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Abstract

This thesis presents a self-supervised deep learning approach for learning and extracting
representations from long-period electroencephalogram (EEG) input data, in order to be
used in downstream tasks such as prediction of dementia, Alzheimer’s, general abnormal-
ity, or any other long-period and instance-level downstream task. The proposed method
employs multi-view contrastive learning and Transformer-based architecture to extract
useful representations from raw EEG data in both time and frequency domains. The
study investigates the use of unlabeled data augmentations in conjunction with Trans-
formers for the goal of feature representation learning and the combination of different
views of time and frequency for effective pre-training tasks. The developed model is eval-
uated and validated using pre-training and downstream prediction tasks, demonstrating
promising results in encoding long-period EEG data, as well as using the resulting repres-
entations for condition prediction. This research aims to contribute to the advancement
of deep learning techniques in the analysis of EEG data and has potential applications in
the early detection and diagnosis of neurological disorders, and opens the door for further
research and investigation in this area.
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1 Chapter I - Introduction

In recent years, the prevalence of various patient conditions has started to pose a challenge
to healthcare systems worldwide. With an aging population, conditions such as dementia
and other brain abnormalities stand out as important and pressing concerns. We consider
dementia as a potential use case for the results of this study, but we carry out main
experiments on general abnormalities.

Dementia is a common term for a condition of decreased cognitive ability, which is severe
enough to interfere with normal functioning of an individual in daily life. It is a challenging
condition both in terms of diagnosis and treatment, and the prevalence of dementia is on
the rise as life expectancy and general population age is increasing. According to World
Health Organization, Around 55 million people suffer from dementia, a figure that is
expected to grow to 139 million by 2050 [1].

One of the ways to assess a patient for dementia is cognitive assessment tests. These kinds
of tests can range from simple questionnaires with basic questions to detailed neuropsy-
chological cognitive tests which aim to assess a patient’s cognitive ability in different areas
of interest, including memory, attention, etc. It is also important to distinguish demen-
tia from mild cognitive impairment (MCI) which is usually characterized by a noticeable
decrease in cognitive ability while maintaining the ability to continue with functions neces-
sary for daily life, and may or may not develop progress to dementia [2]. Several studies
showed the relevance of cognitive scores to identifying MCI and dementia, with some
suggesting that they can add significant value to the diagnosis and prediction of these
conditions even for years into the future [3]–[5].

Electroencephalography (EEG) analysis is a popular method that has been used in demen-
tia research, as well as research for other conditions related to brain activities, for years.
EEG data represents the recordings of the brain’s electrical activity, which is gathered
non-invasively via electrodes positioned on the scalp. This information allows for the
examination of brain functionality, cognitive processes, and neurological conditions by
assessing the time-based changes and spatial arrangement of brain signals.

It is clear that EEG activity, especially when considered in certain frequency bands, is
affected by dementia in different stages [6]. It has also shown a great potential in different
tasks including prediction and separation of different types of dementia [7]. In [8], a
strong correlation was demonstrated between certain aspects of the brain’s EEG data
and cognitive scores. In [9], it was suggested that resting-state EEG biomarkers have
significant correlation with cognitive score, especially in early stages of cognitive decline.
Additionally, the EEG data were found to be in correlation with age and education level.
This can suggest that EEG data can be a predictor of cognitive score, and subsequently
the cognitive functioning of the brain that dementia can deteriorate.

With recent advances in computing power and deep learning, EEG data can unlock even
more potential in areas related to dementia and cognitive functioning. While less complex
machine learning models such as support vector machines were tried initially to perform
tasks such as emotional state classification [10] and seizure detection [11], there are increas-
ingly more studies which have used deep learning methods to derive more predictive value
from this type of data in different domains. Several studies have adopted recurrent neural
networks while a significant number of them tried to make use of the popular convolutional
neural networks (CNN). For example, In [12], the authors surveyed studies for detecting
gaps in responsiveness and alertness using LSTM networks and found it to be effective.
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On the other hand, in [12], [13], the authors studied using a convolutional neural network
to predict different stages that happen in seizure which resulted in promising results, es-
pecially when the data is transformed into images using some transformation method, like
time-slicing [14]. Since labeled data can be scarce and hard to obtain in clinical settings,
semi-supervised approaches are gaining popularity. In this approach, the model is able
to learn the feature representations from EEG data in an unsupervised manner, and then
use the learned features for a chosen task, for example classification of emotions [15].

EEG data can contain big amounts of valuable information but it can also contain noise.
It is usually analyzed either in its original form which is as a time-series in the time do-
main, or it can be transformed into the frequency domain and be analyzed and used in
different frequency bands. It can also be analyzed in the time-frequency domain which
considers frequencies with respect to time, with a method such as short-time fourier trans-
form, wavelet transforms or spectral analysis. Considering each domain without the other
domains might result in some loss of full potential of EEG data. Hence, there have been
attempts to take several domains or views into account simultaneously. The goal is to find
a shared representation from all views and use all the available information, and use the
final representation to perform a task like seizure classification [16].

In this thesis, the goal is to develop a method in order to learn useful representations of
long-period EEG data in a self-supervised way, in order to predict a patient’s condition
(dementia, Alzheimer’s, abnormalities, etc.) based on the EEG data from their brain.
This method should be able to extract the necessary data in different domains of interest
(for example, time and frequency) and use information in all domains in order to carry out
the downstream prediction task on a long-period EEG input, which can be an instance-
level classification task in the case of predicting dementia. Although dementia has been
listed as one of the main use cases, the method can potentially be applied in any domain
where an overall instance-level prediction is desirable.There are several subgoals that need
to be addressed in order to achieve the main goal:

• How can the raw EEG data be transformed into a format that is suitable for a given
deep neural network to perform the prediction task?

• Is it possible to leverage unlabeled data in order to find the most interesting feature
representations and use them as a starting point for prediction with the labeled
data?

• How can data from different views be leveraged in order to perform a single effective
prediction task that can make the most use of the available information?

• How to evaluate and validate the results in a way that can objectively show if the
model is really effective at performing the given task?

The remainder of this thesis is structured as follows:

• Chapter 2 presents the methods and concepts used in the study.

• Chapter 3 includes literature review and existing work.

• Chapter 4 presents implementation and design of the proposed method.

• Chapter 5 provides evaluation and analysis of the proposed method.

• Chapter 6 concludes the thesis with some notes for further improvements.
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2 Chapter II - Theoretical Background and Technical Con-
cepts

Several methods and algorithms have been used in this study in order to reach the final
outcome. In this section, we will examine the essential techniques and concepts utilized
throughout this thesis, with a particular emphasis on EEG signal processing and machine
learning methodologies. This part aims to present a deeper understanding of the relevant
theories and technical elements, and thus creating a robust foundation for comprehending
the research carried out and the subsequent findings.

2.1 Short-Time Fourier Transform (STFT)

Fourier transform is a good way of representing a signal in terms of its frequencies. This
is the case for many time-based signals including EEG signals which usually comprise
many frequencies at different amplitudes. When the signal is non-stationary, meaning
that its characteristics change over time, a fourier transform is not enough to capture the
frequency-related information of the original signal. That is where Short-Time Fourier
Transform can be useful.

Short-Time Fourier Transform is a way of analyzing a non-stationary signal that varies over
the period of its duration. The method works by applying the Fourier Transform to short
and overlapping intervals of the original signal. This results in a spectral representation
of the signal that varies over time and can show the changing frequency content of it. In
its discrete form, it can be calculated using the following formula or some variation of it:

Xm(ω) =
∞∑

n=−∞
x(n)w(n−mR)e−jωn (1)

Where x is the input signal at time n, ω is the frequency variable, w is the analysis filter
(window function), and R is the hop size. After applying STFT to the input signal, each
input signal can be represented in terms of frequency, amplitude and time.

We used STFT in this study in order to obtain a different view of the original time-based
EEG signal and further used it as the input data in the pre-training pipeline.

2.2 Deep Learning Architectures

Deep learning models usually consist of multi-layered, hierarchical architectures designed
for processing and learning complex data patterns. These models employ artificial neural
networks, which draw inspiration from the human brain. There have been various types
of deep learning architectures which were introduced in recent developments of artificial
intelligence.

Convolutional Neural Networks (CNNs) specialize in image recognition by utilizing con-
volutional and pooling layers for feature detection and dimensionality reduction. Recur-
rent Neural Networks (RNNs) manage sequential data through connections with previous
states that enable information persistence throughout the network, making them suit-
able for natural language processing and time series analysis. Long Short-Term Memory
(LSTM) networks, a subtype of RNNs, address the vanishing gradient problem using
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gating mechanisms that regulate information flow. Gated Recurrent Units (GRUs) are
simplified LSTMs with fewer gates and parameters, yet exhibit comparable performance
at a faster speed. Autoencoders learn efficient data representations through input data
compression and reconstruction. Variational Autoencoders (VAEs) introduce a probabil-
istic component, learning a continuous latent space for generative purposes. Generative
Adversarial Networks (GANs) consist of two adversarial networks, a generator and a dis-
criminator, for producing realistic data samples. Transformer models, such as BERT and
GPT, leverage self-attention mechanisms for text processing and generation tasks, achiev-
ing state-of-the-art results in numerous natural language processing, in addition to other
generation tasks. The next sections briefly discuss the relevant architectures and layers
relevant to this study.

2.2.1 Fully Connected Networks

Fully connected neural networks represent a category of artificial neural networks in which
every neuron within a layer has connections to all neurons in the neighboring layers.
These networks are composed of an input layer, multiple hidden layers, and an output
layer. They are extensively employed in various applications, including image identifica-
tion, natural language processing, and pattern detection. The learning process in these
networks involves updating weights and biases using backpropagation and gradient descent
techniques.

These networks often do not scale well due to reasons such as the increasing number of
parameters as the network gets bigger or inability to generalize beyond their training
dataset.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are utilized extensively for image and video re-
cognition tasks owing to their ability to extract important features, such as edges and
textures, through mathematical filters or convolutions.

In the CNN architecture, input images undergo multiple layers of convolutional filters
that maintain significant characteristics while decreasing or maintaining dimensionality.
Subsequently, these filtered outputs may pass through activation functions such as ReLU
before potentially being passed onto pooling layers that further summarize feature maps.
They can be trained via backpropagation based on gradient descent methods. They can
be used for a variety of tasks. The output from the last layer can be flattened into
one-dimensional vector form corresponding to classifications learned during training by
connecting fully connected dense layers at the end. They can also be used for various
other tasks such as object segmentation, bounding box detection, feature extraction, super-
resolution, etc.

Given that Convolutional Neural Networks have demonstrated state-of-the-art perform-
ance in conventional computer vision tasks such as object classification, detection and
segmentation across various domains including medical imaging diagnosis and self-driving
cars among others makes it a highly useful tool.

4



2.2.3 Transformers and Attention Mechanism

The Transformers architecture, a state of the art development in natural language pro-
cessing and machine learning, originally designed for sequence-to-sequence tasks like ma-
chine translation, was introduced by Vaswani et al. in their 2017 paper titled ”Atten-
tion is All You Need” [17]. This innovative architecture has substantially enhanced the
performance of numerous tasks, such as machine translation, text summarization, and
sentiment analysis, by effectively capturing long-range dependencies and contextual in-
formation within the input data. The original architecture is shown in Figure 1.

Figure 1: Original Transformer Architecture

A Transformer’s architecture comprises two main components: the encoder and the de-
coder. Both components consist of multiple layers, each containing a multi-head self-
attention mechanism, followed by position-wise feed-forward networks. Furthermore, re-
sidual connections and layer normalization are utilized throughout the architecture to aid
training and enhance model performance.

In the encoder, the input sequence is initially embedded into vectors, which are then
combined with positional encodings to integrate information about each element’s position
within the sequence. This combination of token embeddings and positional encodings is
subsequently passed through the multi-head self-attention mechanism, which calculates a
weighted sum of the input elements based on their relevance to one another. The attention
mechanism’s output is then processed by the position-wise feed-forward networks, and the
resulting representation is forwarded to the next layer in the encoder. This procedure is
repeated for each layer in the encoder, progressively refining the input representation.

Conversely, the decoder is responsible for producing the output sequence. Like the en-
coder, the decoder also employs multi-head self-attention mechanisms and position-wise
feed-forward networks within its layers. However, the decoder incorporates an additional
attention mechanism that focuses on the encoder’s output, enabling it to integrate informa-
tion from the input sequence when generating the output. This cross-attention mechanism
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allows the decoder to concentrate on the most relevant parts of the input sequence while
producing each element of the output sequence.

At the heart of the Transformers architecture lies the attention mechanism, which enables
the model to assign importance to different input elements when generating an output.
This mechanism allows the model to concentrate on the most pertinent parts of the input
sequence, thereby improving its capacity to comprehend and process intricate structures.
The attention mechanism is founded on the idea of scaled dot-product attention, which
calculates the similarity between input elements using their dot product. This similarity is
then scaled by the square root of the input dimension and passed through a softmax func-
tion to obtain attention weights. These weights are employed to compute a weighted sum
of the input elements, effectively capturing the contextual information and dependencies
between them.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

Where Q, K, V refer to queries, keys and values matrices, dk is the dimension of the key
matrix. Furthermore, a multi-head attention strategy can be applied within the archi-
tecture. The multi-head attention approach performs the attention mechanism multiple
times, concatenates the output and linearly projects it to the expected dimension, an
operation that can be performed in parallel leading to an increased training speed. This
is accomplished through the utilization of several attention heads, each concentrating on
distinct features of the input, thus permitting the model to develop a more comprehensive
understanding of the input data. By employing multiple attention heads, the model has
the potential to identify various kinds of relationships between input tokens in the input
sequence.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(3)

Where each head represents a subspace in the embeddings dimension projected h times,
where queries, keys, and values are multiplied by the respectively learnable parameters
WQ,WK and W V , and the resulting matrices are concatenated and multiplied again
by WO to yield the final values. The Transformers architecture can utilize the attention
mechanism to efficiently process and understand complex input sequences by focusing on
the most relevant portions of the input data. The integration of multi-head self-attention,
position-wise feed-forward networks, and cross-attention mechanisms in the encoder and
decoder components enables the model to capture long-range dependencies and contextual
information, resulting in significant advancements in various machine learning tasks.

2.3 Multi-view Learning

Multi-view learning is a method to leverage multiple perspectives, or ”views” of the data to
improve the overall learning performance. This can be especially useful when dealing with
complex or high-dimensional data. The main idea is that the different views of the data
can contain complementary information, which, when fused together, can lead to better
representations and, consequently, better predictions. The process may be summarized in
following steps:
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• The first step is to gather data from multiple sources, which can be different inputs,
different modalities (e.g., text, images, audio), or even different feature representa-
tions extracted from the same source.

• Turning the input data into multiple views according to the available information.
For instance, if a dataset contains images and corresponding text descriptions, the
image pixels and text descriptions can be treated as separate views. In case of sig-
nals like EEG, it can be time-domain representation and its transformed frequency-
domain representation.

• Employing techniques to produce an appropriate representation for each view. This
process might involve training a convolutional neural network (CNN) for images and
a recurrent neural network (RNN) or Transformer for text and other types of data.
The objective is to extract pertinent features from each view for subsequent learning
tasks.

• Integrating the learned representations from each view to produce a comprehensive
representation. Various methods can be used to achieve this, such as concatena-
tion, weighted sum, or more sophisticated approaches. The aim is to utilize the
supplementary information from each view to create a more informative and robust
representation.

• Employing a deep learning model with the unified representation as input. This step
can involve any supervised or unsupervised learning task, including classification,
regression, clustering, or contrastive learning approaches.

Figure 2 shows an example of a multi-view learning framework which takes into account
and feeds different views of an entity into separate networks in order to learn good rep-
resentations for each view, and to carry out a learning task. First example shows an
image and its depth map as two views, while second example shows a time series and its
respective spectrogram as two separate views.

Figure 2: Multi-view Learning

2.4 Contrastive Learning

In the field of artificial intelligence, specifically within the domain of self-supervised learn-
ing, contrastive learning is a method that allows machines to derive meaningful represent-
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ations from data without depending on explicit labels. Self-supervised learning, a subset
of unsupervised learning, is driven by the intrinsic structure of data itself rather than
human-generated labels. This technique has managed to gain considerable interest due to
its capacity to utilize large quantities of unlabeled data, which is readily available in the
real world.

The primary objective of contrastive learning is to develop a representation capable of
distinguishing between similar and dissimilar data points. This is accomplished by training
a model to identify and differentiate positive and negative pairs of data samples. Positive
pairs consist of two instances of the same data point, while negative pairs are made up of
two distinct data points. By learning to recognize these pairs, the model can effectively
understand the underlying structure and patterns within the data.

Contrastive learning generally involves the following stages:

• Data Augmentation: To generate positive pairs, original data samples undergo vari-
ous augmentation techniques, such as adding noise, rotation, scaling, or cropping.
This results in multiple versions of the same data point, which are treated as positive
pairs.

• Encoder Network: An encoder network, typically a deep neural network, is employed
to map the augmented data samples into a latent space. The aim is to learn a rep-
resentation where similar data points are close together, and dissimilar data points
are far apart.

• Contrastive Loss Function: A contrastive loss function is used to assess the simil-
arity between the representations of positive and negative pairs. As mentioned, the
goal is to minimize the distance between positive pairs while maximizing the dis-
tance between negative pairs. Widely used contrastive loss functions include triplet
loss [18], N-pair loss [19], and InfoNCE loss [20].

• Optimization: Gradient-based optimization techniques, such as stochastic gradient
descent or adaptive optimizers like Adam, are used to train the model to minimize
the contrastive loss function. This process updates the encoder network’s weights,
resulting in better data representations.

Contrastive learning has demonstrated promising results in various AI applications, in-
cluding computer vision, natural language processing, and reinforcement learning. By
leveraging the power of self-supervised learning, contrastive learning allows models to learn
from vast amounts of unlabeled data, potentially leading to more robust and generalizable
AI systems.

Figure 3 shows an example of a contrastive framework being applied to a dataset consisting
of time series and spectrogram data points, in which a contrastive loss function attempts
to pull the representations of two variations of the same data point closer, while pushing
away the representations of the variations of different data points.
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Figure 3: Contrastive Learning

2.5 Data Augmentation

Data augmentation is a commonly used method in machine learning, especially in com-
puter vision, to expand and diversify a dataset by applying various transformations to
the original data. This approach aids in enhancing the performance and generalization
abilities of AI models by supplying them with a broader range of representative training
samples. In the domain of contrastive learning, data augmentation is essential for de-
riving significant and reliable data representations and is heavily influential in the final
outcome [21].

As mentioned, contrastive learning seeks to learn valuable representations by comparing
and contrasting data samples. The primary concept is to guide the model to generate
similar representations for semantically related samples and dissimilar representations for
unrelated samples. This is accomplished by devising an appropriate loss function that
encourages the model to minimize the distance between positive pairs (similar samples)
and maximize the distance between negative pairs (dissimilar samples).

Data augmentation is particularly vital in contrastive learning for the following reasons:

• Producing positive pairs: Data augmentation methods, such as rotation, scaling,
flipping, and jittering, can generate multiple transformed versions of the same data.
These augmented data can be regarded as positive pairs since they possess the same
semantic content. By comparing these positive pairs, the model learns to identify
the underlying structure and invariances in the data.

• Strengthening negative pairs: Besides generating positive pairs, data augmentation
can also assist in creating more diverse and challenging negative pairs. By applying
various transformations to unrelated images, the model encounters a broader range
of variations, making it harder for the model to differentiate between positive and
negative pairs. This forces the model to learn more discriminative features and
representations.

• Regularization: Data augmentation serves as a form of regularization, preventing
the model from overfitting to the training data. By introducing variations in the
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input data, the model is forced to learn more general and robust features that can
better generalize to unseen data.

• Enhanced performance: Data augmentation is also employed to boost the perform-
ance of contrastive learning algorithms. By providing the model with more diverse
and representative training samples, the model can learn more meaningful and trans-
ferable representations, which can be advantageous for downstream tasks such as
classification, detection, etc.
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3 Chapter III - Related Work

There have been numerous studies on the processing of EEG data and extracting useful
features from them, and different ways they can be used in a predictive model to achieve a
task such as classification or regression. In this section, a brief review of the related body
of research is presented.

3.1 Extraction of Features from EEG Data

Liu et al. [16] used features from both time and frequency domains and after preprocessing,
fed each domain separately into convolution layers and then fed the concatenated output
to feed-forward layers and classification layers respectively. In this specific case, the rep-
resentation of each view is being learned separately for each view, as opposed to jointly
based on a shared cost.

In [22], the authors transformed original time-series EEG data into frequency domain, and
they also extracted some statistical data from frequency domain as an additional domain.
They then built a latent intact representation from all three views, namely time, frequency
and frequency statistics, after applying dimensionality reduction on time and frequency
views. They finally applied a support vector machine (SVM) classifier to perform the
prediction on final feature representations.

Tang et al. [23] proposed a multi-view method which extracts three feature groups from the
time-series data after applying wavelet packet transform, namely local fractal spectrum,
relative band energy, and synchronization modularity features to be used as a different
view of the input data. These features are then fed separately into convolution layers
(depth-wise and point-wise), and then concatenated and fed to attention, gated recurrent
unit (GRU), fully connected and a softmax classification layer respectively to predict a
binary class (seizure vs non-seizure period).

In [24], Chen et al. used a different set of features, namely frequency domain features
and brain connectivity features. The brain connectivity features, which replaces the time
domain features in some other studies, can introduce a new type of information to the set
of features. In this study, they preprocessed data and extracted several types of features,
including phase lag index (PLI) and phase lock value (PLV) from connectivity domain, and
power spectral density (PSD) and differential entropy (DE) from frequency domain. They
used different fusion methods on different combinations of these features and found some
of them outperform the others, especially approximate empirical kernel map or AEKM
on . Finally, they applied a classical support vector machine classifier to predict different
emotion states from those extracted features.

In conclusion, using a combination of parameters and features can in a lot of cases lead
to more reliable results. This combination can help capture the most valuable and useful
patterns from raw EEG data in a comprehensive way and it can contain frequency domain
features, time domain analysis, fractal or entropy values, etc [25].

3.2 Automatic Feature Extraction from Raw EEG Data

The authors in [26] extensively used common spatial pattern for feature extraction and
a support matrix machine for classification in stacked layers which could recursively en-
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code the representations from previous layers to output the final representations. Their
approach showed promising results over the decoding of EEG patterns to perform the task
of classification.

In [27], the authors extracted several aggregated features in the form of images and ap-
plied multiple pre-trained deep learning models as feature extractors and then fused the
extracted features togethers. Finally, with frozen feature extraction layers, they applied
fully connected layers for training on top of the model to perform the final classification
task.

3.3 Learning Representations from Unlabeled EEG Data

EEG data can contain valuable information that can be extracted with state of the art
algorithms, but it is usually dependent on a huge volume of labeled data to work with, a
data that is scarce and difficult to gather. Self-supervised learning methods mitigate this
problem by developing models that can learn how to transform and represent EEG data
in a way that would be much easier for a subsequent supervised model to fine-tune and
map those representations to the desired output.

It has been demonstrated that self-supervised learning approaches can lead to better per-
formance in downstream supervised tasks, especially in cases where labeled data is scarce
and hard to obtain, but it is also dependent on the self-supervised tasks (e.g., sampling
by relative positioning of the original time-series data) as well as the models that are used
to learn representations based on those self-supervised tasks [28].

Kumar et al. [29] used various augmentation methods for self-supervised tasks, including
jittering (random uniform noise) and random masking of signals as a type of augmentation,
along with random horizontal flipping and scaling as another type of augmentation. They
used time-domain and spectrogram views as two views of the EEG data. Data is segmented
into a 30-second interval (epoch) with each interval belonging to a category. The similarity
between augmented epochs are maximized, whereas the similarity between the current
epoch and other different epochs (in the pretext group) are minimized in a batch. For
each epoch, two types of augmentations are applied, the spectrogram view is created,
each view goes through an encoder, and then a projection. Three groups of features are
created: time-series features, spectrogram features, and concatenated features. For each
pair of feature groups in a pair of samples, three contrastive losses are calculated, one for
time-series pair, one for spectrogram pair, and one for concatenated pair. Another loss
is also presented which pushes for the complementary information present in each of the
views.

In [15], the authors tried an “Attention-based Recurrent AutoEncoder” to learn feature
representations in the unsupervised part of the work which resulted in promising results.
This way, there is no need to define different self-supervised tasks anymore in order to
learn representations and to find good initial weights for the supervised part of the work.
The autoencoder is first trained in an unsupervised manner by trying to reconstruct the
input data, and then the encoded features are fed to a supervised model to perform a
downstream task which is emotion classification in this case.
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3.4 Using Multiple Views of EEG Data

Real life events can be captured or represented using different formats and can be viewed
through different lenses. Although it is possible to sometimes capture data for an event
from different views or transform an existing dataset to represent a different aspect of the
data, it is usually a challenge to use them in a way that captures useful data representations
for other downstream tasks.

A common way to extract useful representations from different views is to find a way to
encode the input from each view and map the inputs into a common representation space
in which the mutual information from different views are maximized [30], [31].

There have been various research studies that have leveraged multi-view settings in order
to use EEG data to carry out a downstream task such as classification. In [32], the authors
considered each channel’s data in 30-second windows and calculated the average power
of the theta band (4-7.5) Hz, and used it as one of the views. For the second view, they
converted these band powers into dB’s and used it as the second view of the input data.
They build a fuzzy system to use both views to carry out the task of drowsiness estimation.

In [33], the authors used two views to learn the representations: raw EEG data and
the spectrogram data obtained from Hilbert-Huang Transform. They used a method
for self-supervised learning called Dense Predictive Coding that predicts future feature
representations based on the past features, and uses a loss function to maximize similarity
with the true representation (and similar positive representations) at a given time period
and minimize it compared to all the other representations. Similarly, authors in [29], use
time-series and spectrogram views to learn EEG representations, but they use augmented
views of those views to compare with ground truth and optimize the loss function. They
used true and augmented views of time-series, spectrogram and the combination of time-
series and spectrogram features.

In [16], the authors used the time-series EEG data and its frequency domain version using
Fast Fourier Transform (FFT) as two views. They used convolutional neural networks to
encode and learn representations from each view separately and then used fully connected
layers to merge them and learn a shared representation and subsequently used a classifica-
tion layer for a downstream seizure prediction task. In [22], the authors used three views:
time-domain view on which Principal component analysis (PCA) was applied, frequency-
domain using FFT and then PCA, statistical features from the time-domain (median,
mean, mode, etc.). They then used intact space learning and applied a support vector
machine (SVM) on the final feature space to perform a Tinnitus classification task.

The authors in [34] used multi-view learning for motor imagery task recognition. They
used three different views of the EEG data, time domain view, frequency domain view, and
time-frequency domain view using wavelet packet decomposition (WPD). They applied a
feature extraction algorithm called common spatial patterns (CSP) on top of all views
to extract spatial domain feature representations. A deep restricted boltzmann machine
(RBM) was used in combination with a dimensionality reduction method to learn the
features in multiple views while removing the redundant features. A SVM was finally
applied to carry out the prediction task.

Multi-view learning can also be applied for feature selection and dimensionality reduction
in the case of small datasets, in order to find useful features of those datasets and remove
the redundant features [12].
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3.5 Using Transformers to encode EEG data

Transformers, initially introduced by Vaswani et al. in 2017 [17], have resulted in signific-
ant advancements in the domain of natural language processing (NLP) and have been ef-
fectively employed in diverse fields such as computer vision, speech recognition, and bioin-
formatics. Recently, there have been increasing efforts for investigating the capabilities of
Transformers in the context of EEG data, encompassing tasks like seizure identification,
cognitive state classification, and brain-computer interface (BCI) implementations. In this
context, Transformers offer advantages such as good handling of long-range dependencies
and have the potential to significantly improve the performance of EEG data analysis.
This section briefly mentions several attempts to use Transformers in EEG-related tasks.

In a 2021 article [35], Kostas et al. attempted to make a pre-trained model with the
ability to be applied (via fine-tuning) to various downstream supervised tasks. Their
approach involves using a convolution-based features encoder that helps with reducing
the dimension of input data and producing embeddings. The results then go through
a Transformer encoder block to produce the final output. For the pre-training task, a
masking is applied to the input and the model tries to predict the unmasked input. A
contrastive loss tries to minimize the distance of the predicted output and the original
unmasked input, while maximizing the distance with a batch of other negative samples.
Their architecture closely follows that of wav2vec 2.0 [36] by Baevski et al. which in their
case was successfully implemented to learn useful features from speech audio and serves
as a pre-trained model for encoding speech features.

Wei et al. proposed a model for emotion recognition in [37]. The input is segmented into 1-
second intervals, baseline gets removed and a wavelet transform is applied, resulting in an
output with frequency, channel, and time dimensions that is then fed to the model. Their
model architecture includes three parts: (i) A partitioning section which divides the input
into non-overlapping patches through convolution operations, (ii) a Transformer section
which is responsible for capturing global relationships, (iii) and an emotion classifier which
is used to identify the emotion.

In [38], Song et al. paid attention to both channel and time dimensions. After spatially
filtering and preprocessing the initial EEG data, they apply the attention mechanism
on the feature channels to find a way to score the features in that dimension, and they
subsequently apply attention globally to extract the more suitable features, and finally
use the features for a classification task. In another successful attempt in [39], in order
to capture better initial features from EEG data, Song et al. use convolutions more
extensively in initial layers in both time and channel dimensions to encode the data and
extract useful local feature maps, and then fed those features into Transformer layers
which used attention mechanism to encode more global features within the data.
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4 Chapter IV - Implementation and Architecture

In this section, we will present the step by step implementation details of our proposed
method. As mentioned, the primary goal is to find useful representations of EEG data in
a self-supervised way, with the final goal of using those representations or the pre-trained
weights of the model in a downstream task like predicting dementia. The first step is
finding the right set of datasets and preparing them for the task.

4.1 Datasets

We used different datasets for each part of this study. For pre-training, we used two main
datasets:

• The Temple University Hospital (TUH) dataset [40]: TUH dataset is originally the
result of 14 years of clinical records that have been collected from Temple University
Hospital and have been made publicly available after curation and processing, along
with textual notes that have been paired with the EEG data. It comprises many
different frequencies and channels, with the majority of data having 31 channels and
a sampling rate of 250 Hz. We used a version of the dataset that divided samples
between normal and abnormal classes, with the abnormal class representing different
abnormalities.

• The NMT sculp dataset [41]: Originally consists of 2417 samples which covers around
625 hours. NMT dataset presents a unique dataset representing a south-asian pop-
ulation. For the data collection, they used the standard 10-20 electrode placement
system with 19 EEG channels on the scalp and two reference channels near the ear.
The sampling rate and average duration for the samples are 250 Hz and 15 minutes,
respectively. Similar to the TUH dataset that was used in this study, this dataset
also consists of normal and abnormal labels, with the abnormal referring to different
types of abnormalities and pathological conditions.

Table 1 shows the size of the datasets used in this research in summary.

Table 1: Summary of the datasets

Dataset Labels Total

Normal Abnormal

TUH 1521 1472 2993

NMT 1869 398 2267

Total 3390 1870 5260

4.2 Data Preprocessing

We have applied several preprocessing steps to make sure the input data to the model is
in the right format. The following transformations were applied to the datasets [42]:

• Adjust recordings to a consistent 20-minute duration.
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• Drop samples that were too short for our use case.

• Choose a common subset of 19 channels.

• Limit signals to a range of ±800 V.

• Reduce signal’s sampling rate to 100Hz through downsampling.

• Implement 1-40 Hz bandpass filtering to minimize noise and distortions.

• Employ a sliding window approach with 5-second overlapping intervals, creating a
(19x500) window dimension.

• Rearrange EEG signals into a tensor with dimensions 100 x 19 x 500. We can
consider this tensor as 100 frames of 19 x 500 images.

• Conduct normalization for each channel to achieve a zero-mean and a standard
deviation of 1.

• Current source density or Surface Laplacian (SL) was applied to provide estimates
of the current flow around the scalp in order to have a more localized and accurate
representation of the original EEG data [43].

We also created a pretext dataset from the original TUH and NMT datasets. The pretext
dataset consists of all the data points (after preprocessing) in NMT and the majority of
data points in TUH, which are exclusively used as pre-training data. The labeled part of
data is only used for evaluation purposes. Table 2 shows the summary of the dataset after
preprocessing.

Table 2: Summary of the datasets after preprocessing

Dataset Labels Pretext Total

Normal
(train/eval)

Abnormal
(train/eval)

TUH 276 / 150 270 / 126 2171 2993

NMT 2267 2267

Total 276 / 150 270 / 126 4438 4560

4.3 Data Augmentation

As discussed in the previous section, data augmentation is a vital part of contrastive
learning pipelines. In this study, two main groups of augmentations have been independ-
ently applied on the input data, each of those consisting of several augmentation steps.
These augmentations served as the reference for comparing the final representations in
contrastive learning. Each augmentation went through the pipeline and was applied on
both time-domain and frequency-domain data, and in the end, the loss function was ap-
plied on the final outputs. We refer to the augmentation groups as type 1 and type 2
augmentations influenced by [29], [44].

Type 1 augmentation consists of the following steps:
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• Jittering (noise): Similar to adding noise to images, we add an amount of noise to
the input data. This noise includes a low-frequency component and a high-frequency
component, and is applied to each channel independently.

• Masking: We choose a specific range that represents the number of points to be
masked, in our case a random number between 10 and 30. Then, a place is randomly
selected each frame in each channel and the points will be masked (replaced with
zero).

Type 2 augmentation can consist of the following steps:

• Scaling: In scaling, the input data is multiplied by a factor that is based on samples
drawn from a gaussian distribution (gaussian noise). This augmentation affects the
signal’s amplitude and introduces some amount of noise to it. This augmentation is
also applied to each frame in each channel.

• Flipping (optional): With a probability of 50%, the order of frames is reversed. This
augmentation did not yield helpful results, possibly due to adverse effects of breaking
the temporal continuity, so it was not used in the final model run.

4.4 Model Architecture

In this section, we will discuss the structure of the model and the different constituent
parts. Figure 4 shows the overall architecture of the model and the relevant pipelines. We
will discuss each step in the following sections.
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Figure 4: Model Architecture

4.5 Creating Multiple Views of EEG Data

The input data from the datasets are in time-domain. Using a short-time fourier trans-
form, the input time-domain data is transformed into its spectrogram representation in
frequency-domain. The resulting time-domain and frequency-domain data is then used as
input to the subsequent model. Figure 5 shows the transformation from time to frequency
domain.
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Figure 5: Creating frequency-domain view (averaged over time in each frame) from time-
domain view

The transformation is applied separately to each input channel and each frame, and the
resulting real and imaginary parts are concatenated, hence we have 2 × channels in the
channel dimension. As the result, since a new dimension will be added to the input data
which is the frequency dimension, we average the values across time points within each
frame. The resulting tensor will have the shape of (batches × frames × 2 ∗ channels ×
frequencies).

4.6 Patch Embeddings

Inspired by Video Transformers, producing some sort of input embeddings is considered
as one of the useful ways to encode input data into a format suitable for Transformers.
There are several approaches to produce embeddings from the raw input. Large embedding
networks (2D or 3D CNNs) can be leveraged to produce these embeddings, either used as
pre-trained or end-to-end. However, end-to-end training with large networks can become
very compute-hungry and pre-trained models for EEG data are not generally available as
for image data, so a good alternative is to use small convolutional or linear layers, and
train them end-to-end with the Transformer module (minimal embeddings) [45].

We can consider the input to our model as 100 frames, with each frame containing 19
channels by 500 points for time-domain, and 19 channels by 129 points for frequency-
domain. In the first step of the architecture, we create patches (tokens) of the input data,
which serve as a dimensionality reduction component and also a bottleneck to filter useful
information from the input data.

A dimension is added to each frame which will later serve as the embedding dimension.
We create initial feature maps, 40 in our experiments, and then apply two convolutions
which serve as spatiotemporal filters, inspired by [39]:

• One convolution over the time (or frequency) points, that serves an aggregating
function, across the whole frame.
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• One convolution over the channels, that serves as a channel aggregating function,
which summarizes the information across the channels at each time point.

These convolutions are followed by a batch normalization, a non-linear activation function
(ELU), and an average pooling component that can serve as a smoothing layer that helps
with both overfitting and computational complexity of the model.

The output of these layers (patch embeddings) are flattened and then fed to a projection
layer, which is used to increase the size of the final patch embeddings to our desired size.
Figure 6 shows the main steps in the pipeline of patch embeddings for the time-domain
data as an example.

Figure 6: Patch Embeddings

4.7 Positional Embeddings (Time Embeddings)

The Transformer architecture typically employs certain markers to encode and keep track
of the position of the tokens during the transformation processes. These markers play a
role in maintaining the order and context of the input data when dealing with sequential
information. Taking inspiration from some of the video Transformers available in the
literature [46], we have opted to apply positional embeddings as well, focusing on the
frame dimension in order to effectively keep track of the temporal direction of the frames.
As a result, we refer to these embeddings as time embeddings.

Time embeddings, which are initialized as learnable parameters, serve as a component
in preserving the sequential information within the data. It is important to note that
these time embeddings are added equally to all the samples and patches in a batch and
are only added in the dimension of the frames and not in the dimension of the patch
embeddings, ensuring that the temporal context is maintained without interfering with
the locally encoded information.

To implement this, firstly, the output obtained from the convolutions and projection op-
erations in the previous layer is transposed. This is achieved by switching the patch and
frame dimensions, effectively reordering the input data for further processing. The time
embeddings are then added to the frame dimension, which allows the model to maintain
an understanding of the temporal context throughout the transformations. Finally, the
frame and patch dimensions are concatenated, resulting in a tensor that contains three
dimensions - batch, token, and embeddings. This output tensor resembles the 1D token
embeddings commonly used in language models, as shown in Figure 7 The general as-
sumption here is that the model would be better equipped to handle both smaller local
and longer temporal aspects of the data, ultimately leading to improved quality of the
resulting embeddings.
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Figure 7: Adding time embeddings to the frames

4.8 Transformer

As discussed, the input EEG data is encoded into token embeddings for both time-domain
and frequency-domain. As a result, the initial dimensions of the input which was 100×19×
500 (and 100× 19× 137 for frequency-domain) representing number of frames, number of
channels, and number of time points in each frame respectively, is turned into a sequence
of tokens, with each token having a dimension of the chosen embedding size.

Transformers have shown remarkable performance in encoding sequence data into useful
representations. In this research, we also make use of a Transformer to encode the resulting
token embeddings of the initial EEG data. Since we are only interested in encoding and
extracting representations, we use the encoder part of the Transformer with multi-head
attention mechanism as shown in Figure 8.

As it is shown, after applying the positional embeddings (time embeddings) to the pre-
processed tokens, a multi-head attention layer, which was described in previous sections,
is applied and followed by a fully connected layer. Dropouts and layer norm blocks are
also applied between the steps to enhance training stability and regularization. The input
of each block is also directly added to the output as residual in order to help preserve the
information in the input and maintain the useful information in the layers.
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Figure 8: Encoder-Only Transformer

4.9 Projections and Embeddings

After applying patch embeddings and Transformers, the output from the Transformer
module is fed into a final fully connected layer to extract representations. A global aver-
age pooling is applied on the output of the previous layer which serves as a dimensionality
reduction component to reduce computational complexity. Finally, After layer normaliz-
ation and dropout, a linear projection layer is applied to extract the final representation
that will later be used for training and evaluation.

Figure 9 shows the final projections that have been applied to obtain the output repres-
entation in each domain.

Figure 9: Embedding Layer

4.10 Loss Function

As discussed, contrastive loss is a popular method to learn invariance between multiple
views of the same data, or positive samples, as opposed to negative samples. Since it is
building global level representations of the input, it can be considered an instance-based
or instance-level method that is good for capturing global relationships within the input
data [45], [47]. Hence, we also use contrastive learning on top of Transformers to capture
global and long-range relationships and representations from the input EEG data.

At this point in the architecture, we have mainly four output representations from the input
data, coming from the two augmentation types and two domains (time and frequency). In
order to make the most use of both views, we also make a combined representation using
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the concatenation of time and frequency domain representations, so in the end we have
six different output representations (embeddings):

1. Time-domain representation under type 1 augmentation.

2. Frequency-domain representation under type 1 augmentation.

3. Time-domain representation under type 2 augmentation.

4. Frequency-domain representation under type 2 augmentation.

5. Combined-domain (fusion) representation under type 1 augmentation.

6. Combined-domain representation under type 2 augmentation.

For each representation, we apply a simple projection head on top which turns them
into lower dimensional outputs for better results [48], as shown in Figure 10 In order to
compute the loss, we apply the contrastive loss over these projections, with each of them
representing different augmentations of different views.

Figure 10: Projections over Representations

Similar to the steps outlined in [29], we use four components in the loss function. Three
of the components are based on NT-Xent loss [48] with cosine similarity as the distance
metric represented by equations 4 and 5. Each of these three components represent the
loss being applied on each of the three domains (time, frequency and combined). The loss
tries to maximize the pairwise similarity between two augmented views of each domain (in
numerator), while minimizing the similarity between each view of a sample with the other
samples in a batch (in denominator). This loss is applied three times, hence creating three
loss components, time-domain loss, frequency-domain loss and combined (fusion) loss.

ℓ(i, j) = − log
exp (cos (zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (cos (zi, zk)/τ)
(4)

L =
1

2N

N∑
k=1

ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1) (5)

Where i and j are the positive samples, zi and zj are subsequently the representations
obtained from applying projection on each augmented view of a domain, N is the batch
size, and τ is a temperature parameter. This is applied for each positive pair in both vari-
ations (i, j) and (j, i), in each mini-batch. Note that each sample has two augmentations,
so there are 2N augmentations in total.

As the contrastive loss components above, especially the fusion loss, can push to optim-
ize for the shared information between the two views, as recommended in [29], we use
an additional loss term called Diverse Loss represented by equations 6 and 7, designed
to leverage the integration of complementary details across time-domain and frequency-
domain views for a single sample. It achieves this by applying contrastive loss to single
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sample features from both time and spectrogram projections, drawing time-domain at-
tributes nearer while distancing spectrogram attributes, and vice versa. Consequently,
the resulting representations exhibit a variety of information from one another for each
individual sample.

ℓd(a, b) = − log
exp (cos (z[a], z[b])/τd)∑4

i=1 1[i ̸=a] exp (cos (z[a], z[i])/τd)
(6)

LD =
1

4N

N∑
k=1

ℓd(1, 2) + ℓd(2, 1) + ℓd(3, 4) + ℓd(4, 3) (7)

Where z[i] denotes a feature representation of an augmentation. Numbers 1 through 4
in equation 7 which replace a, b and i in equation 6 denote the first four representations
introduced in the beginning of this section for time and frequency domains which will
be calculated for each sample separately, N is the batch size, and τ is a temperature
parameter. Similar to the approach in NT-Xent loss, it is applied on both variations (a, b)
and (b, a) for both domains.

Ltotal = λ1(LTT , LFF , LSS) + λ2LD (8)

Finally, Ltotal in equation 8 is the total loss in which LD refers to the Diverse loss, and
LTT , LFF and LSS refer to the contrastive losses for the time, frequency, and combined
domains respectively. Together with a linear combination, they constitute the total loss.
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5 Chapter V - Evaluation and Discussion

5.1 Pre-Training Settings

There are a few hyperparameters and settings that should be set during pre-training on
pretext data. Each of them might have a significant or small effect on the final quality
and effectiveness of representations. Table 3 shows the parameters and their initial values
that were set for pre-training. Some of the parameters were varied in several experiments,
hence multiple values in some rows.

Table 3: Model Hyperparameters

Parameter Value Info

Embedding size 256 / 768 / 1536 Dimension of patch embed-
ding tokens

Representation size 256 Dimension of the final repres-
entation for each domain

Projection size 128 Projection dimension for cal-
culating loss function

Temperature 1 Contrastive loss temperature

Diverse Temperature 10 Diverse loss temperature

Optimiser Adam Optimisation algorithm

Learning rate 0.00001 Learning rate for Adam op-
timiser

Beta1 0.9 Parameter for Adam optim-
iser

Beta2 0.99 Parameter for Adam optim-
iser

Weight decay 3*(10ˆ-5) Parameter for Adam optim-
iser

Transformer layers 2 / 4 Number of Transformer layers

Attention heads 4 / 8 Number of attention heads in
the Transformer

Scheduler Cyclic / ReduceOnPlateau Learning rate scheduler

Patience 5 Parameter for ReduceOnPlat-
eau scheduler

Factor 0.2 Parameter for ReduceOnPlat-
eau scheduler

Base LR 0.00001 Parameter for Cyclic sched-
uler

Max LR 0.01 Parameter for Cyclic sched-
uler

5.2 Evaluation Settings

As discussed, the outcome of pre-training is the weights of the model that can produce rep-
resentations from a period of EEG input data. To evaluate the quality of representations,
we follow the standard linear evaluation protocol which was used in numerous studies [29],
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[48], [49]. In order to carry on the initial evaluation, we freeze the pre-trained weights of
the model, add a linear classification layer on top, and train the classification layer of the
model on labeled data, and finally measure the test accuracy. We use a binary classifier
with cross-entropy loss for the classification task between normal and abnormal labels.
We only used the time encoder representations to evaluate the results, but spectrogram
or fusion representations could also be used. The simplified process is shown in Figure 11.

Figure 11: Linear Evaluation on Labeled Data

5.3 Results and Discussion

In the first step, we pre-trained the model on the pretext data. Due to computational
requirements of pre-training and lack of sufficient resources, we only tried several sets of
hyperparameters and settings that will be presented in this section. More comprehensive
analysis and ablation study can be done to find the best set of hyperparameters, as well
as most contributing factors.

We tried four different combinations pre-training settings:

• Augmentation includes frame flipping with 50% probability (reversing the order of
frames), two Transformer layers, eight attention heads, ReduceOnPlateau learning
rate scheduler, 32 batch size, and 256 embedding size

• Frame flipping, two Transformer layers, four attention heads, Cyclic learning rate
scheduler, 32 batch size, and 768 embedding size

• No frame flipping, one Transformer layers, four attention heads, Cyclic learning rate
scheduler, 16 batch size, and 1536 embedding size

• No frame flipping, two Transformer layers, four attention heads, Cyclic learning rate
scheduler, 32 batch size, and 1536 embedding size

The resulting representations of each setting was evaluated using the aforementioned linear
evaluation protocol on a labeled portion of data that was set aside for evaluation. The
resulting representations along with a linear classification head was trained and evaluated
on the labeled data in a supervised manner. The supervised evaluation is being applied
every 50 epochs after epoch 100.

The first two settings did not yield promising results in the supervised evaluation. It
seems the problem mainly arises from strong augmentation that uses frame flipping, hence
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distorting the causal and time-dependent relationship between the frames in time, that
the model can not learn from. Figure 12 shows the overall loss per epoch in pre-training
and the test F1 score for linear evaluation for the first two variations.

Figure 12: Pre-training epoch loss and test F1 score for Settings 1 and 2 with frame
flipping augmentations in the first 250 epochs

On the other hand, the last two settings resulted in decreasing loss and improved evaluation
scores. Figure 13 shows the loss per epoch and test F1 score for settings 3 and 4.

Figure 13: Pre-training epoch loss and test F1 score for Settings 3 and 4 without frame
flipping augmentations in the first 250 epochs

We continued pre-training the model with setting 3 parameters for up to 1000 epochs to
examine whether or not the metrics would continue improving. Figure 14 shows the full
pre-training and F1 results for 1000 epochs. As it can be seen, the evaluations metrics, as
well as epoch loss, showed continuous improvement.
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Figure 14: Pre-training epoch loss and test F1 score for Setting 3 for 1000 epochs

Additionally, to compare the performance of the multi-view model against its single-view
version, we pre-trained the single-view model of setting 3, and compared the test accuracy
of the linear evaluation for both of them. The single-view model only has the time-
domain encoder, so we compared its pre-training loss only with the time-domain loss of
the multi-view model. As it can be seen in Figure 15, the multi-view model outperforms
the single-view version of itself in terms of test accuracy.

Figure 15: Pre-training time-domain loss and test accuracy score for Setting 3, Single-view
vs Multi-view

The size of the final complete multi-view pre-training model with setting 3 is 58.345.920
parameters, and the size of the time encoder with setting 3 which we used as a pre-trained
model for evaluations is 28.976.000 parameters.

In the rest of this section, we present more details about the multi-view model with setting
3. As mentioned, there are four different terms in the loss function, each responsible for
one aspect of the learning, namely time-domain loss, frequency-domain loss, fusion-domain
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loss, and Diverse loss. Epoch loss simply refers to the total loss obtained by adding all
the terms. Figure 16 shows the evolution of different parts of the loss function during the
pre-training of the model.

Figure 16: Evolution of the different components of the loss function during pre-training

In addition to losses, we also measure different metrics for the supervised evaluation that
happens every 50 epochs. The measured metrics are maximum validation F1, average
validation F1, maximum validation accuracy, maximum balanced validation accuracy
(samples are weighted according to the inverse of the overall in-class frequency), and
maximum Cohen’s kappa score, measured across all supervised epochs. Figure 17 shows
the supervised validation metrics measured on the labeled data.
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Figure 17: Supervised evaluation metrics measured on the validation portion of the labeled
data

To validate the usefulness of the learned representation, we compared the results of four
experiments:

• Linear evaluation on top of the frozen pre-trained weights of the model.

• Linear evaluation on top of the frozen randomly initialized weights.

• Fully supervised evaluation with the encoder and linear layer initialized with the
pre-trained weights of the model

• Fully supervised evaluation with the encoder and linear layer initialized with ran-
domly initialized weights.

Table 4 shows the comparison between the evaluation metrics.
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Table 4: Comparison of supervised evaluation between pre-trained weights and randomly
initialized weights

F1 mean F1 kappa Balanced
accuracy

accuracy

Random + Linear
Head

43.90 36.87 5.34 52.49 57.98

Pre-trained + Linear
Head

79.27 75.58 58.69 79.04 80.55

Random + Fully Su-
pervised

76.15 67.35 53.01 75.95 77.17

Pre-trained + Fully
Supervised

81.53 75.38 63.16 81.30 81.88

The results indicate that the learned representations have found useful patterns from the
input data. The pre-trained weights perform better than both a supervised classification
layer on top of randomly initialized weights, and a fully supervised version of the model
with randomly initialized weights, which are good baselines to assess the effectiveness of
the representations. They are effective to be used in two common scenarios:

• To be used as a frozen pre-trained network which produces embeddings from the
input data, followed by a custom classification head that can be trained to learn to
classify the produced embeddings in a specific down-stream task.

• To be used as initialization weights, that can be fully fine-tuned in order to perform
a specific down-stream task.
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6 Chapter VI - Conclusion and Future Work

6.1 Conclusion

In this study, we presented a new approach based on multi-view contrastive learning that
uses Transformers in its architecture in order to obtain useful representations from input
EEG data to be used in various downstream tasks that involves finding patterns and
encoding longer period EEG data, such as predicting dementia or general abnormality.

In chapter 1, we discussed the importance of the problem, challenges, and the overview of
the problems that we addressed. In chapter 2, we address some of the theoretical concepts,
algorithms, and methodologies that were used throughout this research. In chapter 3, we
review relevant studies and important research in this area of study. In chapter 4, we
present the datasets that were used, data processing pipeline, and training pipeline that
includes data augmentation. We also discuss the model architecture in detail and explain
each part of it in isolation, including the loss functions. In the last chapter, we presented
the results of the pre-training, and as well as the method that we used to evaluate the
quality of the pre-trained model and the respective results.

We found that in addition to common approaches with Transformers such as Masked
Token Modeling where the task is to predict the masked token, a Contrastive Task, which
operates according to similarities and dissimilarities between different versions of the same
input, can yield promising results and be effective at encoding EEG data, given the ap-
propriate structure. It is however important to note that the input data needs to be
properly tokenized (we used patch embeddings) in order to be used within a Transformer.
Additionally, introducing multiple views of the same data, such as time-domain view and
frequency-domain view, as well as their combination, can contribute to the learning pro-
cess. This can open the door to more research and investigation in this area.

6.2 Future Work and Suggestions

It is important to note that due to the limitation of computing resources, it was not possible
to perform a complete analysis of hyperparameters or an ablation study to identify the
factors contributing to the performance of the model. Since the experiments were done
only within a limited set of configurations, it is likely that with a more thorough sensitivity
analysis and hyperparameter tuning, even a significantly better result might be achieved.
There are many parameters that can contribute to the quality of the final representations,
including but not limited to:

• Number of the Transformer layers

• Number of the attention heads

• Embedding size of the initial tokens

• Number of feature maps in the patch embedding module

• Size of the pooling layer in the patch embedding module

• A fully connected layer instead of global average pooling in the final embedding layer

• Positional embeddings for patches in addition to time embeddings
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• Loss function and optimiser’s hyperparameters

Since data augmentation is a vital part of the pipeline, designing and implementing the
right type of augmentation can have a non-negligible impact on the pre-training results.
We discarded the time-related augmentation (frame flipping) as it adversely affected the
learning, but a different type of augmentation such as spatiotemporal patching or temporal
cropping might be better at preserving the causal relationship between the frames.

In addition to model configuration and hyperparameters, the addition of a second dataset
(NMT) contributed significantly to the learning of the model. We believe that increasing
both the number of datasets and their diversity can lead to a more general model and
more powerful representations.

Finally, our approach in this study is trying to find a general representation of EEG data,
so naturally future experiments can include applying the resulting pre-trained model on
different domains via transfer learning and fine-tuning to confirm the usefulness of the
representations in the respective domains.
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A Appendix

A.1 Plan for future publication

In the future publications, our research will focus on the following aspects to enhance the
understanding and applicability of the proposed self-supervised multi-view approach for
learning and extracting representations from long-period EEG data:

1. Ablation study and comparative analysis: Carry out a comprehensive ablation study
to identify the key factors contributing to the performance of the model, and to un-
derstand their impact on the quality of the final representations. This will involve
examining various hyperparameters, such as the number of Transformer layers, at-
tention heads, embedding size, feature maps in the patch embedding module, and
the size of the pooling layer in the patch embedding module. This will aid in refining
the model and improving its performance.

2. Enhanced data augmentation: Investigate different data augmentation techniques,
such as spatiotemporal patching or temporal cropping, which can potentially improve
the learning of meaningful representations while preserving the causal relationships
between frames.

3. Additional datasets: To increase the generalizability of the model, the research will
incorporate a greater number of datasets with diverse characteristics. This would
help in developing more powerful representations and promote adaptability across
different domains.

4. Transfer learning and fine-tuning: Future experiments will involve applying the pre-
trained model to various domains using transfer learning and fine-tuning approaches.
This will provide insights into the effectiveness and applicability of the learned rep-
resentations in different contexts, thereby confirming their usefulness in multiple
domains.

Overall, the future publication will build upon the findings of the current thesis by explor-
ing the factors contributing to the model’s performance, refining the proposed approach,
and demonstrating its applicability across various domains. This will ultimately contrib-
ute to the advancement of deep learning techniques in the analysis of EEG data, with
potential applications in early detection and diagnosis of neurological disorders.

34



Bibliography

[1] W. H. Organization. ‘Dementia’. (2023), [Online]. Available: https://www.who.int/
news-room/fact-sheets/detail/dementia.

[2] Z. Arvanitakis, R. C. Shah and D. A. Bennett, ‘Diagnosis and management of de-
mentia: Review’, en, JAMA, vol. 322, no. 16, pp. 1589–1599, Oct. 2019.

[3] Y. D. Reijmer, E. van den Berg, S. van Sonsbeek et al., ‘Dementia risk score pre-
dicts cognitive impairment after a period of 15 years in a nondemented population’,
Dementia and Geriatric Cognitive Disorders, vol. 31, no. 2, pp. 152–157, 2011. doi:
10.1159/000324437. [Online]. Available: https://doi.org/10.1159/000324437.

[4] B. N. Harding, J. S. Floyd, J. F. Scherrer et al., ‘Methods to identify dementia in the
electronic health record: Comparing cognitive test scores with dementia algorithms’,
Healthcare, vol. 8, no. 2, p. 100 430, 2020, issn: 2213-0764. doi: https://doi.org/
10.1016/j.hjdsi.2020.100430. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2213076420300294.

[5] E. Vuoksimaa, J. O. Rinne, N. Lindgren, K. Heikkilä, M. Koskenvuo and J. Kaprio,
‘Middle age self-report risk score predicts cognitive functioning and dementia in
20–40 years’, Alzheimer’s &amp Dementia: Diagnosis, Assessment &amp Disease
Monitoring, vol. 4, no. 1, pp. 118–125, Jan. 2016. doi: 10.1016/j.dadm.2016.08.003.
[Online]. Available: https://doi.org/10.1016/j.dadm.2016.08.003.

[6] R. Nardone, L. Sebastianelli, V. Versace et al., ‘Usefulness of EEG techniques in
distinguishing frontotemporal dementia from alzheimer’s disease and other demen-
tias’, Disease Markers, vol. 2018, pp. 1–9, Sep. 2018. doi: 10.1155/2018/6581490.
[Online]. Available: https://doi.org/10.1155/2018/6581490.

[7] J. Snaedal, G. H. Johannesson, T. E. Gudmundsson et al., ‘Diagnostic accuracy of
statistical pattern recognition of electroencephalogram registration in evaluation of
cognitive impairment and dementia’, Dementia and Geriatric Cognitive Disorders,
vol. 34, no. 1, pp. 51–60, 2012. doi: 10.1159/000339996. [Online]. Available: https:
//doi.org/10.1159/000339996.

[8] T. Zorick, J. Landers, A. Leuchter and M. A. Mandelkern, ‘EEG multifractal ana-
lysis correlates with cognitive testing scores and clinical staging in mild cognitive
impairment’, Journal of Clinical Neuroscience, vol. 76, pp. 195–200, Jun. 2020. doi:
10.1016/j.jocn.2020.04.003. [Online]. Available: https://doi.org/10.1016/j.jocn.2020.
04.003.

[9] J. Choi, B. Ku, Y. G. You et al., ‘Resting-state prefrontal EEG biomarkers in cor-
relation with MMSE scores in elderly individuals’, Scientific Reports, vol. 9, no. 1,
Jul. 2019. doi: 10.1038/s41598-019-46789-2. [Online]. Available: https://doi.org/10.
1038/s41598-019-46789-2.

[10] X.-W. Wang, D. Nie and B.-L. Lu, ‘Emotional state classification from EEG data
using machine learning approach’, Neurocomputing, vol. 129, pp. 94–106, Apr. 2014.
doi: 10.1016/j.neucom.2013.06.046. [Online]. Available: https://doi.org/10.1016/j.
neucom.2013.06.046.

[11] A. Shoeb and J. Guttag, ‘Application of machine learning to epileptic seizure detec-
tion’, in Proceedings of the 27th International Conference on International Confer-
ence on Machine Learning, ser. ICML’10, Haifa, Israel: Omnipress, 2010, pp. 975–
982, isbn: 9781605589077.

35

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://doi.org/10.1159/000324437
https://doi.org/10.1159/000324437
https://doi.org/https://doi.org/10.1016/j.hjdsi.2020.100430
https://doi.org/https://doi.org/10.1016/j.hjdsi.2020.100430
https://www.sciencedirect.com/science/article/pii/S2213076420300294
https://www.sciencedirect.com/science/article/pii/S2213076420300294
https://doi.org/10.1016/j.dadm.2016.08.003
https://doi.org/10.1016/j.dadm.2016.08.003
https://doi.org/10.1155/2018/6581490
https://doi.org/10.1155/2018/6581490
https://doi.org/10.1159/000339996
https://doi.org/10.1159/000339996
https://doi.org/10.1159/000339996
https://doi.org/10.1016/j.jocn.2020.04.003
https://doi.org/10.1016/j.jocn.2020.04.003
https://doi.org/10.1016/j.jocn.2020.04.003
https://doi.org/10.1038/s41598-019-46789-2
https://doi.org/10.1038/s41598-019-46789-2
https://doi.org/10.1038/s41598-019-46789-2
https://doi.org/10.1016/j.neucom.2013.06.046
https://doi.org/10.1016/j.neucom.2013.06.046
https://doi.org/10.1016/j.neucom.2013.06.046


[12] G. Li, C. H. Lee, J. J. Jung, Y. C. Youn and D. Camacho, ‘Deep learning for EEG
data analytics: A survey’, Concurrency and Computation: Practice and Experience,
vol. 32, no. 18, Feb. 2019. doi: 10.1002/cpe.5199. [Online]. Available: https://doi.
org/10.1002/cpe.5199.

[13] A. R. Ozcan and S. Erturk, ‘Seizure prediction in scalp EEG using 3d convolutional
neural networks with an image-based approach’, IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, vol. 27, no. 11, pp. 2284–2293, Nov. 2019. doi:
10.1109/tnsre.2019.2943707. [Online]. Available: https://doi.org/10.1109/tnsre.2019.
2943707.

[14] S. Thundiyil, M. Thungamani and S. Hariprasad, ‘Big EEG data images for convo-
lutional neural networks’, in 2021 IEEE Signal Processing in Medicine and Biology
Symposium (SPMB), IEEE, Dec. 2021. doi: 10 . 1109/ spmb52430 . 2021 . 9672272.
[Online]. Available: https://doi.org/10.1109/spmb52430.2021.9672272.

[15] G. Zhang and A. Etemad, ‘Deep recurrent semi-supervised eeg representation learn-
ing for emotion recognition’, Sep. 2021, pp. 1–8. doi: 10 . 1109/ACII52823 . 2021 .
9597449.

[16] C.-L. Liu, B. Xiao, W.-H. Hsaio and V. S. Tseng, ‘Epileptic seizure prediction with
multi-view convolutional neural networks’, IEEE Access, vol. 7, pp. 170 352–170 361,
2019. doi: 10.1109/access.2019.2955285. [Online]. Available: https://doi.org/10.
1109/access.2019.2955285.

[17] A. Vaswani, N. Shazeer, N. Parmar et al., ‘Attention is all you need’, in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio et al.,
Eds., vol. 30, Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.
neurips .cc/paper files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper .
pdf.

[18] F. Schroff, D. Kalenichenko and J. Philbin, ‘Facenet: A unified embedding for face
recognition and clustering’, in 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

[19] K. Sohn, ‘Improved deep metric learning with multi-class n-pair loss objective’,
in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016.
[Online]. Available: https : / /proceedings . neurips . cc /paper files /paper /2016/file /
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

[20] A. van den Oord, Y. Li and O. Vinyals, Representation learning with contrastive
predictive coding, 2019. arXiv: 1807.03748 [cs.LG].
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