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Abstract

This thesis investigates the use of optical flow for object detection and pose esti-
mation in the context of the surroundings of the autonomous ferry milliAmpere
1. Current methods for pose estimation are often based on state estimation fil-
ters and sensor measurements. The methods used in this thesis provide accurate
estimates by tracking multiple points on the objects of interest. The data set is
recorded by milliAmpere 1 in Trondheimfjorden in Norway, where five image se-
quences are used for testing.

By comparing a state-of-the-art deep learning detection model, YOLOv8, and
the optical flow method Gunnar-Farnebeck (GF) for object detection, it is found
that YOLOv8 consistently outperforms the optical flow based method in both gen-
eralization and runtime, and manage to give more accurate masks. This is crucial
for good estimates of the pose of the object of interest. Conversely, optical flow is
able to determine whether the target is moving.

The thesis further explores the utilization of direct optical flow techniques,
specifically tracking with Lucas-Kanade (LK), combined with Structure from Mo-
tion (SFM), for 3D reconstruction of objects isolated from a scene in an image.
The results are promising in terms of accurately estimating relative pose, includ-
ing yaw rate and position when compared with Global Navigation Satellite System
(GNSS) measurements. These pose estimates rely on various factors, such as ob-
ject proximity, the clarity of the features on the object, how the points cover the
object, and the number of images used for reconstruction.

The obtained results suggest that tracking and pose estimation with LK and
SFM have significant potential to improve control systems for autonomous vessels.
However, the need for additional research and rigorous testing is emphasized be-
fore these methodologies can be implemented in real-world scenarios. Although
several challenges remain, primarily related to precision, robustness, and the dis-
tribution of points on an object, this work provides a basis for further exploration
into the usage of optical flow in autonomous navigation systems.
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Sammendrag

Denne avhandlingen undersøker bruken av optisk flyt for objektdeteksjon og po-
sisjonsestimering innenfor konteksten av omgivelsene til den autonome fergen
milliAmpere 1. Nåværende metoder for posisjonsestimering er ofte basert på til-
standsestimeringsfiltre og sensormålinger. Metodene brukt i denne avhandlingen
gir nøyaktige estimater ved å spore flere punkter på interessante objekter. Dataset-
tet er samlet av milliAmpere 1 i Trondheimfjorden i Norge, hvor fem ulike bilde-
sekvenser er brukt for testing.

Ved å sammenligne en en av de ledene dyp læring deteksjonsmodellene, YOLOv8,
og den optiske flytmetoden Gunnar-Farnebeck (GF) for objektdeteksjon, er det
funnet at YOLOv8 konsekvent yter bedre enn den optisk flyt baserte metoden både
i generalisering og kjøretid, og klarer å gi mer nøyaktige masker rundt objektene.
Dette er avgjørende for gode estimater av objektets posisjon og giringsrate. På den
andre siden kan optisk flyt bestemme om målet er i bevegelse.

Rapporten utforsker videre bruken av direkte optisk flyt metoder, spesielt sporing
med Lucas-Kanade (LK), kombinert med Structure from Motion (SFM) for 3D-
rekonstruksjon av objekter isolert fra bakgrunnen i et bilde. Resultatene er lovende
når det gjelder nøyaktig estimering av giringsrate og posisjon, sammenlignet med
Global Navigation Satellite System (GNSS) målinger. Estimatene er vist avhengig
av forskjellige faktorer, inkludert objektets nærhet, klarheten av detal- jene på ob-
jektet, hvordan punktene dekker objektet, og antall bilder som brukes til rekon-
struksjon.

Resultatene antyder at sporing og posisjon- og orienteringsestimering med
LK og SFM har betydelig potensial for å forbedre kontrollsystemer for autonome
fartøy. Imidlertid un- derstrekes behovet for videre forskning og grundig testing før
disse metodene kan implementeres i virkelige scenarier. Selv om flere utfordringer
gjenstår, hov- edsakelig knyttet til presisjon, robusthet og punktdistribusjon på ob-
jektet, legger denne oppgaven et grunnlag for videre utforskning av anvendelsen
av optisk flyt i autonome navigasjonssystemer.

vii
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Chapter 1

Introduction

1.1 Motivation

Navigation by sea has historically been done by the crew aboard a vessel, and
by staying aware of the boat’s surroundings, one would be able to avoid collision
with approaching vessels. Hence, one would avoid unnecessary damage to both
the boat and the people aboard. With the rising need for means of transport and
the increase of people apparent both in marine and urban areas, new technology
has been developed.

Today, the technology within the field of autonomy is evolving faster than ever.
For instance, autonomous vehicles are starting to be accepted on the roads, and
machines can now do tasks that were done earlier by humans in an even faster
manner. This opens opportunities in terms of economics and efficiency and could
benefit society in multiple areas. This is also the case for autonomous vessels at
sea, which can be a great supplement in terms of the transport of goods or as a
way for humans to get past obstacles like for instance a lake or channel. However,
when removing the man in the loop, one could also stumble upon problems that
did not appear before.

When allowing autonomous vehicles in society, there has to be a guarantee
that the vehicle follows certain safety measures and that no humans will get hurt
due to technical errors or faults. For example, guidelines, such as the EU Opera-
tional Guidelines For Trials Of Maritime Autonomous Surface Ships (MASS) [1],
have been developed to make sure that autonomous vessels are suited for usage.

Regardless of guidelines that will provide safety measures for autonomous
vessels, the field of autonomy is new and will naturally provide some skepticism
from the general public. When new technology is introduced, especially when the
technology no longer has a man in the loop, the demand for reliable and safe
systems is even higher. This demand is justified because an error in a worst-case
scenario can be life-threatening.

1
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Accurate methods for detecting and tracking nearby elements are necessary
to ensure safety requirements. There are multiple sensors that could be used for
this purpose. For instance, one could use Light Detection and Ranging (LIDAR)
or radar to recognize when an element approaches. However, this would not give
too much information about the object itself. On the other hand, a camera gives
a lot of valuable information about the size and looks of the element. Cameras
might therefore be a good supplement to the previously mentioned sensors and
could be suitable for detecting and tracking surrounding elements.

In this thesis, a camera will be used to detect vessels in the surroundings of an
autonomous ferry in a marine environment. The problem of detection and track-
ing of close-by objects will, however, also be interesting for multiple applications
such as for instance autonomous driving of cars in traffic.

1.2 Litterature review

Object detection is a problem in computer vision where the objective is to locate
and recognize objects in an image. In the early days of object detection, simple
techniques were used and mainly based on the extraction of features and rules
that would decide the existence of an object, for instance, Support Vector Ma-
chine (SVM) [2] or decision trees [3]. The detection methods evolved until the
2000s to detect more detailed patterns like faces with the Viola-Jones algorithm
[4].

Later on, in the 2000s, more advanced methods were developed, and object
detection moved further toward machine learning-based methods. This came with
the evolution of Convolutional Neural Networks (CNN) which were able to rec-
ognize detailed patterns in images which allowed to detect even more advanced
shapes. An example of a network that surged the interest for CNN is AlexNet [5]
which was introduced in 2012 and could classify images with high accuracy.

In recent years the field of object detection has developed a lot. The introduc-
tion of deep neural networks has brought new methods for detection which can be
trained to recognize features of even more advanced objects. A widely used detec-
tor that has been developed in recent years is the single-stage detector which can
simultaneously detect and classify an object in a single frame. Examples of such
detectors are You Only Look Once (YOLO) [6] and Single Shot Detector (SSD)
[7] which are both fast and accurate. In January 2023, the most recent version of
YOLO, YOLOv8, was released, which has great performance in both in detection
and segmentation of objects.
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The methods based on neural networks for detection are promising. Never-
theless, there are reasons to make an attempt to challenge these so-called indirect
methods. The mentioned methods need a good set of samples to be used for train-
ing in order to be able to detect the objects of interest. This data is used to extract
features that will be identifiable in new images which is the principle of most
indirect methods such as the mentioned deep learning methods. This requires a
large amount of data that needs to be created for the specific field of use. Another
problem is that not only boats will appear in the surroundings of the autonomous
vessel and followingly unknown and new objects can be missed by the detector.

An interesting approach that can be used for object detection is optical flow.
This is not as commonly used in the field of detection but can be a good tool to dis-
cover moving objects in a camera frame and can give the segment of the moving
object from how its movement differs from the movement of the background. One
technique that is used is background subtraction which will remove parts of the
image and leave the masks of moving objects as detections as for instance used in
[8]. This method could be beneficial as it can detect all kinds of objects without
prior training, and such a method will be tested in this thesis. Optical flow is also
a good technique for further tracking of objects.

Various methods already exist within object tracking. One category of tracking
algorithms is model-based methods. These methods use a mathematical model to
predict the movement of an object and combine this with the measurements of
a sensor in order to find the next location of the object. Examples of such meth-
ods are the Kalman filter first presented in [9], Joint Integrated Probabilistic Data
Association (JIPDA) tracker [10], and Multiple Hypothesis Tracker (MHT) [11].
These methods will, however, not use all available information in an image as they
mostly use only a point measurement to estimate the position of the target.

There exist multiple methods in computer vision for tracking a target directly
in an image sequence and extracting information about the movement of the tar-
get. There are two main categories for this. One of them is the so-called feature-
based methods [12] that require extraction of features in the image and then use
features to extract more information. Methods that do not require the same fea-
tures are so-called direct methods [13]. This category of methods instead looks at
patterns in the image directly and tries to match a part of one image with another
image to find the transformation that best describes the movement between the
frames. These methods often try to minimize an error which for instance can be
the difference between brightness patterns directly in the image.

Examples of direct methods in computer vision are template matching tech-
niques, as for instance presented in [14], and optical flow. The latter technique
was tested in the specialization project of Erik Daniel Haukås Moe [15] regard-
ing tracking with optical flow. The results showed that the optical flow algorithm
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Lucas-Kanade [16] gave accurate tracking of points on a target in an image frame.
The algorithm has therefore shown good potential for further pose estimation of
objects that are moving in marine environments.

With point correspondences from tracking, it is possible to analyze the pose
of the target further. Possible methods for pose estimation could be Direct Sparse
Odometry (DSO) [17] and visual Simultaneous Localization and Mapping (vS-
LAM) [18] which both are able to build 3D point clouds of the surroundings. DSO
is originally meant for pose estimation of the camera but would also be able to
give information about the relative position of an object.

Another method for 3D reconstruction is Structure From Motion (SFM). This
method has been actual since Lonquet-Higgins’s publication regarding two-view
reconstruction [19] in 1987. In later years there have been developed methods
for performing SFM with multiple views, but also a combination of the two for
instance in [20] where the results of pairs are combined to a multi-view. Also,
in SFM, there are both direct and feature-based methods. Direct methods work
directly on image data without the need for point correspondences, for instance,
as presented in [21].

1.3 Problem description

This thesis aims to evaluate an object detection algorithm that uses optical flow
by comparing it with a state-of-the-art YOLO algorithm. The goal is to determine
whether optical flow can offer comparable efficiency to deep learning methods,
which often operate as a black box with limited transparency in their decision-
making processes. Moreover, an advantage of optical flow is its ability to detect
any moving object which would be advantageous in the surroundings of an au-
tonomous ferry.

In addition, the direct optical flow method Lucas-Kanade (LK) will be used
to track objects in an image frame by masking out the object and tracking points
from the mask in a sequence of images. The tracked points will be used to create
a SFM where multiple views will create a 3D representation of the object. As the
object is masked out from the surroundings, the relative movement between the
object and the camera will be isolated and possible to analyze. This will further
be used to estimate the relative change in heading between the object and the
camera as well as track the position of the object during the sequence. The head-
ing of a vessel is usually estimated with position measurements and model-based
filters, which will undermine important information. The aim is, therefore, to ex-
amine if a more direct method for estimating yaw will give accurate estimates.
The images also include information about the position of the target which is also
attempted estimated to evaluate the performance. The data is sampled from the
autonomous ferry milliAmpere 1 and is recorded in Trondheimsfjorden where five
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different image sequences are used for testing. The data set also provides Global
Navigation Satellite System (GNSS) measurements which will be used as ground
truth for the objects to confirm the results.

1.4 Contribution

The thesis studies optical flow as a method for detection as well as using optical
flow to estimate the pose of boats adjacent to the autonomous ferry milliAmpere
1. The detection method will show an alternative option of detection compared to
the deep learning methods that already exist. Furthermore, the pose estimation
using optical flow will show whether or not optical flow is an accurate method to
use for tracking by sea. The analysis of the 3D reconstruction with SFM will show
what information about the pose of an object it is possible to extract with a single
camera, where a limited amount of research has been done previously. A good
result will also potentially provide a more efficient method for pose estimation
of close objects by sea. The code from the project could also possibly be used for
further development of tracking systems.

1.5 Outline

• Chapter 2 in the thesis will give an introduction to the background theory
that is used to generate the results in this thesis. This includes theory about
optical flow, structure from motion, and additional theory needed.

• Chapter 3 will give an introduction to the scenarios and targets which is
used for tracking and detection in this thesis to give an understanding of
where the data comes from.

• Chapter 4 presents implementation choices and definitions used in the thesis
as well as how ground truth is defined and generated.

• Chapter 5 presents the results obtained regarding detection with both opti-
cal flow and an alternative method.

• Chapter 6 introduces the results regarding the tracking of targets and scene
reconstruction and will address potential challenges with the methods used.
It also presents the results from pose estimation of targets surrounding mil-
liAmpere 1. This mainly includes the change in heading and position esti-
mates.

• Chapter 7 will give a discussion of the obtained results.
• Chapter 8 presents potential future work, and how to improve the results

from this thesis.
• Chapter 9 will conclude the thesis.





Chapter 2

Theory

This chapter will give an introduction to the theory behind this thesis. This in-
cludes the theory behind detection, optical flow, SFM, and pose estimation. This
thesis is, to some degree, a continuation of the specialization thesis of Erik Daniel
Haukås Moe [15], and the following sections will therefore be related to the the-
ory in the project: Optical flow (including LK), Camera model and Finding good
points to track. All the figures in this chapter are created by the authors unless
stated otherwise.

2.1 Optical flow

Optical flow is a technique in computer vision to estimate the relative movement
in a sequence of images. The movement that is estimated arises either from the
movement of elements in the image or the movement of the camera view. In either
scenario, one can determine the movement of elements within the image frame
relative to the camera. The basic idea behind optical flow is to track the movement
of pixels between consecutive frames and use this information to infer the overall
motion in the scene further. Optical flow does this by detecting the movement
of brightness patterns between images. Optical flow methods can be useful for a
range of different tasks in the field of computer vision, such as object tracking,
video stabilization, action recognition, and scene flow estimation, among others.
Well-known optical flow methods are the sparse optical flow algorithm LK and the
dense optical flow algorithm Gunnar-Farnebeck (GF) described in later sections.

When the optical flow between two consecutive frames is found, two following
main assumptions are normally considered:

• Brightness consistency, meaning that the brightness in the two frames is
constant, which implies that the pixel value in the template has the same
value in the image frame.

• The optical flows in an area are consistent, meaning that the movement of
adjacent pixels belonging to the same target is consistent.

7
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The first assumption is derived from the fact that the motion of an object is
found by locating similar patterns in brightness in the next image. If the brightness
differs significantly, between frames, then the location of similar patterns becomes
hard. This is a strict assumption as changes in brightness can be significant in real-
life scenarios. The second assumption comes from the fact that the optical flow is
calculated by matching regions of an image in one frame to a region in the other
frame, meaning that the points in that region must move together.

2.1.1 Lucas-Kanade optical flow algorithm

The Lucas-Kanade optical flow algorithm is a highly versatile algorithm, with one
of its many uses being tracking [16]. It is a feature-based optical flow algorithm
meaning that it estimates the optical flow for a sparse set of key points or interest
points in the image. This stands in contrast to the dense optical flow methods,
which estimate the movement for each pixel in the image. The ability of tracking
can provide information on the movement of objects relative to their surroundings
and the camera. The LK optical flow algorithm works through temple-matching,
where it tries to find a match between a template T(x) and a patch in the second
image I(x). The template is defined as a region surrounding a point of interest in
an original image, for instance, a (15x15) patch.

The optical flow of the point of interest is given by the movement of the point
x = (x, y). This is found through the matching process described above and will
be defined by a warp W(x; p). This is a transformation where p is a vector that
describes the movement of the point in the x and y directions. p can therefore be
seen as the optical flow between the images. A simple warp that only includes
translation could be defined as

W(x ; p)=

�

x + p1
y + p2

�

. (2.1)

The movement can also be described in a more advanced manner by including
more elements in p.

The matching process is based on the minimization problem

min
∑

x

(I(W(x ; p))− T (x ))2, (2.2)

with respect to p. This minimizes the error between T(x) and the part of the image
I(x) after applying the warp on the location of the points in T(x) in the first image,
denoted I(W(x;p)).

The optimization is done by an iterative process of updating p as
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p ← p +∆p (2.3)

until ∆p gets below a given threshold. ∆p is the step length of the iterations
and decides how close I(W(x,p)) is to T(x). The movement of pixels between
images will in most cases be a non-linear problem. A first-order Taylor expansion
of (2.3) is used to linearize the problem I(W(x ; p+∆p)) resulting in I(W(x ; p))+
∇I δW

δp ∆p. Inserting this into (2.2), setting it equal to 0, and solving for∆p results
in

∆p = H−1
∑

x

�

∇I
∂W
∂ p

�T

(T (x )− I(W(x ; p))). (2.4)

Here, ∇I = ( ∂ I
∂ x , ∂ I

∂ y ) represents the image gradient, or the change in pixel inten-

sity in the image, ∂W
∂ p is the Jacobian of the warp with respect to the elements in

p, and H represents an approximation of the Hessian defined as

H =
∑

x

�

∇I
∂W
∂ p

�T �

∇I
∂W
∂ p

�

. (2.5)

As the derivative of the warp is included in the equations, a requirement of W(x;p)
is therefore that it is differentiable with respect to p.

2.1.2 Pyramidal implementation of Lucas-Kanade

LK uses local optimization to find the optimal p, which makes the algorithm less
robust to large changes. This could for instance happen if an object moves much
faster than the frame rate of a camera and therefore has large movements be-
tween two images.

A tool to make the algorithm more robust to large changes by covering more
of the image is the pyramidal implementation of LK [22]. This method creates
layers in a pyramid where the resolution is halved for each step. The resolution is
reduced by averaging and combining neighborhoods of pixels. A pyramid is illus-
trated in Figure 2.1, where layer 0 represents the original image. When keeping
the window size for the template T(x), the same window will cover a larger area
in the same image. A pyramid is also made for the original image and the template
T(x) is found for each layer as it would not make sense to use the same template
for all layers.

This implementation works by iteratively running LK on each layer in the pyra-
mid, starting at the top layer, and using the resulting transformation p as the initial
transformation in the next layer. This will move the starting point closer to the so-
lution, and local optimization will have a greater chance of working.
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Figure 2.1: Illustration of the pyramid used in the implementation of Lucas-
Kanade. This will allow the algorithm to follow larger movements of the point
of interest. Originally presented in [15].

The point of interest must be the same in each layer of the pyramid. The point
that is used in each layer can be expressed at

[x , y]L =
[x , y]

2L
. (2.6)

where L is the number of the current layer in the pyramid. In addition to this,
the optimal p may not always be an integer. However, when decomposing a point
[x , y] into [x0 +αx , y0 +αy] where x0 and y0 is the integer part and αx and αy
is the decimal part, one can achieve sub-pixel precision with following formula

I L(x , y) = (1−αx)(1−αy)I
L(x0, y0) +αx(1−αy)I

L(x0 + 1, y0)+

(1−αx)αy I L(x0, y0 + 1) +αxαy I L(x0 + 1, y0 + 1),
(2.7)

This pyramidal implementation of LK is used in the rest of the thesis.

2.1.3 Gunnar-Farneback optical flow algorithm

The GF optical flow algorithm is a dense optical flow algorithm developed by Gun-
nar Farnebäck. It was first introduced in the paper "Two-Frame Motion Estimation
Based on Polynomial Expansion" which was published in 2003 [23]. It is built on
the two main assumptions mentioned in the previous subsection. The optical flow
is calculated using only two sequential images.

The first step in the algorithm is to estimate each neighborhood of both frames
by quadratic polynomials. This means analyzing the pixels in small regions, or
neighborhoods, in each image, and fitting a quadratic polynomial function that
tries to approximate the pixel intensities in that region. This allows the algorithm
to capture the pixel intensity pattern in each neighborhood and represent them
as a mathematical signal function. This is expressed mathematically in a local
coordinate system,
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f (x )∼ x T Ax + bT x + c (2.8)

where A is a symmetric matrix, b is a vector and c is a scalar. The coefficients
are estimated for each region using a weighted least squares fit. There are two
weighting components used: certainty and applicability. The certainty weight is
linked to the signal values within the region. The applicability weight is deter-
mined by the position of a pixel within its neighborhood. It is normal to weigh
the center of the neighborhood higher compared to those further away from the
center.

As discussed in the previous section, the goal of an optical flow method is to
find the displacement between pixels between frames. In the Gunnar-Farnebäck
method, the goal is to find the displacement between corresponding polynomials
signal functions.

This is analyzed by considering an ideal translation whereas f1(x ) and f2(x )
are displaced by a displacement d. This scenario is described mathematically as:

f1(x ) = x T A1x + b1
T x + c1 (2.9)

and

f2(x ) = f1(x ± d) = (x ± d)T A1(x ± d) + b1
T (x ± d) + c1

= x T A1x + (b1 ± 2A1d)T x + dT A1d ± b1
T d + c1

= x T A2x + b2
T x + c2

(2.10)

Using the fact that

A2 = A1 (2.11)

b2 = b1 ± 2A1d (2.12)

one obtains

c2 = dT A1d ± b1
T d + c1 (2.13)

Which, if A1 is non-singular, one can solve for d and get

2A1d = (b2 ± b1) (2.14)

d =
1
2

A−1
1 (b2 ± b1) (2.15)

It is important to note that the assumptions that the regions can be repre-
sented by a second-degree polynomial and the perfect translation is unrealistic in
practical scenarios. However, the assumptions can be made in practical scenarios,
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even though errors are introduced when the assumptions are relaxed.

To address this issue, the global polynomial can be replaced with local poly-
nomial approximations by doing a polynomial expansion of both images. This
will give us expansion coefficients A1(x ), b1(x ), and c1(x ) for the first image,
and A2(x ), b2(x ), and c2(x ) for the second image. Theoretically, this should give
A1 = A2, but in practice, but the following approximation is used

A(x ) =
A1(x ) + A2(x )

2
. (2.16)

One can also introduce the term

∆b(x ) =
1
2
(b2(x )− b1(x )) (2.17)

to obtain the primary constraint

A(x )d(x ) =∆b(x ), (2.18)

where d(x ) indicates that the global displacement has been replaced with a
spatially varying displacement field.

One could solve (2.18) point-wise. However, as this turns out to give noisy
results, it is beneficial to make the assumption that the displacement field is slowly
varying. This leads to trying to find d(x ) that satisfies (2.18) while being feasible
over a neighborhood I of x . Mathematically this leads to the minimization problem

∑

∆x∈I

w(∆x )∥A(x +∆x )d(x ), ∆b(x +∆x )∥2 (2.19)

where w(∆x ) is a weight function for each neighborhood using certainty and
applicability as discussed earlier. The minimum is obtained for

d(x ) = (
∑

wAT A)−1
∑

wAT∆b. (2.20)

Note that subscripts have been dropped to make the equation more readable.

The minimum value will then become

e(x ) = (
∑

w∆bT∆b)d(x )T
∑

wAT∆b. (2.21)

This value can be seen as a measure of the confidence of the optical flow.

The assumption made earlier that the corresponding polynomials from two
frames are identical is problematic as the polynomial expansions are local mod-
els. The polynomials will therefore vary spatially, introducing errors in the con-
straints. This is especially problematic for larger displacement if one was restricted
to comparing only polynomials at the same location. However, one can use prior
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knowledge about the displacement field to compare the polynomial at x in the
first signal to the polynomial at x + d̃(x ) where d̃(x ) in the second signal. d̃(x )
is the prior displacement field rounded to the closest integer, as to be compatible
with the algorithm.

This results in being able to rewrite (2.16) and (2.17) as

A(x ) =
A1(x ) + A2(ex )

2
,

∆b(x ) =
1
2
(b2(ex )− b1(x )) + A(x )ed(x ),

(2.22)

where

ex = x + ed(x ). (2.23)

Here, 1
2(b2(ex )− b1(x )) computes the remaining displacement and A(x )ed(x )

adds the a priori displacement. The integration of a priori displacement field into
the algorithm allows for the implementation of an iterative loop. As the quality
of the a priori estimate improves, the relative displacement decreases, thereby
enhancing the probability of obtaining a precise displacement estimate.

2.2 Background subtraction and detection with optical
flow

The optical flow algorithm GF can be used to detect objects in an image. If an ob-
ject moves in an image in a different direction than the background it will create a
patch in the image with a different flow than the rest. Such a method for detection
will also be able to detect multiple objects at once as it masks out movements that
differ from the rest. The concept of object detection using optical flow is based on
background removal, meaning that a common flow in the background is found
and subtracted from the image. In many cases of detection with optical flow, the
camera is not moving, meaning that the flow of the background is zero, this will
not always be the case when a camera is mounted on a boat. The method used in
this thesis is therefore inspired by the method from [24], mainly because it takes
both the movement of a camera and the movement in the image into account. An
overview of the method is illustrated in Figure 2.2.

This method first estimates the dense optical flow between two images. In this
thesis, GF is used for this purpose. Some of the optical flow is caused by moving
objects in the image while some is caused by movements of the camera. Defining
the latter movement as m one can decompose the vector into mr and m t which
represents rotation and translation respectively. The rotation and transition in the
image are described by the parameters A, B, and C and U, V, and W respectively.
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Figure 2.2: An illustration of the pipeline of the detection method. First, find
the optical flow in the image and subtract the optical flow component caused by
camera rotation. Then, find the angles of the flow to calculate the probability de-
scribing whether or not a set of pixels belongs to the background. The probability
is then used in the process of segmentation which results in the detection of an
object. The illustration is taken from [24].

The camera motion is found by the method of [25] for camera motion estimation
in an image. This method finds the translation by optimizing

arg min
U ′,V ′,W

∑

i

||ei(vi , U ′, V ′, W )||, (2.24)

where vi is the total optical flow in a pixel and ei is an error component orthogonal
to vi after decomposing vi into pi and ei where pi points in the direction of the
estimated vector field θmt

which will be addressed later. [24], however, suggests
a modified method that also finds the rotation given as

M̂ = argmin
A,B,C ,U ′,V ′,W

�

min
U ,V,W

∑

i

||ei(vi , A, B, C , U ′, V ′, W )||

�

. (2.25)

M̂ is an estimate of the collection of θmt
’s which describes the directional

optical flow for each pixel caused by translation of the camera. One can define
the observed optical flow, after subtracting the rotation as vt . By modeling the
probability of observing a given optical flow vt based on a prior translation vector
field M j denoted p(vt|M j) and a priori p(Mt) one can use Bayes law to obtain the
probability for each translational angle field at each pixel location given as

p(M j|vt)∝ p(vt |M j)p(M j) (2.26)

This can be used to filter out unlikely movements in the image.
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p(M j) is initially found by iterative methods and propagated to the next image.
p(vt |M j) on the other hand is found through

p(vt |Mt)∝ p(θvt
|||vt ||, M j), (2.27)

where θvt
is the angular optical flow field of vt . This probability is well-modeled

by The von Mises distribution [26] and can be found for each image. This will
initially be a uniform distribution given by 1

2π .

(2.26) can then be used to filter out pixels with a non-regular movement by

L = argmax
j

p(M j|vt), (2.28)

and one can segment out the moving objects in the image. For more detailed
information about the method in this section, the reader is referred to [24].

2.3 You Only Look Once

YOLO is a detection and segmentation network which is used for the detection
and classification of objects in an image. The YOLO network was first introduced
in 2015 [27] and has been developed since with the 8th version, YOLOv8, being
released in January 2023 by Ultralytics. In a traditional classification network,
finding candidate regions for objects and classifying the object is done in two
stages. The YOLO network differ from traditional networks as it does the same
process in one stage making it faster. In this section, the general structure of a
YOLO network is explained, not a specific version. It will also focus on a funda-
mental understanding of the network rather than a detailed presentation of each
step.

The backbone of a YOLO network is a CNN which consists of convolutional
layers which extract features from the input data, pooling layers that reduce the
dimension of the input, and fully connected layers that are used for classification
which consists of weights that give certain outputs for each class. The fully con-
nected layers are normally applied last in the CNN. The CNN will not be explained
further in this section, for more details, the reader is referred to [28].

To use the CNN, the input image in the YOLO network is divided into a grid
of cells. Each cell is then responsible for detecting an object placed inside the re-
spective cell. If an object is detected, a bounding box is created. This bounding
box includes information about the location of the object and the confidence of
it being an object of interest. If the object is located between multiple cells, the
cells can collaborate to create the bounding box. An illustration of this process is
shown in Figure 2.3. In addition to the bounding boxes, YOLO also predicts the
probability of the object belonging to a certain class, and the class with the highest
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Figure 2.3: Illustration of how an image is split into a grid where a person is
detected in one of the cells.

probability is assigned to the object. If a segmentation version of the network is
used, additional convolutional layers are used to assign a class to each pixel in the
cell to a class. One will then obtain a mask for each detected object.

A YOLO network is trained by giving the network images with objects with
known localization and class and the network will train the weights to give the
correct output for the class of interest. When training, a loss function gives the
network feedback in three main areas: how well it localizes the bounding box,
the error in class probability, and the confidence of the bounding box. This is
possible as the training data also includes this information. The parameters of the
network are optimized during the training.

2.4 Structure from motion

SFM is a method for reconstructing a 3D scene from a sequence of 2D images with
varying camera positions as well as finding the camera positions in the images that
are used. This is done by analyzing the corresponding features in the images. An
illustration of the principle of reconstruction is shown in Figure 2.4. It should also
be mentioned that the reconstruction of the scene only will be up to scale [29].
To find the true size and distance to objects one would have to combine SFM with
for example other sensors, a depth camera, or stereo vision from two cameras.

The normal pipeline for SFM is shown in Figure 2.5 as the diagram to the left.
The diagram to the right shows the version with the use of LK. The three first steps
that are normally used are based on finding point correspondences in the images
that are used for reconstruction. For feature detection, multiple options can be
used. Some examples are Oriented Fast And Rotated Brief (ORB) [30] and Scale-
Invariant Feature Transform (SIFT) [31]. These methods find the best features
in the image, and will also give descriptions of the surroundings of the so-called
key points that are found. Describing the surroundings of the points can be seen
as the next step in the pipeline. The key points in the different images will then
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Figure 2.4: An illustration of the relation between 2D points in image frames and
the corresponding 3D point. The illustration shows the principle of reconstruction
in SFM. The colors of the points show the correspondences in the respective im-
ages.

be matched. This can be done by for example using the C++ library Fast Library
for Approximate Nearest Neighbors (FLANN) or Brute-force matching. The three
steps that are described in this section paragraph are the ones to be replaced by the
LK optical flow algorithm. This will follow key points between the frames instead
of finding the points in each frame and matching them. The steps will therefore
not be described further in this chapter.

The next steps are motion estimation, triangulation, and bundle adjustment.
In the first two, the 3D location of the points is found as well as the relative location
of the camera from the different images. The bundle adjustment is then applied
to adjust the points to best fit all the images used. The number of images used is
arbitrary, but there should be at least two. The mentioned steps are used in this
thesis, and will therefore be described further in this chapter.

2.5 Camera model

Before elaborating on the last steps in SFM, an understanding of the camera model
and camera matrices is needed.

A camera model is a mathematical representation of how an image of the real
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Figure 2.5: A description of SFM. On the left, is an illustration of a normal
pipeline for SFM, and on the right, is an illustration of the SFM pipeline in com-
bination with LK.

world is captured. This means that it gives the mapping of a 3D point in the real
world to a 2D point in the image. A much-used model is the pinhole model [32].
This model can be described by a set of so-called intrinsics and extrinsics. The
intrinsics are found through calibration for each individual camera with an object
with a known pattern [33].

The intrinsic of the camera model is typically described by a 3x3 matrix called
the camera calibration matrix. A general example of this matrix is shown in Equa-
tion (2.29). The matrix includes information about the focal length of the cam-
era, the principal point, and the skew represented by the parameters f, u, and c
respectively. The subscript of the parameters tells which direction the parameter
is applicable to. Figure 2.6 illustrates how the world frame relates to the image
frame.

K =





fx c ux
0 f y uy
0 0 1



 . (2.29)

The exintrics of the camera represent the relative position and orientation of
the camera with respect to the world frame. The exintrics are given as a 3x3 rota-
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Figure 2.6: Illustration of the coordinate systems in a camera model. The dark
square illustrates the image plane.

tion matrix R and a 3x1 vector t that describes the relative translation. A camera’s
exintrics are useful when working with multiple camera angles as they describe
the relative position of the views. While the intrinsics of a calibrated camera are
known and static, the exintrics describe the relative camera position for a specific
case.

When combining the intrinsics and exintrics one will get the camera matrix

P = K[R|t], (2.30)

which will be exclusive to each camera view in the sequence of images.

Depending on the lens used in the camera, one can obtain different versions of
distortions in the image. The distortion of a camera lens describes how the pixels
in an image are curved as a result of, for instance, using a wide-angle lens to cap-
ture more information about the surroundings. A camera calibration process also
includes finding the distortion parameters of the camera lens. There are different
types of distortion. In this thesis, the camera has a radial distortion [34] which
causes straight lines in the real world to be curved when captured by the lens.

2.6 The fundamental matrix

When working with multiple camera views, it is practical to define the camera
matrix P of the first camera as the starting position as

P = [I |0]. (2.31)

The coordinate system will then be described in relation to the first frame as
described in (2.30). The matrix R and vector t must, however, be calculated as
they are not given. This can be done through the so-called fundamental matrix.
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x ′T F x = 0. (2.32)

The fundamental matrix, F, is a mathematical concept that in which relates
corresponding points in two views of the same scene [35]. The fundamental ma-
trix is computed by using a number of point correspondences in the two views.
A point correspondence can be formulated as x = (x , y) and x ′ = (x ′, y ′). The
fundamental matrix is then defined as in (2.32). Given a 3x3 fundamental matrix,
each correspondence gives a linear equation

x x ′ f11+ x ′ y f12+ x ′ f13+ y ′x f21+ y ′ y f22+ y ′ f23+ x f31+ y f32+ f33 = 0, (2.33)

where fx y corresponds to an element in F, which gives F 8 degrees of freedom.
when writing F as a vector in row-major order, one can, With n number of point
correspondences, obtain a set of equations expressed as

Af =





x1 x ′1 x ′1 y1 x ′1 y ′1 x1 y ′1 y1 y ′1 x1 y1 1
...

...
...

...
...

...
...

...
...

xn x ′n x ′n yn x ′n y ′n xn y ′n yn y ′n xn yn 1



 f = 0. (2.34)

For a solution to exist for this set of equations, A must be of at least rank
8 due to the 8 degrees of freedom in f. If A has rank 8, there exists a unique
solution. However, if rank(A) = 9 > 8 there exist multiple solutions and the
solution can for instance be found through Singular Value Decomposition (SVD).
This approach is called the 8-point algorithm [35]. However, by introducing the
singularity constraint

det(F) = 0. (2.35)

Only 7 points will be needed to find either one or three solutions for the funda-
mental matrix. This minimum case is called the seven-point algorithm and solves
the following cubical polynomial:

det(αF1 + (1−α)F2) = 0. (2.36)

The fundamental matrix is interesting as it can be used to find the camera
matrix, and hence the rotation and translation of the relative camera position
through epipolar geometry. [36] states that a pair of camera matrices P and P’ can
be connected as follows:

P = [I |0] and P ′ = [[e′]x F |e′], (2.37)

where e’ is an epipole in the image and [e′]x is a skew-symmetric matrix of e’. The
rotation and translation of the camera can therefore be extracted from the infor-
mation given by the fundamental matrix from the relation to (2.30) as K is known.
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Figure 2.7: An illustration of RANSAC. The lines are randomly chosen and tested
to see if they fit the points. The best-fitting line is chosen when a criterion is
fulfilled. The best-fitting line is the blue line.

To find representative correspondences for the fundamental matrix (at least 7)
one could for instance use a method called Random Sample Consensus (RANSAC)
[37]. An illustration of the RANSAC algorithm is shown in Figure 2.7 where the
principle is shown for lines that are randomly picked to fit points. In the case of
fundamental matrices, 7 random points are chosen to find a matrix and then test
a criterion to see whether or not it fits for most points. In the case of the OpenCV
SFM module, the error that defines the criterion is the Sampson distance [35].
This is defined as

∑

i

(x ′Ti F x i)2

(F x i)21 + (F x i)22 + (F T x ′i)
2
1 + (F T x ′i)

2
2

(2.38)

and will tell if the fundamental matrix will work for a majority of the point cor-
respondences or if there have been included outliers in the 7 randomly chosen
points.

One problem that can arise with the fundamental matrix is the problem of
ambiguity as described in Theorem 9.10 in [38]. This shows that the relation
between camera poses and a fundamental matrix is non-injective, meaning that a
pair of camera matrices defines a unique fundamental matrix but not vice versa.
This can be a problem in this thesis when defining the movement of an object
as the movement of the camera poses. One can therefore, for instance, obtain
the inverse of the desired solution, where the inverse also is a correct solution in
theory.
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Figure 2.8: A visualization of different camera angles looking at the same object.
The lines illustrate how the transformations work between the different cameras.
One can move between C0 and C2 by combining the transformations.

2.7 Motion estimation

The next step in structure from motion is to use the chosen points to estimate the
camera pose for the respective images that are selected for the reconstruction pro-
cess. This step is needed to later be able to accurately triangulate the 3D points
from 2D correspondences. The motion will be estimated between all respective
frames and point correspondences should therefore be found between all images.

The position of the first camera is usually set to [I | 0] as mentioned in the
previous section. In this way, one will be able to find the rotation and translation
between the frames by using the fundamental matrix as described in the previous
section. The relative camera poses of the number of images one will use can then
be found and will be used for further triangulation. Visualization of different cam-
era views and the rotation and translation between them are shown in Figure 2.8.

Traditionally, SFM is predicated on the assumption that the scene under recon-
struction remains static throughout the image sequence. However, in this case, this
assumption does not hold, as the objects of interest in the scene are moving. To
tackle this, one can mask out the object of interest to separate it from the rest of
the scene. After separation, the movement of the object can be described as a cam-
era motion. In essence, the object’s relative motion can be described as a motion
by the camera within its own isolated scene. This creates an equivalent condition
to the original premise of SFM where the scene is static, making it possible to use
traditional SFM methods.

2.8 Triangulation

After finding point correspondences and the relative position of the camera views,
the next step in the process of SFM is triangulation. Triangulation is a method for
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estimating the 3D position of a point by observing the point in two or more dif-
ferent views in 2D [39].

The process of triangulation is based on finding the 3D point X which satisfies

x = PX , x ′ = P ′X . (2.39)

P and P’ are the projective camera matrices in two different camera views and
x and x’ are the respective points in 2D in the different views. X is the 3D point
that corresponds to the 2D points. The general notation for such a triangulation
is

X = τ(x , x ′, P, P ′). (2.40)

A point that match X in (2.39) would exist in perfect conditions. However, the
points that are used often have some error. This could be errors in the process
of finding points correspondences, but also in the camera calibration process and
the estimation of camera motion. Due to noise, the triangulation process could
therefore result in a small deviation as shown in Figure 2.9. The process of trian-
gulation will therefore also include the minimization of the error that is caused
by noise. The area of uncertainty when triangulating is also affected by the base-
line between the images used. This is also shown in the figure. A small baseline
will make it hard to give information about the depth of the 3D points. To avoid
this problem one should make sure that the position of the cameras has enough
variation.

There are different ways of finding solution X when doing triangulation. One
way is to define a cost function, for instance for a geometric error. Another way is
to use a linear triangulation method. One example is the Direct Linear Transform
(DLT) method. DLT works by solving a system of linear equations. The set can be
solved by for instance SVD. The set of equations to be solved in this problem can
be extracted from (2.39) by taking the cross product x × (PX ) = 0. The following
set of equations is obtained for each point:

x(p3T X )− (p1T X ) =0 (2.41)

y(p3T X )− (p2T X ) =0 (2.42)

x(p2T X )− y(p1T X ) =0 (2.43)

Only two of these equations are linearly independent and one can be removed.
The set of equations can then be written on the form AX = 0 where A is formulated
as

A=







x p3T − p1T

yp3T − p2T

x ′p′3T − p′1T

y ′p′3T − p′2T






. (2.44)
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Figure 2.9: Noise in the calculation process will make it hard to find an exact
solution for X. There will therefore be an error when reprojecting the point and
this error is to be minimized. The yellow points show the correct solution in 2D
and 3D, and the grey area is the area of uncertainty. The area of uncertainty is
also affected by the baseline between the images used in the triangulation. The
three figures illustrate three scenarios with the same point and a different baseline
between the images.

After formulating the set of equations, the goal is to minimize the error

ε= ||AX || (2.45)

which is done by using SVD. SVD gives the decomposition of A on the form

A= U DV T . (2.46)

X can be extracted from the last column in V. It should be mentioned that the
solution only is up to scale as there is one more variable in the set of equations
than equations. Also, the DLT method assumes small or no error in P which places
all the errors in the positioning of x. After triangulating the point correspondences
one will obtain a point cloud in 3D which will show the desired object.

2.9 Bundle adjustment

As mentioned in the previous section, there can occur noise that will give inaccu-
racies in the triangulation process. While the triangulation minimizes an error for
a single point at a time, this step will minimize the reprojection error, the error
after reprojecting the points to the images, for all points simultaneously. This is
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Figure 2.10: An illustration of what could be a good key point in an image. The
green circle shows a corner of an object which is good while the red cross shows
a bad location for a key point.

therefore a good final step in SFM to make the result even better.

In this step, both P and x are thought of as sources of error, and all parame-
ters can be adjusted to find the best fit. The minimization problem in the bundle
adjustment can be formulated as the distance between the original point in 2D, x,
and the estimated reprojected point x̂ given by P̂ X̂ . The mathematical expression
of the problem can be formulated as

min
P̂ i ,X̂ j

∑

i j

d( x̂ , x)2, (2.47)

where d( x̂ , x) is the distance between the real and reprojected estimated point
[39]. This problem can be solved by various methods such as the numerical min-
imization method Levenberg-Marquardt. The reader is referred to [40] for more
detailed information on the topic.

2.10 Finding good points to track

To be able to find good points to track for use as point correspondences in SFM, a
key point detector should be used. Clearly defined points are also key to tracking
with greater accuracy. A key point is a point in an image that sticks out from its
surroundings and will therefore be easier to recognize in a new image.

There are different aspects of a point that can qualify it as a key point. For
instance, the key point could be variant to scale and intensity which will make it
possible to recognize in a new image even if the conditions and camera position
change or the image is subject to processing. It could also, for instance, be located
where the color in the image changes significantly, like on an edge or corner of
an object. I.e. the point should be robust regarding changes. An illustration of a
potentially key point and a bad point for tracking is illustrated in Figure 2.10.
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An example of a method for detecting such a key point is the Shi-Tomasi cor-
ner detector [41]. For this method, the decision if a point is a good candidate for
a key point is based on the information in the gradient of the image. The gradient
of an image describes the change in brightness patterns. The method looks for
small patches in the image with a large change in the gradients. This means that
a small positional change of the point will result in a large change in gradients,
hence, a large change in brightness. A cost function is then used to evaluate the
quality of the key point. For the Shi-Tomasi detector, the cost function is defined as

R=min(λ1,λ2), (2.48)

where λ1 and λ2 are the eigenvalues of the sum of the Jacobians in the area
around the point of interest. The point is defined as a key point if R exceeds a
threshold. The Jacobians are expressed as

J =

�

I2
x Ix I y

I y Ix I2
y

�

, (2.49)

where Ix and I y are the directional gradients of the patch around the point.

2.11 Outlier removal

An outlier is a data point that significantly differs from other data points in the
data set. This is illustrated in Figure 2.11. In the case of this thesis, outliers can
exist due to inaccurate tracking of bad features or by using the resulting bad fea-
tures to find the camera motion in SFM. An outlier can affect the performance of
the methods and should therefore be removed before generating results.

Figure 2.11: An illustration of an outlier marked with red.

In this thesis, the Mahalanobis distance will be used which takes both the vari-
ance in the data set and the distance between points into account.

Mahalanobis distance squared can be defined as

D2 = (X1 − X2)
T C−1(X1 − X2), (2.50)

where C is the covariance matrix of the distribution of the points and X1 and X2
are two different points of interest to measure the distance between them [42].
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When using Mahalanobis distance for outlier detection in a point cloud, X2 can be
defined as the center. One can in this way find points that are located unusually
far away from the point cloud compared to the rest of the points, and then filter
them out with a defined threshold.

2.12 Rotation matrices

The are multiple ways of describing rotation in a coordinate system. One of them
is rotation matrices. A 2D rotation matrix R can rotate a vector in the xy-plane
with a rotation θ and is defined as

R=

�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�

. (2.51)

When rotating objects in three dimensions, the mathematics becomes some-
what more cumbersome but is given in an intuitive way. When introducing a new
dimension the rotation matrix must be expanded to 3x3 and the rotations can hap-
pen in three directions. The rotation matrix can be decomposed in three different
directions, Rx , R y , and Rz , and can be defined as

R= RxR yRz (2.52a)

Rx =





1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)



 (2.52b)

R y =





cos(θ ) 0 − sin(θ )
0 1 0

sin(θ ) 0 cos(θ )



 (2.52c)

Rz =





cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 , (2.52d)

and will rotate a vector in the directions x, y and z with the respective angles φ,
θ and ψ [43]. This is possible because applying the total rotation is equal to ap-
plying one rotation at a time. Another property of the rotation matrices is that the
inverse of the matrix is equal to the transposed matrix such as

R−1 = RT . (2.53)

Information about rotation matrices will be a central part of the calculation of
camera positions and further calculations of for instance heading of the objects of
interest.
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2.13 Extracting yaw angle from rotation matrices

The yaw angle, or heading, is, in a x, y, z coordinate system, defined as the rota-
tion around the z-axis. From the different camera views from SFM it is possible to
calculate the change in the yaw angle of the object. Each camera position is de-
scribed by a rotation matrix which all are related to the same coordinate system.
If the respective camera matrix is defined as

R=





r11 r12 r13
r21 r22 r23
r31 r32 r33



 , (2.54)

as a result of the complete matrix R in (2.52a), where r11 corresponds to
cos(ψ) cos(θ ) and r21 corresponds to sin(ψ) cos(θ ), the rotation in yaw, ψ, can
be extracted by

ψ= atan2
�

r21

r11

�

= atan2
�

sin(ψ) cos(θ )
cos(ψ) cos(θ )

�

= atan2
�

sin(ψ)
cos(ψ)

�

= atan2 (tan(ψ)) (2.55)

This describes the orientation of the object in the xy-plane, or in other words,
the direction around the z-axis.

2.14 Coordinate systems

A world can be represented by three dimensions, and for this purpose, a reference
frame would be handy. It will therefore be necessary to define a coordinate system
that describes the relative position of points and give a description of how points,
for instance, different point clouds are located in relation to each other. In this
thesis, the data will be presented in different coordinate systems. This section will
therefore give a short introduction to the definitions in the ones that are relevant.

2.14.1 North East Down coordinate system

A commonly used coordinate system in for instance navigation is the North East
Down (NED) coordinate system [43]. In this coordinate system, the orientation
of the axes is set to the celestial directions north and east as well as pointing to-
wards the center of the earth. This definition will allow for easy navigation for
instance for vessels on the sea. Figure 2.12 illustrates the direction of the axes in
this coordinate system. The origin can be defined for the given use case. In this
thesis, ground truth will be defined in NED before being transformed and used in
other reference frames.
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Figure 2.12: An illustration of a NED coordinate system. The figure illustrates
how the axes point in the north and east direction as well as down toward the
center of the earth. The globe in the figure illustrates the Earth.

2.14.2 Body coordinate system

Another coordinate system that will be used in this thesis is a body coordinate
system [43]. This is a coordinate system that is fixed to a specific body or a spe-
cific object. The positive direction of the x-axis of this coordinate system will be
pointing in the same direction as the heading of the object. The z-axis is defined
as down. Figure 2.13 illustrates the coordinate system fixed on a boat.

A body coordinate system is often used to describe the position, orientation,
and motion of the object relative to its own reference frame. The object can rotate
in 3 dimensions around each of the 3 axes. Rotation around the x-axis is called
roll, rotation around the y-axis is called pitch, and rotation around the z-axis is
called yaw. The yaw angle of an object will be the most relevant in this thesis.
This is because it described the heading of the object of interest, and therefore,
for instance, can say if a boat is on a collision course or not. Roll, pitch, and yaw
are illustrated in Figure 2.13 as arrows around the axes. The positive direction of
the orientation follows the arrows.

2.14.3 Camera coordinate system

The last coordinate system that will be used in this thesis is the camera coordi-
nate system. A camera coordinate system is commonly used in computer vision
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Figure 2.13: An illustration of a body coordinate system. The figure shows how
x points in the same direction as the heading of the boat. The rotation of the
boat is illustrated with arrows and is defined by the rotation of a right-handed
coordinate system.

to describe the position and orientation of a camera in 3 dimensions [32]. In this
coordinate system, the origin is typically located in the center of the camera. The
way the camera coordinate system differs from, for instance, the body coordinate
system is that the z-axis is aligned with the optical axis of the camera, meaning
that the z-axis points directly out of the camera describing the depth in the image.
The reason for this is that the depth in the camera can be visualized by moving
elements further away from the camera. Followingly, the y-axis points downwards
and the x-axis is perpendicular to the two axes. The coordinate system described
in this section is illustrated in Figure 2.14. The same coordinate system can be
recognized in Figure 2.6 which illustrates the camera model.

By using this coordinate system when working with a camera, it is possible to
determine the three-dimensional location of objects in the camera’s field of view.
This will come in handy when using SFM for scene reconstruction.

2.14.4 Transformation between coordinate systems

When working with different coordinate systems, it is often desirable to transform
between them. The difference between coordinate systems is how they are rotated
and translated in relation to each other. To rotate between a coordinate system,
A, and another, B, one would need the relative rotation matrix, R, and the rela-
tive translation, t. The transformation between the coordinate systems can then
be applied as
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Figure 2.14: A normal right-handed coordinate system from a camera point of
view. This will for instance be used when projecting points from an image to 3D
coordinates. The rotation around the axes is illustrated with arrows.

x ′ = Rx + t, (2.56)

where x is the point in A and x ′ is the same point in B [43]. Followingly, the same
matrices can be used to transform back to the original coordinate system with the
inverse transform

x = RT x ′ − RT t. (2.57)

2.15 Minimum Volume Enclosing Ellipsoids

An ellipse is a geometric shape with the form of a stretched circle. An ellipsis has
two axes which can have different lengths, and the shape of the ellipsis is decided
by two foci which are placed on the longest axis between the center and the end-
points. An ellipsis may be used to circle a point cloud and can be better than a
regular circle as it has more directions of freedom.

If an ellipsis is used to find the shape of a point cloud, it is desirable to create
an ellipsis that includes all points of interest. An ellipsis with these properties is
called a Minimum Volume Enclosing Ellipsoids (MVEE) [44] which covers a set of
points in Rn with the minimal ellipsoid. An example of a minimal ellipse in two
dimensions is shown in Figure 2.15. The problem of finding this ellipsoid can be
scaled to three dimensions with point clouds from boats which will be done in this
thesis. This can be used to estimate the shape and center of the vessel when not
being able to see the whole boat from all angles. This can be used to give more



32

Figure 2.15: An example of a minimal ellipse that covers a set of points in two
dimensions. The ellipse is defined by the points furthest away from the center.

accurate position measurements of the object.

The ellipse in the figure can be formulated on a so-called center-form as

(x − c)T A(x − c) = 1, (2.58)

for all points x on the ellipsoid, where c is the center of the ellipsoid and A is a
description of the shape of the ellipsoid.

One of many methods for solving the MVEE problem is Khachiyan’s algorithm
[45] which is used in this thesis. Khachiyan’s algorithm is based on iteratively up-
dating the weights of points in a set of points, where the weights represent the
probability of a point belonging to the ellipsoid.

The weights, u, will be initialized uniformly as 1/N for each point where N is
the number of points. Also a matrix Q = [(pi), 1] is initialized with all points p in
a data set P with an extra 1 added to each point. For each iteration, a matrix X is
found by

X =Qdiag(u)QT . (2.59)

This matrix is used to find

M =QT X−1Q, (2.60)

which gives a measure for the distance of each point to the center of the ellipsoid.
The index of the largest element in M is found as id x = arg max M and the step
size, β , at the current iteration, is a scalar, decided by

β =
M[ jd x]− d − 1

(d + 1)(M[ jd x]− 1)
. (2.61)
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u is then updated as u = (1 − β)u and u[id x] = u[id x] + β , and the iteration
continues until β gets under a desired threshold.

After convergence, the matrix A, which describes the shape of the ellipsoid
and the center, c, is given as

A=
1
d
(PT diag(u)P − cT c)−1, (2.62)

and

c = uP, (2.63)

which is used to describe the MVEE in (2.58).
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Platform

To evaluate the results of direct methods such as optical flow, it is helpful to an-
alyze the tracking of actual data in the marine environment. In this thesis, the
methods introduced have the purpose of detecting and tracking objects in marine
environments, especially for the autonomous ferries milliAmpere 1 and its succes-
sor milliAmpere 2; two autonomous ferries that have been developed and tested
in Trondheim, Norway. This chapter includes an introduction to milliAmpere 1
and milliAmpere 2, a description of the vessels that are apparent in the data, and
a description of different scenarios in which the data has been recorded. Parts of
the descriptions in this chapter will be related to the corresponding chapter in
[15] as the same data is used.

3.1 milliAmpere 1 and milliAmpere 2

The milliAmpere ferries are autonomous ferries that are developed at NTNU by
students and employees [46]. The ferries are among the first of their kind, and
the autonomous ferries could potentially contribute to for instance urban marine
environments in terms of efficiency. They could also replace bridges which can
be time-consuming and expensive to build. This could also make transport more
available. Another benefit of an autonomous ferry, compared to regular ferries,
is that fewer humans need to interact with the system, and one person alone can
observe multiple ferries at once as the ferries likely will be monitored at land. This
will lead to lower costs in terms of salaries and could reduce the risk of human
error if the ferries are made safe. milliAmpere 2 was first tested by the public in
the fall of 2022 between Fosenkaia and Ravnkloa in Trondheim.

The ferries are 5 and 8 meters long respectively, which makes them significant
in size in smaller channels, like for instance in the channel in Trondheim. The
velocity of the ferries is 5 knots which is the speed limit close to the shore. Never-
theless, the speed and size make it necessary to make sure that the ferries travel
safely in their environments. To fulfill the safety measures for such a vessel and
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be aware of its surroundings, it is necessary with a variety of sensors. The ferries
are equipped with optical cameras, infrared cameras, LIDAR, and radar which all
can be used for tracking. In this thesis, however, only the optical cameras will be
regarded as only direct optical methods are used. In milliAmpere 1, there are 5
optical cameras [47]. These create a 360 degrees view, and one can therefore track
vessels behind, in front of, and next to the ferry. In this thesis, the front camera
will mainly be used as the target for detection and tracking mostly is apparent in
this camera. However, for further use, all cameras should be used.

Figure 3.1: milliAmpere 1 docked in environment 2, the channel in Trondheim.
Image from [47].

3.2 External vessels

In the recorded data, different vessels are used to create scenarios that are suited
for tracking. The vessels are of different sizes and have different properties that
will represent vessels that are likely to meet in the common surroundings of the
ferry.

One of the vessels used is pictured in Figure 3.2 and is called Gunnerus. This is
a large boat that is owned by NTNU and is often used for research purposes. A boat
of this kind may be a common sight in the surroundings of autonomous ferries.
Gunnerus is large in size, making it easy to recognize and separate from the sur-
roundings. The speed of Gunnerus is relatively slow compared to smaller boats.
The movement of the boat between different frames will therefore be smaller,
which may make it easier for tracking algorithms to keep track of the boat. The
size of Gunnerus may also result in occlusion, as it can cover smaller boats, which
is an interesting and important scenario to analyze.
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Figure 3.2: Gunnerus in environment 1. Image from [47].

A second vessel that appears in the scenarios used in this thesis is Havfruen.
Havfruen is a smaller boat than Gunnerus and is owned by a student organization
at NTNU called Mannhullet. Due to the smaller size of the boat, it can maneuver
at higher speeds than Gunnerus and may be harder to notice when further away in
the image frame. Havfruen can be seen in Figure 3.3. The color of the boat makes
it stand out from the background in many cases, and can therefore be an interest-
ing target when tracking close to buildings and other detailed backgrounds.

The third vessel that will be present in the data is a jet boat which can be seen
in Figure 3.4. This boat is smaller than the previous one and therefore includes
fewer important features when tracking. The vessel’s color will also make it blend
in with the surroundings, making it harder to detect and track.

Figure 3.3: Havfruen in environment 2. Image from [47].
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Figure 3.4: Jetboat seen in environment 2. Image from [47].

3.3 Environments and scenarios

The data that is used is sampled from two different environments. Both environ-
ments are located in Trondheim, but in other surroundings varying the conditions
around milliAmpere 1. milliAmpere 1 meets different challenges in different en-
vironments which gives interesting problems for tracking algorithms. For all the
scenarios, ground truth is provided from GNSS antennas mounted on the vessels.

3.3.1 Environment 1

Environment 1 is situated outside Piren in Trondheim. This environment includes
open water in Trondheimsfjorden, where waves can disturb the tracking algo-
rithm. Besides this, the background in this environment has few details, which
makes it easier for boats to stick out from the background. This will make track-
ing and detection of different vessels easier. A map of environment 1 is shown in
Figure 3.5 described by the green area. The targets that are involved in the image
sequences in environment 1 are Gunnerus and Havfruen. The recording in this
environment happened on the 4th of May 2021 from 09:44 to 13:41.

From the examination of the data from Environment 1, a particular scene
stands out and will be referred to as Scenario 6 from this point forward. The sce-
nario is illustrated in Figure 3.6. This scenario is particularly in focus as it most of
the time represents a simple scenario with only Gunnerus present. The scenario
also includes a significant maneuver by Gunnerus where a relatively large direc-
tional change is performed in a small time interval. This will be a good scenario to
study later on with motion estimation and SFM. Along with Gunnerus, Havfruen
is also present in this scenario. However, this boat will play a smaller role and be
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Figure 3.5: A map showing the two environments where the data is recorded. The
green area shows environment 1 and the red area shows environment 2. Image
from [47].

less visible.

3.3.2 Environment 2

Environment 2 is located in the channel in Trondheim. The data from this scenario
was recorded on the 5th of May 2021 from 10:52 to 11:57. In this environment the
background has significantly more features than the previous environment which
may cause disturbances when detecting and tracking. As the channel is somewhat
shielded from the open water, the water is much more still in this environment,
and waves are likely less of a problem. The vessels that are used in this scenario
are Havfruen and a jet boat. Gunnerus is not included due to its large size. In
addition to this, boats are docked in the channel which is an interesting scenario
for detection. The environment can be seen in Figure 3.5 as the area covered in
red.

For this environment, one scenario has been chosen to analyze the detection
and tracking performance. The scenario is referred to as Scenario 13. The sce-
nario is shown in Figure 3.7. Here, both Havfruen and a jet boat are involved.
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Figure 3.6: Scenario 6, showing environment 1 and the tracks of the included
vessels. Circle illustrates the starting point and the star shows the endpoint. Image
from [47].

Both boats are small in size and have unclear features which will make tracking
harder than in Scenario 6. The colors of the boats are also different which may be
interesting to analyze.

Also, the backgrounds are different in the two scenarios. The background in
Scenario 13 is more detailed than in Scenario 6 which may cause problems when
trying to recognize the objects of interest.

3.4 Data

At land, there already exist multiple data sets for the purpose of detection and
tracking. One example is the KITTI data set [48] which is specially built for au-
tonomous vehicles in traffic. In the marine environment, however, the amount of
data is smaller, which can indicate that the focus has not been on autonomous
vessels yet. When detecting and tracking by sea, one finds themselves in a differ-
ent setting and can meet new problems like waves and new movements in the
camera. The given data set was therefore made for this purpose and is recorded
in Trondheimsfjorden.

The data is sampled as sequences of images. An example of an image is shown
in Figure 3.8 which shows Gunnerus in environment 1. In addition, there is pro-
vided ground truth of the vessels with respective transformations for each frame.
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Figure 3.7: Scenario 13. The background shows Environment 2, circles illustrate
the start of the track, and stars show where the tracks end. Image from [47].

This makes it possible to transform the ground truth of a vessel into the image
frame for comparison.
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Figure 3.8: An example of an image frame that is used for testing. The image
shows Gunnerus in environment 1 and is recorded by milliAmpere 1.



Chapter 4

Methodology

4.1 Camera calibration

The camera projection matrix, as described in Section 2.5, for the camera used to
create data in this thesis is already given in the data set. This matrix is normally
found through a camera calibration process where an object with a known shape
is used to get the correct output from the camera. This is, however, not necessary
for this camera as it has already been given. On the other hand, the lack of insight
in the calibration process can be a source of error but is not considered critical.

The lens that is used to create the data set causes distortion in the images. The
distortion parameters are also given for the camera in this data set. The images
before and after correcting the images in the data set are shown in Figure 4.1.
The black area around the undistorted image will be cropped when displaying
the results of this thesis.

Figure 4.1: A distorted image (left) and the same image without distortion
(right).
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4.2 Detection - optical flow

The technique in Section 2.2 is tested for background removal and detection of
moving objects in the image frame. The code for this method is provided with the
paper and the method is therefore not implemented from scratch. The implemen-
tation has been done in MATLAB. The implementation which originally included
the Horn-Schunck dense optical flow method[49], was updated by replacing the
optical flow method with GF. This was done due to the computation time of the
algorithms as the performance of both algorithms was similar based on testing of
both algorithms.

The method includes different variables which can be used as tuning param-
eters. A von Mises distribuiton can be formulated as V (µ,κ). This distribution
directly affects the segmentation process of the method as p(vt , M j) is modeled
with von Mises. This is the probability of the appearance of a flow vector in a flow
field. The parameter µ is decided by the estimated optical flow angle caused by
the translation of the camera. κ is, on the other hand, a tuning parameter that de-
scribes the expected magnitude of the flow in the background. This can be tuned
for the purpose of this task and will come in handy when avoiding the detection of
waves in the water. Also, the new motion detection probability p(M j) can be used
for tuning. When lowering this parameter, it tells the algorithm that it should be
very certain that a new movement is a new object and not a wave or reflection in
the water.

The implementation of the Gunnar Farneback (GF) optical flow algorithm for
this research relies on the calcOpticalFlowFarneback function from OpenCV. It is
essential to adjust the parameters of this function to ensure its suitability for ma-
rine environments. This function takes two images as well as the previous optical
flow used for initialization. In addition, the function takes in a set of tuneable
parameters.

The first parameter is the number of layers in the pyramid. This is intrinsically
linked to the iterative loop process introduced at the end of Section 2.1.3, where
the prior displacement field (d̃(x )) is integrated into the algorithm. The pyramid
structure helps to handle large displacements that could occur in dynamic marine
environments. The number of layers in the pyramid directly corresponds to the
number of iterations we perform to improve the estimate of the displacement field.

Next, the scale for each layer in the pyramid is essential for determining the
relative sizes of the displacement fields that are being compared at each level.
This helps adjust the algorithm to handle various spatial frequencies in the im-
ages, thereby assisting with the assumption of the second-degree polynomial rep-
resentation of pixel regions.
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The window size parameter aligns with the concept of neighborhood. Larger
window sizes imply broader neighborhoods being considered for polynomial fit-
ting and displacement estimation, which in turn influence the level of detail cap-
tured in the optical flow. More extensive windows may yield a smoother, more
generalized flow, while smaller windows can capture more intricate flow patterns.
A well-chosen window size helps balance between capturing the details of the flow
and smoothing out the noise.

The pol yσ parameter adjusts the blur of the image. This helps to reduce the
effect of noise in the marine environment. Noise, in this setting, is meant small
disturbances which are unimportant and can cause inaccurate overall estimations.
This is disturbances such as water reflections and waves.

Lastly, the pol yn parameter governs the degree of the polynomial used for
approximating the flow of each pixel. It directly impacts how effectively one can
align with the assumption of a second-degree polynomial representing the region.
A larger pol yn results in a smoother flow, albeit with the possibility of missing out
on more detailed aspects.

In this research, an interactive tuning interface as shown in Figure 4.2 is used
to adjust these parameters in real-time, examining their impact on the resulting
optical flow. This empirical tuning process plays a crucial role in aligning our im-
plementation of the GF algorithm with the theoretical principles discussed, and
in optimizing its performance for our specific marine context.

4.3 Detection - YOLOv8

When using optical flow for detection it will be useful to compare the results with
another different method. An example of a state-of-the-art method that uses ma-
chine learning to detect objects is YOLOv8 which is created by Ultralytics and
is the eighth version of the YOLO networks. There is not yet released an official
paper on this network. As the currently most efficient and accurate method, it is
viewed as the most relevant method for comparison.

A YOLO network has to be trained to give reasonable results. YOLOv8 comes
with different versions of pre-trained models which include the classes from the
COCO data set [50]. In the COCO data set, classes for different vessels are in-
cluded, and the pre-trained weights are considered sufficient for the detection in
this thesis. One can pick only the desired classes in the COCO data set to make the
detector only detects boats. There are different versions of the pre-trained models
that come with YOLOv8 which vary in size and followingly also run time and ac-
curacy. As this potentially will be used in a real-time system, the smallest model,
named yolov8n-seg.pt, is used due to its small runtime.
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Figure 4.2: Tuning of the parameters in the GF function. The parameters can be
changed along the image sequence, and one can see how the parameters change
the result. The jet boat is standing out from the surroundings in the current frame.

4.4 Tracking

Tracking points between images in a sequence is a central part of this thesis. The
tracking is done with the optical flow method LK described in Section 2.1.1. The
LK algorithm that is used in this thesis is the OpenCV function calcOpticalFlow-
PyrLK. This function takes a list of points in the first image, the first image itself,
and a second image as parameters. It also lets the user adjust the window size
and the number of layers in the pyramid. It followingly uses the pyramid imple-
mentation which will handle large changes in the image well.

The tuning parameters of the LK function will have an impact on the perfor-
mance of the tracking of the points. The parameters that will be used in this thesis
are a window size of 25x25 and the number of layers in the pyramid is 4. The num-
bers that are used follow from the analysis done in the specialization project of
Erik Daniel Haukås Moe [15]. In summary, a larger window size will decrease
the accuracy of the track as it may include parts of the image that move with a
different optical flow than the object itself. A smaller window size will increase
the accuracy but will, on the other hand, make it less robust to large changes in
the position of the point. The number of layers that are used in the pyramid will
affect how the algorithm handles large changes in the image. However, it can be
argued that the number of layers needed rarely exceeds 5 since, for instance, an
image of shape 2000x2000 would be reduced to 125x125 in the 5th layer.
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The value minimized by the LK algorithm in (2.2) can be used to measure
the error of a tracked point. This error can be used to filter out points that are
tracked inaccurately. After every point was tracked throughout the entire image
sequence, points with a significantly higher maximum error were filtered out.
More specifically, points with a maximum error higher than the mean maximum
error plus one standard deviation were removed.

4.5 Initial tracking points

Initial points are needed to be able to locate points in an image sequence. The
points are easier to track if the points are set to clear features on the object of inter-
est. To find the features that are used for tracking, the OpenCV function goodFea-
turesToTrack is used which is based on the Shi-Thomasi feature detection method
as explained in Section 2.10. This function takes the respective image as an input
parameter and has the possibility to add a mask to the image. This makes it possi-
ble to mask out the target and only find points that belong to it. When masking the
objects of interest manually, it is important to ensure that the mask only includes
the object and not the background which would give outliers. It may therefore be
a better approach to have a small margin inside the object than to mask it exactly
on the border.

Further, the function allows the user to specify the minimum distance in pixels
allowed between the points and the threshold for the quality of the points. This
makes it possible to spread the points out on the object and only chose points over
a specific quality level. It will, however, always choose the best possible points,
and it may therefore be a better approach to adjust the number of points param-
eter, which is also included in the function, rather than the desired quality. Also,
the minimum distance between points has a great correlation with the maximum
number of points used. This is because there are fewer possible points in a mask
the larger the minimum distance gets.

When analyzing the pose of a target, the latest information is the most impor-
tant information in the latest frames. When choosing points that will later be used
for SFM, one will assure that the results are most correct for the latest frames. The
initial points are therefore chosen in the latest image and tracked back in the ear-
lier images to assure that the best points in the most recent frame are used. This
is done to give the best results when analyzing the performance of the methods.

The masks that are being used are created by using functions from OpenCV
that allows you to create a best-fitted polygon to points. The points are chosen
manually and the polygon and mask are then made. The mask can then be stored
for further use and will provide consistent initial data for the tracker. An example
of how a mask is provided is shown in Figure 4.3. Here, the points are chosen
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(a) Choose points. (b) Create mask.

Figure 4.3: The process of making a mask. First, choose points around the object
and then create a mask from the resulting polygon.

manually by the user, and a mask is created from the respective points.

4.6 SFM - OpenCV

The OpenCV SFM module is used to do reconstructing in 3D. This module is cho-
sen as it can be used in Python which was seen as convenient as it would be easier
to use with the rest of the project as well as being efficient. It is also possible to
use the SFM module in C++ which is the language OpenCV is written in. This
makes it versatile for combining with new projects in the future.

The SFM module is not in the standard OpenCV library. To access the module
one would have to include the OpenCV contrib library. This requires the user to
build OpenCV from source while including the path to the OpenCV contrib where
the contrib modules are. This is a cumbersome process as there is not much doc-
umentation of either the module or the installation process. Nevertheless, while
building the OpenCV library, one can include the path to Python and will get access
to the desired functions. For the SFM module to work the dependencies, Eigen,
Google Flags (gflags), Google Log (glog), and Ceres-solver must be installed.

The SFM module includes four different versions of the reconstruct function
which includes the pipeline for reconstructing a scene in 3D. In two of the func-
tions, the input parameters are the desired images and a K matrix. These two
functions control the whole pipeline themselves. They, therefore, find their own
point correspondences using SIFT and will not give the user the option to find
their own correspondences with another method. In this case, it is desired to use
LK to find the point correspondences between frames. Therefore, other versions
of the function reconstruction are more desirable to use.

In the two other functions, it is possible to find point correspondences in ad-
vance and give them as an input parameter along the K matrix. In this way, one
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can combine LK with SFM. When using this function directly, it will change the
K matrix in the bundle adjustment process with a refinement function. As the K
matrix already is defined in the data set, this process will give a wrong result.
The final refinement step is therefore omitted to avoid this. It should be men-
tioned that bundle adjustment still is performed. The output from this function is
the 3D point cloud as well as the respective R and t matrices for each camera view.

The approach for reconstruction with multiple views used in the OpenCV func-
tion is incremental. An incremental approach means that it initializes the recon-
struction with two views, desirably to have the greatest baseline, and then contin-
ues to add more views incrementally by finding correspondences in the new view
and performing camera motion estimation, triangulation, and bundle adjustment
[51]. The desired amount of views is then added to the reconstruction.

An additional change has been made to the original reconstruct function in
the SFM module. The original function used the two first frames, and point corre-
spondences, as a base for the result. This will not fully exploit the possible baseline
made with a larger number of images. In an attempt to make the reconstruction
more accurate, a new input parameter has therefore been added where one can
select the desired keyframes. The keyframes will make a basis for the reconstruc-
tion where new images are added. These are later bundle adjusted to fit the point
cloud.

The OpenCV SFM module comes with some examples of its use. To give an in-
dication of how the result will be looking, an example of a use case from OpenCV
is shown in Figure 4.4. Here, the function that takes images as input is used. The
functionality of the functions is however the same and will give equal results with
equal points. The different camera views are shown in the image and the recon-
struction indicates the shape of the temple.

A visualization library in OpenCV called Viz is used to display the 3D point
clouds before the cloud is transformed into new coordinate systems. This is be-
cause the library easily can display intuitive camera views together with the point
cloud. Viz is included in the OpenCV contrib and is installed together with SFM.
This is the same library as used in Figure 4.4. After being transformed, the point
cloud will be displayed with the Python library matplotlib.

4.7 Correcting result from SFM

Figure 4.5 illustrates the setup of the camera that is used for the data in this the-
sis. The camera is mounted with a 15 degrees slope pointing downwards toward
the ocean. This would give a deviation when calculating the change in yaw. How-
ever, this error is removed with a fixed transformation from the camera to the
body frame. This transformation also converts the result from camera coordinates
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(a) The input images given to the reconstruct function.

(b) The resulting 3D reconstruction of the object. The elements
connected by lines are the different camera views from the im-
ages above.

Figure 4.4: The illustrations show images and the reconstruction of the Middle-
bury temple which is a model of the "Temple of the Dioskouroi" in Agrigento. Both
images are taken from [52].

Figure 4.5: An illustration of the tilt of the camera on milliAmpere 1. The image
taken from [47].
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Figure 4.6: The result of the transformation from the camera coordinate system
(subscript c) to the body coordinate system (subscript b). The 15 degrees slope
can be recognized. Also, notice how the z-axis (body) replaces the y-axis (cam-
era).

to regular NED coordinates. By correcting the slope, one will get more correct
estimates when looking at movements relative to milliAmpere 1. The new body
coordinate system after the transformation is applied to the camera coordinate
system is shown in Figure 4.6.

There is also a 20 cm translation in the x-direction between the camera mounted
on milliAmpere 1 and the center of milliAmpere 1. This may cause a small devia-
tion between the estimated yaw angle and ground truth. However, as the results
only are up to scale, it is not possible to correct this deviation. Some of the error
may therefore be caused by this, but will, however, only make the results slightly
inaccurate.

4.8 Positive and negative direction for yaw

When looking at the change in yaw angle, a consistent notation is important. Fig-
ure 4.7 illustrates the interpretation of a positive and negative change in heading.
This also means that 0 degrees in the heading are defined as moving along the
north axis. When working in a body coordinate system fixed at milliAmpere 1,
0 degrees means that the target is moving or heading in the same direction as
milliAmpere 1.
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Figure 4.7: An illustration of how positive and negative yaw is defined in this
thesis in the NED frame.

4.9 Estimating relative yaw rate from SFM

SFM gives rotation matrices as output. These matrices give information about the
relative yaw angle between milliAmpere 1 and the target. Without scale, it is hard
to decide the absolute heading of the target. However, it is possible to find the rel-
ative change in the target heading by the information from the rotation matrices.

Section 2.13 presents how yaw can be extracted from a rotation matrix. The
relative change in the heading, or relative yaw rate, can then be extracted by
finding the yaw from the resulting rotation matrix after multiplying the inverse
rotation of the first rotation matrix with the second rotation such as RT

1 R2. The
relative yaw rate can be caused by both a camera rotation and a rotation of the
object of interest. The frame rate of the camera is 0.2 seconds. As the yaw angle
per second gives the yaw rate, the results are multiplied by 5 to get the rate from
the change between the rotation matrices.

4.10 Simulated real-time scenario for yaw rate estima-
tion

When estimating the relative yaw rate in a real-time situation, one would like to
always estimate the yaw rate for the latest image at all times to have the newest
information about the target. To obtain this one would have to include the newest
image in the SFM reconstruction. With the OpenCV reconstruct function one will
only be able to perform SFM on a newly updated set of images. By using a moving
window of images, iterated by one at each iteration, one will be able to simulate
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a scenario where a new image is received and a new reconstruction is done to
retrieve the information about the latest relative yaw rate. This is a cumbersome
process where the information is calculated multiple times, and the usage in a
real situation may demand a more efficient algorithm. However, as the points are
found in the last image one can assume that the last result would be accurate and
the method could give a good representation of how the performance would be
in a real-time scenario.

4.11 Estimating the center of the target

When using an image sequence to reconstruct a target with SFM, one would usu-
ally not have a 360 degrees view of the target. This will give a point cloud that
does not match the shape of the real target and it will be hard to find the center
of the vessel. An error in the vessel center can propagate when trying to estimate
the position of the target, and one will try to find a candidate point that is located
as close to the volumetric center of the object as possible.

The method that is used in this thesis to estimate the center and shape of the
target is the MVEE. This will create an ellipsoid in 3D which will use the current
knowledge of the target to estimate the shape, and hence be able to find the real
center. The method that is implemented in this thesis is Khachiyan’s algorithm
which is described in Section 2.15.

Another approach could for instance be to use the mean of the point cloud.
This gives the mass center of the point cloud which could be a good approach if
the point cloud was uniformly distributed. In this case, it will, however, emphasize
the parts of the vessel with the most features which will not necessarily be in the
center.

A method that is based on including all points in a data set may have some
weaknesses. For example, the method may not be very robust if outliers appear
in the 3D reconstruction. This would give a wrong ellipsoid and hence a bad esti-
mate of the center. Nevertheless, outlier removal is used in this thesis to prevent
this from happening. Also, since the results presented in this thesis will be highly
visual, one can, by inspection, see how well this method works.

4.12 Estimating position of the target from reconstruc-
tion

In addition to heading, one can also obtain information about the position of the
target by looking at the results from SFM. The position of the target is given as
relative to milliAmpere 1 up to scale. The position of the target is best estimated
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as the center of the object. The center of the object will be found with the method
presented in the Section 4.11. Information about the course will also be given as
the direction between two positional measurements.

To determine the scale, or the actual distance to the object, one would have
to use techniques beyond what is used in this thesis. However, since the ground
truth gives the actual distance from the target to milliAmpere 1, one can use this
information to obtain scale in the coordinate system of the reconstructed point
cloud. This will make it possible to obtain a scale for the resulting point cloud and
views, making it possible to analyze the position estimates given by SFM and the
tracking from LK.

An alternative way of determining the target’s position is to track a point in
the image frame using LK and directly project the point to world coordinates. This
is possible if the scale is available and will be tested and compared to the previous
method with SFM.

4.13 Ground truth

A ground truth is needed to analyze the pose estimation performance. The ground
truth will in this thesis be based on the measurements from the data set given
and will be used for comparison with the estimates. The ground truth originates
in GNSS measurements for the position of the targets and milliAmpere 1 in the
world frame related to Piren, as well as IMU measurements for the orientation
of milliAmpere 1. These measurements may have some errors due to inaccurate
filtering which will give a varying quality of the data used at ground truth in this
thesis. The uncertainty in the equipment also gives oscillations which can make
the ground truth inaccurate for slowly moving objects in terms of heading when
the distance between the consecutive position measurements is small. This will
be attempted smoothed out to make the data more accurate. Nevertheless, as the
ground truth may be somewhat inaccurate, the more important it is to see if the
estimations follow the same trends as the ground truth which will give informa-
tion if the methods are working or not.

4.13.1 Ground truth for change in heading

The vessels that are used as targets in this thesis do not have any IMU measure-
ments and therefore lack any information about the heading. The data from the
GNSS measurements is therefore used to create ground truth for the heading of
the targets. It is assumed that the target is moving in a forward direction, mean-
ing that it is going in the same way as the heading in the data in this thesis. The
heading can therefore be calculated by looking at the angle of the vector between
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two consecutive position measurements. This will make the heading and course
the same. One factor that can make the heading differ from the course, which is
more or less what is used in this thesis, is currents in the ocean that can somewhat
change the course. However, this is not regarded as a big enough problem, and
the lack of data makes it hard to deal with. In the case of milliAmpere 1, the avail-
able data gives the heading of the ferry based on data from an IMU. The same
assumptions will therefore not be made for milliAmpere 1.

4.13.2 Transformation of ground truth

When using SFM to get information about a target, the results will only be up to
scale. This means that, for example, the distances between camera angles will not
be representative of the world coordinates and the size of the target will not be
correct. To compare the results in the world frame would therefore not be possi-
ble as one for instance cannot apply the static translation from the camera to the
body of milliAmpere 1 to the result.

What is possible, however, is to move the ground truth from world coordinates
to the coordinate system fixed on milliAmpere 1. This will describe the movement
of the target from the perspective of milliAmpere 1 and one can find relative in-
formation from the camera and compare it to the relative ground truth.

4.14 Pre-processing of rotational measurements

As mentioned, in [46], the rotational measurements regarding the pose of mil-
liAmpere 1 are measured by an RTK-GNSS receiver with two antennas providing
position and heading. In addition, it is also equipped with an Inertial Measure-
ment Unit. milliAmpere 1’s navigation system fuses these measurements to use in
an alpha-beta filter. This intends to produce a smooth and accurate pose estima-
tion in six degrees.
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Results: Detection

The following chapter will present the result obtained from testing the setup for
detection on objects close to milliAmpere 1 with both optical flow and YOLOv8.
The methods will then be compared to see which will perform best. The per-
formance will mainly be evaluated based on visual inspection of the masks and
detections of the surrounding objects, but also other metrics such as runtime and
compatibility.

5.1 Detection with optical flow (GF)

The results of detection with optical flow come from tuning and testing as de-
scribed in Section 4.2. The values of the parameters which has been used in the
OpenCV GF function are shown in Table 5.1, and are found by empirically ana-
lyzing which values gave the best flow estimate for detection purposes.

Table 5.1: Tuning parameters for GF for detection with optical flow. The values
are found empirically.

Parameter Value
Layers in pyramid 3

Pyramid scale 0.14
Window size 16x16

Iterations 4
poly_sigma 14

poly_n 5

The tuning is done for the sequence illustrated in Figure 5.1. In this sequence,
the movements of milliAmpere 1 are small and consistent, meaning that there are
no rapid changes in movement, and the movements of the boat will differ from
the movements of the background. The resulting detection shows that the method
manages to locate the moving boat well and keeps track of it during a longer se-
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quence. One notices, however, that the mask is somewhat outside the boundaries
of the boat. This results from a larger window size where some of the water is
given the same flow as the boat.

Figure 5.1: The detection of Havfruen in a sequence of images. The left image
shows an image early in the sequence while the image to the right shows how
Havfruen has moved closer to milliAmpere 1 later in the sequence. The masks
are covering Havfruen well, with some deviations. The camera movements are
more or less uniform during the sequence.

A part of the algorithm is to estimate the movement of the camera to subtract
the flow in the background. An interesting case to analyze would therefore be to
look at a scenario where the camera has a rapid change in movement, for instance,
when milliAmpere 1 rotates in a new direction. This is illustrated in Figure 5.2.
In the leftmost image, the movement of milliAmpere 1 has been continuous be-
tween multiple consecutive frames. In the next image, to the right, the movement
changes direction. The method then struggles to estimate the movement of the
camera accurately, and followingly, some movement in the background is included
in the detection. This is not desired behavior from a detector. One positive side of
this example is that it detects the jet boat, which does not completely stand out
from the surroundings.

To further address the problem of a moving camera, the detection of Gun-
nerus in environment 1 is attempted in Figure 5.3. In this environment, waves
affect the stability of the camera to a higher degree than in environment 2. The
figure illustrates how the detection is affected by waves. Also, the resulting mask
of Gunnerus is somewhat incomplete which is caused by the size of the areas with
similar color on the hull of the boat. The detected spots in other parts of the im-
age are likely caused by changes in brightness or reflections of light in the water
and the change in camera motion. Change in brightness is also a possible source
of error when using optical flow for detection, and, for instance, a light spot in
the water can be misdirected as a moving object. The masks which do not mark
the moving object could be filtered out by tuning, for instance, the probability of
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Figure 5.2: An illustration of the detection of the jet boats with the optical flow
based method. The images are consecutive in sequence. The detection in the left
image is more or less accurate. Between the images, the rotation of milliAmpere
1 changes direction, and the method does not handle this well.

detecting new objects or the GF algorithm differently. Nevertheless, it is hard to
find a generalized tuning that would work for scenarios, and one would have to
use some case-specific parameters for it to work well.

The efficiency of the algorithm is a bit varying depending on the size of the
input images that are used. When using the true size of the images, the runtime
varies from 3 to 5 seconds on a normal CPU. When reducing the size of the image
to half the size, the runtime is lowered to an average of 0.5 seconds at the expense
of the detection quality. If the system is used in real-time, these runtimes can be
considered insufficient and will cause a delay in the system. However, the runtime
could be lowered by optimizing the algorithm and running on GPU. Nevertheless,
this is out of the scope of this thesis.

A positive side of the optical flow based method is that no training or infor-
mation is needed in advance before running the algorithm. This means that it can
detect everything that may appear in the water without any previous informa-
tion about what an object may look like. The method is therefore versatile when
it comes to the detection of objects. It also only detects objects that are moving.
Docked and still-standing objects may not be equally important to analyze and
may only be considered a general obstacle that should be avoided.
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Figure 5.3: The detection of Gunnerus using optical flow in environment 2. The
movements in the camera are highly affected by waves which are reflected in the
detection result.

5.2 Detection with YOLOv8

YOLOv8 is also tested for comparison with the method from the previous section.
A YOLOv8 segmentation model is used which allows for displaying both the de-
tection in the form of a bounding box and the segmentation of the object. The
segmentation can further be used as a mask for feature extraction and tracking.
As a pre-trained model has been used in this thesis, no results from training will
be included.

In Figure 5.4, the YOLOv8 network is tested on data from environment 2 in
the channel in Trondheim. The results show two images where Havfruen is far
away and close to milliAmpere 1. In the image to the left, the confidence level
of the detection of Havfruen is much lower than in the image to the right, with
33% and 48%, respectively. The percentages are still low, but this shows how the
detector’s confidence increases as the object becomes clearer. This is expected as
the detection model is based on features from a training data set which becomes
more visible in the right image.

Another way this result differs from the detection algorithm based on optical
flow is how boats that stand still also are detected. This will be beneficial as it
gives more information about the surroundings. It can, however, be argued that
it is necessary to care about boats that are docked. Nevertheless, more informa-
tion is always desired, and the tracking of docked boats will not be problematic.
In the given detection results, the quality of the detection of the docked boats
varies. A general observation is that the boats in the areas with varying detections
blend in with the background. This is an example of how YOLOv8 can miss out
on information when, for instance, lighting condition and color makes the objects
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less visible. This could, however, be fixed by using larger pre-trained models with
better detection accuracies. The size of the models will give a trade-off between
speed and accuracy. In addition, the smallest model often manages to classify the
objects, even with some flaws, while the larger models are somewhat more strict
when making decisions.

Figure 5.4: Detection of boats in the channel in Trondheim. Both Havfruen and
the still-standing boats are detected and segmented with high precision. It is ob-
served that the confidence of Havfruen being a boat is increased as it approaches
milliAmpere 1. The boats in the first frame are generally of low confidence as they
are less clear.

In Figure 5.5, another example of using YOLOv8 is shown. The figure shows
images of Gunnerus when located far away and close to milliAmpere 1. In both
cases, the detector manages to locate Gunnerus. When looking at the detection
confidence, however, one notices that it gets much more confident of the detec-
tion when Gunnerus is closer to the camera with a confidence of 50% compared
to 90%. This is consistent with the result in Figure 5.4. It also shows that tracking
can begin when a boat is far from the camera if lower confidence is accepted.

The mask and an illustration of the points found in the mask are shown in Fig-
ure 5.6. All the points are located on the target, indicating that such an automatic
process of finding points works well.

Another important aspect when comparing the two methods is the runtime
for the different algorithms. As mentioned, the method based on optical flow has
a large runtime. This is due to non-optimal implementations of the different parts
of the method and more heavy algorithms. The runtime of YOLOv8 is significantly
less and can run in milliseconds for each image on a regular CPU. This is a huge
benefit if the method is used in a real-time system, and one would like to have the
information as fast as possible. Also, the YOLO network does detection on a single
frame, while the optical flow method needs two frames to analyze the movement
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Figure 5.5: The detection and segmentation of Gunnerus when the boat is far
away and relatively close to milliAmpere 1. One notice that the segmentation
is precise and would be a great mask for finding key points in both cases. The
probability of the classification is, however smaller when the object is less clear.
The network also classifies the visible part of milliAmpere 1 as a boat. This can,
however, be filtered out, for example, by looking at the optical flow in the mask
or adjusting the threshold for classification.

in the image. The detection will therefore happen faster, which is desirable.

The masks from YOLOv8 are seemingly more precise than those from the
method based on optical flow. In addition, it runs faster and is, therefore, more
suited for use in a real case. One benefit of the method based on optical flow is that
there is no need for training data, and it can detect objects that are not included
in a data set. This can make the method more robust in some scenarios. However,
with a suited data set, it may be possible to train YOLOv8 to detect objects in the
water in general. This is, however, a more cumbersome process and is not in the
scope of this thesis.
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Figure 5.6: A mask of Gunnerus and key points in the mask from the detection
in the right image in Figure 5.5. The mask of Gunnerus is chosen manually, as
there is more than one mask in the image. The mask fits Gunnerus well, and all
points are located on the boat. The points are found with the OpenCV function
goodFeaturesToTrack.





Chapter 6

Results: Tracking, Structure From
Motion and pose estimation

The following chapter will present the results from tracking and structure from
motion and the results for the pose estimation of targets surrounding milliAmpere
1. The pose estimates mainly regard the relative yaw rate and position of the tar-
get. The points that are used for tracking are mainly found by manually creating
a mask around the target and not the results from Chapter 5.

6.1 Tracking with multiple points (LK)

To find points that could be used to initialize the track, a mask is created around
the target boat using the method as described in Section 4.5. An example of a
track is shown in Figure 6.1. The points used for initialization are shown in the
bottom right image. The following images show the tracking of the points in a
sequence of images.

A visual inspection shows that LK manages to track the points well between
images. The accuracy of the matching points in the different images will affect
the results of the 3D point cloud from SFM, and one keeps track as accurately as
possible when good features have been chosen. As seen in Figure 6.2, the points
match each other well in most cases between images which indicates that the
point correspondences will be suitable for SFM. Nevertheless, there will be some
outliers, especially in areas with few features. An example of this is the lower
green correspondence in the figure where the point is wrongly matched as it is
located in a uniform area. This is a commonly known problem in computer vision
known as the aperture problem [53] where it is hard to determine a movement
when looking at an isolated area. This shows the importance of good features on
the object and a well-tuned tracker. A poorly tuned tracker would cause drift in
the points, which is not desired as the track happens over multiple images. The
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accuracy will also be important for an accurate 3D reconstruction with SFM later.

Figure 6.1: A sequence of images where LK is used to track points. The initial
points are selected from a mask in the bottom right image. In the sequence, im-
ages two seconds apart have been chosen to be able to see the difference between
the images.

In Figure 6.3 shows Havfruen when being far away from and close to mil-
liAmpere 1. The figure indicates that it is hard to tell, by visual inspection, if the
tracked points in the two images are located in the same spots as Havfruen only
appears as a white dot in the left image. Firstly, one can argue that this makes it
harder to get accurate tracks and estimates of objects that are further away. Sec-
ondly, it shows how an object can change a lot during a sequence which is a rea-
son for finding features in the last image when choosing initial points for tracking
when testing SFM later on. This would not be optimal for real-time performance
but will be done to test the performance of the methods. Another problem when
tracking using optical flow is when a target moves so much that the features in
the last image are no longer visible in the first image, for instance, 180 degrees.
This will also happen in the scenario of occlusion, where another object covers
some parts of the object. Such scenarios will not be included in the reconstruction
results in the following sections as it is not considered in the scope of this thesis.
However, one should be aware that it could be a problem.
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Figure 6.2: Illustration of the corresponding points in two different images. Each
colored line represents a point correspondence. The images are cropped to in-
crease the size of the target. Only a few points are selected to avoid too many
lines in this illustration. In other cases, more points will be used.

Figure 6.3: Two images taken at different points in time from the same sequence.
In the first image, the features are less clear than in the second. It is, therefore,
hard to say if the features tracked in the sequence always correspond when the
track is happening over an extended period of time. However, the points are al-
ways attached to the target and not disappearing in the surroundings. Also, the
track happens over time, and the features in the left and right images will be more
or less in the same spots.
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Figure 6.4: The image sequence used to reconstruct the object in the center of
the images with SFM. The images are taken with different angles to better view
the object. The object’s points are found using a mask in the first image in the top
left corner and are tracked using LK. The images are taken with the camera of a
phone.

6.2 3D reconstruction by SFM with moving camera

The accuracy of the point correspondences from LK shows potential for further
use in SFM. SFM is, in general, a method to use when the camera is moving and
the object of interest is standing still. To test the method in a normal use case,
photos are taken of a random object on land while moving the camera. This will
be the same as if milliAmpere 1 moves around a still-standing boat in the water.
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Figure 6.5: The resulting point cloud of the same object as in Figure 6.4. The
reconstruction clearly shows the contour of the open box in 3D with some out-
liers likely to be poorly tracked points. The camera views are illustrated as the
pyramids, and the coordinate system illustrates the origin.

In Figure 6.4, one can see an example of the tracked points, which seem to
correspond in most cases. The points that are used are found by using a mask the
same way as for the boat in the previous section, and the point correspondences
are found by using LK. In Figure 6.5, the corresponding point cloud is shown with
the respective camera views illustrated as pyramids. The object’s shape is well pre-
served in the point cloud, and one can see that the camera view seems reasonable
when looking at the images. One should notice that there are some outliers in
the point cloud. These are poor matches or poorly tracked points and are mainly
located on the black dashboard in the box. The features in this area are not as
good as others, and it is reasonable that LK will struggle more when tracking
these points. Where the features are more distinct, there are fewer outliers which
is good. One could consider using methods for removing poorly tracked points at
an earlier stage by comparing the quality of the matches between images. This
would ensure that the matches used in SFM remain good which is important as
the method is somewhat vulnerable to outliers. In general, the more outliers, the
higher the risk of bad reconstructions and bad pose estimates.

Reconstruction of objects using SFM and LK seems like a good approach for
creating point clouds of entities that operate close to milliAmpere 1. In the other
case, however, one has both moving cameras and a moving object. It is, therefore,
interesting to see how the algorithm performs in such a scenario.
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6.3 3D reconstruction of boats with SFM with a moving
camera and moving object

When creating a 3D cloud of an object in an image from the camera mounted on
milliAmpere 1, both the camera and the target may cause relative movements.
This will differ from the traditional use case for SFM as the scene normally would
be static relative to the moving camera. In practice, however, the two scenarios
will be perceived equally by the SFM module. When the target is rotating relative
to the camera, this rotation could be described as a rotation of the camera around
the object. The information of the relative movement both caused by the camera
and the object of interest will therefore be included in the exintrics of the camera
poses. This can be further used for pose estimation.

Figure 6.6: The images used for reconstruction of Gunnerus with SFM. The im-
ages are taken 3 seconds apart in the same sequence to be able to observe move-
ment between the images. A small number of images are used to better see the
camera views. A larger amount of images with a smaller interval between them
will be used later with similar results.
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Another difference from the scenario in the previous section is how the 3D
point cloud will display the shape of the object of interest. In the previous exam-
ple, the camera gets a good view of the object from multiple angles. It is then able
to show the shape of the object, and one can clearly see that the point cloud looks
like the object in the images. In this case, the camera, in most cases, only takes
images from one side of the boat unless the boat rotates rapidly, which is rarely
the case. Such a rapid change could also cause problems as LK would not be able
to find matches as the boat completely changes from the first to the last image.
SFM will therefore only be able to, to some degree, reconstruct the boat’s shape.
Nevertheless, it will be able to show the contours of the boat where the key points
are registered and how the boat is positioned relative to milliAmpere 1, at least
up to scale.

In Figure 6.6, one can observe the points used for SFM. These points are
tracked with LK as in the previous examples, where the points in the most re-
cent frame are found from a mask around the object using a key point detector.

Figure 6.7: The SFM reconstruction of Gunnerus in body coordinates. The re-
construction clearly shows the boat from one side and manages to reconstruct
the shape of the boat well. The camera views in the left image point towards the
blue arrow. The point’s color represents the colors of the points in the image. As
these are key points they are often colors that are in contrast to the rest of the
object. The colors are, therefore, shades of gray.
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Figure 6.7 shows the resulting point cloud along the different camera views
that are caused by movement in both the camera view and by the target. The con-
tour of the boat is clear in the point cloud and the features are well represented.
The quality of the point cloud will later be confirmed by looking at reprojection
errors. The estimated camera views are showing the relative movement between
the boat and the camera. The camera position in the first image is the one furthest
away. The camera poses can be confirmed by looking at the path of Gunnerus in
the image sequence as Gunnerus moves closer to milliAmpere 1 while having a
relative rotation to the left. The movement of the camera views could also be il-
lustrated as a moving point cloud with inverse movement. This will present the
relative movement as a movement of the target in contrast to the movement of
the camera. This is illustrated in Figure 6.8. One can recognize the large transition
between the second and third camera view and the change in rotation of the first
and the second view in Figure 6.7. Further analysis of the quality of the recon-
struction will be done later on in this chapter.

Figure 6.8: Result of describing the relative movement as a movement of the
target in contrast to a movement of the camera. The point clouds show how the
movement of the camera can be transformed into the relative movement of Gun-
nerus while keeping only the initial camera position. The colors are added to
separate the different point clouds.
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Figure 6.9: An illustration of detected outliers in a result from SFM. The outliers
are marked in red. The outliers are removed when using the point cloud for esti-
mation.

6.4 Outlier removal

When using SFM there will occur outliers in the point cloud. Figure 6.9 illustrates
how outliers may appear and that they can be detected. A 3D reconstruction may
not necessarily always have outliers, but if it does, it can affect the results. How-
ever, if the outliers are detected they can be removed from the set of points. This
will allow, for example, the estimates of the center to be better, as the methods
used may be affected by outliers, and the resulting estimates to be more accurate.

6.5 The problem of ambiguity

Ambiguity is a problem that can appear if the images that are used for reconstruc-
tion are too similar or the points that are tracked are too close such that multiple
solutions exist for the extrinsics of the camera views. An example is when a ma-
jority of points are in the same plane in the image. In these cases, the movement
of the object is wrongly described for the use case in this thesis, and one would
get a wrong result when estimating the pose of the object.

Figure 6.10 illustrates an example of a case where ambiguity is present. The
figure shows two different reconstruction processes of Gunnerus with the same
amount of points. The only difference is that the minimum distance allowed be-
tween the key points is 4px higher for the images to the left. The interval between
the images used is 1, meaning that the images are taken 0.2 seconds apart. This
will result in a small baseline.

The figure shows two almost equal scenarios where the camera views to the
left are looking at the point cloud as one would expect from the images. In the
right images, however, the camera views look at the object from the opposite side.
It is impossible to find points on the side of the boat which is not present in the
camera. Even if the solution to the right is visually incorrect, it is theoretically
correct. It is, therefore, hard to decide which one is correct in the reconstruction
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Figure 6.10: An illustration of the ambiguity problem from an attempt to re-
construct Gunnerus. The number of points is 50 in both examples, with the only
difference being the spread of the points with a minimum distance for the right
is 5px and 1px for the left. One should notice the difference in how the camera
views are located in relation to the point cloud. The left images are considered
the correct ones.

calculations without any additional information. A possible method for solving the
problem is by adding more information to the process of determining the correct
camera poses, for instance, that the object, in most cases, should be convex. This
could, on the other hand, make the algorithm less general as one could meet con-
cave objects by sea as well. Also, there exist different versions of RANSAC where,
for instance, DEGENSAC [54] tries to solve the problem of multiple solutions for
the fundamental matrix.

6.6 Relative yaw rate of objects from rotation matrices

When using the SFM method to create a point cloud, one obtains a rotation matrix
and translation vector for each camera view. The rotation matrices contain impor-
tant information about how the object’s heading of interest changes in relation to
milliAmpere 1. This is because SFM interpret the movement of both elements as
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camera movement. One should recall that the ground truth used in the follow-
ing sections is the change in yaw rate extracted from GNSS measurements of the
position of the target relative to the rotational measurements from milliAmpere 1.

The rotation matrices of the camera views are interesting when estimating the
target’s relative yaw rate. One can obtain the change in yaw between images by
looking at the change between the camera poses. This will directly describe the
rotation between the object and milliAmpere 1, and by scaling the result with the
inverse frame rate, one will obtain the rotation in yaw per second.
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Figure 6.11: An illustration of the estimate of relative yaw rate and yaw for Gun-
nerus when approaching milliAmpere from a distance in Scenario 6 over 40 im-
ages with a high allowed number of points but varying minimum distance. 40
images are used to show that the method works for longer sequences. The left
plot shows the estimated yaw rate between all images in the sequence used for
SFM and the plot to the right shows the accumulated change in yaw, both for a
different spread of the tracked points. The distribution of the error is shown in the
third figure. The median of the error is marked with a red line, the colored box
shows the 25% and 75% percentile of the distribution, and the black line repre-
sents the range of the error. The estimate with the most spread points seemingly
performs better.
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Figure 6.12: The plot shows the result of relative yaw rate estimation for the
same amount of initial points but with different spreads on the object. The initial
points with the most spread give better results. The respective initial points are
shown in the two images above.

The 3D reconstruction of the target will only be made up to scale. This means
that the point cloud translation can not directly describe the target’s movement
without any further information given by other sensors. However, the rotation, or
change in heading, will be possible to decide as it is only described by rotation
matrices.

The scenarios used for testing in the following sections are mainly based on
Scenario 6 in Environment 1 shown in Figure 3.6. In Figure 6.11, a result of the
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relative yaw rate from a sequence of SFM is compared to ground truth. The figures
show the result for each image used in SFM. In the figures, the estimates with dif-
ferent minimum distances between the initial points for tracking are shown. The
points are picked with a different constraint on minimum distance. This means
that a trade-off between the best features available and the spread of the points
on the object is evaluated. The results show that the relative yaw rate and follow-
ingly the relative cumulative yaw follow ground truth well with a small average
error, especially for the most spread points. Generally, the points that are spread
out give a better estimate of the relative rotation. This intends that points that in a
higher degree covers the object will give a better understanding of how the object
moves.
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Figure 6.13: An illustration of the estimate of relative yaw rate and yaw when
Gunnerus is close to milliAmpere 1 and performing a turn maneuver in Scenario
6 over 40 images with a high allowed number of points but varying minimum
distance. The left plot shows the estimated yaw rate between all images in the
sequence used for SFM and the plot to the right shows the accumulated change
in yaw, both for a different spread of the tracked points. The distribution of the
error is shown in the third figure. The median of the error is marked with a red
line, the colored box shows the 25% and 75% percentile of the distribution, and
the black line represents the range of the error. The estimate with the most spread
points seemingly performs better.
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The observation of better results for more spread points may rise from the
computation of the camera poses in SFM. Recall that when computing the camera
poses, the 7-point algorithm is used with RANSAC to find fundamental matrices
which describe the geometry between two camera views before bundle adjust-
ment. The minimum distance between the points will limit how many points that
will be available in a mask. Also, if the maximum number of points is kept high,
the points that are chosen are often also included in the same mask with a lower
minimum distance because the best points available will be chosen in both cases.
The chances of accepting camera view estimates based on neighboring points will
therefore be greater with a smaller minimum distance as the close points are not
filtered out. This may give a worse estimate of the transformations between the
camera views which are directly connected to the yaw rate. So, even with a smaller
number of points available, it still manages to get a better result. One could there-
fore also argue that the same amount of points in a more spread pattern will per-
form better than the equal amount of points placed in a small neighborhood on
the object. This theory is tested and confirmed in Figure 6.12 where the result is
displayed together with the points that are used as initial points. However, if the
minimum distance is too large, one will not always have enough points to work
with which must also be regarded.
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Figure 6.14: An illustration of how eight different smaller overlapping recon-
struction results. The different sequences are marked with different colors and
show that the results correlate. To get a better result, sequences of 20 images are
used, where only the yaw rates of the last ten images are used. The sequence of
images used is when Gunnerus is close to milliAmpere 1 and performing a turn
maneuver.
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The same observations were done in Figure 6.11 are made in the results for
another sequence as seen in Figure 6.13. Here Gunnerus performs a turn with
milliAmpere 1 following the boat with the camera. In this sequence, Gunnerus is
closer to milliAmpere 1 than in the previous example. For the result with a higher
minimum distance, great accuracy is observed with the yaw angle almost ending
at the same value as ground truth. This indicates that it is easier to estimate the
relative yaw rate the closer the object is. Another observation is how the estimate
over- and under-estimates the relative yaw rate between images, which can be
caused by noise and the bundle adjustment. Still, as a total, it follows ground
truth well and ends up at a similar value.

To use the estimates for a longer period of time or in a real-time scenario one
would have to create new reconstructions with SFM when new images arrive to
always have the newest information about the yaw rate of the target. Figure 6.14
illustrates how multiple sequences together follow the ground truth well. The sce-
nario used is the same as in Figure 6.13 and the result does not differ much from
when looking at only one reconstruction result.

6.7 Tuning of reconstruction and yaw rate estimation

This section will present and assess the effects of tuning the key initial conditions
which affect the SFM-reconstruction. To test how the initial points affected the
SFM, a series of tests were done with different initial points by varying the param-
eters of the function for finding initial points. In addition, the number of images
used for the reconstruction was varied. To evaluate the effect, the reprojection er-
ror was calculated for all the tests as well as the error in the estimated relative yaw
rate. The relative yaw angles between the target and milliAmpere 1 were used for
testing. If the yaw rate of the target were to be used alone, one would have to
subtract the measured yaw rate of milliAmpere 1 from the estimate. In addition,
the runtime of a complete reconstruction process, as well as the percentage of
unsuccessful reconstructions, will be presented at the end of each subsection. The
reconstruction is deemed unsuccessful if it yields an ambiguous and degenerate
solution. The degenerate reconstructed poses normally result in pose estimates
that significantly deviate from the previous timesteps. This would therefore lead
to a high yaw acceleration and give misleading error estimates. Therefore, a re-
construction was deemed successful if the maximum yaw rate difference between
the two frames was less than or equal to 15 degrees.

The parameters that will be tested are, firstly, the maximum number of points
used for the tracking, thereafter the minimal distance between points, and lastly,
the number of images used for the reconstruction will be tested. The results from
varying each of these parameters will be presented in its own subsection. The aim
of the testing was to find the optimal settings for the reconstruction in terms of
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accuracy, robustness as well as computational cost. For all tests, 35 different se-
quences of images were used. For reasons later explained in Figure 6.28, all the
image sequences were gathered from scenario 6. The 35 sequences have different
start images. The quality level used to find the initial point was set to 0.01 for all
tests. In the end, this section will conclude with parameters that will be used for
the rest of the testing.

6.7.1 Maximum number of points

To test how the maximum number of points used for the reconstruction affected
the reconstruction, a series of tests were conducted. During all tests, the values of
minimal distance were set to 3px and the number of images used for the recon-
struction was set to 31 which gives 30 yaw rate measurements.

Figure 6.15: Illustration of projected points on an image of Gunnerus in Environ-
ment 1, for the varying maximum number of points used in the reconstruction.
From top-left to bottom-right, the number of points used are 10, 50, 100, and
200, respectively. It is observed that the reprojection gets slightly worse when
more points are used for reconstruction.
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As seen in Figure 6.15, the points used when the maximum number of points
is low are located in high contrast areas in the upper parts of the vessel. This
suggests that these points could be considered the best. As a larger amount of
points are allowed to be used, the points are spread more evenly throughout the
ship. Keep in mind that some points that are subject to poor tracking are removed.
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Figure 6.16: Graph depicting the variation of RMSE reprojection error as a func-
tion of the image sequence number for a reconstructed sequence using SFM. It
showcases an increasing trend of error with an increase in the number of points
used for reconstruction. The oscillatory nature of errors, with a period aligning
with the oscillatory movement of the camera due to oceanic waves, can also be
observed.

Figure 6.16 shows an example of the Root-Mean-Square Error (RMSE) repro-
jection error as a result of a reconstructed sequence using SFM. One can observe
that the error increases with the number of points. One should also notice that the
errors oscillate over a period of roughly five images. This matches the period of the
oscillatory movement of the camera caused by the waves in the ocean. The images
which show the lowest reprojection error correspond to the images taken when
milliAmpere 1 is one of the two extremes in terms of pitch and roll angle. This
is likely because when milliAmpere 1 is in this position, the camera is relatively
steady between frames causing less motion blur, yielding a better reconstruction
than when the camera is in the middle of the oscillatory movement.

Figure 6.17 shows a box plot of the RMSE of the reprojection for the different
number of points. As with the single example in Figure 6.16, one can observe that
the RMSE generally increases with an increased number of points. This is a con-
sequence of the function used to choose the initial points. The function is always
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Figure 6.17: Box plot showing the distribution of RMSE of the reprojection for a
different maximum number of points used in the reconstruction. It demonstrates
that with an increase in the number of points, the RMSE also generally increases,
leading to a poorer reprojection accuracy. The plot is based on the error distribu-
tion from 35 different image sequences. The median of the error is marked with
a red line, the colored box shows the 25% and 75% percentile of the distribution,
and the black line represents the range of the error. The means for 10, 50, 100,
and 200 points are 0.14, 0.21, 0.26, and 0.33 pixels, respectively.

choosing the best points which fit the criteria set by the user. This also indicates
that the additional points found when lowering the initial points’ criteria will likely
be worse than the points that have already been chosen. As the number of points
increases, the likelihood increases to include worse features. These points can be
hard to track accurately due to weak texture, motion blur, or other effects. Poorly
tracked points will then be a source of error in SFM and will give a higher repro-
jection error. This is illustrated in Figure 6.15 where the points located on the hull
of Gunnerus or in white areas generally have a worse reprojection error than the
ones in high contrast areas, especially in the images where the number of points
increases.

In addition, when there are only a few points, there are fewer constraints on
the optimization problem. This can cause a situation where the poses and the
point clouds are wrong, for instance, in the case of ambiguous solutions. This will
give a visually wrong solution, but the reprojection error is kept low as the solu-
tion still is correct theoretically. Nevertheless, fewer constraints that follow from
points that are tracked well could also make it possible to fit the camera poses
better to the points and also for the correct solutions. This will give a lower re-
projection error, also for visually correct solutions.
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Figure 6.18: Box plot of the average absolute error for the relative yaw rate for
the different maximum numbers of points used in the reconstruction. This plot
provides insight into the impact of the number of points on the consistency and
accuracy of relative yaw rate estimation. The plot is based on the error distribution
from 35 different image sequences. The median of the error is marked with a red
line, the colored box shows the 25% and 75% percentile of the distribution, and
the black line represents the range of the error The means for 10, 50, 100, and
200 points are 1.33, 1.43, 1.78, and 0.64 degrees per second, respectively.

Upon examination of Figure 6.18, it is notable that the mean yaw rate errors
for 10, 50, and 100 points appear approximately equal. One can also observe that
the variance of the data increases significantly with the number of points for the
three cases. This can be explained by judging by the illustration in Figure 6.15. One
can observe that even though there are more points for the images correspond-
ing to a maximum number of points of 50 and 100, the majority of the points
are located on the same part of the ship. As the points are in the same neighbor-
hood, they give little information about the 3D structure of the whole ship. The
3D structure of the whole ship is what is needed to give accurate estimations of
the pose. Also, when adding more points from the same location on the ship, the
extra points are considered worse initial points. This effectively adds more noise
without adding more information about the actual 3D structure. This could lead
to worse reconstruction. This can describe why the reconstruction with 100 points
is worse than with 50, as the coverage of the object is similar. Therefore, the re-
construction with only ten points can lead to a good, if not better, reconstruction
than the ones using more points from the same location, as the extra points do
not give much new information.

Another aspect that influences the results in Figure 6.18 is the number of times
the reconstruction and estimates are considered unsuccessful. As seen in Table 6.1
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the failure rate resulting from reconstruction with a maximum of 10 points is sig-
nificantly higher than for the other tests. As only the successful estimates are in-
cluded in the plot, the error may be artificially low and one would rather prefer
the reconstructions with more points as one will get more useful estimates.

Contrary to the reprojection error, the relative yaw rate error decreases when
the number of points used increases. As seen in Table 6.1, the yaw rate error is
significantly reduced when the maximum number of points is increased to 200.
This is likely because, as seen in Figure 6.15, the points have good coverage of the
whole ship. The reconstruction of the ship, therefore, has more accurate informa-
tion about its 3D structure and, followingly, it also has more information about
the rotation of the ship in relation to the camera. Altogether, this indicates that
the reprojection error alone is a good indicator of the quality of the reconstruction
but that it is not necessarily a good measure of the quality of the estimates. Also,
the more coverage of the target, the better the estimates will get.

Table 6.1 shows that increasing the number of points makes the reconstruc-
tion process more robust with a lower failure rate for a higher number of points.
This makes sense as the RANSAC and the 7-point algorithm, which initializes the
poses, are more likely to choose more spread points and have a smaller chance
of unsuccessful runs. A trade-off comes when looking at the runtime of the algo-
rithm, where the runtime increases with the number of points used. The increase
is, however, not significantly large between different amounts of points compared
to the initial process when creating the reconstruction. This is based on the fact
that the increase is lower than the runtime of reconstruction with 10 points.

Table 6.1: Average runtime of a single SFM result based on the number of points
used for reconstruction. Failure rate describes the number of wrong solutions due
to ambiguity.

Maximum points Runtime (s) Failure Rate (%)
10 1.42 25.71
50 1.60 2.86
100 1.74 0
200 2.00 0

6.7.2 Minimum distance between initial points

During the tests with minimum distance, the maximum number of points was set
to 200. As seen in Figure 6.19, the minimum distance between the initial points
affects the number of points due to the restriction of the area on the ship. The re-
sult is the higher the minimum distance, the fewer points.Figure 6.20 shows how
the mean reprojection error steadily increases with the increasing minimum dis-
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Figure 6.19: Distribution of points on the ship for different minimum distances
between the initial points. Each plot represents the spatial distribution for mini-
mum distances of 1px, 3px, 5px, and 7px, respectively.

tance between points. Contrary to the tests with a different number of points, this
means that the reconstruction using the least amount of points gave the results
with the highest average reprojection error. This can be explained by the fact that
the restriction of a larger spread of the points makes it necessary to choose worse
features from the same selection of points in all four scenarios. Worse features
will result in a higher reprojection error.

One can see from Figure 6.19 that the vessel has points spread across the en-
tire ship for all the minimum distances. This explains how the mean of the yaw
rate error in Figure 6.21 is similar in all cases with the percentiles for the higher
minimum distances being closer to zero. One can, however, see that the error
when using a minimum distance of 1px is slightly higher than for the rest. In this
scenario, the majority of points will be located close to each other. The bundle
adjustment step in the algorithm will prioritize to optimize the reprojection error
for the points located in the highly dense areas. This will result in the optimal
poses being fitted to points that do not completely describe the whole movement
of the object which results in a worse pose estimate.
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Figure 6.20: Boxplot showing the average RMSE of the reprojection for different
minimum distances between the initial points. The plot illustrates an increasing
trend in error with the increasing minimum distance. The plot is based on the
error distribution from 35 different image sequences. The median of the error is
marked with a red line, the colored box shows the 25% and 75% percentile of the
distribution, and the black line represents the range of the error The means for
min distances 1, 3, 5, and 7 are 0.31, 0.33, 0.34, and 0.36 pixels, respectively.

When comparing the results acquired from using minimum distances 3px, 5px,
and 7px, one can see that the mean value of the errors is almost identical in all
cases. However, the variance is higher for minimum distances of 5px and 7px,
and the total distribution is closer to zero than for a minimum distance of 3px.
This means the estimates will be closer to the ground truth the more spread the
points are, as it gives more coverage of the object. This corresponds to the re-
sults obtained for a different number of points and strengthens the hypothesis
that more coverage of the object gives better estimations. There is, however, a
trade-off between performance and the number of points available when adjust-
ing the minimum distance. If the minimum distance is too high, there will not
be many points available, and one can more often get meet scenarios where the
reconstruction will be worse due to bad track of points or noise.

Table 6.2 shows the runtime and failure rate for different minimum distances.
The failure rate is generally kept low as the points are spread out on the object
in most scenarios. When looking at the runtimes, the runtime decreases with the
increasing minimum distance. This comes from the number of points available
which matches the results from a varying number of points.
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Figure 6.21: Boxplot showing the average absolute error for the relative yaw rate
for different minimum distances between the initial points. The plot shows similar
median values for the errors, with the total distribution being closer to zero for
minimum distances 5px and 7px. The plot is based on the error distribution from
35 different image sequences. The median of the error is marked with a red line,
the colored box shows the 25% and 75% percentile of the distribution, and the
black line represents the range of the error The means for min distances 1, 3, 5,
and 7 are 0.74, 0.64, 0.63, and 0.70 degrees per second, respectively.

Table 6.2: Average runtime of a single SFM result based on the minimum distance
between the initial points used for tracking and SFM. Failure rate describes the
number of wrong solutions due to ambiguity.

Minimum distance (px) Runtime (s) Failure Rate (%)
1 1.83 0
3 1.79 0
5 1.78 2.86
7 1.61 0

6.7.3 Number of images

During the tests of the number of images, the maximum number of points was
set to 200 and the minimum distance was set to 3px to as to get high-quality and
robust results. The minimum distance is set to 3px to ensure that there are enough
points available in all masks. The tests done in this section are highly related to
testing how different baselines between the images affect the reconstruction.

As seen in Figure 6.22, the average reprojection error increases when the num-
ber of images used for reconstruction increases. This can be explained by multiple
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factors which can affect the result. In terms of tracking, it has been shown that the
track not always is perfect and that there can exist a tracking error in the points
used for reconstruction. This error can propagate between images and will possi-
bly get larger the more images involved. This can make it harder to fit the camera
poses to the point cloud in the bundle adjustment step, and one would get a larger
reprojection error. In Section 2.8, it is explained that a smaller baseline will give
more uncertainty in the 3D projection of a point in an image. When fewer images
are used, there is a larger area where the point could be located, especially in
depth. This could be beneficial in the bundle adjustment step when trying to fit
the camera poses to the same point cloud which will make the total reprojection
error smaller. Another source of the increasing reprojection error, which can also
be related to the tracking error, is the fact that the more images, the more camera
poses will be attempted to fit the same point cloud. This will increase the chance
of images with noise and other disturbances which in general can increase the
chance of a higher reprojection error.

N images: 6 N images: 11 N images: 21 N images: 31

0.2

0.4

0.6

0.8

1.0

P
ix
el
s

Reprojection RMSE for varying number of images

Figure 6.22: Boxplot showing the average RMSE of the reprojection for a vary-
ing number of images used for reconstruction. The plot illustrates how the error
increases when more camera poses are attempted to fit the same points. The plot
is based on the error distribution from 35 different image sequences. The median
of the error is marked with a red line, the colored box shows the 25% and 75%
percentile of the distribution, and the black line represents the range of the error.
The means for 6, 11, 21, and 31 images are 0.11, 0.19, 0.28, and 0.33 pixels,
respectively.

This can be explained by that when fewer images are used to initialize the
point cloud, tho ships are likely to be in a similar relative position when the first
and the last image are taken. This effectively makes the baseline used for the
reconstruction shorter. This means that there is little 3D- information about the
location of the points as illustrated in Figure 2.9. However, as the pose estimation
is refined iteratively during the bundle adjustment step, the baseline between two
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subsequent images is even smaller which makes it possible for the algorithm to
find a pose that yields low reconstruction error, even if the 3D position of the points
is highly inaccurate. The bundle adjustment process does not alter the total shape
of the point cloud, meaning that all the views will assume that the warped point
cloud is correct. An example of this happening is shown in Figure 6.23. One can
also see in Table 6.3 that the reconstruction fails completely 5.71 percent of the
times which corresponds to 2 of the 35 sequences.

Figure 6.24 illustrates the error in relative yaw rate estimation. In the figure,
the relative yaw rate error seems to decrease with the increased number of im-
ages. With a higher number of points, there will be a larger baseline available, and
the reconstruction is then likely to be more accurate. This will give more accurate
estimates of the camera motion which reflects the movement of both the camera
and the object. The results in the figure show that the higher amount of images,
the better the results get. However, one can observe that the difference between
the error with 21 and 31 images is smaller than the difference between 6 and 11
images. Also, the distribution of the error with 31 images has a small variance
which indicates that the error will flatten out with a higher amount of images.
A demand when using a large number of images is that the target is visible in
all images and that the features of the object of interest are somewhat visible in
all images to ensure a good track. Nevertheless, the small error indicates that if
enough images are available, the estimates will follow ground truth well.

Table 6.3: Average runtime of a single SFM result based on the number of im-
ages used for SFM. Failure rate describes the number of wrong solutions due to
ambiguity.

Number of images Runtime (s) Failure Rate (%)
6 0.40 5.71
11 0.59 0
21 1.11 0
31 1.70 0

In Table 6.3, one observes that the algorithm’s runtime increases with the num-
ber of images used in the reconstruction. Compared to the runtime with different
numbers of points, the difference in runtime increases more with the increase in
number of images. A trade-off between runtime and accuracy is therefore present.
Also, the failure rate is somewhat significant when the number of images is too
low. This shows that the accuracy of the estimates will be worse when fewer im-
ages are available. This could, for instance, be just after the detection of the object.
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(a) Front view (b) Top view

Figure 6.23: Effects of the short baseline on point cloud and consequent pose es-
timation, due to limited images used for reconstruction. In the front view (left),
the ship appears well-structured, falsely indicating a successful reconstruction.
However, the top view (right) unveils the true state of the 3D model, exhibiting a
skewed orientation not discernible from the front. This demonstrates the intrin-
sic inaccuracies of the 3D model, manifesting the challenges posed by the short
baseline and a limited number of images in capturing the genuine 3D structure
of the ship.

6.7.4 Tuning conclusion

In conclusion, the results show that an essential part of getting a high-quality 3D
reconstruction and, consequently, good pose estimation is to get as much coverage
of the object of interest as possible. This can be done by spreading the points. This
can affect the quality of the reprojection but will, on the other hand, give a more
descriptive representation of the target’s motion relative to the camera mounted
on milliAmpere 1. The number of images used for reconstruction will also affect
the reconstruction quality and the quality of the estimates. A larger amount of
images will give a more significant baseline which will make the reconstruction
describe the camera motion better. This will, on the other hand, give a larger re-
projection error for the resulting SFM.

As a result of this analysis, the number of images will be kept high in the
following sections of this chapter. This minimum distance will also be as high as
possible. However, the masks of the targets are not always as big, and a trade-off
must be done to find consistent parameters which can be used for multiple sce-
narios.
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Figure 6.24: Boxplot showing the average absolute error for the relative yaw rate
for a varying number of images used for reconstruction. The plot illustrates how
the error decreases when more camera poses are used to describe the relative
motion between the Gunnerus and milliAmpere 1. The plot is based on the er-
ror distribution from 35 different image sequences. The median of the error is
marked with a red line, the colored box shows the 25% and 75% percentile of
the distribution, and the black line represents the range of the error. The means
for 6, 11, 21, and 31 images are 2.52, 1.58, 0.91, and 0.64 degrees per second,
respectively.

6.8 Estimation of relative yaw rate in a simulated real-
time sequence

In this section, as described in Section 4.10, the relative yaw rate will be plotted
where the data point at each image is made from an individual reconstruction
result with 20 images back in time, including the newest image, where the last
yaw rate is extracted and plotted. 20 images are used instead of 30 because the
target is small early in one scenario, and one would like to include the same fea-
tures in the images. This will be kept consistent throughout the simulations while
considering that more images could give a better result if available. The min dis-
tance used for initial points in this section is 3px to ensure that enough points are
available, even for the images further away, to be able to use the same parameters
for all scenarios. Also, from the previous section, these numbers will perform well
while keeping the runtime low.

Figure 6.25 illustrates such a scenario when Gunnerus performs a turn maneu-
ver when located close to milliAmpere 1. The figure shows the estimated relative
yaw rate for three different amounts of points compared to ground truth. One
can observe that the estimates based on the greatest number of points perform
better during the whole sequence of images. The estimates are also, in general,
following the ground truth well, with an average error close to zero. This is also
visible in the plot. In this sequence, the boat is relatively close to milliAmpere 1.
This makes the boat’s features visible, making it easier to get a good estimate.
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Figure 6.25: An illustration of the relative yaw rate estimate where a new recon-
struction is done with 20 previous images for each new image in the sequence.
In the sequence, Gunnerus is performing a turn maneuver close to milliAmpere
1. The results show how more coverage, or more points, of the boat, gives a bet-
ter result. The number of points is the maximum number of points, and the real
number that is used is based on the available points in the mask. The average
error is small. The empty values in the graphs are a result of NaN values. The
value is set to Nan when ambiguity is present. Ambiguities give a large deviation
from ground truth which will make the plot less visible.
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Figure 6.26: An illustration of the relative yaw rate estimate where a new recon-
struction is done with 20 previous images for each new image in the sequence.
In the sequence, Gunnerus drives away from milliAmpere 1 and the camera is
filming from behind. The results show how more coverage, or more points, of
the boat, gives a better result. The number of points is the maximum number of
points, and the real number that is used is based on the available points in the
mask. However, the results are getting worse the further away Gunnerus gets for
all number of points. The empty values in the graphs are a result of NaN values.
The value is set to Nan when ambiguity is present. Ambiguities give a large devi-
ation from ground truth which will make the plot less visible.
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Figure 6.27: An illustration of the relative yaw rate estimate where a new recon-
struction is done with 20 previous images for each new image in the sequence. In
the sequence, Gunnerus approaches milliAmpere 1 from far away while filming
the front of the boat. The more points on the boat, the better the estimate gets.
Early in the sequence, the estimates with 100 and 200 points look similar. This
indicates that there are not more than 100 points available on the target at the
time due to its small size in the image. The spikes come in the areas where waves
affect camera stability.
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In some periods, one notices deviations for all the estimates, for instance, be-
tween image numbers 2 and 7. In this part of the sequence, milliAmpere 1 and
the stability of the camera are highly affected by waves that give rotations in roll,
pitch, and yaw. The sensor for ground truth is tuned in a way that does not prior-
itize all degrees of freedom, and as one also will observe later on, the estimates
will have some deviations in these cases. However, the estimates look good in the
areas with fewer movements in roll and pitch.

In Figure 6.26, one can observe the results of another sequence where Gun-
nerus is moving away from milliAmpere 1. The plot shows how the estimated rela-
tive yaw rate follows the ground truth well in the beginning and starts to struggle
when the target gets less clear during the sequence due to the distance. This is as
one would expect as it is harder to extract information from an object far away,
and the number of points available will be reduced. However, the average error
er kept small, especially for the plot where the most points are used. It should
be mentioned that the difference in error between the graphs in this sequence is
smaller than in Figure 6.25. This is because the available points on the object and
the real number of points used are more similar in this sequence.
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Figure 6.28: Example of a simulated real-time scenario where the relative yaw
rate of Havfruen is estimated. The figure shows an oscillating ground truth due to
variance in the GNSS data which makes it hard to evaluate the result. The trend
of the estimate is, however, good.
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Figure 6.29: An illustration of how sunny conditions affect the features on
Havfruen.

The same method is tested for another sequence in Figure 6.27. In this se-
quence, Gunnerus is approaching milliAmpere 1 from a distance where the cam-
era is pointed towards the front of Gunnerus. The camera is highly affected by
waves in this sequence which causes sudden changes in the camera views. This
is also the reason for the many spikes in the estimate. Nevertheless, the average
error is kept below one degree during the sequence which is considered good.
The small deviation throughout deviation from the ground truth is likely due to a
slip in the heading which is not included in the ground truth as the data set lacks
information about this.

Until now, only sequences with Gunnerus from Scenario 6 is tested. In Fig-
ure 6.28 an estimate of the relative yaw angle for Havfruen in Scenario 13 is
shown. The figure shows a noisy ground truth with large oscillations. This comes
from the uncertainty in the GNSS device and the way the ground truth for the
heading is calculated from positional measurements. Nevertheless, the estimate
in the figure seemingly follows the trend of the ground truth well without the
possibility of further confirmations of the result. Also, Scenario 13 is filmed on
a sunny day. As Havfruen is white, the reflection of the light on the boat makes
the features less visible. This will reduce the number of points available and make
tracking harder. This is illustrated in Figure 6.29.

During the reconstruction process of the Havfruen ship, another challenge that
arose was the presence of outliers. As seen in Figure 6.30, the white color of the
ship and the white capping effect on the waves created difficulties during YOLO
detection. The white parts of the waves could be mistakenly identified as parts of
the ship, leading to the initialization of points on the waves instead of the actual
ship. As a result, these points would diverge from the ship as they were tracked,
resulting in an inaccurate representation of the ship’s structure.

To address this issue, several measures can be implemented. One approach is
to limit the tracking process to points that consistently remain within the masks
produced by YOLO detection. This requires precise and accurate masks generated
by the YOLO algorithm so as not to remove good points. Another potential solution
is to rely on the removal of outliers during the RANSAC algorithm. However, this
may not always occur since the points may not deviate significantly from frame
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(a) Image showing Havfruen. (b) Havfruen with YOLO mask.

(c) Resulting points on the boat.

Figure 6.30: Example illustrating the problem of outliers during reconstruction.
The images show (a) the original boat image, (b) the boat image with the YOLO
mask overlay, and (c) the resulting points on the boat. The white parts of the
waves, are mistaken as parts of the ship, resulting in being initialized on the
white waves as seen in the lower right parts of the boat in (c).

to frame and will, therefore, not necessarily be interpreted as actual outliers.

6.9 The accuracy of the isolated estimate of the yaw rate
of the target

In real-life applications of this estimation method, one would typically have access
to the pose of milliAmpere 1 through measurements from other sensors. There-
fore, it is interesting to evaluate the isolated estimates of the target’s yaw rate
after removing the movement of milliAmpere 1.

The estimated relative yaw rate is a composite of two motions - the rotation
of milliAmpere 1 and the rotation of Gunnerus. The movement of milliAmpere
1 primarily manifests as a shift in the position of the entire point cloud across
the image frames. In contrast, Gunnerus’s rotation impacts how the points relate
to each other within the point cloud. In terms of pixel changes within an image,
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the motion from milliAmpere 1 will likely have a more significant impact, rais-
ing questions about the method’s ability to accurately detect the motion caused
by the rotation of Gunnerus. If Gunnerus’s motion were not detected accurately,
the estimated yaw rate would align more closely with the measured yaw rate for
milliAmpere 1.

Figure 6.31 presents the estimated yaw rate of Gunnerus in comparison with
the ground truth derived from a single SFM result. This comparison validates that
the estimation method does capture the movement of Gunnerus, and the esti-
mated yaw rate aligns well with the constant turn in Scenario 6, suggesting the
method’s potential accuracy in detecting motions even amidst significant shifts
caused by milliAmpere 1.
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Figure 6.31: The estimated relative yaw rate, ground truth, the movement of
milliAmpere 1, and the estimate of Gunnerus in when performing a turn. The
estimated movement of the target follows the ground truth with some oscillations.
The plot illustrates the isolated target estimate over a single SFM result.

The isolated estimates of the yaw rate of the target in the simulated real-
time scenario, when Gunnerus is moving towards milliAmpere 1 from far away,
is shown in Figure 6.32. Here one observes that the estimate follows the estimate
of milliAmpere 1 to a higher degree than in the single SFM result in Figure 6.31.
In this scenario, the target is further away. The small changes of Gunnerus are
harder to analyze when the target is less visible, and the result is that the move-
ment of milliAmpere 1 is more dominant in the estimate. However, the isolated
estimate of the target is not zero which means that the method catches some of
the movement of the target.
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Figure 6.32: The estimated relative yaw rate, ground truth, the movement of
milliAmpere 1, and the estimate of Gunnerus when moving towards milliAmpere
1 from far away. The estimated movement of the target follows the ground truth
with some oscillations. The plot illustrates the isolated target estimate over a
simulated real-time scenario.

6.10 Center estimation of the target

When measuring the distance between two points on an object, the distance may
vary based on where the point is located on the object. Therefore, how much an
object has moved between two camera angles is decided by where on the target
one measures the movement. One way of estimating the average movement of
the target could be by looking at the movement of the mean of the point cloud.
Another method is to use a MVEE to create an ellipsoid that covers all the points in
the point cloud to estimate the shape and find the volumetric center of the point
cloud.

Figure 6.33 illustrates a MVEE that covers the reconstructed point cloud of
Gunnerus. The reconstruction gives a good estimate of how Gunnerus would look
if one could see the boat from all angles. The middle point is also seemingly in
the middle of the boat, which is good for further estimation. One could assume
that the mean would be closer to the areas with more points which is undesir-
able. This is illustrated in the same figure as an orange dot. One can see that the
mean is influenced by the side of the boat seen by the camera. The ground truth
is not included in the comparison. As one will see later, the GNSS is imperfect and
will not follow the pitch and roll of milliAmpere 1 well. It will, therefore not give
correct information about the center of the target when projected onto the image
frame of the camera.
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Figure 6.33: Illustration of an ellipsoid that surrounds all points related to the
3D reconstruction of Gunnerus seen from different angles. The red dot indicates
the estimated center of the point cloud and the ellipsoid, and the orange dot
indicates the mean of the point cloud. The views are from the top, front, and
side, respectively.

Figure 6.33 confirms that MVEE may be a better approach to find the center
of the target as it seemingly gives a better estimate for the volumetric center of
the point cloud than the mean. This method is therefore used further in this thesis
for position estimation.

6.11 Estimating the position of the target

As explained in Section 4.12 the position of a target in the NED frame can, in
theory, be estimated using the reconstruction results from structure from motion
in combination with the positional and rotational measurements for the main ves-
sel. However, a prerequisite for this is that the positional and rotational measure-
ments for the main vessel are highly accurate. As seen in Figure 6.34, one can
observe large and oscillatory deviations in the z-value. This is a consequence of
the pose estimation of milliAmpere 1 as explained in Section 4.14. It seems that
the alpha-beta filter prioritizes the smoothing of the yaw measurement over the
responsiveness of the roll- and pitch measurements.
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Figure 6.34: Positional estimates of Gunnerus in Environment 1 in 2D and 3D to
illustrate the deviation in the z-values. The estimates are highly affected by waves
that cause changes in roll and pitch which are filtered out from the measurements
for milliAmpere 1. The plots are given in world NED coordinates, meaning that
scale has been introduced. The trend is somewhat correct in the plots, however,
it is hard to compare with the illustrated deviation.

To illustrate and confirm that the measurements used for ground truth are less
correct when waves cause movements in roll and pitch, the GNSS measurements
are projected onto the image plane. This is shown in Figure 6.35. One can ob-
serve how the GNSS struggles to follow the center of Gunnerus where the sensor
is assumed to be located. The movements are mainly in a vertical direction. In
addition, this is also evident in that the measured angles do not match with what
one can observe in the images corresponding to the measurements. The measured
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pitch angles relating to the three images displayed in Figure 6.35 are 1.01, 1.20,
and 1.30 degrees, respectively. The measured roll angles relating to the three im-
ages are -2.50, -1.97, and -1,95. However, one can see from the horizon that these
measurements are inaccurate. From visual inspection, these angles can be deemed
highly inaccurate.

Figure 6.35: Image sequence showing how the inaccurate pitch and roll esti-
mated values affect the projection of the GNSS measurements of Gunnerus in
Environment 1. The inaccurate measurements make it hard to compare the esti-
mated center of Gunnerus with the ground truth.

As these changes in pitch and roll are not represented by the measurements,
the changes of the center of the target in the body frame are therefore interpreted
as changes in heave when transformed to the NED-frame. This can be seen in the
upper plot in Figure 6.34. The lower plot in Figure 6.34 shows how this leads
to that changes in roll and pitch being wrongly interpreted as changes in yaw.
This ultimately causes inaccuracies in the estimated position of the target in NED.
Therefore, the results cannot be easily compared.

Given the importance of accurate heading information, it seems logical in most
maritime applications to prioritize heading when pre-processing the rotational
measurements of the vessel. This is because the vessel’s motion predominantly
occurs in the horizontal plane and therefore is directly related to the course of
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the vessel. However, when using rotational measurements in combination with
computer vision, it is advantageous to have accurate estimations of yaw and pitch
as well.

Due to difficulties when comparing estimates to ground truth due to changes
in roll and pitch, it is interesting to make the same comparison when the water
is still in Environment 2. In Figure 6.36, positional estimates of Havfruen in sce-
nario 13 are shown. Both the method where one point is tracked and the method
with SFM and MVEE are used and illustrated in separate plots in the figure. It is
observed that the first method includes an offset as a result of the tracked point
not being in the same position as the GNSS sensor. Besides the offset, the tracks
with the two methods are both good with some deviations. The deviations can be
caused by inaccuracies in the estimate, the way ground truth is extracted from the
available data, and the method for finding the scale from the ground truth. Nev-
ertheless, the track is accurate, and by introducing the MVEE to find the centroid
of the object, the offset in position is removed from the estimate.
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Figure 6.36: Positional estimates of Havfruen in Environment 2. The estimates
are not affected as much by waves as in Environment 1. The plots are given in
world NED coordinates, meaning that scale has been introduced. The upper plot
shows the result from only tracking a single point on the target while the lower
plot shows the result from SFM and MVEE. The first method has an offset which
is removed with the second method.





Chapter 7

Discussion

7.1 Detection

In terms of detection, YOLOv8 seemingly outperforms the method based on opti-
cal flow in many areas. The masks from YOLOv8 are better and the detection is
more robust in terms of detection of water and other parts of the background and
is not affected by rapid changes in movement of the camera. The tuning of the
optical flow will also often be case dependent which makes the algorithm hard to
generalize. In addition, YOLOv8 outperforms the other method in terms of run-
time where they can do detections in the same image in terms of milliseconds and
a couple of seconds respectively. The runtime of YOLOv8 will however be depen-
dent on the model that is used whereas larger models will use more time while
giving more accurate detections. Nevertheless, YOLOv8 will still be able to com-
pete with the other method in terms of runtime In addition to this, the method
based on optical flow needs two images to do what YOLOv8 can do in one image.

Another difference between the two detection methods is how the method
based on optical flow only detects moving objects. By ignoring objects which are
still-standing, one will save some computational power while keeping track of
targets that may pose a danger for milliAmpere 1. However, there is not a huge
downside to tracking objects that are docked as this would be additional infor-
mation. On the other hand, if one only would like to detect moving objects, one
could combine the methods which would give the best of both worlds.

7.2 Tracking and SFM

In general, the combination of LK and SFM seemingly work well to estimate the
relative rotation and translation of a target when the object is isolated from the
rest of the image with a mask. It manages to reconstruct the object well and the
camera poses are reasonable when compared with the images used, as long as the
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points used are tracked well and located on the object of interest. If the point that
deviates from this could be considered outliers and will give a worse result. Nev-
ertheless, this shows that the algorithm manages to estimate both the movement
and rotation of the target and milliAmpere 1 when triangulating between images
in a sequence. It also shows that the method is able to describe the movement of
the target as a movement of the camera view which is embedded in the relative
movement between the camera and the object.

The quality of the 3D reconstruction depends on the track by LK. This can be
affected by multiple factors. One of them is the quality of the camera. The camera
used in this thesis has a relatively low resolution which does not capture all the
details of the objects. This would also make the track better for objects further
away. This also includes the lack of insight into the calibration process of the cam-
era which could be a source of error. A better camera would also allow for better
detection of features and tracking further away. Also, with a higher frame rate,
the changes between the images would be smaller which would make the tracking
more accurate.

In the case of occlusion and a rotation of the target that covers features that
are visible in other images, it will not be possible to find correspondences. A more
comprehensive method for guaranteeing that the correspondences match, or for
instance, a method for only finding correspondences between two consecutive
frames could be used to solve the problem. Nevertheless, this is a problem that
is not regarded in this thesis and could be seen as a further improvement of the
system.

The results illustrate how a baseline is needed when reconstructing a scene
with SFM. There are, however, some problems that can occur when the baseline
is small. This could, for instance, be at the beginning of a track, just after detection,
when only a few images are available, or when the relative movement between
the boat and the camera is small, regardless of how many images are used for
reconstruction. This could, for instance, be if both are standing still. Such a sce-
nario would make it hard to give a good reconstruction result. However, it can
be discussed whether or not the method is needed for non-moving objects when
the ferry is parked, and the user could be restricted to when the ferry is moving,
which could be decided by analyzing the tracked points. This would reduce the
number of bad estimates.

Ambiguity is a problem that can affect such that the estimates differ a lot from
the results one would expect. Nevertheless, this is not directly handled in this the-
sis as it is challenging to change the implementation of the OpenCV reconstruct
function, but it would be possible with a self-implemented function. The wrong
estimates as a consequence of ambiguity could also be ignored. By fusing the es-
timates with other sensors in later stages in the estimation process, one would be



Chapter 7: Discussion 109

able to trust these estimates less, and they would therefore be less important.

7.3 Relative yaw rate estimation

A general observation in the relative yaw rate estimate is that the estimates follow
the ground truth well with a small average error in the cases where the measure-
ments used for ground truth are reliable. It is clear from the plots that the best
estimates are found when the target is close to milliAmpere 1. The method also
gives a somewhat reliable estimate when the target moves further away from the
camera.

In terms of tuning, the accuracy of the results is generally based on how much
coverage one has of the object. More coverage will give a better understanding of
the target’s movements, making it possible to give a better estimate of the relative
change in yaw. Also, it is shown that a greater baseline, or more images used, will
give a better result as it gives a better view of the target. This stands in contrast
to the reprojection error of the 3D reconstruction. Nevertheless, as the goal is to
get accurate pose estimates, one should prioritize the estimates over how well the
reconstruction is reprojected.

In Section 6.6, it is illustrated how the relative yaw rate follows the images
when only looking at single SFM results. When looking at the error in these esti-
mates, the average error is close to zero and is more or less equally spread around
an equilibrium. After estimating the camera views in SFM, the bundle adjustment
may change the views due to noise which will make the estimates oscillatory. It
is, however, observed that the estimate, in general, has a low error as the oscilla-
tions are around ground truth. This shows that the method with relative yaw rate
estimation works well when using SFM and LK. It is also shown that the more
spread of the points on the object, the more accurate the results get. This comes
from the fact that more coverage of the target gives a better understanding of
how the target moves. Subsequently, an offset or error could occur when there is
insufficient coverage of the target. Also, as seen in the position estimation results,
the roll and pitch affect the yaw of the target. This effect is filtered out from the
GNSS measurements, making the data used for ground truth somewhat incorrect.
A scenario without waves has not been tested for relative yaw rate estimation,
and one can assume that some of the error also can be caused by this effect.

Further, the same method is used for simulating a real-time scenario to ana-
lyze the method’s performance when extracting the last yaw result from a single
reconstruction. The results are promising as the result gives an estimate which
follows ground truth well. One downside with this method is that the over- and
under-compensation are not included as the separate estimates do not have any
information about each other. This is the advantage of using only one SFM result,
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as the error in the different frames will be correlated. By excluding this informa-
tion, one could possibly obtain worse results that are not desired. To solve this,
one would have to change the implementation by, for instance, including the new
image in a current SFM. This has, however, not been tested in this thesis. In ad-
dition to this, it can be observed that the estimates get worse as the target moves
further away from milliAmpere 1. This is expected as the details of the target and
its movements get less visible from a greater distance.

The method used for the simulated real-time implementation is not optimal.
The information about the camera positions is calculated multiple times, and the
new estimate does not use any of the information from the previous estimates.
In a more optimal implementation, one could initialize a 3D construction after
tracking a target for enough frames to have images with a long enough baseline
effectively. After this, the new poses and yaw rates could be estimated by only us-
ing the position of the points in the newest frame. This would drastically decrease
the computational time as only one pose estimation and bundle adjustment must
be performed. This would also have benefits as two subsequent pose estimates
would be directly correlated. Nonetheless, the current implementation provides
promising indications that the method accurately estimates relative yaw rates in
accordance with GNSS measurements.

In the simulated real-time scenario results, 20 images were used. The result-
ing runtime was approximately one second per yaw rate estimate. This includes
tracking, SFM, and yaw rate extraction. The frame rate of the camera is five im-
ages per second, meaning that one is not able to give an estimate before a new
image arrives. The runtime will be reduced by reducing the number of images.
However, this will be at the cost of accuracy. Nevertheless, the implementations
and methods used in this thesis are not optimal, so the runtime can be further
reduced by doing calculations more efficiently.

7.4 Reflections on ground truth for yaw angle

In this thesis, the ground truth for the yaw angle is derived from positional mea-
surements used to calculate the ship’s course. Given Gunnerus’ large size and
speed, this method provided a reasonable estimation. However, an inherent delay
is introduced due to the time required for a change in yaw to manifest in the ship’s
course.

This delay and the phenomenon known as slip, the disparity between course
and actual yaw, are observable in Figure 6.31 and Figure 6.27. The results could
be affected, with disparities introduced between estimated and actual yaw angles.
Still, considering these effects, it’s worth noting that the findings may actually be
more accurate than they first appear.
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The ground truth for heading, inferred from the direction of positional move-
ments, might be affected by slip, especially when the ship changes its yaw fre-
quently or rapidly. This is an inherent limitation of the ground truth, suggesting
that a more precise method to obtain heading measurements might improve the
accuracy. Future research should, therefore, consider more direct and accurate
real-time yaw angle measurements, potentially from rotational sensors, to elimi-
nate time lag and enhance the precision of optical flow techniques.

7.5 Position estimation

The results show that, by only using information from a camera, one can ob-
tain precise position estimates compared to ground truth. There are, nevertheless,
some deviations that can be explained by factors such as incorrect scale values or
noise. This is the case when the GNSS measurements are reliable, as in the chan-
nel in Environment 2 without waves. In Environment 1, however, it is harder to
compare the position estimates with ground truth as the GNSS measurements are
smoothed in roll and pitch. Nevertheless, the good results for Havfruen show that
it is possible to give a good estimate of the position of the target.

This will, however, only be possible to give correct estimates in world coor-
dinates if the scale is available. The method used for finding scale in this thesis
would not be suitable in a real scenario as one does not have GNSS measure-
ments of the target. Methods that could be used instead could be to use LIDAR
measurements to find the distance to the points in the point cloud. Another possi-
ble method could be to use stereo vision to estimate the position of the point cloud.

The method where only one point is tracked in the image gives an offset on
the positional estimates while the trend of the estimates is a lot similar to the
other method. This is expected as the point is located in a different position on
the target than the GNSS sensor. Nevertheless, by finding the center of the target
with MVEE, one can reduce this positional offset which would give a more precise
estimate. One could also get information about the size and shape of the target by
using a MVEE which could be interesting when analyzing the danger of the object.

The position estimates could also be useful if one would like to get course
estimates of the targets. This could be interesting if one needs information about
the direction of movement of the target, and could be found by looking at the
direction of the change in position. This can be interesting information as it, for
instance, would tell if an object is on a collision course or not.
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Future Work

In terms of detection, the method based on optical flow struggles to estimate the
camera movements when the camera moves in different directions. These move-
ments are already measured by other sensors on milliAmpere 1, and one could
combine these with the detection algorithm for better motion estimations for the
background and hence, better performance. YOLOv8 gives good detection results
for marine objects. If this detection method is going to be used, an automatic
pipeline should be constructed to map the right masks to the right objects, for
instance, based on the tracked points. There will then be no need for manual
masking which would be convenient for use in a real system. Also, if it is desir-
able to detect only moving objects, a combination of YOLOv8 and optical flow
could be used.

The current implementation for pose estimation LK and SFM does not take
problems such as occlusion and covered points as a result of large rotations into
account. Solutions for this should be included for robustness before the system is
usable in real-world applications. Also, to be able to get the best possible results,
a dynamic tuning of minimum distance and number of points could be included
based on the size of the object in the image.

In the surroundings of an autonomous ferry, there will be more than one vessel
present. In order to use the estimation method, one should scale up the system,
both detection, tracking, and estimation, to handle more than one object at a time.
The system should, however, be scalable, and one could perform the same method
for each object where an object is connected to a specific track.

The implementation of SFM used in this thesis is an OpenCV module, which
limits flexibility and makes adding potential improvements difficult. The recon-
struct function only returns a SFM result. A future project could focus on devel-
oping a SFM function from scratch, creating a more optimal function for recon-
struction suited to this particular application. This could, for instance, be done
similarly to the incremental reconstruction proposed in [55]. The proposed im-
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plementation will significantly reduce runtime and possibly improve the accuracy
of the estimates.

The estimates obtained from the methods presented in this thesis could be
used in a larger system by fusing the estimates with other sensors. To remove
some of the noise and oscillations of the measurements and disregard deviating
estimates, one could filter the estimates using a Kalman filter. To successfully uti-
lize a Kalman filter, a mathematical model of the boats’ motion must first be estab-
lished. This model serves as a predictor of the future state of the boat, taking into
account factors such as current velocity, heading, and yaw rate. Subsequently, the
estimates from our optical flow and structure from motion methods are fed into
the Kalman filter as measurements, alongside potential data from other sensors
like LIDAR or radar. The Kalman filter then combines these measurements with
the predictions from our mathematical model to generate refined estimates of the
boat’s state. This can be fused with measurements from other sensors to give reli-
able information about the surroundings. When further fusing the estimates with
other measurements at a higher level, occurrences of ambiguity and bad estimates
would be disregarded, making this problem less critical.

Another important step before the methods are used in a real scenario is to
test LK, SFM, and the estimation method with more data. The data in this thesis
has been of varying quality, especially in terms of ground truth, and one should do
some extended testing on more varied data to ensure that the methods work for
multiple types of vessels in different scenarios. This is important as one needs to
ensure the methods can give reliable estimates in different situations with differ-
ent vessels. Also, it would be interesting to look at scenarios where the majority
of the rotation is caused by the target rather than milliAmpere 1, which is rarely
the case in the data used in this thesis.

One aspect not utilized in this project was the additional information esti-
mated about the distance to the boat. If these methods were to be used for nav-
igation and collision avoidance, this information could be used in addition to,
or as a substitute for, other distance measuring techniques or equipment such as
LIDAR. For example, if this was integrated into a complete system for collision
avoidance, one could use the information from the reconstruction to estimate the
time it would take before a collision occurs. This could be done without knowing
the scale - one could observe how much closer objects get in the relative frame.
However, the feasibility of this in practice is uncertain and warrants further inves-
tigation.

While this thesis has primarily focused on traditional computer vision tech-
niques for detection and pose estimation, an intriguing area for future research lies
in exploring the potential of deep learning methodologies. Deep learning methods
could be utilized in a fully end-to-end manner, whereby the entire process from
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detection to pose estimation is managed by a single network. As a substitute, deep
learning could be applied to some areas of the current pipeline. For example, deep
learning models could be used to enhance point matching or optical flow estima-
tion, which are critical for accurate pose estimation. Exploring the integration of
deep learning within the current pipeline is an exciting direction for future work.





Chapter 9

Conclusion

This thesis provides insight into the potential and challenges of optical flow-based
object detection and pose estimation in autonomous sea navigation. The research
compares the effectiveness of an optical flow-based method and a state-of-the-
art deep learning model, YOLOv8, for object detection. Although the detection
method based on optical flow gives more insight into the detection decisions,
YOLOv8 outperforms the optical flow-based method in most scenarios, with a
superior ability to generalize and lower runtime, making it the recommended
method for detecting objects in milliAmpere 1’s surroundings.

Further, a combination of LK and SFM is used for the 3D reconstruction of ob-
jects isolated from a scene. This approach yields accurate relative pose estimates,
including yaw rate and position, based on various parameters such as the number
of images used, the distribution of points on the boat, and the boat’s coverage.
A key observation is that the closer the boat is and the more features it has, the
more accurate the pose estimates get.

By analyzing the results, it is observed that in situations where the features
of the boat are visible, the precision of the method is sufficient to determine a
boat’s actual yaw rate and distinguish it from the relative yaw rate. This shows
that the proposed approach has great potential to enhance control systems on
autonomous vessels. Nevertheless, while the presented results are promising, it’s
clear that more research and testing are necessary before the proposed method-
ologies can be applied in real-world scenarios. Several challenges still need to be
addressed. Notably, the optical flow-based method’s precision and the fact that it
could be significantly influenced by the number and distribution of points on a
boat and the number of images used.

In conclusion, while requiring further work for an operational implementa-
tion, this thesis offers valuable insights and lays the foundation for future research.
The concept and techniques presented here are promising and demonstrate their
potential to contribute to the evolution of control systems for autonomous vessels.
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