Log(1 - Sn * (1-q) / a0) / Log(q);

8 NumGrid = Round(NumGrid) + 1;

9 aN = a0 * q^(NumGrid - 1);

10 NumNode = NumGrid;

11 Return

12 //--

13 // GMSH project created by Brage Møller-Pettersen

14 //--

15 //--

16 // Original vessel used as a mockup model:

17 // UT 5400 WP vessel range Windfarm Service Operation Vessel (SOV)

18 //--

19 LoA = 82.0; // [m]

20 L_pp = 72.1; // [m]

21 Breadth = 18.0; // [m]

XXVI

22 Draft = 5.0; // [m]

23 thrusterDiameter = 2.5; // [m]

24 currentVelocity = 1.0; // [m/s]

25 turbulenceIntensity = 0.02; // [%]

26 scaleRatio = 1/20; // [-]

27 //--

28 ///////////////////////////////////

29 // Coefficients Deciding Mesh Shape

30 ///////////////////////////////////

31 //+

32 // DoT = Depth/Draft

33 DoT = 1.85;

34 // Radii of curvature in hull corners

35 Radii = 3; // [m] // Must be smaller than draft

36 k = Radii * scaleRatio;

37 ///////////////////////////

38 // Outer points of the hull

39 ///////////////////////////

40 //+

41 yh = Breadth * 0.5 * scaleRatio;

42 zh = Draft * scaleRatio;

43 /////////////

44 // Waterdepth

45 /////////////

46 //+

47 d = DoT*zh;

48 clearance = d - zh;

49 pDia = thrusterDiameter * scaleRatio;

50 outerCoeff = clearance * 0.9;

51 /////////////////////////////

52 // z coordinates from the top

53 /////////////////////////////

54 //+

55 z1 = zh - k;

56 zOut = zh + outerCoeff;

57 ///////////////////////////

58 // y coordinates from inlet

59 ///////////////////////////

60 //+

61 ySt = yh * 4;

62 yEn = yh * 4.5;

63 yOut = yh + outerCoeff;

64 y1 = yh - k;

XXVII

65 //////////////////////////////////////

66 // y & z coordinates for circular arcs

67 //////////////////////////////////////

68 //+

69 Oy = y1;

70 Oz = z1;

71 rh = yh - Oy;

72 rOut = yOut - Oy;

73 //

74 // y & z coordinates for the diagonal line intersecting arcs

75 //

76 //+

77 yd1 = Oy + rh * Sqrt(2) * 0.5; zd1 = Oz + rh * Sqrt(2) * 0.5;

78 yd3 = Oy + rOut * Sqrt(2) * 0.5; zd3 = Oz + rOut * Sqrt(2) * 0.5;

79 yd4 = Oy + (d-z1) * Tan(Pi/4); zd4 = d;

80 //////////////////////////////////////

81 // y & z coordinates for the propeller

82 //////////////////////////////////////

83 //+

84 pRad = pDia * 0.5;

85 pCyl = pDia * 0.2;

86 pDistHull = pDia * 0.25;

87 pY = pCyl * 0.5;

88 pZtop = zh + pDistHull;

89 pZbottom = pZtop + pDia;

90 ///

91 // y & z coordinates for the propeller boundaries

92 ///

93 //+

94 ypT1 = Oy + (pZtop-z1) * Sqrt(2) * 0.5; zpT1 = Oz + (pZtop-z1) *

Sqrt(2) * 0.5;↪→

95 ypT2 = yh + pDistHull;

96 ypB1 = Oy + (pZbottom-z1) * Sqrt(2) * 0.5; zpB1 = Oz + (pZbottom-z1)

* Sqrt(2) * 0.5;↪→

97 ypB2 = yh + pDistHull + pDia;

98 //////////////////////////////////

99 // The Length Of Each Meshing Line

100 //////////////////////////////////

101 //+

102 L_vec = {

103 ySt - yd3, // 0

XXVIII

104 zOut - pZbottom, // 1

105 pZbottom - pZtop, // 2

106 pZtop - zh, // 3

107 yEn - yOut, // 4

108 z1, // 5

109 Pi * 2 * k * 0.125, // 6

110 Pi * 2 * k * 0.125, // 7

111 y1 - pY, // 8

112 pY * 2, // 9

113 y1 - pY, // 10

114 Pi*2*k*0.125, // 11

115 Pi*2*k*0.125, // 12

116 z1, // 13

117 d - zd3 // 14

118 };

119 ///

120 // Calculate Appropriate Number Of Elements

121 ///

122 //+

123 //

124 // Indexes: //

125 // 0 = surface from inlet to outer //

126 // 1 = outer subdomain //

127 // 2 = propeller //

128 // 3 = inner subdomain //

129 // 4 = surface from outlet to outer //

130 // 5 = inlet to top of hull //

131 // 6 = inlet to corner of hull //

132 // 7 = bottom to corner of hull, inlet side //

133 // 8 = bottom to hull, inlet side //

134 // 9 = bottom to hull, propeller //

135 // 10 = bottom to hull, outlet side //

136 // 11 = bottom to corner of hull, outlet side //

137 // 12 = outlet to corner of hull //

138 // 13 = outlet to top of hull //

139 // 14 = inlet to outlet //

140 //

141 // Define the smallest cell side length:

142 meshSizes = { // nCells: id:

143 6.4e-3, // 9966 0

144 3.55e-3, // 24965 1

145 2.25e-3, // 49467 2

146 1.71e-3, // 75149 3

147 1.4e-3, // 100366 4

XXIX

148 1.21e-3, // 124897 5

149 1.06e-3, // 150130 6

150 9.5e-4, // 175046 7

151 8.7e-4, // 199205 8

152 7.99e-4, // 224759 9

153 7.4e-4, // 249700 10

154 4.45e-4, // 499418 11

155 3.27e-4, // 749689 12

156 2.625e-4 // 1000411 13

157 };

158 fine = meshSizes[2];

159 semiFine = fine * 1.25;

160 coarseFine = fine * 1.5;

161 coarse = fine * 2;

162 veryCoarse = fine * 12;

163 /* Suggestion

164 fine = meshSizes[];

165 semiFine = fine * 1.1;

166 coarseFine = semiFine * 1.1;

167 coarse = coarseFine * 1.1;

168 veryCoarse = coarse * 1.1;

169 */

170 cellMin = {

171 veryCoarse, // 0 // Matches largest cell in 1

172 semiFine, // 1 // Matches largest cell in 2

173 semiFine, // 2 // Matches largest cell in 3

174 fine, // 3

175 semiFine, // 4 // Matches largest cell in 1

176 fine, // 5

177 fine, // 6

178 fine, // 7

179 fine, // 8

180 fine, // 9

181 fine, // 10

182 fine, // 11

183 fine, // 12

184 coarseFine, // 13

185 fine // 14

186 };

187 // Define expansion ratios

188 r_exp = {

189 1.1, // 0

190 1.0125, // 1

191 1.0125, // 2

192 1.0125, // 3

XXX

193 1.1, // 4

194 1.025, // 5

195 1, // 6

196 1, // 7

197 1, // 8

198 1, // 9

199 1, // 10

200 1, // 11

201 1, // 12

202 1.025, // 13

203 1 // 14

204 };

205 // Preallocate vectors for largest grid cells and number of nodes

206 cellMax = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

207 nCells = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

208 // 3 = inner subdomain

209 Sn = L_vec[3];

210 q = r_exp[3];

211 a0 = cellMin[3];

212 Call CalExpansionRatio;

213 cellMax[3] = aN;

214 nCells[3] = NumNode;

215 // 2 = propeller

216 Sn = L_vec[2];

217 q = r_exp[2];

218 a0 = cellMax[3]; cellMin[2] = cellMax[3];

219 Call CalExpansionRatio;

220 cellMax[2] = aN;

221 nCells[2] = NumNode;

222 // 1 = outer subdomain

223 Sn = L_vec[1];

224 q = r_exp[1];

225 a0 = cellMax[2]; cellMin[1] = cellMax[2];

226 Call CalExpansionRatio;

227 cellMax[1] = aN;

228 nCells[1] = NumNode;

229 // 0 = surface from inlet to outer

230 Sn = L_vec[0];

231 q = r_exp[0];

232 a0 = cellMax[1]*r_exp[0]; cellMin[0] = cellMax[1]*r_exp[0];

233 Call CalExpansionRatio;

234 cellMax[0] = aN;

235 nCells[0] = NumNode;

XXXI

236 // 4 = surface from outlet to outer

237 Sn = L_vec[4];

238 q = r_exp[4];

239 a0 = cellMax[1]; cellMin[4] = cellMax[1];

240 Call CalExpansionRatio;

241 cellMax[4] = aN;

242 nCells[4] = NumNode;

243 // 5 = inlet to top of hull

244 Sn = L_vec[5];

245 q = r_exp[5];

246 a0 = cellMin[5];

247 Call CalExpansionRatio;

248 cellMax[5] = aN;

249 nCells[5] = NumNode;

250 // 6 = inlet to corner of hull

251 cellMax[6] = cellMin[6];

252 nCells[6] = Round(L_vec[6]/cellMin[6]);

253 // 7 = bottom to corner of hull, inlet side

254 cellMax[7] = cellMin[7];

255 nCells[7] = Round(L_vec[7]/cellMin[7]);

256 // 8 = bottom to hull , inlet side

257 cellMax[8] = cellMin[8];

258 nCells[8] = Round(L_vec[8]/cellMin[8]);

259 // 9 = bottom to hull, propeller

260 cellMax[9] = cellMin[9];

261 nCells[9] = Round(L_vec[9]/cellMin[9]);

262 // 10 = bottom to hull, outlet side

263 cellMax[10] = cellMin[10];

264 nCells[10] = Round(L_vec[10]/cellMin[10]);

265 // 11 = bottom to corner of hull, outlet side

266 cellMax[11] = cellMin[11];

267 nCells[11] = Round(L_vec[11]/cellMin[11]);

268 // 12 = outlet to corner of hull

269 cellMax[12] = cellMin[12];

270 nCells[12] = Round(L_vec[12]/cellMin[12]);

271 // 13 = outlet to top of hull

272 Sn = L_vec[13];

273 q = r_exp[13];

274 a0 = cellMin[13];

XXXII

275 Call CalExpansionRatio;

276 cellMax[13] = aN;

277 nCells[13] = NumNode;

278 // 14 = inlet to outlet

279 cellMin[14] = cellMax[1];

280 cellMax[14] = cellMin[14];

281 nCells[14] = Round(L_vec[14]/cellMin[14]);

282 /* Suggestion

283 Sn = L_vec[14];

284 q = r_exp[14];

285 a0 = cellMax[1]; cellMin[14] = cellMax[1];

286 Call CalExpansionRatio;

287 cellMax[14] = aN;

288 nCells[14] = NumNode;

289 */

290 //--

291 // Points

292 //--

293 //+

294 Point(1) = {0, -yh, 0, 1.0};

295 //+

296 Point(2) = {0, -yh, -z1, 1.0};

297 //+

298 Point(3) = {0, -y1, -zh, 1.0};

299 //+

300 Point(4) = {0, y1, -zh, 1.0};

301 //+

302 Point(5) = {0, yh, -z1, 1.0};

303 //+

304 Point(6) = {0, yh, 0, 1.0};

305 // Second surrounding mesh structure

306 //+

307 Point(7) = {0, -yOut, 0, 1.0};

308 //+

309 Point(8) = {0, -yOut, -z1, 1.0};

310 //+

311 Point(9) = {0, -y1, -zOut, 1.0};

312 //+

313 Point(10) = {0, y1, -zOut, 1.0};

314 //+

315 Point(11) = {0, yOut, -z1, 1.0};

316 //+

317 Point(12) = {0, yOut, 0, 1.0};

XXXIII

318 // Outer borders for the domain

319 //+

320 Point(13) = {0, -ySt, 0, 1.0};

321 //+

322 Point(14) = {0, -ySt, -z1, 1.0};

323 //+

324 Point(15) = {0, -ySt, -d, 1.0};

325 //+

326 Point(16) = {0, yEn, -d, 1.0};

327 //+

328 Point(17) = {0, yEn, -z1, 1.0};

329 //+

330 Point(18) = {0, yEn, 0, 1.0};

331 //+

332 Point(19) = {0, -y1, -d, 1.0};

333 //+

334 Point(20) = {0, y1, -d, 1.0};

335 // origo for circular arcs

336 //+

337 Point(21) = {0, -Oy, -Oz, 1.0};

338 //+

339 Point(22) = {0, Oy, -Oz, 1.0};

340 // Points of intersection with diagonal and arcs

341 //+

342 Point(23) = {0, -yd1, -zd1, 1.0};

343 //+

344 Point(24) = {0, yd1, -zd1, 1.0};

345 //+

346 Point(25) = {0, -yd3, -zd3, 1.0};

347 //+

348 Point(26) = {0, yd3, -zd3, 1.0};

349 //+

350 Point(27) = {0, -yd4, -zd4, 1.0};

351 //+

352 Point(28) = {0, yd4, -zd4, 1.0};

353 //+

354 // Horizontal support for diagonals

355 Point(29) = {0, -ySt, -zd3, 1.0};

356 //+

357 Point(30) = {0, yEn, -zd3, 1.0};

358 //+

359 // Propeller

360 Point(31) = {0, -pY, -pZtop, 1.0};

361 //+

362 Point(32) = {0, pY, -pZtop, 1.0};

363 //+

XXXIV

364 Point(33) = {0, pY, -pZbottom, 1.0};

365 //+

366 Point(34) = {0, -pY, -pZbottom, 1.0};

367 //+

368 // Propeller boundary points

369 Point(35) = {0, -y1, -pZtop, 1.0};

370 Point(36) = {0, -ypT1, -zpT1, 1.0};

371 Point(37) = {0, -ypT2, -z1, 1.0};

372 Point(38) = {0, -ypT2, 0, 1.0};

373 //+

374 Point(39) = {0, y1, -pZtop, 1.0};

375 Point(40) = {0, ypT1, -zpT1, 1.0};

376 Point(41) = {0, ypT2, -z1, 1.0};

377 Point(42) = {0, ypT2, 0, 1.0};

378 //+

379 Point(43) = {0, -y1, -pZbottom, 1.0};

380 Point(44) = {0, -ypB1, -zpB1, 1.0};

381 Point(45) = {0, -ypB2, -z1, 1.0};

382 Point(46) = {0, -ypB2, 0, 1.0};

383 //+

384 Point(47) = {0, y1, -pZbottom, 1.0};

385 Point(48) = {0, ypB1, -zpB1, 1.0};

386 Point(49) = {0, ypB2, -z1, 1.0};

387 Point(50) = {0, ypB2, 0, 1.0};

388 //+

389 Point(51) = {0, -pY, -zh, 1.0};

390 Point(52) = {0, -pY, -zOut, 1.0};

391 Point(53) = {0, -pY, -d, 1.0};

392 //+

393 Point(54) = {0, pY, -zh, 1.0};

394 Point(55) = {0, pY, -zOut, 1.0};

395 Point(56) = {0, pY, -d, 1.0};

396 //--

397 // Lines

398 //--

399 //+

400 Line(1) = {2, 1};

401 //+

402 Circle(2) = {23, 21, 2};

403 //+

404 Circle(3) = {3, 21, 23};

405 //+

406 Line(4) = {51, 3};

407 //+

408 Line(5) = {51, 54};

409 //+

410 Line(6) = {54, 4};

XXXV

411 //+

412 Circle(7) = {4, 22, 24};

413 //+

414 Circle(8) = {24, 22, 5};

415 //+

416 Line(9) = {5, 6};

417 //+

418 Line(10) = {37, 38};

419 //+

420 Circle(11) = {36, 21, 37};

421 //+

422 Circle(12) = {35, 21, 36};

423 //+

424 Line(13) = {31, 35};

425 //+

426 Line(14) = {31, 32};

427 //+

428 Line(15) = {32, 39};

429 //+

430 Circle(16) = {39, 22, 40};

431 //+

432 Circle(17) = {40, 22, 41};

433 //+

434 Line(18) = {41, 42};

435 //+

436 Line(19) = {45, 46};

437 //+

438 Circle(20) = {44, 21, 45};

439 //+

440 Circle(21) = {43, 21, 44};

441 //+

442 Line(22) = {34, 43};

443 //+

444 Line(23) = {34, 33};

445 //+

446 Line(24) = {33, 47};

447 //+

448 Circle(25) = {47, 22, 48};

449 //+

450 Circle(26) = {48, 22, 49};

451 //+

452 Line(27) = {49, 50};

453 //+

454 Line(28) = {8, 7};

455 //+

456 Circle(29) = {25, 21, 8};

457 //+

458 Circle(30) = {9, 21, 25};

XXXVI

459 //+

460 Line(31) = {52, 9};

461 //+

462 Line(32) = {52, 55};

463 //+

464 Line(33) = {55, 10};

465 //+

466 Circle(34) = {10, 22, 26};

467 //+

468 Circle(35) = {26, 22, 11};

469 //+

470 Line(36) = {11, 12};

471 //+

472 Line(37) = {14, 13};

473 //+

474 Line(38) = {29, 14};

475 //+

476 Line(39) = {29, 15};

477 //+

478 Line(40) = {27, 15};

479 //+

480 Line(41) = {19, 27};

481 //+

482 Line(42) = {53, 19};

483 //+

484 Line(43) = {53, 56};

485 //+

486 Line(44) = {56, 20};

487 //+

488 Line(45) = {20, 28};

489 //+

490 Line(46) = {28, 16};

491 //+

492 Line(47) = {30, 16};

493 //+

494 Line(48) = {30, 17};

495 //+

496 Line(49) = {17, 18};

497 //+

498 Line(50) = {1, 38};

499 //+

500 Line(51) = {2, 37};

501 //+

502 Line(52) = {23, 36};

503 //+

504 Line(53) = {3, 35};

505 //+

506 Line(54) = {51, 31};

XXXVII

507 //+

508 Line(55) = {54, 32};

509 //+

510 Line(56) = {4, 39};

511 //+

512 Line(57) = {24, 40};

513 //+

514 Line(58) = {5, 41};

515 //+

516 Line(59) = {6, 42};

517 //+

518 Line(60) = {38, 46};

519 //+

520 Line(61) = {37, 45};

521 //+

522 Line(62) = {36, 44};

523 //+

524 Line(63) = {35, 43};

525 //+

526 Line(64) = {31, 34};

527 //+

528 Line(65) = {32, 33};

529 //+

530 Line(66) = {39, 47};

531 //+

532 Line(67) = {40, 48};

533 //+

534 Line(68) = {41, 49};

535 //+

536 Line(69) = {42, 50};

537 //+

538 Line(70) = {46, 7};

539 //+

540 Line(71) = {45, 8};

541 //+

542 Line(72) = {44, 25};

543 //+

544 Line(73) = {43, 9};

545 //+

546 Line(74) = {34, 52};

547 //+

548 Line(75) = {33, 55};

549 //+

550 Line(76) = {47, 10};

551 //+

552 Line(77) = {48, 26};

553 //+

554 Line(78) = {49, 11};

XXXVIII

555 //+

556 Line(79) = {50, 12};

557 //+

558 Line(80) = {7, 13};

559 //+

560 Line(81) = {8, 14};

561 //+

562 Line(82) = {25, 29};

563 //+

564 Line(83) = {25, 27};

565 //+

566 Line(84) = {9, 19};

567 //+

568 Line(85) = {52, 53};

569 //+

570 Line(86) = {55, 56};

571 //+

572 Line(87) = {10, 20};

573 //+

574 Line(88) = {26, 28};

575 //+

576 Line(89) = {26, 30};

577 //+

578 Line(90) = {11, 17};

579 //+

580 Line(91) = {12, 18};

581 ///

582 // Set number of elements along the lines

583 ///

584 //+

585 // 0 = surface from inlet to outer

586 Transfinite Curve {80, 81, 82, 40} = nCells[0]-1 Using Progression

r_exp[0];↪→

587 //+

588 // 1 = outer subdomain

589 Transfinite Curve {70, 71, 72, 73, 74, 75, 76, 77, 78, 79} =

nCells[1] Using Progression r_exp[1];↪→

590 //+

591 // 2 = propeller

592 Transfinite Curve {60, 61, 62, 63, 64, 65, 66, 67, 68, 69} =

nCells[2]-1 Using Progression r_exp[2];↪→

593 //+

594 // 3 = inner subdomain

595 Transfinite Curve {50, 51, 52, 53, 54, 55, 56, 57, 58, 59} =

nCells[3]-1 Using Progression r_exp[3];↪→

596 //+

597 // 4 = surface from outlet to outer

XXXIX

598 Transfinite Curve {91, 90, 89, 46} = nCells[4]-1 Using Progression

r_exp[4];↪→

599 //+

600 // 5 = inlet to top of hull

601 Transfinite Curve {1, 10, 19, 28, 37} = nCells[5]-1 Using Progression

r_exp[5];↪→

602 //+

603 // 6 = inlet to corner of hull

604 Transfinite Curve {2, 11, 20, 29, 38} = nCells[6] Using Progression

r_exp[6];↪→

605 //+

606 // 7 = bottom to corner of hull, inlet side

607 Transfinite Curve {3, 12, 21, 30, 41} = nCells[7] Using Progression

r_exp[7];↪→

608 //+

609 // 8 = bottom to hull , inlet side

610 Transfinite Curve {4, 13, 22, 31, 42} = nCells[8] Using Progression

r_exp[8];↪→

611 //+

612 // 9 = bottom to hull, propeller

613 Transfinite Curve {5, 14, 23, 32, 43} = nCells[9] Using Progression

r_exp[9];↪→

614 //+

615 // 10 = bottom to hull, outlet side

616 Transfinite Curve {6, 15, 24, 33, 44} = nCells[10] Using Progression

r_exp[10];↪→

617 //+

618 // 11 = bottom to corner of hull, outlet side

619 Transfinite Curve {7, 16, 25, 34, 45} = nCells[11] Using Progression

r_exp[11];↪→

620 //+

621 // 12 = outlet to corner of hull

622 Transfinite Curve {8, 17, 26, 35, 48} = nCells[12] Using Progression

r_exp[12];↪→

623 //+

624 // 13 = outlet to top of hull

625 Transfinite Curve {9, 18, 27, 36, 49} = nCells[13]-1 Using

Progression r_exp[13];↪→

626 //+

627 // 14 = inlet to outlet

628 Transfinite Curve {47, 88, 87, 86, 85, 84, 83, 39} = nCells[14] Using

Progression r_exp[14];↪→

629 //--

630 // Set Surfaces

631 //--

632 //+

633 Curve Loop(1) = {1, 50, -10, -51};

XL

634 Plane Surface(1) = {1};

635 Transfinite Surface {1};

636 Recombine Surface {1};

637 //+

638 Curve Loop(2) = {51, -11, -52, 2};

639 Plane Surface(2) = {2};

640 Transfinite Surface {2};

641 Recombine Surface {2};

642 //+

643 Curve Loop(3) = {3, 52, -12, -53};

644 Plane Surface(3) = {3};

645 Transfinite Surface {3};

646 Recombine Surface {3};

647 //+

648 Curve Loop(4) = {4, 53, -13, -54};

649 Plane Surface(4) = {4};

650 Transfinite Surface {4};

651 Recombine Surface {4};

652 //+

653 Curve Loop(5) = {5, 55, -14, -54};

654 Plane Surface(5) = {5};

655 Transfinite Surface {5};

656 Recombine Surface {5};

657 //+

658 Curve Loop(6) = {6, 56, -15, -55};

659 Plane Surface(6) = {6};

660 Transfinite Surface {6};

661 Recombine Surface {6};

662 //+

663 Curve Loop(7) = {7, 57, -16, -56};

664 Plane Surface(7) = {7};

665 Transfinite Surface {7};

666 Recombine Surface {7};

667 //+

668 Curve Loop(8) = {8, 58, -17, -57};

669 Plane Surface(8) = {8};

670 Transfinite Surface {8};

671 Recombine Surface {8};

672 //+

673 Curve Loop(9) = {59, -18, -58, 9};

674 Plane Surface(9) = {9};

675 Transfinite Surface {9};

676 Recombine Surface {9};

677 //+

678 Curve Loop(10) = {69, -27, -68, 18};

679 Plane Surface(10) = {10};

680 Transfinite Surface {10};

681 Recombine Surface {10};

XLI

682 //+

683 Curve Loop(11) = {60, -19, -61, 10};

684 Plane Surface(11) = {11};

685 Transfinite Surface {11};

686 Recombine Surface {11};

687 //+

688 Curve Loop(12) = {61, -20, -62, 11};

689 Plane Surface(12) = {12};

690 Transfinite Surface {12};

691 Recombine Surface {12};

692 //+

693 Curve Loop(13) = {12, 62, -21, -63};

694 Plane Surface(13) = {13};

695 Transfinite Surface {13};

696 Recombine Surface {13};

697 //+

698 Curve Loop(14) = {13, 63, -22, -64};

699 Plane Surface(14) = {14};

700 Transfinite Surface {14};

701 Recombine Surface {14};

702 //+

703 Curve Loop(15) = {14, 65, -23, -64};

704 Plane Surface(15) = {15};

705 Transfinite Surface {15};

706 Recombine Surface {15};

707 //+

708 Curve Loop(16) = {15, 66, -24, -65};

709 Plane Surface(16) = {16};

710 Transfinite Surface {16};

711 Recombine Surface {16};

712 //+

713 Curve Loop(17) = {16, 67, -25, -66};

714 Plane Surface(17) = {17};

715 Transfinite Surface {17};

716 Recombine Surface {17};

717 //+

718 Curve Loop(18) = {68, -26, -67, 17};

719 Plane Surface(18) = {18};

720 Transfinite Surface {18};

721 Recombine Surface {18};

722 //+

723 Curve Loop(19) = {70, -28, -71, 19};

724 Plane Surface(19) = {19};

725 Transfinite Surface {19};

726 Recombine Surface {19};

727 //+

728 Curve Loop(20) = {71, -29, -72, 20};

729 Plane Surface(20) = {20};

XLII

730 Transfinite Surface {20};

731 Recombine Surface {20};

732 //+

733 Curve Loop(21) = {21, 72, -30, -73};

734 Plane Surface(21) = {21};

735 Transfinite Surface {21};

736 Recombine Surface {21};

737 //+

738 Curve Loop(22) = {22, 73, -31, -74};

739 Plane Surface(22) = {22};

740 Transfinite Surface {22};

741 Recombine Surface {22};

742 //+

743 Curve Loop(23) = {23, 75, -32, -74};

744 Plane Surface(23) = {23};

745 Transfinite Surface {23};

746 Recombine Surface {23};

747 //+

748 Curve Loop(24) = {24, 76, -33, -75};

749 Plane Surface(24) = {24};

750 Transfinite Surface {24};

751 Recombine Surface {24};

752 //+

753 Curve Loop(25) = {25, 77, -34, -76};

754 Plane Surface(25) = {25};

755 Transfinite Surface {25};

756 Recombine Surface {25};

757 //+

758 Curve Loop(26) = {78, -35, -77, 26};

759 Plane Surface(26) = {26};

760 Transfinite Surface {26};

761 Recombine Surface {26};

762 //+

763 Curve Loop(27) = {79, -36, -78, 27};

764 Plane Surface(27) = {27};

765 Transfinite Surface {27};

766 Recombine Surface {27};

767 //+

768 Curve Loop(28) = {80, -37, -81, 28};

769 Plane Surface(28) = {28};

770 Transfinite Surface {28};

771 Recombine Surface {28};

772 //+

773 Curve Loop(29) = {81, -38, -82, 29};

774 Plane Surface(29) = {29};

775 Transfinite Surface {29};

776 Recombine Surface {29};

777 //+

XLIII

778 Curve Loop(30) = {82, 39, -40, -83};

779 Plane Surface(30) = {30};

780 Transfinite Surface {30};

781 Recombine Surface {30};

782 //+

783 Curve Loop(31) = {30, 83, -41, -84};

784 Plane Surface(31) = {31};

785 Transfinite Surface {31};

786 Recombine Surface {31};

787 //+

788 Curve Loop(32) = {31, 84, -42, -85};

789 Plane Surface(32) = {32};

790 Transfinite Surface {32};

791 Recombine Surface {32};

792 //+

793 Curve Loop(33) = {32, 86, -43, -85};

794 Plane Surface(33) = {33};

795 Transfinite Surface {33};

796 Recombine Surface {33};

797 //+

798 Curve Loop(34) = {33, 87, -44, -86};

799 Plane Surface(34) = {34};

800 Transfinite Surface {34};

801 Recombine Surface {34};

802 //+

803 Curve Loop(35) = {34, 88, -45, -87};

804 Plane Surface(35) = {35};

805 Transfinite Surface {35};

806 Recombine Surface {35};

807 //+

808 Curve Loop(36) = {89, 47, -46, -88};

809 Plane Surface(36) = {36};

810 Transfinite Surface {36};

811 Recombine Surface {36};

812 //+

813 Curve Loop(37) = {90, -48, -89, 35};

814 Plane Surface(37) = {37};

815 Transfinite Surface {37};

816 Recombine Surface {37};

817 //+

818 Curve Loop(38) = {91, -49, -90, 36};

819 Plane Surface(38) = {38};

820 Transfinite Surface {38};

821 Recombine Surface {38};

822 //--

823 // Extrude Surfaces

XLIV

824 //--

825 //+

826 Extrude {-0.1, 0, 0} {

827 Surface{1}; Surface{2}; Surface{3}; Surface{4};

828 Surface{5}; Surface{6}; Surface{7}; Surface{8};

829 Surface{9}; Surface{10}; Surface{11}; Surface{12};

830 Surface{13}; Surface{14}; Surface{15}; Surface{16};

831 Surface{17}; Surface{18}; Surface{19}; Surface{20};

832 Surface{21}; Surface{22}; Surface{23}; Surface{24};

833 Surface{25}; Surface{26}; Surface{27}; Surface{28};

834 Surface{29}; Surface{30}; Surface{31}; Surface{32};

835 Surface{33}; Surface{34}; Surface{35}; Surface{36};

836 Surface{37}; Surface{38};

837 Layers {1};

838 Recombine;

839 }

840 //--

841 // Classify Boundaries

842 //--

843 //+

844 Physical Surface("frontAndBack", 928) = {

845 707, 28, 729, 29, 751, 30, 19, 509,

846 20, 531, 21, 553, 31, 773, 12, 355,

847 11, 333, 113, 1, 135, 2, 3, 157,

848 13, 377, 4, 179, 399, 14, 22, 575,

849 32, 795, 5, 201, 15, 421, 23, 597,

850 33, 817, 6, 223, 16, 443, 24, 619,

851 34, 839, 245, 7, 17, 465, 25, 641,

852 861, 35, 267, 8, 487, 18, 26, 663,

853 37, 905, 883, 36, 289, 9, 311, 10,

854 685, 27, 38, 927

855 };

856 //+

857 Physical Surface("inlet", 929) = {

858 742, 720, 698

859 };

860 //+

861 Physical Surface("outlet", 930) = {

862 874, 896, 918

863 };

864 //+

865 Physical Surface("top", 931) = {

866 914, 672, 298, 276, 104, 320, 496, 694

867 };

868 //+

869 Physical Surface("bottom", 932) = {

870 746, 768, 790, 812, 834, 856, 878

XLV

871 };

872 //+

873 Physical Surface("hull", 933) = {

874 288, 254, 232, 210, 188, 166, 144, 134, 100

875 };

876 //+

877 Physical Surface("propInlet", 934) = {

878 398

879 };

880 //+

881 Physical Surface("propOutlet", 935) = {

882 412

883 };

884 //+

885 Physical Surface("propTopAndBottom", 936) = {

886 196, 416

887 };

888 //--

889 // Create Volume

890 //--

891 //+

892 Physical Volume("internalField", 937) = {

893 1, 2, 3, 4, 5, 6, 7, 8,

894 9, 10, 11, 12, 13, 14, 16, 17,

895 18, 19, 20, 21, 22, 23, 24, 25,

896 26, 27, 28, 29, 30, 31, 32, 33,

897 34, 35, 36, 37, 38

898 };

899 //--

900 // Engage Meshing In GUI

901 //--

902 //+

903 Mesh 3;

D.2 Mesh of 2D hull

1 //--//

2 // Helpfull function for deciding mesh size //

3 //--//

4 // a1: mesh size of the first cell

5 // aN: mesh size of the last cell

6 Macro CalExpansionRatio

7 NumGrid = Log(1 - Sn * (1-q) / a0) / Log(q);

XLVI

8 NumGrid = Round(NumGrid) + 1;

9 aN = a0 * q^(NumGrid - 1);

10 NumNode = NumGrid;

11 Return

12 //--//

13 // GMSH project created by Brage Møller-Pettersen //

14 //--//

15 //--

16 // Original vessel used as a mockup model:

17 // UT 5400 WP vessel range Windfarm Service Operation

Vessel (SOV)↪→

18 //--

19 LoA = 82.0; // [m]

20 L_pp = 72.1; // [m]

21 Breadth = 18.0; // [m]

22 Draft = 5.0; // [m]

23 thrusterDiameter = 2.5; // [m]

24 currentVelocity = 1.0; // [m/s]

25 turbulenceIntensity = 0.02; // [%]

26 scaleRatio = 1/20; // [-]

27 //--

28 ///////////////////////////////////

29 // Coefficients Deciding Mesh Shape

30 ///////////////////////////////////

31 //+

32 // DoT = Depth/Draft

33 DoT = 3;

34 // Radii of curvature in hull corners

35 Radii = 1; // [m] // Must be

smaller than draft↪→

36 k = Radii * scaleRatio;

37 ///////////////////////////

38 // Outer points of the hull

39 ///////////////////////////

40 //+

41 yh = Breadth * 0.5 * scaleRatio;

42 zh = Draft * scaleRatio;

43 /////////////

44 // Waterdepth

45 /////////////

46 //+

47 d = DoT*zh; clearance = d - zh;

XLVII

48 pDia = thrusterDiameter * scaleRatio;

49 outerCoeff = clearance * 0.9;

50 /////////////////////////////

51 // z coordinates from the top

52 /////////////////////////////

53 //+

54 z1 = zh - k;

55 zInn = zh + clearance*0.3; zOut = zh + outerCoeff;

56 ///////////////////////////

57 // y coordinates from inlet

58 ///////////////////////////

59 //+

60 ySt = yh * 4; yEn = yh * 4.5;

61 yInn = yh + clearance*0.3; yOut = yh + outerCoeff;

62 y1 = yh - k;

63 //////////////////////////////////////

64 // y & z coordinates for circular arcs

65 //////////////////////////////////////

66 //+

67 Oy = y1;

68 Oz = z1;

69 rh = yh - Oy;

70 rInn = yInn - Oy;

71 rOut = yOut - Oy;

72 //

73 // y & z coordinates for the diagonal line intersecting arcs

74 //

75 //+

76 yd1 = Oy + rh * Sqrt(2) * 0.5;

77 zd1 = Oz + rh * Sqrt(2) * 0.5;

78 yd2 = Oy + rInn * Sqrt(2) * 0.5;

79 zd2 = Oz + rInn * Sqrt(2) * 0.5;

80 yd3 = Oy + rOut * Sqrt(2) * 0.5;

81 zd3 = Oz + rOut * Sqrt(2) * 0.5;

82 yd4 = Oy + (d-z1) * Tan(Pi/4);

83 zd4 = d;

84 //////////////////////////////////

85 // The Length Of Each Meshing Line

86 //////////////////////////////////

87 //+

88 L_vec = {

89 ySt - yd3, // 0

90 yOut - yInn, // 1

XLVIII

91 yInn - yh, // 2

92 yEn - yOut, // 3

93 z1, // 4

94 Pi * 2 * k * 0.125, // 5

95 Pi * 2 * k * 0.125, // 6

96 2 * y1, // 7

97 Pi * 2 * k * 0.125, // 8

98 Pi * 2 * k * 0.125, // 9

99 z1, // 10

100 d - zd3 // 11

101 };

102 ///

103 // Calculate Appropriate Number Of Elements

104 ///

105 //+

106 //

107 // Indexes: //

108 // 0 = Surface to bottom inlet side //

109 // 1 = Outer subdomain //

110 // 2 = Inner subdomain //

111 // 3 = Surface to bottom outlet side //

112 // 4 = Inlet to top of hull //

113 // 5 = Inlet to corner of hull //

114 // 6 = bottom to corner of hull inlet side //

115 // 7 = bottom to hull //

116 // 8 = bottom to corner of hull outlet side //

117 // 9 = Outlet to corner of hull //

118 // 10 = Outlet to top of hull //

119 // 11 = Inlet to outlet //

120 //

121 // Define the smallest cell side length:

122 meshSizes = { // nCells: id:

123 6.04e-3, // 10076 0

124 3.4e-3, // 24943 1

125 2.15e-3, // 50399 2

126 1.64e-3, // 75485 3

127 1.36e-3, // 99550 4

128 1.17e-3, // 124598 5

129 1.03e-3, // 149216 6

130 9.23e-4, // 174446 7

131 8.41e-4, // 200013 8

132 7.74e-4, // 225075 9

133 7.17e-4, // 250218 10

134 4.32e-4, // 500075 11

135 3.19e-4, // 749268 12

XLIX

136 2.56e-4 // 1001452 13

137 };

138 fine = meshSizes[4];

139 semiFine = fine * 1.25;

140 coarseFine = fine * 1.5;

141 coarse = fine * 2;

142 veryCoarse = fine * 12;

143 /* Suggestion

144 fine = meshSizes[];

145 semiFine = fine * 1.1;

146 coarseFine = semiFine * 1.1;

147 coarse = coarseFine * 1.1;

148 veryCoarse = coarse * 1.1;

149 */

150 cellMin = {

151 veryCoarse, // 0 // Matches largest cell in 1

152 semiFine, // 1 // Matches largest cell in 2

153 semiFine, // 2 // Matches largest cell in 3

154 fine, // 3

155 semiFine, // 4 // Matches largest cell in 1

156 fine, // 5

157 fine, // 6

158 fine, // 7

159 fine, // 8

160 fine, // 9

161 fine, // 10

162 fine, // 11

163 fine, // 12

164 coarseFine, // 13

165 fine // 14

166 };

167 // Define expansion ratios

168 r_exp = {

169 1.1, // 0

170 1.0125, // 1

171 1.0125, // 2

172 1.1, // 3

173 1.025, // 4

174 1, // 5

175 1, // 6

176 1, // 7

177 1, // 8

178 1, // 9

179 1.025, // 10

180 1 // 11

L

181 };

182 // Preallocate vectors for largest grid cells and number of nodes

183 cellMax = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

184 nCells = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

185 // 2 = Inner subdomain

186 Sn = L_vec[2];

187 q = r_exp[2];

188 a0 = cellMin[2];

189 Call CalExpansionRatio;

190 cellMax[2] = aN;

191 nCells[2] = NumNode;

192 // 1 = Outer subdomain

193 Sn = L_vec[1];

194 q = r_exp[1];

195 a0 = cellMax[2]; cellMin[1] = cellMax[2];

196 Call CalExpansionRatio;

197 cellMax[1] = aN;

198 nCells[1] = NumNode;

199 // 0 = Surface to bottom inlet side

200 Sn = L_vec[0];

201 q = r_exp[0];

202 a0 = cellMax[1]; cellMin[0] = cellMax[1];

203 Call CalExpansionRatio;

204 cellMax[0] = aN;

205 nCells[0] = NumNode;

206 // 3 = Surface to bottom outlet side

207 Sn = L_vec[3];

208 q = r_exp[3];

209 a0 = cellMax[1]; cellMin[3] = cellMax[1];

210 Call CalExpansionRatio;

211 cellMax[3] = aN;

212 nCells[3] = NumNode;

213 // 4 = Inlet to top of hull

214 Sn = L_vec[4];

215 q = r_exp[4];

216 a0 = cellMin[4];

217 Call CalExpansionRatio;

218 cellMax[4] = aN;

219 nCells[4] = NumNode;

220 // 5 = Inlet to corner of hull

221 cellMax[5] = cellMin[5];

222 nCells[5] = Round(L_vec[5]/cellMin[5]);

LI

223 // 6 = bottom to corner of hull inlet side

224 cellMax[6] = cellMin[6];

225 nCells[6] = Round(L_vec[6]/cellMin[6]);

226 // 7 = bottom to hull

227 cellMax[7] = cellMin[7];

228 nCells[7] = Round(L_vec[7]/cellMin[7]);

229 // 8 = bottom to corner of hull outlet side

230 cellMax[8] = cellMin[8];

231 nCells[8] = Round(L_vec[8]/cellMin[8]);

232 // 9 = Outlet to corner of hull

233 cellMax[9] = cellMin[9];

234 nCells[9] = Round(L_vec[9]/cellMin[9]);

235 // 10 = Outlet to top of hull

236 Sn = L_vec[10];

237 q = r_exp[10];

238 a0 = cellMin[10];

239 Call CalExpansionRatio;

240 cellMax[10] = aN;

241 nCells[10] = NumNode;

242 // 11 = Inlet to outlet

243 cellMin[11] = cellMax[1];

244 cellMax[11] = cellMin[11];

245 nCells[11] = Round(L_vec[11]/cellMin[11]);

246 //--

247 // Points

248 //--

249 //+

250 Point(1) = {0, -yh, 0, 1.0};

251 //+

252 Point(2) = {0, -yh, -z1, 1.0};

253 //+

254 Point(3) = {0, -y1, -zh, 1.0};

255 //+

256 Point(4) = {0, y1, -zh, 1.0};

257 //+

258 Point(5) = {0, yh, -z1, 1.0};

259 //+

260 Point(6) = {0, yh, 0, 1.0};

261 // First surrounding mesh structure

262 //+

LII

263 Point(7) = {0, -yInn, 0, 1.0};

264 //+

265 Point(8) = {0, -yInn, -z1, 1.0};

266 //+

267 Point(9) = {0, -yd2, -zd2, 1.0};

268 //+

269 Point(10) = {0, -y1, -zInn, 1.0};

270 //+

271 Point(11) = {0, y1, -zInn, 1.0};

272 //+

273 Point(12) = {0, yd2, -zd2, 1.0};

274 //+

275 Point(13) = {0, yInn, -z1, 1.0};

276 //+

277 Point(14) = {0, yInn, 0, 1.0};

278 // Second surrounding mesh structure

279 //+

280 Point(15) = {0, -yOut, 0, 1.0};

281 //+

282 Point(16) = {0, -yOut, -z1, 1.0};

283 //+

284 Point(17) = {0, -y1, -zOut, 1.0};

285 //+

286 Point(18) = {0, y1, -zOut, 1.0};

287 //+

288 Point(19) = {0, yOut, -z1, 1.0};

289 //+

290 Point(20) = {0, yOut, 0, 1.0};

291 // Outer borders for the domain

292 //+

293 Point(21) = {0, -ySt, 0, 1.0};

294 //+

295 Point(22) = {0, -ySt, -z1, 1.0};

296 //+

297 Point(23) = {0, -ySt, -d, 1.0};

298 //+

299 Point(24) = {0, yEn, -d, 1.0};

300 //+

301 Point(25) = {0, yEn, -z1, 1.0};

302 //+

303 Point(26) = {0, yEn, 0, 1.0};

304 //+

305 Point(27) = {0, -y1, -d, 1.0};

306 //+

307 Point(28) = {0, y1, -d, 1.0};

LIII

308 // origo for circular arcs

309 //+

310 Point(29) = {0, -Oy, -Oz, 1.0};

311 //+

312 Point(30) = {0, Oy, -Oz, 1.0};

313 // Points of intersection with diagonal and arcs

314 //+

315 Point(31) = {0, -yd1, -zd1, 1.0};

316 //+

317 Point(32) = {0, yd1, -zd1, 1.0};

318 //+

319 Point(33) = {0, -yd3, -zd3, 1.0};

320 //+

321 Point(34) = {0, yd3, -zd3, 1.0};

322 //+

323 Point(35) = {0, -yd4, -zd4, 1.0};

324 //+

325 Point(36) = {0, yd4, -zd4, 1.0};

326 //+

327 // Horizontal support for diagonals

328 Point(37) = {0, -ySt, -zd3, 1.0};

329 //+

330 Point(38) = {0, yEn, -zd3, 1.0};

331 //+

332 //--

333 // Lines

334 //--

335 //+

336 Line(1) = {2, 1};

337 //+

338 Circle(2) = {31, 29, 2};

339 //+

340 Circle(3) = {3, 29, 31};

341 //+

342 Line(4) = {3, 4};

343 //+

344 Circle(5) = {4, 30, 32};

345 //+

346 Circle(6) = {32, 30, 5};

347 //+

348 Line(7) = {5, 6};

349 //+

350 Line(8) = {8, 7};

351 //+

352 Circle(9) = {9, 29, 8};

353 //+

LIV

354 Circle(10) = {10, 29, 9};

355 //+

356 Line(11) = {10, 11};

357 //+

358 Circle(12) = {11, 30, 12};

359 //+

360 Circle(13) = {12, 30, 13};

361 //+

362 Line(14) = {13, 14};

363 //+

364 Line(15) = {16, 15};

365 //+

366 Circle(16) = {33, 29, 16};

367 //+

368 Circle(17) = {17, 29, 33};

369 //+

370 Line(18) = {17, 18};

371 //+

372 Circle(19) = {18, 30, 34};

373 //+

374 Circle(20) = {34, 30, 19};

375 //+

376 Line(21) = {19, 20};

377 //+

378 Line(22) = {1, 7};

379 //+

380 Line(23) = {2, 8};

381 //+

382 Line(24) = {31, 9};

383 //+

384 Line(25) = {3, 10};

385 //+

386 Line(26) = {4, 11};

387 //+

388 Line(27) = {32, 12};

389 //+

390 Line(28) = {5, 13};

391 //+

392 Line(29) = {6, 14};

393 //+

394 Line(30) = {7, 15};

395 //+

396 Line(31) = {8, 16};

397 //+

398 Line(32) = {9, 33};

399 //+

400 Line(33) = {10, 17};

401 //+

LV

402 Line(34) = {11, 18};

403 //+

404 Line(35) = {12, 34};

405 //+

406 Line(36) = {13, 19};

407 //+

408 Line(37) = {14, 20};

409 //+

410 Line(38) = {15, 21};

411 //+

412 Line(39) = {16, 22};

413 //+

414 Line(40) = {33, 37};

415 //+

416 Line(41) = {33, 35};

417 //+

418 Line(42) = {17, 27};

419 //+

420 Line(43) = {18, 28};

421 //+

422 Line(44) = {34, 36};

423 //+

424 Line(45) = {34, 38};

425 //+

426 Line(46) = {19, 25};

427 //+

428 Line(47) = {20, 26};

429 //+

430 Line(48) = {23, 37};

431 //+

432 Line(49) = {37, 22};

433 //+

434 Line(50) = {22, 21};

435 //+

436 Line(51) = {24, 38};

437 //+

438 Line(52) = {38, 25};

439 //+

440 Line(53) = {25, 26};

441 //+

442 Line(54) = {35, 23};

443 //+

444 Line(55) = {27, 35};

445 //+

446 Line(56) = {27, 28};

447 //+

448 Line(57) = {28, 36};

449 //+

LVI

450 Line(58) = {36, 24};

451 ///

452 // Set number of elements along the lines

453 ///

454 //+

455 // 0 = Surface to bottom inlet side

456 Transfinite Curve {38, 39, 40, 54} = nCells[0]-1 Using Progression

r_exp[0];↪→

457 //+

458 // 1 = Outer subdomain

459 Transfinite Curve {30, 31, 32, 33, 34, 35, 36, 37} = nCells[1]-1

Using Progression r_exp[1];↪→

460 //+

461 // 2 = Inner subdomain

462 Transfinite Curve {22, 23, 24, 25, 26, 27, 28, 29} = nCells[2]-1

Using Progression r_exp[2];↪→

463 //+

464 // 3 = Surface to bottom outlet side

465 Transfinite Curve {47, 46, 45, 58} = nCells[3]-1 Using Progression

r_exp[3];↪→

466 //+

467 // 4 = Inlet to top of hull

468 Transfinite Curve {1, 8, 15, 50} = nCells[4]-1 Using Progression

r_exp[4];↪→

469 //+

470 // 5 = Inlet to corner of hull

471 Transfinite Curve {2, 9, 16, 49} = nCells[5] Using Progression

r_exp[5];↪→

472 //+

473 // 6 = bottom to hull inlet side

474 Transfinite Curve {3, 10, 17, 55} = nCells[6] Using Progression

r_exp[6];↪→

475 //+

476 // 7 = bottom to hull

477 Transfinite Curve {4, 11, 18, 56} = nCells[7] Using Progression

r_exp[7];↪→

478 //+

479 // 8 = bottom to hull outlet side

480 Transfinite Curve {5, 12, 19, 57} = nCells[8] Using Progression

r_exp[8];↪→

481 //+

482 // 9 = Outlet to corner of hull

483 Transfinite Curve {6, 13, 20, 52} = nCells[9] Using Progression

r_exp[9];↪→

484 //+

485 // 10 = Outlet to top of hull

LVII

486 Transfinite Curve {7, 14, 21, 53} = nCells[10]-1 Using Progression

r_exp[10];↪→

487 //+

488 // 11 = Inlet to outlet

489 Transfinite Curve {48, 41, 42, 43, 44, 51} = nCells[11] Using

Progression r_exp[11];↪→

490 //--

491 // Set Surfaces

492 //--

493 //+

494 Curve Loop(1) = {22, -8, -23, 1};

495 Plane Surface(1) = {1};

496 Transfinite Surface {1};

497 Recombine Surface {1};

498 //+

499 Curve Loop(2) = {23, -9, -24, 2};

500 Plane Surface(2) = {2};

501 Transfinite Surface {2};

502 Recombine Surface {2};

503 //+

504 Curve Loop(3) = {3, 24, -10, -25};

505 Plane Surface(3) = {3};

506 Transfinite Surface {3};

507 Recombine Surface {3};

508 //+

509 Curve Loop(4) = {4, 26, -11, -25};

510 Plane Surface(4) = {4};

511 Transfinite Surface {4};

512 Recombine Surface {4};

513 //+

514 Curve Loop(5) = {5, 27, -12, -26};

515 Plane Surface(5) = {5};

516 Transfinite Surface {5};

517 Recombine Surface {5};

518 //+

519 Curve Loop(6) = {6, 28, -13, -27};

520 Plane Surface(6) = {6};

521 Transfinite Surface {6};

522 Recombine Surface {6};

523 //+

524 Curve Loop(7) = {29, -14, -28, 7};

525 Plane Surface(7) = {7};

526 Transfinite Surface {7};

527 Recombine Surface {7};

528 //+

529 Curve Loop(8) = {30, -15, -31, 8};

530 Plane Surface(8) = {8};

LVIII

531 Transfinite Surface {8};

532 Recombine Surface {8};

533 //+

534 Curve Loop(9) = {9, 31, -16, -32};

535 Plane Surface(9) = {9};

536 Transfinite Surface {9};

537 Recombine Surface {9};

538 //+

539 Curve Loop(10) = {10, 32, -17, -33};

540 Plane Surface(10) = {10};

541 Transfinite Surface {10};

542 Recombine Surface {10};

543 //+

544 Curve Loop(11) = {11, 34, -18, -33};

545 Plane Surface(11) = {11};

546 Transfinite Surface {11};

547 Recombine Surface {11};

548 //+

549 Curve Loop(12) = {12, 35, -19, -34};

550 Plane Surface(12) = {12};

551 Transfinite Surface {12};

552 Recombine Surface {12};

553 //+

554 Curve Loop(13) = {13, 36, -20, -35};

555 Plane Surface(13) = {13};

556 Transfinite Surface {13};

557 Recombine Surface {13};

558 //+

559 Curve Loop(14) = {14, 37, -21, -36};

560 Plane Surface(14) = {14};

561 Transfinite Surface {14};

562 Recombine Surface {14};

563 //+

564 Curve Loop(15) = {15, 38, -50, -39};

565 Plane Surface(15) = {15};

566 Transfinite Surface {15};

567 Recombine Surface {15};

568 //+

569 Curve Loop(16) = {16, 39, -49, -40};

570 Plane Surface(16) = {16};

571 Transfinite Surface {16};

572 Recombine Surface {16};

573 //+

574 Curve Loop(17) = {40, -48, -54, -41};

575 Plane Surface(17) = {17};

576 Transfinite Surface {17};

577 Recombine Surface {17};

578 //+

LIX

579 Curve Loop(18) = {17, 41, -55, -42};

580 Plane Surface(18) = {18};

581 Transfinite Surface {18};

582 Recombine Surface {18};

583 //+

584 Curve Loop(19) = {18, 43, -56, -42};

585 Plane Surface(19) = {19};

586 Transfinite Surface {19};

587 Recombine Surface {19};

588 //+

589 Curve Loop(20) = {19, 44, -57, -43};

590 Plane Surface(20) = {20};

591 Transfinite Surface {20};

592 Recombine Surface {20};

593 //+

594 Curve Loop(21) = {45, -51, -58, -44};

595 Plane Surface(21) = {21};

596 Transfinite Surface {21};

597 Recombine Surface {21};

598 //+

599 Curve Loop(22) = {20, 46, -52, -45};

600 Plane Surface(22) = {22};

601 Transfinite Surface {22};

602 Recombine Surface {22};

603 //+

604 Curve Loop(23) = {21, 47, -53, -46};

605 Plane Surface(23) = {23};

606 Transfinite Surface {23};

607 Recombine Surface {23};

608 //--

609 // Extrude Surfaces

610 //--

611 //+

612 Extrude {-0.1, 0, 0} {

613 Surface{1}; Surface{2}; Surface{3}; Surface{4};

614 Surface{5}; Surface{6}; Surface{7}; Surface{8};

615 Surface{9}; Surface{10}; Surface{11}; Surface{12};

616 Surface{13}; Surface{14}; Surface{15}; Surface{16};

617 Surface{17}; Surface{18}; Surface{19}; Surface{20};

618 Surface{21}; Surface{22}; Surface{23};

619 Layers {1};

620 Recombine;

621 }

622 //--

623 // Classify Boundaries

LX

624 //--

625 //+

626 Physical Surface("frontAndBack", 565) = {15, 388, 16, 410, 17, 432,

8, 234, 9, 256, 10, 278, 18, 454, 1, 80, 2, 102, 3, 124, 4, 146,

11, 300, 19, 476, 5, 168, 12, 322, 20, 498, 6, 190, 13, 344, 7,

212, 14, 366, 23, 564, 22, 542, 21, 520};

↪→

↪→

↪→

627 //+

628 Physical Surface("inlet", 566) = {383, 405, 423};

629 //+

630 Physical Surface("outlet", 567) = {559, 537, 511};

631 //+

632 Physical Surface("top", 568) = {555, 357, 199, 67, 221, 379};

633 //+

634 Physical Surface("bottom", 569) = {515, 493, 471, 449, 427};

635 //+

636 Physical Surface("hull", 570) = {211, 177, 155, 133, 111, 101, 79};

637 //--

638 // Create Volume

639 //--

640 //+

641 Physical Volume("internalField", 571) = {

642 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

643 11, 12, 13, 14, 15, 16, 17, 18,

644 19, 20, 21, 22, 23

645 };

646 //--

647 // Engage Meshing In GUI

648 //--

649 //+

650 Mesh 3;

LXI

	Project description
	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Theoretical background
	Reynolds Averaged Navier Stokes
	Generalized eddy viscosity
	k-e model
	k-w model
	SST k-w model

	Jet flow
	Plane jet
	Circular jet

	Known sources of thrust loss
	Ventilation
	Thruster to thruster interaction
	The influence of current
	Increased resistance in shallow waters
	Interactions related to the Coanda effect

	Computational Fluid Dynamics Experiment
	Experimental setup for 2D simulation
	Numerical solver
	Boundary conditions
	Mesh sizes
	Validation
	Results
	Mesh refinement analysis
	The drag coefficient
	Lift coefficient
	Roll moment coefficient
	Velocity profiles from mesh refinement analysis

	Validation

	Discussion
	Mesh refinement analysis
	Drag coefficients
	Lift and roll moment coefficients
	Thoughts on the improvement of mesh convergence analysis

	Validation
	The applied method

	Conclusion
	Bibliography
	Kongsberg products used for comparison
	Figures produced in paraView
	Codes used in OpenFoam
	Equal for both solvers the 0 directory
	The constant directory
	The system directory
	Used in pimpleFOAM
	Used in simpleFOAM

	Codes used in GMSH
	Mesh of 2D hull with propeller
	Mesh of 2D hull

