
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

M
as

te
r’s

 th
es

is

Magnus Stava

A Comparative study of model
performance on multiple systems for
real-time object detection.

Compare the real-time performance of state-of-
the-art object detectors on multiple systems with
an anonymization modification to enable usage
in smart city domains.

Master’s thesis in Simulation and Visualization
Supervisor: Prof. Ibrahim A. Hammed
Co-supervisor: Muhammad Umair Hassan PhD(c)
June 2023

Magnus Stava

A Comparative study of model
performance on multiple systems for
real-time object detection.

Compare the real-time performance of state-of-the-
art object detectors on multiple systems with an
anonymization modification to enable usage in smart
city domains.

Master’s thesis in Simulation and Visualization
Supervisor: Prof. Ibrahim A. Hammed
Co-supervisor: Muhammad Umair Hassan PhD(c)
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

ABSTRACT

With the development of smart cities, researchers have shown how data usage can make
city management more efficient and improve the quality of life for the people in the city.
In the domain of smart cities, the data collection must occur in real-time for effective
decision-making. Additionally, with the use of data, particularly visual data, a concern is
maintaining our right to privacy and ensuring that the collected data can not be misused
to affect individuals’ lives. This means that sensitive data must be anonymized. In this
thesis, we look into two problems related to object detection. For the first part, we com-
pare the performance of current state-of-the-art object detectors on both embedded and
non-embedded devices. We have analyzed how they performed concerning the real-time
aspect and how decreasing the input size can increase the real-time performance, but by
then sacrificing some of the model’s performance. For the second part, we have developed
multiple extensions of the standard widerface dataset. We have analyzed the effects of
these expansions on the data and the model’s performance. With the presented result,
we want to better understand how near the current development in hardware and object
detection has brought us to running state-of-the-art object detectors in real-time, with
extra attention to the performance of embedded devices. The presented results also give
researchers access to new face datasets for future research. A final contribution is a novel
modification of the YOLOv8 state-of-the-art object detector for anonymization purposes
to enable implementation in smart city domains.

i

SAMMENDRAG

Med utviklingen av smarte byer, har forskere undersøkt hvordan bruken av data kan gjøre
by forvaltningen mer effektiv og forbedre livskvaliteten for innbyggerne i byen. I smarte
byer må datainnsamlingen foregå i sanntid for å sørge for en effektiv beslutningstaking.
En bekymring knyttet til bruk av data, spesielt visuelle data, er å sikre at vårt personvern
blir ivaretatt og sikre at innsamlet data ikke kan misbrukes til å påvirke enkeltpersoners
liv. Dette betyr at sensitiv data må anonymiseres. I denne avhandlingen ser vi nærmere
på to problemstillinger knyttet til objekt deteksjon. I den første delen sammenligner vi
ytelsen til nåværende «state-of-the-art» objekt detektorer både på innebygde og ikke-
innebygde enheter. Vi har analysert hvordan de presterer med hensyn til sanntid og
hvordan en redusering i inndatastørrelsen ofrer noe av modellens ytelse, men øker model-
lens sanntidsytelse. I den andre delen presenterer vi flere utvidelser av den standardiserte
"widerface" datasettet. Vi har analysert effekten av disse utvidelsene på modellens ytelse.
Med de presenterte resultatene ønsker vi å øke forståelsen for hvor nær den nåværende
utviklingen innen maskinvare og objekt deteksjon har brakt oss til å kjøre toppmoderne
objekt detektorer i sanntid, med ekstra oppmerksomhet på ytelsen til innebygde enheter.
De presenterte resultatene gir også forskere tilgang til nye ansiktsdatasett for fremtidig
forskning. Et siste bidrag er en triviell anonymisering modifikasjon av «state-of-the-art»
objekt detektoren YOLOv8 for å muliggjøre implementering i smart byer.

ii

PREFACE

In a world, with increasing public surveillance and with better and better-performing
algorithms for detection purposes, researchers need to keep the focus on our right to
privacy. While writing this thesis, EU is getting closer to voting for their proposed AI
legislation bill. This is an important first step, and our privacy has to be prioritized above
profit. With sensitive information removed from the data, the remaining information
contains value that can still improve many aspects of our life. The motivation behind the
chosen topic is to contribute with shining a light upon this topic.

I want to offer my gratitude to my supervisor Ibrahim A. Hameed and Co-supervisor
Muhammad Umair Hassan, for their support and guidance at important points during
my thesis work. Additionally, I want to thank my family for their support and enthusiastic
encouragement during the thesis’s work and writing.

iii

CONTENTS

Abstract i

Sammendrag ii

Preface iii

Contents vi

List of Figures vi

List of Tables viii

Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Literature review . 2

1.3.1 Object detection . 2
1.3.2 Face anonymization . 2
1.3.3 Evolution of face datasets . 2

1.4 Contributions . 2
1.5 Outline of the report . 3
1.6 Benefits of smart cities . 3
1.7 Ethical considerations . 3

2 Theory 5
2.1 Deep learning . 5

2.1.1 YOLOv8 . 5
2.1.2 Backbone layer . 6
2.1.3 Neck layer . 7
2.1.4 Prediction layer . 7
2.1.5 Transfer learning . 8
2.1.6 Stochastic gradient descent, optimization algorithm 8
2.1.7 Backpropagation . 8

2.2 Model training, hyperparameter optimization, overfitting and underfitting 9

iv

CONTENTS v

2.2.1 Weight decay . 9
2.3 Anonymization filter . 9

2.3.1 Improved generalization with data augmentation 9
2.4 Open Images V7 dataset . 10
2.5 Evaluation metrics . 10

3 Methods 13
3.1 Pre-proseccing . 13

3.1.1 Open Images V7 extension . 13
3.2 YOLO variation selection . 15
3.3 Implementation . 15

3.3.1 IDUN HPC cluster . 15
3.3.2 System selection . 16
3.3.3 YOLOv8, model training . 16

3.4 Anonymization filter implementation . 17
3.5 Inference test framework . 17

4 Results 19
4.1 Object detection inference results . 19

4.1.1 Inference results . 19
4.1.2 Inference on decreased input size 20
4.1.3 Inference comparison on the systems, 640×480px Vs 416×312px . 20
4.1.4 Performance comparison with different input sizes 22

4.2 Dataset benchmark model . 25
4.2.1 YOLOv8 benchmark . 25

4.3 Dataset comparison compared to benchmark 26
4.3.1 Benchmark models comparison 27
4.3.2 Datasets label size . 31
4.3.3 Anonymization filter . 34

5 Discussion 35
5.1 Inference results, usable for real-time implementation? 35

5.1.1 Embedded devices inference performance 35
5.1.2 GPU and CPU inference performance 36

5.2 Performance effect with decreased input size 36
5.2.1 Privacy concern, maximizing recall performance 37

5.3 Dataset initial benchmark . 37
5.3.1 Benchmark compared to the other model variations 37
5.3.2 Amount of instances and label sizes in the proposed datasets . . . 37
5.3.3 Increased amount of instances but decreased complexity 38

5.4 Effectiveness of the anonymization filter 38

6 Conclusions 41
6.1 Future work . 42

References 43

Appendices: 45

vi CONTENTS

A - Github repository 46

B - Pre-project report revisioned 47

C - Yolov8 Model Architecture 54

LIST OF FIGURES

2.1.1 Architecture flow of single-stage detectors. Consisting of three sections,
backbone, neck, and prediction layer. 5

2.1.2 A simple overview of dense block utilized in the CSPDarknet-53 network
as well as other updated backbone networks 6

2.1.3 Simple overview of CSP-block utilized in the CSPDarknet-53 network. . . 7

3.1.1 (a) black and white image (b) large single detection (c) highly obscured
image . 14

3.1.2 Example image with applied mosaic augmentation, the new image consist
of four images combined. 14

3.3.1 Connection to the HPC cluster is achieved through SSH, where each user
controls their environment. 16

3.5.1 Testing framework for measuring the real-time capabilities of the systems. 18

4.1.1 Model inference running on 640×480px image input 19
4.1.2 Model inference running on 416×312px image input 20
4.1.3 (a) Jetson Nano, (b) Jetson Orin . 20
4.1.4 (a) GTX1050 (b) RTX2080 . 21
4.1.5 (a) Intel I5 (b) Intel I9 . 21
4.1.6 Precision score for YOLOv8n with input size 640×480px and 416×312px. 22
4.1.7 Recall score for YOLOv8n with input size 640×480px and 416×312px. . 22
4.1.8 F1 score during training of yolov8n models with two different image size

as input. 23
4.1.9 Precision confidence curve for two resolution sizes: (a)640×480px (b)416×312px 23
4.1.10(a) 640×480px (b) 416×312px . 24
4.1.11(a) 640×480px (b) 416×312px . 24
4.2.1 (a) Precision and (b) Recall score of the YOLOv8 (nano, medium and

large) benchmark models. 25
4.2.2 F1 training score of the YOLOv8 (nano, medium and large) benchmark

models. 26
4.3.1 F1 score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l 27
4.3.2 Precision score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l 28
4.3.3 Recall score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l 29
4.3.4 (a) Original widerface dataset (b) Extended dataset without any additional

pre-processing steps (c) Extended dataset with additional pre-processing
steps (d) Extended dataset with mosaic augmentation 31

vii

viii LIST OF FIGURES

4.3.5 (a) Original widerface dataset (b) Extended standalone dataset without
any additional pre-processing steps (c) Extended standalone dataset with
additional pre-processing steps (d) Extended standalone dataset with mo-
saic augmentation . 32

4.3.6 (a) Original image (b) Anonymization with blur filter (c) Anonymization
with blur and noise filter . 34

LIST OF TABLES

3.1.1 Extended dataset image criteria for manuall review 13
3.1.2 The four variations of the dataset, including the original widerface. . . . 15
3.2.1 Model size for all the YOLOv8 variations. The models used in the thesis

is highlightes in bold text. 15
3.3.1 The four systems selected for the comparison study. The systems varies

from low-end to high-end, and from embedded to non embedded. 16
3.3.2 A total of nine models were trained, three of each of the models as shown

in the table above. YOLOv8n is the smallest model, YOLOv8m medium
large, and YOLOv8l the largest of the three. 17

4.1.1 Numeric summary of the performance comparison on the systems with the
two different image resolution input. 21

4.1.2 Numeric comparison of performance on 640×480px input size and 416×312px
based on the final training epoch. 24

4.1.3 Numeric comparison of performance on 640×480px input size and 416×312px
on validation data. 25

4.2.1 Numeric comparison of performance for the benchmark models. 26
4.3.1 Numeric comparison of performance for all the variations for YOLOv8n. 30
4.3.2 Numeric comparison of performance for all the variations for YOLOv8m. 30
4.3.3 Numeric comparison of performance for all the variations for YOLOv8l. . 30
4.3.4 Number of images within each dataset variation as well as number of in-

stances. 33
4.3.5 Number of images within each standalone dataset variation as well as num-

ber of instances. 33

ix

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• AI Artificial intelligence

• CPU Central processing unit

• CSP Cross-stage partial

• EU European Union

• FN False negative

• FPS Frames per second

• FP False positive

• GAN Generative adversarial network

• GB Gigabyte

• GPU Graphical proscessing unit

• HPC High performing computing

• NTNU Norwegian University of Science and Technology

• R-CNN Region based neural networks

• SGD Stochastic gradient descent

• SOTA State of the art

• SSD Single stage detector

• TN True negative

• TP True positive

• YOLO You Only Look Once

x

CHAPTER

ONE

INTRODUCTION

1.1 Motivation
Smart city development is a keyword when planning the city of tomorrow. The main
objective of a smart city is to utilize sensors and data collection for more innovative
management of all aspects of the city. For privacy reasons, sensitive visual data must
be anonymized before being used. For humans, this includes hiding our facial features.
The security aspect of this data demands that it be anonymized in real-time to avoid any
temporary storage of sensitive data susceptible to leakage or foreign attacks. For smart
cities the data collection should be performed in real-time and on embedded devices for
simpler implementation in the real-world.

This thesis aims to compare the performance of state-of-the-art (SOTA) detection models
on multiple systems and research how the security-performance relationship affects real-
time performance. In addition, we will contribute to the face detection community by
extending the standard widerface dataset with additional data and modern augmentation
techniques. These extensions will also be provided as standalone datasets. The perfor-
mance effect these dataset versions have on the models will be evaluated and presented.
The thesis also hopes to shine a light on real-time object detection and the privacy con-
cern with large-scale implementation of object detection models in the real world. To
achieve the objectives mentioned above, multiple trials were conducted on several devices
to compare their performance when running the anonymization models with various set-
tings, such as image resolution and training parameters. The findings will present the
relationship between security and performance when optimizing for real-time. The find-
ings will be presented for each of the systems. In addition, 5000 new images of faces with
various complexity were collected to increase the data in the widerface dataset. These ad-
ditional images were used to create multiple dataset versions using manual pre-processing
and mosaic augmentation. The results present the effect of each of these variations.

1.2 Objective
To summarize the above points, the following research questions will be explored in
greater detail throughout the thesis.

1

2 CHAPTER 1. INTRODUCTION

1. How does the real-time performance on edge devices, GPU, and CPU compare when
running SOTA face anonymization models?

2. What is the impact of incorporating images from additional open-source datasets
(Open Images V7) and the usage of modern data augmentation on the performance
of face detection?

1.3 Literature review
Following is an overview of the advancements within the fields of object detection and
anonymization.

1.3.1 Object detection
Object detection developed from two-stage models such as R-CNN [1] and Fast-R-CNN[2]
to faster single-stage models such as YOLO[3] and SSD [4] where the object detection pro-
cess is done in one neural network. Later advancement came with the usage of pre-defined
anchor boxes for detection, in models such as YOLOv5 [5] and squeezedet [6]. Newer ad-
vancement have returned to anchor free models such as YOLOx [7] and YOLOv8. Anchor
free models decreases computation, and increases their real-time as well as their general-
ization capabilities [7][8][9].

1.3.2 Face anonymization
Face anonymization has traditionally utilized methods such as blurring, black box, or
pixelation [10]. Newer advancements have utilized GAN for swapping identity by cre-
ating an artificial one, preserving the contents within the image [11]. Other researchers
have enabled encrypted privacy, allowing authorities to unlock individuals identity in par-
ticular scenarios [12]. Prior work presented a combination of traditional anonymization
techniques utilizing blur and noise [13].

1.3.3 Evolution of face datasets
Face detection has been a common field for object detection, and likewise, datasets for
face detection have evolved from early versions such as Faces In The Wild dataset [14].
Faces In The Wild was then used to develop more robust datasets such as FDDB dataset
[15] and MALF [16] that contained more variation of images in terms of race and age
groups. From there, a larger and more complexed dataset was presented with widerface,
which has become the standard for unconstrained face detection, widerface expands both
in size and complexity compared to earlier benchmark datasets [17].

1.4 Contributions
Due to the fast evolution within the technology industry, high-quality comparison stud-
ies of SOTA model are hard to come by. The presented thesis hopes to contribute to
the research community by comparing the real-time performance of the YOLOv8 object
detection model on various systems and generating additional face datasets ready for
deployment for other researchers. In summary, the thesis aims to contribute with the
following points.

• Compare the performance of face anonymization on multiple systems.

• Improve face detection by increasing the size of the standardized face dataset wider-
face.

CHAPTER 1. INTRODUCTION 3

1.5 Outline of the report
The report has the following structure, in chapter 2 the related theory is presented,
chapter 3 presents the methodology behind the experiments. In chapter 4, the produced
results are presented before a discussion regarding the results will be presented in section
5. The final chapter 6 will present a conclusion of the thesis work and future work.

1.6 Benefits of smart cities
As mentioned, a key factor in a smart city is gathering data from various sources, such
as cameras. The purpose of this is to improve the general management in the city
in terms of efficiency. Visual data collected in real-time from the city can help the
city improve its management of traffic, crowd, and resources such as police, fire, and
ambulance department.

1.7 Ethical considerations
As of writing this, the regulatory bodies of the EU are nearing their introduction of a
legal framework for regulating the usage of AI and the requirement for implementing AI
technology. The current bill named the AI Act will be voted for in June of 2023 [18].
The purpose of writing this is to showcase the ethical consideration that must be done
and how anonymization techniques can help privacy concerning AI with implementation.
In the proposed bill AI is placed into four risk groups, as seen below:

1. Unacceptable risk

(a) This level of AI is prohibited. It can be systems such as real-time bio-metric
identification or rankings of citizens using some social credit system.

2. High risk

(a) It consists of the group of AI, which in some way affect people’s lives. It can
be within law enforcement, health service or education.

3. Limited risk

(a) AI that does not directly affect people’s lives and is permitted by only notifying
users of what they are interacting with. The majority of AI systems will fall
within this group.

4. Minimal risk

(a) AI that has zero to minimal legislation requirements, only requiring minimal
transparency. Systems such as spam filters and AI in video games would fall
in this category.

Following the four risk categories, the usage of cameras for real-time data capture and
decision-making in a smart-city context would depend on adequate anonymization of
the people captured on video to avoid being classified as unacceptable. The theoretical
basis and standard legal development of systems within each category still need to be
established due to the fast development of the AI scene and due to the fact that the AI
bill is the first of its kind in the world.

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

THEORY

2.1 Deep learning
Deep learning became widely favorable around 2012 after showing significant improve-
ments in speech recognition and later image classification. Following the two break-
throughs, deep learning has been used to improve performance in most areas imaginable.
Some examples include vision tasks, medical diagnosis, speech recognition, speech genera-
tion, and more [19]. The power deep learning brought with it is partly due to convolution
layers’ effectiveness in mapping the relation between input and desired output. Continu-
ing in the field of object detection, deep learning has proved useful due to neural networks
ability to extract hierarchical relations and valuable information from high-dimensional
data such as images [20]. In the field of object detection, deep learning models have
evolved from R-CNN, where proposed regions are created and then fed into a support
vector machine for classification [1], to more efficient models such as You Only Look
Once (YOLO), where the whole image is treated at once and processed as a regression
problem where the output is bounding boxes with its related probability for a class [21].
YOLO belongs to the group of single-stage object detectors, which need less computa-
tion compared to two-stage detectors like the R-CNN. Following the release of the initial
YOLO, new versions have been developed, with each iteration improving performance
and accuracy compared to its predecessor. The current latest release is YOLOv8, and its
architecture will be elaborated. As of this writing, the research team at Ultralytics has
released no official paper. However, by utilizing their code documentation and answers
posted by the team on their forums, information about YOLOv8 architecture has been
collected.

2.1.1 YOLOv8

Single-Stage Object Detectors

Backbone PredictionNeck

Figure 2.1.1: Architecture flow of single-
stage detectors. Consisting of three sections,
backbone, neck, and prediction layer.

Single-stage detectors such as YOLOv8 fol-
low the traditional architecture setup as
earlier version with a backbone layer, neck
layer, and a final detection layer. The
backbone layer is the largest part of the
model and the most computationally de-

5

6 CHAPTER 2. THEORY

manding. The backbone is responsible for
extracting the features from the input im-
age. The neck layer aggregates the outputs
from the backbone and passes it forward to the detection layer, where the model first pre-
dicts if an object is present and then predicts the object’s class. For a complete overview
of the YOLOv8 architecture, please refer to appendix 6.1.

2.1.2 Backbone layer

YOLOv8 utilizes the CSPDarknet-53 network as the backbone to extract features from
the input. Feature extraction can be understood as some calculations performed on
the input image to obtain specific features that contain essential information of the ob-
ject that we want to detect [19, p. 988]. CSPDarknet-53 performs feature extraction by
utilizing dense blocks and cross-stage partial blocks, which are specific but simple calcula-
tions. Each block will be presented in simplicity to understand the concept of the different
blocks.

Dense block

Input
Conv(4) Conv(4) Conv(4)

Figure 2.1.2: A simple overview of dense
block utilized in the CSPDarknet-53 network
as well as other updated backbone networks

Dense blocks consist of multiple con-
nected convolution nodes with identical
feature map sizes. Dense blocks assist in
dealing with the vanishing gradient prob-
lem by interconnecting each node as shown
in figure 2.1.2, meaning every new convo-
lution node receives input from all prior
nodes, ensuring that essential features are
saved in the final feature map output.
In terms of computation, the dense block
grows linearly due to the input size grow-
ing accordingly to the number of nodes in
the dense block as shown in equation 2.1, where x0 is the input to the dense block,
and x1,x2...,xn−1 are the corresponding inputs to the convolution layers within the dense
block.

x1 = w ∗ [x0]

x2 = w ∗ [x0, x1]

xn = w ∗ [x0, x1, ..., xn−1]

(2.1)

A issue arising from using dense blocks is the problem of redundant gradients within the
network. Redundant gradient refers to the problem where the gradient in one layer in
the dense block contains the same information as the other layers in the dense block. To
tackle this problem, a solution was the introduction of cross-stage partial (CSP) blocks
[22]. CSP blocks divide the input into two parts: Part one is passed directly through the
CSP block. Part two is passed through a computation block, and in the end, parts one
and two are concatenated to generate the final output from the CSP block, as seen in
figure 2.1.3.

CHAPTER 2. THEORY 7

Part 1

Part 2

Combine

CSP block

Input

Figure 2.1.3: Simple overview of CSP-block utilized in the CSPDarknet-53 network.

In the CSPDarknet-53 network, the computation block within the CSP block is a dense
block. This is not a limiting factor of the CSP block, and other backbones utilizing CSP
blocks can use a different computation blocks. The usage of CSP and dense blocks have
decreased the computational load of the network substantially increasing their runtime
[22].

2.1.3 Neck layer
The neck layer in YOLOv8 utilizes C2f blocks, which differs slightly from the C3 block
found in the previous YOLOv5 version. The advantage with C2f comes by concatenating
all outputs from the bottleneck layers rather than just the output from the final bottleneck
layer. This makes the neck layer more sensitive to details in the feature maps as multiple
levels of resolution are included in the final aggregation [23].

2.1.4 Prediction layer
Whereas previous YOLO versions, such as YOLOv7 and YOLOv5, have used a coupled
module for the prediction of the bounding box and the object, YOLOv8 uses a decou-
pled head layer, meaning it has one network for predicting the location of the bounding
box and another network for class prediction. Using a decoupled head was proposed
since researchers observed a misalignment between the classification’s confidence and
the localization accuracy [24]. The decoupled head utilizes a fully connected network
for classification, and a convolution neural network for localization [24]. In addition to
the decoupled head, YOLOv8 adopts an anchor-free approach, meaning no predefined
boxes are used for predictions. This approach has become increasingly popular in the
object detection community [8], and in the YOLO family, it was first incorporated in
YOLOX [7]. Anchor-free approaches remove all the hyperparameters connected with an-
chor boxes, improving the out-of-the-box performance and making the anchor-free model
more generalized [8][9].

8 CHAPTER 2. THEORY

2.1.5 Transfer learning
Deep learning takes advantage of a large amount of data to learn. Obtaining a large
enough dataset is often impossible or too time-consuming to be realistic. By experi-
menting, researchers found that models trained on one domain can easily be altered to
perform the same job on a similar domain. This method is called transfer learning, and
it takes advantage of models trained on a similar domain and uses a smaller dataset to
optimize the model for the specific domain [19, p. 832]. By optimizing, we utilize the
pre-trained model and update the model weights for our purpose by continuing training
on our domain. During training, the weights get updated by an optimization algorithm,
such as gradient descent [19, p. 695].

2.1.6 Stochastic gradient descent, optimization algorithm
Updating the model weights is necessary to make the model learn a mapping between
the input and desired output. In object detection, the optimization of the weights aims
to help the model learn the high-level features of an object of interest. The optimization
algorithm in YOLOv8 is stochastic gradient descent (SGD), which is based on gradient
descent, with the difference being that stochastic gradient descent only utilizes a limited
number of data examples for computation. From an example dataset of N = 1000, a
subset of n = 10 can be used for optimizing the model for next iteration rather than
the complete N = 1000 [19, p. 697]. This massively decreases the computational load
and finds similar optimum values compared to gradient descent. In short, SGD tries to
minimize the error between the desired output and the actual output, and this error is
used to update the weights through backpropagation. The SGD algorithm is as follows
[19, p. 695]:

Algorithm 1 Stochastic gradient descent
1: w ← any point in the parameter space
2: while not converged do
3: for each wi in w do
4: wi ← wi − α ∂

∂wi
Loss(w)

Where α is denoted as the learning rate, which defines how quickly and with what rate
the model should adapt to the problem.

∂

∂wi

Loss(w) = −α(y − hw(x)) (2.2)

Inserting equation 2.2 into the algorithm 1 we get the following equation 2.3 representing
the learning rule.

w0 ← w0 + α(y − hw(x));w1 ← w1 + α(y − hw(x))× x (2.3)

2.1.7 Backpropagation
Backpropagation refers to passing the error generated from the loss function backward
in the network. This error is then used to update the weights according to the learning
rule from equation 2.3 [19, p. 806].

CHAPTER 2. THEORY 9

2.2 Model training, hyperparameter optimization, over-
fitting and underfitting

An important aspect for efficiently training models and achieving a generalized model
is appropriately selecting the models hyperparameters. Researchers have shown how
proper selection of hyperparameters can boost model performance substantially [25][26].
Another benefit of correctly selecting the hyperparameters is to avoid the model under- or
overfitting. For a simple understanding, an underfitted model does not achieve the ability
to find any pattern in the training data. On the contrary, an overfitted model goes too
far and memorizes the training data and loses the ability to perform on new unseen data
[19, p. 673]. Generally, underfitting is easily solved by increasing the training, whereas
overfitting has been the subject of much research to find suitable techniques to deal with
the issue.

2.2.1 Weight decay
A popular technique to deal with overfitting is the introduction of weight decay which
is an additional term in the loss function that ensures that the loss function does not
grow out of control. The concept of weight decay existed before the introduction of deep
learning models [27], but it is still very effective for deeper models. In modern terms,
weight decay is often referred to as L2-regularization. By representing the loss function
as L0, the new loss function with L2 regularization becomes:

L(w) = L0(w) + λ
N∑
i=1

w2
i (2.4)

2.3 Anonymization filter
Anonymization has traditionally been done using methods such as blurring [28]. Although
multiple blurring methods exist, such as gaussian blur and average blur, they share similar
concepts, with the main difference being how much value they grant to each pixel inside
the kernel. Presented in equation 2.5 and 2.6 is average blur. To achieve average blur,
we define a kernel representing the size of the area for the blurring computation. The
kernel is applied on each pixel in the image, and the center pixel value is replaced by the
average value from the kernel as shown in equation 2.5.

K =
1

ab
∗ ⌈a× b⌉ (2.5)

With an example kernel size of 3× 3 the equation 2.5 turn into equation 2.6.

K =
1

9
∗


1 1 1
1 1 1
1 1 1

 (2.6)

2.3.1 Improved generalization with data augmentation
As mentioned previously, a central problem with deep learning is the need for large
amounts of data. This has resulted in a large amount of research on augmentation tech-
niques where one artificially increases the amount of data by altering the existing data

10 CHAPTER 2. THEORY

to appear to be a new photo instead of collecting new raw data. The results from these
augmentation techniques, which include, among others, rotating, cropping, and noise
adding, have been shown to generate similar and even improved performance. An ad-
ditional benefit of augmentation techniques is the creation of more robust models that
are less sensitive to image variations [10]. For small object detection, augmentation tech-
niques such as mosaic have shown promising results when the domain contains complex
backgrounds, such as small object detection domains [29]. Mosaic combines four dataset
examples into a new artificial image with increased complexity. This helps the model
generalize for small objects by increasing the training complexity artificially.

2.4 Open Images V7 dataset
Following the difficulties of containing high-quality datasets for deep learning purposes,
the research team behind the Open Images dataset hoped to help in this domain. Their
dataset, currently in version seven, consists of nine million labeled images available under
the CC-BY license. According to the research team, with easy access to a massive multi-
class dataset, they want to encourage further research within the field of object detection.
To ensure a high quality of the examples within the dataset, multiple pre-processing steps
defined below were performed by the team [30]:

1. Near-duplicated images are removed.
2. Using safety filters on Flickr, Google SafeSearch, inappropriate images are removed.
3. Remove images that appear elsewhere on the internet. Ensures no invalid contri-

butions according to CC-BY license.
4. Validate the labeling and boudnign box.

2.5 Evaluation metrics
The following section presents the metrics used for the evaluation methods. Proper
evaluation metrics are essential for assessing the results presented in later chapters. Initial
terminology for performance terminology is presented below:

• True positive (TP), detection is correctly classified as positive.

• False positive (FP), detection is falsely classified as positive.

• True negative (TN), detection is correctly classified as negative.

• False negative (FN), detection is falsely classified as negative.

Recall evaluates the models ability to detect true positive cases compared to the total
number of positive cases in the data. Calculation shown in equation 2.7

recall =
TP

TP + FN
(2.7)

Precision evaluates the model based on the ratio of how many of the positive predicted
classes were positive. Precision is calculated as shown in equation 2.8

precision =
TP

TP + FP
(2.8)

CHAPTER 2. THEORY 11

When dealing with a class-balanced dataset, a reliable metric to evaluate the models
performance is the F1 score. Evaluating models with F1 score has the advantage of
utilizing both precision and recall, generating a more general score. The F1 metric ranges
from 0 − 1, with a score of 1 being perfect. F1 score is calculates as shown in equation
2.9

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.9)

Confidence interval makes that the reported results more reliable by being the mean of
the samples +/- some variance. The confidence interval is calculated as shown in equation
2.10. x represents the sample mean, z represents the z-score for the selected confidence
interval, s is the sample standard deviation and n is the sample size.

confidenceinterval = x± z ∗ s√
n

(2.10)

12 CHAPTER 2. THEORY

CHAPTER

THREE

METHODS

3.1 Pre-proseccing
Presented are the additional pre-processing steps performed on the additional data down-
loaded from the open images v7 dataset, as well as the data augmentation methods
utilized.

3.1.1 Open Images V7 extension
Due to the processing steps already performed on the dataset, as mentioned in the the-
ory chapter and section 2.4, the additional work required before utilizing the dataset was
decreased compared to collecting a similar amount of images from scratch. The addi-
tional pre-processing steps consist of removing images not within the domain of interest
and removing images of lousy quality based on personal evaluation. From the Open Im-
ages dataset V7, a total of 5000 face images were downloaded. Using tools provided by
Roboflow, a manual review of each image was performed. During the manual review, the
requirements shown in table 3.1.1 were used to decide whether an image should be kept
or deleted. Additional work was performed to ensure the bounding boxes were correctly
placed and that all faces were labeled.

1. Images containing zero human faces.
2. Highly obscured faces.
3. Black and white images.
4. Highly blurred images.
5. Large single detection images.

Table 3.1.1: Extended dataset image criteria for manuall review

These five defined criteria ensure consistency throughout the manual review and that the
images in the extended dataset have similar quality. From the initial downloaded dataset
of 5000 images, 3043 images remain after the manual review. The majority of the deleted
images fall under the category of large single-detection images. These were removed due
to it not being relevant to our use case. Shown in figure (b)3.1.1 is a example of a

13

14 CHAPTER 3. METHODS

deleted image containing a large single detection, additional examples of deleted images
can also be seen in (a)(c) 3.1.1. During the manual review it also became evident that
compared to the original widerface dataset, our extension consists of less complex scenes.
To increase the complexity of our extended dataset, we create a new version using mosaic
augmentation. This should increase the complexity of the dataset, and possibly improve
the models ability to detect smaller objects such as faces. An example of an image after
mosaic has been applied can be seen in figure 3.1.2.

(a) (b) (c)

Figure 3.1.1: (a) black and white image (b) large single detection (c) highly obscured
image

After generating the mosaic dataset version, an additional manual review was necessary
to ensure that the bounding boxes were correctly placed. A common issue currently with
the mosaic tool from roboflow is misaligned bounding boxes after mosaic augmentation
has been applied.

Figure 3.1.2: Example image with applied mosaic augmentation, the new image consist
of four images combined.

Evaluation will be performed on all dataset variations to validate the effect of the different
methods applied on the dataset. This means that a total of four dataset variations will

CHAPTER 3. METHODS 15

be evaluated. All variations are listed in table 3.1.2. The performance of the datasets
will be assessed based on the performance of the YOLOv8 model after being trained on
each of the dataset variations.

1. Widerface.
2. Widerface + extended.
3. Widerface + extended filtered.
4. Widerface + extended filtered and augmented.

Table 3.1.2: The four variations of the dataset, including the original widerface.

3.2 YOLO variation selection
From YOLOv8 it exists five variations. For this thesis, three of these variations are
selected to represent various complexity, with the smallest of the selected models being
the YOLOv8n and the largest being the YOLOv8l. A comparison of all the YOLOv8
models with their network sizes is represented in table 3.2.1, with the selected models for
this thesis being highlighted in bold text.

Model variance Params(M) FLOPs(B)
YOLOv8n 3.2 8.7
YOLOv8s 11.2 28.6

YOLOv8m 25.9 78.9
YOLOv8l 43.7 165.2
YOLOv8x 68.2 257.8

Table 3.2.1: Model size for all the YOLOv8 variations. The models used in the thesis
is highlightes in bold text.

3.3 Implementation
Due to the size of the datasets used, it is necessary to have a system with enough compu-
tational capacity to train our model within a reasonable time. For the thesis, training of
the models has been done utilizing the IDUN HPC cluster, which has enabled the training
of multiple models simultaneously and with much faster training times compared to us-
ing personal computers. The usage of the cluster also helps avoid any storage limitations
both in terms of storing the data and during training of the models.

3.3.1 IDUN HPC cluster
The IDUN high-performance computing (HPC) cluster is a powerful tool available to
researchers at Norwegian University of Science and Technology. The goal of the IDUN
cluster is to assist researchers with computational power and storage in cases where it
becomes cumbersome to do it on ones personal computer. For this project, training of
YOLOv8 models with the presented datasets was only possible with the usage of the
IDUN HPC cluster. The general connection structure to the cluster is shown in figure
3.3.1.

16 CHAPTER 3. METHODS

Connect through SSH

IDUN HPC ClusterPersonal computer

Figure 3.3.1: Connection to the HPC cluster is achieved through SSH, where each user
controls their environment.

The IDUN cluster has multiple types of GPUs available. For our project and training
of the YOLOv8 models, up to three Tesla V100 GPUs with 16GB memory was utilized,
which made training very efficient.

3.3.2 System selection
For testing our models, and for performing the comparison study, a total of four systems
have been used. The systems vary in computational power, from the least powerful being
the jetson nano and the most powerfull being the Alienware stationary computer. Both
the CPU and GPU from the two computers will be used, resulting in six total testing
"systems".

1. Jetson Nano : Entry level embedded device for machine learning purposes from
Nvidia.

2. Jetson Orin : High end embedded device for machine learning purposes from
Nvidia.

3. Acer Nitro Spin : Low-end personal computer with older generation GPU (Nvidia
1030 GTX), and CPU (Intel I5)

4. Alienware : High-end personal stationary computer with new generation GPU
(Nvidia 2060 RTX), and CPU (Intel I9).

Table 3.3.1: The four systems selected for the comparison study. The systems varies
from low-end to high-end, and from embedded to non embedded.

3.3.3 YOLOv8, model training
The training of the models was done on the IDUN HPC cluster as described in section
3.3.1. Within the IDUN cluster, a python environment was set up with the necessary
libraries to train the YOLOv8 models. To avoid extensive training, YOLOv8 models
trained on the COCO dataset were used as starting point for our training, and optimized
for face detection using the concepts of transfer learning as described in section 2.1.5.
Hyperparameter tuning was done to find an optimal value for the learning rate. The other
hyperparameters were left at default values. Among the training parameters offered by
the YOLO training environment, the mosaic option was turned off due to it being shown
to decrease performance when used on the widerface dataset [31]. In total, nine models
were trained using the different variations of the dataset as shown in table 3.3.2.

CHAPTER 3. METHODS 17

Model Widerface Extended Extended filtered Mosaic
YOLOv8n YES YES YES YES
YOLOv8m YES YES YES YES
YOLOv8l YES YES YES YES

Table 3.3.2: A total of nine models were trained, three of each of the models as shown
in the table above. YOLOv8n is the smallest model, YOLOv8m medium large, and
YOLOv8l the largest of the three.

3.3.3.1 Input resolution sizes

Models are trained on two input resolutions. The first is the default size of YOLOv8
models, 640x480 pixels. The other chosen resolution is 416x312 pixels. This resolution
is picked due to earlier models, such as YOLOv3, showing promising results with this
resolution without substantially sacrificing the model performance [3].

3.4 Anonymization filter implementation
Anonymization is applied by altering the YOLOv8 code. By utilizing the output from
YOLOv8 before it is presented to the end user, we are able to extract the bounding box
coordinates. These coordinates are then used to copy the selected area on the image. This
copied image is then passed through the anonymization algorithm consisting of blur and
noise filter. The anonymized image is then copied back into the original image, which is
then returned to the end-user as the final output. The general flow of the anonymization
is showcased in algorithm 2.

Algorithm 2 Anonymizing output from YOLOv8
Precondition: Set of predicted bounding boxes box, noise variable N

1: function Anonymize(img,boxes)
2: if boxes ̸= 0 then
3: for box in boxes do
4: Extract width, height, x and y coordinates from box
5: img0 ← img[y:y+height, x:x+width]
6:
7: Apply anonymization filter(img0)
8: img[y:y+height, x:x+width] ← img0
9: end for

10: end if
11: return img
12: end function

3.5 Inference test framework
To ensure similar testing conditions, a simple testing framework is created. For evaluating
the real-time performance, the main concern is the frames per second (fps) that the system
can maintain during runtime. For this, ten videos are selected with varying complexity
from zero to fifty detections. Output from each run is the average fps over the video. After
each video has been run on the systems, we use the ten average fps values to calculate

18 CHAPTER 3. METHODS

the 95% confidence interval. The equation for calculating the confidence interval is given
by equation 2.10. The flow can be visualized in figure 3.5.1

Videos

Embedded device

Cloud

Computer

FPS

FPS

FPS

FPS

Confidence interval

Figure 3.5.1: Testing framework for measuring the real-time capabilities of the systems.

CHAPTER

FOUR

RESULTS

4.1 Object detection inference results
The smallest of the YOLOv8 models, the YOLOv8n has been used to generate the pre-
sented inference results. The selected systems used for the real-time tests were presented
in section 3.3.2. In addition, all models presented in the following chapter have used
identical training hyperparameters.

4.1.1 Inference results
Inference results are presented for all the systems with a 95% confidence interval. In
figure 4.1.1, the inference results with an input size of 640×480 pixels are presented.

Figure 4.1.1: Model inference running on 640×480px image input

19

20 CHAPTER 4. RESULTS

4.1.2 Inference on decreased input size
In figure 4.1.2 the inference results with an input size of 416×312 pixels is presented.

Figure 4.1.2: Model inference running on 416×312px image input

4.1.3 Inference comparison on the systems, 640×480px Vs 416×312px
Following is a comparison of each system with the two defined input sizes. At the end of
the section, the table 4.1.1 will summarize the result will be presented.

In figure 4.1.3, the inference comparison for the embedded devices, jetson nano and jetson
orin is presented.

(a) (b)

Figure 4.1.3: (a) Jetson Nano, (b) Jetson Orin

Presented in figure 4.1.4 is the inference results for the two GPU units used for testing,
the GTX 1050 (a) and RTX 2080 (b).

CHAPTER 4. RESULTS 21

(a) (b)

Figure 4.1.4: (a) GTX1050 (b) RTX2080

In figure 4.1.5, the inference result from the CPU units, Intel I5 (a) and Intel I9 (b) is
presented.

(a) (b)

Figure 4.1.5: (a) Intel I5 (b) Intel I9

A combined overview of the performance of the system with regard to frame per second
during runtime is summarized in table 4.1.1.

System Average fps with 640×480px Average fps with 416×312px
Jetson Nano 2.5 4.7
Jetson Orin 7.2 10.4
GTX 1050 25.1 61.7
RTX 2080 183.7 194.6
Intel I5 7.7 16.6
Intel I9 23.1 39.6

Table 4.1.1: Numeric summary of the performance comparison on the systems with the
two different image resolution input.

22 CHAPTER 4. RESULTS

4.1.4 Performance comparison with different input sizes
The following section presents how the decrease in input size affects the model perfor-
mance. First is the presented precision score during model training shown in figure 4.1.6.

Precision score

Figure 4.1.6: Precision score for YOLOv8n with input size 640×480px and 416×312px.

In figure 4.1.7 the recall score during training is presented.

Recall score

Figure 4.1.7: Recall score for YOLOv8n with input size 640×480px and 416×312px.

Final training score, the F1 is presented in figure 4.1.8.

CHAPTER 4. RESULTS 23

F1 score

Figure 4.1.8: F1 score during training of yolov8n models with two different image size
as input.

Figure 4.1.9 presents the precision-confidence curve representing how the precision evolves
relative to the confidence score.

Precision-confidence plot for 640×480px and 416×312px

(a) (b)

Figure 4.1.9: Precision confidence curve for two resolution sizes: (a)640×480px
(b)416×312px

Figure 4.1.10 presents the recall-confidence curve representing how the precision evolves
relative to the confidence score.

24 CHAPTER 4. RESULTS

Recall-confidence plot for 640×480px and 416×312px

(a) (b)

Figure 4.1.10: (a) 640×480px (b) 416×312px

Figure 4.1.11 showcases the F1 score relation to the confidence score.

F1-confidence plot for 640×480px and 416×312px

(a) (b)

Figure 4.1.11: (a) 640×480px (b) 416×312px

Performance evaluation for final training epoch is shown in table 4.1.2.

Evaluation metric 640×480px 416×312px
Precision 84.9% 79.8%
Recall 58% 46,4%

F1 score 68.9% 58.7%

Table 4.1.2: Numeric comparison of performance on 640×480px input size and
416×312px based on the final training epoch.

Performance evaluation on the validation data shown in table 4.1.3.

CHAPTER 4. RESULTS 25

Evaluation metric 640×480px 416×312px
Precision 83.1% 77.9%
Recall 57.1% 43.6%

F1 score 67% 55.9%

Table 4.1.3: Numeric comparison of performance on 640×480px input size and
416×312px on validation data.

4.2 Dataset benchmark model

The following section presents initial models trained on the original widerface to generate
a benchmark for comparison.

4.2.1 YOLOv8 benchmark

Presented in figure 4.2.1 is the precision and recall evolution during training for each of
the benchmark models, YOLOv8n, YOLOv8m, and YOLOv8l.

Precision and recall benchmark score

(a) (b)

Figure 4.2.1: (a) Precision and (b) Recall score of the YOLOv8 (nano, medium and
large) benchmark models.

F1 score of the benchmark models is shown in figure 4.2.2.

26 CHAPTER 4. RESULTS

F1 benchmark score

Figure 4.2.2: F1 training score of the YOLOv8 (nano, medium and large) benchmark
models.

Numeric performance overview for the benchmark models.

Model Precision Recall F1
YOLOv8n 84.9% 58.2% 69.1%
YOLOv8m 87.4% 65.2% 74.7%
YOLOv8l 87.4% 66.6% 75.6%

Table 4.2.1: Numeric comparison of performance for the benchmark models.

4.3 Dataset comparison compared to benchmark
The following section will compare the benchmark models performance to that of the
models trained on the newly created datasets explained in previous chapters. See table
4.3.4 for a quick overview of the datasets.

CHAPTER 4. RESULTS 27

4.3.1 Benchmark models comparison
Initial benchmark analysis for all the models trained on the different datasets is presented
in figure 4.3.1.

F1 score

(a)

(b)

(c)

Figure 4.3.1: F1 score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l

In figure 4.3.2 we present the evolution of the precision score during training plotted

28 CHAPTER 4. RESULTS

against the benchmark.

Precision score

(a)

(b)

(c)

Figure 4.3.2: Precision score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l

Lastly for initial comparison the recall score from the models training is shown in figure
4.3.3 plotted against the benchmark.

CHAPTER 4. RESULTS 29

Recall

(a)

(b)

(c)

Figure 4.3.3: Recall score: (a) YOLOv8n (b) YOLOv8m (c) YOLOv8l

Following is a numeric summary of the above figures. In table 4.3.1 is the comparison
for the YOLOv8n models, in table 4.3.2 is the comparison for YOLOv8m models and for
comparison of the YOLOv8l models see table 4.3.3.

30 CHAPTER 4. RESULTS

Model Precision Recall F1
YOLOv8n 84.9% 58.2% 69.1%

YOLOv8n non filter 84.8% 58.2% 69.0%
YOLOv8n filter 85.2% 58.1% 69.1%

YOLOv8n mosaic 84.7% 57.9% 68.9%

Table 4.3.1: Numeric comparison of performance for all the variations for YOLOv8n.

Model Precision Recall F1
YOLOv8m 87.4% 65.2% 74.7%

YOLOv8m non filter 87.1% 64.9% 74.4%
YOLOv8m filter 87.1% 64.7% 74.3%

YOLOv8m mosaic 86.9% 65% 74.4%

Table 4.3.2: Numeric comparison of performance for all the variations for YOLOv8m.

Model Precision Recall F1
YOLOv8l 87.4% 66.6% 75.6%

YOLOv8l non filter 87.5% 66% 75.3%
YOLOv8l filter 86.9% 66.2% 75.1%

YOLOv8l mosaic 87.5% 66% 75.3%

Table 4.3.3: Numeric comparison of performance for all the variations for YOLOv8l.

CHAPTER 4. RESULTS 31

4.3.2 Datasets label size
Presented are general analytics of the dataset and the contents within. Shown in figure
4.3.4 are plots showing instances of faces in the datasets, size of bounding boxes, location
of the instance, and size of the instance relative to the image.

(a) (b)

(c) (d)

Figure 4.3.4: (a) Original widerface dataset (b) Extended dataset without any addi-
tional pre-processing steps (c) Extended dataset with additional pre-processing steps (d)
Extended dataset with mosaic augmentation

Additional label analytics for the datasets in their standalone versions are presented in
figure 4.3.5.

32 CHAPTER 4. RESULTS

(a) (b)

(c) (d)

Figure 4.3.5: (a) Original widerface dataset (b) Extended standalone dataset without
any additional pre-processing steps (c) Extended standalone dataset with additional pre-
processing steps (d) Extended standalone dataset with mosaic augmentation

Table 4.3.4 shows a numeric summary of the new datasets combined with the widerface
dataset. In addition, in table 4.3.5, the same numeric summary is shown for the stan-
dalone version of the new datasets. Lastly, a new metric, called instances per image is
shown in both tables.

CHAPTER 4. RESULTS 33

Dataset version Images Instances Instances per image
Widerface 12879 159421 12.4

Widerface + raw extension 17879 173522 9.7
Widerface + filtered extension 15922 171187 10.8
Widerface + mosaic extension 15876 179919 11.3

Table 4.3.4: Number of images within each dataset variation as well as number of
instances.

Dataset standalone version Images Instances Instances per image
Widerface 12879 159421 12.4

Raw extension 5000 14101 2.8
Filtered extension 3043 11766 3.9
Mosaic extension 2875 20498 7.1

Table 4.3.5: Number of images within each standalone dataset variation as well as
number of instances.

34 CHAPTER 4. RESULTS

4.3.3 Anonymization filter
Detection results with anonymization filter implemented. The following result is gener-
ated by running the YOLOv8n variation of YOLOv8.

(a) (b)

(c)

Figure 4.3.6: (a) Original image (b) Anonymization with blur filter (c) Anonymization
with blur and noise filter

CHAPTER

FIVE

DISCUSSION

5.1 Inference results, usable for real-time implementa-
tion?

The inference results shown in section 4.1 present the real-time capabilities of each of
the systems. The initial inference results for the input resolution 640×480 pixels show
great performance for systems such as the RTX 2080 that has access to state of the
art processing unit as well as more memory compared to the other systems shown in
the figure 4.1.1. The older GPU, GTX 1050 achieves the second-best performance but
substantially below the performance of the RTX 2080.

For the embedded devices, the older, traditional jetson nano performs way below a level
that would prove useful in these scenarios. Another interesting observation is the perfor-
mance of the CPU, which traditionally has not been favored for running object detection
models due to their way of dealing with computations in sequence. Nevertheless, the
results show modern CPU possess enough power to run models for real-time purposes
but are not favored compared to their more efficient GPU within their own computers.
Therefore, the practical use-case for running CPU models is irrelevant when considering
a real-world implementation.

5.1.1 Embedded devices inference performance
For the jetson nano, the performance with input resolution 640×480 pixels is, as pre-
viously mentioned, not usable for real-time implementation. By decreasing the input
resolution to 416×312 pixels, the amount of pixels passed as input to the models is re-
duced 42%. By running the same inference test we achieve a new set of results. In figure
4.1.2, it is seen that the performance of the jetson nano increases substantially with an
fps increase of 88%. In terms of a numeric value, this equals to a fps during runtime of
4.7, which still does not enable any general real-time implementations.

When considering the newer jetson orin, the performance on 640×480 pixels is within
a limit that would be used for real-time implementation. However, the performance of
7.2 fps can also be argued to be outside the real-time requirements depending on the
implementation domain. The results from running with decreased input size increases

35

36 CHAPTER 5. DISCUSSION

the fps performance to 10.4 fps which turns out to be a 44% fps increase. The side-
by-side comparison is shown in figure 4.1.3. In terms of implementation capabilities, a
performance of 10.4 fps is substantial enough to be implemented in real-world scenarios,
even for faster-moving domains. More promising is the future advancement in hardware,
which can push the embedded performance higher, making embedded devices perform
well above the limit for all real-time scenarios.

5.1.2 GPU and CPU inference performance
The results from the GPUs are the two highest fps results when comparing all the sys-
tems. In addition, the performance on the GPUs is interesting in showing how a system
performs without much limitations. The RTX 2080 with 12GB memory performs sub-
stantially above and beyond anything that would be required for real-time performance.
A noticeable difference is the improvement when decreasing the input size is less com-
pared to the other systems, as seen in table 4.1.1. One hypothesis for this is due to the
bottleneck in the computer not being the GPU but instead the CPU, which is responsi-
ble for feeding the input data to the GPU during runtime. This would support the less
improvement observed since the limiting factor is the CPU rather than the GPU.

For the older GPU, the GTX 1050 has a much less impressive performance compared to
the RTX 2080. In figure (a) 4.1.4, the performance for both input resolutions 640×480
and 416×312 is shown usable for real-time usage. Compared to the RTX2080 the inference
increase is more substantial when decreasing the input size, with more than a doubling
of the fps during runtime. Similarly, the performance on the two CPU units, the intel
I5 and intel I9, both perform well enough for real-time applications. From figure 4.1.1
and figure 4.1.2, it can be seen that the performance of the intel I5 is comparable to the
jetson orin while intel I9 is the third best-performing system overall.

5.1.2.1 Limiting memory in embedded devices

One possible limiting aspect of the real-time performance on the two embedded devices
is the lack of available memory. Both computer systems provide the GPU and CPU with
greater RAM memory capabilities, especially the GPU, which has additional specific
memory for fast computation. This lack of memory in embedded devices results from the
size limitations when developing embedded hardware.

5.2 Performance effect with decreased input size
The most important aspect of implementing a system for real-time anonymization pur-
poses is the model’s reliability. As mentioned in the previous section, the inference result
is generated by running tests on the YOLOv8n model variation due to it being the small-
est YOLOv8 model. However, YOLOv8n is also the worst-performing version of the
YOLOv8 models because it is optimized for fast runtime. Therefore, properly analyz-
ing the effect of decreasing the input size from the initial 640x480 down to 412x316 is
crucial. Initial evaluation can be seen by examining the models precision, recall, and
F1 score as presented in the figures 4.1.9, 4.1.10 and 4.1.11. The precision score goes
from 84.9% with resolution 640×480 to 79.8% with resolution size 416×312. Similarly,
the recall score goes from 58% down to 46.4%. In terms of percentage reduction, the
precision score decreases 6%, and the recall score decreases 20%. In terms of F1 score,
which considers both precision and recall, a reduction of around 14% is observed as an
effect of decreasing the input resolution. One aspect that the result does not show is the
complexity of the faces that are not detected and anonymized. By using the widerface, a

CHAPTER 5. DISCUSSION 37

large amount of the images contained within the dataset do not exceed many pixels and
would be counted as a very small object, making it difficult to detect and recognize even
without applying any anonymization filter. But even in a scenario where faces are small
enough that models struggle to identify the details of the face, a model unable to detect
and anonymize those faces will struggle to be approved based on the possible regulation
proposed by EU.

5.2.1 Privacy concern, maximizing recall performance
A common issue with deep learning models is the tradeoff between recall and precision,
where to achieve a high recall, you need to sacrifice precision and vice versa. For face
anonymization, the goal is to maximize the recall since we do not wish to let any faces
go through our model not anonymized. The figure 4.1.10 showcases how the recall score
changes depending on the confidence. Similarly, figure 4.1.9 showcases how the precision
changes according to the confidence. In this situation, confidence means how sure the
model needs to be before labeling instances in the data as a face. This means that a
maximum recall score is achieved when the confidence is close to zero. Running models
with confidence set to zero would result in many wrongly labeled instances but also with
most of the total amount of faces detected. Since we are dealing with face anonymization,
the consequences of not detecting a visible face can be massive, as it would make the model
illegal based on the proposed AI legislation from EU. Therefore, a natural solution would
be to run the model with a low confidence score, for example (confidence = 0.15), and
accept some extra non-face instances rather than some extra non-anonymized faces, or
in other words, accept a decrease in precision to increase the recall score.

5.3 Dataset initial benchmark
From the results presented in section 4.3.1 an interesting observation is the similar per-
formance in terms of precision between the YOLOv8m and YOLOv8l models, with recall
being the evaluation metric that separates them. One notable decision to be aware of
is that the hyperparameters were tuned to maximize the performance on the YOLOv8n
model. The same hyperparameters were used to train the larger models without addi-
tional tuning. This was done mainly due to the YOLOv8n being the model of choice for
the earlier real-time tests. Other than that, the benchmark results are as expected, with
the larger models outperforming the smaller models.

5.3.1 Benchmark compared to the other model variations
Section 4.3 presents the performance of models trained on the different variations of
the widerface dataset. For a recap of the different dataset variations see table 4.3.4.
These variations are then plotted against our benchmark models trained on the original
widerface dataset. The new models are shown to perform similarly to our benchmark
model when looking at the F1 score in figure 4.3.1. Looking at the presented precision
score in figure 4.3.2 and recall score in figure 4.3.3, there is no clear view if any of our
additional data give our models any sort of advantage compared to the benchmark models.
So although the newly created datasets offer up to 12% additional instances, this does
not give at first sight any additional benefit in performance.

5.3.2 Amount of instances and label sizes in the proposed datasets
In order to understand the effect of our additional data, additional evaluation is presented
in figure 4.3.4. Presented are four metrics for our labels. To recap these were

38 CHAPTER 5. DISCUSSION

• Number of instances

• Location of instance in the image

• Size of the instance

• Bounding box for instances

For a quick summary of the contents within the datasets, the largest, the mosaic version,
contains 20498 additional instances compared to the original widerface, and the smallest,
the filtered extension version, contains 14101 additional instances. Using the visual rep-
resentation given in figure 4.3.4 we can quickly notice that the main difference between
the original dataset and our three newly created datasets is the size of the label bounding
boxes. In figure 4.3.4 a more clear and intense coloring represents the most commonly
used label sizes. From figure (d) 4.3.4, it is also notable that our mosaic dataset does
not contain the same number of large detections compared to the two other generated
datasets, as expected when using mosaic augmentation. Although when compared to the
label sizes within the original widerface (a) it is still noticeably larger. This can also
be observed by manually inspecting the widerface dataset, which, as mentioned before,
contains many small and complex instances. A possible hypothesis for the lack of im-
provement shown in section 4.3 can be ascribed to our evaluation method, which consists
of utilizing the widerface validation data, which naturally would be most similar in label
size and complexity to our benchmark model, which is not affected by the additional data
introduced in the other dataset variations.

For a quick and extra evaluation, the same figure as described above is shown for the
standalone versions of the datasets in figure 4.3.5. This figure makes it easier to see each
newly created dataset’s variation. One notable observation is that (b) and (c) from figure
4.3.5 lack instances located on the edges, with a majority located closer to the center.
Additionally, the standalone mosaic dataset shown in (d) from figure 4.3.5 distributes the
location of the instances all over the image.

5.3.3 Increased amount of instances but decreased complexity
To extend on the information shown in table 4.3.4, a metric of particular interest is
the instances per image shown in the table’s last column. This metric tries to show
how the extended dataset versions consist of noticeably less complex scenes compared to
the original widerface dataset. The without any additional pre-processing contains only
9.7 instances per image on average, down from 12.4 in the original widerface. This also
presents the benefit of utilizing mosaic as it is the most similar to the original in label size
and in terms of instances per image with a value of 11.3. Additional tests on additional
dataset would help evaluate the general robustness of the model.

5.4 Effectiveness of the anonymization filter
From figure (a)(b)(c) 4.3.6 it is noticeable that the standard (b) blur effect does a good
job of making it hard to identify the facial features of individuals. The benefit of utilizing
the additional noise filter shown in figure (c) 4.3.6 is to avoid the static feature of the
blur filter. The random noise makes the pixel values over the anonymized face change
randomly for each frame. The goal of this is to make it harder for de-anonymization
models to reverse engineer the facial features from the anonymized face. From figure
4.3.6 we also notice the effectiveness of the detection model when the image has good

CHAPTER 5. DISCUSSION 39

contrast and good lighting condition. From figure 4.3.6 by visual inspection, it appears
to have a perfect score in face detection and anonymization. The image used to display
the anonymization methods would also represent a typical input for a surveillance camera
deployed around cities. It also showcases that by ensuring that the location of cameras
is chosen to provide the best detection conditions, the general performance presented in
earlier sections can be improved. Another possible solution to avoid the worse perfor-
mance in bad conditions would be to only run the models while the condition is above
a certain quality limit. In other words, have an additional model evaluate the condition
for running detection models.

40 CHAPTER 5. DISCUSSION

CHAPTER

SIX

CONCLUSIONS

The work presented in the thesis hopes to showcase the current progress of SOTA object
detection models and to show how these models can be modified for anonymization pur-
poses and how various systems perform in terms of their real-time capabilities. Finally,
multiple additional face datasets are presented as an extension of the widerface dataset.

The results present how these models run on a wide selection of systems, including two
embedded devices showing the possibilities for real-world implementation. The applica-
tions of systems like these would be for data collection for researchers and data collection
and usage for the management of smart cities. The presented results show how embed-
ded systems achieve a performance of 10 fps when using an input size of 416x312 pixels,
and are at a point where the possibility for deployment in the real-world for real-time
purposes is possible. In addition, the presented results showcase that modern CPU can
run real-time detection models, which used to be only possible for more computationally
efficient devices such as GPU.

Multiple extensions of the popular and widely used widerface were created for the second
part of the thesis. The challenge of improving a high-quality dataset is well presented
in the results section. Although no apparent improvement in model performance was
observed, a possible reason for this can be attributed to the dataset used for evaluat-
ing performance, which was the validation data of the original widerface. Nevertheless,
the conclusion is that the presented results showcase no definite improvement with the
different variations dataset but also no definite decrease in performance. Among the
newly created datasets, the version utilizing data augmentation contains the most com-
plex scenes when evaluated based on label size and instances per image. Still, there is a
possibility that the additional data, although not improving the model performance, in-
creases the model’s robustness by utilizing larger label annotation, which is a lacking area
within the original widerface. The amount of complex scenes is a unique characteristic
of the widerface that makes it increasingly complex to improve on.

For a final summary, the presented thesis shows promising results for the smallest version
of SOTA object detection model with a simple modification for anonymizing detected
instances. It also presents the current inference during runtime on multiple systems. In
addition to the points mentioned above, three additional datasets have been presented

41

42 CHAPTER 6. CONCLUSIONS

with an evaluation of their performance effect. The datasets can be used as unique
datasets for training or for extending other existing datasets.

6.1 Future work
For future work, one area for additional research is the real-time aspect. Additional
tests should be performed running the models for a longer duration and how to integrate
privacy concerning real-time systems effectively and securely into smart city domains, the
last part is particularly interesting as more AI legislation bills will arrive in the future

Another area for future work is the additional evaluation of our new datasets. It is
necessary to evaluate our generated dataset on other available datasets, to better validate
any possible improvement through improved performance or robustness in our models.
For summary, the following points are suggested for future work:

• Real-time test over longer period of times.

• Real-world prototype, and how to integrate privacy concerning systems into smart
cities.

• Additional evaluation of the quality of the datasets, in terms of possible increased
model robustness.

REFERENCES

[1] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2014, pp. 580–587.

[2] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1440–1448.

[3] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[4] Wei Liu et al. “Ssd: Single shot multibox detector”. In: Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part I 14. Springer. 2016, pp. 21–37.

[5] Glenn Jocher et al. ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improve-
ments. Version v3.1. Oct. 2020. doi: 10.5281/zenodo.4154370. url: https:
//doi.org/10.5281/zenodo.4154370.

[6] Bichen Wu et al. SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural
Networks for Real-Time Object Detection for Autonomous Driving. 2019. arXiv:
1612.01051 [cs.CV].

[7] Zheng Ge et al. YOLOX: Exceeding YOLO Series in 2021. 2021. arXiv: 2107.08430
[cs.CV].

[8] Zhi Tian et al. “Fcos: A simple and strong anchor-free object detector”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 44.4 (2020), pp. 1922–
1933.

[9] Shifeng Zhang et al. “Bridging the Gap Between Anchor-Based and Anchor-Free De-
tection via Adaptive Training Sample Selection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

[10] Luis Perez and Jason Wang. “The Effectiveness of Data Augmentation in Image
Classification using Deep Learning”. In: CoRR abs/1712.04621 (2017). arXiv: 1712.
04621. url: http://arxiv.org/abs/1712.04621.

[11] Zhenfei Chen et al. “Privacy preservation for image data: a gan-based method”. In:
International Journal of Intelligent Systems 36.4 (2021), pp. 1668–1685.

[12] Junwu Zhang, Mang Ye, and Yao Yang. “Learnable Privacy-Preserving Anonymiza-
tion for Pedestrian Images”. In: Proceedings of the 30th ACM International Con-
ference on Multimedia. 2022, pp. 7300–7308.

[13] Muhammad Umair. Hassan, Stava Magnus, and A. Hameed. Ibrahim. “Deep privacy
based face anonymization for smart city applications”. In.

43

44 REFERENCES

[14] Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Tech. rep. 07-49. University of Mas-
sachusetts, Amherst, Oct. 2007.

[15] Vidit Jain and Erik Learned-Miller. FDDB: A Benchmark for Face Detection in
Unconstrained Settings. Tech. rep. UM-CS-2010-009. University of Massachusetts,
Amherst, 2010.

[16] Bin Yang et al. “Fine-grained Evaluation on Face Detection in the Wild”. In: Au-
tomatic Face and Gesture Recognition (FG), 11th IEEE International Conference
on. IEEE. 2015.

[17] Shuo Yang et al. “WIDER FACE: A Face Detection Benchmark”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016.

[18] EUROPEAN COMMISSION. LAYING DOWN HARMONISED RULES ON AR-
TIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMEND-
ING CERTAIN UNION LEGISLATIVE ACTS.
https://artificialintelligenceact.eu/the-act/. 2022.

[19] T. M. Mitchell. Machine Learning. McGraw Hill, Mar. 1997, p. 2.
[20] Norvig Stuart Russel Peter. Artificial Intelligence. A Modern Approach. Pearson,

2022.
[21] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.

2016. arXiv: 1506.02640 [cs.CV].
[22] Chien-Yao Wang et al. “CSPNet: A new backbone that can enhance learning ca-

pability of CNN”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops. 2020, pp. 390–391.

[23] BEN LE datature. Get Started with Training a YOLOv8 Object Detection Model.
2023. url: https://www.datature.io/blog/get-started-with-training-a-
yolov8-object-detection-model (visited on 05/20/2023).

[24] Yue Wu et al. “Rethinking Classification and Localization for Object Detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2020.

[25] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In: Automated
machine learning: Methods, systems, challenges (2019), pp. 3–33.

[26] Li Yang and Abdallah Shami. “On hyperparameter optimization of machine learn-
ing algorithms: Theory and practice”. In: Neurocomputing 415 (2020), pp. 295–316.

[27] S. Bos and E. Chug. “Using weight decay to optimize the generalization ability
of a perceptron”. In: Proceedings of International Conference on Neural Networks
(ICNN’96). Vol. 1. 1996, 241–246 vol.1. doi: 10.1109/ICNN.1996.548898.

[28] Nishant Vishwamitra et al. “Blur vs. block: Investigating the effectiveness of privacy-
enhancing obfuscation for images”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops. 2017, pp. 39–47.

[29] Wang Hao and Song Zhili. “Improved mosaic: algorithms for more complex im-
ages”. In: Journal of Physics: Conference Series. Vol. 1684. 1. IOP Publishing.
2020, p. 012094.

[30] Open Images V7Open Images V7. Open Images Dataset V7 and Extensions. data
retrieved from Open Images V7, https://storage.googleapis.com/openimages/
web/index.html. 2022.

[31] Delong Qi et al. “YOLO5Face: Why reinventing a face detector”. In: Computer
Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part V. Springer. 2023, pp. 228–244.

APPENDICES

45

A - GITHUB REPOSITORY

All code and link to the datasets used in this document are included in the Github
repository linked below. Further explanations are given in the readme-file.

Github repository link
• https://github.com/Magnsta/SOTA-comparison-study-

46

B - PRE-PROJECT REVISIONED REPORT

47

Deep privacy based face anonymization for smart city applications

Muhammad Umair Hassan∗, Magnus Stava, Ibrahim A. Hameed

Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Ålesund, Norway

Abstract

Amounts of images containing identifiable features have multiplied dramatically in an increasingly digital world
where data is gathered on a large scale through smart city surveillance systems and smartphones. In order to protect
privacy, it is essential to look into methods that can anonymize individuals in real-time before the data is stored in
databases. This work proposes to anonymize the real-time data collected through different data collection devices and
anonymize it before being stored in databases leveraging YOLO-based face detection. We evaluate the performance
of our proposed methodology on the WIDER-FACE benchmark with the included easy, medium, and complex subsets.

Keywords: Face anonymization, Face detection, Deep learning, Privacy protection

1. Introduction

The development of information and communication
technologies (ICT) and the expansion of personal pri-
vate data has brought a great utility value in individuals’
lives and society. However, serious privacy concerns are
also becoming prominent, and there is a severe demand
to preserve people’s privacy in collected data through
video cameras. Face detection is the ability of a com-
puter program to detect faces in digital images. It is the
first step before other operations, such as face identifi-
cation [1] and face de-identification [2], can occur. Face
identification is the process of identifying a specific in-
dividual from an image, while face anonymization re-
moves identifiable features from an image. Specifically,
face identification has created a concern for our right to
privacy due to a large number of digital images available
in the modern world [3]. Traditional object detectors
struggle to operate in real-time due to using a two-stage
architecture. However, more contemporary state-of-art
models designed with a single-stage model architecture
have increased computational efficiency making them
more usable for real-world implementation.

Smart cities rely on unprecedented amounts of data.
The construction of smart cities have brought a higher
quality of life as well as the threats to the people’s pri-

∗Corresponding author
Email address: muhammad.u.hassan@ntnu.no (Muhammad

Umair Hassan)

vacy have also been raised [4]. The protection of pri-
vacy got an increased interest after the European Union
implemented the General Data Protection Regulation
(GDPR). Hiding the identity of individuals has been
common practice to reduce exposure to individuals put
in an exposed position. This could be individuals part
of a criminal investigation, interviewed by the news, or
data collection for research purposes, to mention some.
The standard technique is to manually apply a blur fil-
ter which reduces the information within the filter by
averaging the pixels by using a kernel window moving
across the selected area. Applying blur will make the fa-
cial features in the image become less recognizable by
decreasing the detail. Other filters are also often used,
but they follow the same technique as blurring, with the
difference being the values in the kernel.

Following the advances in deep learning (DL),
researchers have been interested in methods for
anonymizing individuals without losing any original
data information. In contrast to blurring, which reduces
information in the selected area. A group of researchers
has utilized generative adversarial networks (GANs) to
anonymize identifiable features while maintaining the
complete surrounding information. They achieved this
by training the GAN to perform image inpainting on im-
ages with identifiable features anonymized, only pass-
ing in knowledge about the location of facial features
such as eyes, nose, and mouth [2]. Other researchers,
such as Nousi et al. [5], explored the usage of au-
toencoders to decompress the facial information to a

low-dimensional representation and then reconstruct a
face that is noticeably different compared to the origi-
nal [5]. Both methods have showcased the possibility of
anonymizing individuals while preserving a face’s vi-
sual attributes and the image’s information. Compared
to traditional techniques such as blurring or pixelation,
deep learning-based methods are more computationally
heavy and less usable for real-time implementation. An-
other approach for anonymizing faces is to combine tra-
ditional methods, such as blurring, with state-of-the-
art performance face detectors. This method is much
less computationally expensive, enabling real-time op-
erations.

In this work, we leverage a single-stage face detec-
tion network to detect faces in complex scenes and look
into what separates the single-stage networks and tech-
niques for effectively anonymizing faces. We made the
following contributions to this paper. (i) We propose a
novel technique to preserve the identity of persons com-
ing in the images/videos without destroying the primary
objective of data collection. (ii) We compare implemen-
tations of a selection of face detection algorithms on a
standard benchmark. (iii) We explore and compare dif-
ferent techniques for face anonymization. (iv) We vali-
date the results through quantitative and qualitative eval-
uations.

The organization of this paper is as follows. Section 2
presents the works related to this study, while in Section
3, we discuss our proposed methodology. The perfor-
mance evaluation of this work is discussed in Section 4.
Finally, we conclude this work in Section 5.

2. Related Works

Yang et al. [6] proposed a face mask anonymization
method in which the Putting off Mask Face module is
designed to remove the mask from a person’s face, al-
lowing the protected face to be recovered. Wen et al.
[7] proposed a framework called IdentityDP that utilizes
deep privacy-based perturbation directly on the identity
representation to ensure privacy protection while pre-
serving the visual similarity of the attribute representa-
tion without any changes. Zhai et al. [8] proposed the
A3GAN anonymization method, which uses facial at-
tribute manipulations instead of ultimately generating
a new face. To achieve this, they introduced a new
generative network architecture that includes a suppres-
sive convolutional unit (SCU) and an attribute-aware in-
jective network (AINet). Qiu et al. [9] developed a
novel framework named QM-VAE. This approach first
de-identifies the facial image before reconstructing its

utility. To enhance the quality of the generated face im-
ages, they integrated vector quantization into the struc-
ture of the generative model. Cheng et al. [10] proposed
methods for de-identifying 2D and 3D faces while still
preserving facial attributes. These methods use Auto
Encoder and GANs. Using these techniques, images
can be de-identified while maintaining the integrity of
facial features. Kim et al. [11] presented a technique
to safeguard the identification of a person captured by
the CCTV IoT system by considering the risk level. By
adjusting the information disclosure level based on the
individual’s risk level, the method can prevent the in-
discriminate disclosure of private information and min-
imize privacy breaches. Ding et al. [12] proposed a
technique for anonymizing face recognition data, where
only the authorized model and human eyes can recog-
nize the face images. The study defines constraints for
boundary walking strategy. The paper also presents an
attack on the FACE++ API to confirm the effectiveness
of the proposed method in real-world scenarios.

3. Methodological Description

3.1. Face detection

Face detection as an object detection task is challeng-
ing due to the variety of sizes faces can appear in im-
ages, making it necessary for the models to effectively
detect tiny, small, and large faces. Detecting tiny objects
is more complicated due to fewer pixels being responsi-
ble for the identifiable features that make up a face. The
fact that small objects are represented by fewer pixels is
critical to understand to develop good performing mod-
els for tiny objects since primary convolution or pooling
layers can make the crucial features lost [13][14]. We
present the framework of our proposed work in Fig. 1.

3.2. You only look once

You Only Look Once (YOLO) algorithm, first pub-
lished in 2015, is a single-stage algorithm that manages
to achieve real-time object detection [15]. In 2021 the
YOLOv5-Face was published, a specific-purpose ob-
ject detector designed for face detection [16]. The re-
search team behind YOLOv5-Face decided to modify
the existing state-of-art detector YOLOv5 for their spe-
cific purpose instead then designing their model, with
the argument that a face is just another object with many
of the same features as other objects such as pose, scale,
occlusion, etc. The main contribution of the YOLOv5-
Face can be summarized as follows. (i) Inclusion of a
STEM block. (ii) Reducing the kernel size in strate-
gic locations. (iii) Additional output block with a large

2

Figure 1. Our proposed framework for face anonymization. The input data is captured through different data collection devices, and
YOLOv5-based facial detection is applied to detect all recognizable faces from the streams. Blurring filters are applied before the data is sent for
storage. For YOLOv5, we apply skip connections-based methodology; the previous layer’s output is the input to Conv layer 1 while also skipping
through and being sum together with the output from Conv layer 2. The flow of model happens in anonymization block and the anonymization
happens after the object detector.

stride value of 64. (iv) Discovery of worse performance
on small faces when specific augmentation techniques
such as flipping and mosaic are used [16].

Some key modifications in YOLOv5 for face detec-
tion are landmark regression head with replacement of
focus layer, block for SSP with intervention of a kernel
[16]. We also used P6 block with stride of 64 with en-
hanced methods for face detection augmentation meth-
ods with two new designs of ShuffleNetv2. For baseline
of face detection, we used YOLOv5 detector. This in-
cludes neck, backbone and head. An SSP and PAN are
involved in this with integration of classification and re-
gression in the head. Landmarks on human face are
used for alignment and recognition and mostly these
points are 68 are simplified to five main points. But
the general object detector includes them as regression
head. These outputs will be used in alignments before
sending to network of face recognition. For defining the
small errors detection wing-loss was developed because
general loss function was not able to it.

wing(x) =


w · ln(1 + |x|/e), if x < w
|x| −C, otherwise

(1)

where X is the signal of error where nonlinear part range
(−w,w) is set by non-negative w. e belongs to the cur-
vature whereas C = wwln(1 + w/e) remains constant
which connects the linear/nonlinear segments.

In YOLOv5, the loss function for detecting objects
includes information about the bounding box, class, and
probability of the object. Additionally, there is a sepa-
rate loss function for landmark regression, represented

as lossL, which measures the discrepancy between the
predicted and true landmark points. This loss is calcu-
lated for each of the 10 landmark points using a specific
formula as following.

lossL(s) =
∑

i

wing
(
si − s′i

)
(2)

where s = si, and i = 1, 2, ..., 10. While discussing
the small kernel SSP the output feature maps of the
backbone are directed to an SPP (Spatial Pyramid Pool-
ing) block before being passed to the feature aggrega-
tion block in the neck. The purpose of the SPP block
is to increase the receptive field and isolate the most
significant features. This is achieved without the use
of fully connected layers that are specific to certain in-
put image dimensions. SPP generates a fixed-size out-
put, regardless of the input size, making it a more flexi-
ble and versatile approach compared to traditional CNN
models. Different size of kernel like 7 × 7, 5 × 5 and
3 × 3 are used to detect small faces.

The spatial resolution for YOLO layers decrease due
to multiple down layers for detect objection. FPN was
developed in YOLOv3 for small grained characteris-
tics. But this take a long path for crossing multiple lay-
ers so PAN was introduced as bottom up approach. In
FPN, object predictions are made separately on differ-
ent scales, which may lead to redundant predictions. In
contrast, the PAN model fuses the output feature maps
of the bottom-up augmentation. Multiple output blocks
P3, P4, P5 were introduced in YOLOv5. But in this
YOLO5Face a P6 block was also added with feature
map 10 × 10 × 16 with 64 stride.

3

3.3. Face anonymization
The task of anonymizing faces can be done in multi-

ple ways. The simplest and most basic method is to ap-
ply a solid box over the predicted bounding box. Given
a predicted bounding box (m × n × p) where p is the
pixel value, the anonymized area becomes (m × n ×
(50, 50, 50)). This ensures a complete anonymization
of the individual in the frame, assuming the model has
a high performance. A disadvantage of using this tech-
nique is that it completely removes all the information
contained within the bounding box, making it not very
practical if the image should be utilized later.

To avoid the complete loss of information within the
bounding box, another technique is to apply Gaussian
noise N(0, 0.5). The Gaussian noise slide the pixel val-
ues towards the normal distribution decreasing detail.
Blurring also ensures that more of the original informa-
tion in the frame is retained. An issue with blurring
techniques is the possibility of reversing the effect if the
strength of the blur is not strong enough.

A third technique is applying a layer of noise to the
area within the bounding box. This technique would
cover the facial features on a level that falls between the
box and blur technique. The main advantage with ap-
plying noise to the bounding box region is to make it
hard for bad players to use the image for any bad pur-
poses.

The implementation of the anonymization step would
be implemented as an additional step after the fully con-
nected layer. In terms of altering of code this would
be implemented in the same step as the drawing of the
bounding box, but before the image is presented to the
user to ensure full privacy. In Fig. 1 the full YOLOv5-
Face architecture is represented as one block, with the
output going into the anonymization block where one of
the three techniques is applied. For more detail of the
YOLOv5-Face architecture we refer to [16].

Figure 1 shows the YOLOv5 architecture, which con-
sists of a backbone (CSP DarkNet53), a neck (Dense
Prediction), and a head (Sparse Prediction). The back-
bone extracts features from the input image, the neck
combines those features at different scales, and the head
predicts bounding boxes, objectness scores, and class
probabilities for each anchor at each scale. The archi-
tecture is designed to be efficient and accurate, and has
achieved state-of-the-art performance on several object
detection benchmarks.

4. Performance Evaluation

In order to have an effective way of comparing the
performance of the different models, a standardized

benchmark is advantageous. One of the main bench-
marks used for face detection is the WIDER-FACE
dataset [17]. The WIDER-FACE benchmark provides
three subsets for evaluating the models, easy, medium,
and hard. Images in the hard category typically con-
tain faces that are smaller, partly obstructed, or are pre-
sented in conditions that make it challenging for mod-
els and even humans to point out, an example of a hard
photo can be seen in Fig. 2. To ensure equal test condi-
tions one system has been used throughout the proposed
work. The system boosts an high-performing GPU and
CPU enabling for faster runtimes compared to a stan-
dard personal computer have been used. The exact spec-
ification of the computer can be seen in Table 1.

Figure 2. Example of a complex image showcasing a challenging
scenario with many small faces for the model to detect.

Table 1
Specifications for the alienware computer and the embedded device
jetson nano.

Machine GPU
Alienware x15 R2 NVIDIA GeForce RTX 3060 16 GB
Jetson Nano 128-core Maxwell 4 GB

In Table 2 the performance of two of the models pre-
sented by Qi et al. [16] is shown, the YOLOv5s6 rep-
resent their lightest and fastest model. For comparison
their best performing model the YOLOv5x6 can also be
viewed. From this it is noticeable the the difference be-
comes more apparent when the input image is belonging
to the category of hard images.

Table 2
Yolov5-Face WIDERFACE benchmark result from large and small
model.

Difficulty Easy Medium Hard Params(M) Flops(G)
YOLOv5x6 96.67 95.08 86.55 141.158 88.665
YOLOv5s6 95.48 93.66 82.8 7.075 5.751

All presented results have been obtained by running
them on YOLOv5-Face algorithm on the corresponding

4

Figure 3. Three different techniques for anonymizing faces that
ensures fast performance. To the left the face is anonymized by a
solid box. In the middle a blur filter is applied. To the right noise has
been applied.

system as mentioned Table 1. From Fig. 3 we can ob-
serve the three standard techniques. Anonymization by
using a solid box is as expected very effective and makes
it impossible for any sort of reconstruction that would
appear similar to the original image. On the downside
it is not visual pleasing to look at and does affect the
image to a very large extent. In the middle of Fig. 3
a blur effect has been applied and the amount of infor-
mation retained is much greater then when compared to
the solid box. But it is also clear looking at the blur ef-
fect in Fig. 3 that a reconstruction to obtain the original
image is more likely to be successful compared to the
solid box method. Finally, to the right in Fig. 3 random
noise has been added to the bounding box, and although
it appears very similar to the solid box, it is possible to
notice slightly where some of the facial features would
appear such as eyes and mouth, and the outline of the
face. It can be assumed to be harder for bad players
to exploit if substantial amount of noise is added to the
image.

Figure 4 shows an input of a complex scene with mul-
tiple small faces that are detected, and noise filters are
applied to them, and finally, a blurring effect is applied
to hide the identities of detected faces in the complex
scene. For the fourth technique, the same amount of
blurring and noise is applied as previously, and the only
difference is the combination of the methods. From Fig.
5 it is noticeable that the facial features have become
much less visible with the combination of the two meth-
ods. The information that is retained in the image is sub-
sequently less than just blurring. The output image is
more pleasant to observe compared to the solid box and
random noise technique, as seen in Fig. 3. We show the
F1 curve and precision-recall curves in Fig. 6a and 6b,
respectively. The frames per second was measured for
the YOLOv5-Face model as well as the newly released
YOLOv7. The performance on Alienware x15 R2 is
shown in Table 3. The source for the test is the attached
computer webcam, and the FPS is calculated while run-
ning by counting number of frames the model has pro-
cessed. To ensure that our privacy methods have not af-

fected the speed of out model we also measure the FPS
of the models without any anonymization techniques.
From out experiments there were no visible difference
on running the models with or without anonymization.
Considering how simple calculations these anonymiza-
tion are this is not surprising but validates the possibil-
ity to run face detectors in real-time with the additional
anonymization option.

5. Conclusion

In conclusion, this work proposes a YOLO-based
face detection methodology for anonymizing real-time
data collected through different devices before storing
it in databases. We evaluate the proposed technique on
the WIDER-FACE benchmark and compare various face
detection algorithms, exploring and comparing different
techniques for face anonymization. Our work proposes
a novel technique to preserve the identity of persons in
the images/videos without compromising the primary
objective of data collection. We also investigate single-
stage face detection networks and techniques for effec-
tively anonymizing faces. Our findings provide valuable
insights into the current state-of-the-art detector func-
tions and how these innovations can be transferred to
other models. We have also discussed the importance of
models working with privacy to function with high per-
formance over a longer period. Overall, this work con-
tributes to enhancing privacy protection in an increas-
ingly digital world where data is gathered on a large
scale through smart city surveillance systems and smart-
phones.

Figure 5. The fourth technique, combining blur and noise as
compared to only blurring

5

Figure 4. An example of complex scene face detection and applying noise filters and blurring effects to hide the identity of people coming in data
collection devices.

Table 3
The frames per second for the YOLOv5-Face and YOLOv7-tiny with
anonymization.

Models FPS
Yolov5-Face 20.1
Yolov7-tiny (custom trained) 24.2

Figure 6. F1 and PR curves resulted by our proposed technique.

References

[1] R. Ranjan, A. Bansal, J. Zheng, H. Xu, J. Gleason, B. Lu,
A. Nanduri, J.-C. Chen, C. D. Castillo, R. Chellappa, A fast
and accurate system for face detection, identification, and veri-
fication, IEEE Transactions on Biometrics, Behavior, and Iden-
tity Science 1 (2) (2019) 82–96. doi:10.1109/TBIOM.2019.
2908436.

[2] H. Hukkelås, R. Mester, F. Lindseth, Deepprivacy: A generative
adversarial network for face anonymization, in: International
symposium on visual computing, Springer, 2019, pp. 565–578.

[3] S. Ribaric, A. Ariyaeeinia, N. Pavesic, De-identification for pri-
vacy protection in multimedia content: A survey, Signal Pro-
cessing: Image Communication 47 (2016) 131–151.

[4] J. Laufs, H. Borrion, B. Bradford, Security and the smart city:
A systematic review, Sustainable cities and society 55 (2020)
102023.

[5] P. Nousi, S. Papadopoulos, A. Tefas, I. Pitas, Deep autoencoders
for attribute preserving face de-identification, Signal Process-
ing: Image Communication 81 (2020) 115699.

[6] Y. Yang, Y. Huang, M. Shi, K. Chen, W. Zhang, Invertible mask
network for face privacy preservation, Information Sciences 629
(2023) 566–579.

[7] Y. Wen, B. Liu, M. Ding, R. Xie, L. Song, Identitydp: Differen-
tial private identification protection for face images, Neurocom-
puting 501 (2022) 197–211.

[8] L. Zhai, Q. Guo, X. Xie, L. Ma, Y. E. Wang, Y. Liu,
A3gan: Attribute-aware anonymization networks for face de-
identification, in: Proceedings of the 30th ACM International
Conference on Multimedia, 2022, pp. 5303–5313.

[9] Y. Qiu, Z. Niu, B. Song, T. Ma, A. Al-Dhelaan, M. Al-Dhelaan,
A novel generative model for face privacy protection in video
surveillance with utility maintenance, Applied Sciences 12 (14)
(2022) 6962.

[10] K. H. Cheng, Z. Yu, H. Chen, G. Zhao, Benchmarking 3d face
de-identification with preserving facial attributes, in: 2022 IEEE
International Conference on Image Processing (ICIP), IEEE,
2022, pp. 656–660.

[11] J. Kim, N. Park, De-identification mechanism of user data in
video systems according to risk level for preventing leakage of
personal healthcare information, Sensors 22 (7) (2022) 2589.

[12] K. Ding, T. Hu, X. Liu, W. Niu, Y. Wang, X. Zhang, Targeted
anonymization: A face image anonymization method for unau-
thorized models, in: 2022 IEEE International Conference on
Multimedia and Expo (ICME), IEEE, 2022, pp. 1–6.

[13] C. Xianbao, Q. Guihua, J. Yu, Z. Zhaomin, An improved small
object detection method based on yolo v3, Pattern Analysis and
Applications 24 (3) (2021) 1347–1355.

[14] Y. Liu, P. Sun, N. Wergeles, Y. Shang, A survey and perfor-
mance evaluation of deep learning methods for small object de-
tection, Expert Systems with Applications 172 (2021) 114602.

[15] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look
once: Unified, real-time object detection, in: Proceedings of the
IEEE conference on computer vision and pattern recognition,
2016, pp. 779–788.

[16] D. Qi, W. Tan, Q. Yao, J. Liu, Yolo5face: why reinventing a face
detector, arXiv preprint arXiv:2105.12931.

[17] S. Yang, P. Luo, C. C. Loy, X. Tang, Wider face: A face detec-
tion benchmark, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

6

C - YOLOV8 MODEL ARCHITECTURE

A complete overview of the YOLOv8 architecture.

54

YoloV8 Architecture

