
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Tommy Woldseth

Teamwork Effectiveness in Large-
Scale Agile Software Development: A
Multi-Case Study

Master’s thesis in Datateknologi
Supervisor: Torgeir Dingsøyr
June 2023

Tommy Woldseth

Teamwork Effectiveness in Large-Scale
Agile Software Development: A Multi-
Case Study

Master’s thesis in Datateknologi
Supervisor: Torgeir Dingsøyr
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Agile methods were originally designed for small, co-located software development

teams. In recent times, however, agile methods have been increasingly applied to

larger projects where multiple agile teams cooperate together. Such a large-scale

context entails more teams, developers, and stakeholders, which can make coordin-

ation and collaboration more challenging. Therefore, this thesis investigates factors

that contribute to effective teamwork in large-scale agile software development, both

at the intra and inter-team level. To accomplish this, two large-scale agile cases were

researched through the use of interviews. In total 14 interviews were conducted with

developers, architects, team leads, and product leads. The statements from these

interviews were analyzed qualitatively and used to attempt to answer three research

questions regarding teamwork in large-scale agile. The first main finding consists of

an overview of factors that foster and hinder effective teamwork in large-scale agile.

The second main finding is a collection of strategies that can be employed to enable

teamwork effectiveness. Lastly, the findings are compared to an existing model of

teamwork effectiveness in agile teams, and an extension of the model is developed

and proposed specifically for large-scale contexts.

i

Sammendrag

Smidige metoder ble opprinnelig designet for små, samlokaliserte programvareutvik-

lingsteam. I nyere tider har imidlertid smidige metoder i økende grad blitt brukt p̊a

større prosjekter hvor flere smidige team samarbeider. En slik stor-skala kontekst

innebærer flere team, utviklere og stakeholdere, noe som kan gjøre koordinering og

samarbeid mer utfordrende. Derfor undersøker denne oppgaven faktorer som bidrar

til effektivt samarbeid i stor-skala smidig programvareutvikling, b̊ade p̊a intra- og

inter-team-niv̊a. For å oppn̊a dette ble to stor-skala smidige caser undersøkt gjen-

nom bruk av intervjuer. Totalt ble det gjennomført 14 intervjuer med utviklere,

arkitekter, teamledere og produktledere. Utsagnene fra disse intervjuene ble ana-

lysert kvalitativt og brukt til å forsøke å svare p̊a tre forskningsspørsm̊al ang̊aende

teamarbeid i stor-skala smidig. Det første hovedfunnet best̊ar av en oversikt over

faktorer som fremmer og hindrer effektivt teamarbeid i stor-skala smidig. Det andre

hovedfunnet er en samling av strategier som kan brukes for å muliggjøre effektivt

samarbeid. Til slutt sammenlignes funnene med en eksisterende modell for effektivt

samarbeid i smidig utvikling, og en utvidelse av modellen blir utviklet og foresl̊att

spesielt for stor-skala sammenhenger.

ii

Preface

This thesis concludes my master’s degree from the Department of Computer Science,

as well as five fantastic years at NTNU. During these years I have met a lot of great

people, made new friendships, learned a lot, and had a lot of fun.

Throughout my time at NTNU, I have taken a broad range of various courses. I first

got introduced to agile development in the course TDT4140 - Software Engineering

and have been interested in the field of software development processes ever since.

Through this course, I was also introduced to Henrik Kniberg’s down-to-earth book

on Scrum and XP, which further sparked my interest and shaped my view on agile

in general, and Scrum in particular (Kniberg 2015). I got familiar with the use

of agile in large-scale contexts through a preparatory specialization project which

was carried out the past fall. The project consisted of a literature review within

large-scale agile software development, and the research made me want to continue

investigating this topic for my final project.

Lastly, I want to thank some people who have helped me through this final project.

First and foremost, I want to give a big thanks to my supervisor Torgeir Dingsøyr.

Torgeir has guided me through the project from start to finish and has learned me

a lot about software development processes, research, and academic writing. He has

also provided invaluable feedback on my theses and helped me gain access to the

two cases I researched in this project. Further, I want to thank the other members

of my supervisor group, for useful tips, feedback, and discussions. I also want to

thank the people at Signicat and NAV IT for taking the time to help me with my

project and share their experiences. Lastly, I want to thank my family, friends, and

girlfriend for always being supportive.

Tommy Eikrem Woldseth

Trondheim, June 4, 2023

iii

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Background and motivation . 1

1.2 Research questions and scope . 3

1.3 Contributions . 4

1.4 Intended audience . 4

1.5 Limitations . 5

1.6 Structure of the thesis . 5

2 Background and Theory 7

2.1 Software development processes and models 7

2.1.1 Plan-based methodologies . 8

2.1.2 Agile software development 10

2.1.3 Lean software development . 17

2.1.4 Large-scale agile software development 21

2.2 Teams and teamwork . 27

2.2.1 Teams . 27

2.2.2 Team autonomy . 28

2.2.3 Collaboration . 28

2.2.4 Teamwork in general . 30

v

2.2.5 Teamwork in software development 34

2.2.6 Teamwork in agile software development 35

2.3 Coordination . 36

2.3.1 Coordination in general . 37

2.3.2 Coordination in software development 38

2.3.3 Coordination in agile software development 39

2.4 Remote and hybrid work . 43

2.5 Knowledge management . 44

3 Method 47

3.1 Research strategy and method . 47

3.2 Case selection . 48

3.2.1 Case A: Signicat . 49

3.2.2 Case B: NAV IT . 50

3.3 Data generation . 52

3.3.1 Interviews . 52

3.4 Transcription process . 53

3.5 Qualitative analysis . 54

3.6 Feedback sessions . 55

3.7 Method evaluation and limitations 55

3.7.1 Case study validation . 56

3.7.2 Limitations . 58

4 Results 61

vi

4.1 Agile methods and work process . 61

4.1.1 Choice of agile method . 62

4.1.2 Work tasks and specialization 64

4.1.3 Improvement . 65

4.2 Autonomy, alignment, and leadership 66

4.3 Inter-team coordination . 69

4.4 Intra-team collaboration . 70

4.4.1 Adaptability . 71

4.4.2 Feedback . 71

4.4.3 Team spirit and trust . 72

4.4.4 Shared mental models . 74

4.4.5 Competence redundancy . 75

4.5 Remote and hybrid solutions . 76

5 Discussion 81

5.1 Impact on teamwork effectiveness . 81

5.1.1 What fosters effective teamwork? 81

5.1.2 What hinders effective teamwork? 85

5.2 Enabling effective teamwork . 89

5.2.1 Customize agile methods . 89

5.2.2 Share your knowledge . 90

5.2.3 Reflect to improve . 91

5.2.4 Give considerable control to teams 91

vii

5.2.5 Get to know your colleagues 92

5.3 Comparison to an existing model . 93

5.3.1 Coordinating mechanisms . 93

5.3.2 Core components . 95

5.3.3 Additional components or mechanisms 97

5.4 Evaluation and limitations . 100

6 Conclusion 103

6.1 Contributions . 104

6.2 Future work . 105

Bibliography 107

Appendix 117

A Interview guide . 117

A.1 Intro . 117

A.2 Practical . 117

A.3 About interviewee . 118

A.4 About their project . 118

A.5 Main part . 119

A.6 Conclusion . 121

B Theme codes from NVivo . 121

C Agile principles . 123

viii

List of Figures

1 The waterfall model . 9

2 Values of the agile manifesto . 12

3 Scrum life cycle . 14

4 Example of a Kanban Board . 15

5 Organization structure using the Spotify model 26

6 Scrum of Scrums of Scrums . 27

7 The Big Five model . 32

8 A teamwork effectiveness model (ATEM) 36

9 Theoretical model for coordination 41

10 Coordination effectiveness . 42

11 Model of the chosen research process 48

12 Map of Signicat office locations . 50

13 Overview of the analysis phase . 55

14 Frequency of use of agile methods among participants 63

15 Satisfaction with remote or hybrid . 79

16 LATEM . 100

17 Initial theme codes . 122

18 Final five themes . 122

19 Principles of the agile manifesto . 123

ix

List of Tables

1 Scale taxonomy agile development . 22

2 The Teamwork Quality Construct . 30

3 Big Five core components . 33

4 Big Five coordinating mechanisms . 34

5 Taxonomy of dependencies . 43

6 Schools of knowledge management . 46

7 Overview of the two cases . 51

8 Overview of interviews . 61

9 Factors that fosters effective teamwork 82

10 Factors that hinder effective teamwork 86

x

1 Introduction

This initial section will introduce agile, and more specifically, large-scale agile soft-

ware development. It will provide relevant background on key topics of the research

as well as motivation for this study. Further, the research questions will be intro-

duced, as well as a discussion of the contributions, intended audience, and limitations

of this study. Lastly, the section will give an overview of the structure of this thesis.

1.1 Background and motivation

Agile software development has been a popular way of developing software since

its inception in the late 90s (Dingsøyr, Falessi et al. 2019). Traditional, plan-based

software development methodologies have in many cases been replaced by agile

methods and an agile mindset. Agile methods were originally intended for small,

co-located development teams (Dingsøyr and N. B. Moe 2013). Due to their success,

however, agile methods have been increasingly employed in other contexts as well.

In recent times, larger organizations have used agile methods in large projects where

a multitude of development teams cooperate to develop software (Fuchs and Hess

2018). This has created a new sub-field within software development methodologies,

namely large-scale agile software development. As this is a relatively new field within

software development, it can benefit from more empirical research.

One example of large-scale agile development is the development program from

the study of Dingsøyr, N. B. Moe and Seim (2018). In this study, a program

called “Perform” was explored, which developed an office automation system for the

Norwegian Public Service Pension Fund. The program employed an agile approach

and was labeled as large-scale due to its size. At its peak, the program consisted

of 12 teams working in parallel, involving 175 people in total. With a total budget

of around EUR 140 million, and using about 800,000 person-hours, it was one of

Norway’s largest IT programs. A more detailed description of what constitutes

“large-scale” in agile development will be presented in Section 2.1.4.

Developing software requires a substantial effort, and is hence developed by teams

1

where the work is shared amongst multiple team members. One aspect that is

vital for all teams is being able to work together in an effective way and have a

sufficient level of communication and coordination to keep productivity high. In

large projects, the amount of work is too large for one team to be able to finish in

an acceptable amount of time, hence multiple development teams who cooperate and

coordinate the work amongst them are required. When there is a need to cooperate

both at the team level and at the inter-team level, the importance of being able to

work well together may grow even larger. Further, the use of agile methods may

also increase the needs for effective teamwork. As the agile philosophy encourages

an iterative approach to planning, less dependencies may be identified before they

emerge. This may increase the need for a high level of coordination and teamwork

to resolve unexpected challenges when they arise.

But what are the potential consequences of ineffective teamwork in large, agile pro-

jects? One instance of an IT project that did not go according to the plan is the

P3 project from the Norwegian Labour and Welfare Administration (NAV). This

project was supposed to modernize and automate the processing of various applica-

tions within the organization, regarding benefits such as sick pay. The project that

started in 2018 was supposed to be finished in 2020 and the goal was to cut costs

on manual processing by 61%1. However, as of now the development of the system

is yet to be completed, and new forecasts estimate that the new system may not be

ready until 20272. The forecasts further estimate that the system that was supposed

to be a cost-effective measure may produce a net cost of NOK 1.74 billion from 2021

to 2030, compared to costs before the project was started. Moreover, the new sys-

tem has caused the wait time for processing of complaints to grow from 12 weeks to

52 weeks. The project has been evaluated by the consulting firm PwC, which found

several significant weaknesses in the program. One of these weaknesses was struggles

with teamwork in cross-functional teams3. While teamwork-related challenges were

not the sole cause of the underperformance, they may have played a critical part in

1https://klassekampen.no/samling/navs-it-sprekk/2023-01-03/it-fiasko-gir-kjempeko1
2https://klassekampen.no/samling/navs-it-sprekk/2023-01-23/navs-prognose-it-smell-gir-174-

mrd-i-minus
3https://klassekampen.no/utgave/2023-05-23/slaktes-for-it-trobbel

2

the outcomes of the project. Hence, research on the topic of teamwork effectiveness

may help future large-scale projects to maintain a higher level of performance.

While practitioners are actively using agile methods in large-scale contexts, research-

ers have expressed the need for more empirical studies on the topic. At the XP 2010

conference, a group of about 300 practitioners was asked to vote on the top burning

research questions within agile software development. At the top of the list was the

topic of “Agile and large projects” (Freudenberg and Sharp 2010). Further, at the

XP 2013 conference, Dingsøyr and N. B. Moe (2013) identified that there was sig-

nificant interest in large-scale agile development. However, they also noted that few

studies on the topic existed. Moreover, they suggested a research agenda for future

research on large-scale agile software development, where the topic of “inter-team

coordination” ranked first. This research thesis will provide a new study on the

topic of large-scale agile and address a range of sub-topics, among them inter-team

coordination.

1.2 Research questions and scope

This project will aim to explore how large-scale agile software development projects

facilitate effective teamwork. It will attempt to find factors that promote effective

teamwork, as well as factors that hinder effective teamwork in this context. The

findings will then be compared with an existing model on teamwork, the agile team

effectiveness model (ATEM), to investigate whether this model is also applicable

in a large-scale context. In order to explore these topics, the following research

questions have been defined:

• RQ1: What factors do participants perceive as impacting teamwork effective-

ness in the large-scale agile context?

– RQ1.1: What fosters effective teamwork?

– RQ1.2: What hinders effective teamwork?

• RQ2: How do large-scale agile teams enable teamwork effectiveness?

3

• RQ3: How do the findings compare to the existing model on teamwork effect-

iveness, ATEM?

1.3 Contributions

This study will provide empirical research on the topic of large-scale agile software

development, of which existing literature is sparse. Further, it provides a multi-case

perspective by researching two separate cases, which is even more rare in the field.

The research will include an insight into how large-scale agile software development

projects facilitate effective teamwork. This includes methods, tools, routines, and

processes that are used to improve how project members cooperate, both on the

intra-team and inter-team levels. This insight can aid other agile projects in de-

termining how to employ agile at scale. Additionally, this study will provide an

overview of factors that promote effective teamwork, and factors that hinder effect-

ive teamwork. Such an overview can be used by practitioners to find new ways to

improve teamwork in their projects. The overview can also be of interest to other

researchers, who could conduct similar research in other organizations or contexts

and compare the findings. Lastly, the findings of this research will be compared to

an existing model on teamwork from the literature, the ATEM model (D. Strode,

Dingsøyr et al. 2022). This can further confirm this model in a new context, or

provide evidence that the model does not suit large-scale agile software develop-

ment well. In conclusion, this study can be of interest both to practitioners with the

intent of increasing productivity through improving teamwork, and to researchers

who aim to further the research on teamwork in large-scale agile development.

1.4 Intended audience

This study is a master’s thesis as part of a computer science degree for the Depart-

ment of Computer Science at the Norwegian University of Science and Technology.

As such, the thesis will be read and graded by a master project supervisor in addi-

tion to an internal and an external examiner. Further, the thesis can be of interest

to practitioners and researchers within the Software Engineering and Information

4

Systems fields. It is expected that the reader has a background in computer science,

either from the industry or academia, and is familiar with common software de-

velopment processes and methodologies. For readers that lack relevant background

knowledge, it is recommended to read Section 2, which will provide an extensive

description of the relevant background theory, before continuing with the rest of the

thesis.

1.5 Limitations

As this study is a master’s thesis, the research period is limited to one semester. This

prevents the research from investigating longitudinal effects that can be found over

a longer time period. In addition, the research will be conducted by one researcher.

This means that the data will only be retrieved and analyzed by one individual,

which prevents investigator triangulation (Oates 2006). The fact that the research

is confined within the limits of a master thesis also restricts the number of work

hours that are available for the project, which is expected to be around 800 hours4.

1.6 Structure of the thesis

This research thesis will be divided into six main sections. Below follows a descrip-

tion of the contents of each of these sections.

Section 1 - Introduction

Introduces the thesis and its key topics. This includes providing some background

on the topic to be researched, as well as providing motivation for why this research is

selected. Further, this initial section introduces the research questions that the thesis

will attempt to answer, as well as discusses the contributions, intended audience,

and limitations of the research.

4https://www.mastersportal.com/articles/388/all-you-need-to-know-about-the-european-

credit-system-ects.html

5

Section 2 - Background and Theory

Provides an overview of relevant existing theory and literature related to this study.

This includes theory on key topics such as agile software development and teamwork.

Other relevant topics such as remote work and knowledge management will also be

covered.

Section 3 - Method

Describes how the research of this project has been conducted. It will present

the selected research strategy, as well as describe the research design phase, case

selection, relevant data generation methods, and the analysis phase of the project.

Additionally, it will assess the validity of the selected research strategy.

Section 4 - Results

Presents the findings coming from the data generation. Key findings will be them-

atically presented according to categories identified during the analysis of the data.

Findings from the two cases will be presented together so that differences and sim-

ilarities can be highlighted.

Section 5 - Discussion

Discusses the findings from Section 4 in light of the research questions from Section 1.

Each research question will be presented and discussed before they will be answered

in order.

Section 6 - Conclusion

Brings a conclusion to the research questions, based on the results and discussion.

It will also bring light to the contributions this study has produced, as well as

suggestions for topics that require further research.

6

2 Background and Theory

This section will present background, theories, and literature on topics that are rel-

evant to the aim of this thesis. That includes a description of software development

processes, theories on teamwork and coordination, as well as other relevant back-

ground material. It will also describe and define terms that will be used later in the

thesis.

2.1 Software development processes and models

In a software development project, the main goal is to develop some type of soft-

ware, either for internal use, for clients, or for customers. In order to do this, teams

consisting of developers, designers, testers, and team leads, among other potential

roles, cooperate to be able to reach the project goals. To ease collaboration and

enable a systematic way of working, such teams may need to follow specific pro-

cesses. Such processes impose structure on software engineering, with the aim of

making development systematic, repeatable, and more success-oriented (Bourque

et al. 2014). A software process is a set of activities that leads to the production

of software (Ian Sommerville 2010). These activities can include elements such as

practices, routines, or the use of specific tools at specific times. Software processes

can be classified as either plan-based or agile, which will be described further later in

this section. A range of various software processes exists, but they all include four

fundamental activities, according to Ian Sommerville (2010). These are software

specification, software design and implementation, software validation, and software

evolution. As these are relatively broad terms they consist of various sub-activities,

such as requirements engineering, architectural design, testing, and so on.

A software process model is a simplified representation of a software process (Ian

Sommerville 2010). Such a model can describe the development life cycle of a

software product. The life cycle often includes various stages of development, such

as planning, design, implementation, and testing. Plan-based models tend to include

thorough up-front planning before the implementation phase. Agile processes, on

7

the other hand, use an iterative approach, where planning and implementation are

done in a cyclical rather than sequential fashion. Next, plan-based methods will be

described further.

2.1.1 Plan-based methodologies

Plan-based software methods have been labeled “heavyweight” and “traditional”,

compared to newer methods (Dyb̊a and Dingsøyr 2009; Girma et al. 2019). These

methods tend to have a clear separation between phases in the software development

life cycle, where one phase is completed before moving on to the next phase. Ex-

tensive planning of the development is done up-front, which entails well-documented

requirements and tasks before the implementation phase. A drawback of this ap-

proach, however, is the inability to adapt and change course after the implementa-

tion has started, as most of the planning has already been completed. The cost of

changes increases over time, as more and more assumptions and decisions about the

final product are made. This way of developing software also implies a longer wait

for an initial prototype, compared to agile methods.

Waterfall model

The waterfall model has been a widely used software development process since its

inception in the 70s (Petersen et al. 2009). The name “waterfall” comes from the

way that the phases cascade onto the next as seen in Figure 1. The five stages are

the following, as defined by Ian Sommerville (2010):

1. Requirements definition: The services, constraints and goals of a system

are established, and then defined in detail to serve as a system specification.

2. System and software design: The overall system architecture is developed.

Abstractions of the software system and their relations are identified and de-

scribed.

3. Implementation and unit testing: The software is developed as a set of

programs or program units. Unit testing is used to verify that the units meet

8

their specification.

4. Integration and system testing: Individual parts of the program are in-

tegrated and tested as a complete system to ensure that the requirements are

met. After testing, the system is delivered to the customer.

5. Operation and maintenance: Typically the longest phase of the life cycle.

The system is put to practical use by its intended users. Maintenance in-

volves fixing errors that have not already been identified and improving the

implementation and the system’s services as new requirements are discovered.

Figure 1: The waterfall model, illustration inspired by (Ian Sommerville 2010)

The longer planning phase at the start of the project allows for well-defined require-

ments, system architecture, and graphical user interface design. This can enable a

faster pace of implementation, as engineers know what to build, how components

should interact with each other, and how the software program should look. How-

ever, this linear approach to the phases of software development has its drawbacks.

As most of the planning is done before the implementation begins, a project can

spend multiple months planning before writing a single line of code. During the

9

time it takes to plan, implement, and test a solution, the project’s requirements

may change due to changes in the industry, the market, legislation, or in general

customer needs (Fuchs and Hess 2018). When changes in the requirements occur,

parts of the planning that has already been done may have gone to waste and the

product that is built may not be what it is supposed to be. This can be costly to

clients or stakeholders in terms of time and money, as the project may need a new

iteration of planning, designing, implementation, integration, and testing.

In principle, each stage should be finished before moving on to the next one. Due to

the inflexibility concerning requirement changes, the waterfall model is best suited

when the requirements are clear and unlikely to change during development. How-

ever, from a management point of view, it may be easier to use the same process

for an entire organization instead of using a separate model for software develop-

ment (Ian Sommerville 2010). This can result in the use of the waterfall model in

software development projects even when it is likely that requirements can change

along the way. Traditionally, plan-based models such as the waterfall model have

been preferred when developing safety-critical or security-critical systems. This can

include systems used in hospitals or in power grids, where bugs and downtime can

have a critical impact. In recent years, however, it has been suggested that systems

in this category can also be successfully developed using agile methods (Hanssen

et al. 2018).

2.1.2 Agile software development

The term “agile” in the context of software development has been in use since the

late 90s (Dingsøyr, Falessi et al. 2019). Agile is not a specific model or process,

but rather a philosophy or set of guidelines. This philosophy was introduced to

reduce the overhead found in heavyweight, plan-based methods. In contrast, agile

methods are considered lightweight and are characterized by short, iterative devel-

opment cycles with self-organizing teams (Bourque et al. 2014). In 2001, a group

of 17 developers got together and created the values and principles of Agile, which

are found in the “Manifesto for Agile Software Development” (Beck, Beedle et al.

2001). The four main values of the manifesto are shown in Figure 2 below and the

10

twelve principles in Figure 19 in the appendix. The values entail that processes and

tools should be adapted to the team members, not the other way around. Working

software should be developed early and is more valuable than extensive document-

ation. Customers, clients, and stakeholders should be involved during the entire

development process. As software development can be volatile regarding changes

in product requirements, being able to respond to changes is important and should

be prioritized over following a plan. This can be done by breaking the project into

iterations, where planning is mostly done for one iteration at a time, rather than for

the whole project. Planning for only a couple of weeks at a time is simpler as the

near future is more certain than the distant future, and less planning is wasted if

the project needs to change direction from previous plans. Being agile is something

that is easy to do, but hard to master. Therefore, the role of agile coaches has been

formed to help guide teams to adopt agile or improve their agile work process. They

also have an educational role, teaching teams and stakeholders about agile methods

and practices (Daljajev et al. 2020).

As previously mentioned, agile is a philosophy rather than a model. A range of

models and processes that claim to be agile exists. Next, three of them will be

described, namely Scrum, Kanban, and Extreme Programming (XP). These three

will be presented due to their relevance to the two cases that have been researched.

Further, Scrum and Kanban were the two most popular according to the 16th State

of Agile Report from Digital.ai (2022), with Scrum and Kanban being employed by

87% and 56% of the respondents respectively.

11

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron

Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,

Jeff Sutherland, Dave Thomas

© 2001, the above authors this declaration may be freely copied in any form, but

only in its entirety through this notice.

Figure 2: Values of the agile manifesto

Source: (Beck, Beedle et al. 2001)

Scrum

Scrum is one of the most popular methods for agile software development (Sharma

and Hasteer 2016). The term “scrum” was first used in the context of product de-

velopment by Takeuchi and Nonaka (1986), however, the first version of the Scrum

framework was presented a decade later in 1995 by Schwaber and Sutherland (2020).

A general overview of its life cycle is shown in Figure 3. It is a lightweight, incre-

mental, and iterative framework that aligns well with the agile values and principles.

It is also customizable, which makes it a good fit for a lot of different types of de-

velopment teams. The advised size of a Scrum team is around five to nine people

(Kniberg 2015). Further, a Scrum team should be cross-functional, meaning that

its members should possess all the skills needed to produce value. A Scrum team

12

consists of one Scrum Master and one product owner, with the rest of the team mem-

bers being developers (Schwaber and Sutherland 2020). One important aspect of

the Scrum team is that there should be no hierarchy within the team, meaning that

all members of the team have the same opportunity to impact decision-making.

While the Scrum Master’s role may sound like it is above the others, the Scrum

Master’s role is primarily to ensure that the team follows the framework and philo-

sophy, and does not entail more power within the team. The responsibility of the

Product Owner is to maximize the value created by the Scrum team (Schwaber and

Sutherland 2020). This can be value in the eyes of the customer, the development

organization, or other stakeholders of the project.

The project is broken up into iterations called “sprints” (Schwaber and Sutherland

2020). The team can decide their own sprint length in conjunction with the product

owner, with anywhere from one to four weeks being a typical length. The sprint

starts with a sprint planning meeting, which is a meeting where the team members,

and possibly other stakeholders, plan the current sprint. The highest prioritized

product backlog items are put into the sprint backlog, where the team members

have to predict how much work each of the items require, and how much the team

can get done during the length of the sprint. The planning meeting should also

produce a sprint goal that the team can work towards during the sprint. This goal

should be testable and clear so that the team can assess whether they met their

sprint goal at the end of the sprint. For development teams working full-time on

a project, the daily scrum is a daily meeting with the purpose of synchronization

within the Scrum team. It is a 15-minute meeting held daily, where developers share

what they accomplished the previous day, what they will work on for the day, and

whether there are any dependencies with other members or anything else blocking

their progress. Although the daily scrum is a short and simple meeting, it can help

keep the team aligned and up-to-date with each other, which helps the team stay

agile.

At the end of the sprint, the team will typically hold a “demo” or “sprint review”.

This is a meeting where stakeholders are invited and the team presents the outcome

of the sprint and their progress towards the project goals (Schwaber and Sutherland

13

2020). In addition to this event, another meeting is held to conclude a sprint, called

a “sprint retrospective”. This is a meeting where the Scrum team looks back on the

sprint that has just finished and identifies what the team did well and what could

have gone better. The team also select a couple of measures that the team should

take during the next sprint, to improve how they work. This event is considered very

important, as it allows the team to learn and evolve. Developers adopting Scrum

for the first time may feel that there are too many events where the team members

are not coding and hence not producing value. However, the reflection that takes

place during these meetings tends to help the team improve their work process and

in turn, increase productivity.

Figure 3: Scrum life cycle

Source: (Shore and Warden 2007)

Kanban

Kanban is a method of visualizing the progression of work tasks. It was developed

as a part of the Toyota Production System and was created to streamline manu-

facturing at Toyota’s factories (Ohno 1988; Sugimori et al. 1977). The practice has

since spread to other domains, including software development. To visualize task

progression, a Kanban Board is used, which can either be a physical board hanging

on the wall of the workspace, or a virtual board living in the digital world. An

14

example of such a board is shown in Figure 4. No matter what type of board or

tool is used to visualize the work progression, it is important that the whole team

can access and make changes to the board. The work that a team needs to com-

plete is split into smaller tasks which are hung up on the board. Named columns

are used to indicate where each task is in the workflow (Kniberg 2010). Examples

of such columns can be “To Do”, “In Progress”, and “Completed”, but the names

and number of columns can be adjusted to the team and their context. As work

on a task progresses, the task is moved along the board to the column that best

describes the state of the task. The board may also include an indication about

who is working on a specific task, which can be useful information to the rest of

the team. Kanban also suggests limiting the number of tasks that are in progress

at a time (Kniberg 2010). Finishing one task is preferred over being in progress of

multiple tasks at the same time. Kanban also suggests measuring the average time

it takes to finish one task in the team (Kniberg 2010). This can make future work

more predictable and improve workload estimates by the team. In general, Kanban

is a way of working that is not very prescriptive, meaning that it has few rules and

allows for customization. The use of Kanban does not exclude the use of Scrum, in

fact, Scrum and Kanban are often used together. The use of these two processes

together has been coined “Scrumban” (Nikitina et al. 2012).

Figure 4: Example of a Kanban Board

Source: (Kniberg 2010)

Extreme Programming

Extreme Programming, often referred to as “XP”, is an agile software development

methodology consisting of a range of activities and practices. Its inception is credited

15

to Kent Beck, who also was among the developers who created the Agile Manifesto

(Beck, Beedle et al. 2001). XP utilizes short development iterations or cycles, similar

to Scrum. A cycle produces one release, which is some finished part of the product.

The iterations should be as short as possible, but the release should still make sense

as a whole, meaning a half-finished feature should not be shipped just to make the

iteration shorter (Beck and Andres 2004). Development activities such as analysis,

design, coding, testing, and deployment can happen simultaneously or within a short

time frame, in sharp contrast to plan-based methods (Shore and Warden 2007). It

is a more prescriptive framework than Scrum, as it includes most of the principles

of Scrum in addition to a set of specific engineering practices (Kniberg 2010).

One of these specific practices is pair programming. XP encourages the use of pair

programming where two developers sit together and collaborate to write code with

one keyboard and mouse. One developer writes the code, while the other observes

and provides suggestions for the developer with the keyboard. Pair programming

doubles the amount of available brain power, and allows the person who is not doing

the coding to think about strategic and long-term issues or the impact of the code

that is written (Shore and Warden 2007). Pair programming is claimed to improve

code quality, team focus, and knowledge sharing (Kniberg 2015).

Another practice within XP is collective ownership. This practice suggests that all

team members should be able to change any code in the system, not just the parts

that they wrote. This does not mean that everyone needs to understand every part

of the code base equally well, but everyone should know something about every part

(Beck and Andres 2004). One strategy to achieve a high level of collective ownership

is to use pair programming with frequent rotation of partners (Kniberg 2015). Using

this approach, at least two people will have a good understanding of the code that

is written. Enforcing peer reviews on new code changes also boosts the common

understanding of the code, as the reviewer will need to read and understand the

code written by others, before being able to review it.

A third practice of XP is continuous integration. Integrating small changes at more

frequent intervals makes it easier to spot mistakes and limits conflicts with existing

code, which in turn can give the developers more time to produce new features and

16

reduce the time spent on resolving complex merge conflicts. Some suggest that code

should be integrated every few hours, or at least once per day for full-time developers

(Beck and Andres 2004; Shore and Warden 2007). Continuous integration also

implies the use of automated testing, which enforces that the tests are actually run

before accepting new changes, potentially catching bugs in the process. In addition

to these three practices, XP consists of a variety of other engineering practices. Nine

other XP practices follows here, gathered from the book “Extreme Programming

Explained” by Beck and Andres (2004):

• The Planning Game - Used to determine the scope of the next iteration by

estimating workload of tasks.

• Small releases - Release a simple system to production quickly, then release

new versions on a short cycle.

• Metaphor - Guide the development with a simple, shared vision of how the

system works.

• Simple design - The system should be developed as simply as possible.

• Testing - Tests must run flawlessly before the development can continue.

• Refactoring - Removes duplicated code, simplifying the system and making

it more robust and flexible.

• 40-hour week - Work no more than 40 hours per week as a general rule.

• On-site customer - Include a real user of the system on the team, available

to answer questions.

• Coding standards - Code should adhere to specific rules and standards set

by the team.

2.1.3 Lean software development

Lean is a way of working that originates from the Japanese car manufacturer Toyota

(Henrik Kniberg 2011). Lean encompasses the Toyota Production System, that

17

helped make Toyota the most successful car manufacturer in the world. Later, it

has been found that the principles used at Toyota are applicable in an array of fields,

including software development. The term “lean” was first used in the context of

software development in the book “Lean Software Development: An Agile Toolkit”

by M. Poppendieck and T. Poppendieck (2003). In this book, the lean methodology

is described by presenting seven principles, which will be discussed below.

Eliminate waste

Waste is described as anything that does not create value for a customer. This can be

a waste of the employees’ time, waste of unused inventory, writing documentation

that is not used, and so on. Eliminating waste is seen as the most fundamental

principle of lean. Therefore, the first step in adopting lean development principles

is to identify waste. Some of the sources of waste from the manufacturing world

can be directly translated to the software development field, but there are also

some differences. To help software development managers to discover waste, M.

Poppendieck and T. Poppendieck (2003) has created a list of common waste sources

in software development:

• Partially done work - Software that is only partially completed ties up

resources and can block progress in other units. Software units do not provide

direct value until they are integrated into the system.

• Extra processes - Paperwork consumes resources that could have been used

to create value. Some systems need extensive documentation due to safety-

critical requirements, but the team should always search for the most effective

way of conveying information.

• Extra features - Every unit of software adds complexity to a system, and

adds a potential point of failure. Premature implementation of features may

lead to the feature becoming obsolete before it is ever used.

• Task switching - Context switching consumes time, and is therefore a waste.

Belonging to multiple teams increases the amount of task switching and inter-

ruptions, and should therefore be avoided.

18

• Waiting - Delays in the development process make team members spend more

time waiting and less time creating value. This can include delays in start-

ing a project, delays due to excessive documentation, or delays in approval,

integration and deployment of new code.

• Motion - The harder it is for developers to get answers to questions that

come up, the more time it takes before they can go back to being productive.

Making information more available can decrease the time wasted searching for

answers.

• Defects - Time spent researching and fixing problems in the product are

forms of waste. This can be limited by testing, integrating, and releasing to

production often.

Amplify learning

Working in an iterative way has been found to be an effective way of generating

knowledge, especially for problems that are hard to define or where the answer

is not clear (M. Poppendieck and T. Poppendieck 2003). Software development

inherently contains a fair amount of uncertainties, such as what to build and how to

do it, and these problems are easier dealt with using short iterations that promote

continuous feedback. Even traditional software development models such as the

waterfall model was designed with feedback in mind. In practice, however, it does

not promote feedback as it assumes that all the details of a project are determined

at the beginning, restricting deviations from the initial plan.

Decide as late as possible

The reasoning behind opting to make decisions as late as possible is that it allows for

a more well-informed decision as you obtain more information over time. Following

an adaptive rather than a predictive process allows a team to have multiple options

open, rather than making commitments early in the project. Predictive processes are

well suited for highly predictable situations, as thorough planning can decrease time

spent on implementation. However, developing software often involves uncertainties,

both technical and domain-related.

19

Deliver as fast as possible

Fast delivery of the software is appreciated by customers and increases business flex-

ibility. It allows companies to have fewer resources tied up due to work in progress,

which decreases costs. This principle also complements the principle decide as late

as possible. If delivery is fast, you can delay decisions longer, which as mentioned

entails keeping options open longer and making more well-informed decisions.

Empower the team

Allowing teams to be self-organized is encouraged in lean development. This can

give individuals space to grow, and make the team more motivated to accomplish its

goals as it increases the sense of ownership of the project. Respect and trust are also

central aspects of team empowerment, which involves listening and acknowledging

team members, and trusting them to make decisions and take risks.

Build integrity in

Integrity can be broken up into two dimensions, perceived integrity and conceptual

integrity. Perceived integrity involves that the product has a balance of function, us-

ability, reliability, and economy that satisfies the customer. Communication between

customers and developers is an important factor in maintaining this type of integ-

rity. Conceptual integrity, on the other hand, means that the concepts of the system

work together in a smooth and cohesive way. To maintain conceptual integrity, re-

factoring and testing should be used, to keep the code simple and clear and to detect

problems early.

See the whole

A system is more than the sum of its parts, and simply putting together the best

parts may not lead to the best overall system. One trap that some organizations fall

for is the exaggerated use of suboptimizations (M. Poppendieck and T. Poppendieck

2003). As systems grow complex, it can be tempting to divide them into more

manageable parts that can be dealt with locally. However, while local optimizations

can increase performance locally, they tend to decrease overall performance across

the organization or project.

20

2.1.4 Large-scale agile software development

In the past, agile methods have been described to be best suited for specific circum-

stances. That is for small, co-located software development teams (Dingsøyr and

N. B. Moe 2013). In 2002, Williams and Cockburn (2003) stated that agile methods

were best suited for co-located teams of 50 or fewer people. Since then, however,

agile methods have been used increasingly in contexts straying further from where

they were intended. One such context is large projects. Implementing agile methods

is more challenging in the large-scale context, than for small, less complex projects

(Dyb̊a and Dingsøyr 2009). However, agile methods tend to outperform non-agile

ones, even for large projects (Jørgensen 2018).

Several definitions for what constitutes large in “large-scale agile” exists. Some of

these include the number of people, the number of lines of code, the number of

sites, or “when you don’t know everyone else working on the same project/product”

(Dingsøyr and N. B. Moe 2014). However, for this research the definition from

the study “What is Large in Large-Scale? A Taxonomy of Scale for Agile Software

Development” will be used (Dingsøyr, Fægri et al. 2014). The aim of that study was

to develop a taxonomy to define the different levels of scale for agile development.

This taxonomy is shown in Table 1. The taxonomy defines size depending on the

number of teams in the project. It suggests that agile software development projects

with 2-9 teams should be considered “large-scale”, while projects with more than

10 teams are categorized as “very large-scale”.

Large-scale agile software development projects involve more developers, teams, and

stakeholders than smaller projects. With more people involved, it is reasonable

to believe that coordination and communication become more challenging. Any

individual in the project may not know all the other members of the project or

who is responsible for a specific part of the product. When a project member

experience troubles or have questions, they may have to go through several people

to get to the person who has the answer. This increases the need for knowledge-

sharing mechanisms, as well as structures and processes that allow the teams within

the project to stay aligned and communicate effectively. To tackle these problems,

21

a range of various large-scale agile software development frameworks have been

created.

Table 1: Scale taxonomy agile development

Level Number of teams Coordination approaches

Small-scale 1 Coordinating the team can be done us-

ing agile practices such as daily meet-

ings, common planning, review and ret-

rospective meetings.

Large-scale 2-9 Coordination of teams can be achieved

in a new forum such as a Scrum of

Scrums forum.

Very large-scale 10+ Several forums are needed for coordina-

tion, such as multiple Scrum of Scrums.

Source: (Dingsøyr, Fægri et al. 2014)

Challenges

Recently, Edison et al. (2022) performed a systematic literature review identifying

challenges and success factors in large-scale agile software development from 191

primary studies. The main categories of challenges found were:

• Inter-team Coordination: Synchronization and alignment were found to be

challenging across dynamic and fast-moving teams. Also, reducing the number

of dependencies on the inter-team level could be difficult.

• Organisational Structure Challenges: To stay agile, teams should be

cross-functional. However, this may be difficult to achieve when domain-

specific expertise and specialists are required. Further, roles and respons-

ibilities introduced along with agile methods may not always be easy to assign

and can lead to complex organizational setups.

• Architectural Challenges: An inability to see the big picture was found to

be a challenge. This created friction in relation to handovers between teams.

22

• Requirements Engineering Challenges: Insufficient requirement planning

lead to inter-team dependencies. This can be caused by managers lacking

knowledge on software development.

• Customer Collaboration Challenges: While agile principles promote heavy

customer involvement, the management of the relationship between the pro-

ject and client can be challenging. Business unit managers are generally less

familiar with agile methods, leading to friction.

• Method Adoption Related Challenges: Adopting complex large-scale

agile frameworks with roles and practices can distract companies from achiev-

ing their business goals. Scaling agile practices to non-development units is

also a common challenge.

• Change Management Challenges: A lack of the right mindset can prohibit

organizations from gaining all the potential benefits of agile at scale. The

organization as a whole needs to be ready to cope with constant, concurrent

changes.

• Team-related Challenges: A lack of autonomy may be experienced by

teams when scaled agile methods are introduced. Additionally, some teams

may feel a lack of ownership of tasks and user stories in scaled agile programs,

compared to smaller agile projects.

• Project Management Challenges: A lack of alignment between agile meth-

ods and existing processes on the project management level can cause chal-

lenges regarding long-term planning. Further, a lack of meaningful metrics to

measure improvements from the adoption of large-scale methods may impact

belief in the changes.

Success factors

In the same study Edison et al. (2022) found the following main categories of success

factors to the adoption of agile at scale:

• Management and Organizational: Leadership visibility and support were

23

important to ensure the success of method adoption. Also, the conviction of

stakeholders regarding the agile methods may be essential.

• Process: Keeping the development process transparent reduces dependencies

and increases coordination between teams. Using communication arenas such

as Scrum of Scrums, wikis, and demos also aids coordination.

• People: Training and coaching can be essential for the adoption of certain

large-scale methods. Sharing knowledge and employing communities of prac-

tice can also help with coordination and lead to continuous improvement.

• Technology: Technical infrastructure, including joint development tools, test

environments, continuous integration, and automated tests, is needed to enable

end-to-end development. Adequate infrastructure is also needed to support

communication, knowledge sharing, and communities of practice.

Large-scale agile software development frameworks

Some examples of large-scale agile development frameworks are Scaled Agile Frame-

work (SAFe), Large Scale Scrum (LeSS), the Spotify model, Scrum-at-Scale, and

Nexus. These frameworks incorporate workflow patterns and routines and are sup-

ported by a set of tools (Conboy and Carroll 2019). Due to its relevance to one of

the cases of this study, the Spotify model will be described further.

The Spotify model is a framework that encompasses the way Spotify has scaled

agile methods, being a rapidly growing tech organization. It was introduced in

2012 and has since become a popular model in the world of agile transformations.

While other scaling frameworks focus on specific practices, the Spotify model deals

with how an organization can be structured to enable agility and promotes team

autonomy in terms of selecting specific practices5. An overview of how teams and

people are organized when using the Spotify model is shown in Figure 5. The

organizational structure is made up of the following components, as described by

Kniberg and Ivarsson (2012):

5https://www.atlassian.com/agile/agile-at-scale/spotify

24

• Squads: The smallest organizational unit, they are a cross-functional, self-

organizing type of team who decide their own way of working. Each squad

is responsible for its own part of the total system and has its own long-term

mission.

• Tribes: A collection of squads that work in related areas. Each tribe has

a tribe lead who is responsible for facilitating and enabling the best possible

development environment for the squads. Tribes are designed to be smaller

than about 100 people, due to the limiting factor of how many people humans

are able to maintain a social relationship with.

• Chapters: A small, inter-squad group of people within the same tribe who

have similar skills and work with similar types of tasks. The chapters meet

regularly to discuss their area of expertise and specific challenges. This helps

prevent autonomous squads from being completely isolated and allows for

solutions and knowledge to be shared across squads.

• Guilds: A more wide-reaching “community of interest” which reaches across

tribes. Guilds consist of a group of people who want to share knowledge, tools,

code, and practices. It is a more organic structure, as anyone with an interest

can join, whether they work within the topic of discussion or not.

25

Figure 5: Organization structure using the Spotify model

Source: (Kniberg and Ivarsson 2012)

Scrum of Scrums

A commonly used forum in several of the large-scale agile frameworks is the Scrum

of Scrums. This is an arena that is used for the coordination of multiple agile

teams within a project (Schwaber 2004). One member from each of the teams is

chosen to participate in the Scrum of Scrums meeting. This meeting will consist

of the representatives from each team sharing the progress of their teams, what

the team will work on going forward, and if there is anything blocking them from

progressing. This will give the representatives valuable insight into the other teams.

It will also allow the representatives to identify dependencies between the teams,

and coordinate their work accordingly to resolve these dependencies. For very large

projects, there may even be a need for an additional layer to this structure, with a

forum called Scrum of Scrums of Scrums6. Similarly to the Scrum of Scrums, this

meeting consists of one representative from each unit of the layer below, namely the

Scrum of Scrums. An illustration of this structure can be seen in Figure 6.

6https://www.agilest.org/scaled-agile/scrum-of-scrums/

26

Figure 6: Scrum of Scrums of Scrums, illustration inspired by: (Scrum of scrums -

guide to agile scaling frameworks 2016)

2.2 Teams and teamwork

Teams and teamwork are fundamental aspects of many facets of society. They

can be found in areas such as sports, voluntary organizations, school projects, and

the workplace. Companies in a wide range of industries rely on people working

together and cooperating in order to achieve their goals and produce value for their

customers. In this section, existing research on the topic of teams and teamwork

will be presented.

2.2.1 Teams

Teams are found everywhere, and it is reasonable to believe that most people have

a sound notion of what a team is. However, a concrete definition of the term can

be beneficial when studying teams as a concept. Kozlowski and Bell (2003) define

teams as follows:

(a) are composed of two or more individuals

27

(b) who exist to perform organizationally relevant tasks

(c) share one or more common goals

(d) exhibit task interdependencies (i.e., workflow, goals, knowledge, and outcomes)

(e) interact socially (face-to-face or, increasingly, virtually)

(f) maintain and manage boundaries

(g) are embedded in an organizational context that sets boundaries, constrains

the team, and influences exchanges with other units in the broader entity

All the teams participating in this study fulfill each of these seven requirements.

2.2.2 Team autonomy

Team autonomy is a central part of agile, and one of the twelve principles from

the agile manifesto states that “the best architectures, requirements, and designs

emerge from self-organizing teams” (Beck, Beedle et al. 2001). Autonomy has been

defined as the amount of freedom an individual has in carrying out assigned tasks

(Langfred 2007). Langfred further explains that team-level autonomy is the amount

of freedom a team has in carrying out tasks within its organization, and that the

label “self-managing” is generally given to teams with a high degree of team-level

autonomy. Autonomous work groups have been found to outperform traditional

groups, however, a high degree of autonomy may introduce difficulties with coordin-

ation across teams (Ingvaldsen and Rolfsen 2012). This is a highly relevant challenge

in large-scale agile, where there is a need for both inter-team coordination and team

autonomy (N. Moe et al. 2016). Further, it has been found that autonomy positively

influences team performance when tasks are highly independent, while the impact

is negative when task interdependence is low (Stray et al. 2018).

2.2.3 Collaboration

Working together by collaborating is something that is needed in many fields of

work, and software development is no different. Collaboration has been defined as:

28

“collaboration takes place when two or more people are working together on a task”

(Sharp and Robinson 2010). As software development can be a complex matter,

joint effort from several developers is usually required, which creates a need for

collaboration. Successful collaboration is characterized by the presence of a specific

outcome, such as a product or desired performance, which is achieved through group

effort (Kotlarsky and Oshri 2005). In the study of Sharp and Robinson (2010), the

prevalence and importance of story cards in agile teams were highlighted. Such cards

could be used to record user stories, estimates, tests, or rough designs and ideas.

Story cards are hung up on a wall that the whole team can see, and tasks can be

picked directly from the wall. The story cards and wall aids communication about

tasks, progress, and ideas within the team, which can improve collaboration. Fur-

ther, Sharp and Robinson (2010) found that the following collaboration mechanisms

were used to aid teamwork in agile teams:

• Story cards - Promotes collaboration between developers and customers.

They also generate activity and information exchange and support knowledge

sharing, which in turn helps team members collaborate more effectively.

• The Wall - Is available to view at all times and is regularly updated. Contains

immediately relevant information and makes collaboration during stand-ups

and pairing more effective.

• Pair programming - Pairs are swapped regularly which contributes to knowledge-

sharing, making collaboration easier.

• Colocation - When team members sit in an open plan environment, they can

overhear problems, questions, solutions, and discussions from others, and they

can tune in to the conversations that are relevant or of interest.

• Stand-up meeting - Promotes knowledge sharing and encourages everyone

to contribute to ongoing tasks, leading to a collective approach to problem-

solving.

29

2.2.4 Teamwork in general

What is teamwork, and how can it be measured? These are some of the questions

that Hoegl et al. (2001) attempt to answer in their study on teamwork in the context

of innovative projects. In this research, a concept of team collaboration is developed,

named Teamwork Quality (TWQ). This model consists of six components, which

are shown in Table 2. Drawing on previous research, Hoegl et al. divide project

success into two categories, team performance and personal success. They define

team performance as the extent to which a team meets quality, cost, and time

objectives. Personal success, on the other hand, involves increasing team members’

motivation, as well as personal satisfaction and learning. The central proposition

of the study by Hoegl et al. is that TWQ is positively related to the success of

innovative projects. This involves that a higher degree of teamwork quality increases

both team performance and personal success.

Table 2: The Teamwork Quality Construct

Communication
Is there sufficiently frequent, informal, direct,

and open communication?

Coordination
Are there individual efforts well structured

and synchronized within the team?

Balance of Member Contributions
Are all team members able to bring in their

expertise to their full potential?

Mutual Support
Do team members help and support each other

in carrying out their tasks?

Effort
Do team members exert all efforts to the

team’s tasks?

Cohesion
Are team members motivated to maintain

the team? Is there team spirit?

Source: (Hoegl et al. 2001)

There are many ways to work together as a team, but increasing the effectiveness

of teamwork can be a good step towards improving productivity in a project. First,

30

a definition of teamwork effectiveness is needed. Salas et al. (2005) distinguish

between the terms “team performance” and “team effectiveness”. They describe

that team performance solely accounts for the outcomes of a team’s actions, re-

gardless of how tasks were accomplished. Team effectiveness, however, does not

only consider whether the team performed but also how the team interacted to

achieve its outcome. To improve teamwork effectiveness, it may be helpful to first

get an indication of which factors impact teamwork. In “Is there a “Big Five” in

Teamwork?”, Salas et al. (2005) argue that it is possible to group what research-

ers know about teamwork into five core components. These five components are:

team leadership, mutual performance monitoring, backup behavior, adaptability, and

team orientation. Additionally, the researchers identified that these components are

supported by coordinating mechanisms, such as shared mental models, closed-loop

communication, and mutual trust. These coordinating mechanisms are required to

extract value from each of the core components. This resulted in the Big Five model,

which is illustrated in Figure 7. The definition of each of the core components and

coordinating mechanisms are presented in Table 3 and Table 4.

31

Figure 7: The Big Five model

Source: (Salas et al. 2005)

32

Table 3: Definitions of the five core components in the Big Five Model

Core component Definition

Team leadership Ability to direct and coordinate the activities of other team

members, assess team effectiveness, assign tasks, develop team

knowledge, skills, and abilities, motivate team members, plan

and organize, and establish a positive atmosphere.

Mutual performance

monitoring

The ability to develop common understandings of the team en-

vironment and apply appropriate task strategies to accurately

monitor teammate performance.

Backup behaviour Ability to anticipate other team members’ needs through ac-

curate knowledge about their responsibilities. This includes

the ability to shift workload among members to achieve bal-

ance during high periods of workload or pressure.

Adaptability Ability to adjust strategies based on information gathered from

the environment through the use of backup behaviour and real-

location of intra-team resources. Altering a course of action or

team repertoire in response to changing conditions (internal or

external).

Team orientation Propensity to take other’s behaviour into account during group

interaction and the belief in the importance of team goal’s over

individual members’ goals.

Source: (Salas et al. 2005)

33

Table 4: Definitions of the three coordinating mechansims in the Big Five Model

Coordinating mechanism Definition

Shared mental

models

An organizing knowledge structure of the relationships

among the task the team is engaged in and how the

team members will interact.

Mutual trust
The shared belief that team members will perform

their roles and protect the interests of their teammates.

Closed-loop

communication

The exchange of information between a sender and a

receiver irrespective of the medium.

Source: (Salas et al. 2005)

2.2.5 Teamwork in software development

Being able to collaborate with others is a skill in a lot of different industries, including

software development. Developing complex systems is too much work to be com-

pleted by one developer in a reasonable period of time. Therefore, the work needs

to be split into tasks that can be distributed among the developers of a product.

In a perfect world, these tasks would be so well defined that the developers could

work in isolation on their tasks without interacting with others. However, this is

not reasonable in a real-world scenario, which introduces the need for teamwork,

collaboration, coordination, and communication. But is teamwork in software de-

velopment different from teamwork in other fields? This is discussed by Dingsøyr

and Dyb̊a (2012) when they asses whether separate team effectiveness models are

needed for the software development field. They list five main issues that should be

prioritized in future studies on software team effectiveness, which are the following:

• Better Measurement

• More Rigorous Industrial Case Studies

• Better Understanding of Dynamic Configurations

34

• Increased Emphasis on Team Cognition

• Better Understanding of Multicultural Contexts

Conclusively, Dingsøyr and Dyb̊a (2012) call for more empirical studies, as well as

better theoretical grounding in studies of software team effectiveness. They also

express a need for testing and potentially adjusting existing theories from other

fields in the context of software development teams. This is a part of the gap that

this research project aims to fill. This research will provide an empirical study on the

teamwork of software development teams, specifically in a large-scale agile context.

It will also compare findings to an existing model, to investigate if the model is

applicable in an additional context.

2.2.6 Teamwork in agile software development

One of the tenets of the agile manifesto is “Individuals and interactions over pro-

cesses and tools” (Beck, Beedle et al. 2001). This indicates that being able to work

together with others is central to agile development. Agile methods generally pro-

mote working in iterations where up-front planning may be limited and short-term

planning is preferred over long-term planning. This allows teams to be able to re-

spond quickly to changes but may introduce other challenges. Thorough planning

before starting implementation could give a more complete overview of the entire

system that is to be developed, which could have allowed for dependencies between

developers, teams, and components to be identified. This may suggest that effective

teamwork, communication, and coordination are even more important when working

in an agile way.

A teamwork effectiveness model (ATEM) is a teamwork effectiveness model de-

veloped for agile software development (D. Strode, Dingsøyr et al. 2022). This

model is based on the Big Five model which has been discussed previously, but is

specifically adjusted for agile development. They collected data from focus groups

and case studies to investigate what practitioners meant impacted teamwork ef-

fectiveness. Both items that foster and items that hinder team effectiveness were

35

identified. While some of the core components from the Big Five model were suppor-

ted, others were changed to better suit teamwork in this context. Team leadership

was changed to shared leadership, as their research suggested that in agile teams

leadership is often shared across the members of a team, rather than having a single

acknowledged leader. Mutual performance monitoring was changed to peer feedback

as it was believed that this would be a more understandable term for agile teams, and

to avoid the negative connotations that the word “monitoring” may bring. Backup

behaviour was changed to redundancy as a redundancy of skills is needed in agile de-

velopment to enable backup behavior. They also argued that redundancy is a more

familiar term to software developers. Additionally, one of the coordinating mech-

anisms was altered. Closed-loop communication was changed to communication as

it was found that in agile development, communication often occurred in groups or

to the whole team, rather than one-to-one conversations (D. Strode, Dingsøyr et al.

2022). An illustration of the resulting model is shown in Figure 8 where the five core

components are displayed in the middle, and the three coordinating mechanisms on

the perimeter.

Figure 8: A teamwork effectiveness model (ATEM)

Source: (D. Strode, Dingsøyr et al. 2022)

2.3 Coordination

Most people have a general intuition of what coordination is, however, it is a term

that has been defined in various ways. This section will aim to explain what co-

ordination is, and why it is important.

36

2.3.1 Coordination in general

When working together on a project, coordination is needed to make sure that every-

one involved is aligned with each other. In order to have successful teamwork, a team

also needs to have sufficient coordination. One definition of the term “coordination”

can be found in the study of Malone and Crowston (1994), “The interdisciplinary

study of coordination”. In this paper the following definition is used: “Coordination

is managing dependencies between activities”. This suggests that coordination and

dependencies are strongly linked together and that the need for coordination arises

when dependencies are identified. Being able to handle and resolve dependencies is

important to maintain the progression of work within a team, by trying to minimize

the amount of time the team is blocked from progressing.

Another definition of “coordination” is found in “Determinants of Coordination

Modes Within Organizations”, where the term is described as: “integrating or link-

ing together different parts of an organization to accomplish a collective set of tasks”

(Ven et al. 1976). In other words, coordination is needed to finish tasks that re-

quire effort by multiple people, teams, or other substructures of an organization.

By maintaining effective coordination, organizations can keep productivity high to

continuously provide value to their customers, clients, or users. In their paper,

Van de Ven et al. propose that mechanisms for coordinating work can be grouped

into three different categories: impersonal, personal, and group modes. They also

build upon the work of March and Simon (1958) who suggest that coordination

of organizations can be accomplished in two general ways, by programming or by

feedback. Coordination by programming is coordination that follows standardized

information and communication systems. This includes mechanisms such as plans,

schedules, rules, and policies, among others. When such mechanisms are imple-

mented, minimal verbal communication between organization members is needed

to coordinate work. Ven et al. (1976) classify coordination by programming as an

impersonal coordination mode. On the other hand, coordination by feedback has

been defined as mutual adjustments based on new information (Thompson 1967).

This type of coordination can both be found in personal and group modes.

37

• Personal mode - Mutual task adjustments can be made through either ver-

tical or horizontal channels of communication. Vertical channels tend to

go through managers or supervisors. In contrast, horizontal communica-

tion consists of one-to-one dialogues between organization members in a non-

hierarchical environment.

• Group mode - Group mode coordination consists of scheduled and unsched-

uled meetings where organization members are involved. Scheduled meetings

are used for formal, planned, routine communication, while unscheduled meet-

ings represent ad-hoc discussions of work-related problems with more than two

participants.

• Impersonal mode - The impersonal mode of coordination represents mechan-

isms and communication that tend to be in written form, rather than requiring

verbal communication.

2.3.2 Coordination in software development

Coordination is needed in a wide range of industries, and software development

is no exception. In this industry, coordination implies that people working on a

project agrees upon what they are building, share information with each other,

and plan out how and when to accomplish the required activities. The project

members should have a shared, common view of what the software should do, how

it should be organized, and how it should be intertwined with existing systems. It

has been argued that coordination becomes much more difficult, as the size and

complexity of a project increases (Kraut and Streeter 1995). In a world that is

becoming increasingly digital, firms within a range of industries encounter numerous

challenges related to digitization. These include changes to requirements, markets,

and regulations, as well as the ever-changing technological evolution (Fuchs and Hess

2018). In order to tackle these challenges, organizations need to be well-coordinated

to stay on top of uncontrollable changes.

38

2.3.3 Coordination in agile software development

A popular way of dealing with issues related to digital transformations is the intro-

duction of agile methods (Fuchs and Hess 2018). Working in an agile way can help

with dealing with uncertainties, as less planning is done up-front, and implementa-

tion of the product starts early in the project. This involves that decisions are easier

to reverse, and allows the project to change course with fewer consequences. How-

ever, less thorough planning and documentation may lead to other challenges. As

less time is spent on planning ahead of implementation, more dependencies between

people, teams, or components may be left unidentified until they are discovered dur-

ing implementation. This might increase the need for coordination, especially in the

personal and group modes, in the lack of well-documented plans.

Some research on how agile software development projects achieve effective coordin-

ation has been conducted, such as the model developed by D. E. Strode et al. (2012).

In this research, practices that are used to coordinate work within the project are

defined as coordination mechanisms. In combination with each other, these co-

ordination mechanisms form a coordination strategy. A coordination strategy in

the relevant context consists of three components: synchronization, structure, and

boundary spanning. In addition, a concept of coordination effectiveness is developed,

which consists of implicit and explicit coordination. Further, it is suggested that a

coordination strategy increases coordination effectiveness in an agile context, which

makes the model applicable to practitioners who aim to improve coordination in

their projects. This model is depicted in Figure 9.

Syncronization

Synchronization is something that is achieved by making use of synchronization

activities and artifacts (D. E. Strode et al. 2012). Such activities can take place with

different frequencies, either once per project, once per iteration, daily, or ad-hoc.

These activities are used to promote a common understanding of tasks, processes,

or other team member’s expertise. Examples of synchronization activities include

sprint planning sessions, daily standups, retrospectives, and product demos. Syn-

chronization artifacts are items that are produced during synchronization activities

39

that are available to the team. This can be items such as backlogs, user stories, or

burn-down charts.

Structure

Structure in relation to coordination effectiveness is described as the arrangement

of and relations between parts of something complex (D. E. Strode et al. 2012).

Coordination mechanisms related to structure can be grouped into three categories:

proximity, availability, and substitutability. Close proximity of the team members is

often included in agile methods and allows for pair programming as well as effective

communication (Beck and Andres 2004). Availability refers to team members being

available to each other. This is achieved by having team members work full-time

on one project. Lastly, substitutability is achieved by having technical redundancy,

meaning several people have a similar set of skills and expertise. This allows the

project to maintain progress even when some of the team members are unavailable.

Technical redundancy is achieved either by knowledge sharing or by hiring personnel

with similar skill sets.

Boundary spanning

Boundary spanning happens when someone from within the project needs to in-

teract with someone from outside the project, either other organizations or other

parts of the same organization (D. E. Strode et al. 2012). Boundary spanning is

made up of three aspects: boundary spanning activities, the production of boundary

spanning artifacts, and coordinatior roles. Boundary-spanning activities occur when

different units interact to share expertise. Such activities include workshops, user

story prioritization sessions, and formal or informal meetings, where customers or

others that are not a part of the project teams are present. Boundary-spanning

artifacts are produced to support boundary-spanning activities. They are also used

to enable coordination beyond the limits of the team or project. One example of

such an artifact is project management plans, which can give insight into project

progression to external parties. The coordinator role is also a mechanism to achieve

boundary spanning. The person with this role coordinates between the project and

those outside the project. This can for example be coordination between project

40

development teams and higher management units of the organization. Coordination

is achieved via communication, as well as the sharing of documents such as reports.

Figure 9: Theoretical model for coordination

Source: (D. E. Strode et al. 2012)

Coordination effectiveness is the outcome of a coordination strategy, or the state of

coordination that is achieved in a project. As mentioned, D. E. Strode et al. (2012)

suggest that coordination effectiveness is composed of two components, explicit and

implicit coordination. Explicit coordination relates to objects, such as the people

and artifacts that are involved in a project. Explicit coordination is deemed effective

when required objects are in the right place, at the right time, ready, and available

to those who need them. Implicit coordination, on the other hand, is coordination

that takes place without explicit verbal or written communication. It involves tacit

knowledge that the project members have, such as “Who knows what” and “What to

do when”. A model of the concept of coordination effectiveness is shown in Figure 10.

41

Figure 10: Coordination effectiveness

Source: (D. E. Strode et al. 2012)

As previously discussed, coordination is strongly linked to dependencies. Hence, it is

useful to identify what types of dependencies exist in order to solve dependencies and

improve coordination. This is the goal of D. Strode and Huff (2012) in their study

“A Taxonomy of Dependencies in Agile Software Development”. In this research,

three distinct coordination categories are identified, which are task, resource, and

knowledge dependencies. A task dependency occurs when one task needs to be

completed for another task to be able to continue. Resource dependencies occur

when an object is needed for the project to progress. Lastly, knowledge dependencies

concern dependencies where some form of information is needed in order to continue

to progress in the project (D. Strode and Huff 2012). This taxonomy of dependencies

in agile software development is depicted in Table 5.

42

Table 5: Taxonomy of dependencies

Dependency category Dependency

Knowledge

Requirement

Expertise

Task allocation

Historical

Task
Activity

Business process

Resource
Entity

Technical

Source: (D. Strode and Huff 2012)

2.4 Remote and hybrid work

In an increasingly digital world, a wide range of jobs can be performed without being

in the same physical space as your coworkers. This includes software developers, who

after all spend most of their time in front of a computer with an Internet connec-

tion. In fact, “ICT professionals” was the profession with the second highest share

of employees working remotely in the EU in 2018 (Micaela 2020). One of the agile

philosophy principles conveys that face-to-face conversations are the most effective

form of communication for development teams (Beck, Beedle et al. 2001). However,

working remotely can bring several practical benefits, such as allowing non-colocated

teams to collaborate, and expanding the recruitment area for open positions. Ac-

cording to Deshpande et al. (2016), three different types of non-colocated teams

exist.

1. Distributed teams are teams where sub-teams are located on different sites,

often in different countries.

2. Dispersed teams are teams where team members work alone from different

locations.

3. Hybrid teams are teams where some team members work remotely, and others

43

are colocated.

Working from home can also bring personal benefits to employees. Common ex-

amples of this include increased flexibility of schedule, freedom from interruptions,

and time saved from not having to commute (DeSanctis 1984). It has been ar-

gued, however, that to have success with working from home, a higher level of

self-motivation and self-discipline is required (Olson 1983). Additionally, some cited

drawbacks of working remotely are isolation, both socially and professionally, as well

as difficulties separating home affairs from professional ones (Bailey and Kurland

2002; Klopotek 2017).

While remote work is nothing new, its prevalence rose to new highs during the

Covid-19 pandemic. In the EU, the share of workers who usually worked from home

was about 5.4% in the time period between 2009 and 2019. During the pandemic,

however, the share of workers who worked from home full-time rose to around 40%

(Micaela 2020). Even though drawbacks exist, the sudden shift toward remote work

has made several organizations realize its benefits, with opportunities for hybrid

work likely to remain as a permanent option for many (Phillips 2020). This notion

is consistent with the results of the 15th State of Agile Report, where only 3% of the

respondents who had worked remotely during the pandemic planned on returning

to the office full time (Digital.ai 2021).

2.5 Knowledge management

Several different definitions of knowledge management exist, one of these states

that: “knowledge management concerns the formalization of and access to experi-

ence, knowledge, and expertise that create new capabilities, enable superior perform-

ance, encourage innovation, and enhance customer value” (Gloet and Terziovski

2004). Developing software is a knowledge-intensive practice. Hence, managing the

knowledge that exists within a software development organization by enabling ac-

cess to experience, knowledge, and expertise may improve performance. The study

of Hansen et al. (1999) refers to two main strategies for knowledge management:

44

• Codification: A strategy where knowledge is codified and stored in databases,

easily accessible for anyone in the company.

• Personalization: A strategy in which knowledge is shared directly from per-

son to person. In this strategy, technology is mainly used for communicating

knowledge, rather than storing it.

Further, Earl (2001) has proposed that knowledge management can be separated into

seven schools, which can be categorized into three categories: technocratic, economic,

and behavioral. These schools are shown in Table 6. The technocratic schools are

concerned with the use of technology to manage knowledge. This can include the

use of knowledge bases, directories, and shared databases to store, manage, and

enable access to useful information. The economic and commercial school looks at

knowledge as an asset to the company and is concerned with how knowledge and

intellect can be utilized to generate revenue. Lastly, the behavioral schools focus

on how management can enable the creation, sharing, and use of knowledge as a

resource. This includes creating a sociable culture and encouraging the exchange of

knowledge.

In the research of Bjørnson and Dingsøyr (2008) it was found that studies on know-

ledge management in the software engineering field generally focus on the techno-

cratic schools and management of explicit knowledge. They further suggest that

future research should focus more on the organizational school of knowledge man-

agement, as organizational activities can be inexpensive to implement and relevant

to both agile and traditional software development. Additionally, they propose a

stronger focus on the management of tacit knowledge due to the lack thereof in

existing studies, and its relevance to agile development.

45

Table 6: Schools of knowledge management

Category School(s)

Technocratic Systems, Cartographic, Engineering

Economic Commercial

Behavioral Organizational, Spatial, Strategic

Source: (Earl 2001)

3 Method

In order to answer the research questions of Section 1.2, a research method was

employed. This section will describe each step of the research process, from research

design to data analysis. The selected research method will be presented, with argu-

ments for the choices that were made. Criteria that were used in case selection will

be shared, in addition to a description of the cases that were chosen. The choice

of data generation method will also be presented, along with a description of the

analysis phase. Lastly, the section will assess the validity of the chosen research

method, and present relevant limitations.

3.1 Research strategy and method

The chosen research methodology for this research is a case study approach, more

specifically a multi-case study, as two cases are involved. A multi-case study in-

vestigates the same phenomena in two or more cases (Yin 2018). In this study, two

large-scale agile software development organizations were researched to learn about

teamwork effectiveness in this context. The case study approach can give rich insight

into one or a few cases, rather than limited insight into a lot of cases. This high

level of detail may be needed to be able to determine factors that impact teamwork

effectiveness in this context. This approach also allows for a software development

team or project to be studied in its natural setting, which can give a more accurate

view of the real-life case. Further, the case study approach is well suited for research

within the field of software engineering, as the objects of study are hard to study in

isolation (Runeson and Höst 2009).

A case study approach can be described as holistic, meaning that relationships and

processes and the interconnections between them can be researched, rather than

trying to isolate factors (Oates 2006). As teamwork and human interaction are

complex matters, the sum of individual factors may not tell the whole story, and

studying them in relation to each other may paint a better picture. By using a case

study, multiple different data generation methods and sources may be used to collect

47

data. For this research, interviews were the data generation method of choice, which

can yield detailed data and insight into a case. The data from the interviews were

analyzed using a qualitative approach. In preparation for this research, a literature

review on coordination challenges in large-scale agile software development projects

was performed (Woldseth 2022). This initial research revealed several gaps in the

research of large-scale agile, and as such, this topic was selected for further research.

A visual model of the chosen research process is shown in Figure 11. The research

is explanatory in nature, as it will try to identify factors that have an impact on the

topic of research, teamwork effectiveness (Oates 2006).

Figure 11: Chosen research process marked in red, template model from Oates

(2006)

3.2 Case selection

For the case selection, the aim was to find an organization that fits the context of

the research. For this study that meant a software development organization that

has projects or products where multiple teams collaborate and use agile methods,

constituting the use of large-scale agile development. The context of large-scale

agile is of specific interest as agile methods were originally made for small, co-

located teams, and less research exists on larger projects employing agile methods

48

(Williams and Cockburn 2003). There are no requirements for the project to use

a specific large-scale agile framework, but rather that they use some agile methods

and follow an agile philosophy. When defining what constitutes “large-scale agile”,

the taxonomy from Dingsøyr, Fægri et al. (2014) is used. In this taxonomy, it

is proposed that an agile project can be defined as “large-scale” when 2 or more

agile teams cooperate. However, while a two-team project would be sufficient to be

labeled as “large-scale”, the larger the size of the project, the more interesting it is

for investigating large-scale effects. The goal is therefore to find an extreme case,

in terms of size. Gaining access to such a case may not be easy, therefore the case

selection is also bound by the ability to receive access. As such, two Norwegian

cases have been selected due to contacts that made it easier to gain access.

3.2.1 Case A: Signicat

Signicat is a Norwegian technology company that was established in 2006. They

provide online identity services, including electronic identification, authentication,

and electronic signature. Signicat has approximately 425 employees, with 175 of

those working in tech. A large share of their employees works as developers, while

other roles include project managers, economists, lawyers, salespeople, and customer

support. They have 10 agile teams, with a structural organization inspired by the

large-scale agile framework, the Spotify model. This type of organization was intro-

duced to the company in 2021. This entails that teams within the same feature area

are organized in a tribe structure. Additionally, inter-team guild communities are

used, where those interested in a topic can come together to share ideas, discuss,

and collaborate across tribes. Since its inception, Signicat has grown rapidly and

was in 2021 ranked as one of the fastest-growing companies in Europe7. Today, they

sell their services to more than 6,000 small and large companies, including promin-

ent firms such as Allianz, Volvo, and Sopra Steria, resulting in a revenue of around

620 million NOK in 20218. With headquarters in Trondheim Norway, Signicat has

expanded with offices in several other European countries over the past years. Their

7https://www.ft.com/content/8b37a92b-15e6-4b9c-8427-315a8b5f4332
8https://www.signicat.com/no/pressemeldinger/european-focus-gives-signicat-high-2021-

growth-in-revenue-and-ebitda

49

locations are visualized in Figure 12.

Figure 12: Map of Signicat office locations

3.2.2 Case B: NAV IT

The Norwegian Labour and Welfare Administration (NAV) is the public welfare

agency of Norway. Founded in 2006, the government agency employs approximately

22,000 people across 264 office locations throughout the country. NAV administers

state programs including unemployment benefits, pensions, child benefits, and sick

pay, and they administer a third of the Norwegian national budget. To manage all

the services that NAV provides, an extensive collection of IT systems is necessary.

The end users of these systems are organizations and individuals who apply for

benefits, employees in NAV who manage the grants, and external organizations

who use the data that is produced. Since its inception, NAV has outsourced the

50

development and maintenance of its IT systems to externals. However, in 2017,

they decided to build up their own IT department and move the development and

maintenance of most of their IT systems in-house (Mohagheghi and Lassenius 2021).

During this transition, it was also decided to adopt agile methods, which was found

to be a success factor in other public software projects (Mohagheghi and Jørgensen

2017). Today, NAV IT consists of approximately 800 employees and has an annual

budget of about 1.3 billion NOK. This includes about 30 architects, 80 designers,

more than 300 developers, 180 technicians (operations and infrastructure), and other

leadership, advisor, and support roles. The members of NAV IT are organized into

around 80 cross-functional teams and their organization is inspired by the “Team

Topologies” approach (Skelton and Pais 2019). This includes using team types such

as platform teams, enabling teams, and support teams. Their development is also

organized in eight product areas, where one of these, the pension product area, was

studied in detail in this study through interviews. This product area ensures that

more than a million pensioners get their retirement pension, and is responsible for

the services that manage 75% NAV’s entire benefits budget.

These two cases are relevant to this study as they conduct agile software development

and belong to the large-scale context. Although this is a similarity between the

two, they are also different in some aspects. Some of these are displayed in the

overview of the two cases found in Table 7. During this study, eight interviews were

conducted with participants from Signicat, while six interviews were conducted with

participants from NAV IT.

Table 7: Overview of the two cases

Case A: Signicat Case B: NAV IT

Industry Online identity services Government grants and benefits

Economy NOK 620 M (revenue 2021) NOK 1.3 Bn (budget)

Employees approx. 425 approx. 800

Teams 10 80

International Yes No

Participants 8 6

51

3.3 Data generation

Regarding data generation for this study, multiple different methods were con-

sidered, such as observations, documents, and interviews. The use of more than

one method could be favorable, to allow for data triangulation. Ultimately, how-

ever, interviews were chosen as the sole source of data for this research. Due to

the substantial amount of data that was produced by the interviews, as well as the

limited time to conduct the research, additional data generation methods were not

employed. Interviews were favored as they can be used to obtain detailed inform-

ation and to explore experiences and emotions that can be hard to extract using

other methods. It is also a method that is commonly used in case study research

(Oates 2006).

3.3.1 Interviews

The data generation method for this study is interviews with participants from

the selected cases. The interviews were conducted one-to-one with the interview

subjects. These subjects had various roles in the cases, such as developers, testers,

designers, system architects, project managers, and team leads. During the planning

phase of the study, a number of interviews of around 10-15 was deemed desirable, to

get a sufficient number of different perspectives while keeping the amount of data at

a manageable level. In the end, the number of interviews was 14. A semi-structured

interview approach was used, following pre-defined questions while allowing for new

ideas and follow-up questions to emerge during the interview. The interview guide

that was used can be found in its entirety in Section A of the appendix. This ap-

proach has been preferred over a structured approach, as it may be difficult to know

all the good questions before starting the interviews. It also allows the interviewees

to speak more freely and in more detail as open-ended questions can be used, rather

than closed ones (Oates 2006). As the participants had various roles, the list of

interesting questions may vary slightly from interview to interview. Furthermore,

this approach is a bit more systematic than an unstructured approach, which may

aid the analysis. The interviews were audio recorded after gaining permission from

52

the interviewee. Audio recordings were used because they give a more accurate

reproduction of what was said during the interview than notes and memories can.

The audio recordings were transcribed to aid the analysis of the data. The textual

data was then analyzed qualitatively.

Each of the interviews lasted between 40 and 50 minutes, for a total of about 630

minutes of accumulated interview time. The interviewees were interviewed once,

and the interviews were conducted over a two-week period, from February 28th

to March 14th 2023. All the interviews were performed digitally through video

calls, both due to geographical separation and because some of the informants were

working remotely. A range of various roles were interviewed, to attempt to receive

a broad range of perspectives on the topic. An application for collecting personal

data in the form of audio recordings was approved by the Norwegian Agency for

Shared Services in Education and Research (NSD/Sikt)9 before the interviews were

performed. The handling of the personal data obeyed the guidelines issued by

NSD/Sikt, which include solely keeping the data on a password-protected device,

and keeping recordings and name lists separate. After the interviews were performed,

the audio data was transcribed into anonymous textual data which was used in the

analysis phase of the project.

3.4 Transcription process

In order to perform a textual analysis of the collected data, the audio recordings

had to be transcribed into text. This is a time-consuming process, and according to

Oates (2006), researchers should expect to use about 5 hours for every hour of audio

recording for transcription. To attempt to speed up this process, an automatic tran-

scription tool was utilized. As some of the interviews were conducted in Norwegian,

while others were conducted in English, a multilingual tool was needed. The speech

recognition tool Whisper10, from the artificial intelligence organization OpenAI was

chosen, due to impressive speech recognition success rates. The artificial intelligence

model is trained on 680,000 hours of audio data, which makes it one of the largest

9https://www.sikt.no/
10https://openai.com/research/whisper

53

speech recognition datasets ever created. This has resulted in a stated word error

rate of 9.5% for Norwegian audio and 4.2% for English (Radford et al. 2022).

After running the transcription software on the audio recordings, a file with the text

transcription along with timestamps was generated. However, as the accuracy of

the transcription tool is not at 100%, the transcription files had to be checked and

corrected against the raw audio data. After listening through the recordings, the

stated word error rates of the tool seemed to be accurate. While some sentences

were error-free, others contained up to a few misinterpreted words. Although a fair

amount of time was spent listening through the recordings and correcting the tran-

scriptions, the use of the tool was time-saving. As mentioned, at most a few words

needed correcting in a sentence, which took less time than manually transcribing the

entire sentence. After ensuring that all the textual data was accurate, the analysis

phase could commence. The transcription of the 14 interviews resulted in about

80,000 words of textual data to be analyzed.

3.5 Qualitative analysis

A qualitative analysis approach was used to analyze the interview data. This form

of analysis is better suited for semi-structured interviews than quantitative analysis

as the questions may not be identical in all interviews, contrary to structured in-

terviews (Oates 2006). The analysis consisted of attempting to find patterns in the

transcribed data, in order to attempt to answer the research questions that have

been defined. To aid the analysis, the qualitative data analysis program NVivo was

used to code statements into themes. The initial iteration of coding resulted in 391

statements that were coded into 75 categories. These categories were then combined

into broader categories in two iterations, which first led to 10 categories, before the

final five themes that will be presented in Section 4 were identified. Hierarchical

overviews of the initial 75 root-level codes, as well as the final five themes with their

sub-codes, can be found in Section B of the appendix. Also, an overview of how the

analysis phase was conducted is shown in Figure 13.

54

Figure 13: Overview of the analysis phase

3.6 Feedback sessions

After the analysis phase was completed, online feedback sessions with each of the

two cases were held. These sessions lasted 30 minutes, with a 15-20 minute present-

ation about the interview findings, and 10-15 minutes of participant feedback. The

sessions gave the case participants insight into several aspects of teamwork within

their organization, which was perceived as helpful. They were also given the oppor-

tunity to give feedback on the findings, for example regarding whether they believed

the interpretations from the analysis were accurate. None of the participants ex-

pressed that they disagreed with the findings, which improves the confidence in the

accuracy of the analysis.

3.7 Method evaluation and limitations

The following section will assess the potential threats to the validity of the chosen

research method. It will also present relevant limitations of the research.

55

3.7.1 Case study validation

There are four tests that have commonly been used to establish the quality of empir-

ical research (Yin 2018). These are: Construct validity, Internal validity, External

validity, and Reliability. These four criteria will be used to assess the quality of this

research’s case study design.

Construct validity

Construct validity focuses on identifying the right operational measures for the con-

cepts that are studied. This test is especially challenging in case study research as

researchers can tend to use subjective judgments when collecting data (Yin 2018).

In this study, the concept studied, namely teamwork in large-scale agile software

development, has been defined in Section 2.2. This section draws on relevant stud-

ies about teamwork in general, as well as within the agile software development

context, explaining what we already know about the concept of teamwork. Ad-

ditionally, tangible research questions were mapped out in Section 1.2, which are

attempted answered based on the collected data.

Yin (2018) lists three tactics to increase the construct validity in case study research,

which are to use multiple sources of evidence, to establish a chain of evidence, and

to have the draft case study report reviewed by key informants. When it comes

to using multiple sources, this research relies solely on interviews as a data gener-

ation method, thereby lacking method triangulation (Oates 2006). However, the

interviews were conducted with a significant number of participants with a range

of different roles, representing different sources in itself. A chain of evidence is

maintained as all the statements in Section 4 can be traced back to the original

transcription data material. Lastly, a draft of the report has not been reviewed by

key informants. However, feedback sessions were held with the participants where it

was encouraged to voice any concerns or disagreements with the research findings.

A subjective interpretation of the interview data is a genuine risk of this study, as

some statements may be ambiguous. However, none of the participants expressed

concerns about the findings, reinforcing their validity.

56

Internal validity

Internal validity relates to establishing a causal relationship, where certain condi-

tions are believed to lead to other conditions. This is mainly a concern for explan-

atory studies, such as this one, where the researcher attempts to explain how one

event causes another event. Additionally, internal validity also entails inferences,

which occur every time an event cannot be directly observed, and the researcher has

to infer that the event occurred based on a previous event (Yin 2018). Yin lists the

following four tactics to achieve internal validity:

• Pattern matching entails comparing an empirical pattern from the study

with a previously established predicted pattern (Yin 2018). This is achieved in

this study by comparing findings to existing models on teamwork effectiveness.

• Explanation building relates to analyzing the case study data by building

an explanation about the case (Yin 2018). For multi-case studies such as this

one, a general explanation should fit each case involved. Such explanations

of the findings relating to the cases are presented for some, but not all the

findings.

• Addressing rival explanations revolves around testing other plausible ex-

planations for the findings (Yin 2018). Rival explanations are rarely addressed

in this research.

• Using logic models relates to developing a model of a complex chain of

occurrences or events over time (Yin 2018). Such a model has not been utilized

in this study.

External validity

External validity deals with whether the study’s findings are generalizable to other

cases (Yin 2018). To increase external validity, Yin (2018) suggests the use of rep-

lication logic in multi-case studies. This study has followed a literal replication

approach, where two cases have been studied using the same research design, meth-

odology, procedures, and data analysis techniques. A threat to the generalizability

57

of the findings of this research is the limited sample size. While the number of parti-

cipants may be sufficient to make general statements about a case, it is not enough

to be a representative sample size for the entire field of large-scale agile software

development.

Reliability

Reliability relates to the reproducibility of the study, meaning that if another re-

searcher followed the same procedure for the same case, they should arrive at the

same conclusion (Yin 2018). To achieve reliability Yin (2018) suggests the em-

ployment of two strategies, using a case study protocol and a case study database.

Section 3 of this study documents the steps that were taken during this research,

from research design to data analysis. A separate case study database has not been

created for this study, however.

3.7.2 Limitations

One limitation of this research is that the data was collected over a relatively short

period of time, with all the interviews being carried out over a two-week period.

This prevents the study from investigating longitudinal effects, which would require

following a case for a longer period of time, from one month up to several years (Oates

2006). Additionally, some limitations follow from the choice of data generation

method. While the interviews were of a reasonable length, around 45 minutes each,

this is still a limited time frame compared to other data generation methods, like

for example observations. The lack of time imposed by doing interviews can lead to

issues with interviewees creating opinions due to the time pressure, which may not

have been as strong in reality as they may be perceived (Myers and Newman 2007).

Myers and Newman (2007) also lists other relevant limitations of interviews, such as

the artificiality of interviews and lack of trust. The setting of interviews is artificial

by nature, which may impact the accuracy of statements from subjects. Also, all the

interview subjects were complete strangers to the researcher prior to the interviews.

A lack of trust can cause subjects to withhold potentially important information

58

that they may perceive as sensitive. The lack of trust may also be reinforced by the

fact that all the interviews were held online via video calls, which could impact the

connection and relationship between the researcher and the informants.

59

4 Results

This section will present the findings from the conducted interviews from Signicat

and NAV IT, which have been introduced in Section 3.2.1 and Section 3.2.2. Find-

ings from the two cases will be presented together so that similarities and differences

can be highlighted. An overview of the conducted interviews and the roles of the

participants for the two cases can be found in Table 8. The findings will be presen-

ted categorically, after themes that impact effective teamwork identified during the

analysis phase.

Table 8: Overview of interviews

Signicat NAV IT

ID Date Role ID Date Role

P1 28.02.2023 Developer P9 08.03.2023 Developer/tech lead

P2 28.02.2023 Product owner P10 08.03.2023 Product lead

P3 28.02.2023 Product owner P11 09.03.2023 Product lead

P4 01.03.2023 Developer P12 09.03.2023 Solutions architect

P5 01.03.2023 Product owner P13 10.03.2023 Developer

P6 01.03.2023 Architect P14 14.03.2023 Team lead

P7 02.03.2023 Developer

P8 02.03.2023 Developer

4.1 Agile methods and work process

There are a lot of ways to incorporate an agile philosophy into a development team,

but finding the right way to do so may not be trivial. Further, continuous improve-

ments may be needed to reach the most optimal work process.

61

4.1.1 Choice of agile method

In agile development teams, the choice of agile method and work process may be

an important one to achieve a high level of performance. From this research, the

most commonly used agile methods by the interviewed teams were Scrum, Kanban,

and a combination of these. Some teams also employed practices from XP. On the

organizational level, Signicat also used a structure that is inspired by the Spotify

model. The popularity of the various agile methods is shown in Figure 14, where

the number of participants that stated that their team used a specific method is

represented on the y-axis. The developers of teams that were using Scrum were

generally satisfied with their process and thought Scrum worked well (P7, P8). One

of the participants highlighted that for their team, the appointment of a Scrum

Master who took their role seriously greatly improved the success of their process

(P8). Others give credit to agile coaches, who have joined teams sporadically to

help improve their agile process (P9, P12).

A developer and a product owner from another team shared that they had transitioned

from using Scrum to Scrumban, which was very beneficial for their team (P1, P3).

They felt that working in sprints was limiting and that it was hard to define mean-

ingful goals and tasks for a two or three-week period at a time. By leaning more

towards Kanban they could work in a more continuous rather than iteration-based

way. By not committing to a defined sprint, they avoided issues with waiting for the

next sprint to start on tasks that were not in the current sprint backlog. Addition-

ally, one of the developers from one of the Scrum teams felt that while Scrum was

working well, they could benefit from a more “open-ended process”, such as Kanban

(P7). As such, it seemed like participants, in general, were more satisfied with less

prescriptive processes, due to increased flexibility.

While not showing as widespread use as Scrum and Kanban, some participants

also reported the use of XP techniques such as pair programming and even mob

programming with even more developers involved (P10, P13). These techniques were

deemed highly successful both for productivity and for sharing knowledge between

more experienced and less experienced developers. This was seen as a risk-reducing

62

measure, as it would lower the impact of experienced developers being unavailable.

Employing the right agile methods for the team seems to be an important measure to

improve how well team members collaborate. However, many teams used practices

from some agile methods without following the entire process. Examples of these are

tribes and guilds from the Spotify model, and stand-ups and retrospective meetings

from Scrum. There is no “one method fits all”, but letting the team tailor their

own process seems to be a good choice according to the participants. With a well-

fitting process, planning, coordination, and consequently teamwork becomes easier

and more effective, which in turn can lead to a good pace of development.

“I feel that organizations are very rigid in terms of adopting agile when

they shouldn’t. (...) people try to fit, they try to make it a cookie-cutter

thing. One method applies to all, and that doesn’t work. Different teams,

different people, you have to be willing to drop certain things from the

agile method to make things better for your team, to increase the hap-

piness, efficiency, or just get [rid of] things that your team isn’t using.

(...) But, yeah, teams have to adapt to agile. They have to want to do it

and think it’s worth it. Otherwise, you’re just going through the motions

and you’re not getting much out of it.” (P4, Developer, Signicat)

Kanban Scrum XP Scrumban

1

2

3

4

5

#
of

p
ar
ti
ci
p
an

ts

Figure 14: Frequency of use of agile methods among participants

63

4.1.2 Work tasks and specialization

Another aspect of the work process that impacts teamwork is how tasks are defined

and assigned to team members. One team struggled with task dependencies, where

one task needed to be finished before another could be started (P7, P8). This meant

that tasks could not be worked on in parallel, which could reduce the velocity of the

team. This was hard to avoid when defining tasks, partly due to the type of software

that was being developed where many components were dependent on each other.

To combat this issue, tasks containing internal dependencies were not planned for

the same sprint, ensuring that the tasks were taken on in the correct order.

Regarding tasks, having multiple developers working on the same feature was seen as

a decision that improved the success of teamwork (P2, P8). To enable this, thorough

specification of tasks was needed, so that multiple people could pick up on related

tasks, rather than only one person immersing themselves in the problem. This

reduced the risk of progress slowing down due to one person becoming unavailable.

Also, some issues could emerge if only one person worked on a feature for a while

based on incorrect assumptions they made early on, which could be prevented with

more input from others. Additionally, one of the product owners noted working with

someone was both more enjoyable and more effective, compared to working alone

(P2).

Some of the participants also noted that due to a large domain, teams and developers

were unable to specialize in one part of the domain, and were forced to work on a

wide range of parts of the domain and pulling in different directions at the same time

(P10, P11). This increased the amount of context-switching which was required and

reduced the velocity of the teams. One mitigation to this issue was an experimental

establishment of temporary “task force” groups who only concerned themselves with

one specific part of the application, and was isolated from the rest of the team. This

was deemed a great success and the group achieved a great pace as they could focus

on a single mission. This experiment later influenced a larger restructuring of the

team, where they made sub-groups within the team that had the main responsibility

for a single part of the application.

64

4.1.3 Improvement

The use of agile coaches has already been mentioned as one method of improving

the work processes of agile development teams. Another way of improving team

performance is making use of reflection. One common method of achieving reflection

is the use of retrospective meetings, which all the interviewed teams shared that

they used, at either regular or irregular intervals. The majority of the participants

expressed that these meetings were helpful in improving the way the team worked.

While some teams used the retrospective meetings to identify specific problems and

measures to focus on for the upcoming sprint, other teams used the arena as a status

report where team members could share what they had done during the last sprint

and their perceptions of the work process. Both those who had concrete outcomes

of the meeting and those who used it in a more abstract way felt the meeting was

helpful and that the time spent on the retrospectives was well spent. One team lead

noted that it was important for them to appoint a person who had the responsibility

of following up on the issues that are chosen for improvement (P14).

Another way of improving teamwork, as well as the collective knowledge level of the

team, is the use of knowledge-sharing techniques and practices. For multiple teams,

having several developers working on the same or similar tasks was important to

share knowledge within the team. This forced the developers to cooperate with each

other, where they could learn from each other. Typically, less experienced developers

could learn from more experienced ones when working on the same task, but it was

also noted that the more senior developers learned from less experienced teammates,

who could bring knowledge about more modern technologies into the teams. Other

measures that have been used to share knowledge include impromptu “show and

tell” meetings, inter-team communities, guilds, and demo meetings. While some of

the participants were happy with the amount of knowledge sharing that took place,

others expressed that their teams could benefit from being more open and willing

to initiate knowledge sharing with others (P1, P11). Knowledge sharing within the

team, as well as within the organizations is a good way of enabling team members

to learn, in addition to encouraging teamwork and collaboration with others.

65

4.2 Autonomy, alignment, and leadership

The agile manifesto suggests that teams can achieve the best results if they are

self-organized. In general, team autonomy is seen as an important part of agile,

which contrasts more traditional methods where higher management takes most of

the decisions, while developers simply develop what they are told. Being able to

influence decisions was something that most of the informants saw as an important

aspect of their work process, but there were some differences in how the teams were

organized and led. One of the issues that require decision-making is the prioritization

of tasks. Many of the interviewees stated that their teams had product owners who

were responsible for deciding the order in which to complete tasks (P1, P3, P4,

P5, P7, P8, P12). Generally speaking for these teams, there was dialogue between

the developers and product owners on the topic of prioritization, with the product

owner being the tiebreaker when disagreements occur. One advantage of this is

that the product owners are able to get a better overview of not only their own

teams’ needs but also other teams’ needs as well as company-wide goals, than what

the developers are able to. One developer also expressed that the developers were

happy to be relieved of duties regarding planning and other organizational tasks so

that they could spend more of their time developing (P1).

When it comes to how to perform tasks, however, the developers were free to de-

cide themselves. In general, developers were able to reach agreements on technical

matters amongst themselves. In the event that developers could not agree on how

to implement a feature, the tech lead of the team would be involved and act as a

tiebreaker. Most of those that shared that product owners were responsible for task

prioritization came from Signicat. In NAV IT, however, much of their work consists

of adhering to new regulations put in place by the Norwegian government. Hence,

a lot of the prioritization comes indirectly from external sources.

Participants from NAV IT also highlighted that while they had little influence on

things that needed to be done due to government regulations, the teams had full

ownership over the rest capacity. This is the time that can be used on tasks that

the team decides themselves, while still being able to complete the tasks that are

66

imposed upon them from above. One of the most common uses of this rest capacity

from the interviewed teams was upgrading systems to more modern technologies.

Both cases were in the process of modernizing their systems, to improve development

pace, and robustness, and to make recruitment easier.

The leadership of the teams did not only rely on specific roles that were present but

also on the composition of people in terms of experience. One product owner from

Signicat was a part of a team that was full of experience, and which consisted of more

senior than junior developers (P2). This high level of experience impacted the team

in several ways. Other teams often had requests and questions for the developers

of this team, as some of them had been at the company since its beginning. One

measure that was implemented was that these kinds of requests needed to go through

the product owner first, who could shield the developers from being overloaded with

questions from others. Additionally, leading a team of highly experienced developers

may not always be simple, as they may have more personal opinions on how to do

things and what to do than less experienced developers.

“We try, for the [team members’] satisfaction, to facilitate that people

can work with things they are interested in. And also because, leading

senior developers is like herding cats, they do as they want sometimes.

But yeah, it’s always best when people work with the things they want.”

(P2, Product owner, Signicat)

A developer from Signicat also highlighted senior developers’ impact on team lead-

ership (P7). They believed that the seniors could be a bit too dominant when it

comes to making decisions for the team. Even though the experienced developers

may be best suited to lead the team in the right direction, it was expressed that it

would be beneficial to the more junior team members if the seniors sometimes took

a step back and allowed others space and responsibility.

“I think the team could benefit if the seniors let go a little more than

what they sometimes do. Because I think I have been a junior myself

and been given that trust from seniors, that enabled me to blossom and

67

develop into the senior developer I am today (...) With freedom under

responsibility, I think most developers would blossom faster, than if you

only treat them as code monkeys.” (P7, Developer, Signicat)

Team autonomy and self-organization can be tied to several benefits to an agile

team. No two teams are alike, so allowing teams to customize agile methods to suit

their team may be favorable. Team members may also be more motivated if they feel

that they have a voice in decision-making. However, there may also be drawbacks

to giving individual teams this type of control. Without external guidance, team

members within a team may become misaligned with each other. Without a firm

common goal, individuals may pull in different directions, either purposely to follow

their own desires, or without being aware that it is happening. This means that the

team makes several small contributions to various areas, instead of making a more

significant impact on one prioritized area.

One participant saw this intra-team misalignment as a significant challenge, as vari-

ous team members had different perceptions of what should be prioritized and which

goals to aim for (P12). Another participant saw the same challenge occur on a higher

organizational level, where the organization as a whole lacked a common direction

in some areas (P9). When teams are misaligned with each other, it can make the in-

tegration of different sub-systems more difficult, and if teams are pulling in different

directions they may even end up working against each other.

Another potential challenge with bottom-up team organization is that it can be

harder for higher management levels to monitor and manage the different teams.

This challenge was mentioned by one product owner and one architect (P5, P6).

While some teams may use completed story points as a measure of progress, other

teams may use another metric or have no metric at all for measuring progress. This

can make it difficult for middle management to determine the velocity of teams, and

to make decisions on whether changes are needed or not. Differences in work process

can also complicate inter-team interactions, as teams may not be in the same phase

in the project or sprint life-cycle. There are both advantages and disadvantages

associated with team autonomy, so organizations should adjust the level of control

68

given to teams to maximize upside and limit downside.

4.3 Inter-team coordination

One of the main differences between small-scale and large-scale agile development is

the increased need for coordination across several different teams. Almost all of the

participants expressed that inter-team coordination was more difficult than intra-

team coordination, with some reporting it as one of the biggest challenges in their

organization. A range of various reasons to why inter-team coordination is difficult

have been given by the interviewees. Some think that the issues come from not

knowing and trusting people from other teams as much as those in your team (P7,

P9). One developer blames inter-team coordination issues on method misalignment

(P8). As the different teams have the autonomy to choose their own agile methods,

there is no unified work process across teams. If one team is dependent on another

team completing a task, they may have to wait until the next sprint for the task

to be prioritized into the sprint backlog. As the teams don’t have the same sprint

lengths, and not everyone works iteration-based, adjusting to other teams’ processes

may be challenging.

Two developers from the same team noted that collaborating with other teams is

harder because some of the teams are located in other countries (P7, P8). This makes

communication more formal, as meetings need to be planned rather than contacting

people who work in the same office in person. A product owner from Signicat ex-

pressed issues with inter-team communication going through various channels (P5).

They shared that requests can come from tribe leads, tech leads, and other teams’

product owners, which can lead to the same question being asked and answered

up to three times. Some informants highlight that requests from other teams need

to be filtered by the product owner to avoid fragmentation of the developers’ work

days (P2, P3). This is a bigger challenge for senior-heavy teams that possess more

knowledge than others, as these are often the ones who are asked for help. Teams

should therefore strive to find an appropriate balance between helping other teams

and progressing with their own tasks.

69

“Yes, there is a significant difference in collaboration with the team,

compared to working with another team. (...) It’s hard to ask those that

you don’t know as well, and maybe don’t trust as much as those you work

with daily and know very well. With whom you have a familiar dynamic.

That barrier is definitely present, and I think it’s something we should

work on. That is perhaps the biggest problem we have holding us back...”

(P7, Developer, Signicat)

While some share that their team regularly collaborates with other teams (P8, P9,

P12), others experience that such interactions are rather rare (P1, P6). When

inter-team dependencies are rare, there is also less to be gained from effectivizing

these interactions. Several informants share that digital tools such as Slack are

helpful when coordinating with other teams (P3, P10, P13). Additionally, inter-

team product owner meetings and inter-team forums are used to share information

between teams. Knowledge of other teams’ situations is seen as helpful for being

able to solve dependencies between teams. One developer also notes that going

through a middle management level, rather than contacting other teams directly is

more effective (P4). In the case of Signicat, tribe leads were seen as useful for such

requests, as they have a better overview of the status of the various teams. When

companies grow larger, more development teams get formed making coordinating

work more complex. Being observant of issues and aiming to continuously improve

communication between teams may be important to avoid teams being blocked by

other teams and to resolve dependencies as effectively as possible.

4.4 Intra-team collaboration

While coordinating with other teams may be an important area of focus in large-

scale agile development, being able to collaborate well within the team can be equally

important.

70

4.4.1 Adaptability

Adaptability is a central aspect of agile software development. By limiting the

amount of detailed, long-term planning, agile teams are set up to respond to changes

well and to be able to change directions with limited downside. This is consistent

with the responses from the informants, with most of them expressing that their

team adapts quickly to changes (P3, P4, P5, P6, P7, P8, P11, P12, P14). Some

credit the high level of adaptability to their agile process, with Scrum and Kanban

being highlighted as beneficial for versatility. A team lead from NAV IT also believed

that expectation management in addition to having a good work environment and

sense of community helps (P14). Daily releases were also emphasized as improving

adaptability, as it makes it easier to integrate changes from original plans (P10).

Moreover, one developer highlighted that having the option to re-organize and re-

assign tasks easily was important for team performance (P1). In order to facilitate

this, adaptability is needed.

Being versatile and dealing with changes is not always a painless process, however.

An architect from Signicat shared that versatility comes at a price, as the team can

end up working with a lot of different things at the same time (P6). This leads to a

lot of context-switching and reduced pace, as context-switching takes time. Further,

it causes the team to make small contributions in several directions, rather than a

more significant contribution towards one goal. One developer also expressed that

while some changes might be easy to manage, changes to personnel might be harder

to deal with (P7). When key team members leave the team, they may leave behind

code that no one else in the team has knowledge of.

4.4.2 Feedback

Feedback can be an important tool for improving the work process of a team.

Without it, it can be difficult to know which areas to improve and what challenges

the team is facing. However, some might not be as comfortable giving feedback as

others, so maintaining a culture where it is safe to do so may be key. Most of the

respondents expressed that feedback on technical matters occurred more often than

71

other types of feedback and that there was a very low threshold for bringing up

this type of feedback. Feedback on personal matters, however, has been described

as being a “touchy” topic and is therefore not brought up as often (P2). The most

commonly used arena for technical feedback was code reviews. One developer from

Signicat shared that code reviews were frequently used to give feedback on the code

of other people, and that both junior and senior developers were happy to share

their opinions with others (P7).

Another arena that was commonly used for giving feedback to others was retrospect-

ive meetings. In these meetings, both technical matters as well as feedback on the

work process were brought up. Several of the interviewees highlighted that feedback

is very important for their team (P10, P11, P14). If issues are not brought up and

discussed, problems can grow and persist, rather than be dealt with. Some of the

informants have also expressed that their team could be better at giving feedback

to each other, both positive and negative. Some might be reluctant to give feedback

to their peers fearing that it might be perceived as critique. Hence, creating a work

environment where feedback is common and where it is safe and encouraged to share

opinions may be beneficial for improving team performance.

4.4.3 Team spirit and trust

A unified team that is motivated to work together may be important to improve

the chances of effective teamwork. Additionally, trusting your peers could also be

an important aspect to enable successful collaboration. Overall, the interviewees

expressed that their team had good team spirit. Five informants rated their teams’

team spirits as “very good”, while five stated that the team spirit was “good”.

Some characteristics the informants have used to describe a high level of team spirit

include being willing to help others, rooting for each other, and that people are more

concerned with things being done than that things are done in their way.

However, one of the architects noted that while team spirit within the teams was

at a good level, it could be better across teams (P6). They felt that employees

could benefit from bonding more with people outside their teams, as they don’t

72

know others as well as they know their teammates. This could be connected to

the findings regarding inter-team coordination, where it was found that cooperating

across teams was significantly harder than within teams. As NAV IT has some

products that use old technology, a product lead shared that outdated tech can be

an aspect that lowers team spirit and causes team members to move on from the

team (P10). They also shared that budget cuts have a negative impact, while social

happenings and gatherings improve team spirit. A developer from Signicat also

stated that the unity between the team and upper management was not as good as

within the team and that the motivation of team members can be impacted by poor

decisions from management positions (P8). Several of the interviewees highlight

that team spirit is important for both team performance and employee satisfaction,

with several positive consequences listed.

“Do you believe that it [good team spirit] contributes to people working

better?” (Interviewer)

“Definitely. Working better, and I think it might even lead to less sick

leave. It brings a lot of positive things. People work better, are more

satisfied at work, and I think these things can give better health, which in

turn increases performance. You get a positive loop.” (P13, Developer,

NAV IT)

Another aspect that could impact teamwork is the level of trust that team members

have in each other. Most of the interviewees that rated the level of team spirit in

their team high, also rated the level of trust within the team high, suggesting that

these two aspects are linked. Several of those who believed their team members were

trusting of each other, stated that this trust had been built up over time. Keeping

the team composition stable and avoiding too many changes to personnel have been

highlighted as a reason for increased trust (P7). It was also claimed that having a

common identity as a team and feeling a sense of community made all tasks easier

to accomplish (P14). Reaching good levels of team spirit and trust seems to be

something that takes time to build, but creating a good work environment appears

to be a meaningful investment to increase productivity and satisfaction.

73

4.4.4 Shared mental models

Shared mental models refer to “being on the same page” as your peers. This includes

tacit knowledge that all team members have and that each individual can expect

their teammates to possess. One example of a shared mental model is having a

common language or jargon, where the members of the teams use the same names

for components, systems, practices, and so on, so that everyone understands each

other (P3, P6). This type of knowledge is typically not written down or documented

anywhere, as it is implied that those who need to know this information already

know it. These shared mental models can be positive and even necessary for team

performance, especially when teams deal with complex systems. However, too much

tacit knowledge may be challenging for new members of a team or those outside

of the team, who may have trouble collaborating due to a lack of knowledge and

documentation.

From the interviews, three informants stated that their team had a lot of shared

mental models (P1, P5, P13). Seven of the interviewees shared that their team had

some shared mental models and tacit knowledge (P2, P3, P4, P6, P8, P11, P14).

There was no clear difference between the two cases in the extent to which shared

mental models were present. None of those interviewed expressed that they did

not have shared mental models, suggesting that this type of knowledge is common

in agile software development. Four informants expressed that their teams could

benefit from more extensive documentation or from a more structured system for

writing documentation (P2, P6, P13, P14). One example of this is that one product

owner stated that only those within the team were able to understand their task

descriptions in Jira (P2).

On the contrary, two participants felt that their teams produced sufficient document-

ation (P8, P11). For those who have sufficient documentation, however, a concern

was raised regarding the complexity of finding what you are looking for in these

documents. One product lead shared that their architects had produced over 3000

pages of documentation, which was meaningless to use for others as it was simply

too long (P11). Others also noted that while they could benefit from more extensive

74

documentation in some situations, writing these documents can be time-consuming

and the time of the team members could hence be put to better use elsewhere. In-

formation in documentation also gets outdated quickly, as components, teams and

the organization may change frequently.

4.4.5 Competence redundancy

Some agile methods suggest that teams should be cross-functional. Instead of solely

relying on specialists who only have a specific competence, team members are en-

couraged to have overlapping skill sets, to improve flexibility and reduce reliance on

individuals. Most of the participants expressed that they had a redundancy of com-

petence to some degree, but no one felt that their team was entirely cross-functional.

Several respondents stated that over time as the team matured, knowledge sharing

between team members increased the overlap of skill sets, reducing risks. Some of

the interviewees stated that they tried to achieve that at least two team members

could do any one task, or even that most of the team members could do the majority

of tasks (P2, P6). However, they also expressed that this is hard to accomplish in

practice.

Amongst other reasons, one cause for this was that some of the team members had

worked with the system substantially longer than others, meaning that they had

a deep understanding of how the system worked, which was difficult to transfer.

Another reason was a lack of resources. In order to achieve a satisfactory degree

of skill set overlap, teams would generally need to either hire more employees than

what they strictly speaking would need to complete their tasks or allocate time

to sharing the knowledge that is present between team members. Both of these

measures require resources, in the form of time or money, which is dependent on

allocations from higher management.

The knowledge-sharing technique that was most often mentioned by the respondents

was pair programming. Several participants believed this was an effective way of

spreading competence. One team lead, however, noted that pair-programming ses-

sions could be intense and demanding and that it was a balancing act to not overdo

75

it and exhaust the developers (P14). A developer from NAV IT also highlighted the

importance of being able to connect those who have and those who lack knowledge

in a specific area together, rather than those who have similar competence (P13).

Additionally, considering what areas people are interested in learning more about

when pairing up developers can be beneficial for motivation. Assigning several de-

velopers to the same task or the same set of tasks has also been mentioned as a

measure that increases redundancy (P2, P8). Increasing the production of docu-

mentation has also been mentioned as a measure that increases redundancy, as it

enables those who lack the knowledge to work on a task without requiring the help

of others (P2, P7).

Although competence redundancy can increase adaptability, one concern was also

highlighted. A developer from NAV IT shared that when everyone can do anything,

no one takes ownership of any area (P13). Without individuals that have desig-

nated responsibility for an area, it can be harder to know who to ask when facing

issues, which can be a cause of friction and annoyance. Overall, however, the parti-

cipants see the benefit of competence redundancy within the team and believe that

it increases adaptability and reduces the negative impact of unavailable individuals.

4.5 Remote and hybrid solutions

With the use of various digital tools, software developers have been able to collabor-

ate with their colleagues without being co-located for some time. However, during

the Covid-19 pandemic, remote work became essential as many regions required

workers to work from home if possible. Even as restrictions have been lifted, some

companies have continued to support remote work as a viable option for coming in

to the office. All of the interviewed participants shared that their team supported

remote solutions and that at least some of the team members worked from home

either permanently or occasionally. From the interviews, three informants felt that

allowing team members to work remotely worked very well (P11, P12, P14). Some

even stated that they would not be open to working anywhere that didn’t support

this type of freedom in the future. Further, three interviewees stated that their

76

hybrid solution worked well (P3, P4, P10), three had a mixed experience (P2, P8,

P13), and two felt that hybrid working was challenging (P5, P6). The aspect that

was most commonly highlighted as an advantage of being able to work remotely

is that it can help avoid distractions and improve focus. The interviewed teams

have open office landscapes where multiple employees sit in close proximity to each

other, which may increase distractions. Other advantages that were mentioned in-

clude gaining time from not having to commute and being able to be available for

family members during the day, for example in the case of sick kids. However, some

challenges with teams being divided between remote and in-office working have also

been brought up.

Multiple informants have expressed that those who work from home can become

isolated from those who work from the office and that they can miss out on useful

discussions that emerge in the workplace (P7, P8, P14). These issues have in some

cases been attempted solved by sharing outcomes of discussions on digital chan-

nels, or inviting remote workers to online meetings when these discussions occur.

However, the interviewees have shared that it is easy to forget to involve those who

are not present, and documenting every little discussion is time-consuming. One

developer also expressed that hybrid solutions can be challenging for those in the

office, as they have to find available meeting rooms when participating in online

meetings, to avoid disturbing others (P13).

Some of the interviewees were in a position where they had to collaborate a lot with

team members situated in other countries who only were available online (P5, P6).

These expressed that digital communication was inferior to face-to-face communica-

tion and that contacting others would be easier if everyone sat in the same office. As

online meetings had to be set up in order to meet up with colleagues, these meetings

had to fit into everyone’s calendar, and such meetings often had to be set up a week

in advance to ensure that everyone could participate.

“Via screen it’s difficult because you don’t see everything that’s going on

there and sometimes it’s easy just to scream over your shoulder “What

do you think about that?” and then it’s just a short answer. If you have

77

to select someone and then, not all details... you forget something or

you just don’t think to mention it and because it’s not that important

you don’t want to type it down, so yeah you lose a lot of, I think of the

details in a conversation when you’re not face to face with someone, but

it is what it is.” (P5, Product owner, Signicat)

In Figure 15 an overview of the level of satisfaction with working remotely or hybrid

from some of the participants of each case is displayed. The level of satisfaction is

rated on a scale from 1 to 5 based on participant statements. Each rating level can

be described as follows: 1 - Does not work well, 2 - Challenging, 3 - Mixed, 4 - Works

well, 5 - Works very well. From the roles, it was difficult to see a definite pattern

as to which roles were satisfied with this type of work, and which were dissatisfied.

However, it is apparent that participants from NAV IT in general were more satisfied

with remote and hybrid working than those from Signicat. The average satisfaction

level of employees from Signicat was 3.0, while it was 4.6 for NAV IT. There might

be multiple explanations for this contrast, but the main difference that was found

between these two cases regarding remote work and digital collaboration was that

participants from Signicat often have to collaborate with others that are located

in other countries and offices, while all the participants from NAV IT belong to

the same office. This suggests that physical location is not insignificant even when

collaborating digitally. Being able to physically gather from time to time with those

you work with has been highlighted as a measure that improves teamwork in hybrid

teams. This can be either social gatherings, meetings, or seminars. Such gatherings

may be more difficult to realize and occur less often when people are situated in

different countries and offices.

“As soon as we became a new team we managed to meet physically at

least once, and the fact that they [developers from another country] came

to us and were here a couple of days, that was, from a digital context it

is easier when you have met someone in person, chit-chatted a bit and

kind of seen their body language to see who people really are. Picking

up on how people are in writing compared to how they really are is not

always easy. After being with them for a couple of days you can know

78

that if someone writes in a way that makes them sound annoyed, they

may not really be [annoyed], just a little cautious.” (P2, Product owner,

Signicat)

Ultimately, the feedback on the use of remote and hybrid solutions has been mixed,

with a skew toward the positive side. It seems to have a significant impact on

teamwork effectiveness, and finding a solution that suits the team may be important

to enable a high level of productivity and employee satisfaction. Measures that are

found to improve satisfaction with remote solutions include making sure that the

team also gathers in person from time to time, and allowing for freedom of choice

in terms of when and how often to work remotely.

54321

0

0.5

1

1.5

2

2.5

3

Satisfaction level rating

#
of

p
ar
ti
ci
p
an

ts

Signicat NAV IT

Figure 15: Satisfaction with remote or hybrid on a scale from 1 to 5, based on

participant statements

79

5 Discussion

This section will use the findings from Section 4 to attempt to answer the three

main research questions from Section 1.2. This will be done in three parts. The

first part will identify factors that can impact teamwork effectiveness in large-scale

agile teams. These factors will be split up into the factors that foster teamwork

effectiveness, and those that hinder effective teamwork. The second part will present

strategies that have successfully been employed in the two cases to enable teamwork

effectiveness. These strategies can potentially be used by other large-scale agile

organizations to set themselves up for teamwork success. The third and final part

compares the findings of this study with an existing model on teamwork effectiveness

in agile development teams, to investigate whether this model is also applicable to

the large-scale context.

5.1 Impact on teamwork effectiveness

One of the aims of this study was to investigate what impacts teamwork effectiveness

in large-scale agile software development teams. In order to be able to improve

the success of teamwork, knowing which aspects actually have an impact may be

an important first step. This section will present both the aspects that have been

found to improve and those that have been found to decrease teamwork effectiveness

throughout this research. It will thus attempt to answer the first research question,

which was given as follows:

RQ1: What factors do participants perceive as impacting teamwork

effectiveness in the large-scale agile context?

5.1.1 What fosters effective teamwork?

The first part of the first research question of this thesis was given as follows:

RQ1.1: What fosters effective teamwork in a large-scale agile context?

81

The most commonly mentioned factors that foster effective teamwork are shown in

Table 9, sorted by prevalence.

Table 9: Factors that fosters effective teamwork

Factor Participants

Right agile methods P1, P3, P7, P8, P10, P13

Knowledge sharing techniques P10, P11, P13, P14

Scrum Master/agile coach P8, P9, P12

Digital tools P3, P10, P13

Feedback P10, P11, P14

Remote work P11, P12, P14

Working on the same task P2, P8

Right agile methods

The most prevalent factor that was found to contribute to increased teamwork effect-

iveness was using the agile methods that are right for the team. The most commonly

used methods in the teams that were interviewed were Scrum and Kanban. Most of

the participants were satisfied with these methods, but some indicated that Scrum

was too rigid. While Scrum is a lot less prescriptive than plan-based models, such

as the waterfall model, other methods like Kanban have fewer constricting rules.

Another important aspect of finding the right agile work process for your team is

adjusting the methods rather than simply selecting a preexisting method. Several

of the teams used parts of one or multiple agile methods, without following any

one method in every detail. This was seen as beneficial, as the teams were able to

discover a work process that was better suited for themselves. It has also been noted

that improving work processes takes time, so teams should not expect to find the

right process for them straight away. It has also been highlighted that keeping the

team stable over an extended period of time helps with improving the process.

Knowledge sharing techniques

The use of certain knowledge-sharing techniques was found to contribute to how

82

well team members could collaborate with each other. Hansen et al. (1999) state

that two main strategies can be employed to manage the knowledge in a company,

codification and personalization. From the interviews, knowledge-sharing techniques

belonging to the strategy of personalization were most commonly mentioned. Such

techniques include pair programming, mob programming, communities of practice,

and demo meetings. Further, knowledge management tools belonging to the strategy

of codification, such as wikis and documentation, were also mentioned.

While the main effect of knowledge sharing may be an increased level of competence

in the team, a side effect seems to be more effective teamwork. Some knowledge-

sharing techniques involve working together, which implicitly forces team members

to collaborate. This can be useful for those teams where such collaboration may

not happen organically. Additionally, by raising the competence level of the less

experienced developers, more of the developers are able to accomplish tasks without

assistance from their seniors, leading to less friction and higher productivity for all

parties. Pair programming was one technique that was labeled as beneficial to their

teams by several of the interviewees. These sessions sparked discussions that may

not have been brought up otherwise and helped align the team when it comes to

technical decisions.

Scrum Master/agile coach

Some of the participants gave credit to a Scrum Master or agile coach for improving

intra-team collaboration. The Scrum Master role is typically fulfilled by a member

of the team. The role can either be held by the same team member continuously

or be rotated at regular intervals. Some teams saw a noticeable benefit when they

either appointed their first Scrum Master or when the role was given to someone who

took the role seriously. A Scrum Master can help the team follow its process, which

can include making sure that retrospective meetings are carried out and facilitating

meetings. Ensuring that the process is followed can increase the effectiveness of

the agile methods that are used. While some team members may be aware of the

benefits of adhering to their work process, people may not feel the urge to initiate

changes unless it is their explicit responsibility. The agile coach is another type of

83

role that was occasionally used by teams from NAV IT. While these coaches also

contribute to improving the agile process, they are not permanently employed in the

team and are rather called upon when a need is identified or at regular intervals.

An advantage of using agile coaches can be that they bring experience from other

teams, and can advise an agile team based on what has worked in other teams.

Digital tools

The use of digital tools for collaboration was also a factor that was mentioned to

improve teamwork. The tool that was most often referred to as a tool that helped

communication was Slack, while other tools include Teams, Zoom, Skype, Discord,

and HipChat. The use of various arenas for communication has also previously been

found to aid coordination in large-scale agile development (Edison et al. 2022). One

developer stated that using Slack was occasionally more productive than meetings

(P4). Slack was also labeled as a “fantastic tool for collaboration”, as well as “by

far the most popular tool” (P9, P14). In general, the digital tools that the teams

employ help team members get in contact with anyone in their organization. They

also greatly reduce response times compared to physical meetings that may need

to be planned ahead of time. Digital tools are also vital for those who work from

home, or when employees from different offices have to work together.

Feedback

Several of the participants highlighted that feedback was vital in order to be able

to improve as a team. The most commonly used arenas for giving and receiving

feedback were code reviews for feedback on code, and retrospective meetings for all

types of feedback. These types of reflection are examples of reflection-on-action,

as they review what has happened (Babb et al. 2014). As the level of autonomy

generally was high, teams were able to adjust their own work process. To enable

adjustment and improvement of the process, feedback regarding methods was oc-

casionally brought up during retrospectives. While code reviews and retrospectives

were effective for sharing feedback, some interviewees expressed that team members

could improve on giving feedback outside of the established arenas. This could in-

dicate that teams could benefit from creating a work environment where feedback is

84

encouraged, and where team members do not have to fear that constructive feedback

is seen as critique.

Remote work

With the digital collaboration tools that exist in today’s world, it is possible to

work in agile development teams from anywhere. This type of freedom was a crucial

factor for some of the participants with two of them stating that they could not see

themselves working for a company that did not allow employees to work remotely

(P12, P13). Working from home has been claimed to increase focus for some, as there

are fewer distractions than at the office. It has also been stated that collaboration

with pair programming works better in a remote setting, as everyone involved can

have access to their own keyboard while sharing their screen.

Working on the same task

One simple measure that was seen as positive for improving teamwork was assign-

ing multiple team members to the same task, or the same set of tasks. This simple

strategy ensures that at least two people have knowledge about a feature, compared

to when all team members work on their own separate tasks. This lowers the po-

tential impact if one team member should become available, as at least one other

person have knowledge of the task. This measure also contributes to implicit know-

ledge sharing, as team members inherently will collaborate more than they would

on unrelated tasks. This was also stated to improve team member satisfaction, and

that it was more enjoyable to work together with someone on a task than working

alone.

5.1.2 What hinders effective teamwork?

The second part of the first research question of this thesis was given as follows:

RQ1.2: What hinders effective teamwork?

The most commonly mentioned factors that hinder effective teamwork are shown in

Table 10, sorted by prevalence.

85

Table 10: Factors that hinder effective teamwork

Factor Participants

Remote work P5, P6, P7, P8, P13, P14

Misalignment P7, P8, P9, P12

Lack of documentation P2, P6, P13, P14

Lack of team spirit P6, P7, P8, P10

Inter-team requests P2, P5

Task dependencies P7, P8

Remote work

While several of the participants were very pleased with being able to work re-

motely, there has also been raised a significant number of concerns regarding its

impact on teamwork. The most commonly mentioned challenge with hybrid teams

was that those working from home could become isolated and miss out on relev-

ant discussions (P7, P8, P14). Some attempts to solve this issue have been tried,

such as documenting the results of discussions online or inviting those that are not

present to a digital meeting, but documenting everything has proved difficult and

spontaneous discussions are natural and hard to avoid.

Hybrid work can also be challenging for those present at the office, as they may

need to sit in meeting rooms when joining online meetings to avoid disturbing oth-

ers, which may be a limited resource (P13). Lastly, some of the participants have

expressed that digital communication is simply inferior to talking to someone in

person (P5, P6). This is also consistent with the Agile Manifesto, which claims that

face-to-face conversations are the most effective method of communication in devel-

opment teams (Beck, Beedle et al. 2001). Arranging online meetings can take more

time than just nudging someone at the same office, especially for small requests or

simple questions. Additionally, context or details may be lost if you need to write

everything down in a post or message, rather than showing someone the issue in

person.

86

Misalignment

In general, there were two main types of misalignment that were found to hinder

effective teamwork, goal misalignment and process misalignment. As for goal mis-

alignment, this was found both on the inter-team and intra-team levels. Without a

firm team goal for the product that is being built, various team members could de-

velop their own personal goals for the product, which could be counter-productive.

Similarly on the inter-team level, without a common goal, teams could end up work-

ing against each other instead of pulling in the same direction. When it comes to

process misalignment, this is related to a high level of autonomy. When teams are

allowed to determine their own work process, they tend to end up with a process

that is customized to their own specific team.

However, when there are a lot of differences between the work processes of teams,

collaboration across teams can be more complicated. One example is when the

sprints of two teams are not aligned. One team may discover that they are blocked

by the other team during their sprint planning, and request help from the other

team. However, as the other team does not have sprint planning at the same time,

they may need to wait until their planning session to be able to prioritize the request

and add it to the sprint backlog. Although autonomy was appreciated, there was

also a need for alignment across teams. The same was also found in the study of a

large-scale program conducted by Berntzen et al. (2021).

Lack of documentation

Some participants expressed that their team could benefit from having more extens-

ive documentation of their systems and products. With sufficient documentation,

there are more tasks that an individual can accomplish on their own rather than re-

questing help from others. A lack of documentation can hurt teamwork effectiveness

by increasing the amount of collaboration and coordination that is needed, which

ties up resources. However, it was also noted that too much documentation could

be overwhelming. In order for the documentation to provide value, it needs to be

manageable and understandable, and it needs to be simple to navigate to find the

parts that are needed.

87

Lack of team spirit

Good team spirit was seen as an important factor for maintaining effective team-

work by several of the participants. Hence, lacking team spirit can hurt teamwork

effectiveness in teams. One participant highlighted that while there was good team

spirit within teams, team members could benefit from more bonding with those out-

side the team (P6). Lack of inter-team bonding could be connected with inter-team

coordination challenges, which were commonly found. One aspect that can hurt

team spirit is changes to the members of a team, as some participants expressed

that team spirit is built up over time with a stable team. Further, budget cuts were

also mentioned as an aspect that could impact teams and lower the motivation of

team members.

Inter-team requests

Both Edison et al. (2022) and Dikert et al. (2016) have found inter-team coordination

to be one of the main categories of challenges reported in papers on large-scale agile

software development and large-scale agile transformations. The same was also

found in this research. Several of the participants expressed that there could be

a lot of inter-team dependencies, that lead to inter-team requests. This may be

requests for tasks to be done, help with an issue, or for information that is required

to progress. While teams generally are happy to help other teams when needed, too

many of these requests can make a team overwhelmed with extra work, inhibiting

them from progressing on their own tasks. This was a bigger issue for teams that

had a lot of experienced team members, as they were more likely to be asked for

help.

Task dependencies

Dependencies were not only found on the inter-team level but also within teams.

When developing a new feature, such features were often broken up into smaller

tasks. However, these tasks could sometimes depend on each other, meaning that

they needed to be completed in a specific order. This also prevented multiple de-

velopers from working on multiple of these tasks in parallel. This could lead to

waiting and blocking, as one developer was unable to progress until another had fin-

88

ished their task. Dependencies between tasks are therefore something that should

be identified during planning. One solution could be to plan dependent tasks for

separate sprints, ensuring that they are undertaken in the right order. Still, task

dependencies may not always be trivial to identify before starting to work on them.

5.2 Enabling effective teamwork

The previous section displayed which factors have been found to impact teamwork

effectiveness in large-scale agile development, either in a positive or a negative way.

But what can large-scale agile teams do to improve their chances of effective team-

work? This section will recommend measures that have been used and appreciated

by the interviewed teams. It will hence attempt to answer the second research

question, which was given as follows:

RQ2: How do large-scale agile teams enable teamwork effectiveness?

5.2.1 Customize agile methods

Since the inception of the agile philosophy, a multitude of various agile methods

have been developed to help development teams work in an agile way. From the

interviews, it was revealed that the most popular agile methods in the teams were

Scrum, Kanban, and XP, while the Signicat case also used some aspects of the large-

scale agile framework the Spotify model. While some of these methods may seem

prescriptive, some believe that they should not be used as an exact blueprint and that

every team should customize its own methods (Kniberg 2015). This thought was

also shared by several of the participants, amongst them a developer from Signicat

who expressed that agile teams should drop the parts from a method that does not

suit the team (P4). They also stated that customizing methods can increase both

the happiness and efficiency of an agile team.

The members of a team know best what works for their team, and being allowed to

develop your own work process may be more motivating than being forced to follow

a specific template. In other words, the agile methods should be customized to the

89

team, not the other way around. Additionally, when adjusting your agile process,

the help of Scrum Masters and agile coaches has been greatly appreciated. One

reason could be that while all team members may be allowed to suggest changes to

the team’s process, people may feel that the threshold for making changes can be

too high when it is not their explicit responsibility. By appointing a Scrum Master,

it can be easier for that team member to give directions to the rest of the team

regarding the agile process, as this is expected from them. It was also highlighted

that giving the Scrum Master responsibility to someone who is motivated for the

task was helpful. External agile coaches were also used in NAV IT and these were

also highly appreciated. While coaches from outside the team may not have as

detailed knowledge of the team, they could bring in knowledge of what has worked

in other teams, which could be helpful to improve the agile process.

5.2.2 Share your knowledge

The knowledge of employees is an essential asset in software development companies.

This knowledge is built up over time and consists of technical knowledge, domain

knowledge, and knowledge of the software systems that are being built. However,

if team members move on from their team or from their company, the knowledge

that they had may be lost if knowledge-sharing techniques are not employed. Pair

programming is one knowledge-sharing practice that could be used, and which was

commonly used in NAV IT. Participants from this case also had some recommenda-

tions for reaping the biggest benefits of this technique. Pairing up experienced and

inexperienced developers together was seen as beneficial to increase the amount of

knowledge that is shared. Additionally, it was recommended to identify which areas

team members are interested learn and let them participate in pair programming

on matters they were interested in, to further improve the chances of successful

knowledge sharing.

Another measure that was deemed effective regarding knowledge sharing was assign-

ing multiple developers to similar tasks. This leads to implicit knowledge sharing,

as colleagues typically need to cooperate to complete their tasks. This can improve

teamwork, by ensuring that people are cooperating rather than working isolated.

90

It was also seen as a good measure for improving team member satisfaction, as

developers preferred collaborating with others over working alone.

5.2.3 Reflect to improve

Reflection at regular intervals, in order to get more effective as a team, is one of

the principles of agile (Bjørnson and Vestues 2016). Practices for sharing reflection

with each other were something that all the interviewed teams used, and reflection

was perceived as important for team improvement by several of the participants.

Retrospective meetings were the most common practice for reflection, which all the

teams used in some form. Some might believe that spending the valuable time of

a whole team to analyze the past might be wasteful. For teams following a lean

methodology, eliminating waste is one of the fundamental principles, and meetings

that do not directly generate value could be perceived as waste. However, multiple

of the participants highlighted that retrospective meetings were a good use of time.

Reflection is seen as an important part of being able to learn from mistakes and

improve as a team. Retrospective meetings were also one of the main arenas used

for feedback within the teams. Feedback was also perceived as vital for improving

teamwork, and enabling team members to share their feedback by hosting reflection

sessions may therefore be key.

5.2.4 Give considerable control to teams

Another principle from the agile manifesto states that “The best architectures, re-

quirements, and designs emerge from self-organizing teams.” (Beck, Beedle et al.

2001). Allowing teams to have autonomy and allowing them to make big decisions

can have a positive impact both on the quality of the product being built, but also

employee satisfaction. Further, a lack of team autonomy has been found to be a

key challenge in large-scale agile development (Edison et al. 2022). In general, the

participants from the interviews believed that being trusted by higher management

to make certain decisions themselves was motivating. They also felt that by decid-

ing their own work process, they could create a customized process that was as well

91

suited to their team as possible. Also, by allowing developers a say in which tasks

they want to work on, satisfaction improves (P2). However, it was highlighted that

experienced individuals could take up too much space in autonomous teams. This

can make those less experienced more reluctant to share their opinions and take

on responsibility, which may limit their growth and learning. Hence, team mem-

bers of all experience levels should be encouraged to contribute to decision-making

and dominating individuals should be encouraged to make space for others. Addi-

tionally, some guidelines should be developed by upper management and followed

by teams, to alleviate inter-team coordination. Such guidelines could for example

be specific metrics for monitoring progress, lines of communication, or interfaces

between sub-systems.

5.2.5 Get to know your colleagues

Not knowing and/or trusting colleagues was perceived as one of the key reasons for

ineffective teamwork. This could be connected with the finding that coordination

is significantly harder across teams than within teams. However, getting to know

your teammates could also be beneficial, as it increases team spirit which in turn

is positive for teamwork. Social gatherings and initiatives have been highlighted

as beneficial for teams, but work-related interactions can also create familiarity

between colleagues. Both physical and digital gatherings can be helpful, but several

participants expressed that digital interactions were not as effective as meeting face-

to-face.

As Signicat has employees located in several various countries, some teams consist

of team members who are not colocated. In one of these teams, the majority of

the team members were located in Norway, while two developers were situated in

Portugal. A measure that was beneficial for this team was to invite those living

in Portugal to gather in Norway with the rest of the team for a few days and get

to know their colleagues better. This was seen as helpful for future teamwork in

the team, which suggests that knowing someone on a personal level is beneficial

also for digital collaboration. Cross-site visits are also something Kniberg (2015)

recommends for distributed teams.

92

5.3 Comparison to an existing model

Some models on teamwork effectiveness have been developed in the past, such as the

agile teamwork effectiveness model (ATEM). This model is developed specifically for

agile teams, as a revision of the more general teamwork effectiveness model, the Big

Five model (Salas et al. 2005; D. Strode, Dingsøyr et al. 2022). As a basis for this

comparison, ATEM is chosen over the Big Five model as it considers agile teams

which is closer to the context of the cases in this study. So how do the findings

of this study fit in with this existing model? Is ATEM a valid model for large-

scale agile as well, or are there other factors that impact teamwork specifically in

the large-scale context? This section will compare the findings of this study to the

five teamwork core components and three coordinating mechanisms of ATEM, and

either confirm or deny that they are supported by the statements of the participants.

Further, any additional components or coordinating mechanisms that are found will

be proposed as an extension or adjustment of the model for the large-scale agile

software development context. Thus, the section will attempt to answer the third

and final research question, which was given as follows:

RQ3: How do the findings compare to the existing model on teamwork

effectiveness, ATEM?

5.3.1 Coordinating mechanisms

Coordinating mechanisms are mechanisms that support the teamwork components,

and which are needed to extract value from each of the components (Salas et al.

2005). They are also described as facilitating the teamwork components (D. Strode,

Dingsøyr et al. 2022). The three coordinating mechanisms from ATEM are shared

mental models, mutual trust, and communication.

Shared mental models

The concept of shared mental models represents a common understanding between

team members of goals and tasks which may be necessary to enable effective team-

93

work. When a shared mental model is established, team members can be able to

anticipate each other’s needs and adjust work strategies to adapt to changes (D.

Strode, Dingsøyr et al. 2022). Shared mental models were commonly found in the

interviewed teams, with some of the participants expressing that their team re-

lied heavily on shared understandings and knowledge. The type of shared mental

model that was most commonly highlighted was a shared understanding of how their

products were built up, with all its sub-systems and components. This includes a

thorough technical understanding of how different systems are integrated with each

other, which components are responsible for what, and in general how to maintain

and further develop the software. It was shared that such an understanding was hard

to document in its entirety, and the shared mental models were therefore important

for the teams in order to be able to progress. Another type of shared mental model

that was brought up was to have a common language or jargon (P3, P6). This

includes the naming of components and concepts within a project, and this common

way of communicating was helpful for avoiding misunderstandings and improving

the effectiveness of communication. As such, shared mental models are supported

as a coordinating mechanism by the interview data.

Mutual trust

Trusting those that you collaborate with is an integral part of most types of team-

work, and this includes agile development teams. It is also a part of one of the

principles of agile, which states: “Build projects around motivated individuals. Give

them the environment and support they need, and trust them to get the job done.”

(Beck, Beedle et al. 2001). Several of the participants noted that teamwork was

more difficult the level of trust was low between those collaborating. This was es-

pecially apparent in the inter-team context, where trust levels were generally lower

than within teams. In general, the aspect of mutual trust was not something that

was brought up very frequently during the interviews, but those who did generally

expressed that there was a high level of trust between team members in their team.

However, as low levels of trust were highlighted as hindering teamwork effectiveness,

mutual trust is supported as a coordinating mechanism.

94

Communication

Communication is a vital aspect of teamwork which is required in some form to be

able to collaborate with others. In the software development field, both written and

verbal communication is frequently used to coordinate efforts. Some examples of

written communication are online messages, documentation, and plans, while verbal

communication typically occurs in group meetings or one-to-one discussions. The

creators of ATEM also argue that communication is an important aspect, and state

that it is “key to efficient software development in agile teams” (D. Strode, Dingsøyr

et al. 2022). They also found that group communication, like for example meetings,

were more common for agile teams than one-to-one communication. In this study,

both examples of sender-to-receiver and sender-to-group communication were found.

Some teams had daily stand-up meetings, and as a consequence were able to do a lot

of the required coordination as a group. However, other teams seldom used common

team meetings. The participants from these teams generally expressed that com-

munication was primarily needed when they were stuck on a task. In these cases,

they often reached out to other developers that they knew could help in the form

of sender-to-receiver communication. Still, the topic of communication was often

brought up as a critical element of functioning as a team. The general consensus

from the participants was that effective communication was paramount to achiev-

ing effective teamwork. Therefore, communication is supported as a coordinating

mechanism.

5.3.2 Core components

The core components are the five elements that make up the “Big Five”, and which

are suggested to promote team effectiveness (Salas et al. 2005). These core compon-

ents have been revised for ATEM, resulting in the following five components: shared

leadership, peer feedback, redundancy, adaptability, and team orientation (D. Strode,

Dingsøyr et al. 2022).

Shared leadership

From their research of agile teams, D. Strode, Dingsøyr et al. (2022) found that in

95

agile contexts, teams have a shared form of leadership rather than a single designated

leader. Shared leadership was also a concept that was found in the participating

teams. Several of the teams had a product owner, who was responsible for prioritiz-

ing tasks, or an architect who was responsible for technical architectural decisions.

However, those who had extra responsibilities were open to suggestions from other

team members, and it was not perceived that individuals had significantly more

leadership influence than the average team member. Several of the participants

expressed that their team had a high level of autonomy, and being self-organized

was seen as positive for team performance and team member satisfaction. As such,

shared leadership is supported as a core component for teamwork effectiveness.

Redundancy

Redundancy in this context is related to several team members possessing overlap-

ping skill sets so that multiple team members are able to perform the same task.

A redundancy in skill sets was something that several participants expressed that

their teams tried to achieve. It was stated that this was a risk-reducing measure and

that it could enable teams to be more versatile. Even though achieving competence

redundancy was a goal for the teams, it was stated that it was something that was

hard to reach. The main reasons for this were limited resources, both in the form

of too little rest capacity to expand the skill sets of existing team members, but

also a lack of budget to hire more developers. Still, it was expressed that redund-

ancy could make teams more robust and able to maintain team performance even

in challenging situations, for example when certain team members are unavailable.

This stability and versatility make collaboration more predictable, which boosts

teamwork. Therefore, redundancy is supported as a core component.

Adaptability

The software development field can be an unpredictable world, where technology

advance quickly and user requirements can be unclear and ever-changing. This

unpredictable environment calls for adaptable development teams, which is also

one of the reasons for the popularity of agile methods. Adaptability encompasses

being able to change direction and make changes as a team, while still maintaining

96

a satisfactory level of team performance. Most of the participants expressed that

their teams were highly adaptable and were able to respond quickly to changes.

Being able to re-organize and re-assign tasks is one aspect that has been highlighted

as important for team performance (P1). In order to be able to re-arrange tasks

effectively, a high level of adaptability is needed. In general, staying versatile as

a team was seen as a measure that lowers the risk of unproductivity, and that is

needed in the work environment of the agile teams. Hence, adaptability is supported

as a core component.

Team orientation

The concept of team orientation relates to the degree to which team members act

as team players. This includes working towards the goals of the team, but it also

encompasses factors such as team spirit and sense of community. Team spirit is

something that in general has been at a high level in the interviewed teams. Team

orientation on the team level is a concept that was recognized by the participants,

even in multi-team settings. One proof of team orientation that was frequently

found in the teams was that team members were happy to offer their help to others

even though they might have enough work on their plate already. Additionally,

some also stated that people were more concerned with getting things done than

doing things their way. The importance of team orientation was also highlighted,

with one developer stating that good team spirit correlated to better performances,

higher satisfaction, and overall better health (P13). It was also noted that having

a common identity and sense of community in the team made all tasks easier to

accomplish (P14). As such, team orientation is supported as a core component.

5.3.3 Additional components or mechanisms

Supporting evidence was found for all three coordinating mechanisms and all five

core components of ATEM. This contributes to further validating the model for agile

teams. It also shows that ATEM can be applicable to agile teams in the large-scale

context as well. But could the model be extended with other components that are

found in large-scale agile development?

97

Knowledge sharing

Knowledge-sharing is present in ATEM within the core components of “redundancy”

and “shared mental models”. However, as knowledge sharing as a concept has been

brought up frequently in the interviews, this study suggests that it could be defined

as a separate coordinating mechanism. Knowledge sharing impacts and supports

several of the existing core components, primarily “redundancy” and “adaptability”.

Improving competence redundancy can generally be achieved in one of two ways,

either by hiring additional developers with the right competence or training existing

team members. As many of the interviewed teams deal with complex, bespoke

systems, knowledge sharing between experienced and inexperienced developers has

been seen as potentially the most effective way of improving the competence of

team members. In the large-scale agile software development world in general, it

is reasonable to assume that many programs deal with large, complex systems that

have been built over an extensive time period. When dealing with these types of

systems it is also reasonable to believe that those most qualified to train newcomers

are those who have worked on the system for some time.

Knowledge sharing has also been labeled as “risk-reducing” by participants, referring

to a lower risk of sudden team performance loss. This is related to adaptability, as

sufficient knowledge sharing can make the team more equipped to deal with changes

and uncertainties. Whether knowledge sharing is more merited to being a coordinat-

ing mechanism in the large-scale context compared to traditional agile development

may not be trivial to determine. One could assume that with more teams and

people involved, systems grow more complex, and more information is generated

which should be managed correctly. As more people are involved, higher standards

of communication, as well as management and distribution of knowledge may be

required. Hence, assuming that effective knowledge sharing is more important for

large-scale agile teams is reasonable.

Colocation

Colocation is also already present in ATEM, as it is a sub-component of the coordin-

ating mechanism “communication”. The creators of ATEM found that colocation

98

and physical presence fostered team effectiveness, while a lack thereof was a hinder-

ing factor. From the interviews in this study, the use of remote and hybrid work

environments, and consequently the degree of colocation, has been a frequently

brought up topic. So much so that the findings suggest that colocation could consti-

tute its own core component of teamwork effectiveness. While some have highlighted

the benefits of remote work, such as increased focus, several challenges have been

brought up related to not being colocated. Several participants revealed that in

a hybrid work environment, those working from home could become isolated from

those working from the office. This includes missing out on ad-hoc discussions and

typical workplace social interactions. It was also mentioned that digital communic-

ation can be less effective than face-to-face interactions, even with all the digital

communication tools that are available today.

The degree of colocation does not only impact communication, however, as it could

impact other psychological aspects as well, like for example the sense of community

of a team. This could suggest that moving colocation out of the communication

component could be appropriate. The finding that colocation impacts teamwork

effectiveness is also consistent with existing literature, such as Henrik Kniberg’s

“Scrum and XP from the Trenches” (Kniberg 2015). Kniberg states that while

distributed teams are common and could be successful, being physically colocated

increases the productivity of agile teams. But does the scale of agile projects impact

the effects of colocation? One interesting point is that the case where developers

worked remotely by choice faced fewer challenges with not being colocated than

the case that had to work distributed because team members were geographically

separated. Further, it could be reasonable to assume that as companies grow larger,

they expand to different geographical locations which could increase the likelihood of

distributed teams. Consequently, colocation could be a more important component

in large-scale agile than in single-team projects.

The resulting extension of ATEM, the large-scale agile teamwork effectiveness model

(LATEM), with its four coordinating mechanisms and six core components, is visu-

ally represented in Figure 16.

99

Figure 16: LATEM

5.4 Evaluation and limitations

This study has researched teamwork effectiveness in two cases that employ agile

methods at a scale. However, the fact that only two cases are involved limits the

number of perspectives on the topic. While there is no “right” number of cases

to involve in a multi-case study, the impact of sample size in qualitative research

has been previously explored. In the study of Marshall et al. (2013), 83 qualitative

studies from the information systems field were examined. They found that while

almost a third of multi-case studies consisted of two cases, the median was five

cases. Moreover, the data from this study comes from a total of 14 interviews.

While this number of interviews satisfied the target set from the research design

phase, additional interviews could further strengthen the findings. In the case of

NAV IT, all the participants came from the same product area. While this gave a

detailed insight into the current state of this area of the organization, perspectives

from multiple product areas could have given a more accurate representation of NAV

IT as a whole.

100

Lastly, both of the cases have gone through large agile transformations and organiza-

tion restructuring fairly recently. NAV IT transitioned from outsourcing to bringing

the development and maintenance of its IT systems in-house in 2017. At the same

time, they also underwent an agile transformation. While this is six years ago, the

organization is still in a process of change. For instance, several participants noted

that a new team setup was about to be implemented at the time of the interviews.

In the case of Signicat, an organizational restructuring took place in 2021, where

structures such as tribes and guilds were introduced. This transformation is even

more recent, therefore, it is reasonable to assume that a complete status quo may

not have been reached yet. As large transformations are relatively recent in both

these cases, and some changes may still be underway, findings about teamwork in

these cases may become outdated quickly. Hence, examining cases that have em-

ployed agile at scale for a longer period of time may give more accurate results on

teamwork in this context.

101

6 Conclusion

This study has researched several aspects of teamwork effectiveness in large-scale

agile software development. To enable this research, two software development or-

ganizations were researched through the use of semi-structured interviews. Data

from these interviews were analyzed and used to answer the research questions that

were to be investigated. Firstly, the factors that impact teamwork effectiveness in

the large-scale agile context were identified. The following factors were found to

foster teamwork effectiveness: right agile methods, knowledge sharing techniques,

Scrum Master/agile coach, digital tools, feedback, remote work, and working on the

same task. As these seven factors were found to improve the effectiveness of team-

work, they may be used by other large-scale agile projects to attempt to improve

the chances of effective teamwork. Further, the following factors were found to

hinder teamwork effectiveness: remote work, misalignment, lack of documentation,

lack of team spirit, inter-team requests, task dependencies. Hence, minimizing the

prevalence of these factors can help large-scale agile projects improve their team-

work effectiveness. Interestingly, the factor “remote work” was found both to foster

and hinder teamwork effectiveness. As such, it is unclear whether making use of

distributed teams improves or decreased teamwork effectiveness.

Secondly, techniques and advice for enabling teamwork effectiveness were found.

These strategies had been used in the researched cases and were credited with im-

proving collaboration, easing teamwork, and improving productivity. The identified

techniques and advice were customize agile methods, share your knowledge, reflect

to improve, give considerable control to teams, and get to know your colleagues. By

following this advice, large-scale agile projects can set themselves up for teamwork

success, according to the research data.

Lastly, the results from the two large-scale agile cases have been compared to the

existing model of agile teamwork effectiveness, ATEM. The findings supported all

five teamwork components and three coordinating mechanisms from ATEM, sug-

gesting that these elements also impact teamwork in a large-scale context. Further,

one new teamwork component and one new coordinating mechanism were suggested

103

specifically for effective teamwork in agile at scale. Colocation was suggested as

a new teamwork component due to how frequently it was brought up as a factor

during the interviews. It was also found that colocation impacts other facets of

teamwork than solely communication, leading to the suggestion of separating it into

a new component. The component of colocation was assumed to be more important

in large-scale programs, as distributed teams may be more common in larger pro-

jects. Moreover, knowledge sharing was suggested as a new coordinating mechanism

for the large-scale context. Knowledge-sharing techniques were found to be a key

enabler for several of the teamwork components and knowledge-sharing was found

to be important to achieve high levels of teamwork effectiveness. The mechanism of

knowledge sharing was assumed to be more important in large-scale programs, as

they can entail more knowledge, more people, and more complex systems.

6.1 Contributions

This study provides several contributions, both to the agile software development

field and to practitioners. Firstly, it provides empirical research on the topic of

teamwork in the large-scale agile software development context. More empirical

research on teamwork and team effectiveness is something that Dingsøyr and Dyb̊a

(2012) have called for. They also expressed a need for testing theories from other

fields, and adjusting them to software teams. This study does that, by comparing

findings from a large-scale agile context with the existing teamwork model for agile

teams, ATEM. Additional empirical research of agile at scale is also something that

the field of agile software development has called for, as “Agile and large projects”

was voted the top burning question at the 2010 XP conference (Freudenberg and

Sharp 2010). Further, the study provides a contribution in the form of identified

factors that impact teamwork effectiveness and prescriptive advice that can be of

use to practitioners. Lastly, this study provides a basis that can be used for further

research on teamwork in large, agile projects.

104

6.2 Future work

This study has given some insight into teamwork in large-scale agile software devel-

opment, but there are several kinds of research that could further what has already

been found on this topic. Some of the shortcomings of this study reveal possible ad-

vancements that can be made. Due to the time restrictions imposed on this study,

long-term effects could not be investigated. As such, the findings on changes in

teamwork effectiveness relied on the memories of the interview participants. Hence,

a longitudinal study on long-term changes in teamwork effectiveness in a large-scale

project could give further insight, as a researcher would be able to observe changes

themselves. This study also relied solely on one data generation method, namely

interviews. A study on teamwork in large-scale agile using multiple data generation

methods could yield more accurate results due to the use of several types of sources.

Specifically, the use of observations may be beneficial in this type of research, as it

gives the opportunity to assess teamwork in a more natural setting.

Moreover, one ambiguity of this study is whether or not remote and hybrid work

environments are beneficial to teamwork effectiveness. While some participants had

nothing but positive experiences with working remotely, others expressed that it

impacted teamwork negatively. As such, this is an area that could benefit from

further research. This is also a relevant area of study as more and more people have

started working remotely in recent times (Felstead and Henseke 2017). Another

potential route to further the research is to investigate how teamwork effectiveness

impact productivity. It is reasonable to assume that a high level of productivity

is important to most companies, so investigating possible connections to teamwork

may be worthwhile.

105

Bibliography

Babb, J, R Hoda and J Nørbjerg (2014). ‘Embedding Reflection and Learning into

Agile Software Development’. In: IEEE Software 31.4, pp. 51–57. issn: 1937-

4194. doi: 10.1109/MS.2014.54.

Bailey, Diane and Nancy Kurland (May 2002). ‘A Review of Telework Research:

Findings, New Directions, and Lessons for the Study of Modern Work’. In:

Journal of Organizational Behavior 23, pp. 383–400. doi: 10.1002/job.144.

Beck, Kent and Cynthia Andres (2004). Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional. isbn: 0321278658.

Beck, Kent, Mike Beedle et al. (2001). Manifesto for Agile Software Development.

url: http://www.agilemanifesto.org/.

Berntzen, Marthe, Viktoria Stray and Nils Brede Moe (2021). ‘Coordination Strategies:

Managing Inter-team Coordination Challenges in Large-Scale Agile’. In: Agile

Processes in Software Engineering and Extreme Programming. Ed. by Peggy

Gregory et al. Cham: Springer International Publishing, pp. 140–156. isbn: 978-

3-030-78098-2.

Bjørnson, Finn Olav and Torgeir Dingsøyr (2008). ‘Knowledge management in soft-

ware engineering: A systematic review of studied concepts, findings and research

methods used’. In: Information and Software Technology 50.11, pp. 1055–1068.

issn: 0950-5849. doi: https : / / doi . org / 10 . 1016 / j . infsof . 2008 . 03 . 006. url:

https://www.sciencedirect.com/science/article/pii/S0950584908000487.

Bjørnson, Finn Olav and Kathrine Vestues (2016). ‘Knowledge Sharing and Process

Improvement in Large-Scale Agile Development’. In: Proceedings of the Scientific

Workshop Proceedings of XP2016. XP ’16 Workshops. New York, NY, USA: As-

sociation for Computing Machinery. isbn: 9781450341349. doi: 10.1145/2962695.

2962702. url: https://doi.org/10.1145/2962695.2962702.

Bourque, Pierre, Richard E Fairley and IEEE Computer Society (2014). Guide to

the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. 3rd.

Washington, DC, USA: IEEE Computer Society Press. isbn: 0769551661.

107

https://doi.org/10.1109/MS.2014.54
https://doi.org/10.1002/job.144
http://www.agilemanifesto.org/
https://doi.org/https://doi.org/10.1016/j.infsof.2008.03.006
https://www.sciencedirect.com/science/article/pii/S0950584908000487
https://doi.org/10.1145/2962695.2962702
https://doi.org/10.1145/2962695.2962702
https://doi.org/10.1145/2962695.2962702

Conboy, Kieran and Noel Carroll (Mar. 2019). ‘Implementing Large-Scale Agile

Frameworks: Challenges and Recommendations’. In: IEEE Software. doi: 10 .

1109/MS.2018.2884865.

Daljajev, Kadri et al. (2020). ‘A Study of the Agile Coach’s Role’. In: Product-

Focused Software Process Improvement. Ed. by Maurizio Morisio, Marco Torchi-

ano and Andreas Jedlitschka. Cham: Springer International Publishing, pp. 37–

52. isbn: 978-3-030-64148-1.

DeSanctis, Gerardine (1984). ‘Attitudes toward telecommuting: Implications for

work-at-home programs’. In: Information & Management 7.3, pp. 133–139. issn:

0378-7206. doi: https://doi .org/10.1016/0378- 7206(84)90041- 7. url: https:

//www.sciencedirect.com/science/article/pii/0378720684900417.

Deshpande, Advait et al. (2016). ‘Remote Working and Collaboration in Agile

Teams’. In: International Conference on Interaction Sciences.

Digital.ai (2021). 15th State of Agile Report. Tech. rep.

— (2022). 16th State of Agile Report. Tech. rep. Boston.

Dikert, Kim, Maria Paasivaara and Casper Lassenius (2016). ‘Challenges and success

factors for large-scale agile transformations: A systematic literature review’. In:

Journal of Systems and Software 119, pp. 87–108. issn: 0164-1212. doi: https:

//doi.org/10.1016/j.jss.2016.06.013. url: https://www.sciencedirect.com/science/

article/pii/S0164121216300826.

Dingsøyr, Torgeir and Tore Dyb̊a (Mar. 2012). ‘Team effectiveness in software devel-

opment: Human and cooperative aspects in team effectiveness models and pri-

orities for future studies’. In: 2012 5th International Workshop on Co-operative

and Human Aspects of Software Engineering, CHASE 2012 - Proceedings. doi:

10.1109/CHASE.2012.6223016.

Dingsøyr, Torgeir, Tor Fægri and Juha Itkonen (Dec. 2014). What Is Large in Large-

Scale? A Taxonomy of Scale for Agile Software Development. Vol. 8892. isbn:

978-3-319-13834-3. doi: 10.1007/978-3-319-13835-0{\ }20.

Dingsøyr, Torgeir, Davide Falessi and Ken Power (2019). ‘Agile Development at

Scale: The Next Frontier’. In: IEEE Software 36.2, pp. 30–38. doi: 10.1109/MS.

2018.2884884.

108

https://doi.org/10.1109/MS.2018.2884865
https://doi.org/10.1109/MS.2018.2884865
https://doi.org/https://doi.org/10.1016/0378-7206(84)90041-7
https://www.sciencedirect.com/science/article/pii/0378720684900417
https://www.sciencedirect.com/science/article/pii/0378720684900417
https://doi.org/https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/https://doi.org/10.1016/j.jss.2016.06.013
https://www.sciencedirect.com/science/article/pii/S0164121216300826
https://www.sciencedirect.com/science/article/pii/S0164121216300826
https://doi.org/10.1109/CHASE.2012.6223016
https://doi.org/10.1007/978-3-319-13835-0{_}20
https://doi.org/10.1109/MS.2018.2884884
https://doi.org/10.1109/MS.2018.2884884

Dingsøyr, Torgeir and Nils Brede Moe (Aug. 2013). ‘Research Challenges in Large-

Scale Agile Software Development’. In: SIGSOFT Softw. Eng. Notes 38.5, pp. 38–

39. issn: 0163-5948. doi: 10.1145/2507288.2507322. url: https://doi.org/10.

1145/2507288.2507322.

— (2014). ‘Towards Principles of Large-Scale Agile Development’. In: Agile Meth-

ods. Large-Scale Development, Refactoring, Testing, and Estimation. Ed. by

Torgeir Dingsøyr et al. Cham: Springer International Publishing, pp. 1–8. isbn:

978-3-319-14358-3.

Dingsøyr, Torgeir, Nils Brede Moe and Eva Amdahl Seim (Oct. 2018). ‘Coordinating

Knowledge Work in Multiteam Programs: Findings From a Large-Scale Agile

Development Program’. In: Project Management Journal 49.6, pp. 64–77. issn:

8756-9728. doi: 10 .1177/8756972818798980. url: https ://doi . org/10 .1177/

8756972818798980.

Dyb̊a, Tore and Torgeir Dingsøyr (Apr. 2009). ‘What Do We Know about Agile

Software Development?’ In: Software, IEEE 26, pp. 6–9. doi: 10.1109/MS.2009.

145.

Earl, Michael (2001). ‘Knowledge Management Strategies: Toward a Taxonomy’. In:

Journal of Management Information Systems 18.1, pp. 215–233. issn: 07421222.

url: http://www.jstor.org/stable/40398522.

Edison, Henry, Xiaofeng Wang and Kieran Conboy (2022). ‘Comparing Methods for

Large-Scale Agile Software Development: A Systematic Literature Review’. In:

IEEE Transactions on Software Engineering 48.8, pp. 2709–2731. doi: 10.1109/

TSE.2021.3069039.

Felstead, Alan and Golo Henseke (May 2017). ‘Assessing the growth of remote work-

ing and its consequences for effort, well-being and work-life balance’. In: New

Technology, Work and Employment 32. doi: 10.1111/ntwe.12097.

Freudenberg, Sallyann and Helen Sharp (Nov. 2010). ‘The Top 10 Burning Research

Questions from Practitioners’. In: Software, IEEE 27, pp. 8–9. doi: 10.1109/

MS.2010.129.

Fuchs, Christoph and Thomas Hess (Nov. 2018). ‘Becoming Agile in the Digital

Transformation: The Process of a Large-Scale Agile Transformation’. In.

109

https://doi.org/10.1145/2507288.2507322
https://doi.org/10.1145/2507288.2507322
https://doi.org/10.1145/2507288.2507322
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1109/MS.2009.145
https://doi.org/10.1109/MS.2009.145
http://www.jstor.org/stable/40398522
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.1111/ntwe.12097
https://doi.org/10.1109/MS.2010.129
https://doi.org/10.1109/MS.2010.129

Girma, Melaku, Nuno M. Garcia and Mesfin Kifle (May 2019). ‘Agile Scrum Scaling

Practices for Large Scale Software Development’. In: 2019 4th International Con-

ference on Information Systems Engineering (ICISE). IEEE, pp. 34–38. isbn:

978-1-7281-2558-9. doi: 10.1109/ICISE.2019.00014.

Gloet, Marianne and Milé Terziovski (Jan. 2004). ‘Exploring the relationship between

knowledge management practices and innovation performance’. In: Journal of

Manufacturing Technology Management 15.5, pp. 402–409. issn: 1741-038X. doi:

10.1108/17410380410540390. url: https://doi.org/10.1108/17410380410540390.

Hansen, Morten T, N Nohria and Tom Tierney (1999). ‘What’s your strategy for

managing knowledge?’ In: Harvard business review 77 2, pp. 106–16.

Hanssen, Geir Kjetil, Tor Stlhane and Thor Myklebust (2018). SafeScrum Agile

Development of Safety-Critical Software. 1st. Springer Publishing Company, In-

corporated. isbn: 331999333X.

Henrik Kniberg (2011). Lean from the Trenches: Managing Large-scale Projects with

Kanban. Pragmatic Bookshelf.

Hoegl, Martin, bullet Hans and Hans Gemuenden (Mar. 2001). ‘Teamwork Quality

and the Success of Innovative Projects: A Theoretical Concept and Empirical

Evidence’. In: INFORMS 12, pp. 435–449. doi: 10.1287/orsc.12.4.435.10635.

Ian Sommerville (2010). Software Engineering. 9th ed.

Ingvaldsen, Jonas A and Monica Rolfsen (June 2012). ‘Autonomous work groups and

the challenge of inter-group coordination’. In: Human Relations 65.7, pp. 861–

881. issn: 0018-7267. doi: 10.1177/0018726712448203. url: https://doi.org/10.

1177/0018726712448203.

Jørgensen, Magne (2018). ‘Do Agile Methods Work for Large Software Projects?’ In:

Agile Processes in Software Engineering and Extreme Programming. Ed. by Juan

Garbajosa, Xiaofeng Wang and Ademar Aguiar. Cham: Springer International

Publishing, pp. 179–190. isbn: 978-3-319-91602-6.

Klopotek, Magdalena (May 2017). ‘The Advantages and Disadvantages of Working

Remotely from the Perspective of Young Employees’. In: Management Challenges

in a Network Economy: Proceedings of the MakeLearn and TIIM International

Conference 2017. ToKnowPress, p. 535. url: https://ideas.repec.org/h/tkp/

mklp17/535.html.

110

https://doi.org/10.1109/ICISE.2019.00014
https://doi.org/10.1108/17410380410540390
https://doi.org/10.1108/17410380410540390
https://doi.org/10.1287/orsc.12.4.435.10635
https://doi.org/10.1177/0018726712448203
https://doi.org/10.1177/0018726712448203
https://doi.org/10.1177/0018726712448203
https://ideas.repec.org/h/tkp/mklp17/535.html
https://ideas.repec.org/h/tkp/mklp17/535.html

Kniberg, Henrik (2010). Kanban and Scrum - Making the Most of Both. Lulu.com.

isbn: 0557138329.

— (2015). Scrum and XP from the Trenches: 2nd Edition. Lulu.com. isbn: 1430322640.

Kniberg, Henrik and Anders Ivarsson (2012). Scaling Agile @ Spotify. url: https:

//blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf.

Kotlarsky, Julia and Ilan Oshri (Mar. 2005). ‘Social ties, knowledge sharing and

successful collaboration in globally distributed system development projects’.

In: European Journal of Information Systems 14.1, pp. 37–48. issn: 0960-085X.

doi: 10.1057/palgrave.ejis.3000520. url: https://doi.org/10.1057/palgrave.ejis.

3000520.

Kozlowski, Steve and Bradford Bell (May 2003). ‘Work Groups and Teams in Or-

ganizations’. In: Articles & Chapters 14. doi: 10.1002/0471264385.wei1214.

Kraut, Robert E and Lynn A Streeter (Mar. 1995). ‘Coordination in Software De-

velopment’. In: Commun. ACM 38.3, pp. 69–81. issn: 0001-0782. doi: 10.1145/

203330.203345. url: https://doi.org/10.1145/203330.203345.

Langfred, Claus W (2007). ‘The Downside of Self-Management: A Longitudinal

Study of the Effects of Conflict on Trust, Autonomy, and Task Interdepend-

ence in Self-Managing Teams’. In: The Academy of Management Journal 50.4,

pp. 885–900. issn: 00014273. url: http://www.jstor.org/stable/20159895.

Malone, TW and K Crowston (Mar. 1994). ‘The Interdisciplinary Study Of Coordin-

ation’. In: ACM COMPUTING SURVEYS 26.1, pp. 87–119. issn: 0360-0300.

doi: 10.1145/174666.174668.

March, J.G. and H.A. Simon (1958). Organizations. New York: Wiley.

Marshall, Bryan et al. (Sept. 2013). ‘Does Sample Size Matter in Qualitative Re-

search?: A Review of Qualitative Interviews in is Research’. In: Journal of Com-

puter Information Systems 54, pp. 11–22. doi: 10.1080/08874417.2013.11645667.

Micaela, B (2020). ‘Telework in the EU before and after the COVID-19: where we

were, where we head to’. In: url: https://joint- research- centre.ec.europa.eu/

system/files/2021-06/jrc120945 policy brief - covid and telework final.pdf.

Moe, Nils, Helena Olsson and Torgeir Dingsøyr (May 2016). Trends in Large-Scale

Agile Development: A Summary of the 4th Workshop at XP2016. doi: 10.1145/

2962695.2962696.

111

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://doi.org/10.1057/palgrave.ejis.3000520
https://doi.org/10.1057/palgrave.ejis.3000520
https://doi.org/10.1057/palgrave.ejis.3000520
https://doi.org/10.1002/0471264385.wei1214
https://doi.org/10.1145/203330.203345
https://doi.org/10.1145/203330.203345
https://doi.org/10.1145/203330.203345
http://www.jstor.org/stable/20159895
https://doi.org/10.1145/174666.174668
https://doi.org/10.1080/08874417.2013.11645667
https://joint-research-centre.ec.europa.eu/system/files/2021-06/jrc120945_policy_brief_-_covid_and_telework_final.pdf
https://joint-research-centre.ec.europa.eu/system/files/2021-06/jrc120945_policy_brief_-_covid_and_telework_final.pdf
https://doi.org/10.1145/2962695.2962696
https://doi.org/10.1145/2962695.2962696

Mohagheghi, Parastoo and Magne Jørgensen (2017). ‘What Contributes to the Suc-

cess of IT Projects? Success Factors, Challenges and Lessons Learned from an

Empirical Study of Software Projects in the Norwegian Public Sector’. In: 2017

IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C), pp. 371–373. doi: 10.1109/ICSE-C.2017.146.

Mohagheghi, Parastoo and Casper Lassenius (2021). ‘Organizational Implications

of Agile Adoption: A Case Study from the Public Sector’. In: Proceedings of

the 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ESEC/FSE 2021. New

York, NY, USA: Association for Computing Machinery, pp. 1444–1454. isbn:

9781450385626. doi: 10.1145/3468264.3473937. url: https://doi.org/10.1145/

3468264.3473937.

Myers, Michael and Michael Newman (May 2007). ‘The Qualitative Interview in IS

Research: Examining the Craft’. In: Information and Organization 17, pp. 2–26.

doi: 10.1016/j.infoandorg.2006.11.001.

Nikitina, Natalja, Mira Kajko-Mattsson and Magnus Strale (May 2012). ‘From

Scrum to Scrumban: a case study of a process transition’. In: 2012 Interna-

tional Conference on Software and System Process, ICSSP 2012 - Proceedings.

doi: 10.1109/ICSSP.2012.6225959.

Oates, Briony J (2006). Researching Information Systems and Computing. Sage Pub-

lications Ltd. isbn: 1412902231.

Ohno, Taiichi (1988). Toyota Production System: Beyond Large-Scale Production.

Portland, OR: Productivity. isbn: 0-915299-14-3.

Olson, Margrethe H (Mar. 1983). ‘Remote Office Work: Changing Work Patterns in

Space and Time’. In: Commun. ACM 26.3, pp. 182–187. issn: 0001-0782. doi:

10.1145/358061.358068. url: https://doi.org/10.1145/358061.358068.

Petersen, Kai, Claes Wohlin and Dejan Baca (2009). ‘The Waterfall Model in Large-

Scale Development’. In: Product-Focused Software Process Improvement. Ed. by

Frank Bomarius et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 386–

400. isbn: 978-3-642-02152-7.

Phillips, Stephen (Sept. 2020). ‘Working through the pandemic: Accelerating the

transition to remote working’. In: Business Information Review 37.3, pp. 129–

112

https://doi.org/10.1109/ICSE-C.2017.146
https://doi.org/10.1145/3468264.3473937
https://doi.org/10.1145/3468264.3473937
https://doi.org/10.1145/3468264.3473937
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1109/ICSSP.2012.6225959
https://doi.org/10.1145/358061.358068
https://doi.org/10.1145/358061.358068

134. issn: 0266-3821. doi: 10.1177/0266382120953087. url: https://doi.org/10.

1177/0266382120953087.

Poppendieck, Mary and Tom Poppendieck (2003). Lean Software Development: An

Agile Toolkit. USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0321150783.

Radford, Alec et al. (2022). Robust Speech Recognition via Large-Scale Weak Super-

vision.

Runeson, Per and Martin Höst (2009). ‘Guidelines for conducting and reporting

case study research in software engineering’. In: Empirical Software Engineering

14.2, pp. 131–164. issn: 1573-7616. doi: 10 . 1007 / s10664 - 008 - 9102 - 8. url:

https://doi.org/10.1007/s10664-008-9102-8.

Salas, Eduardo, Dana Sims and Shawn Burke (Feb. 2005). ‘Is there a “Big Five” in

Teamwork?’ In: Small Group Research 36, pp. 555–599. doi: 10.1177/1046496405277134.

Schwaber, Ken (2004). Agile Project Management With Scrum. USA: Microsoft

Press. isbn: 073561993X.

Schwaber, Ken and Jeff Sutherland (2020). The Scrum Guide. url: https://scrumguides.

org/scrum-guide.html.

Scrum of scrums - guide to agile scaling frameworks (May 2016). url: https://www.

agilest.org/scaled-agile/scrum-of-scrums/.

Sharma, Shruti and Nitasha Hasteer (2016). ‘A comprehensive study on state of

Scrum development’. In: 2016 International Conference on Computing, Com-

munication and Automation (ICCCA), pp. 867–872. doi: 10.1109/CCAA.2016.

7813837.

Sharp, Helen and Hugh Robinson (2010). ‘Three ‘C’s of Agile Practice: Collab-

oration, Co-ordination and Communication’. In: Agile Software Development:

Current Research and Future Directions. Ed. by Torgeir Dingsøyr, Tore Dyb̊a

and Nils Brede Moe. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 61–85.

isbn: 978-3-642-12575-1. doi: 10.1007/978- 3- 642- 12575- 1{\ }4. url: https:

//doi.org/10.1007/978-3-642-12575-1 4.

Shore, James and Shane Warden (Nov. 2007). The Art of Agile Development. isbn:

978-0-596-52767-9.

Skelton, Matthew and Manuel Pais (Sept. 2019). Team Topologies: Organizing Busi-

ness and Technology Teams for Fast Flow. IT Revolution Press.

113

https://doi.org/10.1177/0266382120953087
https://doi.org/10.1177/0266382120953087
https://doi.org/10.1177/0266382120953087
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1177/1046496405277134
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://www.agilest.org/scaled-agile/scrum-of-scrums/
https://www.agilest.org/scaled-agile/scrum-of-scrums/
https://doi.org/10.1109/CCAA.2016.7813837
https://doi.org/10.1109/CCAA.2016.7813837
https://doi.org/10.1007/978-3-642-12575-1{_}4
https://doi.org/10.1007/978-3-642-12575-1_4
https://doi.org/10.1007/978-3-642-12575-1_4

Stray, Viktoria, Nils Brede Moe and Rashina Hoda (2018). ‘Autonomous Agile

Teams: Challenges and Future Directions for Research’. In: Proceedings of the

19th International Conference on Agile Software Development: Companion. XP

’18. New York, NY, USA: Association for Computing Machinery. isbn: 9781450364225.

doi: 10.1145/3234152.3234182. url: https://doi.org/10.1145/3234152.3234182.

Strode, Diane, Torgeir Dingsøyr and Yngve Lindsjørn (Feb. 2022). ‘A teamwork

effectiveness model for agile software development’. In: Empirical Software En-

gineering 27. doi: 10.1007/s10664-021-10115-0.

Strode, Diane and Sid Huff (Jan. 2012). ‘A Taxonomy of Dependencies in Agile

Software Development’. In: ACIS 2012 : Proceedings of the 23rd Australasian

Conference on Information Systems.

Strode, Diane E et al. (2012). ‘Coordination in co-located agile software development

projects’. In: Journal of Systems and Software 85.6, pp. 1222–1238. issn: 0164-

1212. doi: https : //doi . org/10 . 1016/ j . jss . 2012 . 02 . 017. url: https : //www.

sciencedirect.com/science/article/pii/S0164121212000465.

Sugimori, Y et al. (Jan. 1977). ‘Toyota production system and Kanban system

Materialization of just-in-time and respect-for-human system’. In: International

Journal of Production Research 15.6, pp. 553–564. issn: 0020-7543. doi: 10 .

1080/00207547708943149. url: https://doi.org/10.1080/00207547708943149.

Takeuchi, Hirotaka and Ikujiro Nonaka (1986). ‘The New New Product Development

Game’. In: Harvard Business Review. url: http://apln-richmond.pbwiki.com/f/

New%20New%20Prod%20Devel%20Game.pdf.

Thompson, James D (1967). Organizations in action: Social science bases of admin-

istrative theory. New York, NY, US: McGraw-Hill, pp. 192, xi, 192–xi.

Ven, Andrew, Andre Delbecq and Jr Koenig (Dec. 1976). ‘Determinants of Coordin-

ation Modes Within Organizations’. In: American Sociological Review 41. doi:

10.2307/2094477.

Williams, L and A Cockburn (June 2003). ‘Agile software development: It’s about

feedback and change’. In: COMPUTER 36.6, pp. 39–43. issn: 0018-9162. doi:

10.1109/MC.2003.1204373.

Woldseth, Tommy (Dec. 2022). Coordination challenges in large-scale agile software

development projects: A literature review. Tech. rep. (Unpublished: TDT4501

114

https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1007/s10664-021-10115-0
https://doi.org/https://doi.org/10.1016/j.jss.2012.02.017
https://www.sciencedirect.com/science/article/pii/S0164121212000465
https://www.sciencedirect.com/science/article/pii/S0164121212000465
https://doi.org/10.1080/00207547708943149
https://doi.org/10.1080/00207547708943149
https://doi.org/10.1080/00207547708943149
http://apln-richmond.pbwiki.com/f/New%20New%20Prod%20Devel%20Game.pdf
http://apln-richmond.pbwiki.com/f/New%20New%20Prod%20Devel%20Game.pdf
https://doi.org/10.2307/2094477
https://doi.org/10.1109/MC.2003.1204373

- Computer Science, Specialization Project at NTNU, supervised by: Torgeir

Dingsøyr).

Yin, Robert K. (2018). Case Study Research and Applications - Design and Methods.

6th ed. Los Angeles: SAGE Publications Inc.

115

Appendix

A Interview guide

The following interview guide was used for all the interviews of both cases. A

Norwegian version was used for the majority of the interviews, while the following

English-translated version was used in the interviews with non-Norwegian speakers.

A.1 Intro

• About me: I study Computer Science at NTNU, writing my master’s thesis

this spring.

• About the thesis: The topic is “teamwork effectiveness” in the context of

large agile projects. I will attempt to discover how teams cooperate in these

projects and what promotes effective teamwork.

• Motivation for this project: In large projects there are many developers

and stakeholders that have to collaborate. I believe this increases the import-

ance of working together in an effective way. I also believe that the use of agile

methods increases the importance of effective teamwork because less planning

is done up-front which could have identified dependencies.

• What will the data be used for: The data collected from these interviews

will lay the foundation for a case study. The data will be analyzed, and the

findings will be compared to existing models.

A.2 Practical

• Time: 45 minutes

• Audio recording: Audio recording is okay? The reason for audio recording

is to get a more accurate representation of what was said than I could give

with notes and my own memory. The recordings will later be transcribed to

be analyzed. Personal information will be anonymized, audio recordings will

117

be deleted when the project is finished. Audio recordings and transcriptions

can be sent for approval if you want.

• Answers: Answer in the way you want. My goal is to receive personal opin-

ions and experiences.

A.3 About interviewee

• Can you tell me a bit about what you’re working on now?

• What role do you have in the project?

• How long have you worked on this project?

A.4 About their project

• How many developers are in the project?

• How many teams?

• Do you know how long this project will go on for?

• How is this project structured? Different teams etc?

• Which agile methods are used?

– Have there been changes over time?

– Any specific framework?

• Size of the team? Thoughts on that?

• What roles exist on the team? How many of each? Mix of experience-level or

even?

• How does that impact the teamwork?

118

A.5 Main part

• What do you think about the teamwork within the project?

– Have there been changes over time?

• How does communication happen within the team and across teams?

– Digital/physical, one-to-one or groups, thoughts on this?

• Do you have any specific suggestions as to what has improved the teamwork?

• Do you have any specific suggestions for challenges related to teamwork?

• What tools/routines do you use to accomplish effective teamwork?

– Do these work well?

• Do you have any suggestions as to how you think the teamwork in the project

could be improved?

• Do you have any specific routines for evaluating and improving teamwork or

coordination?

• Do you have any thoughts on specific processes that are being used in a positive

or negative way (meetings, workflow, integration, deployment, agile methods)?

• Do you use any practices from xp?

– For example pair-programming, tdd, continuous integration

• How do you coordinate work within the team and across teams?

– Does this work well?

• How are the seating arrangements?

– Remote/work from home?

• Do you feel that there are a lot of dependencies with other teams?

– Are these handled well?

119

• How is the leadership within the team?

– One leader who makes decisions or several people or whole the team?

• Could you tell me a bit about how feedback is given between team members?

– Are the members of the team open to giving and receiving feedback?

• Are there things in the project that only one person is able to do, can everyone

do everything, or somewhere in between?

• How would you rate the adaptability of the team?

– Is the team able to respond quickly to changes? For example changes in

requirements or resources available.

• How would you rate the ≪team spirit≫ of the team?

– Do you feel that team members set the goals of the team or project in

front of their own goals?

• Do you have shared mental models within the team?

– Common understanding of things that everyone knows, but which is not

written

– For example understanding of goals, tasks, processes, routines, etc.

– Is it known who knows what in the team?

• How is the trust between team members in the team?

– Can you trust that everyone is able to do their tasks?

– Or that people ask for help when they need it?

• How would you rate the communication within the team?

– How do you communicate within the team?

– Is it easy to get the information you need, when you need it?

• How would you rate the productivity of the project as a whole (is the progres-

sion as planned)?

120

– How is this connected to the teamwork?

• How do you accomplish knowledge sharing?

– Does that work well?

• Any specific measures to ensure learning?

• Do you know what the other teams do at all times?

• Would it be easy to come into the project as a new developer, or would it take

time to get to know the project?

– Is the code well documented?

A.6 Conclusion

• Anything you want to add on the topic that we have not discussed?

• Next steps: The data will be transcribed. You can ask for a copy of the

data by e-mail (to comply with data collection rules). May take some time to

transcribe. Will hold a presentation about the status of the project for the

company at the end of April/start of March.

• Any questions?

• Thank you for participating in this interview.

B Theme codes from NVivo

Below follows two hierarchical overviews of codes from the qualitative data analysis

tool NVivo which was used during the analysis phase. The first overview displays

the codes that were generated in the coding iteration, while the second overview

shows the final five themes that were used in Section 4, along with their sub-codes.

121

Figure 17: Initial theme codes

Figure 18: Final five themes

122

C Agile principles

Figure 19: Principles of the agile manifesto

Source: (Shore and Warden 2007)

123

	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Research questions and scope
	Contributions
	Intended audience
	Limitations
	Structure of the thesis

	Background and Theory
	Software development processes and models
	Plan-based methodologies
	Agile software development
	Lean software development
	Large-scale agile software development

	Teams and teamwork
	Teams
	Team autonomy
	Collaboration
	Teamwork in general
	Teamwork in software development
	Teamwork in agile software development

	Coordination
	Coordination in general
	Coordination in software development
	Coordination in agile software development

	Remote and hybrid work
	Knowledge management

	Method
	Research strategy and method
	Case selection
	Case A: Signicat
	Case B: NAV IT

	Data generation
	Interviews

	Transcription process
	Qualitative analysis
	Feedback sessions
	Method evaluation and limitations
	Case study validation
	Limitations

	Results
	Agile methods and work process
	Choice of agile method
	Work tasks and specialization
	Improvement

	Autonomy, alignment, and leadership
	Inter-team coordination
	Intra-team collaboration
	Adaptability
	Feedback
	Team spirit and trust
	Shared mental models
	Competence redundancy

	Remote and hybrid solutions

	Discussion
	Impact on teamwork effectiveness
	What fosters effective teamwork?
	What hinders effective teamwork?

	Enabling effective teamwork
	Customize agile methods
	Share your knowledge
	Reflect to improve
	Give considerable control to teams
	Get to know your colleagues

	Comparison to an existing model
	Coordinating mechanisms
	Core components
	Additional components or mechanisms

	Evaluation and limitations

	Conclusion
	Contributions
	Future work

	Bibliography
	Appendix
	Interview guide
	Intro
	Practical
	About interviewee
	About their project
	Main part
	Conclusion

	Theme codes from NVivo
	Agile principles

