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Abstract / Sammendrag

English

The goal for this thesis is to study provable security in Post-Quantum Cryptography (PQC) and
apply this to the lattice based CRYSTAL’s Dilithium signature. We will develop and explore the
necessary theory of lattices and what we consider to be hard lattice problems, before studying
identification schemes and signature schemes. Then proceed to explore what security means —
both in the Random Oracle Model (ROM) and the Quantum Random Oracle Model (QROM).
We will then look at the QROM security of the Dilithium signature and offer a comparison with
the ROM secure Lyubashevsky signature. Lastly we discuss whether the QROM is necessary for
proving quantum security or if proofs in the standard ROM is sufficient.

Norsk

Målet med denne oppgaven er å studere beviselig sikkerhet i post-kvante kryptografi (PQC)
og andvende dette mot CRYSTALs gitter baserte signatur Dilithium. Først definerer vi den
nødvendige teorien for å forstå gittere og det vi anser som vanskelige gitter problemer. Vi vil
videre utforske identifikasjon- og signatursystemer og hva sikkerhet betyr. Vi skal se på sikkerhet
i både tilfeldig orakle modellen (ROM) og kvante tilfeldig orakel modellen (QROM). Deretter
ser vi på Dilithiums QROM bevis og for sammenligning Lyubashevskys ROM bevis. Til slutt
diskuterer vi om QROM er en nødvendig modell for å bevise sikkerhet i kvantesammenheng eller
om standard ROM er tilstrekkelig.
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Chapter 1

Introduction

Cryptography and cyber-security as we know it today is mostly based on the hardness of factor-
ing large prime numbers. For the computers of today this is considered to be a “sufficiently
impossible” problem to build security upon. However, research on quantum computers are tak-
ing steps and with that calling for the cryptographic field to develop new quantum safe protocols.
The reason that we need new protocols as quantum computers are emerging is because of the
vastly increased computational power that is unlocked. In 1994 Shor introduced a quantum
algorithm able to factor large numbers at a speed unknown to classical computers [1]. In more
recent time Gidney and Ekerå, working of Shor’s algorithm, published a quantum algorithm
capable of factoring 2048 RSA1 integers [2]. This shows that as quantum computers are evolving,
our current cryptographic protocols will become useless against a sufficiently strong quantum
computer.
This raises the question — what exactly is a quantum computer? The quick answer to this is that
a quantum computer operate on qubits |𝜙⟩, where a classical computer operate on bits {0, 1}. A
qubit can be represented as a normal bit, namely 0 or 1, but it can also be represented as super-
positions of both. This ability to represent a superposition is what makes quantum computers
capable of using algorithms such as Shor’s and thus break the factoring based cryptographic
protocols we use today, such as the RSA protocol.
How far has the research on quantum computers come today? In November 2021 International
Business Machines (IBM) informed that they had broken the 100 qubit barrier as they announced
their latest quantum computer the Eagle [3]. Only a year later, in November 2022, IBM released
the 433 qubit quantum computer Osprey [4]. Does this rapid development of quantum computers
mean that all classical cryptographic protocols are soon to be rendered useless? The answer to
this is: No. These computers are designed for other purposes and are likely not even able to
break RSA for smaller primes. In fact, the quantum computers that have been used to break
RSA has far fewer qubits. In 2018, Dash et al. [5] factored biprimes: 4088459 and 966887, using

1We note that RSA is short for Rivest–Shamir–Adleman, namely the cryptographers behind the famous algorithm.
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2 AL Henriksen: Signatures in The QROM

only a 5 qubit processor. When it comes to such factorization, no great breakthroughs have
happened since. In other words, science is clearly moving at a rapid pace when it comes to
quantum computers, but the best attempts of factorizing primes are far from the size of the2048 bit primes usually used by RSA. Even though these computers are a stretch away from
being widely commercialised and breaking all cryptographic security today, it is apparent that
time has come for developing new quantum safe protocols.
In 2016 the American National Institute of Standards and Technology (NIST) called for pro-
tocols to create a Post-Quantum Cryptography (PQC) standard. Several candidates based on
different problems were submitted. In July 2022, after three rounds of the competition, NIST
announced four candidates to be standardized as well as four Key-Establishment Mechanism
(KEM) candidates to go on to a fourth round [6]. The four candidates being standardized are:

CRYSTAL’s2 KYBER - lattice based KEM
CRYSTAL’s Dilithium - lattice based signature scheme
FALCON - lattice based signature scheme
SPHINCS+ - hash based signature scheme

and the four candidates moving forward to the fourth round are:

BIKE - code based KEM
Classic McElice - code based KEM
HQC - code based KEM
SIKE - isogeny based KEM

The main goal for this thesis is to explore what provable security means for a quantum safe
signature. In order to explore just this we will begin by introducing the necessary background in
the Preliminaries, before we move on to explore lattices, their properties and significance within
cryptography. Next we move on to look at how identification and signature schemes work,
as well as how we can transform an identification scheme into a signature scheme. With this
knowledge, we look at different security models, before we go deeper into the QROM and look at
security against quantum attackers. We look at different security definitions for signatures and
apply these to two concrete signatures: the Lyubashevsky signature and the Dilithium signature.
Lastly, we discuss the need for a security model for security against quantum attackers. In the
discussion we also look back at the two signatures and compare their security.

2We note that CRYSTALS is short for Cryptographic Suite for Algebraic Lattices; an international team of
cryptographers.



Chapter 2

Preliminaries

2.1 Notation

The notation throughout this thesis mainly follow that of Kiltz et al. [7]. We shall state it here
in order to make it clear.

Rings Throughout this thesis, 𝑅 will refer to the ring ℤ[𝑋]/⟨𝑋𝑛 + 1⟩ and 𝑅𝑞 refers to the
ring ℤ𝑞[𝑋]/⟨𝑋𝑛 + 1⟩ where 𝑞 ∈ ℤ. We assume 𝑞 ≡ 5 mod 8 as this ensures all polynomials
in 𝑅𝑞 having coefficients less than √𝑞/2 to be invertible in the ring ([8], Lemma 2.2). We
write regular font letters to be elements in the rings 𝑅 and 𝑅𝑞 (including ℤ and ℤ𝑞), lowercase
letters with an arrow above to denote vectors with coefficients in the rings and matrices will be
represented by a bold uppercase letter.

Modular reductions We let 𝛼 denote an even (respectively odd) positive integer. We then
define 𝑟′ = 𝑟 mod ±𝛼 to be the unique element 𝑟′ in range −𝛼2 < 𝑟′ < 𝛼2 (respectively −𝛼−12 ≤𝑟′ ≤ 𝛼−12 ) such that 𝑟′ = 𝑟 mod 𝛼, we call this centered reduction modulo 𝑞. We also define,
for any positive 𝛼, 𝑟′ = 𝑟 mod +𝛼 to be the unique element 𝑟′ in range 0 ≤ 𝑟′ < 𝛼 such that𝑟′ = 𝑟 mod 𝛼. When being exact is redundant, we will simply write 𝑟 mod 𝛼. We extend this
definition to the ring ℤ𝑞[𝑋]/⟨𝑋𝑛 +1⟩. Coefficient wise we get a mapping for elements in the ring
to an integer polynomial of degree less than 𝑛.
Sampling For 𝑛 ∈ ℕ, we define [𝑛] ∶= {1, ..., 𝑛}. For a set 𝑆 we denote the cardinality of the
set by |𝑆|. Sampling a uniform random element 𝑥 from the finite set is denoted by 𝑥 ← 𝑆 and
sampling according to some distribution 𝐷 is denoted by 𝑥 ← 𝐷. The context will make the
difference apparent. For Boolean statement 𝐵, we denote ⟦𝐵⟧ as the bit 1 if 𝐵 is true and 0
otherwise.

3



4 AL Henriksen: Signatures in The QROM

Algorithms We assume all algorithms to be probabilistic, unless otherwise stated. For al-
gorithm 𝐴, we denote the probabilistic computation of the algorithm on input 𝑥 as 𝑦 ← 𝐴(𝑥),
where 𝑦 ∈ 𝐴(𝑥) indicates all possible outcomes 𝑦 of 𝐴 given input 𝑥. If 𝐴 is deterministic we
denote the computation of the algorithm on input 𝑥 as 𝑦 ∶= 𝐴(𝑥). Using fixed randomness,
we can make any probabilistic algorithm 𝐴 deterministic. We write 𝑦 ∶= 𝐴(𝑥; 𝑟) to denote 𝐴
running on input 𝑥 with randomness 𝑟. To denote the event that 𝐴 returns 𝑦 on input 𝑥, we
write 𝐴(𝑥) ⇒ 𝑦.
Sizes of Elements For 𝑤 ∈ ℤ𝑞, we write ‖𝑤‖∞ to be |𝑤 mod±𝑞|. For 𝑤 = 𝑤0 + 𝑤1𝑋 + ... +𝑤𝑛−1𝑋𝑛−1 ∈ 𝑅, we then define the 𝑙∞ and the 𝑙2 norms as:‖𝑤‖∞ = max𝑖 ‖𝑤𝑖‖∞, ‖𝑤‖ = √‖𝑤0‖2∞ + ... + ‖𝑤𝑛−1‖2∞.
Similarly, for �⃗� = (𝑤1, ..., 𝑤𝑘) ∈ 𝑅𝑘, we have:‖�⃗�‖∞ = max𝑖 ‖𝑤𝑖‖∞, ‖�⃗�‖ = √‖𝑤1‖2∞ + ... + ‖𝑤𝑘‖2∞.
We will use 𝑆𝜂 to denote elements 𝑤 ∈ 𝑅, where ‖𝑤‖∞ ≤ 𝜂.
Quantum Notation We consider the state of a qubit |𝜙⟩ to be a two-dimensional complex
vector s.t. |𝜙⟩ = 𝛼|0⟩ + 𝛽|1⟩, where 𝛼, 𝛽 ∈ ℂ such that |𝛼|2 + |𝛽|2 = 1 and {|0⟩, |1⟩} forms an
orthogonal basis of ℂ2. We say that 𝛼 and 𝛽 are the complex amplitudes of the qubit |𝜙⟩. A
classical bit 𝑏 ∈ {0, 1} expressed as a qubit is denoted as |𝑏⟩. A qubit |𝜙⟩ is in superposition if0 < |𝛼| < 1.
For classical oracles we write 𝒪 ∶ {0, 1}𝑛 → {0, 1}𝑚, where we consider the execution of this
function to be a reversible unitary transformation. If we have quantum access to 𝒪, we model
this as: 𝑈𝒪 ∶ |𝑥⟩|𝑦⟩ ↦ |𝑥⟩|𝑦 ⊕ 𝒪(𝑥)⟩,
where 𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑚. We see that 𝑈𝒪 is its own inverse. An adversary 𝒜 with
quantum access to an oracle 𝒪 is denoted as 𝒜|𝒪⟩ and can access the oracle 𝒪 in superposition
using 𝑈𝒪. An adversary with classical access to 𝒪 is similarly denoted as 𝒜𝒪. We also note that
the time it takes to run 𝑈𝒪 is linear to the time it takes to run 𝒪 classically.

2.2 Hash Functions and Pseudo Random Functions

Hash functions are readily used within cryptography, but what exactly are hash functions? The
quick answer will be that hashes are binary functions designed to have collision resistance, pre-
image resistance and some more properties. A hash takes a message, in form of a bit-string, as
input and outputs a hash value.
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2.2.1 Unstructured Hash Functions

Throughout the years NIST has standardized hash algorithms called Secure Hash Algorithms
(SHA). In 2007 NIST asked for submissions in order to find the next standard, namely SHA3.
In 2012 the winners of the SHA-3 Cryptographic Hash Algorithm Competition [9] was published.
The winning algorithm was KECCAK, a sponge function hash. Six of the instances for the
algorithm were standardized, four fixed length output functions and two eXtendable Output
Functions (XOF).
The fixed length functions are what we know as hash functions. Hash functions behave like a
random one-to-one function that is designed to be collision resistant — one wants it to be near
impossible to find a collision. The hash takes the bit-string message from a larger domain to a
fixed smaller domain. This makes hash functions very desirable for cryptography, as it allows
us to decrease message size, while also hiding the message and making it look random. NIST
standardized the KECCAK algorithm for four instances, namely for 𝐵 = 224, 256, 384 and 512,
where 𝐵 is the length of the output hash in bits. The SHA3 function is described below for input
message 𝑀 and bit-length 𝐵:

SHA3(𝑀) = 𝐾𝐸𝐶𝐶𝐴𝐾[2𝐵](𝑀 ∥ 01, 𝐵).
XOF’s have several of the same properties as hash functions, such as randomness and resistance
against collision. However, XOF’s differ in the fact that the output domain is not fixed, usually
it is extended. NIST standardized two instances for XOFs, namely 𝐵 = 128 and 256. For XOFs𝐵 denotes the effort it takes to break the various security goals — for 𝐵 = 256 this means 2256
permutations. These SHA3 standardized XOFs are called SHAKE, and the function is described
below for input message 𝑀 , security 𝐵 and desired output length 𝑑:
SHAKE(𝑀, 𝑑) = 𝐾𝐸𝐶𝐶𝐴𝐾[2𝐵](𝑀 ∥ 1111, 𝑑).

2.2.2 Pseudorandom Functions

A psedorandom function is a mapping PRF ∶ 𝒦 × {0, 1}𝑛 → {0, 1}𝑘 where 𝑛, 𝑘 ∈ ℤ and 𝒦 is
a finite space, in our setting a finite key space. The advantage function for quantum adversary𝒜 and the PRF is then:𝐴𝑑𝑣PR

PRF(𝒜) ∶= |Pr[𝒜PRF(𝐾,⋅) ⇒ |𝐾 ← 𝒦] − Pr[𝒜RF(⋅) ⇒ 1]|,
assuming the adversary 𝒜 only has classical access to oracles PRF(𝐾, ⋅) and RF(⋅), where RF
is a perfect random function RF ∶ {0, 1}𝑛 → {0, 1}𝑘.
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2.3 Useful Mathematical Concepts

In this section we will introduce some seemingly random mathematical concepts. Throughout
the thesis we will refer back to this section and, hopefully the concepts will seem less random.

Generic Search Problem

For 𝜆 ∈ [0, 1] we let 𝔅𝜆 denote the Bernoulli distribution 𝔅𝜆 such that Pr[𝑏 = 1] = 𝜆 for bit𝑏 ← 𝔅𝜆. The Generic Search Problem (GSP) is to find 𝑥 ∈ 𝑋, with acess to random oracle𝑔 ∶ 𝑋 → {0, 1}, where 𝑋 is a finite set, such that 𝑔(𝑥) = 1, where 𝑔(𝑥) is distributed according to
the Bernoulli distribution [10–12]. Following this, we further define the Generic Search Problem
with Bounded probabilities (GSPB). Here the Bernoulli parameter 𝜆(𝑥) is chosen by an adversary,
but is only accepted if 𝜆(𝑥) < 𝜆 for all 𝑥 ∈ 𝑋. The problem remains the same as for GSP, but𝑔(𝑥) is now distributed according to Bernoulli distribution 𝔅𝜆(𝑥).

Game: GSPB𝜆
1 ∶ (𝜆(𝑥))𝑥∈𝑋 ← 𝒜1
2 ∶ if ∃ 𝑥 ∈ 𝑋 ∶ 𝜆(𝑥) > 𝜆, then
3 ∶ return 0
4 ∶ ∀ 𝑥 ∈ 𝑋 ∶ 𝑔(𝑥) ← 𝔅𝜆(𝑥)
5 ∶ 𝑥 ← 𝒜∣𝑔⟩2
6 ∶ return 𝑔(𝑥)

Figure 2.1: Quantum adversary 𝒜 = (𝒜1, 𝒜2) against the GSPB𝜆 game for bounded Bernoulli
distribution 𝔅𝜆(𝑥).

In Figure 2.1 we define the generic search game GSPB𝜆 in order to consider an adversary
wanting to solve the GSPB. Then, for quantum adversary 𝒜 having quantum access to the
oracle 𝑔 ∶ 𝑋 → {0, 1} and playing the GSPB𝜆 game, by Lemma 2.3.1, we see that 𝑃𝑟[GSPB𝒜𝜆 ⇒1] ≤ 8⋅𝜆 ⋅ (𝑄+1)2. It can be hard to see the intuition behind the bound here, we refer to Lemma
3.2 of Zhandry [12], instantiated for Δ = 1 and 𝑑 = 2(𝑄 + 1).
To further illustrate the upper hand of a quantum adversary to that of a classical adversary,
we consider classical adversary ℬ with classical access to the oracle 𝑔 ∶ 𝑋 → {0, 1} playing the
GSPB𝜆 game. It is trivial to see that Pr[GSPBℬ𝜆 ⇒ 1] = 𝜆 ⋅ 𝑄.

Lemma 2.3.1. For 𝜆 ∈ [0, 1] an unbounded quantum algorithm 𝒜 issuing no more than 𝑄
quantum queries to quantum oracle 𝑔, we have 𝑃𝑟[GSPB𝒜𝜆 ⇒ 1] ≤ 8 ⋅ 𝜆 ⋅ (𝑄 + 1)2 , where the
GSPB𝜆 game is defined in Figure 2.1.
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Min-Entropy

Entropy can be considered a measure of the unpredictability or randomness of an outcome over
a distribution. The instance of entropy we shall define for this thesis is min-entropy, which can
be viewed as the minimum amount of uncertainty of a distribution. From a cryptographic point
of view, this it is a sort of worst case scenario. Patranabis et al. [13] defines the min-entropy of
a random variable 𝑌 as min-entropy(𝑌 ) = − log2 (max𝑦 Pr[𝑌 = 𝑦]). We specify for this thesis
below.
Definition 2.3.1. If the most likely value of a random variable 𝑊 is chosen from a discrete
distribution 𝐷 occurs with probability 2−𝛼 we have min-entropy(𝑊 ∣ 𝑊 ← 𝐷) = 𝛼. If an
ID-scheme has 𝛼 bits of min-entropy, then:

Pr(𝑝𝑘,𝑠𝑘)←IGen
[min-entropy(𝑊 ∣ (𝑊, St) ← 𝑃1(𝑠𝑘)) ≥ 𝛼] ≥ 1 − 2−𝛼. (2.1)





Chapter 3

Lattices

As an effort to find new harder problems for cryptography, lattices have made their entry to the
field. Lattice based cryptography has shown itself a promising field for security against quantum
computers. In NIST’s competition to standardize protocols for PQC, three out of four winning
algorithms are lattice based. We shall here explore lattices and lattice based problems that will
be relevant in this thesis. The definitions and problems introduced here are standardized; we
mainly follow Gjøsteen [14–17].

3.1 Lattice Basics

Even within mathematics the word lattice carries several definitions. The type of lattice we will
be exploring here is what we can view as integer linear combinations of linearly independent
vectors in a real vector space.
Definition 3.1.1. An n-dimensional lattice, Λ, is a subgroup of ℝ𝑛 such that:Λ = { 𝑟∑𝑖=1 𝑎𝑖 ⃗𝑣𝑖 ∣ 𝑎1, ..., 𝑎𝑟 ∈ ℤ},
where vectors ⃗𝑣1, ..., ⃗𝑣𝑟 ∈ ℝ𝑛 are linearly independent.

If Λ is a subgroup of ℤ𝑛, we call it an integer lattice.
A lattice is generated by a basis if there exists a set of linearly independent vectors 𝐵 = { ⃗𝑏1, ..., ⃗𝑏𝑟}
such that Λ𝐵 = {∑𝑟𝑖=1 𝑎𝑖 ⃗𝑏𝑖 ∣ 𝑎𝑖 ∈ ℤ and ⃗𝑏𝑖 ∈ 𝐵}, we denote such lattice by Λ𝐵 . Further, we can
construct a 𝑟 × 𝑛 matrix from basis 𝐵, by assigning the 𝑖𝑡ℎ row of the matrix to be the vector⃗𝑏𝑖 for 𝑖 = 1, 2, ..., 𝑟. Then: ΛB = { ⃗𝑎B ∣ ⃗𝑎 ∈ ℤ𝑛 and B ∈ ℤ𝑟×𝑛}

9
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is the lattice generated by the basis matrix B. The rank of the matrix B is 𝑟 as the rows are
linearly independent and we say the lattice has full rank if 𝑟 = 𝑛.
Throughout this thesis we will be working with polynomials in the ring ℤ𝑞[𝑋]/⟨𝑋𝑛 + 1⟩. Con-
veniently we then consider the isomorphism below, where 𝑓(𝑥) is a polynomial of degree 𝑛 in𝔽[𝑋]: 𝜑 ∶ 𝔽[𝑋]/⟨𝑓(𝑥)⟩ → 𝔽𝑛𝑣0 + 𝑣1𝑥 + 𝑣2𝑥2 + ... + 𝑣𝑛−1𝑥𝑛−1 ↦ (𝑣0, 𝑣1, ..., 𝑣𝑛−1)
We see that the polynomial 𝑣0+...+𝑣𝑛−2 ⃗𝑥𝑛−2+𝑣𝑛−1 ⃗𝑥𝑛−1 corresponds to the vector (𝑣0, ..., 𝑣𝑛−2, 𝑣𝑛−1).
Dependant on context we will use the terms polynomial and vector interchangeably. To see why
we wish to consider this isomorphism, we define cyclic lattices:
Definition 3.1.2. The lattice Λ is a cyclic lattice if for every vector ⃗𝑣 = (𝑣0, ..., 𝑣𝑛−2, 𝑣𝑛−1) ∈ Λ
all vectors ⃗𝑣𝑟𝑜𝑡 = (−𝑣𝑛−1, 𝑣0, ..., 𝑣𝑛−2) ∈ Λ.

We notice that a ( ⃗𝑥𝑛 + 1)-cyclic lattice is an ideal in both ℤ[𝑋]/⟨𝑋𝑛 + 1⟩ and ℤ𝑞[𝑋]/⟨𝑋𝑛 + 1⟩
as (𝑣0 + ... + 𝑣𝑛−2 ⃗𝑥𝑛−2 + 𝑣𝑛−1 ⃗𝑥𝑛−1) ⋅ ⃗𝑥 = −𝑣𝑛−1 + 𝑣0 ⃗𝑥 + ... + 𝑣𝑛−2 ⃗𝑥𝑛−1. The notation ⃗𝑣𝑟𝑜𝑡 denotes
the cyclic rotation of vector ⃗𝑣, described in the definition.
Definition 3.1.3. Let 𝑝 be a prime and let 𝑝ℤ𝑛 = {𝑝 ⃗𝑥 ∣ ⃗𝑥 ∈ ℤ𝑛}. A lattice Λ is then called𝑝-ary lattice if 𝑝ℤ𝑛 ⊆ Λ ⊆ ℤ𝑛.
Using this definition, we let M be any 𝑛 × 𝑟 integer matrix and see that:Λ𝑝(M) = { ⃗𝑥 ∈ ℤ𝑛 ∣ ∃ ⃗𝑎 ∈ ℤ𝑟 ∶ ⃗𝑎M ≡ ⃗𝑥 mod 𝑝} (3.1)Λ⊥𝑝 (M) = { ⃗𝑥 ∈ ℤ𝑛 ∣ M ⃗𝑥𝑇 ≡ 0 mod 𝑝} (3.2)
and get the following proposition:
Proposition 3.1.4. For lattice Λ, the following are equivalent:

i Λ is 𝑝-ary lattice.
ii There exists a matrix M st. Λ = Λ𝑝(M).

iii There exists a matrix M’ st. Λ⊥𝑝 (M).
As we study lattices with the intention of looking at lattice based cryptography, we need to
define the successive minima:
Definition 3.1.5. For a lattice Λ, the 𝑖𝑡ℎ successive minimum 𝜆𝑖(Λ) is the smallest real number
such that there are 𝑖 linearly independent vectors no longer than 𝜆𝑖(Λ) in Λ.

For a lattice of rank 𝑟, we get 𝑟 successive minima, such that: 0 < 𝜆1(Λ) ≤ 𝜆2(Λ) ≤ ⋯ ≤ 𝜆𝑟(Λ),
where 𝜆1(Λ) is shortest length of a non-zero vector in Λ. We note that 𝜆2(Λ) need not be the
second shortest length.
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3.2 Lattice-Based Problems

As we have introduced lattices we want to show how they can be used with respect to cryp-
tography. There are several lattice-based problems currently being explored within the cryp-
tographic community, particularly in context of quantum computers. We shall mention and
describe several of these lattice-based problems, but will not explore all of them further. How-
ever, we still wish to see how they relate to each other.

Shortest Vector Problem

Finding a short lattice vector with length 𝜆1(Λ).
Definition 3.2.1. For a lattice Λ the shortest vector problem, denoted SVP, is to find a vector⃗𝑥 ∈ Λ such that: ‖ ⃗𝑥‖∞ = 𝜆1(Λ).
Sometimes there are more than one non-zero vector of length 𝜆1(Λ). In these cases just finding
a short vector is sufficient.
Definition 3.2.2. For a lattice Λ the 𝛾-approximate shortest vector problem, denoted SVP𝛾, is
to find a vector ⃗𝑥 ∈ Λ such that ‖ ⃗𝑥‖∞ = 𝛾 ⋅ 𝜆1(Λ).
Closest Vector Problem

Finding a lattice vector close to a specific point.
Definition 3.2.3. For a lattice Λ ⊆ ℝ𝑛 and ⃗𝑧 ∈ ℝ𝑛 the closest vector problem, denoted CVP,
is to find a vector ⃗𝑥 ∈ Λ such that for any ⃗𝑦 ∈ Λ, ‖ ⃗𝑥 − ⃗𝑧‖∞ ≤ ‖ ⃗𝑦 − ⃗𝑧‖∞.
Definition 3.2.4. For a lattice Λ ⊆ ℝ𝑛 and ⃗𝑧 ∈ ℝ𝑛 the approximate closest vector problem,
denoted CVP𝛾, is to find a vector ⃗𝑥 ∈ Λ such that for any ⃗𝑦 ∈ Λ, ‖ ⃗𝑥 − ⃗𝑧‖∞ ≤ 𝛾 ⋅ ‖ ⃗𝑦 − ⃗𝑧‖∞.

Learning with Errors (LWE)

The Learning With Errors (LWE) problem, is one of the most used lattice problems in cryp-
tography. There are several variants of the problem, we shall define some of the instances here
and note that we will refer to the Modular Learning With Errors (MLWE) problem later in
this thesis. The LWE problems are based on the hardness of distinguishing between a uniformly
random matrix/vector pair and an actually constructed matrix/vector pair.
Definition 3.2.5. For positive 𝑛, 𝑚, 𝑞, 𝛽 ∈ ℤ such that 𝛽 ≪ 𝑞. The learning with errors (LWE)
problem wants to distinguish between the following:
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i (A, A ⃗𝑠 + ⃗𝑒) , where A ← ℤ𝑛×𝑚𝑞 , ⃗𝑠 ← [𝛽] and ⃗𝑒 ← [𝛽]𝑛
ii (A, �⃗�), where A ← ℤ𝑛×𝑚𝑞 and �⃗� ← ℤ𝑛𝑞

We have decision-LWE where we wish to distinguish between which instance, i or ii, was used.
We also have search-LWE where given the matrix/vector pair generated as instance i, one wishes
to find the vectors ⃗𝑒 and ⃗𝑠.
Definition 3.2.6. For positive 𝑚, 𝑘, 𝑞 ∈ ℤ and probability distribution 𝐷 ∶ 𝑅𝑞 → [0, 1], the
modular learning with errors (MLWE) problem, wants to distinguish between the following:

i (A, A ⃗𝑠1 + ⃗𝑠2) , where A ← 𝑅𝑚×𝑘𝑞 , ⃗𝑠1 ← 𝐷𝑘𝑞 and ⃗𝑠2 ← 𝐷𝑚𝑞
ii (A, ⃗𝑡), where A ← ℤ𝑚×𝑘𝑞 and ⃗𝑡 ← 𝑅𝑚𝑞

Here too, decision-MLWE wishes to distinguish whether i or ii was used in constructing the
matrix/vector pair, and search-MLWE wishes to find the secret elements ⃗𝑠1 and ⃗𝑠2 when the
matrix/vector pair is constructed as in i.
One instance of LWE we will not define here is the Ring Learning With Errors (RLWE). The
reason we are mentioning it here is because the MLWE is a generalization of LWE and RLWE,
and we wish to display the context. The RLWE is LWE with a polynomial ring instead of ℤ,
and RLWE is MLWE for 𝑘 = 1.
Short Integer Solution

The Short Integer Solutiom (SIS) problem is, along with the LWE problem, one of the most
used lattice problems for cryptography. Naturally the problem relates to finding a short lattice
vector.
Definition 3.2.7. For a lattice Λ(M) where M ← ℤ𝑛×𝑚 the short integer solution, denoted
SIS, is to find vector ⃗𝑥 ∈ ℤ𝑚 such that M ⃗𝑥 = 0 and ‖ ⃗𝑥‖ ≤ 𝛽.
The value of 𝛽 will depend on the parameters for the specific schemes. The smaller 𝛽 gets, the
harder the problem gets. Similarly to the LWE problems, we also have the Ring Shortest Integer
Solution (RSIS) and the Modular Shortest Integer Solution (MSIS) problems. Here too, MSIS
is a generalization of RSIS and SIS.
Definition 3.2.8. For ⃗𝑎1, ..., ⃗𝑎𝑚 ∈ 𝑅𝑑𝑞 chosen independantly from the uniform distribution,
the modular shortest integer solution (MSIS) problem is to find 𝑧1, ..., 𝑧𝑚 ∈ 𝑅 such that∑𝑚𝑖=1 ⃗𝑎𝑖 ⋅ 𝑧1 = 0 mod 𝑞 and 0 < ‖ ⃗𝑧‖ ≤ 𝛽, where ⃗𝑧 = (𝑧1, ..., 𝑧𝑚) ∈ 𝑅𝑚.
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3.2.1 Relation among Problems

The similarity of the lattice problems can seem somewhat coincidental, however the problems
are all connected. Following Laarhoven et al.’s [15] reduction of problems we see, in Figure 3.1,
the connection of the problems we have introduced in this chapter.

CVP𝛾 SVP𝛾 SIS𝑛,𝑚,𝑞,𝛽 LWE𝑛,𝑚,𝑞,𝛽[18]
[19]

[20]
Figure 3.1: Relation among lattice based problems.

It is immediately noticeable that solving the SIS problem means solving the LWE problem, and
vice versa. Following the arrows of the chart we see that if we can solve the SIS problem, we
can also solve the SVP and CVP problem. We also note that if it is considered hard to solve the
CVP problem, it is considered hard to solve SVP and SIS. However, it remains an open problem
to show this implication.

3.3 Hashes and Lattices

3.3.1 Structured Hash Functions

Although the randomness of hash functions are very desirable for cryptography, we sometimes
want less random looking functions. We have what is called structured hash functions to fulfill
this need. Especially useful when we wish to interchange between the message and its hash. These
functions have more algebraic structure and we remind ourselves that 𝑅𝑞 = ℤ𝑞[𝑋]/⟨𝑥𝑛 + 1⟩.
Definition 3.3.1. For 𝑚 ∈ ℤ and 𝐷 ⊆ 𝑅𝑞, we have a hash function family, denoted ℋ(𝑅𝑞, 𝐷, 𝑚),
that maps 𝐷𝑚 to 𝑅𝑞 . We define this by:ℋ(𝑅𝑞, 𝐷, 𝑚) ∶= {ℎ�⃗� ∶ ⃗𝑎 ∈ 𝑅𝑚𝑞 ∣ ℎ�⃗�( ⃗𝑧) = ⃗𝑎 ⋅ ⃗𝑧, for any ⃗𝑧 ∈ 𝐷𝑚}.
This means that for ⃗𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑚) and ⃗𝑧 = (𝑧1, 𝑧2, ..., 𝑧𝑚) we get ℎ�⃗�( ⃗𝑧) = 𝑎1𝑧1 + 𝑎2𝑧2 +... + 𝑎𝑚𝑧𝑚, where all operations are in 𝑅𝑞 . It becomes apparent that the following properties
for hash functions ℎ ∈ ℋ(𝑅, 𝐷, 𝑚) hold:ℎ( ⃗𝑦 + ⃗𝑧) = ℎ( ⃗𝑦) + ℎ( ⃗𝑧) (3.3)ℎ( ⃗𝑦𝑐) = ℎ( ⃗𝑦)𝑐 (3.4)
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These properties along with the collision problem from Definition 3.3.2 will become important
as we study the security of different cryptographic schemes later.
Definition 3.3.2. Given hash ℎ ∈ ℋ(𝑅𝑞, 𝐷, 𝑚), the collision problem asks to find two distinct
elements ⃗𝑧, ⃗𝑧′ ∈ 𝐷 such that there is a collision of the hashed elements ℎ( ⃗𝑧) = ℎ( ⃗𝑧′). We denote
this problem as Col(ℎ, 𝐷), where 𝐷 ⊆ 𝑅𝑞.



Chapter 4

Identification and Signature
Schemes

In this section we will look at identification schemes (ID-schemes) and signature schemes. These
schemes are used in order to prove one’s identity with respect to a message, or to sign a mes-
sage. We will discuss the construction of these schemes as well as the requirements for security.
Signature schemes and ID-schemes have many similarities and, in fact, many signature schemes
are constructed from ID-schemes. It is therefore natural to start with exploring ID-schemes. The
definitions in this chapter follows those of Kiltz et al. [7].

4.1 Identification Scheme

An ID-scheme is an interactive protocol between a prover and a verifier, consisting of three
primitives: The key-generation algorithm IGen, the prover algorithm 𝑃 = (𝑃1, 𝑃2), and the
verifier algorithm V.
The protocol is initiated by the key-generation algorithm IGen distributing the secret key 𝑠𝑘 and
the public key 𝑝𝑘 to the prover and the verifier, respectively. The prover then uses the first part
of the prover algorithm 𝑃1 to produce a random value 𝑊 called a commitment and a state
St and sends the commitment to the verifier. Upon receiving the commitment the verifier picks
a random value 𝑐, called a challenge, and sends it to the prover. The prover then uses the 𝑃2 of
the prover algorithm to generate a response 𝑍 upon the challenge received from the verifier and
returns it to the verifier. The final step is the verifier using the verifier algorithm V to either
accept or reject. Accept meaning the verifier believes the prover to know the secret key.

Definition 4.1.1. A tuple of algorithms ID ∶= (IGen, 𝑃 , 𝑉 ) is defined as an identification
scheme if there is:

15
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• A key-generation algorithm IGen outputting the pair (𝑠𝑘, 𝑝𝑘) of corresponding secret key
and public key.
It is assumed the public key defines the set of challenges ChSet, the set of commitments
WSet and the set of responses ZSet.• A split prover algorithm 𝑃 = (𝑃1, 𝑃2), where 𝑃1 takes input 𝑠𝑘 and outputs commitment𝑊 ∈ WSet along with state 𝑆𝑡, and 𝑃2 takes input 𝑠𝑘 , commitment 𝑊 , state 𝑆𝑡 and
challenge 𝑐 and outputs response 𝑍 ∈ ZSet ∪ {⊥}.
Without loss of generality 𝑃1 is probabilistic and 𝑃2 is deterministic.• A deterministic verifier algorithm V that takes input 𝑝𝑘 and conversation transcript(𝑊, 𝑐, 𝑍) and outputs either 1 or 0, respectively accept or reject.

A transcript (𝑊, 𝑐, 𝑍) ∈ WSet × ChSet × ZSet ∪ {⊥, ⊥, ⊥} is valid with respect to 𝑝𝑘, if𝑉 (𝑝𝑘, 𝑊, 𝑐, 𝑍) = 1. In Figure 4.1 we define the transcript oracle Trans(𝑠𝑘) that takes input𝑠𝑘 and outputs the transcript (𝑊, 𝑐, 𝑍) of an interaction between a prover and a verifier. We
note that a transcript is defined as (⊥, ⊥, ⊥) if the response 𝑍 = ⊥. The interactive protocol we
have described between a prover and a verifier is often referred to as a sigma protocol. This is due
to its three-step structure of: commitment, challenge and response. A diagram of the interaction
is given in Figure 4.2a.

Trans(𝑠𝑘):
1 ∶ (𝑊, St) ← 𝑃1(𝑠𝑘)
2 ∶ 𝑐 ← ChSet
3 ∶ 𝑍 ← 𝑃2(𝑠𝑘, 𝑊, 𝑐, St)
4 ∶ if 𝑍 = ⊥, then
5 ∶ return (⊥, ⊥, ⊥)
6 ∶ return (𝑊, 𝑐, 𝑍)

Figure 4.1: Transcript oracle Trans(𝑠𝑘) for transcripts honestly generated between a prover and
a verifier.

As a way of knowing an ID-scheme executes in the correct manner, when executed properly
between two honest parties, we define correctness. In the literature we sometimes see the terms
correctness and completeness used interchangeably; in this thesis we define and use correctness.
Definition 4.1.2. If a prover knowing 𝑠𝑘 uses 𝑠𝑘 to produce a transcript, then an honest verifier
with the corresponding 𝑝𝑘 rejects with negligible probability, we have correctness.

In cryptography the term negligible is often defined to have a technical meaning. In this thesis
we informally use it to denote a probability that is small enough to be ignored. To measure the
correctness of a scheme, we further define:
Definition 4.1.3. An ID-scheme ID has correctness error 𝛿 for all (𝑠𝑘, 𝑝𝑘) ∈ 𝐼𝐺𝑒𝑛 if the
following conditions are met:
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• All possible transcripts, where 𝑍 ≠ ⊥, are valid. That is for all (𝑊, St) ∈ 𝑃1(𝑠𝑘), 𝑐 ∈ ChSet
and ⊥ ≠ 𝑍 ∈ 𝑃2(𝑠𝑘, 𝑊, 𝑐, St), we have 𝑉 (𝑝𝑘, 𝑊, 𝑐, 𝑍) = 1.• This probability that 𝑍 = ⊥ is contained in an honestly generated transcript (𝑊, 𝑐, 𝑍) is
bounded by 𝛿. That is 𝑃𝑟[𝑍 = ⊥ ∣ (𝑊, 𝑐, 𝑍) ← 𝑇 𝑟𝑎𝑛𝑠(𝑠𝑘)] ≤ 𝛿.

Some ID-schemes are what we call commitment recoverable. This means that we can recover a
commitment 𝑊 if we have the corresponding challenge 𝑐 and response 𝑍 as well as the 𝑝𝑘.
Definition 4.1.4. Let ID be an ID-scheme such that for any (𝑠𝑘, 𝑝𝑘) ∈ IGen, 𝑐 ∈ ChSet and𝑍 ∈ ZSet there exists an unique 𝑊 ∈ WSet such that 𝑉 (𝑝𝑘, 𝑊, 𝑐, 𝑍) = 1. We say the ID is
commitment recoverable if 𝑊 can be publicly computed using a commitment recovery algorithm
Rec such that 𝑊 ∶= Rec(𝑝𝑘, 𝑐, 𝑍).
4.1.1 Security Properties

In an ideal world, we would not have to worry about malicious adversaries wanting to interrupt
our communication. Unfortunately, we do not live in such a world and thus need to define some
properties which we can use to prove security for ID. We shall here define: Soundness, Witness
Indistinguishability (WI) and Zero-Knowledge (ZK).
While correctness assures us that a honestly generated transcript is unlikely to be rejected;
soundness assures us that a non-valid transcript is unlikely to be accepted.
Definition 4.1.5. If a prover only knowing 𝑝𝑘 somehow produces a transcript, then an honest
verifier with 𝑝𝑘 will only accept with negligible probability, we have soundness.

WI and ZK are two different ways of describing the information a prover leaks. As we will study
two signatures, where one uses WI and the other uses ZK, we will define both here. The version
of ZK we will need for one of these signatures is the No-Abort Honest Verifier Zero-Knowledge
(naHVZK), which also will be defined here. For the following definitions the oracle Trans is
defined in Figure 4.1.
Definition 4.1.6. If an ID-scheme has a 𝑝𝑘 with two corresponding secret keys, namely 𝑠𝑘
and 𝑠𝑘′, such that 𝑉 (𝑝𝑘, (Trans(𝑠𝑘)) = 𝑉 (𝑝𝑘, (Trans(𝑠𝑘′)) = 1 we say that the ID-scheme
is perfectly witness indistinguishable if a verifier cannot distinguish whether a transcript was
produced using 𝑠𝑘 or 𝑠𝑘′.
Definition 4.1.7. An ID-scheme ID is perfectly zero-knowledge if there exists a simulator
SimTrans such that given input 𝑝𝑘 the algorithm outputs transcript (𝑊 ′, 𝑐′, 𝑍′) such that a
verifier will accept (𝑊 ′, 𝑐′, 𝑍′) ← SimTrans(𝑝𝑘) with the same probability as it accepts an
honestly generated transcript (𝑊, 𝑐, 𝑍) ← Trans(𝑠𝑘).
Definition 4.1.8. An ID-scheme ID is 𝜖𝑧𝑘-perfect no-abort honest verifier zero-knowledge, if
there exist a simulator SimTrans such that given input 𝑝𝑘 the algorithm outputs transcript(𝑊 ′, 𝑐′, 𝑍′) satisfying the following conditions:



18 AL Henriksen: Signatures in The QROM

• The distribution of the simulated transcript (𝑊 ′, 𝑐′, 𝑍′) ← SimTrans(𝑝𝑘) has statistical
distance at most 𝜖𝑧𝑘 to that of (𝑊, 𝑐, 𝑍) ← Trans(𝑝𝑘) is no more than 𝜖𝑧𝑘.• The distribution of 𝑐′ generated by SimTrans is uniformly random in ChSet, for 𝑐′ ≠ ⊥.

4.2 Signature Scheme

Signature schemes are used for signing digital messages. Similarly to ID-schemes we refer to the
prover and the verifier, but unlike the ID-scheme, the signature scheme is non-interactive.
We have a prover wishing to sign a message and thus uses the signing algorithm Sign to produce
a signature 𝜎 for this message 𝑀 . The prover then sends this message/signature pair to the
verifier. The verifier then uses the verification algorithm Ver to either accept or reject the
message/signature pair received. Accept meaning the verifier believes the pair to be sent by a
known sender and to not have been altered on the way. If the 𝑝𝑘 is public “anyone” will have
the ability to verify the authenticity of the prover.
Definition 4.2.1. A tuple of algorithms SIG ∶= (IGen, Sign, Ver) is defined as a signature
scheme if there is:• A key-generation algorithm IGen that outputs the pair (𝑠𝑘, 𝑝𝑘) of corresponding secret

key and public key.
It is assumed that 𝑝𝑘 defines the message space 𝑀𝑆𝑒𝑡.• A signing algorithm Sign that takes input message 𝑀 and secret key 𝑠𝑘 and outputs
signature 𝜎.• A deterministic verification algorithm Ver that takes input message/signature pair (𝑀, 𝜎)
and public key 𝑝𝑘 and outputs 1 or 0, respectively accept or reject.

A message/signature pair (𝑀, 𝜎) ∈ MSet × MSet ∪ {⊥, ⊥} is valid with respect to 𝑝𝑘 , if
Ver(𝑝𝑘, 𝑀, 𝜎) = 1. We also have correctness for signature schemes; a signature scheme has
correctness error 𝛿, if Pr[Ver(𝑝𝑘, 𝑀, 𝜎 ∶= Sign(𝑠𝑘, 𝑀)) = 0] ≤ 𝛿 ∀ (𝑝𝑘, 𝑠𝑘) ∈ IGen and ∀𝑀 ∈ MSet.

4.2.1 The Fiat-Shamir Transformation

As mentioned many signature schemes are constructed from ID-schemes. In fact, ID-schemes are
not actually used as a primitive on their own, rather they are used to build non-interactive sig-
nature schemes. We shall explore one common way to turn an ID-scheme into a signature scheme
called the Fiat-Shamir transformation. Signature schemes constructed through this transform-
ation will be central in this thesis and we shall therefore define and explain these signatures
thoroughly. We note that signature schemes constructed through the Fiat-Shamir transforma-
tions derive the security properties we defined in Section 4.1.1 from their underlying ID-schemes.
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The idea is that we replace the first part of the verifier with a hash function. Instead of commu-
nicating with the verifier, the prover now gets the challenge 𝑐 from this hash function. We model
this as a random function using a Random Oracle (RO)1. We will later explore the concept of a
RO in greater detail, but for now it is sufficient to view this as a hash function accessible to the
prover. Instead of querying the verifier for a challenge, the prover can now receive a challenge
from the hash oracle and no outside interaction is required.
Definition 4.2.2. Let ID ∶= (IGen, 𝑃 , 𝑉 ). Using the Fiat-Shamir transformation, described
in Figure 4.2b, on ID gives us the signature scheme SIG ∶= (IGen, Sign, Ver). This is denoted
FS[ID, 𝐻], where ID is the underlying ID-scheme and 𝐻 ∶ {0, 1}∗ → ChSet is the hash function
used for challenges.

The Fiat-Shamir transformation splits the interactive protocol into the signing algorithm Sign
and verification algorithm Ver. More exactly the split prover algorithm is contained in the signing
algorithm and the verifier algorithm is contained in the verification algorithm. Conveniently,
correctness is preserved through the transformation, i.e. if the ID-scheme has correctness error𝛿, so does the signature FS[ID, 𝐻] constructed on it.

4.2.2 The Fiat-Shamir with Aborts Transformation

A significant step in the sigma protocol is the prover’s response 𝑍 upon the challenge 𝑐. Some-
times responding to a challenge can cause information to be leaked. More exactly, if the response𝑍 computed for a challenge 𝑐 is not in the desired range, sending that 𝑍 to the verifer will ruin
the uniform distribution of the responses sent. This will make the prover seem less random and
can cause an adversary to pick up unwanted information. Instead of having to respond, we give
the prover the option of what to do — we introduce aborting.
If equipped with the option to abort, the prover can simply send a new commitment to the
verifier if 𝑍 ∉ ZSet. This allows the prover to make a new commitment, receive a new challenge
and avoid responding to the unwanted challenge. If the protocol is interactive the verifier could
become suspicious if the prover aborts many times. However, as ID-schemes are merely used in
order to build signature schemes, this is not a problem as the prover never have to inform the
verifier that it aborted a challenge.
Definition 4.2.3. Let ID ∶= (IGen, 𝑃 , 𝑉 ). Using the Fiat-Shamir with aborts transformation,
described in Figure 4.2c, on ID gives us the signature scheme SIG ∶= (IGen, Sign, Ver). This is
denoted FS[ID, 𝐻, 𝜅𝑚], where ID is the underlying ID-scheme, 𝐻 ∶ {0, 1}∗ → ChSet is the hash
function used for challenges and 𝜅𝑚 is the maximum amount of times the scheme has to run in
order to produce a valid transcript.

In Figure 4.2 we compare the different executions of the underlying ID-scheme for the ID-scheme
itself, the FS[ID, 𝐻] derived signature and the FS[ID, 𝐻, 𝜅𝑚] derived signature.

1We will interchangeably use the full definition and the abbreviation.
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Prover Verifier

(𝑊, St) ← 𝑃1(𝑠𝑘) 𝑊𝑐 𝑐 ← ChSet𝑍 ← 𝑃2(𝑠𝑘, 𝑊, 𝑐, St) 𝑍 {0, 1} ← Ver(𝑝𝑘, 𝑊, 𝑐, 𝑍)
(a) An interactive ID-scheme running between a prover and a verifier.

Prover Verifier(𝑊, St) ← 𝑃1(𝑠𝑘)𝑐 ← 𝐻(𝑊, 𝑀)𝑍 ← 𝑃2(𝑠𝑘, 𝑊, 𝑐, St) (𝑐, 𝑍) {0, 1} ← Ver(𝑝𝑘, 𝑊, 𝑐, 𝑍)
(b) The execution of the underlying ID-scheme of the Fiat-Shamir derived FS[ID, 𝐻] signature, where
ID is the ID-scheme in 4.2a. In the box we see the RO being queried for a challenge instead of the verifier.

Prover Verifier(𝑊, St) ← 𝑃1(𝑠𝑘)𝑐 ← 𝐻(𝑊, 𝑀)𝑍 ← 𝑃2(𝑠𝑘, 𝑊, 𝑐, 𝑆𝑡)
if 𝑍 ∉ ZSet, then𝑍 = ⊥ (𝑐, 𝑍) {0, 1} ← Ver(𝑝𝑘, 𝑊, 𝑐, 𝑍)

(c) The execution of the underlying ID-scheme of the Fiat-Shamir derived FS[ID, 𝐻, 𝜅𝑚] signature, where
ID is the ID-scheme in 4.2a. In the gray boxes we see the prover’s option to abort.

Figure 4.2: The different Fiat-Shamir transformations illustrated.



Chapter 5

Security in ROM and QROM

We have now looked at what ID-schemes and signature schemes are and different properties
relating to how they run. This leaves us with the most interesting aspect remaining, namely the
security of the schemes. In this chapter we shall explore how different types of signature schemes
achieve security and what this looks like — both in a classical setting and in a quantum setting.

5.1 ROM and QROM

In order to prove security within a well defined setting we operate with different security models.
If a signature has a security proof in the Standard Model (SM) it is considered to be truly secure.
In order to imitate the real world the SM only restricts the adversary in terms of computational
power and time. Because of the few restrictions of the model; signatures in the SM tend to be of
low efficiency. As a response to the SM, along with the discovery of hash functions, the Random
Oracle Model (ROM) was created [21]. The ROM model does not ensure security in the real
world, however, the test-of-time suggest that a ROM proof is sufficient. In fact, many of the well
known and established schemes we use today — like the RSA — are only proved secure in the
ROM.
While exploring the Fiat-Shamir transformation in Chapter 4 we briefly mentioned what we call
a random oracle. In fact, the ROM is structured around this mysterious oracle, often described
as “a gnome sitting in a closed box with a dice and a book”. That is, the gnome rolls the dice and
outputs a hashed value for that query, as well as writing down the query along with the hashed
output. The gnome does such for all queries and if a query is made twice, the gnome outputs the
hash value it wrote down for that query the first time. Naturally, this does not translate to the
real world and ROM has become a way of modelling this through random functions. In a ROM
proof an adversary can access all oracles, but the challenger controls all of them. This means that
an adversary can only see that something is up if the challenger chooses to manipulate the RO
for a query the adversary has already made, and the adversary sends the same query again after

21
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the manipulation. This is not necessarily a problem in ROM as a technique called rewinding is
used. Rewinding essentially allows the challenger to rewind the adversary to an earlier point,
making it unaware that the RO has been manipulated. We see a flowchart of security in the
ROM in Figure 5.1 and note that we will define the different securities later in this chapter [7].

ID SS

FS UF-NMA FS UF-CMA

ID LOSSY

𝑅𝑒𝑤𝑖𝑛𝑑𝑖𝑛𝑔 𝐻𝑉 𝑍𝐾

Figure 5.1: Security of FS[ID, 𝐻] signatures in the ROM. Dashed arrows denotes non-tight
reductions and solid arrows denotes tight reductions. The different security notions are explained
in Section 5.2. We note that SS is short for Special Soundness without going into greater detail.

As cryptography is creating new quantum safe protocols Boneh et al. [22] argued the need for a
new model for security of these protocols. They introduced the Quantum Random Oracle Model
(QROM), built on the existing ROM. In the QROM an adversary can access all oracles, but
now has quantum access to the RO controlled by the challenger. The new model allows us to
account for adversaries with quantum capabilities. This becomes slightly problematic regarding
some of the techniques we have used in the classical ROM. For instance, an adversary is now
able to tell if the RO has been manipulated in a position, regardless if the adversary has queried
that position prior. If a challenger manipulates the RO for a specific query, it would collapse
the superposition the adversary normally would see, thus revealing it has manipulated the RO.
Rewinding no longer helps the challenger. To solve this we create a layered patching mechanism
using an indicator function. The indicator function allows us to retrieve the necessary information
from the queried superposition without collapsing it. We see how different securities relate to
each other in the QROM in Figure 5.2 [7].

FS UF-CMA1 DFS UF-CMA

ID LOSSY FS UF-NMA

FS UF-CMA

𝑇 ℎ𝑚.5.2.4 𝑇 ℎ𝑚.5.2.3𝐻𝑉 𝑍𝐾
𝐻𝑉 𝑍𝐾

[23]
𝑃𝑅𝐹

Figure 5.2: Security of FS[ID, 𝐻] and FSD[ID, 𝐻, PRF] signatures in the QROM. Dashed arrows
denotes non-tight reductions and solid arrows denotes tight reductions. The different security
notions are explained in Section 5.2 and FSD[ID, 𝐻, PRF] is defined in Section 5.2.2.



Chapter 5: Security in ROM and QROM 23

5.2 UF-CMA Security

When working with digital signatures UnForgeability against Chosen Message Attack (UF-
CMA) security has become the standard security notion for signature schemes. In a UF-CMA
game the adversary is allowed 𝑄𝑆 signing queries 𝑀′ ∈ MSet to which the challenger responds
with the signature 𝜎′ ← Sign(𝑠𝑘, 𝑀′). The end goal for the adversary is to produce a valid
message/signature pair (𝑀∗, 𝜎∗), such that Ver(𝑝𝑘, 𝑀∗, 𝜎∗) = 1. A diagram of this interaction
between the challenger and an adversary is given in Figure 5.3.

Challenger Adversary

𝑝𝑘𝑀′ 𝑀′ ∈ MSet𝜎′ (𝑀∗, 𝜎∗) ∈ MSet × MSet(𝑀∗, 𝜎∗){0, 1} ← Ver(𝑝𝑘, 𝑀∗, 𝜎∗)
Figure 5.3: The UF-CMA security game played between a challenger and an adversary. The
challenger accepts if the adversary submits a valid message/signature pair, and rejects otherwise.

If the adversary successfully produced a valid pair (𝑀∗, 𝜎∗), it seems the adversary has been able
to extract information about the signing algorithm through the signing queries — the adversary
wins. On the other hand, we say the signature scheme is UF-CMA secure if the chance of the
adversary producing such a valid pair is negligible. There are several different kinds of UF-CMA
security and we will be discussing all of them in some capacity during this thesis. In order to
distinguish the difference of the variants, we shall list and describe all here:

UF-CMA: UnForgeability against Chosen Message Attack. An adversary is allowed to make𝑄𝑆 signing queries to a challenger before responding with a message/signature pair. The
adversary wins the game if the challenger accepts the message/signature pair. It is the
most used version of security for signatures.

UF-CMA1: UnForgeability against one-query-per-message Chosen Message Attack is the same
as UF-CMA security, but the adversary can only query the challenger one time per message.

sUF-CMA: Strong UnForgeability against Chosen-Message Attack is the same as UF-CMA
security, but the adversary can now win by returning a valid message/signature pair where
the message has been queried before, but the signature is new. We call the security against
“old” message/new signature pair for the strong unforgeability requirement.
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sUF-CMA1: Strong UnForgeability against one-query-per-message Chosen Message Attack is
the same as UF-CMA1 security with the strong unforgeability requirement.

UF-NMA: UnForgeability against No Message Attack. An adversary is not allowed any signing
queries to the challenger before responding with a message/signature pair. The adversary
wins the game if the challenger accepts the message/signature pair. It is essentially the
same as UF-CMA security with 𝑄𝑆 = 0.

As we are interested in security both in ROM and in QROM, we observe the difference in how
the UF-CMA game is executed in Figure 5.4. In line 3 and 4 of the UF-CMA game in the
QROM, we note that the forged signature is parsed in order to retrieve the commitment 𝑊 ∗
and the response 𝑍∗, before constructing the challenge 𝑐∗ using the random oracle 𝐻.

UF-CMA: //ROM
1 ∶ (𝑝𝑘, 𝑠𝑘) ← IGen
2 ∶ (𝑀∗, 𝜎∗) ← 𝒜SIGN(𝑝𝑘)
3 ∶ return ⟦𝑀∗ ∉ MSet⟧ ∧ ⟦Ver(𝑝𝑘, 𝑀∗, 𝜎∗)⟧

UF-CMA: //QROM
1 ∶ (𝑝𝑘, 𝑠𝑘) ← IGen
2 ∶ (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩,SIGN(𝑝𝑘)
3 ∶ parse : 𝜎∗ = (𝑊 ∗, 𝑍∗)
4 ∶ 𝑐∗ ∶= 𝐻(𝑊 ∗ ∥ 𝑀∗)
5 ∶ return ⟦𝑀∗ ∉ MSet⟧ ∧ ⟦Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗)⟧

Figure 5.4: UF-CMA security in the ROM and the QROM. SIGN denotes the signing oracle for
the signature and 𝐻′ denotes the hash oracle which is quantum accessible.

5.2.1 Signatures from Lossy ID-schemes

In 2012 Abdalla et al. [24] introduced lossy ID-schemes that could be proven tightly secure in
the ROM. In 2017 Alkim et al. [25] proved that the lattice based signature TESLA could be
proven UF-CMA secure in the QROM and left it as an open problem to prove the general case
for signatures derived from lossy ID-schemes. In this thesis we follow Kiltz et al.’s [7] efforts to
create a general QROM proof for lossy derived signatures. Following the flowchart in Figure 5.2
we look at how to achieve the different unforgeability securities for signatures constructed using
Fiat-Shamir on lossy ID-schemes in the QROM.
Definition 5.2.1. Let ID = (IGen, 𝑃 , 𝑉 ) be an ID-scheme. If ID is lossy there exist a lossy
key-generation algorithm such that 𝑝𝑘𝑙𝑠 ← LossyIGen, where 𝑝𝑘𝑙𝑠 is a lossy public key having
no corresponding secret key.

We sometimes refer to lossy ID-schemes as LID ∶= (IGen, LossyIGen, 𝑃 , 𝑉 ). There are two prop-
erties of lossy ID-schemes that we want to notice in particular. First, we notice that the keys
generated by the lossy key generator LossyIGen and the real key generator IGen are indistin-
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guishable from each other. We define the LOSS advantage function:𝐴𝑑𝑣LOSS
LID (𝒜) ∶= ∣ Pr[𝒜(𝑝𝑘𝑙𝑠) ⇒ 1 ∣ 𝑝𝑘𝑙𝑠 ← LossyIGen]− Pr[𝒜(𝑝𝑘) ⇒ 1 ∣ (𝑝𝑘, 𝑠𝑘) ← IGen] ∣ . (5.1)

Second, we wish to consider the probability that an unbounded adversary can impersonate the
prover. We wish to use the fact that there is no secret key corresponding to the lossy public
key and consider an unbounded adversary 𝒞 . We see that relative to lossy key 𝑝𝑘𝑙𝑠 not even
an adversary like 𝒞 can impersonate the prover. Considering 𝒞 playing the LOSSY − IMP game
defined in Figure 5.5, we find the lossy soundness 𝜖𝑙𝑠 of the ID-scheme. We get 𝑃𝑟[LOSSY − IMP𝒞 ⇒1] ≤ 𝜖𝑙𝑠. To bound this probability, we take the expectation over 𝑝𝑘𝑙𝑠 ← LossyIGen which, along
with the fact that 𝒞 is unbounded, allows us to upper bound 𝒞’s chance of winning:

Pr[LOSSY − IMP𝒞 ⇒ 1] ≤ E [ max𝑊∈WSet
(𝑃 𝑟[∃ 𝑍 ∈ ZSet ∶ 𝑉 (𝑝𝑘𝑙𝑠, 𝑊, 𝑐, 𝑍) = 1])] . (5.2)

We achieve equality in (5.2) if we have an adversary 𝒞 making the “optimal” decisions. That is𝒞 submits the easiest commitment 𝑊 ∈ WSet with challenge 𝑐 ← ChSet such that it successfully
finds a valid response 𝑍 ∈ ZSet.

LOSSY − IMP:
1 ∶ 𝑝𝑘𝑙𝑠 ← LossyIGen
2 ∶ (𝑊 ∗, St∗) ← 𝒞(𝑝𝑘𝑙𝑠)
3 ∶ 𝑐∗ ← ChSet
4 ∶ 𝑍∗ ← 𝒞(St, 𝑐∗)
5 ∶ return ⟦𝑉 (𝑝𝑘𝑙𝑠, 𝑊 ∗, 𝑐∗, 𝑍∗)⟧

Figure 5.5: The lossy impersonation game.

5.2.2 UF-CMA in the QROM

Following the flowchart in Figure 5.2, we see that signatures built on lossy ID-schemes can be
proved UF-NMA, UF-CMA1 and UF-CMA secure in the QROM. In this section we will introduce
Theorem 5.2.2 and prove it in a modular fashion. First showing that UF-NMA security and
naHVZK implies UF-CMA1 security and then showing that having a FS[ID, 𝐻, 𝜅𝑚] signature,
where ID is lossy implies UF-NMA security. Lastly we will look at what the requirements are
in order to extend this to strong unforgeability and how we can build onto UF-CMA1 security
to achieve UF-CMA security. In Chapter 6 we will apply this approach to the CRYSTAL’s
Dilitihium signature scheme.
Theorem 5.2.2. Let the ID-scheme ID be 𝜖𝑧𝑘-perfect naHVZK, 𝜖𝑙𝑠-lossy sound and having 𝛼
bits of min-entropy. Then for any quantum adversary 𝒜 playing the UF-CMA1 game issuing at



26 AL Henriksen: Signatures in The QROM

most 𝑄𝐻 queries to the quantum random oracle 𝐻 and 𝑄𝑆 classical queries to the signing oracle
SIGN1, there exists a quantum adversary ℬ, such that:𝐴𝑑𝑣UF−CMA1

SIG (𝒜) ≤ 𝐴𝑑𝑣LOSS
ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 + 2−𝛼+1, (5.3)

where 𝑇 𝑖𝑚𝑒(ℬ) = 𝑇 𝑖𝑚𝑒(𝒜) + 𝜅𝑚𝑄𝐻 ≈ 𝑇 𝑖𝑚𝑒(𝒜).
We observe that the bound of Theorem 5.2.2 is tight. Conducting the same proof in the ROM
will give us the same result, with the only difference being the bound depending linearly rather
than quadratic on the oracle queries 𝑄𝐻.

UF-NMA to UF-CMA1
Theorem 5.2.3. Let the ID-scheme ID be 𝜖𝑧𝑘-perfect naHVZK and having 𝛼 bits of min-entropy.
Then for any quantum adversary 𝒜 playing the UF-CMA1 game issuing at most 𝑄𝐻 queries to
the quantum random oracle 𝐻 and 𝑄𝑆 classical queries to the signing oracle SIGN1, then there
exist a quantum adversary ℬ playing the UF-NMA game issuing 𝑄𝐻 queries to its own quantum
random oracle, such that:𝐴𝑑𝑣UF−CMA1

SIG (𝒜) ≤ 𝐴𝑑𝑣UF−NMA
SIG (ℬ) + 2−𝛼+1 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘, (5.4)

where: 𝑇 𝑖𝑚𝑒(ℬ) = 𝑇 𝑖𝑚𝑒(𝒜) + 𝜅𝑚(𝑄𝐻 + 𝑄𝑆) ≈ 𝑇 𝑖𝑚𝑒(𝒜)
Proof. The reduction of games and oracles are described in Figure 5.6. We let 𝒜 be a quantum
adversary playing UF-CMA1 against signature scheme SIG, where 𝒜 makes at most 𝑄𝐻 quantum
queries to the oracle 𝐻 and at most 𝑄𝑆 classical queries to the oracle SIGN1, both oracles also
described in Figure 5.6.
Game G0 : Comparing the initial game G0 to the UF-CMA game in Figure 5.4 it becomes
clear that G0 is the UF-CMA1 game. The signing oracle SIGN1 produces a signature by calling
the GetTrans procedure for G0. A real interaction (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) is then generated using the
deterministic prover algorithms 𝑃1 and 𝑃2. Randomness of the output is assured through the
random function RF, which is not accessible for the adversary. Looking at line 1 of SIGN1 we
see that the adversary is only allowed one signing query per message, we get:𝐴𝑑𝑣UF−CMA1

SIG (𝒜) = Pr[𝐺𝒜0 ⇒ 1].
Game G1 : In G1 we change which GetTrans procedure we call, and we see that the GetTrans
procedure for G1 uses the naHVZK transcript simulator SimTrans to produce a transcript and
then patches the quantum oracle 𝐻 for each query. Unlike G0 the transcripts are no longer
honestly generated.
We look at a classical signing query from the adversary 𝒜. In line 1 of the GetTrans procedure
the variable 𝜅 ∶= 0 is initiated, before starting a while loop in lines 2–4 looking for the smallest
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Game 𝐺0/ 𝐺1 / 𝐺2 :
1 ∶ (𝑝𝑘, 𝑠𝑘) ← IGen
2 ∶ (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩,SIGN1(𝑝𝑘)
3 ∶ parse : 𝜎∗ = (𝑊 ∗, 𝑍∗)
4 ∶ 𝑐∗ ∶= 𝐻(𝑊 ∗ ∥ 𝑀∗)
5 ∶ if 𝑐∗ ≠ 𝐻′(𝑊 ∗ ∥ 𝑀∗), then

6 ∶ return 0
7 ∶ return ⟦𝑀∗ ∉ MSet⟧ ∧ ⟦Ver(𝑝𝑘, 𝑀∗, 𝜎∗)⟧

All commands in regular print are executed
from G0 and throughout the games. Commands
in print like this are executed from 𝐺1
and throughout, and commands printed like this
are executed from 𝐺2 and throughout.

SIGN1(𝑀)
1 ∶ if 𝑀 ∈ MSet, then
2 ∶ return ⊥
3 ∶ MSet = MSet ∪ {𝑀}
4 ∶ (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) ∶= GetTrans(𝑀)
5 ∶ return 𝜎𝑀 ∶= (𝑊𝑀, 𝑍𝑀)

𝐻(𝑊 ∥ 𝑀) //quantum access
1 ∶ (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) ∶= GetTrans(𝑀)
2 ∶ if 𝑊 = 𝑊𝑀, then
3 ∶ return 𝑐 ∶= 𝑐𝑀
4 ∶ return 𝑐 ∶= 𝐻′(𝑊 ∥ 𝑀)

GetTrans(𝑀) //𝐺0
1 ∶ 𝜅 ∶= 0
2 ∶ while 𝑍𝑀 = ⊥ and 𝜅 ≤ 𝜅𝑚, do
3 ∶ 𝜅 ∶= 𝜅 + 1
4 ∶ (𝑊𝑀, St) ∶= 𝑃1(𝑠𝑘; RF(0 ∥ 𝑀 ∥ 𝜅))
5 ∶ 𝑐𝑀 ∶= 𝐻(𝑊𝑀 ∥ 𝑀)
6 ∶ 𝑍𝑀 ∶= 𝑃2(𝑠𝑘, 𝑊𝑀, 𝑐𝑀, St; RF(1 ∥ 𝑀 ∥ 𝜅))
7 ∶ if 𝑍𝑀 = ⊥, then
8 ∶ (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) = (⊥, ⊥, ⊥)
9 ∶ return (𝑊𝑀, 𝑐𝑀, 𝑍𝑀)

GetTrans(𝑀) // 𝐺1 / 𝐺2
1 ∶ 𝜅 ∶= 0
2 ∶ while 𝑍𝑀 = ⊥ and 𝜅 ≤ 𝜅𝑚, do
3 ∶ 𝜅 ∶= 𝜅 + 1
4 ∶ (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) ∶= SimTrans(𝑝𝑘; RF(𝑀 ∥ 𝜅))
5 ∶ if 𝑍𝑀 = ⊥, then

6 ∶ (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) = (⊥, ⊥, ⊥)
7 ∶ return (𝑊𝑀, 𝑐𝑀, 𝑍𝑀)

Figure 5.6: The games: G0, G1 and G2, we see in the proof of Theorem 5.2.3.
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integer 1 ≤ 𝜅𝑀 ≤ 𝜅𝑚 satisfying (𝑊, 𝑐, 𝑍) ∶= SimTrans(𝑝𝑘; RF(𝑀 ∥ 𝜅). If no such integer exists
the procedure sets 𝜅𝑀 ≠ ⊥ and initiates lines 5 and 6, thus returning transcript (𝑊𝑀, 𝑐𝑀, 𝑍𝑀) =(⊥, ⊥, ⊥). If an integer 𝜅𝑀 does exist a transcript is computed, during the while loop, using the
simulator on random function RF. In G1 the transcript is deterministically computed as:(𝑊, 𝑐, 𝑍) ∶= GetTrans(𝑀) = {SimTrans(𝑝𝑘; RF(𝑀 ∥ 𝜅𝑀), 1 ≤ 𝜅𝑀 ≤ 𝜅𝑚(⊥, ⊥, ⊥), 𝜅𝑀 = ⊥
The signature on a message 𝑀 is then returned as 𝜎𝑀 ∶= (𝑊𝑀, 𝑍𝑀).
Recalling the Definition 4.1.8 for naHVZK, we know that the distribution of each 𝜎𝑀 produced
by the SimTrans has statistical distance at most 𝜅𝑚𝜖𝑧𝑘 from one computed honestly. Thus every
signature computed in G1 has this statistical distance to that computed in the previous game.
In lines 3 and 4 of the quantum random oracle 𝐻 we see that it is patched in order to ensure
that 𝜎𝑀 is a valid signature on 𝑀 . Concretely, iff 𝑊 = 𝑊𝑀 , the oracle sets 𝑐𝑀 ∶= 𝐻(𝑊 ∥ 𝑀),
where 𝑐𝑀 and 𝑊𝑀 are both computed by the GetTrans procedure. We avoid revealing to the
adversary that a simulator produced the transcript. To further ensure this, we see that the output
distribution of oracle 𝐻 remains the same as the 𝑐𝑀 generated by the simulator is uniformly
distributed. Using the union bound, we have:|Pr[𝐺𝒜1 ⇒ 1] − Pr[𝐺𝒜0 ⇒ 1]| ≤ 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘.
Game G2 : Looking at line 5 of the games, we see that G2 rejects if 𝑐∗ ≠ 𝐻′(𝑊 ∗ ∥ 𝑀∗). That
means the only way G1 and G2 can differ is if 𝑊 ∗ = 𝑊𝑀∗ and 𝑀∗ ∉ MSet. In this case G1
accepts, while G2 rejects. This is because 𝑊 ∗ = 𝑊𝑀∗ would mean 𝑐∗ ≠ 𝐻′(𝑊 ∗ ∥ 𝑀∗) causing
G2 to reject in line 6. Further considering that 𝑀∗ ∉ MSet, the random variable 𝑊𝑀∗ would
remain completely hidden from the view of the adversary as it has not been revealed as part of
a valid signature in any of the signing queries 𝑄𝑆. The commitment 𝑊𝑀∗ thus have 𝛼 bits of
min-entropy. Using Definition 2.3.1 we get 𝑃𝑟[𝑊𝑀∗ = 𝑊 ∗] ≤ 2−𝛼 and obtain the inequality:|Pr[𝐺𝒜2 ⇒ 1] − Pr[𝐺𝒜1 ⇒ 1]| ≤ 2−𝛼+1.
Now, we wish to consider the adversary ℬ in Figure 5.7 playing the UF-NMA game having
quantum access to the random oracle 𝐻′. Adversary ℬ then perfectly simulates 𝒜’s view from
G2, using its own oracle 𝐻′ to simulate 𝐻′ as well as a 2𝜅𝑚𝑄𝐻-wise independent hash function
to perfectly simulating the random function RF.
Assume 𝒜 produced a valid forgery in G2. This means that (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩,SIGN1 such that𝑀∗ ∉ MSet and the parsed signature would give Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗) = 1. To win G2 we notice
that 𝒜 must have produced a signature such that 𝑐∗ = 𝐻(𝑊 ∗ ∥ 𝑀∗), which means 𝐻(𝑊 ∗ ∥𝑀∗) = 𝐻′(𝑊 ∗ ∥ 𝑀∗). This means the forgery (𝑀∗, 𝜎∗) would also be valid in the UF-NMA
game where it would yield Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗) = 1, where 𝑐∗ = 𝐻′(𝑊 ∗ ∥ 𝑀∗), giving us:

Pr[𝐺𝒜2 ⇒ 1] = 𝐴𝑑𝑣UF−NMA
SIG (ℬ).
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Adversary ℬ|𝐻′⟩(𝑝𝑘) //quantum access
1 ∶ (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩,SIGN1(𝑝𝑘)
2 ∶ Parse 𝜎∗ = (𝑊 ∗, 𝑍∗)
3 ∶ 𝑐∗ ∶= 𝐻′(𝑊 ∗ ∥ 𝑀∗)
4 ∶ if 𝑐∗ ≠ 𝐻′(𝑊 ∗ ∥ 𝑀∗), then
5 ∶ Abort
6 ∶ if ⟦𝑀∗ ∉ MSet⟧ ∧ ⟦𝑉 (𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗)⟧, then
7 ∶ return (𝑀∗, 𝜎∗)
8 ∶ Abort

Figure 5.7: Adversary ℬ with quantum access to 𝐻′ playing the UF-NMA game against signa-
ture SIG which has quantum access to 𝐻′. The other oracles are defined as in Figure 5.2.3.

Collecting the probabilities we have seen throughout the games, we get:𝐴𝑑𝑣UF−CMA1
SIG (𝒜) ≤ 𝐴𝑑𝑣UF−NMA

SIG (ℬ) + 2−𝛼+1 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘,
which we recognize as (5.4). To get the running time of ℬ and complete the proof, we take
advantage of the identical views of 𝒜 in G2 and ℬ against UF-NMA. We see that 𝑇 𝑖𝑚𝑒(ℬ) is the
time it takes to run 𝒜 as a blackbox in G2 where for every 𝑄𝐻 oracle query and 𝑄𝑆 signing query,
no more than 𝜅𝑚 computations are performed. We have 𝑇 𝑖𝑚𝑒(ℬ) = 𝑇 𝑖𝑚𝑒(𝒜)+𝜅𝑚(𝑄𝐻 +𝑄𝑆) ≈𝑇 𝑖𝑚𝑒(𝒜), and thus see that Theorem 5.2.3 holds.

LOSSY to UF-NMA

Theorem 5.2.4. Let the ID-scheme ID be lossy and 𝜖𝑙𝑠-lossy sound. Then for any quantum
adversary 𝒜 playing the UF-NMA game issuing at most 𝑄𝐻 queries to the quantum random
oracle 𝐻, there exists a quantum adversary ℬ playing against LOSS, such that:𝐴𝑑𝑣UF−NMA

SIG (𝒜) ≤ 𝐴𝑑𝑣LOSS
ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠, (5.5)

where: 𝑇 𝑖𝑚𝑒(ℬ) = 𝑇 𝑖𝑚𝑒(𝒜) + 𝑄𝐻 ≈ 𝑇 𝑖𝑚𝑒(𝒜)
Proof. We will now prove that a signature scheme SIG ∶= FS[ID, 𝐻, 𝜅𝑚], where ID is a lossy
ID-scheme, is UF-NMA secure. The reduction of games are described in Figure 5.8 and the
adversaries and oracles are described in Figure 5.9. We let 𝒜 be a quantum adversary playing
UF-NMA against signature scheme SIG, where 𝒜 makes at most 𝑄𝐻 quantum queries to the
random oracle 𝐻.
Game G0 : Looking at G0 we notice that adversary 𝒜 does not even have access to a signing
oracle and to win the game 𝒜 would have produce a valid message/signature making no signing
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Game 𝐺0 / 𝐺1 :
1 ∶ (𝑝𝑘, 𝑠𝑘) ← IGen
2 ∶ 𝑝𝑘 ← LossyIGen
3 ∶ (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩(𝑝𝑘)
4 ∶ parse : 𝜎∗ = (𝑊 ∗, 𝑍∗)
5 ∶ 𝑐∗ ∶= 𝐻(𝑊 ∗ ∥ 𝑀∗)
6 ∶ return Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗)

All commands in regular print are executed
from G0 and throughout the games. Commands
in print like this are executed only in 𝐺0
and commands printed like this are executed
only in 𝐺1 .

Figure 5.8: G0 and G1 of Theorem 5.2.4.

queries and only having access to the random oracle 𝐻. It is apparent that G0 is the UF-NMA
game: 𝐴𝑑𝑣UF−NMA

SIG (𝒜) = Pr[𝐺𝒜0 ⇒ 1]. (5.6)

Game G1 : It is easy to see that the only difference from G0 to G1 is that we now use the lossy
key-generator algorithm LossyIGen instead of the real key-generator algorithm IGen. That is,
in G1 we have a lossy 𝑝𝑘𝑙𝑠 with no corresponding 𝑠𝑘. We consider adversary ℬ simulating the
oracle 𝐻 using a 2𝑄𝐻-wise hash function and thus adversary 𝒜’s view in both games. We recall
the LOSS advantage function (5.1) and see that:|Pr[𝐺𝒜1 ⇒ 1] − Pr[𝐺𝒜0 ⇒ 1]| = 𝐴𝑑𝑣LOSS

ID (ℬ). (5.7)

Before continuing, we note that our goal now is to reduce 𝒜’s chance of winning in G1 to the
GSPB, such that:

Pr[𝐺𝒜1 ⇒ 1] ≤ 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠.
We also recall that for finite set 𝑆, the probabilistic algorithm Uni(𝑆) returns 𝑥 ← 𝑆 uniformly
over 𝑆, where the deterministic execution of the same algorithm is 𝑥 ∶= Uni(𝑆; 𝑟) given random
tape 𝑟. We define the set of good challenges:

ChGOOD𝑝𝑘(𝑊) ∶= {𝑐 ∈ ChSet ∣ ∃ 𝑍 ∈ ZSet ∶ Ver(𝑝𝑘, 𝑊, 𝑐, 𝑍) = 1},
containing all challenges 𝑐 for which there exists a response 𝑍 such that (𝑊, 𝑐, 𝑍) is a valid
transcript with respect to 𝑝𝑘.
We now continue the proof. Just like we used adversary ℬ to simulate 𝒜’s view in order to
deduct the LOSS advantage function, we will now use adversary 𝒞 to simulate 𝒜’s view in order
to apply Lemma 2.1 and equate 𝒜’s chance of winning G1 to 𝒞 ’s chance of winning the GSPB𝜆
game. We let 𝒞 = (𝒞1, 𝒞2), defined in Figure 5.9, be an unbounded quantum adversary and
recall the GSPB𝜆 game in Figure 2.1. The adversary 𝒞 playing the GSPB𝜆 game is allowed at
most 𝑄𝐻 quantum queries to the quantum accessible oracle 𝑔(⋅).
Adversary 𝒞1 begins with fixing public key pk 𝑙𝑠 using the LossyIGen key-generator and picking
a 2𝑄𝐻-wise hash function to simulate the random oracle 𝐻. Next, 𝒞1 computes the set of good
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challenges for all possible 𝑊 ∈ WSet and defines the parameter 𝜆𝑝𝑘(𝑊), before defining the
parameter 𝜆𝑝𝑘(𝑊 ∥ 𝑊) ∶= 𝜆𝑝𝑘(𝑊) for every 𝑀 ∈ MSet. Adversary 𝒞1 finishes with outputting
the set (𝜆𝑝𝑘(𝑊 ∥ 𝑊))𝑊∈WSet,𝑀∈MSet. This process is very consuming and could take exponen-
tial time. As adversary 𝒞 is unbounded we simply note what this process would require great
computational power and move on to look at the probability that 𝒞 succeeds when playing the
GSPB𝜆 game.
With the set output by 𝒞1, the GSPB𝜆 game draws 𝑔(𝑊 ∥ 𝑀) ← 𝔅𝜆𝑝𝑘(𝑊∥𝑀) for all possible𝑊 ∈ WSet and 𝑀 ∈ MSet. The second part of adversary 𝒞, then uses adversary 𝒜’s forgery
in G1. We see that 𝒞2 retrieves 𝑐∗ by parsing the signature 𝜎∗ from the forgery and querying
the oracle 𝐻 with 𝐻(𝑊 ∗ ∥ 𝑀∗). By GSPB, we know oracle 𝑔(⋅) outputs 𝑦 = 1 with probability𝜆𝑝𝑘(𝑊 ∥ 𝑀) = |ChGOOD𝑝𝑘(𝑊)||ChSet| . This ensures the output distribution of 𝐻(𝑊 ∥ 𝑀), sampled
in lines 2 and 3, being uniform over ChSet, just as in G1. Further, using fixed random coins𝑓2𝑄𝐻(𝑊 ∥ 𝑀), derived from the 2𝑄𝐻-wise independent hash function 𝑓2𝑄𝐻 , when sampling 𝑐
in the case 𝑦 = 0, we assure consistency of 𝐻. We note that 𝑓2𝑄𝐻 looks like a perfectly random
function to adversary 𝒜 .
Adversary 𝒞1
1 ∶ 𝑝𝑘 ← LossyIGen
2 ∶ pick 2𝑄𝐻-wise independent hash function 𝑓2𝑄𝐻
3 ∶ for each 𝑊 ∈ WSet ∶
4 ∶ compute set ChGOOD𝑝𝑘(𝑊) ⊆ ChSet

5 ∶ 𝜆𝑝𝑘(𝑊) ∶= |ChGOOD𝑝𝑘(𝑊)||ChSet|
6 ∶ for each 𝑀 ∈ MSet set 𝜆𝑝𝑘(𝑊 ∥ 𝑀) ∶= 𝜆𝑝𝑘(𝑊)
7 ∶ return (𝜆𝑝𝑘(𝑊 ∥ 𝑀))𝑊∈WSet,𝑀∈MSet

Adversary 𝒞|𝑔⟩2
1 ∶ (𝑀∗, 𝜎∗) ← 𝒜|𝐻⟩(𝑝𝑘)
2 ∶ Parse 𝜎∗ = (𝑊 ∗, 𝑍∗)
3 ∶ 𝑐∗ ∶= 𝐻(𝑊 ∗ ∥ 𝑀∗)
4 ∶ if Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗) = 1, then
5 ∶ return (𝑊 ∗ ∥ 𝑀∗)
6 ∶ else
7 ∶ return ⊥

𝐻(𝑊 ∥ 𝑀) //quantum access
1 ∶ 𝑦 ∶= 𝑔(𝑊 ∥ 𝑀)
2 ∶ if 𝑦 = 1 ∶ 𝑐 ∶= Uni (ChGOOD𝑝𝑘(𝑊); 𝑓2𝑄𝐻(𝑊 ∥ 𝑀))
3 ∶ if 𝑦 = 0 ∶ 𝑐 ∶= Uni ( ChSet

ChGOOD𝑝𝑘(𝑊); 𝑓2𝑄𝐻(𝑊 ∥ 𝑀))
4 ∶ return 𝑐

Figure 5.9: Unbounded quantum adversary 𝒞 = (𝒞1, 𝒞2) and quantum oracle 𝐻.

Looking closer at adversary 𝒜’s forgery (𝑀∗, 𝜎∗) in G1, we see that parsing 𝜎∗ into (𝑊 ∗, 𝑍∗)
we can query the random oracle 𝐻 to receive 𝑐∗ ∶= 𝐻(𝑊 ∗, 𝑀∗). If the verification algorithm
accepts, namely Ver(𝑝𝑘, 𝑊 ∗, 𝑐∗, 𝑍∗) = 1, then we know 𝑐∗ is a “good” challenge, we have 𝑐∗ ∈
ChGOOD𝑝𝑘(𝑊 ∗). This implies 𝑔(𝑊 ∗ ∥ 𝑀∗) = 1 and we see that:

Pr[𝐺𝒜1 ⇒ 1 ∣ 𝑝𝑘] = Pr[GSPB𝒞𝜆𝑝𝑘 ⇒ 1] ≤ 8(𝑄𝐻 + 1)2𝜆𝑝𝑘, (5.8)
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where 𝜆𝑝𝑘 = max𝑊∈WSet,𝑀∈MSet
𝜆𝑝𝑘(𝑊 ∥ 𝑀).

We observe that the probability of 𝒜 creating a valid forgery with the lossy key 𝑝𝑘𝑙𝑠 is the same
as adversary 𝒞 winning the GSPB𝜆 game.
Averaging (5.8) over 𝑝𝑘 ← LossyIGen, and using the optimal adversary on (5.2), we get:

Pr[𝐺𝒜1 ⇒ 1] ≤ 8(𝑄𝐻 + 1)2 ⋅ E𝑝𝑘[𝜆𝑝𝑘] ≤ 8(𝑄𝐻 + 1)2𝜖𝑙𝑠. (5.9)

Now combining the results we have seen through (5.6), (5.7) and lastly (5.9), we get:𝐴𝑑𝑣UF−NMA
SIG (𝒜) ≤ 𝐴𝑑𝑣LOSS

ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠.
We recognize this as (5.5) from Theorem 5.2.4 and consider the Theorem to be proved.

Further, presenting the results from proving 5.2.3 and 5.2.4, namely (5.4) and (5.5), we get:𝐴𝑑𝑣UF−CMA1
SIG (𝒜) ≤ 𝐴𝑑𝑣LOSS

ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 + 2−𝛼+1.
Which, as no surprise, we recognize as (5.3) from Theorem 5.2.2. Thus, we see that Theorem
5.2.2 holds.

Strong Unforgeability

In proving the UF-CMA1 security from UF-NMA security we notice that this can be extended
to proving sUF-CMA1 security. To do so requires changing the winning condition of the games
in Figure 5.6, in order to account for the strong unforgeability requirement. For the sUF-CMA1
proof the return line of the games, line 7, would be ⟦(𝑀∗, 𝜎∗) ∉ MSet⟧ ∧ ⟦Ver(𝑝𝑘, 𝑀∗, 𝜎∗)⟧,
recording all previous message/signature queries.
The proof conducts in the same fashion as we explored in detail for UF-CMA1 security, and
we therefore refer to Kiltz et al. [7] for the full explanation. We here note that for a UF-CMA1
signature to also be sUF-CMA1 secure, the underlying ID-scheme has to have Computational
Unique Response (CUR).
Definition 5.2.5. If ID-scheme ID has computational unique response, we associate the advant-
age function for an adversary 𝒜:𝐴𝑑𝑣CUR

ID (𝒜) ∶= Pr [Ver(𝑝𝑘, 𝑊, 𝑐, 𝑍) = 1∧
Ver(𝑝𝑘, 𝑐, 𝑊, 𝑍′) = 1 ∧ 𝑍 ≠ 𝑍′ ∣ (𝑝𝑘, 𝑠𝑘) ← IGen;(𝑊, 𝑐, 𝑍, 𝑍′) ← 𝒜(𝑝𝑘)] (5.10)

We note that for an adversary 𝒜 playing the sUF-CMA1 game, this would be equivalent to
finding a valid signature on an already queried message. In other words, having received signature
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𝜎𝑀∗ = (𝑊𝑀∗, 𝑍𝑀∗) on message 𝑀 , 𝒜 would have to produce another forgery on 𝜎∗ = (𝑊 ∗, 𝑍∗)
on 𝑀 , such that transcripts (𝑊 ∗, 𝑐∗, 𝑍∗) and (𝑊𝑀∗, 𝑐𝑀∗, 𝑍𝑀∗), where 𝑍∗ ≠ 𝑍𝑀∗ both are valid.
We introduce Theorem 5.2.6 for sUF-CMA1 security.
Theorem 5.2.6. Let the ID-scheme ID be 𝜖𝑧𝑘-perfect naHVZK, 𝜖𝑙𝑠-lossy sound and having 𝛼
bits of min-entropy. Then for any quantum adversary 𝒜 playing the sUF-CMA1 game issuing
at most 𝑄𝐻 queries to the quantum random oracle 𝐻 and 𝑄𝑆 classical queries to the signing
oracle SIGN1, there exists a quantum adversary ℬ and a quantum adversary 𝒞, such that:𝐴𝑑𝑣sUF−CMA1

SIG (𝒜) ≤ 𝐴𝑑𝑣LOSS
ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 + 2−𝛼+1 + 𝐴𝑑𝑣(𝒞)CUR

ID ,
where 𝑇 𝑖𝑚𝑒(𝒞) = 𝑇 𝑖𝑚𝑒(ℬ) = 𝑇 𝑖𝑚𝑒(𝒜) + 𝜅𝑚𝑄𝐻 ≈ 𝑇 𝑖𝑚𝑒(𝒜) .

UF-CMA1 to UF-CMA

We also want to note the results of Bellare et al. [23]. Which is that any UF-CMA1 sig-
nature can be proven UF-CMA with the use of a pseudorandom function and by defining
Sign′((𝑠𝑘, 𝐾), 𝑀) ∶= Sign(𝑠𝑘, 𝑀; PRF𝐾(𝑀)). What we are describing are signatures built through
the deterministic Fiat-Shamir with aborts transformation.

Sign(𝑠𝑘, 𝑀)
1 ∶ 𝜅 ∶= 0
2 ∶ while 𝑍 = ⊥ and 𝜅 ≤ 𝜅𝑚 do
3 ∶ 𝜅 ∶= 𝜅 + 1
4 ∶ (𝑊, St) ∶= 𝑃1(𝑠𝑘)
5 ∶ 𝑐 = 𝐻(𝑊 ∥ 𝑀)
6 ∶ 𝑍 ∶= 𝑃2(𝑠𝑘, 𝑊, 𝑐, St)
7 ∶ if 𝑍 = ⊥, then
8 ∶ return 𝜎 = ⊥
9 ∶ return 𝜎 = (𝑊, 𝑍)

DSign((𝑠𝑘, 𝐾), 𝑀)
1 ∶ 𝜅 ∶= 0
2 ∶ while 𝑍 = ⊥ and 𝜅 ≤ 𝜅𝑚 do
3 ∶ 𝜅 ∶= 𝜅 + 1
4 ∶ (𝑊, St) ∶= 𝑃1(𝑠𝑘; PRF𝐾(0 ∥ 𝑚 ∥ 𝜅)
5 ∶ 𝑐 = 𝐻(𝑊 ∥ 𝑀)
6 ∶ 𝑍 ∶= 𝑃2(𝑠𝑘, 𝑊, 𝑐, St; PRF𝐾(1 ∥ 𝑚 ∥ 𝜅)
7 ∶ if 𝑍 = ⊥, then
8 ∶ return 𝜎 = ⊥
9 ∶ return 𝜎 = (𝑊, 𝑍)

Figure 5.10: The signing algorithm Sign for signature SIG ∶= FS[ID, 𝐻, 𝜅𝑚] and deterministic
signing algorithm for signature DSIG ∶= DFS[ID, 𝐻, PRF, 𝜅𝑚].

Definition 5.2.7. Let ID ∶= (IGen, 𝑃 , 𝑉 ). Using the deterministic Fiat-Shamir with aborts
transformation on ID gives us the signature scheme DSIG ∶= (IGen, DSign, Ver), denoted
DFS[ID, 𝐻, PRF, 𝜅𝑚]. Here ID is the underlying ID-scheme, 𝐻 ∶ {0, 1}∗ → ChSet is the hash
function used for challenges, 𝜅𝑚 is the maximum amount of times the scheme has to run in
order to produce a valid transcript and DSign, described in Figure 5.10, is the signing algorithm
derandomized using the pseudorandom function PRF with random key 𝐾.

With this definition we go back to the flowchart in Figure 5.2 and notice that proving UF-CMA
using the deterministic Fiat-Shamir variant offers better tightness. To use this advantage we
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extend Theorem 5.2.2 using pseudorandom function PRF and get:𝐴𝑑𝑣UF−CMA
DSIG (𝒜) ≤ 𝐴𝑑𝑣LOSS

ID (ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠 + 𝐴𝑑𝑣PR
PRF(𝒟) + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 + 2−𝛼+1,

where 𝒟 is a quantum adversary with classical access to PRF. Bellare et al. [23] conducted this
prof in the classical ROM, however, because of 𝒟’s limited access to the PRF this proof also
holds in a quantum setting. We note that, as described in the previous section, this can of course
be extended to sUF-CMA.



Chapter 6

Two Signatures

Having introduced both ID-schemes and signature schemes, as well as how one proves security
in the ROM and QROM we will in this chapter look at two concrete signature schemes. We
shall look at Lyubashevsky’s signature and the CRYSTAL’s Dilithium signature. Both these are
Fiat-Shamir derived signatures and considered to be safe in a post-quantum setting. Here we
shall look at Lyubashevsky’s security in the ROM and Dilithium’s security in the QROM.
A significant, yet subtle difference of the signatures is how we consider them to be safe against
quantum attackers. Lyubashevsky is considered safe against quantum attackers due to the fact
that the underlying problem, 𝑆𝑉 𝑃𝛾, is quantum safe. The proof is conducted in the ROM,
with no quantum adversaries, but the logic is that as the signature is safe and the underlying
problem is quantum safe, then the signature is quantum safe. Dilithium is considered safe against
quantum attackers due to the fact that the proof is conducted in the QROM. The QROM
considers quantum adversaries and thus signatures with a QROM proof are safe against quantum
attackers.

6.1 Lyubashevsky

Vadim Lyubashevsky’s signature scheme [26] is a lattice based signature scheme that is con-
sidered to be safe in both a classical and quantum setting. The signature is often referred to
as the Fiat-Shamir with Aborts signature, but to not confuse it with the transformation we will
refer to this signature simply as the Lyubashevsky signature. We will first present the ID-Scheme
and from there construct the Signature Scheme. We shall look at the scheme in the ROM here.
As the main focus of this thesis is the QROM we will look at the big picture of the signature
and refer the reader to the article cited above for details.

35
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6.1.1 ID-Scheme

The ID-Scheme is initiated by the key-generation algorithm giving us secret key 𝑠𝑘 and public
key 𝑝𝑘 . The secret key is a set of 𝑚 polynomials drawn uniformly random from the set 𝐷𝑠,
where 𝐷 ⊆ 𝑅𝑞. The corresponding 𝑝𝑘 consists of the hash from our hash family ℋ(𝑅𝑞, 𝐷, 𝑚)
and the hash of the random value used in the secret key, namely ℎ( ⃗𝑠). We get the key pair𝑠𝑘 ∶= ⃗𝑠 and 𝑝𝑘 ∶= (ℎ, ℎ( ⃗𝑠)). We further define the parameters of the scheme in figure 7.1, where
we also offer two instantiations to see the security.

Prover Verifier

⃗𝑦 ← 𝐷𝑚𝑦 ℎ( ⃗𝑦)𝑐 𝑐 ← 𝐷𝑐⃗𝑧 ← ⃗𝑠𝑐 + ⃗𝑦
if ⃗𝑧 ∉ 𝐺𝑚,

then ⃗𝑧 ← ⊥ ⃗𝑧
if ⃗𝑧 ∈ 𝐺𝑚 and ℎ( ⃗𝑧) = ℎ( ⃗𝑠)𝑐 + ℎ( ⃗𝑦),

then Accept

Figure 6.1: An interactive execution of the Lyubashevsky ID-scheme.

The rest of the scheme then runs in the familiar sigma fashion. The prover picks a random value⃗𝑦 ← 𝐷𝑚𝑦 and commits it to the verifier as ℎ( ⃗𝑦). The verifier returns challenge 𝑐 ← 𝐷𝑐. The prover
computes ⃗𝑧 = ⃗𝑠𝑐 + ⃗𝑦 and checks whether it falls in the correct range, namely whether ⃗𝑧 ∈ 𝐺𝑚. If
in the desired range the prover sends ⃗𝑧 to the verifier and if not the prover aborts. The verifier
is now at the final step of the protocol and checks if ⃗𝑧 ∈ 𝐺𝑚 and if ℎ( ⃗𝑧) = ℎ( ⃗𝑠)𝑐 + ℎ( ⃗𝑦). If both
statements are true, the verifier will accept and output 1, and if one or both are false the verifier
will reject and output 0.
A diagram of the ID-scheme executed between a prover and a verifier is given in Figure 6.1.
The key-generation algorithm initiating the protocol is the same as the one we will use for the
signature scheme and can be seen in Figure 6.2.

Correctness

Considering the homomorphic properties of the hashes in our hash function family, (3.3) and
(3.4), it becomes apparent that a transcript produced by a honest prover, that does not abort,
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will be accepted. We have correctness:ℎ( ⃗𝑧) = ℎ( ⃗𝑠𝑐 + ⃗𝑦) = ℎ( ⃗𝑠𝑐) + ℎ( ⃗𝑦) = ℎ( ⃗𝑠)𝑐 + ℎ( ⃗𝑦).
Important to notice is that we can have correctness even if the prover aborts. For Lyubashevsky
it is expected that the scheme is executed less than three times before a transcript is produced.

Witness Indistinguishability

To see that we have WI we consider secret keys 𝑠𝑘 = ⃗𝑠 and 𝑠𝑘′ = ⃗𝑠′, where ℎ( ⃗𝑠) = ℎ( ⃗𝑠′). We
note that the parameter are set such that for every ⃗𝑠 ∈ 𝐷𝑚𝑠 , every 𝑐 ∈ 𝐷𝑐 and every ⃗𝑧 ∈ 𝐺𝑚,
the value ⃗𝑧 − ⃗𝑠𝑐 is contained in 𝐷𝑦. This means that even an adversary having seen the history(ℎ( ⃗𝑦), 𝑐, ⃗𝑧), is unable to tell whether ⃗𝑧 is computed using 𝑠𝑘 = ⃗𝑠 and masking parameter ⃗𝑦, or
computed using 𝑠𝑘 = ⃗𝑠′ and masking parameter ⃗𝑦′ = ⃗𝑧 − ⃗𝑠′𝑐 = ⃗𝑦 + ⃗𝑠𝑐 − ⃗𝑠′𝑐 = ⃗𝑦 + ( ⃗𝑠 − ⃗𝑠′)𝑐. This
is because both ℎ( ⃗𝑠) = ℎ( ⃗𝑠′) and ℎ( ⃗𝑦) = ℎ( ⃗𝑦′).
6.1.2 Signature Scheme

The Fiat-Shamir with aborts transformation was developed by Lyubashevsky and introduced
through the article we are working with here. It is clear that the Lyubashevsky signature is a
FS[ID, 𝐻, 𝜅𝑚] signature — it is actually the very first. The signature is initiated the same way
as the ID-scheme using the key-generation algorithm IGen, while the interactive protocol gets
split between the signing and verification algorithms Sign and Ver. All the procedures of the
signature scheme can be seen in Figure 6.2.

IGen
1 ∶ ⃗𝑠 ← 𝐷𝑚𝑠𝑠𝑘 ∶= ⃗𝑠
2 ∶ ℎ ← 𝐻(𝑅, 𝐷, 𝑚)𝑝𝑘 ∶= (ℎ, ℎ( ⃗𝑠))
3 ∶ return (𝑠𝑘, 𝑝𝑘)

Sign(𝜇, ℎ, ⃗𝑠)
1 ∶ ⃗𝑦 ← 𝐷𝑚𝑦
2 ∶ 𝑐 ← 𝐻(ℎ( ⃗𝑦), 𝜇)
3 ∶ ⃗𝑧 ← ⃗𝑠𝑐 + ⃗𝑦
4 ∶ if ⃗𝑧 ∉ 𝐺𝑚 then

go to step 1
5 ∶ return ( ⃗𝑧, 𝑐)

Ver(𝜇, ⃗𝑧, 𝑐, ℎ, ℎ( ⃗𝑠))
1 ∶ return ⟦ ⃗𝑧 ∈ 𝐺𝑚⟧ ∧ ⟦𝑐 = 𝐻(ℎ( ⃗𝑧) − ℎ( ⃗𝑠)𝑐, 𝜇)⟧

Figure 6.2: The Lyubashevsky signature scheme. The key-generation algorithm IGen is the same
for both the ID and signature scheme.

Looking at the signature scheme, we see that the prover now receives the challenge 𝑐 from the
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hash function 𝐻 ∶ {0, 1}∗ → 𝐷𝑐 modeled as a RO. The prover queries the RO with the hash of
the commitment ℎ( ⃗𝑦) and the message 𝜇. The RO outputs 𝑐 ∶= 𝐻(ℎ( ⃗𝑦), 𝜇) to the query. With
the challenge from the RO, the prover now computes ⃗𝑧 = ⃗𝑠𝑐 + ⃗𝑦. If ⃗𝑧 ∈ 𝐺𝑚 the prover sends the
pair ( ⃗𝑧, 𝑐) to the verifier, if ⃗𝑧 ∉ 𝐺𝑚 the prover aborts. Upon receiving the pair ( ⃗𝑧, 𝑐), the verifier
checks if ⃗𝑧 ∈ 𝐺𝑚 and if 𝑐 = 𝐻(ℎ( ⃗𝑧) − ℎ( ⃗𝑠)𝑐, 𝜇). If both statements are true the verifier accepts
and outputs 1, and otherwise rejects and outputs 0.
6.1.3 Security

As we mentioned in the beginning of this section, we will not go into great detail on the security
proof. However, we still wish to present an outline of what the security proof looks like, and
refer the reader to Lyubashevsky [26].

Sketch of Security Proof

To show the security of Lyubashevsky, we begin with showing that adversary 𝒜 capable of
breaking the ID-scheme can be used to solve the collision problem, Definition 3.3.2.
Given random ℎ ← ℋ(𝑅𝑞, 𝐷, 𝑚), we generate keys (𝑠𝑘, 𝑝𝑘) ← IGen. The proof continues in a
manner allowing us to extract two challenge/response pairs (𝑐, ⃗𝑧) and (𝑐′, ⃗𝑧′) such that along
with secret key 𝑠𝑘 we have ℎ( ⃗𝑧 − ⃗𝑠𝑐) = ℎ( ⃗𝑧′ − ⃗𝑠𝑐′). We have set the parameters such that both( ⃗𝑧 − ⃗𝑠𝑐) and ( ⃗𝑧′ − ⃗𝑠𝑐′) are contained in 𝐷. Having WI, we know adversary 𝒜 will not be able to
distinguish which secret key is being used. The probability of ⃗𝑧 − ⃗𝑠𝑐 and ⃗𝑧′ − ⃗𝑠𝑐′ being distinct is
at least 1/2 and we have a collision for ℎ. It becomes apparent that an adversary like 𝒜 breaking
the ID-scheme can be used to solve the 𝐶𝑜𝑙(ℎ, 𝐷) problem for random ℎ ← ℋ(𝑅𝑞, 𝐷, 𝑚). Thus,
by Theorem 6.1.1, 𝒜 can solve SVP𝛾 in all ( ⃗𝑥𝑛 + 1)-cyclic lattices.
Theorem 6.1.1. Let 𝐷 = {𝑦 ∈ 𝑅𝑞 ∶ ‖𝑦‖∞ ≤ 𝑑}, where 𝑑 ∈ ℤ. Let ℋ(𝑅𝑞, 𝐷, 𝑚) be our
hash function family where 𝑚 > log 𝑝

log 2𝑑 and 𝑝 ≥ 4𝑑𝑚𝑛1.5 log 2𝑑. If there exists a polynomial
time algorithm solving the 𝐶𝑜𝑙(ℎ, 𝐷) problem for random ℎ ∈ ℋ(𝑅𝑞, 𝐷, 𝑚) with non-negligible
probability, then there exists an algorithm solving the SVP𝛾 problem for every (𝑥𝑛 + 1)-cyclic
lattice Λ , where 𝛾 = 16𝑑𝑚𝑛 log 2𝑑.

For the singature scheme we know that the WI follows directly from the ID-scheme, and the
security proof is similar to that of the ID-scheme. Using the Forking Lemma we obtain two
signatures on the same RO query, we refer to Pointcheval and Stern [21] for the Lemma and it’s
proof. The sUF-CMA security of the Lyubashevsky signature is then shown through Theorem
6.1.2, essentially saying that the security comes down to the hardness of the SVP𝛾.
Theorem 6.1.2. If the signature scheme in Figure 6.2 is not sUF-CMA secure, then there
exists a polynomial time algorithm 𝒜 that solves 𝑆𝑉 𝑃𝛾(Λ) for 𝛾 = �̃�(𝑛2) for every latticeΛ corresponding to an ideal in the ring ℤ[𝑋]/⟨𝑋𝑛 + 1⟩.
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6.2 CRYSTAL’s Dilithium

CRYSTAL’s Dilithium is a signature scheme that is based on the learning with errors (LWE)
problem [27]. The signature is designed to be fast and efficient, as well as secure against both
classical and quantum attacks. It is one of the signature schemes that have been recommen-
ded by the National Institute of Standards and Technology (NIST) for use in post-quantum
cryptography (PQC).
Similarly to Lyubashevsky the Dilithium signature is constructed from an ID-Scheme using Fiat-
Shamir with Aborts. The version we will introduce here differs slightly to that of Ducas et al.
[27]. As we wish to prove it safe in the QROM we need the underlying ID-scheme to be lossy
and thus follow the construction of Dilithium presented by Kiltz et al. [7]. This approach results
in an increase in the total size of the public key and signature by a factor of a little more than
3 to that of the original scheme.
We begin by introducing the ID-scheme, before we look closer at the supporting algorithms.
We then look at some significant properties of the ID-scheme, before we move on to the signa-
ture scheme and its security proof. We shall prove Dilithium safe in the QROM, following the
approach of Kiltz et al. [7] and the proof we presented in Chapter 5.

6.2.1 ID-Scheme

The ID-scheme consists of algorithms ID ∶= (IGen, 𝑃 = (𝑃1, 𝑃2), 𝑉 ) described in Figure 6.3. We
define the spaces for the scheme as:
The set of commitments: WSet ∶= { ⃗𝑤1 ∶ ∃ ⃗𝑦 ∈ 𝑆𝑙𝛾′−1 s.t. ⃗𝑤1 = HighBits𝑞(A ⃗𝑦, 2𝛾)}
The set of responses: ZSet ∶= 𝑆𝑙𝛾′−𝛽−1 × {0, 1}𝑘.
The set of challenges: ChSet ∶= {𝑐 ∈ 𝑅 | ‖𝑐‖∞ = 1 and ‖𝑐‖ = √46}.

Noting that the challenge space consists of elements in the ring 𝑅 = ℤ[𝑋]/⟨𝑋𝑛 + 1⟩, with
coefficients -1, 0 or 1, where exactly 46 are non-zero. We observe that the size of this set then
becomes ( 𝑛46) ⋅ 246. We further define the parameters of the scheme in figure 7.1, where we also
offer two instantiations to see the security.
The key-generation algorithm IGen initiates the scheme by generating 𝑠𝑘 and 𝑝𝑘. Random seed𝜌 is drawn and expanded to the matrix A ∈ 𝑅𝑘×𝑙𝑞 using the XOF Sam modeled as a RO. The
secret keys ( ⃗𝑠1, ⃗𝑠2) ← 𝑆𝑙𝜂 ×𝑆𝑘𝜂 have uniformly random coefficients ranging from −𝛾 to 𝛾. Further,⃗𝑡 ∶= A ⃗𝑠1 + ⃗𝑠2 is computed, we note that ⃗𝑡 = ⃗𝑡1 ⋅ 2𝑑 + ⃗𝑡0 for some small ⃗𝑡0. It is assumed that ⃗𝑡0
is known to the adversary, however as it is not necessary for verification only ⃗𝑡1 is included in
the public key. IGen outputs 𝑠𝑘 ∶= (𝜌, ⃗𝑠1, ⃗𝑠2, ⃗𝑡0) and 𝑝𝑘 ∶= (𝜌, ⃗𝑡1).
With access to the keys, the prover and the verifier begin their communication. The prover
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IGen
1 ∶ 𝜌 ← {0, 1}256
2 ∶ A ∈ 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
3 ∶ ( ⃗𝑠1, ⃗𝑠2) ← 𝑆𝑙𝜂 × 𝑆𝑘𝜂
4 ∶ ⃗𝑡 ∶= A ⃗𝑠1 + ⃗𝑠2
5 ∶ ⃗𝑡1 ∶= Power2Round𝑞( ⃗𝑡, 𝑑)
6 ∶ ⃗𝑡0 ∶= ⃗𝑡 − ⃗𝑡1 ⋅ 2𝑑
7 ∶ 𝑠𝑘 ∶= (𝜌, ⃗𝑠1, ⃗𝑠2, ⃗𝑡0) , 𝑝𝑘 ∶= (𝜌, ⃗𝑡1)
8 ∶ return (𝑠𝑘, 𝑝𝑘)

𝑃1(𝑠𝑘)
1 ∶ A ∈ 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
2 ∶ ⃗𝑦 ← 𝑆𝑙𝛾′−1
3 ∶ �⃗� ∶= A ⃗𝑦
4 ∶ ⃗𝑤1 ∶= HighBits𝑞(�⃗�, 2𝛾)
5 ∶ return (𝑊 = ⃗𝑤1, 𝑆𝑡 = (�⃗�, ⃗𝑦))

𝑃2(𝑠𝑘, 𝑊 = ⃗𝑤1, 𝑐, 𝑆𝑡 = (�⃗�, ⃗𝑦))
1 ∶ ⃗𝑧 ∶= ⃗𝑦 + 𝑐 ⃗𝑠1
2 ∶ if ‖ ⃗𝑧‖∞ ≥ 𝛾′ − 𝛽 or ‖𝑟0‖∞ ≥ 𝛾 − 𝛽 or ∥LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾)∥∞ ≥ 𝛾 − 𝛽
3 ∶ then ( ⃗𝑧, ℎ⃗) ∶= ⊥
4 ∶ else
5 ∶ ℎ⃗ ∶= MakeHint𝑞(−𝑐 ⃗𝑡0, �⃗� − 𝑐 ⃗𝑠2 + 𝑐 ⃗𝑡0, 2𝛾)
6 ∶ return 𝑍 = ( ⃗𝑧, ℎ⃗)𝑉 (𝑝𝑘, 𝑊 = ⃗𝑤1, 𝑐, 𝑍 = ( ⃗𝑧, ℎ⃗))
1 ∶ return ⟦‖ ⃗𝑧‖∞ < 𝛾′ − 𝛽⟧ and ⟦ ⃗𝑤1 = UseHint𝑞(ℎ⃗, A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 2𝛾)⟧

Figure 6.3: The Dilithium ID-Scheme

executes 𝑃1 and reconstructs A ∈ 𝑅𝑘×𝑙𝑞 by querying the RO Sam with random seed 𝜌, before
continuing by sampling ⃗𝑦 ← 𝑆𝑙𝛾′−1 to compute �⃗� = A ⃗𝑦. The prover sets �⃗� = 2𝛾 ⋅ ⃗𝑤1 + ⃗𝑤0
(looking at the 𝑃1 algorithm and following the supporting algorithms, it can be seen that this
holds), where ⃗𝑤0 ranges from −𝛾 to 𝛾. The prover then sends ⃗𝑤1 to the verifier.
The verifier samples challenge 𝑐 ← ChSet and returns this. The prover initiates 𝑃2 and computes⃗𝑧 ∶= ⃗𝑦 +𝑐 ⃗𝑠 and checks whether the computed vector is in the desired range. If either ⃗𝑧 ∉ 𝑆𝑙𝛾′−𝛽−1
or LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾) ∉ 𝑆𝑙𝛾′−𝛽−1 the prover sets ( ⃗𝑧, ℎ⃗) = ⊥, before sending the response𝑍 ∶= ( ⃗𝑧, ℎ⃗) to the verifier. Checking the lower bits is directly necessary for the security as we
check whether ⃗𝑧 could reveal anything about the secret key.
We will show correction in Section 6.2.3, but we point out that if the prover does not set 𝑍 = ⊥
and actually computes the hint, then ⃗𝑤1 = HighBits𝑞(A ⃗𝑧 − 𝑐 ⃗𝑡, 2𝛾). The verifier checks whether‖ ⃗𝑧‖∞ ≤ 𝛾′ − 𝛽 and equipped with the hint ℎ⃗ from the prover reconstructs and checks ⃗𝑤1.
Reconstructing ⃗𝑤1 is not necessary for the security of the scheme, as the verifier could have
simply checked that A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑 ≈ ⃗𝑤1. However, it reduces the communication size in the
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Fiat-Shamir transformation if the ID-scheme is commitment recoverable.

6.2.2 Supporting Algorithms

One of the most attractive aspects of the Dilithium scheme is the small size of the public key.
This comes from the supporting algorithms HighBits𝑞 and LowBits𝑞, allowing us to extract the
higher and lower ordered bits from elements in ℤ𝑞. More exactly we can recover the higher order
bits of 𝑟 + 𝑧 for 𝑟, 𝑧 ∈ ℤ𝑞 where 𝑧 is small, without having to store 𝑧. Two useful Lemmas
are presented below and all supporting algorithms are presented in Figure 6.4. Before we dive
deeper, note that we consider the polynomials coefficient-wise when working with the algorithms
and thus conduct the proofs for integers.
Lemma 6.2.1. Suppose 𝑞 and 𝛼 are positive integers, such that 𝑞 > 2𝛼, 𝑞 ≡ 1 mod 𝛼, where 𝛼
is even. Let ⃗𝑟 and ⃗𝑧 be vectors of elements in the ring 𝑅𝑞, where ‖𝑧‖∞ ≤ 𝛼/2, and let ℎ⃗, ⃗ℎ′ be
vectors of bits. Then the algorithms HighBits𝑞, MakeHint𝑞 and UseHint𝑞, satisfy the following
properties:

i UseHint𝑞(MakeHint𝑞( ⃗𝑧, ⃗𝑟, 𝛼), ⃗𝑟, 𝛼)) = HighBits𝑞( ⃗𝑟 + ⃗𝑧, 𝛼).
ii Let ⃗𝑣1 = UseHint𝑞(ℎ⃗, ⃗𝑟, 𝛼), then ‖ ⃗𝑟 − ⃗𝑣1 ⋅ 𝛼‖∞ ≤ 𝛼 + 1.

iii For any ℎ⃗, ⃗ℎ′, if UseHint𝑞(ℎ⃗, ⃗𝑟, 𝛼) = UseHint𝑞( ⃗ℎ′, ⃗𝑟, 𝛼) then ℎ⃗ = ⃗ℎ′ .

Proof. i) Let 𝑟, 𝑧 ∈ ℤ𝑞 and ‖𝑧‖∞ ≤ 𝛼/2 and define 𝑚 ∶= (𝑞 −1)/𝛼. We recall that the purpose of
the MakeHint𝑞 and UseHint𝑞 procedures is to provide a hint on the higher bits of 𝑟 + 𝑧 without
storing 𝑧.
We begin looking at the MakeHintq( ⃗𝑧, ⃗𝑟, 𝛼) on the left hand side of the equation. This procedure
calls the HighBits𝑞 procedure and defines 𝑟1 ∶= HighBits𝑞(𝑟, 𝛼) and 𝑣1 ∶= HighBits(𝑟 + 𝑧, 𝛼) and
outputs ℎ = 0 if 𝑟1 = 𝑣1 and ℎ = 1 if 𝑟1 ≠ 𝑣1. The UseHint𝑞 procedure calls the Decompose𝑞procedure and retrieves (𝑟1, 𝑟0), we get three possible scenarios for the left hand side:
Case 1: If ℎ = 0, then the left hand side simply outputs the 𝑟1 retrieved from Decompose𝑞.
Case 2: If ℎ = 1, the UseHint𝑞 checks the 𝑟0 retrieved from Decompose𝑞. If 𝑟0 > 0 then UseHint𝑞

outputs 𝑟1 ∶= (𝑟1 + 1) mod +𝑚.
Case 3: If ℎ = 1, the UseHint𝑞 checks the 𝑟0 retrieved from Decompose𝑞. If 𝑟0 ≤ 0 it outputs𝑟1 ∶= (𝑟1 − 1) mod +𝑚.

Now, looking at the right hand side of the equation, where HighBits𝑞(𝑟+𝑧, 𝛼) calls Decompose𝑞(𝑟+𝑧, 𝛼) which outputs (𝑟0, 𝑟1), where 0 ≤ 𝑟1 < 𝑚 and ‖𝑟0‖∞ ≤ 𝛼/2. As ‖𝑧‖∞ ≤ 𝛼/2 we see
that HighBits𝑞 calls Decompose𝑞 to retrieve 𝑟1 which it then outputs. Looking at the defini-
tion of 𝑣1 from calling MakeHintq( ⃗𝑧, ⃗𝑟, 𝛼) on the left hand side, we see that the 𝑟1 output by
HighBits𝑞(𝑟 + 𝑧, 𝛼) relates to this 𝑣1 in two possible ways:
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Case 1: If 𝑟0 > 0, then −𝛼/2 < 𝑟0 + 𝑧 ≤ 𝛼 which means 𝑣1 = 𝑟1 or 𝑣1 = (𝑟1 + 1) mod 𝑚.
Case 2: If 𝑟0 ≤ 0, then −𝛼 < 𝑟0 + 𝑧 ≤ 𝛼/2 which means 𝑣1 = 𝑟1 or 𝑣1 = (𝑟1 − 1) mod 𝑚.

It is clear that in the case 𝑣1 ≠ 𝑟1 the first case on the left hand side will output the same as
the two cases on the right hand side depending on 𝑟0. If 𝑣1 = 𝑟1 it is clear that the last two
cases on the left hand side also equals the two cases on the right hand side. It is apparent that
we have equality and have thus proved i).
ii) Let (ℎ, 𝑟) ∈ {0, 1} × ℤ𝑞 and 𝑣1 ∶= UseHint𝑞(ℎ, 𝑟, 𝛼). We consider the three possible cases for
UseHint𝑞(ℎ, 𝑟, 𝛼):
Case 1: If ℎ = 0, then UseHint𝑞(0, 𝑟, 𝛼) outputs 𝑟1 = 𝑣1 and we see that Decompose𝑞 computes:𝑟 − 𝑣1 ⋅ 𝛼 = 𝑟1 ⋅ 𝛼 + 𝑟0 − 𝑟1 ⋅ 𝛼 = 𝑟0,

which by definition has absolute value 𝛼/2.
Case 2: If ℎ = 1 we go on to check 𝑟0. If and 𝑟0 > 0, then 𝑣1 = 𝑟1 + 1 − 𝜅 ⋅ (𝑞 − 1)/𝛼, where𝜅 = 0 or 1. We see that:𝑟 − 𝑣1 ⋅ 𝛼 = 𝑟1 ⋅ 𝛼 + 𝑟0 − (𝑟1 + 1 − 𝜅 ⋅ (𝑞 − 1)/𝛼) ⋅ 𝛼= 𝛼 + 𝑟0 − 𝜅 ⋅ (𝑞 − 1).

Using centered reduction modulo we see that the absolute value is no greater than 𝛼.
Case 3 If 𝑟0 ≤ 0, then giving us 𝑣1 = 𝑟1 − 1 + 𝜅 ⋅ (𝑞 − 1)/𝛼, where 𝜅 = 0 or 𝜅 = 1. We see that:𝑟 − 𝑣1 ⋅ 𝛼 = 𝑟1 ⋅ 𝛼 + 𝑟0 − (𝑟1 + 1𝜅 ⋅ (𝑞 − 1)/𝛼) ⋅ 𝛼= −𝛼 + 𝑟0 + 𝜅 ⋅ (𝑞 − 1).

Using centered reduction modulo we see that the absolute value is no greater than 𝛼 + 1.
We see that for both ℎ = 0 and ℎ = 1 and for all values of 𝑟0, the absolute value of 𝑟 − 𝑣1 ⋅ 𝛼 is
less than 𝛼 + 1. We have proved ii).
iii) Let 𝑟 ∈ ℤ𝑞 and ℎ, ℎ′ ∈ {0, 1}. We consider the two possible values for ℎ, namely 0 and 1.
We see that UseHint𝑞(0, 𝑟, 𝛼) = 𝑟1 and UseHint𝑞(1, 𝑟, 𝛼) = (𝑟1 ± 1) mod +((𝑞 − 1)/𝛼). As(𝑞 − 1)/𝛼 ≥ 2, it is clear that 𝑟1 ≠ (𝑟1 ± 1) mod +((𝑞 − 1)/𝛼). We see that UseHint𝑞(ℎ, 𝑟, 𝛼) =
UseHint𝑞(ℎ′, 𝑟, 𝛼) implies ℎ = ℎ′, thus proving iii).
Having proved i), ii) and iii) we see that Lemma 6.2.1 holds.
Lemma 6.2.2. If ‖ ⃗𝑠‖∞ ≤ 𝛽 and ∥LowBits𝑞( ⃗𝑟, 𝛼)∥∞ < 𝛼2 − 𝛽 , then:

HighBits𝑞( ⃗𝑟, 𝛼) = HighBits𝑞( ⃗𝑟 + ⃗𝑠, 𝛼).
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Proof. Assume ‖𝑠‖∞ ≤ 𝛽 and ∥LowBits𝑞(𝑟, 𝛼)∥∞ < 𝛼2 − 𝛽. As LowBits𝑞(𝑟, 𝛼) calls on the decom-
pose procedure we see that for Decompose𝑞(𝑟, 𝛼) we have 𝑟 = 𝑟1 ⋅ 𝛼 + 𝑟0 where −𝛼/2 + 𝛽 < 𝑟0 ≤𝛼/2 + 𝛽. For Decompose𝑞(𝑟 + 𝑠, 𝛼) we have 𝑟 = 𝑟1 ⋅ 𝛼 + 𝑟0 where −𝛼/2 + 𝛽 < 𝑟0 ≤ 𝛼/2 + 𝛽.
Thus; 𝑟 + 𝑠 = 𝑟1 ⋅ 𝛼 + 𝑟0 + 𝑠 and:(𝑟 + 𝑠) − ((𝑟 + 𝑠) mod ±𝛼) = 𝑟1 ⋅ 𝛼 = 𝑟 − (𝑟 mod ±𝛼),
which is the claim of the Lemma, and we see that it holds.

UseHint𝑞(ℎ, 𝑟, 𝛼)𝑚 ∶= (𝑞 − 1)/𝛼(𝑟1, 𝑟0) ∶= Decompose𝑞(𝑟, 𝛼)
if ℎ = 1 and 𝑟0 > 0, then𝑟1 ∶= (𝑟1 + 1) mod +𝑚
if ℎ = 1 and 𝑟0 ≤ 0, then𝑟1 ∶= (𝑟1 − 1) mod +𝑚
return 𝑟1
HighBits𝑞(𝑟, 𝛼)(𝑟1, 𝑟0) ∶= Decompose𝑞(𝑟, 𝛼)
return 𝑟1

Decompose𝑞(𝑟, 𝛼)𝑟 ∶= 𝑟 mod +𝑞𝑟0 ∶= 𝑟 mod ±𝛼
if 𝑟 − 𝑟0 = 𝑞 − 1, then𝑟1 ∶= 0, 𝑟0 ∶= 𝑟0 − 1
else 𝑟1 ∶= (𝑟 − 𝑟0)/𝛼
return (𝑟1, 𝑟0)
LowBits𝑞(𝑟, 𝛼)(𝑟1, 𝑟0) ∶= Decompose𝑞(𝑟, 𝛼)
return 𝑟0

Power2Round𝑞(𝑟, 𝑑)𝑟 ∶= 𝑟 mod +𝑞𝑟0 ∶= 𝑟 mod ±𝑞
return ((𝑟 − 𝑟0)/2𝑑, 𝑟0)
MakeHint𝑞(𝑧, 𝑟, 𝛼)𝑟1 ∶= HighBits(𝑟, 𝛼)𝑣1 ∶= HighBits(𝑟 + 𝑧, 𝛼)
return ⟦𝑟1 ≠ 𝑣1⟧

Figure 6.4: The supporting algorithms of Dilithium.

6.2.3 Significant Properties

In this section we will look at some significant properties of the Dilithium ID-scheme. This is an
important step of proving Dilithium’s unforgeability, which we will see in Chapter 6.2.5.

Correctness

To see the correctness of the scheme we will show that the verification algorithm always accepts
if a prover sends a transcript such that 𝑍 ≠ ⊥, as well as look at the probability that the prover
returns ⊥, namely the correctness error 𝛿.
We begin by looking at the probability that ‖ ⃗𝑧‖∞ < 𝛾′ − 𝛽. We will do this by looking at
the coefficients separately. For each coefficient of 𝑐 ⃗𝑠1, the corresponding coefficient of ⃗𝑧 will be
(inclusively) between −𝛾′ + 𝛽 + 1 and 𝛾′ − 𝛽 − 1. We get a range with size 2(𝛾′ − 𝛽) − 1, giving
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the coefficients of ⃗𝑦 exactly 2𝛾′ − 𝛽 possibilities. We get the probability:

(2(𝛾′ − 𝛽) − 12𝛾′ − 1 )𝑛𝑙 = (1 − 𝛽𝛾′ )𝑛𝑙 ≈ 𝑒−𝛽𝑛𝑙/𝛾′ , (6.1)

where we have approximate equality as 𝛽 ≪ 𝛾. Next, we want to find the probability that∥LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾)∥∞ < 𝛾 − 𝛽. We assume the low order bits to be uniformly distributed
modulo 2𝛾. We have: (2(𝛾 − 𝛽) − 12𝛾 )𝑛𝑘 ≈ 𝑒−𝛽𝑛𝑘/𝛾, (6.2)

using the fact that our 𝛽 values are large compared to 1/2. It is now easy to find the total
probability the prover returns ⃗𝑧 ≠ ⊥, we multiply (6.1) and (6.2) and see that:(𝑒−𝛽 𝑛𝑙𝛾′ ) ⋅ (𝑒−𝛽 𝑛𝑘𝛾 ) = 𝑒−𝛽𝑛⋅(𝑘/𝛾+𝑙/𝛾′).
Thus, the correctness error is 𝛿 = 1 − 𝑒−𝛽𝑛⋅(𝑘/𝛾+𝑙/𝛾′). It now only remains to show that ⃗𝑧 ≠ ⊥
means the verifier always accept. We assume ⃗𝑧 ≠ ⊥. Clearly the response will always pass the
verifier’s check on ‖ ⃗𝑧‖∞ < 𝛾′ − 𝛽. It remains to check ⃗𝑤1 = UseHint𝑞(ℎ⃗, A ⃗𝑧 − 𝑐 ⃗𝑡 ⋅ 2𝑑, 2𝛾), and
begin by noticing:�⃗� − 𝑐 ⃗𝑠2 = A ⃗𝑦 − 𝑐 ⃗𝑠2 = A( ⃗𝑧 − 𝑐 ⃗𝑠1) − 𝑐 ⃗𝑠2 = A ⃗𝑧 − 𝑐 ⃗𝑡 = A ⃗𝑧 − 𝑐 ⃗𝑡0 − 𝑐 ⃗𝑡1 ⋅ 2𝑑.
Now, by Lemma 6.2.1 and knowing ∥𝑐 ⃗𝑡0∥∞ < 𝛾, we see that:

UseHint𝑞(ℎ⃗, A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 2𝛾) = HighBits𝑞(A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 2𝛾)= HighBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾).
We also check that the verifier will compute the same ⃗𝑤1 as the signer. Using Lemma 6.2.2 and
that ∥LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾)∥∞ < 𝛾 − 𝛽, we have:

HighBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾) = HighBits𝑞(�⃗�, 2𝛾) = ⃗𝑤1.
It becomes apparent that we have correctness.

No-Abort Honest Verifier Zero-Knowledge

In Figure 6.5 we see the honestly generated transcript produced by a prover using the 𝑠𝑘 and a
simulated transcript produced by a simulator knowing no more than the 𝑝𝑘.
Lemma 6.2.3. The ID-scheme ID is perfectly naHVZK, if 𝛽 ≥ max ⃗𝑠∈𝑆𝜂,𝑐∈ChSet‖𝑐 ⃗𝑠‖∞.
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Trans(𝑠𝑘):
1 ∶ A ∈ 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
2 ∶ ⃗𝑦 ← 𝑆𝑙𝛾′−1
3 ∶ �⃗� ∶= A ⃗𝑦
4 ∶ ⃗𝑤1 ∶= HighBits𝑞(�⃗�, 2𝛾)
5 ∶ 𝑐 ← ChSet
6 ∶ ⃗𝑧 ∶= ⃗𝑦 + 𝑐 ⃗𝑠1
7 ∶ if ‖ ⃗𝑧‖∞ ≥ 𝛾′ − 𝛽
8 ∶ then return ⊥
9 ∶ if ∥LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾)∥∞ ≥ 𝛾 − 𝛽

10 ∶ then return ⊥
11 ∶ ℎ⃗ ∶= MakeHint𝑞(−𝑐 ⃗𝑡0, �⃗� − 𝑐 ⃗𝑠2 + 𝑐 ⃗𝑡0, 2𝛾)
12 ∶ return (𝑐, ( ⃗𝑧, ℎ⃗))

SimTrans(𝑝𝑘):
1 ∶ A ∈ 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
2 ∶ with probability 1 − |𝑆𝑙𝛾′−𝛽−1||𝑆𝑙𝛾′−1| return ⊥
3 ∶ ⃗𝑧 ← 𝑆𝑙𝛾′−1
4 ∶ 𝑐 ← ChSet
5 ∶ if ∥LowBits𝑞(A ⃗𝑧 − 𝑐 ⃗𝑡 + 𝑐 ⃗𝑡0, 2𝛾)∥∞ ≥ 𝛾 − 𝛽
6 ∶ then return ⊥
7 ∶ ℎ⃗ ∶= MakeHint𝑞(−𝑐 ⃗𝑡0, A ⃗𝑧 − 𝑐 ⃗𝑡, 2𝛾)
8 ∶ return (𝑐, ( ⃗𝑧, ℎ⃗))

Figure 6.5: Algorithm Trans(𝑝𝑘) for transcripts honestly generated by the prover and
SimTrans(𝑝𝑘) for simulated transcripts.

Proof. Wanting to show that the output distributions of Trans(𝑠𝑘) and SimTrans(𝑝𝑘) in Figure
6.5, are identical, we let ( ⃗𝑠1, ⃗𝑠2) ∈ 𝑆𝑙𝜂 × 𝑆𝑘𝜂 be any polynomials s.t. A ⃗𝑠1 + ⃗𝑠2 = ⃗𝑡.
We want to compute the probability that some particular ⃗𝑧 ∈ 𝑆𝑘𝛾′−𝛽−1 is computed in line 6 of
the Trans(𝑠𝑘) procedure. For any 𝑐 ∈ ChSet, we then get:

Pr⃗𝑦←𝑆𝑙𝛾′−1[ ⃗𝑦 + 𝑐 ⃗𝑠1 = ⃗𝑧] = Pr⃗𝑦←𝑆𝑙𝛾′−1[ ⃗𝑦 = ⃗𝑧 − 𝑐 ⃗𝑠1] = 1|𝑆𝑙𝛾′−1| .
We get this from noticing that ‖𝑐 ⃗𝑠1‖∞ ≤ 𝛽, and thus ⃗𝑧 − 𝑐 ⃗𝑠1 ∈ 𝑆𝑙𝛾′−1. We see that every⃗𝑧 ∈ 𝑆𝑙𝛾′−𝛽−1 is equally likely to be generated. Further, the probability of producing a ⃗𝑧 ∈ 𝑆𝑙𝛾′−𝛽−1,
and thus not outputting ⊥ becomes exactly |𝑆𝑙𝛾′−𝛽−1||𝑆𝑙𝛾′−1| . We see that the output distribution of (𝑐, ⃗𝑧)
is uniform in ChSet × 𝑆𝑙𝛾′−𝛽−1 or Trans(𝑠𝑘) outputs ⊥ with probability 1 − |𝑆𝑙𝛾′−𝛽−1||𝑆𝑙𝛾′−1| in line 7.
We compare Trans(𝑠𝑘) and SimTrans(𝑝𝑘) and see that they have the exact same distribution.
Further to see that the rejection sampling in line 9 of Trans(𝑠𝑘) and line 5 of SimTrans(𝑠𝑘) is
equal we note that:�⃗� − 𝑐 ⃗𝑠2 = A ⃗𝑦 − 𝑐 ⃗𝑠2 = A( ⃗𝑧 − 𝑐 ⃗𝑠1) − 𝑐 ⃗𝑠2 = A ⃗𝑧 − A𝑐 ⃗𝑠1 − 𝑐 ⃗𝑠2 = A ⃗𝑧 − 𝑐 ⃗𝑡.
Which completes the proof.
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Lossyness

Wanting to show lossy soundness, we consider the ID-scheme running for a lossy public key𝑝𝑘𝑙𝑠 ← LossyIGen. We wish to see that even an unbounded prover using this lossy key only has
approximately 1|ChSet| probability of producing a transcript the verifier accepts, in each run of
the ID-scheme. This will give us an upper-bound for (5.2) considering an unbounded adversary
against the LOSSY − IMP game.

LossyIGen:
1 ∶ 𝜌 ← {0, 1}256, A ← 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
2 ∶ ⃗𝑡 ← 𝑅𝑘𝑞
3 ∶ ⃗𝑡1 ∶= Power2Round𝑞( ⃗𝑡, 𝑑)
4 ∶ ⃗𝑡0 ∶= ⃗𝑡 − ⃗𝑡1 ⋅ 2𝑑
5 ∶ return 𝑝𝑘 ∶= (𝜌, ⃗𝑡1, ⃗𝑡0)

Figure 6.6: The lossy key-generator algorithm for Dilithium.

Looking at the LossyIGen algorithm for Dilithium in Figure 6.6 and comparing it to the IGen
algorithm for Dilithium in Figure 6.3, we see that:(A, ⃗𝑡) ← LossyIGen, where (A, ⃗𝑡) ← 𝑅𝑘×𝑙𝑞 × 𝑅𝑘𝑞(A, A ⃗𝑠1 + ⃗𝑠2) ← IGen, where A ← 𝑅𝑘×𝑙𝑞 and ( ⃗𝑠1, ⃗𝑠2) ← 𝑆𝑙𝜂 × 𝑆𝑘𝜂
It is apparent that: 𝐴𝑑𝑣LOSS

ID (𝒜) = 𝐴𝑑𝑣MLWE𝑘,𝑙,𝐷 (𝒜),
for the uniform distribution 𝐷 over 𝑆𝜂.
In order to show Dilithium to be lossy sound we need Lemma 6.2.4, showing that if (A, ⃗𝑡) is
drawn at random then a particular linear equation is unlikely to have any solutions. The proof
can at times seem rather far fetched, remembering that it is mostly about counting the possible
outcomes will help us to see the intuition.
Lemma 6.2.4. Let 𝛼1, 𝛼2 ≤ √𝑞/2 be positive integers, let 𝐷 be a set of elements in 𝑅\{0} with
coefficients less than √𝑞/2 and let 𝑑 be such that 2𝑑 < 2𝛼1, then:

Pr
A←𝑅𝑘×𝑙𝑞 , ⃗𝑡←𝑅𝑘𝑞 [∃ ( ⃗𝑧1, ⃗𝑧2, 𝑐) ∈ 𝑆𝑙𝛼1 × 𝑆𝑘𝛼2 × 𝐷 s.t A ⃗𝑧1 + ⃗𝑧2 = 𝑐 ⃗𝑡1 ⋅ 2𝑑]

≤ 2 ⋅ |𝐷| ((2𝛼1 + 1)𝑙 ⋅ (2𝛼2 + 1)𝑘𝑞𝑘 )𝑛 , (6.3)

where ⃗𝑡1 ∶= Power2Round𝑞( ⃗𝑡, 𝑑).
Proof. There are two cases to consider when we prove this Lemma, namely ⃗𝑧1 = 0 and ⃗𝑧1 ≠ 0.
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Case 1: ( ⃗𝑧1 = 0) We rewrite (6.3) for this case and get:
Pr⃗𝑡←𝑅𝑘𝑞 [∃ ( ⃗𝑧2, 𝑐) ∈ 𝑆𝑘𝛼2 × 𝐷 s.t ⃗𝑧2 = 𝑐 ⃗𝑡1 ⋅ 2𝑑].

As 0 < ‖𝑐‖∞ < √𝑞/2 and 𝑞 = 5 mod 8, we know that 𝑐 is invertible in 𝑅𝑞 . This allows us to
consider the above probability as:

Pr⃗𝑡←𝑅𝑘𝑞 [∃ ( ⃗𝑧2, 𝑐) ∈ 𝑆𝑘𝛼2 × 𝐷 s.t ⃗𝑧2 ⋅ (2𝑑𝑐)−1 = ⃗𝑡1]≤ ∑⃗𝑧2∈𝑆𝑘𝛼2 ,𝑐∈𝐷 Pr⃗𝑡←𝑅𝑘𝑞 [ ⃗𝑡1 = ⃗𝑧2 ⋅ (2𝑑𝑐)−1]
≤ ∑⃗𝑧2∈𝑆𝑘𝛼2 ,𝑐∈𝐷 (2𝑑𝑞 )𝑛𝑘 = ((2𝛼2 + 1) ⋅ 2𝑑𝑞 )𝑛𝑘 ⋅ |𝐷|. (6.4)

We obtain the last line of (6.4) by noticing that the most frequent value of each coefficient of ⃗𝑡1
occurs no more than 2𝑑 times, for ⃗𝑡 ∈ 𝑅𝑘𝑞 .
Case 2: ( ⃗𝑧1 ≠ 0) We assume, without loss of generality, that the first polynomial in ⃗𝑧1 is non-zero.
For the tuple ( ⃗𝑧1 ≠ 0, ⃗𝑧2, 𝑐) we then get the probability:

Pr
A←𝑅𝑘×𝑙𝑞 , ⃗𝑡←𝑅𝑘𝑞 [A ⃗𝑧1 + ⃗𝑧2 = 𝑐 ⃗𝑡1 ⋅ 2𝑑].

By defining ⃗𝑧1 ∶= [ �⃗�𝑧′1 ], we are able to see that the above probability equals:

Pr�⃗�←𝑅𝑘×𝑙𝑞 ,A′←𝑅(𝑘−1)×𝑙𝑞 , ⃗𝑡←𝑅𝑘𝑞 [ ⃗𝑎𝑧 + A′ ⃗𝑧′1 + ⃗𝑧2 = 𝑐 ⃗𝑡1 ⋅ 2𝑑] = Pr�⃗�←𝑅𝑘𝑞 [ ⃗𝑎𝑧 = −A′ ⃗𝑧′1 − ⃗𝑧2 + 𝑐 ⃗𝑡1 ⋅ 2𝑑].
Using the fact that ‖ ⃗𝑧‖∞ < √𝑞/2 and 𝑞 = 5 mod 8, we see that ⃗𝑧 has an inverse in 𝑅𝑞. The
above probability becomes:

Pr�⃗�←𝑅𝑘𝑞 [ ⃗𝑎 = 𝑧−1 ⋅ (A’ ⃗𝑧′1 − ⃗𝑧2 + 𝑐 ⃗𝑡1 ⋅ 2𝑑)] = (1𝑞 )𝑛𝑘 .
Thus, for ⃗𝑧 ≠ 0, we can upper bound (6.3) using the union bound:∑⃗𝑧1∈𝑆𝑙𝛼1 \{0}, ⃗𝑧2∈𝑆𝑘𝛼2 ,𝑐∈𝐷 (1𝑞 )𝑛𝑘 < ((2𝛼1 + 1)𝑙 ⋅ (2𝛼2 + 1)𝑘𝑞𝑘 )𝑛 ⋅ |𝐷|. (6.5)

We recall our assumption 2𝑑 < 2𝛼 and add the probabilities for Case 1 and Case 2, namely (6.4)
and (6.5), and get (6.3). We see that the Lemma holds.
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With Lemma 6.2.4 we move on to prove Lemma 6.2.5. Here we want to show that if an adversary𝒞 outputting ( ⃗𝑤1, St) is able to create a valid response to more than one challenge 𝑐, then
the linear equation Lemma 6.2.4 refers to has a solution. We conclude that all A, ⃗𝑡 produced
by LossyIGen only has one challenge the prover can respond to, giving the prover a sucess
probability of 1|ChSet| .
Lemma 6.2.5. If 4𝛾 + 2, 2𝛾′ < √𝑞/2 and 𝛾′ < 𝛾𝛽, and 𝑙 ≤ 𝑘, then ID has 𝜖𝑙𝑠-lossy soundness
such that: 𝜖𝑙𝑠 ≤ 1|ChSet| + 2 ⋅ |ChSet|2 ⋅ (32𝛾𝛾′𝑞 )𝑛𝑘 .
Proof. We consider an unbound adversary 𝒞 playing the LOSSY − IMP game in Figure 5.5,
instantiated with the LossyIGen algorithm in Figure 6.6 and the verifier algorithm in Figure
6.3. Suppose, for the commitment ⃗𝑤1, there exists two tuples ( ⃗𝑧, ℎ⃗) and ( ⃗𝑧′, ℎ⃗′) for which 𝒞 wins.
That is, both ‖ ⃗𝑧‖∞ < 𝛾′ − 𝛽 and ‖ ⃗𝑧′‖∞ < 𝛾′ − 𝛽, and:⃗𝑤1 = UseHint𝑞(ℎ⃗, A ⃗𝑧 − ⃗𝑡1𝑐 ⋅ 2𝑑, 2𝛾) = UseHint𝑞(ℎ⃗′, A ⃗𝑧′ − ⃗𝑡1𝑐′ ⋅ 2𝑑, 2𝛾).
Using Lemma 6.2.1 it is clear to see that:∥A ⃗𝑧 − ⃗𝑡1𝑐 ⋅ 2𝑑 − ⃗𝑤1 ⋅ 2𝛾∥∞ ≤ 2𝛾 + 1,∥A ⃗𝑧′ − ⃗𝑡1𝑐′ ⋅ 2𝑑 − ⃗𝑤1 ⋅ 2𝛾∥∞ ≤ 2𝛾 + 1,
where using the triangular inequality, further give us:∥A( ⃗𝑧 − ⃗𝑧′) − ⃗𝑡1(𝑐 − 𝑐′) ⋅ 2𝑑∥∞ ≤ 4𝛾 + 2.
For ‖ ⃗𝑧 − ⃗𝑧′‖∞ ≤ 2(𝛾′ − 𝛽 − 1) and some �⃗� where ‖�⃗�‖∞ ≤ 4𝛾 + 2 we rewrite this as:

A( ⃗𝑧 − ⃗𝑧′) + �⃗� = ⃗𝑡1 ⋅ 2𝑑 ⋅ (𝑐 − 𝑐′). (6.6)

Applying Lemma 6.2.4, for A ← 𝑅𝑘×𝑙𝑞 and ⃗𝑡 ← 𝑅𝑘𝑞 , we see that (6.6) is satisfied with probability
less than: 2 ⋅ |ChSet|2 ⋅ (4(𝛾′ − 𝛽))𝑛𝑙 ⋅ (8𝛾 + 5)𝑛𝑘𝑞𝑛𝑘 < 2 ⋅ |ChSet|2 ⋅ (32𝛾𝛾′𝑞 )𝑛𝑘 .
We see the claim of the Lemma holds.

Min-Entropy

To prove the min-entropy of our scheme, we will show that the ⃗𝑤1 sent by an honest prover is
extremely likely to be distinct each time we run the protocol. While proving this lemma we will
use the same technique as we did for Lemma 6.2.4.
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Lemma 6.2.6. If 2𝛾, 2𝛾′ < √𝑞/2 and 𝑙 ≤ 𝑘, the Dilithium ID-scheme in Figure 6.3 has 𝛼 bits
of min-entropy, where:𝛼 > 𝑛𝑙 ⋅ log(min{ 𝑞(4𝛾 + 1)(4𝛾′ + 1), 2𝛾′ − 1}) .
Proof. We make the claim that:

Pr
A←𝑅𝑘×𝑙𝑞 [∃ ⃗𝑧 ≠ ⃗𝑧′ ∈ 𝑆𝑙𝛾′−1 s.t HighBits𝑞(A ⃗𝑦, 2𝛾) = HighBits𝑞(A ⃗𝑦′, 2𝛾)]

< ((4𝛾 + 1)(4𝛾1 + 1)𝑞 )𝑛𝑘 . (6.7)

We see the probability of a collision for ⃗𝑧. If there are no collisions we know that every ⃗𝑤1 =
HighBits𝑞(A ⃗𝑦′, 2𝛾) will be drawn uniformly. In other words, with probability 1−((4𝛾+1)(4𝛾1+1)𝑞 )𝑛𝑘
over A ← 𝑅𝑘×𝑙𝑞 every ⃗𝑤1 = HighBits𝑞(A ⃗𝑦′, 2𝛾) has a 1|𝛾′−1| = (2𝛾′−1)−𝑛𝑙 chance of being output.
In order to see why we want to make this claim, we rewrite the bound for 𝛼 from the Lemma:𝛼 > 𝑛𝑙 ⋅ log(min{( 𝑞(4𝛾 + 1)(4𝛾′ + 1)) , (2𝛾′ − 1)})= log(min{( 𝑞(4𝛾 + 1)(4𝛾′ + 1))𝑛𝑙 , (2𝛾′ − 1)𝑛𝑙})

= log(max{((4𝛾 + 1)(4𝛾′ + 1)𝑞 )−𝑛𝑙 , (2𝛾′ − 1)𝑛𝑙})
= − log(max{((4𝛾 + 1)(4𝛾′ + 1)𝑞 )𝑛𝑙 , (2𝛾′ − 1)𝑛𝑙}) ,

and recall Definition 2.3.1. It becomes apparent that with the assumption that 𝑘 ≥ 𝑙, the claim
of the Lemma follows and it only remains for us to prove (6.7). We define the vector pairs:( ⃗𝑤1, ⃗𝑤0) = Decompose𝑞(A ⃗𝑦, 2𝛾) and (�⃗�′1, �⃗�′0) = Decompose𝑞(A ⃗𝑦′, 2𝛾),
and then we see that:

HighBits𝑞(A ⃗𝑦, 2𝛾) = HighBits𝑞(A ⃗𝑦′, 2𝛾) ⟹ ⃗𝑤1 = (A ⃗𝑦 − ⃗𝑤0)/2𝛾 and �⃗�′1 = (A ⃗𝑦′ − �⃗�′0)/2𝛾
where �⃗�1 = �⃗�′1 and ‖ ⃗𝑤0‖∞, ‖�⃗�′0‖∞ ≤ 𝛾. Because of this, we get:(A ⃗𝑦 − ⃗𝑤0)/2𝛾 = (A ⃗𝑦′ − �⃗�′0)/2𝛾 ⟹ A ⃗𝑦 − ⃗𝑤0 = A ⃗𝑦′ − �⃗�′0⟹ A( ⃗𝑦 − ⃗𝑦′) − ( ⃗𝑤0 − �⃗�′0) = 0 (6.8)
where ‖ ⃗𝑦 − ⃗𝑦‖∞ ≤ 2𝛾′ and ‖ ⃗𝑤0 − �⃗�′0‖∞ ≤ 2𝛾.
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Using the same argument as in Case 2 of Lemma 6.2.4, as 2𝛾, 2𝛾′ < √𝑞/2, over the choice of
A ← 𝑅𝑘×𝑙𝑞 the probability that there exists two non-zero elements, here ( ⃗𝑦 − ⃗𝑦) and ( ⃗𝑤0 − �⃗�′0)
with norm less than 2𝛾 and 2𝛾′, respectively, satisfying (6.8) is at most:((4𝛾 + 1)𝑙(4𝛾′ + 1)𝑘𝑞𝑘 )𝑛 ≤ ((4𝛾 + 1)(4𝛾1 + 1)𝑞 )𝑛𝑘 .
Which proves (6.7) and thus the Lemma.

Computational Unique Response

In order to show the strong unforgeability of our scheme, we wish to prove that the Dilithium
ID-scheme has CUR. To do so, we need to prove two lemmas.
Lemma 6.2.7. If transcripts ( ⃗𝑤1, 𝑐, ( ⃗𝑧, ℎ⃗)) and ( ⃗𝑤1, 𝑐, ( ⃗𝑧′, ⃗ℎ′)) are such that 𝑉 (𝑝𝑘, ⃗𝑤1, 𝑐, ( ⃗𝑧, ℎ⃗)) =𝑉 (𝑝𝑘, ⃗𝑤1, 𝑐, ( ⃗𝑧, ℎ⃗)) = 1, where ( ⃗𝑧, ℎ⃗) ≠ ( ⃗𝑧′, ⃗ℎ′), then there exists vectors ⃗𝑣, �⃗� such that ‖ ⃗𝑣‖∞ <2(𝛾′ − 𝛽), ‖�⃗�‖∞ < 4𝛾 + 2 and A ⃗𝑣 + �⃗� = 0.

Proof. Following the conditions of the Lemma we see that they imply:⃗𝑤1 = UseHint𝑞(ℎ⃗, A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 2𝛾) = UseHint𝑞(ℎ⃗′, A ⃗𝑧′ − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 2𝛾).
By iii) of Lemma 6.2.1 we notice that we must have ⃗𝑧 ≠ ⃗𝑧′, as ⃗𝑧 = ⃗𝑧′ would imply ℎ⃗ = ℎ⃗′
and thus 𝑍 = ( ⃗𝑧, ℎ⃗) = ( ⃗𝑧′, ⃗ℎ′) = 𝑍′. Now using ii) of the same lemma, we see that the above
equation means: ∥A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑 − ⃗𝑤1 ⋅ 2𝛾∥∞ ≤ 2𝛾 + 1,∥A ⃗𝑧′ − 𝑐′ ⃗𝑡1 ⋅ 2𝑑 − ⃗𝑤1 ⋅ 2𝛾∥∞ ≤ 2𝛾 + 1.
Where the triangle inequality allows us to rewrite this as:

A( ⃗𝑧 − ⃗𝑧′) + (𝑐 − 𝑐′) ⃗𝑡 ⋅ 2𝑑 = 0,
Now, we see that for ⃗𝑣 and �⃗�, where ‖ ⃗𝑣‖ < 2(𝛾′ − 𝛽) and ‖�⃗�‖∞ < 4𝛾 + 2, we can write the above
equation as A ⃗𝑣 + �⃗� = 0 and thus prove the Lemma.

With the results of Lemma 6.2.7, we have the results we need to prove the advantage of an
adversary against the CUR of the scheme.
Lemma 6.2.8. If 4𝛾 +2, 2𝛾′ < √𝑞/2, 𝛾′ < 𝛾𝛽, and 𝑙 ≤ 𝑘, then for every (unbounded) adversary𝒜 against CUR: 𝐴𝑑𝑣(𝒜)CUR

ID < (32𝛾𝛾′𝑞 )𝑛𝑘 .
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Proof. Let (𝑊, 𝑐, 𝑍) = ( ⃗𝑤1, 𝑐, ( ⃗𝑧, ℎ⃗)) be any valid transcript. If an adversary 𝒜 is able to generate
a response 𝑍′ = ( ⃗𝑧′, ⃗ℎ′) ≠ 𝑍 such that 𝑉 (𝑝𝑘, ⃗𝑤1, 𝑐, ( ⃗𝑧′, ℎ⃗′)) = 1 for 𝑝𝑘 = (A, ⃗𝑡1), then by Lemma
6.2.7 there exists vectors ⃗𝑣, �⃗� such that A ⃗𝑣 + �⃗� = 0 where ‖ ⃗𝑣‖∞ < 2(𝛾′ − 𝛽) and ‖�⃗�‖∞ < 4𝛾 + 2.
Using the same argument as in Case 2 of Lemma 6.2.4, as 4𝛾 + 2, 2𝛾′ < √𝑞/2, over the choice
of A ← 𝑅𝑘×𝑙𝑞 the probability that there exists two non-zero elements, ⃗𝑣 and �⃗�, with norm less
than 2(𝛾′ − 𝛽) and 4𝛾 + 2, respectively, such that A ⃗𝑣 + �⃗� = 0 is:(4(𝛾′ − 𝛽))𝑛𝑙 ⋅ (8𝛾 + 5)𝑛𝑘𝑞𝑛𝑘 < 2 ⋅ |ChSet|2 ⋅ (32𝛾𝛾′𝑞 )𝑛𝑘 .
6.2.4 Signature Scheme

The Dilithium signature scheme we work with here differs slightly from the signature presented
by Ducas et al. [27]. We present the DFS[ID, 𝐻, PRF] derived Dilithium signature by Kiltz et
al. [7] based on the lossy ID-scheme we presented in Section 6.2.1. We refer to the signature as
Dilithium and will point out the difference between the Ducas et al. and Kiltz et al signature
when distinguishing between the two is necessary.
The signature scheme is presented in Figure 6.7. In lines 5 we see the random key 𝐾 as the
signature is derived through the deterministic Fiat-Shamir with aborts transformation. We also
note that the bound on 𝜅 in line 3 only is present to maintain consistency from the generic
signing algorithms presented in Figure 5.10.

6.2.5 Security Proof

We now want to apply the theorems and results from Chapter 5 to the Dilithium signature we
just introduced. We wish to show the signature to be unforgeable in the QROM. To do so we
recall Theorem 5.2.2 and its proof. Applying this to Dilithium we get:𝐴𝑑𝑣UF−CMA1

DilithiumSIG
(𝒜) ≤ 𝐴𝑑𝑣LOSS

DilithiumID
(ℬ) + 8(𝑄𝐻 + 1)2 ⋅ 𝜖𝑙𝑠 + 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 + 2−𝛼+1.

In order to simplify the above equation we look at the properties we explored in Section 6.2.3
and instantiate these for the recommended security level in Table 7.1.
In Section 6.2.3 of this chapter, we find Lemma 6.2.3 and that the Dilithium ID-scheme is
perfectly naHVZK. This means 𝜖𝑧𝑘 = 0, which allows us to remove the 𝜅𝑚𝑄𝑆 ⋅ 𝜖𝑧𝑘 term. Later
in the same section, we see that the advantage of the ℬ against LOSS can be substituted
with the advantage against MLWE. Further, for the lossy soundness we look back at Lemma
6.2.5 and see that 𝜖𝑙𝑠 ≤ 1|ChSet| + 2 ⋅ |ChSet|2 ⋅ (32𝛾𝛾′𝑞 )𝑛𝑘. The recommended value for the ring
dimension is 𝑛 = 512, which means the size of ChSet is greater than 2265 allowing us to write
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Sign((𝑠𝑘, 𝐾), 𝑀)
1 ∶ 𝜅 ∶= 0
2 ∶ A ← 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
3 ∶ while ( ⃗𝑧, ℎ⃗) = ⊥ and 𝜅 ≤ 20001 − 𝛿 do
4 ∶ 𝜅 ∶= 𝜅 + 1
5 ∶ ⃗𝑦 ← S𝑙𝛾′−1 ∶= Sam(𝐾 ∥ 𝑀 ∥ 𝜅)
6 ∶ �⃗� ∶= A ⃗𝑦
7 ∶ ⃗𝑤1 ∶= HighBits𝑞(�⃗�, 2𝛾)
8 ∶ 𝑐 ∶= 𝐻( ⃗𝑤1 ∥ 𝑀)
9 ∶ ⃗𝑧 ∶= ⃗𝑦 + 𝑐 ⃗𝑠1

10 ∶ if ‖ ⃗𝑧‖∞ ≥ 𝛾′ − 𝛽 or ∥LowBits𝑞(�⃗� − 𝑐 ⃗𝑠2, 2𝛾)∥∞ ≥ 𝛾 − 𝛽
11 ∶ then ( ⃗𝑧, ℎ⃗) ∶= ⊥
12 ∶ else ℎ⃗ ∶= MakeHint𝑞(−𝑐 ⃗𝑡0, �⃗� − 𝑐 ⃗𝑠2 + 𝑐 ⃗𝑡0, 2𝛾2)
13 ∶ return 𝜎 = ( ⃗𝑧, ℎ⃗, 𝑐)
Ver(𝑝𝑘, 𝑀, 𝜎)
1 ∶ A ← 𝑅𝑘×𝑙𝑞 ∶= Sam(𝜌)
2 ∶ ⃗𝑤′1 ∶= UseHint𝑞(ℎ⃗, A ⃗𝑧 − 𝑐 ⃗𝑡1 ⋅ 2𝑑, 𝛾2)
3 ∶ return ⟦‖ ⃗𝑧‖∞ < 𝛾′ − 𝛽⟧ and ⟦𝑐 = 𝐻( ⃗𝑤′1 ∥ 𝑀)⟧

Figure 6.7: The Dilithium signature scheme. The key-generation algorithm is the same as in
Figure 6.3, where the secret key now also contains a random key 𝐾 for the pseudorandom function
Sam.

𝜖𝑙𝑠 ≤ 2−265 + 2−334 ≤ 2−264. Lastly, for the 𝛼 bits of minimal entropy, using Lemma 6.2.6 for the
recommended instance in Table 7.1, we will get 𝛼 > 2900 allowing us to ignore the 2−𝛼 term.
The above equation can now be written as:𝐴𝑑𝑣UF−CMA1

DilithiumSIG
(𝒜) ≤ 𝐴𝑑𝑣MLWE𝑘,𝑙,𝐷 (ℬ) + 𝑄2𝐻 ⋅ 2−261,

where the advantage function for ℬ against the decision-MLWE problem is:𝐴𝑑𝑣(ℬ)MLWE𝑚,𝑘,𝐷 ∶=|Pr[ℬ(A, ⃗𝑡) ⇒ 1|A ← 𝑅𝑚×𝑘𝑞 , ⃗𝑡 ← 𝑅𝑚𝑞 ]− Pr[𝒜(A ⃗𝑠1, ⃗𝑠2) ⇒ 1|A ← 𝑅𝑚×𝑘𝑞 , ⃗𝑠1 ← 𝐷𝑘 ⃗𝑠2 ← 𝐷𝑚]|.
In other words the UF-CMA1 security of Dilithium comes down to the hardness of the MLWE
problem.
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Further on Security

Just like we did for the general proof of UF-CMA1 security of DFS[LID, 𝐻, PRF, 𝜅𝑚] signatures
in Chapter 5, we can extend the UF-CMA1 security for Dilithium to UF-CMA security. We
use the fact that our Dilithium signature is derived through the deterministic Fiat-Shamir with
aborts transformation and get:𝐴𝑑𝑣UF−CMA

DilithiumSIG
(𝒜) ≤ 𝐴𝑑𝑣MLWE𝑘,𝑙,𝐷 (ℬ) + 𝑄2𝐻 ⋅ 2−261 + 𝐴𝑑𝑣PR

Sam(𝒞).
Recalling Lemma 6.2.8 from Section 6.2.3, we know that Dilithium satisfies the CUR property.
With this, we extend the UF-CMA security of the signature to sUF-CMA security and get:𝐴𝑑𝑣UF−CMA

DilithiumSIG
(𝒜) ≤ 𝐴𝑑𝑣MLWE𝑘,𝑙,𝐷 (ℬ) + 𝑄2𝐻 ⋅ 2−261 + 𝐴𝑑𝑣PR

Sam(𝒞) + 𝐴𝑑𝑣CUR
DilithiumID

(𝒟).
We see that Dilithium is strongly unforgeable in the QROM and we therefore consider it secure
against a quantum attacker.





Chapter 7

Discussion

In this thesis we have studied what provable security means in PQC. We have looked at two
signature schemes that are both considered quantum safe, but on different assumptions. We will
compare the two schemes and the different approaches to quantum security.
In 2009 Lyubashevsky introduced the Fiat-Shamir with aborts technique, as he released the
Lyubashevsky signature we have looked at. The signature scheme extended the original Fiat-
Shamir transformation to allow the prover to abort. Lyubashevsky gave this technique of turning
an interactive ID-schemes into a non-interactive signature scheme, a broader range of application.
The Lyubashevsky signature is proven unforgeable in the classical ROM using rewinding. As
we know, rewinding is problematic against an adversary with quantum capabilities and thus
the proof is not considered safe against a quantum attacker. However, the underlying problem,
namely the SVP𝛾, is considered hard for even an adversary with quantum capabilities — Lyu-
bashevsky is built on a quantum safe problem. The signature has become a building block for
PQC signatures to come, but is itself not the most efficient signature.
Dilithium is a signature that NIST have recommended for use in PQC. It is considered relatively
simple to implement, it has strong theoretical security and high efficiency. It can be applied to a
broad range of cryptographic applications and is NIST’s primary choice for signatures in PQC.
The efficiency of the scheme is one of the most desirable aspects of Dilithium. The “key” to this
is the small size of the public key. The matrix A is not included in the key, rather retrieved
using the XOF Sam on the seed 𝜌. The public key then consists of a seed 𝜌 as well as the vector⃗𝑡1 ∶= Power2Round𝑞( ⃗𝑡, 𝑑). A hint ℎ⃗ is provided so that the verifier can still check the signature
without knowing the entire ⃗𝑡. Along with Power2Round𝑞 Dilithium has five other supporting
algorithms, which can be seen in Figure 6.4. These algorithms all work to ensure the efficinecy
of the signature, while still preserving its security.
Dilithium is proven unforgeable in the QROM, which means it is proven safe against an adversary
with quantum capabilities. Important to notice is that we are referring to Kiltz et al.’s [7]
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Dilithium signature that is derived from a lossy ID-scheme. The original Dilithium signature
by Ducas et al. [27] does not have a QROM proof and is more efficient than the lossy derived
Dilithium. We point out that Kiltz et al. [7] do explore a reduction of a deterministic variant
of the original Dilihtium signature that is not dependant on the underlying ID-scheme being
lossy. This reduction is based on a combination of the MLWE and a special instantiation of
MSIS called SelfTargetMSIS. We get a QROM proof reduced to MLWE and SelfTargetMSIS,
but as SelfTargetMSIS is derived from MSIS using the forking lemma, we are left with the same
argument as we have for Lyubashevsky. We have an underlying problem that is quantum safe,
but we are not able to fully model a quantum attacker. We note that SelfTargetMSIS is the
underlying lattice problem for the original Dilithium signature.
In Table 7.1 we see a comparison of Lyubashevsky, the original Dilithium and the lossy derived
Dilithium, here denoted as Dilithium-QROM. More exactly we see the size difference of the public
keys and signatures, measured in bytes, for two security levels. It is apparent that Dilithium
is a far more efficient signature than Lyubashevsky. We also witness the increased size of the
Dilithium-QROM signature to that of the original Dilithium — making it lossy increases the
combined key and signature size with a factor of a little more than 3. It is interesting to compare
all of these schemes to modern day standards like the RSA. The public key and the signature of
RSA are both an impressive 256 bytes. Clearly, as far as efficiency goes this is much preferred
over the quantum safe protocols we have looked at, when classical security is sufficient.
As both Lyubashevsky and Dilithium are considered to be quantum safe, but only Dilithium
has a security proof in the QROM, it becomes natural to ask — do we need the QROM? The
question is simple; the answer is less obvious.
Looking at the classical ROM we know that the model has been considered sufficient, even
though it does not actually reflect the real world. However, the test of time has spoken in favour
of the model. This is a good talking point for why we should continue using this model, but
it does not take into consideration the capabilities of new quantum attackers, nor should it
necessarily give us confidence that it will continue to be sufficient in the face of new adversarial
powers. The cryptographic community has not agreed on the need of a new model. Yet, the
fact that the QROM has been developed as a response to the quantum development suggests
that it is worth considering. Having a model capable of testing a scheme towards its possible
attackers is a useful tool giving us greater confidence in the security of quantum safe protocols.
The fact that schemes like Lyubashevsky seems to be quantum secure with only a ROM proof
is not necessarily a valid argument against the QROM, rather it is a good argument for the
ROM. Looking at the size difference of the original Dilithium and the lossy derived Dilithium,
it is easy to wish that the ROM will stand the test of time also in a quantum setting.
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Signature Parameter Definition Sample Instantiation
Recommended Very High

Lyubashevsky
[28]

𝑛 integer that is power of 2 512 1024𝑚 any integer 8 8𝜎 any integer 2047 2047𝜅 integer that is power of 2 512 1024𝑝 integer ≈ 295.8 295.9𝑅𝑞 ℤ𝑞[𝑋]/⟨𝑋𝑛 + 1⟩𝐷 {𝑔 ∈ 𝑅 ∣ ‖𝑔‖∞ ≤ 𝑚𝑛𝜎𝜅}𝐷𝑠 {𝑔 ∈ 𝑅 ∣ ‖𝑔‖∞ ≤ 𝜎}𝐷𝑐 {𝑔 ∈ 𝑅 ∣ ‖𝑔‖1 ≤ 𝜅}𝐷𝑦 {𝑔 ∈ 𝑅 ∣ ‖𝑔‖∞ ≤ 𝑚𝑛𝜎𝜅}𝐺 {𝑔 ∈ 𝑅 ∣ ‖𝑔‖∞ ≤ 𝑚𝑛𝜎𝜅 − 𝜎𝜅}𝑝𝑘 size in bytes 49000 9800
signature size in bytes 119000 246000

Dilithium-QROM
[7]

𝑞 ring modulus 245 − 21283 245 − 21283𝑛 ring dimension 512 512(𝑘, 𝑙) dimensions of matrix A (4, 4) (5, 5)
d dropped bits from ⃗𝑡 15 15

# of ±1 in 𝑐 ∈ 𝐶ℎ𝑆𝑒𝑡 46 46𝛾 s.t. 𝛾|𝑞 − 1 905679 905679𝛾′ ≈ max. sig. coefficient 905679 905679𝜂 max. coefficient of ⃗𝑠1, ⃗𝑠2 7 3𝛽 𝜂 ⋅ (#of ± 1’s in 𝑐) 322 138𝑝𝑘 size in bytes 7712 9632
signature size in bytes 5690 70987

Dilithium
[27]

𝑞 ring modulus 223 − 8191 223 − 8191𝑛 ring dimension 256 256(𝑘, 𝑙) dimensions of matrix A (5, 4) (6, 5)
d dropped bits from ⃗𝑡 14 14

# of ±1 in 𝑐 ∈ 𝐶ℎ𝑆𝑒𝑡 60 60𝛾 s.t. 𝛾|𝑞 − 1 261888 261888𝛾′ ≈ max. sig. coefficient 523776 523776𝜂 max. coefficient of ⃗𝑠1, ⃗𝑠2 5 3𝛽 𝜂 ⋅ (#of ± 1’s in 𝑐) 275 175𝑝𝑘 size in bytes 1472 1760
signature size in bytes 2701 3366

Table 7.1: Description of the parameters for Lyubashevsky signature, the original Dilithium
signature and the lossy derived Dilithium signature, here denoted as Dilithium-QROM. In the
last two columns we see the parameters instantiated for two different security levels — We are
able to see the size difference of the three signatures.
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