
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r m

ar
in

 te
kn

ik
k

Simen Karlsen Helgesen

Data-driven modelling and
estimation of losses in shipboard
electrical power components based
on machine learning

Masteroppgave i Marin teknikk
Veileder: Roger Skjetne
Medveileder: Krishna Kumar Nagalingam
Juli 2022

M
as
te
ro
pp

ga
ve

Simen Karlsen Helgesen

Data-driven modelling and estimation
of losses in shipboard electrical power
components based on machine
learning

Masteroppgave i Marin teknikk
Veileder: Roger Skjetne
Medveileder: Krishna Kumar Nagalingam
Juli 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for ingeniørvitenskap
Institutt for marin teknikk

Data-driven modelling and estimation of losses in
shipboard electrical power components based on

machine learning

Simen Karlsen Helgesen

CC-BY 2019/07/18

Data-driven modelling and estimation of losses in
shipboard electrical power components based on

machine learning

Simen Karlsen Helgesen

CC-BY 2019/07/18

Abstract

The objective of this paper is to examine the viability of using machine learn-
ing to model a shipboard power plant Due to increasingly rigorous regulations
made by maritime authorities and national governments on emissions on ships,
solutions for emission reductions are needed. There are several solutions to redu-
cing emissions in the industry and academic circles already, though a lot of these
solutions are not feasible to use for existing vessels. A solution that can be used
without major alterations to existing vessels is to optimise the shipboard power
plant. Manually optimizing the power plant is exceedingly difficult, hence there
is a need for an intelligent decition support tool. Kongsberg Maritime is there-
fore developing the EcoAdvisor project, which aims to be this tool. As a part of
the EcoAdvisor project, there is a need for a model of the power plant that can
calculate the energy losses from each component, such that one has a basis for op-
timisation. During this thesis, several neural networks has been trained using data
from the SKandi Africa vessel. There is a comparison between training a neural
network on each component of the power plant individually and training a neural
net to model several components simultaneously. The results seems to indicate
that modelling several components at once yields the better result.

iii

Sammendrag

Målet med denne oppgaven er å undersøke muligheten for å modellere kraftan-
legg om bord på skip ved hjelp av maskinlæring På grunn av stadig strengere
forskrifter fra marine autoritetsorganisasjoner og regjeringer verden over er det
nødvendig med løsninger som reduserer utslipp fra skipstrafikken. En løsning som
kan iverksettes uten å ta store inngrep i skipets design er å optimalisere kraftan-
legget om bord på skipet. Det er veldig vanskelig å gjøre denne optimaliseringen
for hånd, så det finnes et behov for å få utviklet et verktøy som kan hjelpe til i
prosessen. Kongsberg Maritime utvikler derfor verktøyet EcoAdvisor. En av delene
i EcoAdvisor er å modellere komponentene i kraftsystemet om bord på et skip, slik
at man kan finne hvor det er størst enegitap, og hvor mye energi som går tapt fra
kraftverket. Modellen eller modellene skal videre brukes som et grunnlag for å
optimere bruk av kraftverket om bord på skip. I denne oppgaven er det laget flere
kunstige neurale nettverk som er trent ved hjelp av data fra skipet Skandi Africa.
De neurale nettverkene har enten modellert en enkeltkomponent av kraftverket
om bord eller modellert flere av de samtidig. Resultatet fra å sammenligne disse
neurale nettverkene indikerer at det å modellere flere komponenter samtidig gir
det beste sluttresultatet.

v

Acknowledgment

This thesis would not have been possible without the help from a number of people
that have aided me throughout the process. Firstly I want to thank my supervisor
Roger Skjetne for helping me define the problem statement, so that I had a goal
in mind. Krishna Kumar Nagalingam has helped me navigate the EcoAdvisor tool,
and has answered quickly whenever I needed data or specification sheets. Both
Bjarne Andre Grimstad and Jakob Anguiers have aided in the work on this thesis
by publishing the base code that has been used for this project as open source pro-
jects. Namireddy Praveen Reddy has been a great help during the entire revision
of this thesis.

S.K.H.

Simen Karlsen Helgesen

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgment . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Background an motivation . 1
1.2 Research questions . 3
1.3 Case Study . 3
1.4 Thesis outline . 5

2 Shipboard Power Plants . 7
3 Efficiency Modelling . 9

3.1 Static efficiency modelling . 9
3.2 Dynamic efficiency modelling . 10
3.3 Component Efficiency modelling . 10
3.4 System Efficiency modelling . 11

4 Modelling using neural networks . 13
4.1 Hyper-parameters . 13

4.1.1 Depth and breadth . 13
4.1.2 Regularization . 13
4.1.3 Error . 17
4.1.4 Learning rate . 19
4.1.5 Optimization algorithm . 19
4.1.6 Batch . 21
4.1.7 Activation function . 21

4.2 Supervised learning algorithms . 21
4.2.1 Support Vector Regression (SVR) 21
4.2.2 Deep feedforward (DFF) . 22
4.2.3 Long Short Term Memory (LSTM) 23

4.3 Overfitting and underfitting . 25
4.3.1 Overfitting . 25
4.3.2 Underfitting . 25

ix

x S. K. Helgesen: Data-driven modelling in power components based on machine learning

4.4 Growing and pruning . 25
4.4.1 Pruning . 25

4.5 Modelling Process . 27
4.5.1 Experimental setup . 27
4.5.2 Libraries . 27
4.5.3 Case Study . 28
4.5.4 Width-Depth test . 28
4.5.5 Multirun algorithm . 29
4.5.6 DFF . 33
4.5.7 LSTM . 34
4.5.8 Engine . 36

4.6 Converter . 37
4.6.1 Pre-processing . 37
4.6.2 Generator . 40
4.6.3 Thruster . 41

4.7 Parallel neural network . 41
4.7.1 Comparing physics based modelling with machine learning

based modelling . 42
5 Results and discussion . 43

5.1 Engine . 43
5.2 Thruster . 44
5.3 Generator . 45
5.4 Converter . 49

5.4.1 Estimated Training cost . 49
5.4.2 Results from training . 50
5.4.3 Results on test set . 51

5.5 Parallel Network . 53
6 Conclusion . 57

6.1 Recommendation for further work . 57
Bibliography . 59
A Long short term memory code . 65

A.1 LSTM data processor . 65
A.2 LSTM model . 69
A.3 LSTM main file . 79
A.4 LSTM utilities . 82

B Deep feedforward code . 85

Figures

1.1 Efficiency profile of Skandi Africa main engine 2
1.2 Single line diagram of the power plant of the Skandi Africa Vessel . 4
1.3 Subsection of the system, these components are modelled 5

4.1 Illustration of a fully connected Deep-feedforward neural network
with a constant width of 3 and depth of 2 14

4.2 MSE on training and test sets vs size of training set, for data gen-
erated from a degree 2 polynomial with Gaussian noise of variance
σ2 = 4. We fit polynomial models of varying degree to this data. (a)
Degree 1. (b) Degree 2. (c) Degree 10. (d) Degree 25. Note that for
small training set sizes, the test error of the degree 25 polynomial
is higher than that of the degree 2 polynomial, due to overfitting,
but this difference vanishes once we have enough data. Note also
that the degree 1 polynomial is too simple and has high test er-
ror even given large amounts of training data. Figure generated by
linregPolyVsN. [18] . 18

4.3 Illustration of LSTM neuron, area shaded in red is inside neuron . . 24
4.4 Accuracy of DFF network with constant width of 10 as depth changes 29
4.5 Accuracy of DFF with constant depths of 2,3, and 4 changes by

altering width . 31

4.6 Constant start width and constant ratio
wid th f irst la yer

wid thlast la yer
DFF with chan-

ging depth. 32

4.7 Constant depth and constant ratio
wid th f irst la yer

wid thlast la yer
DFF with changing

start width. 33

5.1 Efficiency of the thruster over time . 45
5.2 Efficiency of the generator over time, raw data 47
5.3 Efficiency of the generator over time, calculated using polynomial

model . 48
5.4 Efficiency of the generator over time, calculated using neural network 49
5.5 Percentage usage of the GPU processing power during the training 50
5.6 MSE value of validation error over the epochs, due to the extreme

improvement the MSE-axis has to be shown in log-scale 50

xi

xii S. K. Helgesen: Data-driven modelling in power components based on machine learning

5.7 Linear improvement over the last 200 epochs 51
5.8 Efficiency of the converter over time 52
5.9 Efficiency of the converter over time, shorter time frame 53
5.10 Combined efficiency of the thruster, generator, and converter over

time, raw data . 54
5.11 Combined efficiency of the thruster, generator, and converter over

time, calculated using the polynomial model 55
5.12 Combined efficiency of the thruster, generator, and converter over

time, calculated using the neural network model 56

Tables

4.1 Relevant system specifications . 27
4.2 Hypothetical dataset showing a potential problem with a normal-

izing method . 35
4.3 Excerpt of the data used for training before it has gone through the

pre-processing . 38
4.5 Inputs and outputs used . 38
4.4 Same part of the training-data set as shown in Table 4.3, after pre-

processing . 39
4.6 Selection of training set, validation set, and test set 39
4.7 Values for hyperparameters used to obtain the results given in chapter 5 40

5.1 The effects of pruning the model trained on data from engine 43
5.2 The effects of pruning the model trained on data from thruster . . . 44
5.3 The effects of pruning the model trained on data from generator . . 46
5.4 MSE and MAE from test-set . 51
5.5 The effects of pruning the model trained on data from all four com-

ponents . 54

xiii

Code Listings

Code/LSTM/data_processor.py . 65
Code/LSTM/model.py . 69
Code/LSTM/run.py . 79
Code/LSTM/utils.py . 82

Code/Converter/NN.py . 85

xv

Chapter 1

Introduction

1.1 Background an motivation

In the recent years, the International Maritime Organization (IMO) has introduced
stringent rules and regulation in order to reduce emissions by the maritime in-
dustry. The International Maritime Organisation (IMO) said in their submission
to the UNFCCC Talanoa Dialogue [1] that their ambition levels were threefold:

Carbon intensity of the ship to decline through implementation of further
phases of the energy efficiency design index (EEDI) for new ships: To review with
the aim of strengthening the energy efficiency design requirements for ships with
the percentage improvement for each phase to be determined for each ship type,
as appropriate;

Carbon intensity of international shipping to decline: To reduce CO2 emissions
per transport work, as an average across international shipping, by at least 40%
by 2030, pursuing efforts towards 70% by 2050, compared to 2008; and

GHG emissions from international shipping to peak and decline: To peak GHG
emissions from international shipping as soon as possible and to reduce the total
annual GHG emissions by at least 50% by 2050 compared to 2008 whilst pursuing
efforts towards phasing them out as called for in the Vision as a point on a path-
way of CO2 emissions reduction consistent with the Paris Agreement temperature
goals.

One of the solutions to reduce fuel consumption is to alter physical proper-
ties of a ship. One could for example optimise hull shape, propeller design, or
hull coating. While these alterations to a vessel might reduce fuel consumption,
they can be intrusive and will impact ship operations. Certain alterations such as
changing hull shape to reduce fuel consumption might not be possible without
significantly impacting the use and functional profile of the vessel.

An alternate solution is to optimise the shipboard power plant such that there
are minimal losses from internal processes. Most components of the shipboard
power plant have an efficiency that varies with how close they are to maximum
capacity. If one can configure a system in such a way that the components can run
at the rates where they are the most efficient, there could be a large reduction in

1

2 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 1.1: Efficiency profile of Skandi Africa main engine

fuel consumption. As an example, Figure 1.1 shows that the main engine aboard
the Skandi Africa can be 10% more efficient if run at 100% speed compared to
when run at 10% speed.

At present date this optimisation has to be done by the crew onboard, which
is difficult due to the lack of visualisation of system states. In addition to the lack
of visualisation, the crew has to keep within existing rules and regulations. This
optimisation can be done by hand if the crew is properly trained. Though doing
so is not feasible as it would take too much time for it to be worthwhile.

To address this issue, Kongsberg Maritime is developing an intelligent decision
support tool called EcoAdvisor. The goal of the EcoAdvisor tool is to provide the
crew with the means to optimise the shipboard power plant. The tool is still in
early development, and access to the existing tools are restricted to a select num-
ber of people.

As a part of the EcoAdvisor tool, there is a need for a simple to set up and easy
to use model of the power plant aboard. This model is used to find the energy
losses in each component, such that one can find the overall efficiency of the
shipboard power plant, and which components that are running at a sub-optimal
efficiency. The results from this model can then be used to optimise the power
plant.

Several methods exists that could be used to model this system. This thesis
implements data driven methods. Specifically Neural Network solutions to model
the system, as the availability of data seems large enough to employ a machine
learning based solution to the modelling problem.

According to [2] a perfect model does not exist, as there is always a drawback
to the choices being made in modelling. In the case of traditional mathematical
models made from the usage of physical laws and manifacturer data sheets, these
faults can lie within the factors omitted from the model for the sake of comput-
ability.

Chapter 1: Introduction 3

1.2 Research questions

This thesis aim to find out a way to model the shipboard electrical power plant
aboard a vessel. The computational cost of the modelling should also be taken into
consideration so that the resulting models can be used in an industrial applica-
tion and not just as an academic proof of concept. Finding the balance between
computational cost and accuracy is central to the usefulness of the results. As de-
scribed in ?? the models are to be a part of a larger system, and with the limited
[citation required] computational power aboard a vessel computer, along with the
need of getting results in real-time the models have a need to be computationally
light in order for the larger system to serve its function.

In order to choose the method of modelling that is the most suitable for the
purpose, the advantages and disadvantages of each modelling technique needs to
be found.

As for the computational power needed for the final models, estimates will
need to be calculated. They can be estimated using runtime, but to get the most
accurate results the amount of floating point operations needed per time-step of
the model has to be calculated.

The aim of this thesis can be summarized as:
1. Why should we use machine-learning based modelling?
2. Is using models based upon machine learning more accurate than using

physics based computational models?
3. What kind of accuracy can one expect from modelling a shipboard electrical

power plant using a neural network?
4. Can the computational requirements of a neural network be brought down

such that a shipboard computer is able to render the results from modelling the
power plant in real time?

1.3 Case Study

In order to implement and test a data driven modelling technique, there is a need
for data. In order to have access to enough data to develop and test the models,
a case study has been chosen. The data used is supplied by Kongsberg Maritime,
on a vessel called Skandi Africa.

The Skandi Africa is a vessel owned and operated by DOF Subsea. Through
Kognifai, access to the data the vessel collects can be accessed. Due to the need
for large quanitities of data being required for some of the techniques used in this
thesis, finding a vessel where the amount of data stored is sufficiently large is the
main driving factor for the development of data driven models, especially when
the data driven method used is based upon machine learning.

The system chosen to gather data from was the vessel Skandi Africa [3]. The
Single Line Diagram for the vessel is shown in Figure 1.2, Figure 1.3 is the part of
the system that is modelled.

4 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 1.2: Single line diagram of the power plant of the Skandi Africa Vessel

Chapter 1: Introduction 5

Figure 1.3: Subsection of the system, these components are modelled

1.4 Thesis outline

The first chapter of this thesis explains the motivation behind the research done.
The second chapter outlines the design of a shipboard power plant. The third
chapter explains the different modelling techniques considered to solve the prob-
lem. The fourth chapter describes how the models were created and how the code
differs from theory. The fifth chapter shows the results and explains the implica-
tions of the results. The sixth chapter concludes the thesis and outlines how the
work should continue.

Chapter 2

Shipboard Power Plants

While the traditional way to design a ship has been based on the design spiral cre-
ated by J. H Evans in 1959, there has been a search for techniques and methods in
order to streamline this process [4]. [5] developed a systematic methodology that
can reduce the design of the power management system into a solvable problem
for a computer. The method is not flawless, as it relies heavily on the traditional
model that is in need of methods such as small scale model testing in order to
estimate the power requirement for a vessel.

According to [4], designing the configuration of a power plant aboard a vessel
is governed by four choices in the early design phase:

• What kind of fuel should the vessel use?
• What type of machinery, where the existing alternatives are:

◦ Engine
◦ Dual Fuel Engine
◦ Genset
◦ Battery
◦ Fuel Cell
◦ Super-capacitor

A vessel can use more than one alternative
• Should the propulsion type be mechanical or electrical?
• Direct or alternating current in the main distribution grid?

In systems with mechanical propulsion, it is common to have an engine or
dual fuel engine. They could be used in conjunction with hybrid systems if there
is some form of energy recovery. Electrical propulsion systems, which often utilises
podded propulsion [6] are commonly found with genset based systems.

Batteries are increasingly utilized for more than emergency backup energy,
as they are a key part of Energy Management Systems. One example of batteries
being a key part of the development of such systems is the Blue Power EMS being
added to the Kognifai Marketplace [7]. The European Maritime Safety Agency in
conjunction with DNV defined six functional roles for batteries in the shipboard

7

8 S. K. Helgesen: Data-driven modelling in power components based on machine learning

power plant [8]:

1. Being a backup for generators, reducing the need for redundancy in the
system

2. Being a buffer, which allows for a phenomenon called peak shaving. This
is done to avoid overloading the energy generating systems when a lot of
power is needed for a period.

3. Aiding in load optimization, such that the energy generating components
at the system can run at peak efficiency point for a larger percentage of the
time.

4. Being a source of immediate power in cases where demanding it from other
systems could cause system instabilities

5. Harvesting energy renewable sources.
6. Being an emergency backup in case all other systems fail.

Chapter 3

Efficiency Modelling

In this chapter an overview of efficiency models is presented. Efficiency being
defined as the ratio between the power going out of a system divided by the power
going in to a system η= Pout

Pin
.

The two main ways to model efficiency in a shipboard power plant are static
efficiency modelling and dynamic efficiency modelling [9]. One can further divide
both into component and system modelling [9]. When modelling both dynamic
efficiency and static efficiency one has to further divide the modelling techniques
in such a way that one could take into account for the differences between altern-
ating current (AC) and direct current (DC) architectures [10].

The chapter is concluded with a discussion on the strengths and weaknesses
of the main types of efficiency modelling and why using a machine learning based
technique has been chosen over using other modelling techniques.

3.1 Static efficiency modelling

Static efficiency modelling is defined by it being an efficiency model of a compon-
ent or system when it is running at nominal power [11]. Nominal power being the
efficiency at nominal loads. A static efficiency model does not take into account
the load condition of the component or system being modelled.

When going from a component level to a system level in static efficiency mod-
elling, the efficiency of the system can be calculated by

ηAC =
�

∑s
j γ jηcd j

ηi j
+
∑t

k Pekηgk

∑s
j γ j

Pb j
nbd j
+
∑t

k
Pek
ηe fk

�

·
�

∑u
l Pml

+
∑v

n Phn
+
∑s

j(1− γ j)Pb j
ηbc j

∑u
l

Pml
ηrl
ηilηml

+
∑v

n
Phn
ηin
+
∑s

j(1− γ j)
Pb j
ηcc j
ηi j

�

(3.1)

ηFSDC =
�

∑s
j γ j Pb j

ηcd j
+
∑k

t Pek
ηgkηTk

∑s
j γ j

Pb j
ηbd j
+
∑t

k
Pek
ηe fk

�

·
�

∑u
l Pml

+
∑v

n Phn
+
∑s

j(1− γ j)Pb j
ηbc j

∑u
l

Pml
ηil
ηml

∑v
n

Phn
ηin
+
∑s

j(1− γ j)
Pb j
ηcc j

�

(3.2)

9

10 S. K. Helgesen: Data-driven modelling in power components based on machine learning

ηVSDC =
�

∑s
j γ j Pb j

ηcd j

∑t
k Pekηgk

ηTk

∑s
j γ j

Pb j
ηbd j
+
∑t

k
Pek
ηevk

�

·
�

∑u
l Pml

+
∑v

n P
n
+
∑s

j(1− γ j)Pb j
ηbc j

∑u
l

Pml
ηi j
ηml
+
∑v

n
Phn
ηin
+
∑s

j(1− γ j)
Pb j
ηcc j

�

(3.3)
Where Ph is the hotel loads, Pb is the power going in or out of the batteries,

Pm are the powers of the propulsion motors, Pe are the powers from the engines,
γ is the state of the battery (where 1 indicates the battery is charging, 0 indicates
battery discharging), j is the enumeration of the batteries, k is the enumeration
of the engines, l is the enumeration of the hotel loads, n is the enumeration of the
propulsion motors, FSDC is fixed speed DC, and VSDC is variable speed DC.

3.2 Dynamic efficiency modelling

The main difference between dynamic and static efficiency modelling is that in
dynamic efficiency modelling one takes into account how efficiency changes based
on operational profile. Most components have a lower efficiency at lower loads
[11]. Because the stated efficiency for a system component is typically stated in
nominal efficiency, one must take in load dependent data in order to construct
a dynamic efficiency model for a given system [12]. Since the dynamic profile
for a given component is not typically stated in the data sheet, one must extract
these from literature. Fuel combustion engines are the exemption from this, as
they typically state their specific fuel oil consumption (SOFC) curve in the data
sheet [13].

3.3 Component Efficiency modelling

[13] used a combination of polynomial fitting and rational fitting to model the
efficiency of each component in a DC-hybrid power system. Rational fitting being
the ratio between polynomials. Rational fitting does have an asymmetrical error
profile, as it does result in larger error for negative values of load percentage.
However since load percentages are defined as strictly positive, that did not affect
the result of the findings in [13].

For a combustion engine, the efficiency can be stated in terms of the SOFC
curve which is dependent on both the speed and power delivered, and the specific
calorific heat of the fuel used h as such [13]:

η=
1

SOFC · h
(3.4)

From [14], one can construct a fitted polynomial curve in order to find the
dynamic efficiency of a generator. [14] identifies the three main sources of power
loss in a generator as copper loss (ohmic losses), iron loss, and mechanical losses.
The copper losses are from electric resistance in the generator. The iron losses are

Chapter 3: Efficiency Modelling 11

magnetic losses and can be modelled as in Equation3.5. Where Bmax is the peak
magnetic flux density, kH , kc , and kE are constants. Due to the quadratic losses
with respect to rotational speed, [14] assumes the mechanical losses stem from
linear friction torque.

ploss, magnetic = kH B2
maxω+ kcB

2
maxω

2 + kEB1.5
maxω

1.5 (3.5)

The power losses in a power converter can be found by calculating the con-
duction and the switching losses for each sub-component of the power converter.
Using the assumption that the inductor current is ripple-free one can find the
switching losses by using [15] :

PSW, on = RSW, on · I2
S,RMS = RS,on

� Phv
p

D
Vhv

�2
(3.6)

With the assumption that transistor capacitance is linear, it is possible to cal-
culate the switching losses by:

PSW,SW = 4(
fsw

2
)COV 2

SM (3.7)

The average conduction loss in a diode over a switching period yields:

PD = Vf w

� nPhv

DVhv

�

+ (2− D)RD,on

� nPhv

DVhv

�2
(3.8)

Using the energy losses in [15], one can produce a quadratic fit curve to model
the dynamic efficiency of the power converter [13].

3.4 System Efficiency modelling

Unlike in static efficiency modelling, where the system efficiency is found by us-
ing Equations 3.1, 3.2, and 3.3, in dynamic efficiency modelling typically inserts
the model for each component into a simulation software [13]. One then simu-
lates the efficiency by comparing the power going in with the power going out of
the system. Where power going in to the system typically is in the form of fuel
consumption and battery discharge, and power going out from the system are
the system Loads and the power used to charge the batteries. [13] and [16] both
found that the method used for load sharing between the combustion engine and
the battery will have a significant impact on the overall system efficiency.

Chapter 4

Modelling using neural networks

The purpose of the following chapter are to provide enough mathematical back-
ground to the function of a neural network to understand how the network learns.
Through understanding how the neural network on a mathematical level, one can
use that knowledge in conjunction with knowledge of the system being modelled
to find a set of hyper-parameters more quickly than randomly adjusting them until
a satisfactory result is found.

4.1 Hyper-parameters

[17] defines hyperparameters as settings one can use to control the behavior of
a machine learning algorithm. The hyperparameters are not changed by the al-
gorithm using them.

4.1.1 Depth and breadth

A neural net consists of three types of layers, the input layer, the hidden layer,
and the output layer. The hidden layer is then further divided into M layers. The
number of layers that the hidden layer consists of is the depth of the neural net-
work. The number of neurons per layer in the hidden layer is the width of the
network. Figure 4.1 shows a fully connected Deep-feedforward neural network
with a constant width of 3 and a depth of 2.

4.1.2 Regularization

As is explained in section 4.3, one of the main concerns when doing machine learn-
ing is overfitting. [17] defines regularization as a modification made to a machine
learning algorithm that intends to reduce the test-error but not the training-error.

In this thesis, three different strategies of regularization have been used: L2,
L1, and the use of a large enough data set.

13

14 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 4.1: Illustration of a fully connected Deep-feedforward neural network
with a constant width of 3 and depth of 2

L2 parameter norm penalty

L2 regression, also known as ridge regression and Tikhonov regression [17], is one
of the more common forms of parameter norm penalties. The strategy revolves
around adding a regularization term Ω(Θ) = 1

2 ||w||
2
2 to the objective function to

drive the weights closer to zero.
By adding the L2 regularization to an objective function J(w;X,y). You get:

J̃(w;X,y) =
α

2
w⊤w+ J(w;X,y) (4.1)

Where J is the objective function,J̃ is the regularized objective function,α is
a value the programmer sets, w are the weights of the model, X are the input
values, and y are the output values.

Which changes the parameter gradient to:

▽w J̃(w;X,y) = αw+▽wJ(w;X,y) (4.2)

For each gradient step this update is applied:

w← (1− εα)w− ε▽w J(w;X,y) (4.3)

To illustrate how this changes the entire training [17] considers the case of
fitting a linear regression model with MSE as the error indicator.

In that case one can approximate the Objective function Ĵ by:

Ĵ(Θ) = J(w∗) +
1
2
(w−w∗)⊤H(w−w∗) (4.4)

Where w∗ = arg minw J(w) and H 1 is the Hessian matrix of J evaluated at w∗

with respect to w. Due to w∗ being defined to be the minimum of J , H is positive

1

Chapter 4: Modelling using neural networks 15

semi definite. One can find the minimum of Ĵ where the gradient is equal to zero.
The gradient of Ĵ being the Hessian matrix.

Then when L2 regularization is applied, the minimum of the objective function
can be found by solving:

αw̃+H(w̃−w∗) = 0

(H+αI)w̃= Hw∗

w̃= (H+αI)−1Hw∗
(4.5)

Where w̃ is the location of the minimum and I is the identity matrix.
To see what happens as α becomes larger, we have to decompose H into a

diagonal matrix D and an orthonormal basis of egenvectors E such that H= EDE⊤.
Equation 4.5 then becomes:

w̃= (EDE⊤ +αI)−1EDE⊤w∗

= [E(D+αI)E⊤]−1EDE⊤w∗

= E(D+αI)−1DE⊤w∗
(4.6)

The effect of L2 regularization is to rescale the components of w∗ with the
eigenvectors of H by a factor of eigenvectori

eigenvectori+α
. This means that only directions

within the N-th dimentional space that contribute significantly to reducing the
objective function remains unaffected by the regularization function. The weight
decay forces the algorithms to disregard unimportant features it finds of the data
it is looking at.

L1 parameter norm penalty

The L1 regularization is defined by Equation 4.7, the sum of the absolute values
of the parameters.

Ω(Θ) = ||w||1 =
∑

i

|wi| (4.7)

Adding Equation 4.7 to an objective function gives:

J̃(w;X,y) = α||w||1 + J(w;X,y) (4.8)

The gradient of Equation 4.8 is:

▽w J̃(w;X,y) = αsign(w) +▽wJ(w;X,y) (4.9)

Where sign(w) is element-wise applied.
Unlike L2 where the gradient is scaled linearly with the regularization contri-

bution, L1 scales each component of w with a constant, and the difference in how
each component is scaled comes from the sign(wi).

16 S. K. Helgesen: Data-driven modelling in power components based on machine learning

[17] considers the same system as in L2 regularization to exemplify how this
affects the machine learning algorithm. That is a simple linear regression model
without bias. The gradient of this objective function is:

▽w Ĵ(w) = H(w−w∗) (4.10)

Where H is the same Hessian matrix as for Equation 4.4.
Due to the the sign function in Equation 4.9, finding a clean algebraic solu-

tion to the quadratic approximation is not given. To simplify the explanation, the
Hessian matrix is therefore assumed to be a strictly positive diagonal matrix. The
approximation of the objective function with L1 regularization is then:

Ĵ(w;X,y) = J(w∗;X,y) +
∑

i

�

1
2

Hi,i(wi −wi)
2 +α|wi|
�

(4.11)

Minimizing this approximation gives the solution:

wi = sign(w∗i)max
�

|w∗i | −
α

Hi,i
, 0
�

(4.12)

The effect of this is that if w∗i ≤
α

Hi,i , the optimal value of wi becomes zero. If
wi >

α
Hi,i

the value of wi shifts by α
Hi,i

.

Therefore when L1 regularization is applied to a neural net, the neural net
becomes far more sparse. Sparse meaning that more parameters have an optimal
value of zero. This means that in addition to adding a regularizing effect to the
neural net; it can also be useful if one is planning to prune the neural network
later.

The regularization effect of big data

In addition to the use of regularization to avoid overfitting, there exists another
approach; using vast quantities of data. Given that the data is randomly sampled,
the more data provided to the neural net, the better it can learn. Figure 4.2 from
[18] shows an example of how the training set size affected a polynomial re-
gression models. For the neural nets in this test done by [18] the original system
modelled was a second degree polynomial function. Four models were created:

1. Degree 1 polynomial
2. Degree 2 polynomial
3. Degree 10 polynomial
4. Degree 25 polynomial

In this experiment, one can see that there is a plateau of the test-error. This
error is made up of two components; the noise floor and the structural error. The
noise floor comes from the inherent uncertainty in the modelled process, and is
not possible to reduce to zero. The structural error comes from the algorithms
inability to model the system. From a) in Figure 4.2, one can see that both the

Chapter 4: Modelling using neural networks 17

training error and the test error for the first degree polynomial model remains
high for all sizes of data set. This is because the model is not complex enough
to predict the original system. Though for any model that is complex enough to
model the system, the test-error will approach the noise floor as the size of the
data set approaches infinite. One can also see that the simpler models both start
out with a lower error and converges towards the noise floor at a faster pace.

In [19] it is shown that for machine learning applications where the amount
of available data is immense it is not always necessary to create complex machine
learning techniques to accurately model a system. If one were able to gather data
for all possible situations the system one is modelling can be in, the training error
would be the same as the test error.

4.1.3 Error

During training, the neural network takes in the input-variables and converts them
into a predicted output; it then checks the difference between the predicted out-
put and the actual output. This difference is the error of the network. The two
typical ways of calculating the error is using the squared error and the absolute
error, shown in Equation 4.13 [20]. Both methods can be used as a performance
indicator for a neural network.

When evaluating how the neural network performs one usually measures this
by finding the mean error over a set of data; changing Equation 4.13 to Equa-
tion 4.14. When doing this the mean absolute error is often changed to be the
mean absolute percentage error (MAPE). The mean squared error (MSE) is not
changed when taking the mean.

L(Y, f̂ (X)) =

�

(Y − f̂ (X))2, squared error

|Y − f̂ (X)|, absolute error
(4.13)

¯er r =

�

1
N

N
∑

i=1

(Yi − f̂ (X)i)
2, Mean Squared Error

1
N

N
∑

i

= 1
|Yi − f̂ (X)i|

Yi
, Mean Absolute Percentage Error

(4.14)

In addition to the method of estimating error, there are three different cat-
egories of error. Training error, validation error, and test error.

The training error and validation error are both used to calibrate the neural
network such that it can be assumed it has been properly fit to the system it is
supposed to model. It is used during training for the network to adjust iself

The test error, also sometimes called the generalization error is a measure of
how good the neural network is at modelling the system it is supposed to model.
The test error is found by making the neural network predict the outcome from
data is has never encountered before.

18 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 4.2: MSE on training and test sets vs size of training set, for data gen-
erated from a degree 2 polynomial with Gaussian noise of variance σ2 = 4. We
fit polynomial models of varying degree to this data. (a) Degree 1. (b) Degree
2. (c) Degree 10. (d) Degree 25. Note that for small training set sizes, the test
error of the degree 25 polynomial is higher than that of the degree 2 polynomial,
due to overfitting, but this difference vanishes once we have enough data. Note
also that the degree 1 polynomial is too simple and has high test error even given
large amounts of training data. Figure generated by linregPolyVsN. [18]

Chapter 4: Modelling using neural networks 19

4.1.4 Learning rate

The method of steepest gradient decent is the basis of how most neural networks
adjust their parameters to accurately model the chosen system. The neural net-
work operates as an N-dimentional state-space, where N is the number of neurons
in the neural network. Using steepest gradient decent, the neural network tries
to move towards a local minima of error. The gradient decent can be described
by 4.15. Where ε is the learning rate, which functions as the gradient step size
[17]. Increasing learning rate will increase the rate at which it goes towards the
optimum point, though if set too high it will likely overshoot.

x′ = x− ε∇x f (x) (4.15)

4.1.5 Optimization algorithm

A small numerical change in the value of the learning rate will impact how the
neural network learns significantly [17], which means that finding the correct
learning rate can be a difficult process. In neural networks with numerous input
parameters each input parameter can have vastly differing impacts on the output.
There is no consensus on which optimization algorithm is the most effective [21],
though for this project the AdaGrad and Adam algorithms gave the best results.

Not all inputs and parameters of a neural network will impact the accuracy of
the finished product equally. Due to this it can be desirable to not have a learning
rate that is global, but rather adaptive and individual for each parameter. AdaGrad
does this by creating individual learning rates for all parameters based on the
global learning rate. The algorithm then scales all the learning rates proportional
to [22]:

Scaling factor=
1

(
Ç

∑T
t=1(loss gradientt)2)

(4.16)

Where loss gradientt is how much the loss (error) has changed from time step
to time step.

The effect of AdaGrad is that parameters that has a large partial derivative of
loss will decrease drastically, while parameters that have not seen large increases
in their contribution to the accuracy is scaled more gently.

A potential downside of AdaGrad is that due to the accumulation of historical
gradients the algorithm may result in excessive decrease in learning rate. In this
project, that problem has been amended by setting a larger value for the initial
learning rate.

Adam is can be seen as a variant of the Root Mean Squared Propagation (RM-
SProp) algorithm with moments [17]. Which is a modification of the AdaGrad
algorithm intended to perform better in non-convex state-spaces. As mentioned
the AdaGrad algorithm may decrease the learning rate too rapidly due to the ac-
cumulation of historical gradients. This can cause issues in state-spaces that has a

20 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Algorithm 1 Pseudocode for the AdaGrad algorithm [17]
Require: Global learning rate ε
Require: Initial parameter θ
Require: Small constant ∂ , perhaps 10−7 for numerical stability

Initialise gradient accumulation variable r= 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), ...,x(m)} with
corresponding targets y(i)

Compute gradient: g← 1
m ∇θ
∑

i L((x(i);θ),y(i))
Accumulate squared gradient: r← r + g ⊙ g
Compute update: ∆θ ← (− ε

∂+
p

r) ⊙g
Apply update: θ ← θ +∆θ

end while

large enough local minima. The RMSProp algorithm aids with escaping such local
minima by adding a exponentially decreasing average to the gradients based on
when the gradients were calculated. The exponential decrease makes it such that
older gradients are less important.

Adam incorporates the momentum of the change in gradient to calculate a
first-order momentum (where the weights are applied expoentially). It then uses
this momentum to rescale the learning rate and weights of a parameter [23].
According to [17], there are no clear motivation behind how the Adam algorithm
is constructed, though it has been shown to be effective.

Algorithm 2 Pseudocode for the Adam algorithm [17]
Require: Step size ε
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1)
Require: Small constant δ used for numerical stabilization
Require: Initial parameters Θ

Initialize 1st and 2nd moment variables s= 0 , r= 0
Initialize time step t = 0
while Stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), ...,x(m)} with
corresponding targets y(i)

Compute gradient: g← 1
m ∇θ
∑

i L((x(i);θ),y(i))
Update biased first moment estimate: s← ρ1s+ (1−ρ1)g
Update biased second moment estimate: r← ρ2r+ (1−ρ2)g⊙ g
Correct bias in first moment: ŝ← s

1−ρ t
1

Correct bias in second moment: r̂← r
1−ρ t

2

Compute update: ∆Θ = −ε ŝp
r̂+δ

Apply update: θ ← θ +∆θ
end while

Chapter 4: Modelling using neural networks 21

4.1.6 Batch

Minibatch will affect the outcome in the following ways [17]:

• Larger batches increases how well the algorithm perform on the training-
and validation-sets, but will give more complex solutions

• The advantages of having multiple cores on the processor that trains the
algorithm is underutilised with small batch sizes

• Memory use scales with batch size, and is often the determining factor for
maximum batch size

• If you are using a Graphics Processor Unit to run the training, using batch
sizes correlating with powers of two will decrease run-time

• [24] showed that using small batch sizes could offer a regularization effect,
they proposed that it might be due to the noise added by using small batches.

4.1.7 Activation function

According to [20] and [18], the deep feedforward neural networks will collapse
into linear regression models if one does not include an activation function.

The default recommendation for activation functions is the Rectified Linear
Unit (ReLU) [25]. Which is a non-linear function described by Equation 4.17.
The ReLU function is a piecewise linear function, which is an advantage because
they behave so similarly to linear units [17]. The linearity of ReLU makes it such
that the derivative is a constant value, and the second derivative is zero almost
everywhere. In comparison to other activation functions that introduce second
order effects, the ReLU activation function makes it such that the direction of
the gradient is a far more useful metric [17]. The one potential downside with
ReLU together with gradient based learning is that datapoints that result in a
zero-activation from a neuron will cause the neuron to not learn anything from
that datapoint.

g(x) = max{0, z} (4.17)

4.2 Supervised learning algorithms

Three different supervised learning algorithms have been considered to model the
shipboard electrical components, they are:

4.2.1 Support Vector Regression (SVR)

Support Vector Regsression (SVR) is a special case of Support Vector Machines
(SVM) [].

Although support vector machines are a type of supervised learning algortihm,
they are not a type of artificial neural network [].

SVR starts with a linear regression model []:

22 S. K. Helgesen: Data-driven modelling in power components based on machine learning

f (x) = x⊤β + β0 (4.18)

Where β is a unit vector and x are the inputs.
To handle non-linear effects, β is estimated by using:

H(β ,β0) =
N
∑

i=1

V (yi − f (x i)) +
λ

2
+ ||β ||2 (4.19)

Where H is the Hessian matrix, λ is a regularization parameter set by the
programmer, y are the outputs, and:

Vε(r) =

�

0, |r|< ε
|r| − ε, |r| ≥ ε

(4.20)

is the error function, where r = yi− f (x i). ε is a value set by the programmer.
If one minimizes H with β̂andβ̂0 the solution has the form:

β̂ =
N
∑

i=1

(α̂∗i − α̂i)x i (4.21)

f̂ (x) =
N
∑

i=1

(α̂∗i − α̂i)〈x , x i〉+ β0 (4.22)

where α̂∗i , α̂i ≥ 0 and are solutions to:

min
α̂∗i ,α̂i

ε

N
∑

i=1

(α̂∗i + α̂i)−
N
∑

i=1

(α̂∗i − α̂i) +
1
2

N
∑

i,i′
(α̂∗i − α̂i)(α̂

∗
i′
− α̂i′) (4.23)

Equation 4.23 is constrained by:

0≤ α̂∗i , α̂i
N
∑

i=1

(α̂∗i − α̂i) = 0

α̂∗i α̂i = 0

(4.24)

These constraints makes only a subset of the solution values nonzero, the solu-
tions that lead to a nonzero solution are the support vectors.

4.2.2 Deep feedforward (DFF)

The Deep Feedforward Neural Network (DFF), also called the Multilayer Per-
ceptron is a fairly simple form of neural network, though it performs well in many
applications [17]. [26] showed that a DFF can model any suitably smooth function
to any desired accuracy if the network is large enough.

Chapter 4: Modelling using neural networks 23

The core of the network is the perceptron, which uses a weighted sum of it’s
inputs run through an activation function with an added bias. If the perceptron is
constructed using ReLU as the activation function; the perceptron can be described
as the function in Equation 4.25.

f (x; W, c,w, b) =w⊤ ·max{0,W⊤x+ c}+ b (4.25)

Where f (x; W, c,w, b) is the output from each neuron, w are the parameters
that map from the input to the desired output , W are the weights of the linear
transformation, x are the inputs to the neuron, c are the biases, and b is a constant.
The values of w,W,c, and b are determined by the training.

A more generic formulation of Equation 4.25 is:

f (x; W, c,w, b) =w⊤ · activation function{W⊤x+ c}+ b (4.26)

Though as mentioned in subsection 4.1.7 ReLU is the most common activation
function.

Both in [27], and in [28] a DFF is initialised as fully connected. This means
that the input for a neuron comes from all neurons in the previous layer, and the
output from a neuron goes to all neurons in the following layer. A DFF has no
feedback connections [20]. A representation of a fully connected DFF is found in
Figure 4.1.

4.2.3 Long Short Term Memory (LSTM)

Long short term memory (LSTM) differs from DFF in two main characteristics,
it differs in the type of neuron used, and the direction that connection between
neurons can take.

In a DFF all neurons in one layer is sends an output to all neurons in the next
layer, but there is no information that is sent to a previous layer. LSTM is a form
of Recurrent Neural Network (RNN) where there are feedback connections [18].

LSTM networks feature recurrence also inside each neuron in addition to re-
currence between neurons. [29] were the first to propose the LSTM architecture,
though they had static weights inside the self-loop shown in Figure 4.3. [30] ad-
ded to the algorithm by dynamically changing the weights based on context.

The internal state, also known as the memory of each neuron is governed by:

s(t)i = f (t)i s(t−1)
i + g(t)i σ

�

bi +
∑

j

Ui, j x
(t)
j +
∑

j

Wi, jh
(t−1)
j

�

(4.27)

where f (t)i is the forget gate unit described by Equation 4.28, g(t)i is the ex-

ternal input gate unit described by Equation 4.29, x (t)j is the vector with the cur-

rent input, h(t−1)
j is the vector containing all LSTM neurons, b is the neuron bias,

U is the input weights, and W is the recurrent weights. σ is the sigmoid function
that is set to give out values between 0 and 1 [18]

24 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 4.3: Illustration of LSTM neuron, area shaded in red is inside neuron

The forget gate unit, which controls whether the information stored in the
neuron should be used for the incoming input or not can be described by:

f (t)i = σ

�

b f
i +
∑

j

U f
i, j x

(t)
j +
∑

j

W f
i, jh
(t−1)
j

�

(4.28)

Where U f
i, j are the weights for the inputs, b f

i are the biases for the forget gate,

and W f
i, j are the recurrent weights.

g(t)i = σ

�

bg
i +
∑

j

U g
i, j x

(t)
j +
∑

j

W g
i, jh
(t−1)
j

�

(4.29)

The output from the neuron is:

h(t)i = tanh
�

s(t)i

�

q(t)i (4.30)

The output from the neuron h(t)i can be suppressed by the output gate de-
scribed by:

q(t)i = σ

�

bo
i +
∑

j

Uo
i, j x

(t)
j +
∑

j

W o
i, jh
(t−1)
j

�

(4.31)

Comparing the equations governing an LSTM-neuron to the neuron used in
the DFF network, there is a major difference in complexity per neuron.

The first use of LSTM networks were classification purposes [18] though they
can also be used for time-series prediction as is the case in this thesis.

Chapter 4: Modelling using neural networks 25

4.3 Overfitting and underfitting

4.3.1 Overfitting

Overfitting is a phenomenon that arises when the neural network has a great dif-
ference between the training-error and the test-error [17]. This indicates that the
neural network is not usable outside the trainingset as it has not learned gen-
eral rules for how the system being modelled behaves, only how the trainingset
functions [18].

There are several analogies that can be used to describe overfitting: One can
describe the neural network overfitting as a student preparing for an exam by
memorizing the solution manuals for previous exams. The student could do well
on the exam given that the exam is similar enough to previous exams, though the
student will not know what to if the exam format is slightly changed. Similarly, an
overfit neural network will probably do very well on new data that is very similar
to the data it is trained on, but will give horrible estimates once it encounters data
that is not within the original trainingset.

The most common way to detect overfitting is to observe the difference between
training-error and test-error. If one has a very limited dataset, and therefore does
not have the opportunity to throw away the test-set if it has been used;

4.3.2 Underfitting

Where overfitting is a problem one can only confirm by checking the difference
between test-error and training-error, underfitting can usually be seen from training-
error alone [18]. Underfitting is the situation when the training error is much
larger than expected [17].

There can be many reasons for underfitting, though one of the common reas-
ons is due to the complexity of the model being too small compared to the system
being modelled. In Figure 4.2 a) a second degree polynomial is being modelled by
a linear function, this leads to an underfit system, as one can see by the training
error being significantly larger than in the other four polynomials modelling the
original polynomial.

4.4 Growing and pruning

4.4.1 Pruning

The act of pruning a neural network is to reduce the size of a neural network,
while keeping most of the accuracy intact. One of the first published papers written
about pruning was [31] who studied the efficacy of pruning a neural network in
stead of clipping.

In general, pruning can be divided into six steps [31]:

1. Training an unpruned model

26 S. K. Helgesen: Data-driven modelling in power components based on machine learning

2. Evaluating the unpruned model to find performance
3. Using some form of metric or algorithm to determine what should be re-

moved from the model
4. Removing parts of the model
5. Re-train the model
6. Evaluate the accuracy of the pruned model

The method to decide which parts of the model to remove can be done either
randomly or through the use of some decision making algorithm. If the amount of
pruning being done to the model is small, the choice of method is not significant
[32]. Though if one wants to reduce the size of the model significantly, many
methods of intelligent pruning will outperform random choice [33].

When it comes to pruning, there is one question yet to be answered: Is it more
or less effective than building an entirely new neural network with a more efficient
architecture?

[31] compared reported accuracies of several models trained on the ImageNet
database [34] and their results indicated three conclusions:

1. Pruning will significantly improve the ratio of accuracy
size , and even in some

cases increase accuracy
2. In general pruning an inefficient architecture gives a worse accuracy per

size than using a more efficient architecture
3. The improvement in accuracy

size is proportional to how inefficient the model
was before pruning

According to the No Free Lunch Theorem [2] constructing a model that is the
theoretically best for all metrics and all use cases. There are always trade-offs for
a model. Due to these trade-offs it is important to have a basis for comparison
between pruning methods to find what method best suits the needs of a given
model.

[31] found that identifying the information needed from existing literature to
identify these trade-offs is lacking. The literature has a tendency to:

• Be too vague in describing the experimental setup and by what metrics they
measure

• Focus on just a few combinations of dataset and architecture to make any
general statements

• For the trade-off curves that are published, too few points of interest are
included to find a central tendency.

• Few published articles about pruning techniques make comparisons between
their technique and other state-of-the-art methods

• The literature generally does not control for variables that are not directly
measured that could have influenced the results

Chapter 4: Modelling using neural networks 27

4.5 Modelling Process

4.5.1 Experimental setup

All machine learning algorithms were run on the same computer, with the follow-
ing components:

Table 4.1: Relevant system specifications

CPU AMD Ryzen 5 3600X [3.8 GHz]
Cooling unit for CPU Noctua NH-U14S
GPU 4095MB NVIDIA GeForce RTX 2060 SUPER
PSU Corsair TX750M, 750W PSU
Motherboard SUS ROG Strix B450-F GAMING, Socket-AM4
Installed RAM 16 GB
Installed storage Corsair Force Series MP600 1TB M.2 SSD
OS Windows 10 Home

All the LSTM-networks are trained using Keras 2.4.3 and TensorFlow 2.4.1,
and are using the CPU as the computational hardware. The DFF-networks are
trained using PyTorch 1.7.0, where the training has been done using the GPU as
the hardware.

4.5.2 Libraries

PyTorch

PyTorch is a machine learning framework available for Linux, Mac, and Windows
systems. The supported languages to use PyTorch is Python, C++ and Java [35].
It is compatible with machine learning on a CPU and on a GPU through NVIDIA
CUDA [36]. It is an open-source project with an active developer community and
comprehensive documentation.
[37] recommended to start using PyTorch when starting with neural network

training, as it abstracts away a lot of the operations that will not contribute to
the understanding of training and developing a neural network, while keeping
the aspects of machine learning that is in the domain of Data Science. [37] has as
a rule of thumb that one uses PyTorch when doing research and TensorFlow for
production.

The PyTorch library was in this thesis used primarily to produce DFF networks.

TensorFlow

TensorFlow is a machine learning framework developed for internal use within
Google, though in 2015 it was released as an open-source tool under the Apache

28 S. K. Helgesen: Data-driven modelling in power components based on machine learning

2.0 licence [28]. The Apache 2.0 [38] allows for the use of TensorFlow for any
use without paying royalties.

For this project, TensorFlow was used in conjunction with Keras to create LSTM
networks.

Keras

Keras is a tool built on top of TensorFlow 2.0 [39]. The main purpose of Keras is
to make the process of writing code to build neural networks much faster, and the
resulting code written by someone using Keras usually results in less lines of code
written. Keras is in many ways similar to importing a library in Python where the
library is written in C. Many of the most used libraries that are used in Python
like numpy [40] are written at least partially in C to increase the efficiency when
running the code. Keras makes it faster to use the core functionality of TensorFlow,
while still keeping the advantages of having TensorFlow as a basis.

4.5.3 Case Study

To see if the neural network approach to model shipboard electrical component
was a viable solution, the neural networks had to be designed, trained and tested.
To train and test a neural network, data is needed.

The system chosen to gather data from was the vessel Skandi Africa [3]. The
Single Line Diagram for the vessel is shown in Figure 1.2, Figure 1.3 is the part of
the system that is modelled.

4.5.4 Width-Depth test

Due to the original neural network produced in the project thesis having a rather
unconventional shape, a test was done in order to determine if that shape was the
best shape given that the other hyper-parameters were fixed. In order to reduce
the number of hours needed with human intervention in the test subsection 4.5.5
was created. subsection 4.5.5 keeps all the hyper parameters that are not width
and depth constant for one run of the algorithm. This test could have been re-
peated with more nested loops, each loop corresponding to a hyper-parameter. A
test of this nature would grow exponentially with both number of different hyper-
parameters and amount of steps within each hyper-parameter. There are in total
ten categories of hyper-parameters that can be adjusted by the DFF-code. This
means that if one wants to test ten options per hyper-parameter one would have
to train 1010 neural networks. If one could get the average time for each neural
network training to take 5 seconds, the exploration would take over 1500 years.

1. Type of optimizer
2. Constant values needed by optimizer algorithm
3. Type of activation function
4. Width of each layer

Chapter 4: Modelling using neural networks 29

5. Depth of network
6. Learning rate
7. Batch size
8. Number of epochs
9. Type of regularizer

10. Value of constant for regularizer function

4.5.5 Multirun algorithm

2 3 4 5 6 7 8 9 10 11 12
Depth

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
SE

of
la

st
tr

ai
ni

ng
ep

oc
h

Rectangular NN, with constant width

Width=10

Figure 4.4: Accuracy of DFF network with constant width of 10 as depth changes

30 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Algorithm 3 Pseudocode for the multirun script

Require: Learning rate ε
Require: Number of epochs E
Require: Shape of neural network, rectangular or conical
Require: Maximum allowable depth Depthmax
Require: Maximum allowable width Wid thmax

Make an array Depthlist, enumerating from 2 to Depthmax
Make an array Widthlist, that increases with 10 for each step. Starting at 10
and ending at Wid thmax
if Shape of neural network is rectangular then

for every Depth in Depthlist do
for every Width in Widthlist do

Create shape of neural network, by creating array that is Depth long and
all values are Width
Create log file for the final result
Create log file for console output in case there are problems
Create log file for how long it took to train this neural network
Run script to train the neural network

end for
end for

end if
if Shape of neural network is conical then

for every Depth in Depthlist do
for every Width in Widthlist do

Require: Ratio between final and first hidden layer R
Calculate the width change per layer ∆wid th by ceilWidth of first layer

Depth·R
Create shape of neural network, by creating array that is Depth long and
all values are 0, called hidden_layers
Fill the first entry of hidden_layers with starting Width
for each entry in hidden_layers do

Give each entry the value previous entry - ∆wid th
Create log file for the final result
Create log file for console output in case there are problems
Create log file for how long it took to train this neural network
Run script to train the neural network

end for
end for

end for
end if

Chapter 4: Modelling using neural networks 31

10 20 30 40 50 60 70 80 90 100
Width

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
M

SE
of

la
st

tr
ai

ni
ng

ep
oc

h
Rectangular NN, with constant depth

Depth=2
Depth=3
Depth=4

Figure 4.5: Accuracy of DFF with constant depths of 2,3, and 4 changes by alter-
ing width

While Figure 4.4 and Figure 4.5 checks for how changing the width or depth
for the DFF network if the width of each layer is the same, the DFF networks
in Figure 4.6 and Figure 4.7 have decreasing width. That means that each layer
contains fewer neurons than the preceding layer. The ratio between the width of
the first and last hidden layer is 30, each step rounding up.

32 S. K. Helgesen: Data-driven modelling in power components based on machine learning

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Depth

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
M

SE
of

la
st

tr
ai

ni
ng

ep
oc

h
Cone shaped NN, with constant start width

Start Width=10
Start Width=20
Start Width=30
Start Width=40

Figure 4.6: Constant start width and constant ratio
wid th f irst la yer

wid thlast la yer
DFF with changing

depth.

Chapter 4: Modelling using neural networks 33

10 20 30 40 50 60 70 80 90 100
Start width

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
M

SE
of

la
st

tr
ai

ni
ng

ep
oc

h
Cone shaped NN, with constant depth

Depth=2
Depth=3
Depth=4

Figure 4.7: Constant depth and constant ratio
wid th f irst la yer

wid thlast la yer
DFF with changing

start width.

The computational cost of doing the width-depth search is about 390 hours of
running time, at the same loads as given in subsection 5.4.1.

Figure 4.4, Figure 4.5, and Figure 4.6 all show one general trend. The most ac-
curate results came from the smallest networks. Some combinations of width and
depth of the neural network yielded neural networks with a large MSE, though
almost all neural networks with either very large width or depth ended up with
accuracies far above the smaller neural networks.

The one exception to this trend is the cone shaped neural network with a depth
of two. This network only improved as the width of the first layer increased.

As expected, the results from the brute force tuning of these two hyper para-
meters took a huge amount of computational power, yet yielded accuracies worse
than the human tuned neural network. If brute force tuning were to be applied
to all hyper-parameters in the same way, tuning a model for a shipboard power
plant would take longer than the expected lifetime of the vessel.

4.5.6 DFF

The base code for the DFF-networks comes from the course content in TTK28 -
Modelling with Neural Networks [41]. The code consists of:

• The __init__ function, which initialises the neural net.

34 S. K. Helgesen: Data-driven modelling in power components based on machine learning

• Then forward function, which defines how to pass information between the
layers of the hidden layer

• get_num_parameters which is used to check the number of parameters in
the neural net, which is useful information to get when tuning the neural
net

• The train function which defines how the training loop of the neural net
should happen

• the main() function, which takes in all the above functions so that the code
can be executed on command

4.5.7 LSTM

The base code for the LSTM-based networks is a modified version of a framework
made by Jakob Aungiers, which published his code under the GNU Affero General
Public License v3.0 at [42]. There are several reasons this code was chosen as a
base for the LSTM in the thesis:

• The code is very readable, making alterations and additions easier
• The base code already had support for LSTM, DFF, and dropout layers
• The base code is set up such that all hyper-parameters can be altered from

a single .json file
• The code was published under a licence which allows the usage and altera-

tion of the code without the need to pay royalties to the creator

The code from Jakob Aungiers have been altered, as there were some missing
components that were not needed for his application, though they were needed
for the more complex systems modeled in this thesis.

The first change in the code is in the data processor. The original solution is a
computationally simple implementation described by 4. This solution worked for
the intended use case, though when it encounters cases such as:

Algorithm 4 Pseudocode for the normalize windows algorithm

Require: Window_data WD
Create an empty array Normalized_data ND
for each window in WD do

Create an empty array normalized_window NW
for Each column in window do

Divide all values in column by the value in the first entry of that column
Put the divided values into the correct column in NW

end for
Reshape NW to have the same shape as original window

end for
return ND

1. The first datapoint in the window has a zero-value

Chapter 4: Modelling using neural networks 35

Table 4.2: Hypothetical dataset showing a potential problem with a normalizing
method

Input 1 Input 2 Input 1 Normalized Input 2 Normalized
Datapoint 1 0.1 1 1 1
Datapoint 2 1 0.1 10 0.1
Datapoint 3 2 0.5 20 0.5

2. The first datapoint in the window has a significantly smaller value than the
rest of the window

The first issue would result in a division by zero error. Avoiding a division
by zero error can be done in several ways, though all of them would add com-
putational complexity to the function, thus defeating the purpose of having this
simplification. The second issue is not as common and does not lead to a crash,
though it can defeat the entire purpose of normalization. One normalizes the data
into an LSTM because the architecture works much better with values between 0
and 1[20]. Table 4.2 shows how the old normalizer would deal with a potential
data-window that can arise by normalizing the data with the previous method; if
the first data-point is significantly smaller than the following values for an input,
the rest of the values for that input will be significantly larger than 1.

The While there are several ways to add to the original solution to remove
the issues, the solution that ended up being chosen was to take advantage of sk-
learn.prepocessor.MinMaxScaler() [43] with the built in normalization function.

The second alteration was to add the option of L1 and L2 regularization to
the network In TensorFlow L1 and L2 regularization can be added as one of three
functions; L1 regularization, L2 regularization, or using L1_L2. While using L1_L2

is functionally the same as adding both a L1 and a L2 regularizer, adding two of
them to the same layer results in a fatal error for the compiler. The model builder
function found in section A.2 therefore had to add some simple logical statements
that will make sure that only a single regularizer is used per layer.

The third change was to add an option to normalize the entire dataset at
the same time, instead of normalizing per batch. Normalizing the entire data-
set at once, instead of a batch by batch is done for time saving reasons. While
the sklearn.preprocessing.MinMaxScaler() [43] used in the per batch normaliz-
ation (see normalise_windows(self, window_data, single_window=False) in sec-
tion A.1) is an efficient method, the number of times it has to run for datasets
as large as used in this thesis makes the process take an unnecessary amount of
time. The normalize_dataset(self, filename) in section A.1 takes advantage of the
pandas library [44] to normalize the entire dataset in less than 3 seconds when
run by the CPU listed in Table 4.1.

The fourth change was made to accommodate for the datasets that are spread
out over several files. Instead of manually merging these files that can result in
human error, there is a function that can handle the operation. The function also
seems to get around the issue where opening a very large .csv file with excel can

36 S. K. Helgesen: Data-driven modelling in power components based on machine learning

cause some of the data to be lost.

Pruning

The pruning method implemented in this thesis comes from the tensorflow_model_optimization
[45] library, more specifically it is mostly based upon using the prune_low_magnitude(*args,
**kwargs) function within the library. While as stated in subsection 4.4.1 random
choice pruning does outperform not doing any pruning if the metric one is evalu-
ating a neural network by is accuracy

size , having a metric by which to choose what to
prune is better than random choice. The prune_low_magnitude(*args, **kwargs)
function uses the magnitude of the output from a neuron to decide what to prune
away, pruning away the neurons that have consistently low outputs. The function
takes in the wanted final sparsity as an input.

The pruning process can be summarized as:

1. Initialization:

• Find the parameters it needs for the process in the configs object passed
to the function

• Define a name for the pruned model
• Loading the dataset
• Calculate the number of datapoints in the dataset

2. Create a new model by copying the old one, and altering it so it can be
pruned 2

3. Re-train the pruned model by using the TensorFlow fit() function
4. Remove the pruning variables added in step 2
5. Save the pruned and re-trained model
6. Open the pruned model and use the post-training quantization technique
[46] to create a TF_lite model, which is even smaller than the pruned model

Step 6 is not strictly necessary, though the post-training quantization does
reduce model size significantly. Due to the post-training quantization not being
strictly necessary to the pruning process, the code does also contain a small_model
function that does step 1-5 of the pruning process.

4.5.8 Engine

Two neural networks approaches were attempted to construct a model for the
main engine aboard the Skandi Africa. The first approach was to use a growing
approach , which was used to determine how many different types of inputs were
needed to properly model the engine. To test the growing method, a DFF network
was used.

The sensors from the Skandi Africa vessel that concerned the main engine
were divided into four categories:

2The pruning function used needs to add a number of variables to the model, so that it can
determine what to prune

Chapter 4: Modelling using neural networks 37

1. Engine Speed, Speed of turbocharger, Exhaust Temperature After Turbine,
Exhaust Temperature Before Turbine, the desired temperature of the PID
controller for the engine

2. Charge Air Pressure, Fuel Oil Pressure
3. Temperature PID Control, ME Fuel Oil Press Before Filter
4. Exhaust temperature from each cylinder in the engine

The network started out by just using set 1, then it trained itself again using
set 1 and set 2, for each run adding the next set of inputs. The desired output to
find was the Active Power going to the Generator.

In order to reduce the need for human intervention, 3 was made, that kept
the other hyper-parameters constant for each trial. After each finished trial, the
results were analyzed to see which set of inputs performed the best, and in which
ways the hyper-parameters could be adjusted to get a better result.

The DFF neural network would eventually be abandoned, after it seemed like
the method plateaued at a mean average percentage error of 10%, which was too
high of an error to be satisfactory. After failing to get any satisfying results with a
DFF, an LSTM model was created instead.

The LSTM-network uses all the same inputs as the DFF network did, except the
desired output is also an input for this network. When the network has finished
training, it gets two subsequent samples from each input variables and tries to
predict the next value for each input category. The loss of the network is the mean
squared sum of how wrong it was for each prediction.

The data for the engine was normalized before starting the training set using
the normalize_dataset(self, filename) in section A.1, as it saved time during the
training process.

4.6 Converter

The converter is the only component that is modelled through the use of a DFF-
network

4.6.1 Pre-processing

The data aquired from Kongberg Maritime for the converter was not pre-processed.
Since the data is raw data, and comes from four different sensors with varying
polling rates, the raw data takes the form as seen in Table 4.3. The data is unus-
able for the DFF architecture, so it has to be pre-processed before the training can
be done.

While doing a forward hold 3 could have been done, it resulted in strange
behaviour from the neural network. Therefore the data was processed by doing
a linear interpolation between data points for each column of input data, such

3A forward hold would be to repeat the same value for a sensor reading until a new different
reading is met

38 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Table 4.3: Excerpt of the data used for training before it has gone through the
pre-processing

Africa.404_XI_11016 Africa.571_TT_114 Africa.571_TT_124 Africa.871_CB_TR1_KW

30.3998661
166.980072

23.0329304
166

30.4124737
23.1964645

149.034424
224

30.5385456
209.195099

23.1084061
205

23.0958271
30.4502945

122.030472
198

that the issues with forward hold would not arise; while having a value for all
the input and output parameters for all data points. In Table 4.4 one can see an
excerpt of how the interpolated data looks like.

Choosing training, validation and test sets

Once the data set has been pre-processed, it went through four steps:

1. The input and output data was chosen according to Table 4.5
2. It was divided into training and test sets, with the test set being 10% of the

total data
3. 10% of the training set was pseudorandomly extracted to form the valida-

tion set
4. The training and test sets were used to train and tune the neural net

Table 4.5: Inputs and outputs used

Input/Output Tag Desctiption
Input Africa.571_TT_124 Temperature in transformer room
Input Africa.571_TT_114 Temperature in thruster room
Input Africa.871_CB_TR1_KW Energy going into the transformer

Output Africa.404_XI_11016 Energy consumed by the thruster motor

Chapter 4: Modelling using neural networks 39

Table 4.4: Same part of the training-data set as shown in Table 4.3, after pre-
processing

Africa.404_XI_11016 Africa.571_TT_114 Africa.571_TT_124 Africa.871_CB_TR1_KW
168.6037 30.42508 23.10212 200.4
167.7919 30.39987 23.07906 191.8
166.9801 30.40239 23.05599 183.2
163.9891 30.40491 23.03293 174.6
160.9982 30.40743 23.07381 166
158.0072 30.40995 23.1147 177.6
155.0163 30.41247 23.15558 189.2
152.0254 30.43769 23.19646 200.8
149.0344 30.4629 23.18179 212.4
164.0746 30.48812 23.16711 224
179.1148 30.51333 23.15244 220.2
194.1549 30.53855 23.13776 216.4
209.1951 30.5209 23.12308 212.6
191.7622 30.50325 23.10841 208.8
174.3292 30.48559 23.10212 205
156.8963 30.46794 23.09583 203.25
139.4634 30.45029 23.09223 201.5
122.0305 30.45282 23.08864 199.75
138.9791 30.45534 23.08504 198

The final distribution of the size of each set is shown in Table 4.6. The val-
idation set is pseudorandomly extracted from the test set using a static seed. It
is randomly extracted because it is resampled every epoch, and having a static
validation set would lead to an overfitting to the subsection of the data that is
extracted as validation set. The reason it is chosen using a static seed is to give
the neural net the same basis for training each time, such that the difference in
results is due to different values in the hyper-parameters and not due to a better
selection of validation set.

Having the same training- and validation sets for the entire tuning process
could lead to a situation where the hyper-parameters are tuned to the point of
overfitting. To see whether this is the case or not, the neural net has been tested
on the test-set, consisting of data the neural net has never seen before.

Table 4.6: Selection of training set, validation set, and test set

Set Typical size in proportion to all the available data
Traning-set 81%
Validation-set 9%
Test-set 10%

40 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Table 4.7: Values for hyperparameters used to obtain the results given in
chapter 5

Hyper Parameter Value/Function used
Activation Function ReLU
Optimisation Algorithm Adaptive Gradients
Learning rate (Lr) 0.7
Learning rate decay 0.001× Lr × (1

nepochs
)

Number of epochs nepochs 12000
L2 regularisation 0.015
Width 25
Depth 500
Batch size 131072

Variation of hyper-parameters

Varying the learning rate of an algorithm is analogous to varying the proportional
term in a PID-regulator. Having a learning rate that is too high will lead to the
network ovencompensating for errors, and may never find the optimum configur-
ation. A learning rate that is too low will take a long time to find the best configur-
ation. When using the optimisation function used in this neural net; the adaptive
gradient optimisation function, one can set the learning rate to be higher than if
one were to use other types of optimisation function. This is due to the learning
rate decay, which will decrease the learning rate based upon how well the network
has improved.

Having a high number of epochs will give the neural net greater time to cor-
rect itself to find the best solution. It is usually limited by computational cost,
though having too many epochs can lead to a situation where the neural network
is overfitted for the training data.

When deciding the width of the neural net, one must take account for the com-
plexity of the system that is going to be modelled. The complexity of the modelled
system is proportional to the width of the network. The depth will influence the
flexibility of the neural network.

4.6.2 Generator

The generator is modelled using an LSTM network, with the same performance
indicator as the engine. As the other LSTM networks, the data is normalized before
running the training algorithm. The generator uses the following inputs:

1. The voltage in the generator
2. Generator frequency
3. Generator active power Active power [kW]
4. Generator Power Factor
5. Generator Reactive power [kVAr]

Chapter 4: Modelling using neural networks 41

6. Power produced over the last day
7. A series of numbers used for calculating the power produced over the last

day
8. A series of numbers used for calculating the power produced over the last

trip

4.6.3 Thruster

The thruster is modelled using an LSTM network, with the same performance
indicator as the engine.

The inputs to the network is:

1. RPM of the thruster motor
2. The motor power
3. Current going through the motor
4. The temperature in the thruster room
5. The temprature in the converter room
6. The amount of power consumed

To test the degradation of the performance over time, the network was trained
on a set of data from 10.09.2020 to 21.09.2020, and further tested on a set of data
from 21.10.2020 to 02.11.2020.

4.7 Parallel neural network

To see if the best solution is one large neural net or several smaller neural net-
works, the parallel test was created. For the parallel-test, the data from all four
pre-existing neural networks was combined into one .csv file. An LSTM neural
network was then created and trained on the data-set.

The process of creating an tuning the parallel network took the following
steps:

1. Take datasets taken at the same time from all four components
2. Combine the datasets into one large network
3. Set up the configuration file
4. Change the configuration

Step three and four had to be repeated quite a few times, because due to the
complexity of the system the training crashed a few times. While training all of
the LSTM networks, the loss of the network started slow and slowly got larger
as the network saw more data. For each new epoch the loss at the end would be
smaller. Though for the parallel network the loss would grow to infinity when it
was between 40% and 60% done with the first epoch, giving out an MSE of NaN.
This issue was amended by two alterations to the network:

• Increasing both the depth and the width of the network

42 S. K. Helgesen: Data-driven modelling in power components based on machine learning

• Adding L2 regularization to each layer, and increasing the value of the reg-
ularization for each failed run

4.7.1 Comparing physics based modelling with machine learning based
modelling

While both static and dynamic modelling can model a system with high fidelity
while being computationally effective, they usually do not account for all factors
that can be present in the system. [47] describes how the efficiency of a battery
will degrade with age. [48] used data driven methods to predict how propeller
and hull cleaning could affect the performance of a vessel.

Chapter 5

Results and discussion

In the following chapter the training results from the neural networks outlined
in chapter 4 are presented. This includes their shape, architecture, and the error
they had on the test-set. Then, the results from each neural network are described
and presented. If applicable, the neural networks will be compared to either the
other neural networks in the thesis or literature pertaining to the same type of
component.

5.1 Engine

The first layer is the LSTM input layer, which can be divided into two sublayers.
The first sublayer consists of 16 neurons, which takes in the 8 input values from
two sequential time steps. The second sublayer consists of 200 LSTM neurons. It
is a return layer which means that the feedback mechanisms in the neural net can
send impulses back to this layer.

The second layer is a dropout layer, with a droput rate of 20%.
The third layer is an LSTM layer with 100 neurons, it is also a return sequence

layer.
The fourth layer is an LSTM layer with 100 neurons, it is not return sequence

layer.
The fifth layer is a dropout layer, with a droput rate of 25%.
The sixth and final layer is a dense layer, the same type of layer as a DFF

network uses, with 8 neurons, a ReLU activation function and an L2-regularization
value of 0.001.

Table 5.1: The effects of pruning the model trained on data from engine

Model Pruned model
Size of file 4051 KB 1032 KB
Reported MSE 0.0012 3.5922e-06
Time taken 6 minutes 59.9 seconds 36 minutes 42.2 seconds

43

44 S. K. Helgesen: Data-driven modelling in power components based on machine learning

The performance of the DFF-network for the engine can be explained by mul-
tiple factors. One reason could be that the data-set was simply not large enough.
Though the LSTM-network trained on the same data-set had much better per-
formance, therefore the size of the data set seems to not be the reason it did not
perform as expected. Based upon the results from training the neural networks,
it seems that using a DFF-network to model an engine yields worse results than
using the LSTM-architecture.

When pruning a neural network, the expected result is a smaller network with
worse accuracy. In this case the accuracy rose after pruning. This indicates that the
original network has been over fit to certain parts of the data-set. As mentioned
in subsection 4.4.1, pruning is more effective for networks where the original net-
work is large and inefficient. The experimental results from this network seems
to indicate that the size of the original network was large enough for it to negat-
ively impact performance. The reported accuracy of the neural network is higher
than what was achieved in [10], which indicates that the neural network some
factor that was not covered by the dynamic model, which still had an impact on
the result.

The generator could not be compared to the polynomial model from the Skandi
Africa data, as power was not a recorded data when the data was gathered.

5.2 Thruster

The first layer is the LSTM input layer, which can be divided into two sublayers.
The first sublayer consists of 18 neurons, which takes in the 6 input values from
three sequential time steps. The second sublayer consists of 100 LSTM neurons.
It is a return layer which means that the feedback mechanisms in the neural net
can send impulses back to this layer.

The second layer is a dropout layer, with a droput rate of 30%.
The third layer is an LSTM layer with 75 neurons, it is also a return sequence

layer.
The fourth layer is an LSTM layer with 25 neurons, it is not return sequence

layer.
The fifth layer is a dropout layer, with a droput rate of 25%.
The sixth and final layer is a dense layer, the same type of layer as a DFF

network uses, with 5 neurons, a ReLU activation function and an L2-regularization
value of 0.0012.

Table 5.2: The effects of pruning the model trained on data from thruster

Model Pruned model
Size of file 292 KB 105 KB
Reported MSE 1.9324e-04 1.9101e-05
Time taken 10 minutes 50.4 seconds 22 minutes 43.7 seconds

Chapter 5: Results and discussion 45

This network was trained with three different data sets, the first data set was
from 10.09.2020 to 21.09.2020, the second set of data was from 21.10.2020 to
02.11.2020. The difference in performance between the two data sets was insig-
nificant. The network had significantly better accuracy when trained on a data-set
which was constructed by combining the two data-sets.

The lack of difference in performance between the two data-sets can be caused
by several factors. The two time periods were not far enough apart for the effects
described in [48] to take effect, therefore one would not expect there to be a
significant change in the behavior of the thruster. The data-set was also large
enough, and spanned a long enough time period for the regularizing effect of big
data to compensate for minute differences in performance from day to day.

The thruster model was tested up against the polynomial fit model from [13].
Using the polynomial:

η= f (power) = f (x) =
−0.02949x2 + 100.2849x + 11.7351

x + 2.0215
(5.1)

Where x is the power output from the thruster. Measured as a percentage of
maximum output. The data was normalized with the same script used to normal-
ize the LSTM networks, using a window size equal to the entire data-set.

The MSE on the polynomial model on the data from Skandi Africa was 0.002.

Figure 5.1: Efficiency of the thruster over time

Due to the data from the thruster changing rapidly

5.3 Generator

The first layer is the LSTM input layer, which can be divided into two sublayers.
The first sublayer consists of 57 neurons, which takes in the 19 input values from

46 S. K. Helgesen: Data-driven modelling in power components based on machine learning

three sequential time steps. The second sublayer consists of 300 LSTM neurons.
It is a return layer which means that the feedback mechanisms in the neural net
can send impulses back to this layer.

The second layer is a dropout layer, with a droput rate of 30%.

The third layer is an LSTM layer with 150 neurons, it is also a return sequence
layer.

The fourth layer is an LSTM layer with 75 neurons, it is not return sequence
layer.

The fifth layer is a dropout layer, with a droput rate of 25%.

The sixth and final layer is a dense layer, the same type of layer as a DFF net-
work uses, with 10 neurons, a ReLU activation function and an L2-regularization
value of 0.001.

Table 5.3: The effects of pruning the model trained on data from generator

Model Pruned model
Size of file 8529 KB 22774 KB
Reported MSE 0.0033 1.2813e-05
Time taken 9 minutes 50.7 seconds 20 minutes 47.8 seconds

The generator model was tested up against the polynomial fit model from
[13]. Using the polynomial from an electric generator:

η= f (power) = f (x) =
−0.026024x2 + 97.0165x + 5.3057

x + 0.76677
(5.2)

Where x is the power output from the generator. Measured as a percentage
of maximum output. The data was normalized with the same script used to nor-
malize the LSTM networks, using a window size equal to the entire data-set. The
model was then tested on the training set, and efficiency was calculated by di-
viding the power measured going out of the generator compared to the power
measured going in.

The MSE of the polynomial model on the data from Skandi Africa was 0.0013.

Chapter 5: Results and discussion 47

Figure 5.2: Efficiency of the generator over time, raw data

48 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 5.3: Efficiency of the generator over time, calculated using polynomial
model

Chapter 5: Results and discussion 49

Figure 5.4: Efficiency of the generator over time, calculated using neural network

5.4 Converter

5.4.1 Estimated Training cost

Training the neural network took 2405 seconds. It was trained exclusively using
the Graphics Processor Unit, which was a NVIDIA RTX 2060 Super [49].

50 S. K. Helgesen: Data-driven modelling in power components based on machine learning

0 500 1000 1500 2000 2500

Time passed since GPU monitor started (s)

0

5

10

15

20

25

30

35

40

P
e

rc
e

n
ta

g
e

 u
s
e

 o
f

G
P

U
 p

ro
c
e

s
s
in

g
 p

o
w

e
r

[-
]

Actual use

Mean use=2.49%

Figure 5.5: Percentage usage of the GPU processing power during the training

5.4.2 Results from training

0 2000 4000 6000 8000 10000 12000
Epoch

102

104

106

108

1010

1012

M
SE

va
lu

e

Figure 5.6: MSE value of validation error over the epochs, due to the extreme
improvement the MSE-axis has to be shown in log-scale

Chapter 5: Results and discussion 51

1.18 1.185 1.19 1.195 1.2
Epoch 104

214.65

214.7

214.75

214.8

214.85

214.9

214.95

215

215.05

215.1
M

SE
va

lu
e

Figure 5.7: Linear improvement over the last 200 epochs

The converter model was tested up against the polynomial fit model from [13].
Using the polynomial from a buck converter:

η= f (power) = f (x) =
−0.07178x2 + 99.1532x + 14.1382

x + 0.18274
(5.3)

Where x is the power output from the converter. Measured as a percentage
of maximum output. The data was normalized with the same script used to nor-
malize the LSTM networks, using a window size equal to the entire data-set. The
model was then tested on the training set, and efficiency was calculated by di-
viding the power measured going out of the converter compared to the power
measured going in.

The MSE of the polynomial model on the data from Skandi Africa was 0.071.

5.4.3 Results on test set

The results from the test set can be found in Table 5.4.

Table 5.4: MSE and MAE from test-set

Mean Squared Error Mean Absolute Error
212.3276 7.51024

52 S. K. Helgesen: Data-driven modelling in power components based on machine learning

A MAE of 7.5 equates to about 5% mean average percentage error over the
test-set. A 5% mean average percentage error means that for each value that the
network produces, the real answer is on average ± 5% of the answer given.

Figure 5.8: Efficiency of the converter over time

¨

Chapter 5: Results and discussion 53

Figure 5.9: Efficiency of the converter over time, shorter time frame

Due to the converter data having a large data set, along with both models
created having a small error, only a portion of the data is being plotted. Plotting
the entire data-set leads to plots which are hard to read and interpret. There is a
small difference in accuracy between the two models.

5.5 Parallel Network

The first layer is the LSTM input layer, which can be divided into two sublayers.
The first sublayer consists of 138 neurons, which takes in the 49 input values from
two sequential time steps. The second sublayer consists of 600 LSTM neurons. It
is a return layer which means that the feedback mechanisms in the neural net can
send impulses back to this layer.

The second layer is a dropout layer, with a droput rate of 20%.
The third layer is an LSTM layer with 100 neurons, it is also a return sequence

layer.
The fourth layer is an LSTM layer with 100 neurons, it is not return sequence

layer.
The fifth layer is a dropout layer, with a droput rate of 25%.
The sixth and final layer is a dense layer, the same type of layer as a DFF

network uses, with 8 neurons, a ReLU activation function and an L2-regularization
value of 0.001.

54 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Table 5.5: The effects of pruning the model trained on data from all four com-
ponents

Model Pruned model
Size of file 73.5 MB 24.5 MB
Reported MSE 0.0283 1.85E-06
Time taken 1 hour 10 minutes 23.1 seconds 2 hours 25 minutes 12.5 seconds

While the error for the original network where the data from all components
were used as input is worse than the individual components, the error is smal-
ler than if one calculates the total error from all individual components using
propagation of uncertainty.

As expected, the largest neural network gained the most from the pruning
process.

Figure 5.10: Combined efficiency of the thruster, generator, and converter over
time, raw data

Chapter 5: Results and discussion 55

Figure 5.11: Combined efficiency of the thruster, generator, and converter over
time, calculated using the polynomial model

56 S. K. Helgesen: Data-driven modelling in power components based on machine learning

Figure 5.12: Combined efficiency of the thruster, generator, and converter over
time, calculated using the neural network model

As mentioned in section 5.1, the model of the engine does not calculate the
efficiency of the engine, as the data for power going in and power going out is not
available. The data from the engine is part of the inputs to the combined neural
network, though the output from the engine has not been taken into the formation
of the graph.

For the combined model, when a component has been turned off, it is treated
as having 100% efficiency. This is to avoid the system assuming 0% efficiency if a
component is not being actively used.

Chapter 6

Conclusion

This thesis has investigated the viability of using artificial neural networks for
modelling shipboard power components. The thesis aim was to find out if artificial
neural networks could have a competitive advantage over physics based modelling
or other data-driven modelling techniques.

Due to the nature of a machine learning based artificial neural network, using
a case study in order to get access to data was necessary. Skandi Africa was the
vessel that provided the data. Skandi Africa provided enough data for the regu-
larizing effect of big data to have an effect on the accuracy of the models.

The artificial neural networks seem to be more accurate than the investigated
physics based modelling techniques, although with a larger demand for compu-
tational power.

6.1 Recommendation for further work

This thesis is the first step in the process of using data driven modelling using
machine learning to model shipboard electrical components. The area with the
most potential for improving the data-driven modelling approach described in
this thesis would be to improve the data gathering process. At the moment it is
a process that needs substantial human intervention, which is an inefficiency in
the system. The program should be expanded to include a module that gathers
data directly from a server such that it can be used for training or retraining of the
neural networks. The code can be used for retraining of existing neural networks,
and has been used to retrain neural networks after the pruning process.

In addition to the data gathering process being improved, more data is also
needed. Even though no degradation of performance for the neural networks were
found, this might be because the data gathered all was from within a time scope of
less than a year. There might be factors in the systems being modelled that do not
show in such a short time-frame. At the time of writing this thesis, the components
modelled has not aged enough for a performance degradation to be found by the
neural networks.

57

58 S. K. Helgesen: Data-driven modelling in power components based on machine learning

In this thesis, four components of the larger system has been modelled. They
have been modelled both as separate models and as a combined system. The res-
ults indicate that the better solution has been to model the system as a whole is
the best solution, though that is not necessarily true for a system that encompasses
all shipboard electrical components aboard a large vessel. Therefore the library of
neural networks has to be expanded to include all components aboard a vessel,
both as separate models and as a combined model to verify if the findings in this
thesis can be generalized. While the models made do function on the computer
they were trained on, they have not been tested to work on the hardware that is
aboard the ship in the case study. Because the purpose of constructing the model
has been for them to be used at the hardware aboard a ship in order to aid with
reducing fuel use, they hardware about a ship has to be able to run the models.
To be able to do this one would have to follow the process of:

1. Identify how much computing power is available on a vessel on a case-by-
case basis

2. Prune the neural networks down to a size where they can reasonably be run
3. Do a Hardware-In-The-Loop test
4. If Hardware-In-The-Loop test is successful, make it compatible with the rest

of the software

Identifying how much computing power is available to each model is crucial
because if the models are too large, it will not be possible to run the models in
real time. If the models are not able to be run in real time, they will not be useful
in decision making aboard a vessel. The results in this thesis suggests that the
pruning process resulted in a better performing neural network, though that might
not hold true if the pruning process is aggressive enough. If the neural networks
have to be pruned to the point where the accuracy falls below the acceptable
threshold, one might have to consider finding an architecture that is more efficient
from the start, which might not be any of the types of neural network used in this
thesis.

In addition to the need for computing power, the hardware also needs to be
able to run either the .h5 files or the tf-lite files that the program produces as the
file to represent the neural networks.

If the Hardware-In-The-Loop test is successful, the models needs to be incor-
porated into the decision making software which is being developed by Kongsberg
Maritime. Per now the models do not give out an estimate of energy loss as an es-
timate, although finding the energy loss is just a matter of subtracting the energy
out from the energy coming in to a component. A piece of software that extracts
the necessary data from the sensors aboard, feeds it to the neural networks, and
converts the output from the neural networks into the desired format for the rest
of the decision making algorithm needs to be made.

Bibliography

[1] I. M. Organization, Tanaloa dialogue. [Online]. Available: https://unfccc.
int/process-and-meetings/the-paris-agreement/the-paris-agreement/
2018-talanoa-dialogue-platform.

[2] D. H. Wolpert and W. G. Macready, ‘No free lunch theorems for optimiz-
ation.,’ IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,, vol. 1,
no. 22, pp. 69–82, 1997.

[3] Skandi africa (offshore supply ship) registered in bahamas - vessel details, cur-
rent position and voyage information - imo 9687459, mmsi 311000369, call
sign c6bu7. [Online]. Available: https://www.marinetraffic.com/en/
ais/details/ships/shipid:2725642/mmsi:311000369/imo:9687459/
vessel:SKANDI%5C%5FAFRICA.

[4] A. Papanikolaou, Ship design - methodologies of preliminary design. Springer,
2016.

[5] M.-I. Roh and K.-Y. Lee, Computational ship design. Springer Nature Singa-
pore, 2018.

[6] O. Veneri, F. Migliardini, C. Capasso and P. Corbo, ‘Overview of electric
propulsion and generation architectures for naval applications,’ in 2012
Electrical Systems for Aircraft, Railway and Ship Propulsion, Oct. 2012, pp. 1–
6. DOI: 10.1109/ESARS.2012.6387448.

[7] K. Group, Kongsberg digital adds recogni as a new partner to the kognifai
marketplace, Jul. 2021. [Online]. Available: https://www.kongsberg.com/
digital/resources/news- archive/2021/Kongsberg- Digital- adds-
Recogni-as-a-new-partner-to-the-Kognifai-Marketplace/.

[8] H. Helgesen, S. Henningsgård and A. A. Langli, Study on electrical energy
storage for ships, report no.: 2019-0217, rev. 04, Jan. 2021. [Online]. Avail-
able: http://www.emsa.europa.eu/publications/item/3895-study-
on-electrical-energy-storage-for-ships.html.

[9] P. Ghimire, M. Zadeh, E. Pedersen and J. Thorstensen, ‘Dynamic efficiency
modeling of a marine dc hybrid power system,’ in 2021 IEEE Applied Power
Electronics Conference and Exposition (APEC), 2021, pp. 855–862. DOI: 10.
1109/APEC42165.2021.9487343.

59

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/2018-talanoa-dialogue-platform
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/2018-talanoa-dialogue-platform
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement/2018-talanoa-dialogue-platform
https://www.marinetraffic.com/en/ais/details/ships/shipid:2725642/mmsi:311000369/imo:9687459/vessel:SKANDI%5C%5FAFRICA
https://www.marinetraffic.com/en/ais/details/ships/shipid:2725642/mmsi:311000369/imo:9687459/vessel:SKANDI%5C%5FAFRICA
https://www.marinetraffic.com/en/ais/details/ships/shipid:2725642/mmsi:311000369/imo:9687459/vessel:SKANDI%5C%5FAFRICA
https://doi.org/10.1109/ESARS.2012.6387448
https://www.kongsberg.com/digital/resources/news-archive/2021/Kongsberg-Digital-adds-Recogni-as-a-new-partner-to-the-Kognifai-Marketplace/
https://www.kongsberg.com/digital/resources/news-archive/2021/Kongsberg-Digital-adds-Recogni-as-a-new-partner-to-the-Kognifai-Marketplace/
https://www.kongsberg.com/digital/resources/news-archive/2021/Kongsberg-Digital-adds-Recogni-as-a-new-partner-to-the-Kognifai-Marketplace/
http://www.emsa.europa.eu/publications/item/3895-study-on-electrical-energy-storage-for-ships.html
http://www.emsa.europa.eu/publications/item/3895-study-on-electrical-energy-storage-for-ships.html
https://doi.org/10.1109/APEC42165.2021.9487343
https://doi.org/10.1109/APEC42165.2021.9487343

60 S. K. Helgesen: Data-driven modelling in power components based on machine learning

[10] P. Ghimire, M. Zadeh, J. Thorstensen and E. Pedersen, ‘Data-driven effi-
ciency modeling and analysis of all-electric ship powertrain: A comparison
of power system architectures,’ IEEE Transactions on Transportation Elec-
trification, vol. 8, no. 2, pp. 1930–1943, 2022. DOI: 10.1109/TTE.2021.
3123886.

[11] P. Ghimire, M. Zadeh, J. Thorstensen and E. Pedersen, ‘Data-driven effi-
ciency modeling and analysis of all-electric ship powertrain: A comparison
of power system architectures,’ IEEE Transactions on Transportation Elec-
trification, vol. 8, no. 2, pp. 1930–1943, 2022. DOI: 10.1109/TTE.2021.
3123886.

[12] IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics So-
ciety, Vienna, Austria, November 10-13, 2013, IEEE, 2013. [Online]. Avail-
able: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
6683943.

[13] P. Ghimire, M. Zadeh, E. Pedersen and J. Thorstensen, ‘Dynamic efficiency
modeling of a marine dc hybrid power system,’ in 2021 IEEE Applied Power
Electronics Conference and Exposition (APEC), 2021, pp. 855–862. DOI: 10.
1109/APEC42165.2021.9487343.

[14] Models and Methods for Efficiency Estimation of a Marine Electric Power Grid,
vol. Volume 7A: Ocean Engineering, International Conference on Offshore
Mechanics and Arctic Engineering, V07AT06A039, Jun. 2017. DOI: 10 .
1115/OMAE2017-61625. eprint: https://asmedigitalcollection.asme.
org/OMAE/proceedings-pdf/OMAE2017/57731/V07AT06A039/2533890/
v07at06a039-omae2017-61625.pdf. [Online]. Available: https://doi.
org/10.1115/OMAE2017-61625.

[15] B. Zahedi, L. E. Norum and K. B. Ludvigsen, ‘Optimized efficiency of all-
electric ships by dc hybrid power systems,’ Journal of Power Sources, vol. 255,
pp. 341–354, 2014, ISSN: 0378-7753. DOI: https://doi.org/10.1016/j.
jpowsour.2014.01.031. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0378775314000469.

[16] E. Skjong, T. A. Johansen, M. Molinas and A. J. Sørensen, ‘Approaches
to economic energy management in diesel–electric marine vessels,’ IEEE
Transactions on Transportation Electrification, vol. 3, no. 1, pp. 22–35, 2017.
DOI: 10.1109/TTE.2017.2648178.

[17] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. The MIT Press,
2017.

[18] K. P. Murphy, Machine learning: a probabilistic perspective. The MIT Press,
2012.

[19] A. Halevy, P. Norvig and F. Pereira, ‘The unreasonable effectiveness of data,’
Intelligent Systems, IEEE, vol. 24, pp. 8–12, May 2009. DOI: 10.1109/MIS.
2009.36.

https://doi.org/10.1109/TTE.2021.3123886
https://doi.org/10.1109/TTE.2021.3123886
https://doi.org/10.1109/TTE.2021.3123886
https://doi.org/10.1109/TTE.2021.3123886
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6683943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6683943
https://doi.org/10.1109/APEC42165.2021.9487343
https://doi.org/10.1109/APEC42165.2021.9487343
https://doi.org/10.1115/OMAE2017-61625
https://doi.org/10.1115/OMAE2017-61625
https://asmedigitalcollection.asme.org/OMAE/proceedings-pdf/OMAE2017/57731/V07AT06A039/2533890/v07at06a039-omae2017-61625.pdf
https://asmedigitalcollection.asme.org/OMAE/proceedings-pdf/OMAE2017/57731/V07AT06A039/2533890/v07at06a039-omae2017-61625.pdf
https://asmedigitalcollection.asme.org/OMAE/proceedings-pdf/OMAE2017/57731/V07AT06A039/2533890/v07at06a039-omae2017-61625.pdf
https://doi.org/10.1115/OMAE2017-61625
https://doi.org/10.1115/OMAE2017-61625
https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.01.031
https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.01.031
https://www.sciencedirect.com/science/article/pii/S0378775314000469
https://www.sciencedirect.com/science/article/pii/S0378775314000469
https://doi.org/10.1109/TTE.2017.2648178
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1109/MIS.2009.36

Bibliography 61

[20] T. Hastie, J. Friedman and R. Tisbshirani, The Elements of statistical learn-
ing: data mining, inference, and prediction. Springer, 2017.

[21] T. Schaul, I. Antonoglou and D. Silver, Unit tests for stochastic optimization,
Feb. 2014. [Online]. Available: https://arxiv.org/abs/1312.6055.

[22] J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization*, 2011. [Online]. Available: https:
//jmlr.csail.mit.edu/papers/volume12/duchi11a/duchi11a.pdf.

[23] D. P. Kingma and J. Baa, Adam: A method for stochastic optimization. [On-
line]. Available: https://arxiv.org/pdf/1412.6980.pdf%5C%20%5C%22%
5C%20entire%5C%20document.

[24] D. Wilson and T. R. Martinez, ‘The general inefficiency of batch training
for gradient descent learning,’ Neural Networks, vol. 16, no. 10, pp. 1429–
1451, 2003, ISSN: 0893-6080. DOI: https://doi.org/10.1016/S0893-
6080(03)00138- 2. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0893608003001382.

[25] X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks,
Jun. 2011. [Online]. Available: http://proceedings.mlr.press/v15/
glorot11a.

[26] K. Hornik, ‘Approximation capabilities of multilayer feedforward networks,’
Neural Networks, vol. 4, no. 2, pp. 251–257, 1991, ISSN: 0893-6080. DOI:
https://doi.org/10.1016/0893-6080(91)90009-T. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/089360809190009T.

[27] Pytorch installation page. [Online]. Available: https://pytorch.org/.

[28] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vie-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on hetero-
geneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[29] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,’ Neural com-
putation, vol. 9, pp. 1735–80, Dec. 1997. DOI: 10.1162/neco.1997.9.8.
1735.

[30] F. Gers, J. Schmidhuber and F. Cummins, ‘Learning to forget: Continual
prediction with lstm,’ Neural computation, vol. 12, pp. 2451–71, Oct. 2000.
DOI: 10.1162/089976600300015015.

https://arxiv.org/abs/1312.6055
https://jmlr.csail.mit.edu/papers/volume12/duchi11a/duchi11a.pdf
https://jmlr.csail.mit.edu/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/pdf/1412.6980.pdf%5C%20%5C%22%5C%20entire%5C%20document
https://arxiv.org/pdf/1412.6980.pdf%5C%20%5C%22%5C%20entire%5C%20document
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://www.sciencedirect.com/science/article/pii/S0893608003001382
http://proceedings.mlr.press/v15/glorot11a
http://proceedings.mlr.press/v15/glorot11a
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://pytorch.org/
https://www.tensorflow.org/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/089976600300015015

62 S. K. Helgesen: Data-driven modelling in power components based on machine learning

[31] D. W. Blalock, J. G. Ortiz, J. Frankle and J. Guttag, ‘What is the state of
neural network pruning?’ ArXiv, vol. abs/2003.03033, 2020.

[32] A. S. Morcos, H. Yu, M. Paganini and Y. Tian, One ticket to win them all: Gen-
eralizing lottery ticket initializations across datasets and optimizers, 2019.
arXiv: 1906.02773 [stat.ML].

[33] T. Gale, E. Elsen and S. Hooker, The state of sparsity in deep neural networks,
2019. arXiv: 1902.09574 [cs.LG].

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A large-
scale hierarchical image database,’ in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[35] Pytorch installation page. [Online]. Available: https://pytorch.org/get-
started/locally/.

[36] Cuda zone, May 2021. [Online]. Available: https://developer.nvidia.
com/cuda-zone.

[37] B. Grimstad, Building your first neural network, lectures in TTK28 - model-
ling with neural networks.

[38] T. A. S. Foundation, The Apache 2.0 Licence. [Online]. Available: https:
//www.apache.org/licenses/LICENSE-2.0.

[39] F. Chollet et al., Keras, https://keras.io, 2015.

[40] C. R. Harris, K. J. Millman, S. J. der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe,
P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H.
Abbasi, C. Gohlke and T. E. Oliphant, ‘Array programming with NumPy,’
Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10.1038/s41586-
020-2649-2. [Online]. Available: https://doi.org/10.1038/s41586-
020-2649-2.

[41] B. Grimstad, Bgrimstad/ttk28-courseware. [Online]. Available: https://
github.com/bgrimstad/TTK28-Courseware.

[42] J. Anguiers, Lstm-neural-network-for-time-series-prediction, https://github.
com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction,
2019.

[43] Sklearn.preprocessing.minmaxscaler, Documentation. [Online]. Available:
https://scikit- learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html.

[44] T. pandas development team, Pandas-dev/pandas: Pandas, version latest,
Feb. 2020. DOI: 10.5281/zenodo.3509134. [Online]. Available: https:
//doi.org/10.5281/zenodo.3509134.

https://arxiv.org/abs/1906.02773
https://arxiv.org/abs/1902.09574
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://keras.io
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/bgrimstad/TTK28-Courseware
https://github.com/bgrimstad/TTK28-Courseware
https://github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
https://github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Chapter : Conclusion 63

[45] Pruning in keras example: Tensorflow model optimization, Guide on how to
use the tensorflow_model_optimization library. [Online]. Available: https:
//www.tensorflow.org/model%5C%5Foptimization/guide/pruning/
pruning%5C%5Fwith%5C%5Fkeras.

[46] Post-training quantization, Documentation for the post-training quantiza-
tion technique in TensorFlow. [Online]. Available: https://www.tensorflow.
org/lite/performance/post%5C%5Ftraining%5C%5Fquantization.

[47] S. Atalay, M. Sheikh, A. Mariani, Y. Merla, E. Bower and W. D. Widan-
age, ‘Theory of battery ageing in a lithium-ion battery: Capacity fade, non-
linear ageing and lifetime prediction,’ Journal of Power Sources, vol. 478,
p. 229 026, 2020, ISSN: 0378-7753. DOI: https://doi.org/10.1016/j.
jpowsour.2020.229026. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0378775320313239.

[48] P. Gupta, Ship performance monitoring using in-service measurements and big
data analysis methods, Jan. 2022. [Online]. Available: https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/2988194.

[49] Nvidia geforce rtx 2060 super. [Online]. Available: https://www.nvidia.
com/nb-no/geforce/graphics-cards/rtx-2060-super/.

[50] S. K. Helgesen, Simenkh/datadrivenmodelling, Jul. 2021. [Online]. Avail-
able: https://github.com/SimenKH/DataDrivenModelling.

https://www.tensorflow.org/model%5C%5Foptimization/guide/pruning/pruning%5C%5Fwith%5C%5Fkeras
https://www.tensorflow.org/model%5C%5Foptimization/guide/pruning/pruning%5C%5Fwith%5C%5Fkeras
https://www.tensorflow.org/model%5C%5Foptimization/guide/pruning/pruning%5C%5Fwith%5C%5Fkeras
https://www.tensorflow.org/lite/performance/post%5C%5Ftraining%5C%5Fquantization
https://www.tensorflow.org/lite/performance/post%5C%5Ftraining%5C%5Fquantization
https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.229026
https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.229026
https://www.sciencedirect.com/science/article/pii/S0378775320313239
https://www.sciencedirect.com/science/article/pii/S0378775320313239
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2988194
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2988194
https://www.nvidia.com/nb-no/geforce/graphics-cards/rtx-2060-super/
https://www.nvidia.com/nb-no/geforce/graphics-cards/rtx-2060-super/
https://github.com/SimenKH/DataDrivenModelling

Appendix A

Long short term memory code

The code can also be found at [50]

A.1 LSTM data processor

import math
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import itertools

class DataLoader():
"""A class for loading and transforming data for the lstm model
,→ """

def __init__(self, filename, split, cols):
dataframe = pd.read_csv(filename)
i_split = int(len(dataframe) * split)
self.data_train = dataframe.get(cols).values[:i_split]
self.data_test = dataframe.get(cols).values[i_split:]
self.len_train = len(self.data_train)
self.len_test = len(self.data_test)
self.len_train_windows = None

def get_test_data(self, seq_len, normalise):
’’’
Create x, y test data windows
Warning: batch method, not generative, make sure you have
,→ enough memory to

load data, otherwise reduce size of the training split.
’’’

65

66 S. K. Helgesen: Data-driven modelling in power components based on machine learning

data_windows = []
for i in range(self.len_test - seq_len):

data_windows.append(self.data_test[i:i+seq_len])

data_windows = np.array(data_windows).astype(float)
data_windows = self.normalise_windows(data_windows,
,→ single_window=False) if normalise else data_windows

x = data_windows[:, :-1]
y = data_windows[:, -1, [0]]
return x,y

def get_train_data(self, seq_len, normalise):
’’’
Create x, y train data windows
Warning: batch method, not generative, make sure you have
,→ enough memory to

load data, otherwise use generate_training_window() method.
’’’
data_x = []
data_y = []
for i in range(self.len_train - seq_len):

x, y = self._next_window(i, seq_len, normalise)
data_x.append(x)
data_y.append(y)

return np.array(data_x), np.array(data_y)

def generate_train_batch(self, seq_len, batch_size, normalise):
’’’Yield a generator of training data from filename on given
,→ list of cols split for train/test’’’

i = 0
while i < (self.len_train - seq_len):

x_batch = []
y_batch = []
for b in range(batch_size):

if i >= (self.len_train - seq_len):
stop-condition for a smaller final batch if data
,→ doesn’t divide evenly

yield np.array(x_batch), np.array(y_batch)
i = 0

x, y = self._next_window(i, seq_len, normalise)
x_batch.append(x)
y_batch.append(y)
i += 1

Chapter A: Long short term memory code 67

yield np.array(x_batch), np.array(y_batch)

def _next_window(self, i, seq_len, normalise):
’’’Generates the next data window from the given index
,→ location i’’’

window = self.data_train[i:i+seq_len]
window = self.normalise_windows(window, single_window=True)[0]
,→ if normalise else window

x = window[:-1]
y = window[-1, [0]]
return x, y

def normalise_windows(self, window_data, single_window=False):
’’’Normalise window with a base value of zero’’’

normalised_data = []
scaler=MinMaxScaler()
window_data = [window_data] if single_window else window_data
for window in window_data:

normalised_window = []
for col_i in range(window.shape[1]):

try:
#normalised_col = [((float(p) / float(window[0, col_i
,→])) - 1) for p in window[:, col_i]]

#print(normalised_col)
#print(type(normalised_col))

temp=[]
for p in window[:,col_i]:

temp.append(p)
temp=pd.DataFrame(temp,columns=[’col’])
temp=scaler.fit_transform(temp)
normalised_col = temp.tolist()
normalised_col=list(itertools.chain.from_iterable(
,→ normalised_col))

for item in normalised_col:
item=float(item)

#print(normalised_col)
#print(type(normalised_col2))
#print("heheheh")

except ZeroDivisionError:
normalised_col = [((float(p) / (float(window[0, col_i
,→])+0.01)) - 1) for p in window[:, col_i]]

68 S. K. Helgesen: Data-driven modelling in power components based on machine learning

normalised_window.append(normalised_col)
normalised_window = np.array(normalised_window).T # reshape
,→ and transpose array back into original
,→ multidimensional format

normalised_data.append(normalised_window)
return np.array(normalised_data)

def normalize_dataset(self, filename):
’’’Normalize the entire dataset, instead of doing it window by
,→ window’’’

df = pd.read_csv(file,low_memory=False)
for col in df:

try:
df[col]=df[col].to_numpy(dtype=np.float64)
largestvalue=df[col].max()
df[col]=df[col]/largestvalue

except ZeroDivisionError:
#if the largest value in a column is 0, then there is no
,→ point to waste computing power

print(col)
df=df.drop(columns=col)

except ValueError:
#support for learning with data that are not numbers is
,→ not yet supported"

print(col)
df=df.drop(columns=col)

df.to_csv(filename)

def dataset_joiner(path,desired_filename):
’’’
For joining together several files in the dataset into one larger
,→ file, if the dataset is spread out over several files

Files must not be in the data folder in this project
’’’
illegal_path=os.path.dirname(os.path.dirname(os.path.abspath(
,→ __file__)))+r’data\’’

␣␣␣␣if␣path==illegal_path:
␣␣␣␣␣␣␣␣print("Please␣put␣the␣files␣you␣want␣to␣join␣in␣another␣
,→ folder␣to␣avoid␣messy␣results")

␣␣␣␣␣␣␣␣return
␣␣␣␣count=0
␣␣␣␣for␣file␣in␣os.listdir(path):

Chapter A: Long short term memory code 69

␣␣␣␣␣␣␣␣if␣count==0:
␣␣␣␣␣␣␣␣␣␣␣␣temp=path+file
␣␣␣␣␣␣␣␣␣␣␣␣bigdf=pd.read_csv(temp,low_memory=False)
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣temp=path+file
␣␣␣␣␣␣␣␣␣␣␣␣df=pd.read_csv(temp,low_memory=False)
␣␣␣␣␣␣␣␣␣␣␣␣bigdf.append(df)
␣␣␣␣␣␣␣␣count+=1
␣␣␣␣save=illegal_path+desired_filename+’.csv’
␣␣␣␣bigdf.to_csv(save)
␣␣␣␣print("Joined")

A.2 LSTM model

import os
import math
import numpy as np
import datetime as dt
from numpy import newaxis
from core.utils import Timer
from keras.layers import Dense, Activation, Dropout, LSTM
from keras.models import Sequential, load_model
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.regularizers import l1,l2,l1_l2
import tensorflow as tf
import tempfile
import tensorflow_model_optimization as tfmot
from tensorflow.keras.models import load_model
import sys
class Model():

"""A class for an building and inferencing an lstm model"""

def __init__(self):
self.model = Sequential()

def load_model(self, filepath):
print(’[Model]␣Loading␣model␣from␣file␣%s’ % filepath)
self.model = load_model(filepath)

def build_model(self, configs):
timer = Timer()
timer.start()

70 S. K. Helgesen: Data-driven modelling in power components based on machine learning

for layer in configs[’model’][’layers’]:
neurons = layer[’neurons’] if ’neurons’ in layer
,→ else None

dropout_rate = layer[’rate’] if ’rate’ in layer
,→ else None

activation = layer[’activation’] if ’activation’
,→ in layer else None

return_seq = layer[’return_seq’] if ’return_seq’
,→ in layer else None

input_timesteps = layer[’input_timesteps’] if ’
,→ input_timesteps’ in layer else None

input_dim = layer[’input_dim’] if ’input_dim’ in
,→ layer else None

L1 = layer[’L1’] if ’L1’ in layer else None
L2 = layer[’L2’] if ’L1’ in layer else None
reg=None
print("boop")
if ((L1!=None) and (L2!=None)):

reg=l1_l2(l1=L1,l2=L2)
elif (L1 != None):

reg=l1(l1=L1)
elif (L2 != None):

reg=l2(l2=L2)

if layer[’type’] == ’dense’:
self.model.add(Dense(neurons, activation=
,→ activation,kernel_regularizer=reg))

if layer[’type’] == ’lstm’:
self.model.add(LSTM(neurons, input_shape=(
,→ input_timesteps, input_dim),
,→ return_sequences=return_seq,
,→ kernel_regularizer=reg))

if layer[’type’] == ’dropout’:
self.model.add(Dropout(dropout_rate))

self.model.compile(loss=configs[’model’][’loss’],
,→ optimizer=configs[’model’][’optimizer’])

print(’[Model]␣Model␣Compiled’)
timer.stop()

def train(self, x, y, epochs, batch_size, save_dir):
configs = json.load(open(’config.json’, ’r’))

Chapter A: Long short term memory code 71

timer = Timer()
timer.start()
print(’[Model]␣Training␣Started’)
print(’[Model]␣%s␣epochs,␣%s␣batch␣size’ % (epochs,
,→ batch_size))

if ’trained_model_name’ in configs[’data’]:
save_fname = os.path.join(save_dir,configs[’data’
,→][’trained_model_name’] ,’trained_at_%s-e%s
,→ .h5’ % (dt.datetime.now().strftime(’%d%m%Y
,→ -%H%M%S’), str(epochs)))

else:
save_fname = os.path.join(save_dir, ’%s-e%s.h5’ %
,→ (dt.datetime.now().strftime(’%d%m%Y-%H%M%S’
,→), str(epochs)))

callbacks = [
EarlyStopping(monitor=’val_loss’, patience=2),
ModelCheckpoint(filepath=save_fname, monitor=’
,→ val_loss’, save_best_only=True)

]
self.model.fit(

x,
y,
epochs=epochs,
batch_size=batch_size,
callbacks=callbacks

)
self.model.save(save_fname)

print(’[Model]␣Training␣Completed.␣Model␣saved␣as␣%s’ %
,→ save_fname)

timer.stop()

def train_generator(self, data_gen, epochs, batch_size,
,→ steps_per_epoch, save_dir):

timer = Timer()
timer.start()
print(’[Model]␣Training␣Started’)
print(’[Model]␣%s␣epochs,␣%s␣batch␣size,␣%s␣batches␣per␣
,→ epoch’ % (epochs, batch_size, steps_per_epoch))

save_fname = os.path.join(save_dir, ’%s-e%s.h5’ % (dt.
,→ datetime.now().strftime(’%d%m%Y-%H%M%S’), str(

72 S. K. Helgesen: Data-driven modelling in power components based on machine learning

,→ epochs)))
callbacks = [

ModelCheckpoint(filepath=save_fname, monitor=’loss
,→ ’, save_best_only=True)

]
self.model.fit_generator(

data_gen,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
callbacks=callbacks,
workers=1

)

print(’[Model]␣Training␣Completed.␣Model␣saved␣as␣%s’ %
,→ save_fname)

timer.stop()

def predict_point_by_point(self, data):
#Predict each timestep given the last sequence of true
,→ data, in effect only predicting 1 step ahead each
,→ time

print(’[Model]␣Predicting␣Point-by-Point...’)
predicted = self.model.predict(data)
predicted = np.reshape(predicted, (predicted.size,))
return predicted

def predict_sequences_multiple(self, data, window_size,
,→ prediction_len):

#Predict sequence of 50 steps before shifting prediction
,→ run forward by 50 steps

print(’[Model]␣Predicting␣Sequences␣Multiple...’)
prediction_seqs = []
for i in range(int(len(data)/prediction_len)):

curr_frame = data[i*prediction_len]
predicted = []
for j in range(prediction_len):

predicted.append(self.model.predict(
,→ curr_frame[newaxis,:,:])[0,0])

curr_frame = curr_frame[1:]
curr_frame = np.insert(curr_frame, [
,→ window_size-2], predicted[-1], axis
,→ =0)

prediction_seqs.append(predicted)
return prediction_seqs

Chapter A: Long short term memory code 73

def predict_sequence_full(self, data, window_size):
#Shift the window by 1 new prediction each time, re-run
,→ predictions on new window

print(’[Model]␣Predicting␣Sequences␣Full...’)
curr_frame = data[0]
predicted = []
for i in range(len(data)):

predicted.append(self.model.predict(curr_frame[
,→ newaxis,:,:])[0,0])

curr_frame = curr_frame[1:]
curr_frame = np.insert(curr_frame, [window_size
,→ -2], predicted[-1], axis=0)

return predicted

def get_gzipped_model_size(file):
Returns size of gzipped model, in bytes.
import os
import zipfile

_, zipped_file = tempfile.mkstemp(’.zip’)
with zipfile.ZipFile(zipped_file, ’w’, compression=zipfile.
,→ ZIP_DEFLATED) as f:

f.write(file)

return os.path.getsize(zipped_file)

def sparsity_pruning(configs,data,model,save_dir):
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

save_fname = os.path.join(save_dir, ’%s-e%s.h5’ % (dt.datetime
,→ .now().strftime(’%d%m%Y-%H%M%S’), "pruned"))

Compute end step to finish pruning after 2 epochs.
batch_size = configs["training"]["batch_size"]
epochs = configs["training"]["epochs"]
validation_split = configs["training"]["validation_split"]
x, y = data.get_train_data(
seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)
num_data_points = x.shape[0] * (1 - validation_split)

74 S. K. Helgesen: Data-driven modelling in power components based on machine learning

end_step = np.ceil(num_data_points / batch_size).astype(np.
,→ int32) * epochs

Define model for pruning.
pruning_params = {

’pruning_schedule’: tfmot.sparsity.keras.PolynomialDecay(
,→ initial_sparsity=configs["pruning_parameters"]["
,→ initial_sparsity"],

final_sparsity=
,→ configs["
,→ pruning_parameters
,→ "]["
,→ final_sparsity
,→ "],

begin_step=0,
end_step=end_step)

}
model_for_pruning = prune_low_magnitude(model, **
,→ pruning_params)

‘prune_low_magnitude‘ requires a recompile.
model_for_pruning.compile(optimizer=configs["model"]["
,→ optimizer"],
loss=tf.keras.losses.SparseCategoricalCrossentropy(
,→ from_logits=True),

metrics=[’accuracy’])

model_for_pruning.summary()
logdir = tempfile.mkdtemp()

callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),

]

model_for_pruning.fit(x, y,
batch_size=batch_size, epochs=epochs, validation_split
,→ =validation_split,

callbacks=callbacks)
try:

model_for_pruning.save(save_fname)
except:

model_for_pruning.save(save_dir)

Chapter A: Long short term memory code 75

return save_fname

def small_model(configs,data,model,save_dir):
#if not os.path.exists(configs[’model’][’save_dir’]): os.
,→ makedirs(configs[’model’][’save_dir’])

#fname=sparsity_pruning(configs,data,model,save_dir)
#model=load_model(fname)
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

save_fname = os.path.join(save_dir, ’%s-e%s.h5’ % (dt.datetime
,→ .now().strftime(’%d%m%Y-%H%M%S’), "pruned"))

Compute end step to finish pruning after 2 epochs.
batch_size = configs["training"]["batch_size"]
epochs = configs["training"]["epochs"]
validation_split = configs["training"]["validation_split"]
x, y = data.get_train_data(
seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)
num_data_points = x.shape[0] * (1 - validation_split)
end_step = np.ceil(num_data_points / batch_size).astype(np.
,→ int32) * epochs

Define model for pruning.
pruning_params = {

’pruning_schedule’: tfmot.sparsity.keras.PolynomialDecay(
,→ initial_sparsity=configs["pruning_parameters"]["
,→ initial_sparsity"],

final_sparsity=
,→ configs["
,→ pruning_parameters
,→ "]["
,→ final_sparsity
,→ "],

begin_step=0,
end_step=end_step)

}
model_for_pruning = prune_low_magnitude(model, **
,→ pruning_params)

76 S. K. Helgesen: Data-driven modelling in power components based on machine learning

‘prune_low_magnitude‘ requires a recompile.
model_for_pruning.compile(optimizer=configs["model"]["
,→ optimizer"],
loss=tf.keras.losses.SparseCategoricalCrossentropy(
,→ from_logits=True),

metrics=[’accuracy’])

model_for_pruning.summary()
logdir = tempfile.mkdtemp()

callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),

]

model_for_pruning.fit(x, y,
batch_size=batch_size, epochs=epochs, validation_split
,→ =validation_split,

callbacks=callbacks)
model_for_export = tfmot.sparsity.keras.strip_pruning(
,→ model_for_pruning)

_, pruned_keras_file = tempfile.mkstemp(’.h5’)
tf.keras.models.save_model(model_for_export, pruned_keras_file
,→ , include_optimizer=False)

print(’Saved␣pruned␣Keras␣model␣to:’, pruned_keras_file)

converter = tf.lite.TFLiteConverter.from_keras_model(
,→ model_for_export)

pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp(’.tflite’)
with open(pruned_tflite_file, ’wb’) as f:

f.write(pruned_tflite_model)

print(’Saved␣pruned␣TFLite␣model␣to:’, pruned_tflite_file)
return pruned_tflite_file

def very_small_model(configs,data,model,save_dir):
old=sys.stdout
sys.stdout=open("pruning-engine.txt",’w’)
timer = Timer()
timer.start()
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

Chapter A: Long short term memory code 77

save_fname = os.path.join(save_dir, ’%s-e%s.h5’ % (dt.datetime
,→ .now().strftime(’%d%m%Y-%H%M%S’), "pruned"))

Compute end step to finish pruning after 2 epochs.
batch_size = configs["training"]["batch_size"]
epochs = configs["training"]["epochs"]
validation_split = configs["training"]["validation_split"]
x, y = data.get_train_data(
seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)
num_data_points = x.shape[0] * (1 - validation_split)
end_step = np.ceil(num_data_points / batch_size).astype(np.
,→ int32) * epochs

Define model for pruning.
pruning_params = {

’pruning_schedule’: tfmot.sparsity.keras.PolynomialDecay(
,→ initial_sparsity=configs["pruning_parameters"]["
,→ initial_sparsity"],

final_sparsity=
,→ configs["
,→ pruning_parameters
,→ "]["
,→ final_sparsity
,→ "],

begin_step=0,
end_step=end_step)

}
model_for_pruning = prune_low_magnitude(model, **
,→ pruning_params)

‘prune_low_magnitude‘ requires a recompile.
model_for_pruning.compile(optimizer=configs["model"]["
,→ optimizer"],
loss=tf.keras.losses.SparseCategoricalCrossentropy(
,→ from_logits=True),

metrics=[’accuracy’])

model_for_pruning.summary()
logdir = tempfile.mkdtemp()

78 S. K. Helgesen: Data-driven modelling in power components based on machine learning

callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),

]

model_for_pruning.fit(x, y,
batch_size=batch_size, epochs=epochs, validation_split
,→ =validation_split,

callbacks=callbacks)
model_for_export = tfmot.sparsity.keras.strip_pruning(
,→ model_for_pruning)

_, pruned_keras_file = tempfile.mkstemp(’.h5’)
tf.keras.models.save_model(model_for_export, pruned_keras_file
,→ , include_optimizer=False)

print(’Saved␣pruned␣Keras␣model␣to:’, pruned_keras_file)

converter = tf.lite.TFLiteConverter.from_keras_model(
,→ model_for_export)

pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp(’.tflite’)
with open(pruned_tflite_file, ’wb’) as f:

f.write(pruned_tflite_model)

print(’Saved␣pruned␣TFLite␣model␣to:’, pruned_tflite_file)
converter = tf.lite.TFLiteConverter.from_keras_model(
,→ model_for_export)

converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()

_, quantized_and_pruned_tflite_file = tempfile.mkstemp(’.
,→ tflite’)

with open(quantized_and_pruned_tflite_file, ’wb’) as f:
f.write(quantized_and_pruned_tflite_model)

print(’Saved␣quantized␣and␣pruned␣TFLite␣model␣to:’,
,→ quantized_and_pruned_tflite_file)

#print("Size of gzipped baseline Keras model: %.2f bytes" % (
,→ get_gzipped_model_size(keras_file)))

print("Size␣of␣gzipped␣pruned␣and␣quantized␣TFlite␣model:␣%.2f
,→ ␣bytes" % (get_gzipped_model_size(

Chapter A: Long short term memory code 79

,→ quantized_and_pruned_tflite_file)))
timer.stop()
sys.stdout.close()
sys.stdout=old

A.3 LSTM main file

__author__ = "Jakob␣Aungiers"
__copyright__ = "Jakob␣Aungiers␣2018"
__version__ = "2.0.0"
__license__ = "MIT"

import os
import json
import time
import math
import matplotlib.pyplot as plt
from core.data_processor import DataLoader
from core.model import Model
import core.model as MDL
from tensorflow.keras.models import load_model
import sys
def plot_results(predicted_data, true_data):

fig = plt.figure(facecolor=’white’)
ax = fig.add_subplot(111)
ax.plot(true_data, label=’True␣Data’)
plt.plot(predicted_data, label=’Prediction’)
plt.legend()
plt.show()

def plot_results_multiple(predicted_data, true_data, prediction_len)
,→ :
fig = plt.figure(facecolor=’white’)
ax = fig.add_subplot(111)
ax.plot(true_data, label=’True␣Data’)

Pad the list of predictions to shift it in the graph to it’s
,→ correct start

for i, data in enumerate(predicted_data):
padding = [None for p in range(i * prediction_len)]
plt.plot(padding + data, label=’Prediction’)
plt.legend()

plt.show()

80 S. K. Helgesen: Data-driven modelling in power components based on machine learning

def main():
old=sys.stdout
sys.stdout=open("engine.txt",’w’)

configs = json.load(open(’config.json’, ’r’))
if not os.path.exists(configs[’model’][’save_dir’]): os.makedirs(
,→ configs[’model’][’save_dir’])

data = DataLoader(
os.path.join(’data’, configs[’data’][’filename’]),
configs[’data’][’train_test_split’],
configs[’data’][’columns’]

)

model = Model()
model.build_model(configs)
x, y = data.get_train_data(

seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)

’’’
in-memory training
model.train(

x,
y,
epochs = configs[’training’][’epochs’],
batch_size = configs[’training’][’batch_size’],
save_dir = configs[’model’][’save_dir’]

)
’’’

out-of memory generative training
steps_per_epoch = math.ceil((data.len_train - configs[’data’][’
,→ sequence_length’]) / configs[’training’][’batch_size’])

model.train_generator(
data_gen=data.generate_train_batch(

seq_len=configs[’data’][’sequence_length’],
batch_size=configs[’training’][’batch_size’],
normalise=configs[’data’][’normalise’]

),
epochs=configs[’training’][’epochs’],

Chapter A: Long short term memory code 81

batch_size=configs[’training’][’batch_size’],
steps_per_epoch=steps_per_epoch,
save_dir=configs[’model’][’save_dir’]

)

x_test, y_test = data.get_test_data(
seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)

sys.stdout.close()
sys.stdout=old

#predictions = model.predict_sequences_multiple(x_test, configs[’
,→ data’][’sequence_length’], configs[’data’][’
,→ sequence_length’])

#predictions = model.predict_sequence_full(x_test, configs[’data
,→ ’][’sequence_length’])

#predictions = model.predict_point_by_point(x_test)
#print(predictions)

#plot_results_multiple(predictions, y_test, configs[’data’][’
,→ sequence_length’])

plot_results(predictions, y_test)

#if __name__ == ’__main__’:
#main()

def TestModel(model_filepath):
configs = json.load(open(’config.json’, ’r’))
if not os.path.exists(configs[’model’][’save_dir’]): os.makedirs(
,→ configs[’model’][’save_dir’])

model=Model()
model.load_model(model_filepath)
data = DataLoader(

os.path.join(’data’, configs[’data’][’filename’]),
configs[’data’][’train_test_split’],
configs[’data’][’columns’]

)
x_test, y_test = data.get_test_data(

82 S. K. Helgesen: Data-driven modelling in power components based on machine learning

seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)
predictions = model.predict_sequences_multiple(x_test, configs[’
,→ data’][’sequence_length’], configs[’data’][’
,→ sequence_length’])

predictions = model.predict_sequence_full(x_test, configs[’data’
,→][’sequence_length’])

predictions = model.predict_point_by_point(x_test)
print(predictions)

main()

#TestModel(r"C:\Users\simen\source\repos\LSTM-Neural-Network-for-
,→ Time-Series-Prediction\saved_models\07072021-120542-e6.h5")

configs = json.load(open(’config.json’, ’r’))
data = DataLoader(

os.path.join(’data’, configs[’data’][’filename’]),
configs[’data’][’train_test_split’],
configs[’data’][’columns’]

)
x, y = data.get_train_data(

seq_len=configs[’data’][’sequence_length’],
normalise=configs[’data’][’normalise’]

)

save_dir="C:/Users/simen/source/repos/LSTM-Neural-Network-for-Time-
,→ Series-Prediction/pruned_models/"

model_1=load_model(r"C:\Users\simen\source\repos\LSTM-Neural-Network
,→ -for-Time-Series-Prediction\saved_models\07072021-170114-e4.
,→ h5")

MDL.very_small_model(configs,data,model_1,save_dir)
#open("results.txt",’w’)
#MDL.very_small_model(configs,data,model,save_dir)

A.4 LSTM utilities

import datetime as dt

class Timer():

Chapter A: Long short term memory code 83

def __init__(self):
self.start_dt = None

def start(self):
self.start_dt = dt.datetime.now()

def stop(self):
end_dt = dt.datetime.now()
print(’Time␣taken:␣%s’ % (end_dt - self.start_dt))

Appendix B

Deep feedforward code

-*- coding: utf-8 -*-
"""
Created on Wed Nov 18 15:38:53 2020

@author: simen
"""

-*- coding: utf-8 -*-
"""
Created on Wed Sep 30 11:15:37 2020
@author: simen
base code taken from https://github.com/bgrimstad/TTK28-Courseware/
,→ blob/master/model/flow_model.ipynb

"""
import matplotlib.pyplot as plt
import pandas as pd
import torch
from torch.utils.data import DataLoader
from math import sqrt
import sys
import xlsxwriter
import numpy as np
import GPUtil as GPU
from threading import Thread
import time
import math
class Monitor(Thread):

def __init__(self, delay):
super(Monitor, self).__init__()
self.stopped = False
self.delay = delay # Time between calls to GPUtil

85

86 S. K. Helgesen: Data-driven modelling in power components based on machine learning

self.start()

def run(self):
while not self.stopped:

GPU.showUtilization()
time.sleep(self.delay)

def stop(self):
self.stopped = True

class Net(torch.nn.Module):
"""
PyTorch offers several ways to construct neural networks.
Here we choose to implement the network as a Module class.
This gives us full control over the construction and clarifies
,→ our intentions.

"""

def __init__(self, layers):
"""
Constructor of neural network
:param layers: list of layer widths. Note that len(layers) =
,→ network depth + 1 since we incl. the input layer.

"""
super().__init__()

self.device = ’cuda’ #if torch.cuda.is_available() else ’cpu’

assert len(layers) >= 2, "At␣least␣two␣layers␣are␣required␣(
,→ incl.␣input␣and␣output␣layer)"

self.layers = layers

Fully connected linear layers
linear_layers = []

for i in range(len(self.layers) - 1):
n_in = self.layers[i]
n_out = self.layers[i+1]
layer = torch.nn.Linear(n_in, n_out)

Initialize weights and biases
a = 1 if i == 0 else 2
layer.weight.data = torch.randn((n_out, n_in)) * sqrt(a /
,→ n_in)

layer.bias.data = torch.zeros(n_out)

Chapter B: Deep feedforward code 87

Add to list
linear_layers.append(layer)

Modules/layers must be registered to enable saving of model
self.linear_layers = torch.nn.ModuleList(linear_layers)

Non-linearity (e.g. ReLU, ELU, or SELU)
self.act = torch.nn.ReLU(inplace=False)

def forward(self, input):
"""
Forward pass to evaluate network for input values
:param input: tensor assumed to be of size (batch_size,
,→ n_inputs)

:return: output tensor
"""
x = input
for l in self.linear_layers[:-1]:

x = l(x)
x = self.act(x)

output_layer = self.linear_layers[-1]
return output_layer(x)

def get_num_parameters(self):
return sum(p.numel() for p in self.parameters())

def save(self, path: str):
"""
Save model state
:param path: Path to save model state
:return: None
"""
torch.save({

’model_state_dict’: self.state_dict(),
}, path)

def load(self, path: str):
"""
Load model state from file
:param path: Path to saved model state
:return: None
"""

88 S. K. Helgesen: Data-driven modelling in power components based on machine learning

checkpoint = torch.load(path, map_location=torch.device("cuda"
,→ if torch.cuda.is_available() else "cpu"))

self.load_state_dict(checkpoint[’model_state_dict’])

def train(
net: torch.nn.Module,
train_loader: DataLoader,
val_loader: DataLoader,
n_epochs: int,
lr: float,
l2_reg: float, MSElist, gpu

) -> torch.nn.Module:
"""
Train model using mini-batch SGD
After each epoch, we evaluate the model on validation data
:param net: initialized neural network
:param train_loader: DataLoader containing training set
:param n_epochs: number of epochs to train
:param lr: learning rate (default: 0.001)
:param l2_reg: L2 regularization factor (default: 0)
:return: torch.nn.Module: trained model.
"""

Define loss and optimizer
criterion = torch.nn.MSELoss(reduction=’sum’)
optimizer = torch.optim.Adagrad(net.parameters(), lr=lr, lr_decay
,→ =0.001*lr*(1/n_epochs))

Train Network
for epoch in range(n_epochs):

for inputs, labels in train_loader:
Zero the parameter gradients (from last iteration)
optimizer.zero_grad()

Forward propagation
outputs = net(inputs)

Compute cost function
batch_mse = criterion(outputs, labels)

reg_loss = 0
for param in net.parameters():

reg_loss += param.pow(2).sum()

Chapter B: Deep feedforward code 89

cost = batch_mse + l2_reg * reg_loss

Backward propagation to compute gradient
cost.backward()

Update parameters using gradient
optimizer.step()
#print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util
,→ {2:3.0f}% | Total {3:.0f}MB".format(gpu.memoryFree,
,→ gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)
,→)

Evaluate model on validation data
mse_val = 0
for inputs, labels in val_loader:

mse_val += torch.sum(torch.pow(labels - net(inputs), 2)).
,→ item()

mse_val /= len(val_loader.dataset)
MSElist.append(mse_val)
#print(f’Epoch: {epoch + 1}: Val MSE: {mse_val}’)

return net

def main():

old=sys.stdout
sys.stdout=open(’console-log5.txt’,’w’)
monitor = Monitor(5)
GPUs = GPU.getGPUs()
gpu = GPUs[0]
t0=time.time()

random_seed =13371337 # This seed is also used in the pandas
,→ sample() method below

torch.manual_seed(random_seed)
df_unfixed = pd.read_csv(r"C:\Users\simen\OneDrive\Skrivebord\
,→ Prosjektoppgave\Test2.csv", index_col=0)

for col in df_unfixed:
df_unfixed[col] = pd.to_numeric(df_unfixed[col], errors=’
,→ coerce’)

df=df_unfixed.interpolate(method=’linear’,limit_direction=’
,→ forward’)

90 S. K. Helgesen: Data-driven modelling in power components based on machine learning

df=df.dropna(axis=0)
print("Data␣finished␣interpolating")
print(’Sizze␣of␣dataset’, df.shape)
Test set (this is the period for which we must estimate QTOT)
test_set = df.iloc[838860:1048570]

Make a copy of the dataset and remove the test data
train_val_set = df.copy().drop(test_set.index)

Sample validation data without replacement (10%)
val_set = train_val_set.sample(frac=0.1, replace=False,
,→ random_state=random_seed)

The remaining data is used for training (90%)
train_set = train_val_set.copy().drop(val_set.index)

Check that the numbers add up
n_points = len(train_set) + len(val_set) + len(test_set)
print(f’{len(df)}␣=␣{len(train_set)}␣+␣{len(val_set)}␣+␣{len(
,→ test_set)}␣=␣{n_points}’)

INPUT_COLS = [’Africa.571_TT_124’, ’Africa.871_CB_TR1_KW’,’
,→ Africa.571_TT_114’] #’Africa.571_TT_114’,’Africa.871
,→ _XI_10151’, ’Africa.871_XI_10207’,’Africa.871_XI_10259’,’
,→ Africa.871_XI_10302’,’Africa.871_XI_10303’,’Africa.871
,→ _XI_10304’,’Africa.871_XI_10306’,’Africa.871_XI_10312’,’
,→ Africa.871_XI_10315’,’Africa.871_XI_10363’,’Africa.871
,→ _XI_10409’]

OUTPUT_COLS = [’Africa.404_XI_11016’]

Get input and output tensors and convert them to torch tensors
x_train = torch.from_numpy(train_set[INPUT_COLS].values).to(torch
,→ .float)

y_train = torch.from_numpy(train_set[OUTPUT_COLS].values).to(
,→ torch.float)

x_val = torch.from_numpy(val_set[INPUT_COLS].values).to(torch.
,→ float)

y_val = torch.from_numpy(val_set[OUTPUT_COLS].values).to(torch.
,→ float)

Create dataset loaders
Here we specify the batch size and if the data should be
,→ shuffled

train_dataset = torch.utils.data.TensorDataset(x_train, y_train)

Chapter B: Deep feedforward code 91

train_loader = torch.utils.data.DataLoader(train_dataset,
,→ batch_size=131072, shuffle=True)

val_dataset = torch.utils.data.TensorDataset(x_val, y_val)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=
,→ len(val_set), shuffle=False)

layers = [len(INPUT_COLS), 500,25, len(OUTPUT_COLS)]
net = Net(layers)

print(f’Layers:␣{layers}’)
print(f’Number␣of␣model␣parameters:␣{net.get_num_parameters()}’)

n_epochs = 12000
lr = 0.7
l2_reg = 0.015 # 10

MSElist=[]

net = train(net, train_loader, val_loader, n_epochs, lr, l2_reg,
,→ MSElist,gpu)

with open(’MSEovertime.txt’,’w’) as f:
sys.stdout=f
epoke=1
for element in MSElist:

print(’Epoch:’,epoke, ’␣␣␣␣␣Val␣MSE:␣’ ,element, ’\n␣\n’)
epoke+=1

workbook = xlsxwriter.Workbook(’MSE.xlsx’)
worksheet = workbook.add_worksheet()
row=0
for element in MSElist:

worksheet.write(row,0,element)
row+=1

workbook.close()
monitor.stop()
t1=time.time()-t0
sys.stdout=open(’timespent.txt’,’w’)
print(’Time␣for␣entire␣script␣to␣run:’, t1)
sys.stdout=old
Get input and output as torch tensors

92 S. K. Helgesen: Data-driven modelling in power components based on machine learning

x_test = torch.from_numpy(test_set[INPUT_COLS].values).to(torch.
,→ float)

y_test = torch.from_numpy(test_set[OUTPUT_COLS].values).to(torch.
,→ float)

Make prediction
pred_test = net(x_test)

Compute MSE, MAE and MAPE on test data
print(’Error␣on␣test␣data’)

mse_test = torch.mean(torch.pow(pred_test - y_test, 2))
print(f’MSE:␣{mse_test.item()}’)

mae_test = torch.mean(torch.abs(pred_test - y_test))
print(f’MAE:␣{mae_test.item()}’)

mape_test = 100*torch.mean(torch.abs(torch.div(pred_test - y_test
,→ , y_test)))

print(f’MAPE:␣{mape_test.item()}␣%’)

def multi_run(mode):
#constants
epochs=12000
learning_rate=0.7
#rectangular mode
if (mode==1):

modus="Rectangular"
hidden_layers=[]
max_depth=20
max_width=100
depthlist=range(2,max_depth)
widthlist=np.arange(10,max_width+10,10).tolist()
for depth in depthlist:

for width in widthlist:
hidden_layers=[width]*depth
result_filename="results_using_"+modus+"
,→ neuralnet_with_depth_"+str(depth)+"_and␣width_"+
,→ str(width)+".xlsx"

Chapter B: Deep feedforward code 93

console_log_filename="console_log_using_"+modus+"
,→ neuralnet_with_depth_"+str(depth)+"_and␣width_"+
,→ str(width)+".txt"

time_spent_filename="time_spent_using_"+modus+"
,→ neuralnet_with_depth_"+str(depth)+"_and␣width_"+
,→ str(width)+".txt"

main(hidden_layers,epochs,learning_rate,result_filename,
,→ console_log_filename,time_spent_filename)

if (mode==2):
modus="Cone"
hidden_layers=[]
max_depth=100
max_width=500
depthlist=range(2,max_depth)
widthlist=np.arange(10,max_width+10,10).tolist()
ratio_between_width_of_first_and_last_layer=30
for depth in depthlist:

for width in widthlist:
first_layer=width
layer_width_change=math.floor((first_layer/
,→ ratio_between_width_of_first_and_last_layer)/
,→ depth)

hidden_layers=[None]*depth

for i in range(len(hidden_layers)):
if (i==0):

hidden_layers[i]=first_layer
else:

hidden_layers[i]=hidden_layers[i-1]-
,→ layer_width_change

result_filename="results_using_"+modus+"
,→ _neuralnet_with_depth_"+str(depth)+"start_width="
,→ +str(hidden_layers[0])+"_last_layer_"+str(
,→ hidden_layers[-1])+".xlsx"

console_log_filename="console_log_using_"+modus+"
,→ _neuralnet_with_depth_"+str(depth)+"start_width="
,→ +str(hidden_layers[0])+"_last_layer_"+str(
,→ hidden_layers[-1])+".txt"

time_spent_filename="time_spent_using_"+modus+"
,→ _neuralnet_with_depth_"+str(depth)+"start_width="
,→ +str(hidden_layers[0])+"_last_layer_"+str(
,→ hidden_layers[-1])+".txt"

94 S. K. Helgesen: Data-driven modelling in power components based on machine learning

main(hidden_layers,epochs,learning_rate,result_filename,
,→ console_log_filename,time_spent_filename)

def GrowingApproach():
output=[’Africa.871_XI_10207’]
inputs=[[’Africa.601_XI_10114’,’Africa.601_UA_10176’,’Africa.601
,→ _TI_10199’,’Africa.601_TI_10200’,’Africa.601_TI_10179’,’
,→ Africa.601_TI_10179’,’Africa.601_TI_10178’],[’Africa.601
,→ _XI_10114’,’Africa.601_UA_10176’,’Africa.601_TI_10199’,’
,→ Africa.601_TI_10200’,’Africa.601_TI_10179’,’Africa.601
,→ _TI_10179’,’Africa.601_TI_10178’,’Africa.601_PI_10177’,’
,→ Africa.601_PT_10163’],[’Africa.601_XI_10114’,’Africa.601
,→ _UA_10176’,’Africa.601_TI_10199’,’Africa.601_TI_10200’,’
,→ Africa.601_TI_10179’,’Africa.601_TI_10179’,’Africa.601
,→ _TI_10178’,’Africa.601_PI_10177’,’Africa.601_PT_10163’,’
,→ Africa.601_PI_10170’,’601_TI_10172’],[’Africa.601_XI_10114
,→ ’,’Africa.601_UA_10176’,’Africa.601_TI_10199’,’Africa.601
,→ _TI_10200’,’Africa.601_TI_10179’,’Africa.601_TI_10179’,’
,→ Africa.601_TI_10178’,’Africa.601_PI_10177’,’Africa.601
,→ _PT_10163’,’Africa.601_PI_10170’,’601_TI_10172’,’Africa
,→ .601_TT_10189’,’Africa.601_TT_10188’,’Africa.601_TT_10187’
,→ ,’Africa.601_TT_10186’,’Africa.601_TT_10185’,’Africa.601
,→ _TT_10184’,’Africa.601_TT_10183’,’Africa.601_TT_10182’,’
,→ Africa.601_TT_10181’]]

#inputs=[[’Africa.601_XI_10114’],[’Africa.601_XI_10114’,’Africa
,→ .601_UA_10176’,’Africa.601_TI_10199’,’Africa.601_TI_10200
,→ ’],[’Africa.601_XI_10114’,’Africa.601_UA_10176’,’Africa
,→ .601_TI_10199’,’Africa.601_TI_10200’,’Africa.601_TI_10179
,→ ’,’Africa.601_TI_10179’,’Africa.601_TI_10178’],[’Africa
,→ .601_XI_10114’,’Africa.601_UA_10176’,’Africa.601_TI_10199
,→ ’,’Africa.601_TI_10200’,’Africa.601_TI_10179’,’Africa.601
,→ _TI_10179’,’Africa.601_TI_10178’,’Africa.601_PI_10177’,’
,→ Africa.601_PT_10163’],[’Africa.601_XI_10114’,’Africa.601
,→ _UA_10176’,’Africa.601_TI_10199’,’Africa.601_TI_10200’,’
,→ Africa.601_TI_10179’,’Africa.601_TI_10179’,’Africa.601
,→ _TI_10178’,’Africa.601_PI_10177’,’Africa.601_PT_10163’,’
,→ Africa.601_PI_10170’,’601_TI_10172’],[’Africa.601_XI_10114
,→ ’,’Africa.601_UA_10176’,’Africa.601_TI_10199’,’Africa.601
,→ _TI_10200’,’Africa.601_TI_10179’,’Africa.601_TI_10179’,’
,→ Africa.601_TI_10178’,’Africa.601_PI_10177’,’Africa.601
,→ _PT_10163’,’Africa.601_PI_10170’,’601_TI_10172’,’Africa
,→ .601_TT_10189’,’Africa.601_TT_10188’,’Africa.601_TT_10187

Chapter B: Deep feedforward code 95

,→ ’,’Africa.601_TT_10186’,’Africa.601_TT_10185’,’Africa.601
,→ _TT_10184’,’Africa.601_TT_10183’,’Africa.601_TT_10182’,’
,→ Africa.601_TT_10181’]]

teller=0
for inputset in inputs:

if inputset != inputs[-1]:
continue
epochs=6000
learning_rate=0.7
hidden_layers=[500,250,125,75,10]
result_filename="CONEresults_using_input_set_"+str(teller)+".
,→ xlsx"

console_log_filename="CONEconsole_log_using_input_set"+str(
,→ teller)+".txt"

time_spent_filename="CONEtime_spent_using_input_set"+str(
,→ teller)+".txt"

main(hidden_layers,epochs,learning_rate,result_filename,
,→ console_log_filename,time_spent_filename,output,
,→ inputset)

teller+=1

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r m

ar
in

 te
kn

ik
k

Simen Karlsen Helgesen

Data-driven modelling and
estimation of losses in shipboard
electrical power components based
on machine learning

Masteroppgave i Marin teknikk
Veileder: Roger Skjetne
Medveileder: Krishna Kumar Nagalingam
Juli 2022

M
as
te
ro
pp

ga
ve

	Abstract
	Sammendrag
	Acknowledgment
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Background an motivation
	Research questions
	Case Study
	Thesis outline

	Shipboard Power Plants
	Efficiency Modelling
	Static efficiency modelling
	Dynamic efficiency modelling
	Component Efficiency modelling
	System Efficiency modelling

	Modelling using neural networks
	Hyper-parameters
	Depth and breadth
	Regularization
	Error
	Learning rate
	Optimization algorithm
	Batch
	Activation function

	Supervised learning algorithms
	Support Vector Regression (SVR)
	Deep feedforward (DFF)
	Long Short Term Memory (LSTM)

	Overfitting and underfitting
	Overfitting
	Underfitting

	Growing and pruning
	Pruning

	Modelling Process
	Experimental setup
	Libraries
	Case Study
	Width-Depth test
	Multirun algorithm
	DFF
	LSTM
	Engine

	Converter
	Pre-processing
	Generator
	Thruster

	Parallel neural network
	Comparing physics based modelling with machine learning based modelling

	Results and discussion
	Engine
	Thruster
	Generator
	Converter
	Estimated Training cost
	Results from training
	Results on test set

	Parallel Network

	Conclusion
	Recommendation for further work

	Bibliography
	Long short term memory code
	LSTM data processor
	LSTM model
	LSTM main file
	LSTM utilities

	Deep feedforward code

