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Executive Summary

The sustainable energy transition depends on the use of renewable energy sources and wind

turbines play a central role. Fault diagnostics and prognostics of major failures in offshore and

onshore wind turbines, causing long production downtime, have been a key research area. How-

ever, far greater attention is required for the early detection of abnormal conditions, minor faults

and failures in wind turbines. Since the accumulation of minor failures can gradually lead to

unexpected major failures, reducing the wind turbine reliability significantly. Resolving minor

failures in offshore wind turbines has higher complexity than wind turbines onshore. The pro-

duction downtime at offshore locations is amplified when harsh weather conditions, difficulties

with maintenance scheduling and safe execution of maintenance is considered. Therefore, re-

search on fault detection in wind turbine components to provide wind farm asset managers with

early indication of faults for maintenance planning is the key focus in this master thesis. Fault

detection of minor failures can improve all aspects of reliability, availability, maintainability and

safety of wind turbines.

Emphasis is placed on offshore wind turbine minor failures such as the main shaft bearings,

which have a critical role. Due to generally strict data sharing procedures in the industry for off-

shore wind turbine components condition monitoring data, onshore wind turbine data had to

be used. Unlabeled condition monitoring vibration data of the generator and rotor bearing from

2 onshore wind turbines at the Bessakerfjellet located in Trøndelag, Norway is used. The health

condition of the bearings is unknown, due to lack of wind turbine maintenance logs. The raw

vibration data is first analyzed using statistical data visualization, then frequency domain vibra-

tion analysis and finally a correlation study between the bearing vibration and wind turbine ro-

tor speed. This helped uncover the health condition of the bearings. Major findings respectively

are the effect of seasonality aspects showing higher bearing vibration in winter months, devel-

oping minor defect in one wind turbine generator bearing inner ring and cage components, and

machine resonance occurring at a particular rotor speed in both wind turbines.

Unsupervised fault detection methods are trained using the generator and rotor bearing vi-

bration data of one wind turbine showing the most anomalous data. A contamination factor

specifying the percentage of abnormality and outliers contained in the data is set based on the

author’s analysis and from expert judgement. The models trained are isolation forest, local out-

lier factor, one class support vector machines and Mahalanobis distance. The performance of

the models is evaluated from emphasis on findings from the raw vibration analysis and corre-

lation study. From a visual comparison of the detected outlier and normal data points of the

four models using scatter plots of rotor speed and vibration, the Mahalanobis distance-based

model was able to detect signs of machine resonance, outliers away from the data cluster and

low false detection within the cluster of normal bearing vibration data. The model training has

some limitations including low data size used to train the models and the judgement of abnor-
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mal, outlier percentage in the unlabeled bearing vibration data using the contamination factor.

Despite this, the results from the thesis show a strong early outlier detection performance of the

unsupervised fault detection model Mahalanobis distance and has strong implications for the

use in the onshore and offshore wind industry. This will support the decision-making process

for wind farm asset managers. Evaluation of fault detection model performance using offshore

wind turbine generator and rotor bearing condition data is required to further support the re-

sults from this thesis.
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Chapter 1

Introduction

The first chapter of this thesis puts forward the background of the problem to be investigated,

together with the formulated objectives to be solved. The approach for solving the problem and

meeting the objectives are presented. The contributions and limitations of the study, and how

the report is organised is presented in the outline.

1.1 Background and motivation

The use of onshore and offshore wind turbines (WTs) for producing clean, renewable energy

plays a key role in the transition to sustainable energy. Scaling up the production and use of

renewable energy is crucial to a successful energy transition and to meeting the global climate

objectives of the 2015 Paris Agreement, which calls for halving the greenhouse gas emissions

already by 2030 (Hutchinson and Zhao, 2023).

The onshore wind industry is a proven and a mature technology that has an extensive global

supply chain and now the offshore wind industry is expected to grow rapidly in the coming

years (Technologies, 2022). Greater consistent wind speeds offshore than when compared with

onshore locations, means deploying larger wind farms with higher production capacity in the

sea can take advantage of this natural resource (Technologies, 2022). Significantly higher wind

power generation is achievable, in contrast to onshore wind farms. Currently, there is an in-

creasing trend towards the development of larger offshore WTs and towards installation at wind

farm sites farther out in sea, with limited accessibility especially during the harsh winter months

(Fischer and Coronado, 2015). The O&M phase pose great challenges related to offshore wind

farms. The harsh weather conditions, largely variable aerodynamic, gravitational, centrifugal

and gyroscopic loads induce higher failures rates in offshore WT systems than onshore, result-

ing in overall higher frequency of faults and failures (Badihi et al., 2022).

Presently, the operational expenditure (OPEX) account for anywhere from 10% to 30% of the

total energy generation cost of onshore WTs, whereas in offshore WTs the OPEX can surge up to

2
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25% to 50% (Badihi et al., 2022). Mainly caused by the distance from shore to the offshore wind

farm location, the number of WTs installed, the O&M strategy and logistical setup (Christensen,

2022). The remote locations of the offshore WT sites combined with difficult weather condi-

tions directly reduces the time window to perform maintenance tasks safely (Zhang et al., 2022).

Safety regulations restricts the maintenance activity to be conducted in daytime, with low air

humidity, minimum allowable environment temperature of 10°C and wind speeds must below

12 m/s (Badihi et al., 2022). This together with the enormous size of offshore WTs, high com-

ponent failure rates and harsh weather conditions, increases the complexity of maintenance

scheduling and execution. Resulting in greater logistics and maintenance costs (Badihi et al.,

2022). Hence, a cost-optimised maintenance strategy is needed and motivates the extension

of condition monitoring (CM) to additional offshore WT components (Fischer and Coronado,

2015).

This issue must be addressed and hence, to upkeep offshore WTs cost-effectively, and to

ensure efficient production and financial viability of wind power, it is crucial to maintain the

offshore WTs reliability and availability (Badihi et al., 2022). Predictive maintenance (PdM) is

an appealing strategy for the offshore wind industry (Zhang et al., 2022). PdM aims to moni-

tor the condition and performance of mechanical components through condition monitoring

technologies, and in combination with data collection and analytic’s, can provide wind farm as-

set managers with early fault detection and predict remaining useful life (RUL) estimates WT

component failures. Implementing the PdM strategy can reduce the unexpected failures of crit-

ical offshore WT components. This will ultimately increase the WT production availability. The

number of trips to the sea for maintenance activities can be reduced from better maintenance

planning based on the asset condition. The maximum working life of critical WT components

can be utilized, catastrophic unexpected damages can be avoided and the safety of personnel

can be improved (Fox et al., 2022).

Generator and rotor bearings are critical WT components operating in difficult conditions.

The WT main shaft bearings support the weight of the rotor where the rotor blades are as-

sembled, they experience greater loads caused by the chaotic wind, and are required to ro-

tate smoothly and transfer the torque to the generator where electricity is produced (Kihlström,

2019). The research article by Faulstich et al. (Faulstich et al., 2011) show the annual failure rate

of minor failures in WT sub-assemblies are much greater than for major failures, while the WT

downtime from major failures is much higher than from minor failures. Here the minor failures

are classified as causing downtime of ≤ 1 day, and major failures as downtime of > 1 day. For

this reason, a majority of the research is focused on the WT sub-assemblies which cause major

failures, as found through the literature review on fault diagnostics and prognostics conducted

in the specialization project (Thiruthiyappan, 2022) in the autumn semester of 2022. The minor

failures in onshore WTs can be resolved quickly, whereas in offshore WTs, the limited accessi-
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bility, high waiting, travel and corrective maintenance repair has the potential to amplify the

WT downtime and decrease the production availability significantly (Faulstich et al., 2011). In

the case of Equinor’s Hywind Tampen, the offshore wind farm will be located 140 km from the

shore (Tampen, 2021). Faulstich et al. (Faulstich et al., 2011) state the wind farms availability

may decline further for wind farms located in the excess of 50 km from shore. Hence, generator

and rotor bearing failures can cause long WT downtime and high repair costs. Therefore, focus

on reliability improvement, effective condition monitoring with early fault detection, diagnosis

and prognosis is required to improve the lifetime of the WT bearings.

From the specialization project (Thiruthiyappan, 2022), an in-depth literature review of dif-

ferent modelling techniques used within fault diagnosis and prognosis were studied. Many au-

thors use various classifications for the methods, however, the review paper by (Gao and Liu,

2021) for wind turbine systems was chosen for its simplicity. For fault diagnosis, model-based,

signal-based, knowledge-based and the combination as hybrid method were investigated. For

fault prognosis, model-based, data-driven and hybrid approach were investigated. Hybrid mod-

els combine the strengths of different fault diagnostic and prognostic techniques, in order to re-

duce the limitations of individual models. This increases the robustness of fault detection and

RUL prediction accuracy with lower uncertainty, to aid the decision making process for main-

tenance planning (Zhang et al., 2022). The techniques/models within each of the methods are

numerous as found for example in knowledge-based fault diagnostics, which use data-driven

computational intelligence together with historical WT condition data. It is not straight for-

ward and clear which techniques and models will be the most optimal to use for any given case.

Therefore, in relation to the findings from the literature review conducted in (Thiruthiyappan,

2022), further investigation and researching within the fault diagnostics field of testing with dif-

ferent early fault detection methods are required for providing the necessary decision support

for wind farm asset managers and is the main focus of this thesis.

Relevant articles which treat problems similar to the focus of this thesis are given in the spe-

cialization project (Thiruthiyappan, 2022). Turnbull et al. (Turnbull et al., 2019) apply Fourier

analysis and support vector machine (SVM) algorithms for generator bearing failure prediction

using high-frequency vibration data. Tutiven et al. (Tutivén et al., 2022) applied one class SVM

for early fault diagnosis of the WT generator bearings based on Supervisory control and data

acquisition (SCADA) data. Wang et al. (Wang et al., 2022) applied parameter optimized isolation

forest for early fault detection of rolling element bearings using normal and abnormal vibration

data. The detection results showed more effective fault detection than other methods such as

Local outlier factor (LOF), one class SVM and Mahalanobis Distance.

The following book and RAMS course are used for studying and gaining knowledge within

the thesis topic.

• System Reliability Theory - Models, Statistical Methods, and Applications. (Rausand et al.,
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2020). This book provides a thorough introduction to system reliability theory and intro-

duces many analytical methods for reliability analysis.

• TPK4450 - Digitalized Solutions to Prognosis, Predictive Maintenance and Safety Analysis.

(Yin, 2022). This course focuses on the four following topics of competence which are 1)

Diagnosis using statistical and data driven methods, 2) Prognosis using model based and

data driven methods, 3) Decision optimization and 4) Reliability analysis & standardiza-

tion of safety-critical systems.

A major challenge found in literature is the comparison challenges between the hybrid mod-

els for fault diagnosis and prognosis to study which is more superior in performance. Hence,

there is a need for a common evaluation standard/benchmark to analyse and compare the per-

formance of the various hybrid based models together. This will allow researchers and experts

to better assess the performance and capability of hybrid models.

For the hybrid-based fault diagnosis and prognosis, the literature showed interesting com-

binations of the different fault diagnosis methods such as model-based and signal-based meth-

ods, and for prognosis, both model-based and data-driven were combined. In addition, it was

more common to combine statistical approaches and machine learning methods within data-

driven methods for fault prognosis. Further combinations of different methods and techniques

is required to increase the possibilities for implementing the most optimal performing hybrid

model for different industry use cases. A major limitation of hybrid models is the high required

time to design and safely implement the model to the use case (Zhang et al., 2022). This requires

additional research to find ways to overcome this limitation. The literature review from the spe-

cialization project (Thiruthiyappan, 2022) indicated the hybrid model approach area to be still

in the early phase, and hence requires further research and development to reap the benefits.

1.2 Objectives

The main objective of the master thesis is to investigate and compare different early fault detec-

tion techniques and models for WT components. This will provide wind farm asset managers

with better tools for informed decision making for WT maintenance scheduling and execution.

1. Explore state-of-the-art technology and present the industrial background for wind tur-

bines.

2. Present a theoretical background on fault diagnostics, workflow for fault detection model

development and unsupervised fault detection models. Present different maintenance

strategies for wind turbines and maintenance practices used in the industry.
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3. Present theory of industrial rolling bearing vibration analysis, the bearing fault frequen-

cies and the bearing wear fault stages development.

4. Investigate the acquired WT condition data through statistical data visualization, frequency

domain analysis and correlation analysis between the variables to identify trends, outliers,

and patterns in the data.

5. Train different fault detection, diagnosis models using wind turbine SCADA, or condition

monitoring systems (CMS) data, to provide early warning of anomalies.

6. Compare the different models based on fault detection performance.

1.3 Approach

1. Learn about Anomaly detection, Condition-based maintenance and Predictive analytics

workflow used by Renewable’s (REN) Integrated Operation Center (IOC) in Equinor.

2. Get access to Equinor operated offshore wind turbines SCADA data, or condition moni-

toring systems (CMS) data and relevant maintenance logs.

3. Investigate the WT data for preliminary analysis to decide what data set to use for fault

detection, prediction model development.

4. Investigate MATLAB programming language, together with relevant toolboxes such as Pre-

dictive Maintenance toolbox, Statistics and Machine Learning toolbox and the diagnostic

feature designer app for extracting relevant condition indicators.

5. Research and implement different early fault detection models using the WT data.

6. Compare the different models.

1.4 Contributions

• Improved fault diagnosis techniques

Correlation analysis between WT generator and rotor bearing vibration and rotor speed,

for identifying early signs of resonances in WT machinery. This allows for timely identifi-

cation of vulnerable WT components and locate the root cause of the fault. Minor failures

which can lead to major failures can be repaired earlier.
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Frequency domain vibration analysis for identifying early signs of bearing component de-

fects in wind turbine generator bearing, allowing for early intervention to mitigate the

developing faults.

These techniques improves the tools wind farm operators and maintenance crew can use

for early fault detection of WT bearings and helps support the decision making process

for maintenance planning.

• Early outlier detection

Systematically trained unsupervised early fault detection models using unlabeled gener-

ator and rotor bearing vibration data, to identify which models perform best in detecting

machine resonance and outliers points far from normal bearing vibration data. This con-

tributes to early detection of bearing faults and can improve the reliability of WT bearings

used in the industry.

1.5 Limitations

• Time Constraint

The short time frame of the spring semester 2023 is the major limitation to conduct mean-

ingful work and achieve good results.

• Lack of early access to WT SCADA and CMS data

Gaining access to historical wind farm SCADA, CMS data and relevant maintenance logs

proved to be a difficult challenge, causing significant delay in the thesis work. The ap-

proval process for getting access to live operational and historical SCADA data of Equinor

operated offshore wind farms was lengthy process, mainly due to strict data access pro-

cedures and policies within the Renewable’s department at Equinor. The SCADA data is

considered to be confidential information requiring approval from all the partners of each

joint venture company, who technically also own the SCADA data.

As a result of this delay and agreement with my co-supervisor Thor Inge Bernhardsen,

focus was shifted during the middle of April to obtaining Bessakerfjellet wind farm gener-

ator, rotor bearing vibration data from NTNU’s SKF @ptitude observer. Approval to use the

data had to be obtained from the wind farm operator Aneo. SCADA data of the onshore

wind turbines were acquired at the end of April.

• Unlabeled WT generator and rotor bearing vibration condition data

The already ongoing collaboration with Equinor, resulted in Aneo not having enough re-

sources to assist with providing guidance and maintenance logs of the Bessakerfjellet wind
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farm. This increased the fault detection model development difficulty with limited knowl-

edge of when maintenance activities were performed. Separating normal and abnormal

vibration behavior became an additional challenge. Resulting in only unsupervised fault

detection methods to be used.

1.6 Outline

An overview of how the remaining part of the report is organized:

• Preface: Contains practical information about what has been done, and where the work

has been carried out. The assumed background of the reader is specified here.

• Acknowledgments: Gratitude expressed to those who have supported in completing this

Master’s thesis. Acknowledging both family and professional individuals.

• Executive Summary: Contains a through summary of the work carried out in the thesis

and the importance of findings for the wind industry.

• Chapter 1. Introduction: Presents the background of the problem to be investigated, the

formulated objectives to be solved. The approach, contributions and limitations of the

study and an outline of how the report is organised is presented.

• Chapter 2. Industrial background: Presents the state of the art of offshore wind turbine

technology, how they function, wind turbine structures, installation capacities, common

faults and failures and condition monitoring techniques.

• Chapter 3. Theoretical background: Presents the theoretical background required for

solving the presented problem, which are fault diagnostics, the workflow for fault detec-

tion model development, reliability and maintenance strategies for WTs, industrial rolling

bearing vibration analysis allowing the reader to follow the work process.

• Chapter 4. Wind Turbine SCADA & CMS data: Presents the data acquisition process, the

type and format of wind turbine SCADA, CMS from Equinor and Aneo. The wind farm

components of where the data is measured is presented, along with the programs ’SKF

@ptitude observer’ and ’MATLAB’ which required for fault detection model development.

• Chapter 5. Case study: Presents the case study of the wind turbine generator, rotor bearing

and shaft vibration data statistical visualization, frequency domain analysis and correla-

tion analysis. The data pre-processing steps and the unsupervised fault detection models

training are presented.
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• Chapter 6. Results: Presents comparison scatter plots of the detected normal and outlier

data points of the unsupervised fault detection models trained.

• Chapter 7: Discussion: Presents an evaluation of supervised fault detection techniques

with the assumption of condition labels initially used, the limitations with model training

parameters, and the strengths and weakness of the unsupervised fault detection models

used.

• Chapter 8. Presents a summary of if the thesis objectives have been met, the key find-

ings and the applications for early fault detection in WT main shaft bearings for the wind

industry, and recommendations for future work are given.

• Appendix A: Acronyms

• Appendix B: Supplementary information, figures and MATLAB code

• Bibliography



Chapter 2

Industrial background

This chapter puts forward the state of the art of wind turbine technology, how they work, differ-

ent wind turbine structures, current wind power installation capacities, reliability and mainte-

nance strategies used for wind turbines, common major faults and failures of wind turbines and

the commonly used condition monitoring techniques.

2.1 State-of-the-art technology in WTs

2.1.1 How WTs work?

(a) Wind turbine components (Energy, [n. d.])
(b) Wind turbine foundations (Hoen Hersleth et al.,
2021)

Figure 2.1: Wind turbines

WTs function by harnessing the power of wind flowing on the blades. Figure 2.1a shows an

overview of the main WT components which are required for its function. The kinetic energy

10
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of the wind is converted into mechanical energy with the rotation of the rotor and low-speed

shaft. The gearbox receives the input of the rotating low-speed shaft and using a system of gears,

the rotation is significantly increased and is directly linked to the high-speed shaft (Martin Gill,

2021). The gearbox is responsible for ensuring that the rotations per minute (rpm) of the high-

speed shaft is suitable for operating the turbine generator at its optimum electricity generation

speed (Martin Gill, 2021). Hence, the generator converts the mechanical energy into useful elec-

trical energy.

2.1.2 Wind turbine structures

Various WT foundation technologies exist and for offshore wind, there are many types available.

The main drivers for the selection of foundation for offshore WTs are from the WT size, the local

water depth, the significant wave height conditions, as well as the sea bed soil conditions. Figure

2.1b shows the available foundation types for onshore and offshore wind, and after considering

the critical factors mentioned, the most suitable foundation type is selected. From figure 2.1b,

monopile and jacket foundation types are permanently fixed to the seabed for water depths

below 60 meters. For water depths greater than 60 meters, floating foundation types such as spar

and semi-submersible are used together with mooring lines fixed to the seabed. Water depths

at Equinor’s Hywind Tampen wind farm in the north sea is between 260 and 300 meters, and a

spar floating foundation type with concrete structure attached to a shared anchoring system is

used (Tampen, 2023).

2.1.3 Wind power installation capacities

The annual global wind report 2023, published by the Global Wind Energy Council (GWEC)

shows that in 2022, 77.6 gigawatt (GW) of new wind turbine installations were connected to

the electricity grid (Hutchinson and Zhao, 2023). This includes the installation of 8.8 GW of new

offshore WTs, increasing the global offshore wind capacity to 64.3 GW (Hutchinson and Zhao,

2023). The total installed wind capacity reached 906 GW at the end of 2022, with a year-on-year

(YoY) growth of 9% (Hutchinson and Zhao, 2023). The bar chart in Figure 2.2 shows the com-

bined new onshore and offshore installations outlook from 2023 to 2030 in colour blue, giving

the reader an idea of the increasing production and deployment of WTs globally. In addition, an

indication of the annual capacity gap to meet net zero goal by 2050 scenarios is shown in colour

grey. This indicates the need for further growth in development and deployment of WTs to stay

on track to meet the 2015 Paris Agreements.
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Figure 2.2: Projected and required new wind capacity outlook to 2030 (Hutchinson and Zhao,
2023)

Numerous energy provider companies globally have set concrete goals to reach net-zero

emissions. Equinor is determined to become a global offshore wind energy major by invest-

ing heavily and have built a robust offshore wind portfolio (wind, 2023). A total of 60 megawatt

(MW) of floating offshore wind (FOW) was commissioned by Norway in 2022, resulting in Eu-

rope leading the path to FOW (Hutchinson and Zhao, 2023). Equinor has the potential to be a

world leader in FOW farm technology. By 2030, Equinor plans to reach an installed net capacity

of 12-16 GW for offshore wind (wind, 2023). The latest FOW farm project by Equinor includes

Hywind Tampen with a system capacity of 88 MW, which is estimated to provide 35% of the

necessary annual electricity demand for the Snorre and Gullfaks oil and gas fields located at the

Norwegian North Sea (Tampen, 2023).



CHAPTER 2. INDUSTRIAL BACKGROUND 13

2.2 Major and minor faults, failures of WTs

Figure 2.3: Common root causes of faults and failures in wind turbines (Badihi et al., 2022)

Offshore WTs experience a range of external loads from the offshore environment and this di-

rectly leads to greater component failure rates than when compared with onshore WTs (Badihi

et al., 2022). Figure 2.3 shows a classification of the common failure modes and their root causes

into external, structural, electrical disturbances and the ordinary wear and tear. Dao et al. (Dao

et al., 2019) state the average failure rate of offshore WTs is greater than onshore WTs, however

the onshore average production stop rate is slightly higher than offshore. On the contrary, the

total downtime of a stop in production is roughly double that of onshore WTs relatively, mainly

due to harsher operating conditions and the additional challenge with accessibility of the WTs

for maintenance (Dao et al., 2019). Maintenance during downtime is normally scheduled dur-

ing winter periods with low wind speed and commonly in the summer, this allows for secur-

ing higher wind farm availability during the winter months with greater average wind speeds

(Guide_to_an_offshore_wind_farm, 2019).

Figure 2.4: Major faults and component failures in wind turbines (Badihi et al., 2022)

Badihi et al. (Badihi et al., 2022) classify the major WT fault and component failures in figure
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2.4 in terms of the severity from less severe, severe and most severe. This gives an idea of the

seriousness of faults, failures and its effect on the WT. The faults and failures in the most severe

list for instance the rotor blade/hub catastrophic failure, are critical leading to production loss

of the WT. The faults listed in the less severe and severe contribute only a partial decrease in

the WT production output capability, which however may need urgent repair to decrease the

damage caused (Badihi et al., 2022).

Faulstich et al. (Faulstich et al., 2011) provide an overview of reliability characteristics of

different WT sub-assemblies, based on available onshore WT data. Figure 2.5 shows the major

and minor WT annual failure rates and corresponding downtime. A key finding is that mechan-

ical sub-assemblies such as the drive train, support & housing, generator and gearbox fail less

frequently than the electrical and electronic sub-assemblies, however the downtime due to me-

chanical failures are more significant. To conclude, more frequent failures cause less downtime,

whereas, less frequent failures result in high downtime.

Figure 2.5: Reliability characteristics of different onshore WT sub-assemblies (Faulstich et al.,
2011)

2.2.1 Condition monitoring techniques

CBM for WTs require the implementation of efficient and cost-effective condition monitoring

systems (CMS), based on available CMS techniques found across in other industries and have

recently seen significant development (Badihi et al., 2022). The purpose of condition moni-
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Table 2.1: Condition monitoring technologies for WTs (Badihi et al., 2022)

toring is detecting the changes in equipment condition, which indicate some developing fault

(Fischer and Coronado, 2015).

Table 2.1 summarize the current CMS for WTs with information on monitoring hardware, the

condition monitoring capabilities and suitable components for monitoring. The general CMS

used include vibration, strain, torque, acoustic emission, temperature oil debris and quality

analysis. Fisher and Coronado. (Fischer and Coronado, 2015) state the commercially available

CMS in WTs are dominated by cost-effective vibration-based systems and the suitable monitor-

ing components include rotor blades, tower oscillations and bearings in the rotating drive train,

generator and gearbox. The vibration signals are mainly analysed using the time and frequency

domain techniques for fault diagnosis and prognosis (Crabtree et al., 2014). Frequency domain

analysis use spectrum analysis and Fast-Fourier Transform (FFT) (Fischer and Coronado, 2015).

It is also common to use time-frequency analysis techniques (Nie and Wang, 2013).

Significant developments in the onshore and offshore wind industry have led to employing

condition monitoring technologies with integration to the SCADA system (Pinar Pérez et al.,

2013). Condition monitoring under condition-based maintenance comprises of offline peri-

odic inspections and real-time online condition monitoring using sensors with hardware signal-

based, mathematical model-based and or hybrid techniques. Offline condition monitoring re-

quires stop in production of WTs for safe inspection. For offshore WTs with long intervals per
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inspection, real-time condition monitoring can provide up to date information of WT condi-

tion during operation. Hardware signal-based technique for WT condition monitoring analyse

the output signals of permanently assembled hardware sensors coming from SCADA systems or

other data acquisition systems (Badihi et al., 2022). In addition, the operating and environment

conditions including electrical properties, control properties and temperature properties of all

WTs are monitored and recorded to the SCADA system roughly every 10-minutes, which can be

used for both fault diagnostics and prognostics (Fischer and Coronado, 2015).

Artigao et al. (Artigao et al., 2018) state there currently is no industry agreement with CMS

for WT components which is applicable and valid across all WT sizes and technologies, hence

they suggest further research and development in CMS.



Chapter 3

Theoretical background

This chapter presents the relevant theory required to understand and solve the problem formu-

lated in chapter 1. The main theory behind fault diagnosis, unsupervised fault detection meth-

ods and the workflow for fault detection development are presented. The maintenance strate-

gies used by Equinor for their offshore wind farms and theory about industrial rolling bearings

vibration data analysis are presented.

3.1 Fault diagnosis

The aim of fault diagnosis is to monitor whether a system is in a healthy or faulty state, detect

the malfunctions early and determine where the fault is and asses the severity of the fault (Gao

and Liu, 2021). From the RAMS course TPK4450 compendium (Barros, 2021), the definition of a

symptom and fault are

Z A symptom: is the abnormal deviation of an observable quantity.

Z A fault: is an abnormal deviation of at least one characteristic of a component or a system

(structural changes, parametric changes).

Fault diagnosis comprises of three different steps which are fault detection, fault isolation

and fault estimation. Fault detection determines if a fault is present or not in an equipment and

it solely relies on the observation of the symptom(s) in the component or system (Barros, 2021).

Fault detection, also referred to as anomaly detection requires only the nominal behaviour of a

monitored system and any behaviour outside this is considered as an anomaly (Barros, 2021).

Here it is determined the time of the fault occurrence on a system (Blanke and Schröder, 2006).

Fault isolation locates the faulty component in a system, and fault estimation assesses the mag-

nitude, the kind and severity of the fault which has occurred (Blanke and Schröder, 2006).

17
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Statistical and data-based approaches are used for fault diagnosis. The three spaces are dis-

tinguished as

• The hypothesis/source space H

• The observation space X

• The decision space D

For data-based approaches, it is assumed we do not know the probability density functions

pi (x) which characterize the n+1 hypothesis. The hypothesis are instead characterized by a set

S of m observations, which constitute samples of the classes ωi and are respectively associated

to the hypothesis Hi (Barros, 2021). Hypothesis testing is used for making decisions and in the

case of when n = 1 (2 cl asses, 2 hy pothesi s) we have{
H0 : X ϵ ω0

H1 : X ϵ ω1
(3.1)

Here we want to find a partition X0,X1 of the observation space X which is defined by the

observations made on X (Barros, 2021). The general decision structure becomes

δ f (x) =
{

0 D0 : H0 i s accepted i f f (x) < 0

1 D1 : H1 i s accepted i f f (x) ≥ 0
(3.2)

Here "the function f is determined within a class of functions whereΘ is a set of parameters

that have to be optimized:" (Barros, 2021).

F = { f (x,θ)/θ ϵΘ} (3.3)

To assess the performance, the following confusion matrix in table 3.1 is utilized.

Table 3.1: Confusion Matrix with a simple case where m = 2 (Barros, 2021)

Confusion

Matrix

Hypothesis H

H0 H1

Decision D
D0 t y pe I I (β)

D1 t y pe I (α)

The confusion matrix allows for finding out the number of misclassifications classified by

two types which are false alarm and non detection. A false alarm is a t y pe I (α) and occurs when

D1 is decided, when H1 is accepted while H0 is actually true (Barros, 2021). A non detection is a

t y peI I (β) and occurs when D0 is decided, when H0 is accepted while H1 is actually true (Barros,

2021). The matrix in table 3.1 shows the type I and II errors.
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3.2 PdM algorithm development for fault detection or predic-

tion model

When a good business case is available for implementing CBM and or PdM, developing algo-

rithms for CBM and PdM requires a well planned strategy to precisely assess the machine con-

dition, early detection of machine incipient faults and for forecasting when machine failure will

occur (noa, 2023a). Figure 3.1 shows the workflow for PdM in section (a) and a deeper look

at the workflow for pre-processing data and to identifying suitable condition indicators on the

MATLAB application ’Diagnostic Feature Designer’ (DFD) provided in section (b).

Figure 3.1: PdM workflow with diagnostic feature designer workflow (noa, 2023b)

The PdM workflow is similar for developing either a fault detection model or a RUL predic-

tion model. The workflow starts with acquiring condition monitoring data, which can be from

normal system operation, the system operating in a faulty condition and run to failure system

data (noa, 2023a). Due to regular preventive maintenance action to keep the system availabil-

ity high for operation, faulty and especially system failure data is rarely available in industry.

This limits what is achievable for PdM, however, by using generated faulty and failure condition

data, it becomes possible to overcome these limitations. An in depth knowledge of the operating

system is required and it is a challenge to generate realistic fault and failure data.

Pre-processing the data is an essential step for transforming the data to be suitable for ef-

fective condition indicator feature extraction. The techniques used for pre-processing can be

system specific depending on system application, as well as employing general techniques such

as outlier and missing data removal (noa, 2023a).
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The extraction of condition indicators is a key step in the workflow, which will determine

how the trained model will perform, and this step can be a iterative step to develop the most

optimal fault detection or failure prediction model. Condition indicators are essentially features

extracted from the system data where it changes in a distinct manner as the system degrades,

and can clearly distinguish between normal and faulty operation (noa, 2023a). The mean value

which changes over time is a simple feature, while the frequency of peak magnitude in a signal

spectrum is a more complex feature (noa, 2023a).

The PdM toolbox in MATLAB has an useful application called ’Diagnostic Feature Designer’

which can be used for extracting and ranking features for condition indicators. The workflow

for DFD includes importing the condition data to the application, processing the data to a suit-

able format called file ensemble datastore and extracting time-domain and frequency-domain

features. Then the features can be ranked with histograms, using various metrics depending on

what category of model is going to be trained. The ranking methods are grouped into super-

vised, unsupervised and prognostic ranking, to evaluate features best suitable for model devel-

opment. For unsupervised ranking, Laplacian scores is a useful technique for feature ranking.

The method is formed on the real world observation in classification problems that data points

from the same variables are usually near other data points, and the ranking of features is as-

sessed by a so called ’locality preserving power’ (He et al., 2005). In-depth detail about how

Laplacian score functions is found in the research paper by He et al. (He et al., 2005). The top

ranking features of interest can be exported for developing the fault detection model.

3.2.1 Principal component analysis (PCA)

PCA is a technique used to reduce the dimensionality of a large multivariate data set, while still

containing the most important information (Jaadi, 2023). This method simplifies the machine

learning process where a smaller data set can be used, instead of the original large data set. Per-

forming PCA keeps the size of the original data set in terms of rows and columns, however the

highest possible variance is explained in the first column, called the first principal component.

The second column contains the second principal component which explain the next possible

highest variance. Before applying PCA, the first step is to standardize the original data set, since

the large and small values should equally contribute to the PCA (Jaadi, 2023). Larger values will

dominate over the smaller values, giving biased results when performing PCA and this is not

ideal. By standardizing, each value from each variable is subtracted by the mean and divided

by the standard deviation (Jaadi, 2023). Then the covariance matrix is computed to identify the

correlations between the variables in the data set, allowing for knowing how one variable influ-

ences another variable when it is increased or decreased (Jaadi, 2023). Then the eigenvectors

and eigenvalues are computed to determine all the principal components from the covariance

matrix (Jaadi, 2023). Figure 3.2 shows a scatter plot of a data set, where the first principal com-
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ponent is the diagonal line connecting with the purple lines, which maximises the variance. The

second principal component is perpendicular in direction and accounts for next highest vari-

ance (Jaadi, 2023). Performing PCA in MATLAB returns the principal component coefficients

in a matrix, where each column has coefficients for each principal components in descending

order (noa, [n. d.]). The scores in a matrix and the variances in a array, which are the eigenvalues

from the covariance matrix, are returned for each principal components (noa, [n. d.]).

Figure 3.2: First and second principal components (Jaadi, 2023)

3.2.2 Fault detection

Four unsupervised anomaly detection models for unlabeled multivariate data is presented. These

outlier detection methods are available in the Statistics and Machine learning toolbox in MAT-

LAB.

Isolation forest

Liu et al. (Liu et al., 2008) first proposed the Isolation forest algorithm in 2008 for anomaly detec-

tion. It is a so called tree-based machine learning algorithm which effectively isolates outliers

from a multivariate data set (Alam, 2020b). The algorithm is based on the theory of decision

trees and random forests, which splits the data set into two using a random threshold value and

continues to do so until all the individual data points are isolated (Alam, 2020b). The data sam-

ples are spilt, of which the deepest into the tree are classified to be less likely as anomalies, since

more splits are required to finally isolate them (Akshara_416, 2021). Likewise, the data samples

which required the least splits to isolate are considered as anomalies and would be the shorter

branches of a tree (Akshara_416, 2021). When the isolation forest model has been trained, an

anomaly score is given based on the depth of the tree which is required to reach the data point
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(Akshara_416, 2021). Figure 3.3 shows two scatter plots where in plot 3.3 (a) shows the anomaly

point easily classified in the tree with the branch 1 and 2, and in plot 3.3 (b) shows a normal

point which took branch 8 and 9 to classify. This shows the outliers in the data can be isolated

quickly.

Figure 3.3: Isolation forest model showing a anomaly and normal point (Akshara_416, 2021)

Here a contamination factor is needed to specify the percentage of outliers in the data and

is used for calculating the model score threshold. This is used for detecting the outliers in new

data, after the model is trained. The threshold value is set based on the contamination factor

used and specifies the percentage of data to be classified as faulty.

Local Outlier Factor (LOF)

The LOF is a unsupervised machine learning algorithm which utilizes the density of the data

points in the distribution to classify outliers (Alam, 2020a). The algorithm uses the density of a

data points and compares to its neighbouring data points, and since outliers are generally from

low density area in the distribution, the ratio is greater for outliers (Alam, 2020a). Hence, the LOF

of the outliers are most likely to be high, than when compared with normal points, where they

are generally from high density areas, having lower LOF. This technique functions best when

the data set is highly spread out, meaning the density is not concentrated in one area (Shukla,

2022). A contamination factor value can be set manually to give the LOF model a proportion of

the data set which is considered as outliers (Shukla, 2022). Figure 3.4 shows a scatter plot of LOF

with the outlier scores given as a red circle. The data points with a long distance to the other

data points, which are the large red circles are considered as most likely to be a outlier.
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Figure 3.4: Local outlier factor scatter plot with outlier scores (akshayvarma72, 2020)

One-class support vector machine (SVM)

SVM is an algorithm used for classification, and utilizes hyper-planes in a multi-dimensional

space to effectively separate a class of observations to another class of observations (Alam,

2020c). One class SVM works by using an hyper-sphere to classify normal and outlier data

points. This method can be used to detect outliers when only normal machine condition data

is available, where the model then tries to group new data, and if it does not belong to a estab-

lished group, it is classified as an anomaly (Alam, 2020c). Figure 3.5 shows a plot of red circles, in

this case the one class SVM constructs an optimal best fit hyper-sphere from the training data,

and data points located outside the hyper-sphere are classified as outliers (Kilaru, 2022).

Figure 3.5: One-class support vector machine (SVM) showing best fit hyper-sphere (Kilaru, 2022)

Mahalanobis Distance

The Mahalanobis distance method is used to detect outliers using a multivariate distance metric

in a multivariate data set. The multivariate distance metric overcomes the major limitation of

using the commonly used Euclidean distance between two data points, which is a straight line
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distance (Prabhakaran, 2019). The euclidean distance functions best when the dimensions of

the data are equally weighted, as well as being independent of each other (Prabhakaran, 2019).

The euclidean distance however gives different values of variables when the unit is changed,

even though the physical distance between the data variables remains the same. This can be

solved with standardizing the variables, however when the data variables are correlated with

each other which is usually the case, incorrect classifications can be made (Prabhakaran, 2019).

Figure 3.6 shows two scatter plots where in the left plot, the data variable X and Y are uncor-

related variables and the right plot has correlated variables. In the uncorrelated case, the eu-

clidean distance to the centroid can be used to classify if the points are a member of the distri-

bution (Prabhakaran, 2019). In the correlated case, the euclidean distance is the same from the

centroid, however it is only point 1 which is a member of the distribution, while point 2 is clearly

outside the main distribution. Using Euclidean distance for correlated variables give incorrect

classifications, hence it is not suitable. The multivariate distance metric however measures the

distance from a data point to the distribution instead and works by using the covariance matrix

of the data set (Prabhakaran, 2019). The mean value is subtracted of each value in the variables

and divided with the covariance value. This overcomes the limitation with Euclidean distance

and solves the issue with scale and the possible correlation between variables (Prabhakaran,

2019).

Figure 3.6: Euclidean distance for classifying data points with correlated and uncorrelated data
variables (Prabhakaran, 2019)

3.3 Reliability, maintenance objectives and strategies for WTs

The success of wind farms, especially in offshore locations, is highly dependent on the reliability

of the WTs. It is critical to the design, O&M, performance assessment and improvement of the

WTs (Dao et al., 2019). The definition of reliability given by (Rausand et al., 2020) as

Z Reliability: The ability of an item to perform as required in a stated operating context and
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for a stated period of time.

WTs with a low level of reliability may result in high production unavailability due to several

component breakdowns requiring extensive maintenance, which gives high O&M costs. On the

contrary, WTs with a high level of reliability may have low production unavailability due to re-

duced breakdown frequency, however it can be prohibitively costly to accomplish (Dao et al.,

2019). Pinar Pérez et al. (Pinar Pérez et al., 2013) state that new larger WTs fail more frequently

compared to smaller WTs and hence the reliability needs to be greatly improved. The overall

offshore WT farm performance and electricity generation is greatly affected by the reliability

of the WTs. Figure 3.7 shows a hierarchy of factors affecting the cost of energy produced and

the factors highlighted in gray are of interest. Among this, reliability directly affects availability

and the energy produced. In addition, the O&M expenditure from component breakdowns and

maintenance activity costs contribute to a significant part of the WT lifetime costs, affecting also

the cost of energy produced (Dao et al., 2019).

Figure 3.7: Structure of cost of energy of wind turbines (Tavner, 2021)

The definition of maintenance and maintainability given by (Rausand et al., 2020) are

Z Maintenance: the combination of all technical and management tasks intended to retain an

item in, or restore it to, a state in which it can perform as required.

Z Maintainability: The ability of an item, under stated conditions of use, to be retained in, or

restored to, a state in which it can perform as required, when maintenance is performed under

stated conditions and using prescribed procedures and resources.

Figure 3.8 shows the commonly implemented maintenance strategies in the industry such as

corrective maintenance (CM), preventive maintenance (PM) which includes time-based main-
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tenance (TBM) and condition-based maintenance (CBM). The conventional maintenance strate-

gies for onshore WTs include CM and PM, this approach however for offshore WTs is not suffi-

cient and needs to be improved to ensure lower OPEX (Artigao et al., 2018). Fox et al. (Fox et al.,

2022) state that CM and PM dominate the presently used maintenance strategies for offshore

WTs.

Figure 3.8: Maintenance objectives and strategies (Badihi et al., 2022)

CM is reactive based, and maintenance is performed immediately after a component fail-

ure occurs or scheduled at the next suitable time. PM includes TBM and CBM strategies. TBM

is a planned maintenance activity for a component or system at pre-selected intervals of time

without considering the condition of the equipment. Whereas, CBM takes into consideration

the actual condition of the equipment from the use of condition monitoring technologies and

when the measured variables reach a pre-selected threshold, the necessary PM activity is sched-

uled. CBM finds the optimum level between CM and PM, the unnecessary maintenance activ-

ities are decreased and is regarded to be essential to reaching high system availability (Artigao

et al., 2018).

PdM builds upon CBM with the use of relevant theory and prognosis methods to estimate

the remaining useful time of the equipment. This is the time until failure and the necessary

PM activity is scheduled before the failure is expected to occur. Hence, for offshore WTs, PdM

is critical for achieving high production availability for critical WT components with early fault

detection and diagnosis.



CHAPTER 3. THEORETICAL BACKGROUND 27

3.3.1 Equinor’s maintenance strategy for offshore wind farms

Equinor currently operates and as part of a joint venture partnership with external companies,

jointly owns a range of offshore wind farms such as the Dogger bank (UK), Sheringham Shoal

(UK), Dudgeon (UK), as well as owning its own offshore wind farms such as Hywind Scotland

(UK) and Hywind Tampen (Norway) (wind, 2023). In addition, there are ongoing collaboration

with more companies worldwide to construct and operate more offshore wind farms.

Figure B.1 provided in the appendix show an overview of Equinor’s failure management

strategies with a more in-depth breakdown and processes involved than when compared with

figure 3.8. At Equinor, a combination of traditional CM, TBM, CBM and PdM are utilized for

offshore wind farms. The choice of maintenance strategy is highly dependent on the critical-

ity of the WT component failure, the cost of implementing the maintenance strategy and other

factors such as spare part inventory is taken into account. CBM is mainly implemented if there

is a good business case and it is cost-beneficial for the equipment, where repair cost and the

time required to perform the maintenance activity per WT in the offshore wind farm is consid-

ered (Svennevig, 2022). This can more optimally utilize the remaining WT component condition

and is expected to increase the profitability of the WT operation. Maintenance optimization is

performed by implementing CBM and PdM together with the asset’s failure management pol-

icy, by processing data from online condition monitoring and using predictive analytic’s (PA)

(Svennevig, 2022). From Equinor’s guidelines for PdM and CBM (Svennevig, 2022), "Predictive

Analytics includes a selection of mathematical and statistical techniques within the framework

of probability theory. Machine learning apply these techniques to predict the expected future

condition of an equipment within a certain probability."

One of Equinor’s key priorities from the Maintenance strategy for NES (REN) Operated As-

sets (Callister, 2021) is "The maintenance process shall have a reliability and availability focused

approach, where condition monitoring and proactive maintenance routines are the primary

maintenance drivers." This gives the reader an idea of the emphasised approach for condition

monitoring. Data driven O&M is a key focus area of Equinor’s offshore wind technology strat-

egy (Callister, 2021). The road map for offshore wind technology strategy for 2023 shows that

their NES Integrated Operation Centre (IOC) Anomaly detection PowerBI dashboard is up and

running, predictive algorithms are running and a shift from TBM to CBM is implemented. The

purpose of the REN IOC dashboard is to support the O&M teams with anomaly detection, CBM

forecast with trends, predict component failures and optimising the maintenance performance.

3.4 Industrial rolling bearing

Rolling bearings are commonly used in industry for many applications and the following de-

scription provides a basic understanding of their function.
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Rolling bearings support and guide, with minimal friction, rotating or oscillating

machine elements – such as shafts, axles or wheels – and transfer loads between

machine components. Rolling bearings provide high precision and low friction and

therefore enable high rotational speeds while reducing noise, heat, energy consump-

tion and wear.

(SKF_Bearing_Basics, 2023)

Figure 3.9 shows the four main components required for the bearing to function which are

an outer ring, inner ring, rolling elements and a cage. A seal is used to hold and protect the

bearing lubricant from harmful external contaminants. The rolling elements contact surface

with the bearing raceway differentiate if the bearing is a ball bearing or a roller bearing. Ball

bearing as in figure 3.9 have a point contact surface and a roller bearing have a line contact

surface, making it capable of accommodating heavier loads (SKF_Bearing_Basics, 2023).

Figure 3.9: Ball bearing components (SKF_Components_and_materials, 2023)

3.4.1 Vibration analysis for fault diagnostics

During operation of industrial machines, all mechanical components vibrate as they interact

with both internal and external forces (SKF_Vibration_Diagnostic_Guide, 2011). Vibration is

the mechanical oscillation about an equilibrium point (ISO_2041:2018, 2018). Vibration can

be used as an indicator of a mechanical components condition, due to the distinct charac-

teristic of excessive vibration which is commonly observed with faults in rotating machinery

(SKF_Vibration_Diagnostic_Guide, 2011). In addition, different faults in machines produce usu-

ally a distinct vibration pattern, and this can be used for identifying the root cause of the ma-

chine problem for performing the necessary maintenance repair

(SKF_Vibration_Diagnostic_Guide, 2011). Hence, vibration can provide an insight into the early

development of fault conditions and the vibration pattern changes along with the machine con-

dition (Mobius_Institute, 2016).

A vibration signal is analysed by splitting it into two components which are it’s amplitude

and frequency (SKF_Vibration_Diagnostic_Guide, 2011). These two signal characteristics of a
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Figure 3.10: Vibration signal scale factors (Adapted from (Litchwark, 2023))

signal are well known to engineers. The formal definitions of amplitude and frequency are:

Z Frequency: is the reciprocal of the period which is the smallest interval of time for which a

periodic function repeats itself. It is measured in the unit Hertz (Hz), which corresponds to one

cycle per second (ISO_2041:2018, 2018).

Z Amplitude: is the magnitude, size or value of a quantity (ISO_2041:2018, 2018). For vibration,

it depends on the severity of the mechanical fault.

To compare and analyse vibration signals overall values, the industry uses scale factors. The

three factors commonly utilized are Peak, Peak to Peak and Root Mean Square (RMS). Figure

3.10 shows these methods on a vibration signal measured with an accelerometer vibration sen-

sor. The y-axis unit is given in acceleration (g) and time is used for the x-axis. From the neutral

position, or zero reference, the peak amplitude value is the highest point in the top signal wave-

form, whereas peak to peak amplitude value is the distance from the highest top waveform to

the lowest waveform. The RMS value is the square root of the sum of all the squared instanta-

neous values of the vibration signal, and for a pure sine waveform, the RMS value is simply 0,707

times the peak value (SKF_Vibration_Diagnostic_Guide, 2011). The RMS value of the vibration

signal in Figure 3.10 is indicated with a red horizontal dotted line.

The position of the accelerometers on an machine is important to capture the vibrational

motion in different directions. Figure 3.11 shows the industry standard for the position of ac-

celerometers on an industrial motor on both the drive and non drive end. Accelerometers are

mounted in the axial, vertical and horizontal direction. Due to the assembly of the motor to the

ground, the horizontal measurements usually show more radial vibration due to the machine

flexibility in the horizontal plane (SKF_Vibration_Diagnostic_Guide, 2011). Whereas, due to the

mounting and force of gravity, there is less movement in the vertical direction and hence lower

vibration (SKF_Vibration_Diagnostic_Guide, 2011). The function of the motor makes it that the

greatest forces are experienced in perpendicular direction to the motor shaft and hence, the
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movement in the axial direction is expected to be low under normal operation

(SKF_Vibration_Diagnostic_Guide, 2011). Unless if there are other machinery problems present

such as misalignment and bent shaft, which lead to greater axial vibration.

Figure 3.11: Measurement sensor position on industrial motor
(SKF_Vibration_Diagnostic_Guide, 2011)

There exists various sensor technologies such as proximity probes, velocimeters and ac-

celerometers which can measure vibration respectively in displacement, velocity and accelera-

tion. Their effectiveness of measuring vibration is different at various frequency ranges. "Dis-

placement is most sensitive to lower frequencies, acceleration is most sensitive to high frequen-

cies and velocity is sensitive to most frequencies but not so great at very high or very low fre-

quencies." (Mobius_Institute, 2016). Velocity vibration sensors lose measurement effectiveness

below 10 Hz and above 2 kHz (SKF_Vibration_Diagnostic_Guide, 2011). To overcome this, ac-

celorometers are used, where it’s strength is the ability to operate in a wide range in frequency

from nearly 0 Hz to above 400 kHz (SKF_Vibration_Diagnostic_Guide, 2011). Specifically a ce-

ramic piezoelectric sensor is used to measure the vibration acceleration in industrial machines

(Measuring_Vibration_with_Accelerometers, 2023).

Time Waveform Analysis of the vibration signal can be a starting point to get an idea of the

bearing condition. It is a graph of the amplitude of the vibration signal plotted with time. Com-

monly a short time sample of the raw vibration is available (SKF_Vibration_Diagnostic_Guide,

2011). The time waveform provides a view of the complete vibration picture of the bearing and

it is rather difficult to diagnosis any faults. More advanced techniques are required.

Fast Fourier Transform (FFT) spectrum analysis is an important vibration analysis tool,

providing the capability of diagnosing various machinery problems (SKF_Vibration_Diagnostic_Guide,

2011). The principal idea of FFT is to break the raw vibration signal down into specific ampli-

tudes at various component frequencies as figure 3.12 is illustrating. FFT transforms the vi-

bration signal from the time domain to the frequency domain, where the x-axis becomes fre-

quency instead of time. FFT allows for the isolating the root cause of the problem such as
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for rolling bearings, which have physically corresponding defect fault frequencies. Due to the

fact that certain machinery problems occur at specific frequencies, it becomes possible to anal-

yse the FFT spectrum by observing the change in amplitude at the frequency ranges of interest

(SKF_Vibration_Diagnostic_Guide, 2011).

Figure 3.12: FFT spectrum analysis (SKF_Vibration_Diagnostic_Guide, 2011)

An FFT spectrum becomes useful with isolating and diagnosing machinery faults which have

developed, however, more advanced techniques are required for the early detection of rolling

bearing faults. This would allow for the timely intervention to resolve the fault by taking pre-

ventive maintenance action. A common starting point of bearing damage is through improper

lubrication, corrosion & contamination to the lubricant and damaging of the bearing surfaces,

and excessive load causes surface fatigue (Katz, 2021). "Initial bearing fatigue results in shear

stresses cyclically appearing immediately below the load carrying surface. After a time, these

stresses cause cracks that gradually extend up to the surface. As rolling elements pass over these

cracks, fragments break away. (SKF_Vibration_Diagnostic_Guide, 2011)" This phenomenon is

referred to as spalling and figure 3.13 illustrates this.

Figure 3.13: Spalling fault in bearing outer ring raceway (SKF_Vibration_Diagnostic_Guide,
2011)

Envelope Detection is an effective technique at detecting the early development of the fail-

ure mode spalling. A characteristic behaviour of spalling, is that a low amplitude, high frequency

impulse signal is generated each time the rolling element of the bearing rolls over the defected

area (Vermeiren and Bark, 2011). This repetitive impulse signal becomes difficult to observe
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when it is combined with the normal machine signal noise and the overall structural vibration,

resulting in a complex vibration signal (Vermeiren and Bark, 2011). Envelope detection, referred

also as ’Acceleration enveloping’ relies on a series of process and band-pass filters to remove

the low frequency rotational vibration signals and enhance the repetitive impact type signals

(SKF_Vibration_Diagnostic_Guide, 2011). Enveloping detection, combined with FFT allows for

fault detection, isolation and assessing the severity through fault estimation at the early stages

of bearing failure.

3.4.2 Bearing defect frequencies

The geometry of the rolling bearing allows for the calculation of four fault frequencies which cor-

respond physically to the movement the rolling elements make with a shaft rotation. This can

be used to find the root cause of the bearing fault through frequency domain vibration analy-

sis. The peak amplitude at these fault frequencies enables to diagnosis the bearing fault. The

following variables of the rolling bearing is required to calculate the fault frequencies. Figure

3.14 shows these variables, which are the pitch diameter (PD ), ball diameter (BD ), number of

balls (NB ) and the contact angle (β) between the outer and inner race. The rotations per minute

(RP M) of the shaft is also necessary.

Figure 3.14: Rolling element bearing variables for fault frequency calculation (Fernandez, 2017)

The four distinct fault frequencies together with their formulas from (Fernandez, 2017) are:

The Ball Pass Frequency - Outer race (BPFO) which is the rate of a rolling element passing

a point on the outer race of the bearing and in the case of a damage on the outer race, a periodic

pulse is created (Mobius_Institute, 2016). The following formula 3.4 can be used

BPFO = RP M
NB

2

(
1− BD

PD
cos(β)

)
(3.4)

The Ball Pass Frequency - Inner race (BPFI) which is the rate of a rolling element passing a

point on the inner race of the bearing and in the case of a damage on the inner race, a periodic

pulse is created (Mobius_Institute, 2016). The following formula 3.5 can be used
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BPF I = RP M
NB

2

(
1− BD

PD
cos(β)

)
(3.5)

The Ball Spin Frequency (BSF) is the rate of which a point in the rolling element passes the

inner and outer race of the bearing and in the case of a damage on rolling element, a periodic

pulse is created each time it strikes the raceways (Mobius_Institute, 2016). The following for-

mula 3.6 can be used

BSF = RP M
PD

BD

[(
1− BD

PD
cos(β)

)2]
(3.6)

The Fundamental Train Frequency (FTF) most commonly referred to as the cage frequency

and is the rate of which the bearing cage rotates with each shaft rotation (Fernandez, 2017). The

following formula 3.7 can be used

F T F = RP M
1

2

(
1− BD

PD
cos(β)

)
(3.7)

When details about the rolling bearing is known, the precise fault frequencies can be calcu-

lated for effective fault diagnosis. There exists also simplified formulas which can be used in the

case the bearing type details are not known, in this case the number of balls and the RPM are

required.

3.4.3 Fault and failure stage development

Bearings which are correctly specified, transported, stored, installed, lubricated and operated,

is expected to operate reliably to its design lifetime (Mobius_Institute, 2016). However, the im-

proper handling, poor design and service of a bearing results in it to only operate to around 10%

of the designed life time (Mobius_Institute, 2016). Bearing failures can be spilt into four cate-

gories being lubrication (36%), fatigue (34%), handling & installation (16%) and contamination

(14%) (Mobius_Institute, 2016). The percentages of the bearing failures indicate that lubrication

and fatigue of the bearings are accountable for the majority of the failures. Increased load on the

bearing which is beyond the design load will reduce the fatigue life and decrease the operational

life (Mobius_Institute, 2016). Lubrication of the rolling elements inside the bearing is vital for

a smooth operation, however, the type, the quantity of the lubrication being too much or too

little can greatly impact the operational life of the bearings (Mobius_Institute, 2016). Contam-

ination in the bearings, by the presence of foreign particles can impact the rolling elements in

the bearings, leading to damage for example in the inner and outer race.

Typically the wear of a bearing is spilt into four stages which can be progressed through in

different speeds, depending on the use case and environment of the bearings. Figure 3.15 shows

these with important bullet points of the stages. Due to the change in vibration between the
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stages, different indicators can be used. The vibration can be spilt into four components which

are friction between surfaces, stress waves from metal-to-metal contact, periodic vibration from

many bearing fault types and resonance from surface impacts (Mobius_Institute, 2016).

Figure 3.15: Bearing wear stages (Mobius_Institute, 2016)

Stage one bearing faults are only sub-surface damage and are caused by friction and minor

impacts of metal to metal contact within the bearing. High frequency vibration greater than

20 kHz with low amplitude is generated from friction and stress waves from very short dura-

tion impacts (Mobius_Institute, 2016). Here, high frequency detection with early upward trend

and envelope (demodulation) analysis methods with an increase in overall floor noise are most

effective at showing the earliest signs of faults. The bearing damage is difficult to see and a

possible maintenance action would be to lubricate correctly, while looking for the root cause.

Stage two bearing faults are also sub-surface damage and are caused by friction and mi-

nor bearing component impacts. The high frequency vibration continues to increase in ampli-

tude and can cause resonances of the machine at its natural frequency (Mobius_Institute, 2016).

Additionally, lower frequency vibration greater than 2 kHz is generated, as the fault develops.

Similarly to stage one detection techniques, high frequency detection will show upward trend

and envelope analysis will show increase in overall noise. These methods are most effective at

showing the signs of faults. Now the acceleration spectrum will indicate fault development and

time waveform analysis becomes useful. The bearing damage is still difficult to see and a possi-

ble maintenance action would be to check and lubricate correctly, while investigating the root

cause.

Stage three bearing faults show signs of more significant damage and the high frequency

vibration amplitude increases more in amplitude. The increased wear generates more higher

amplitude vibration with lower frequency (Mobius_Institute, 2016). The envelope spectrum will

be most effective at fault visibility, and acceleration spectrum may shows signs of increasing

peaks at the bearing fault frequencies. The velocity spectrum will shows signs of wear in the
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bearing (Mobius_Institute, 2016).

Stage four bearings faults will show significant damage and it is usually that damage in one

bearing component will result in the damage of other bearing components and so on, due to

the nature of bearing component contacts during operation (Mobius_Institute, 2016). The high

frequency vibration will be less and may show a downward trend, due to the fact that constant

metal-to-metal impacts have a smoothing effect and the sharp impacts will reduce. This method

becomes less effective, whereas, the envelope, acceleration and velocity spectrum’s will show

the fault condition. The overall floor noise will be high in the envelope spectrum, since, there

are many points of damage contacts on the bearing, generating low frequency vibration with

high amplitude (Mobius_Institute, 2016). The bearing damage will be easily visible and the rec-

ommended maintenance action would be to replace the bearing.

It is important to note that it is usually other machinery problems which results in an bear-

ing defect and the source of the problem is not commonly the bearing defect itself

(SKF_Vibration_Diagnostic_Guide, 2011). Therefore, the presence of a developing bearing de-

fect indicates that other machinery problems may be present and should be investigated in par-

allel, so that both issues can be resolved. Detecting the bearing faults does not automatically

improve the reliability and extend the bearing life, the necessary preventive maintenance repair

should be taken and the consequences can be reduced (Tranter, 2016).



Chapter 4

Wind turbine SCADA & CMS data

This chapter presents the data acquisition process for offshore and onshore WT SCADA and

CMS data. Details about the wind farm, WT component of the data acquired and the applica-

tions used to store and analysis the data are presented.

4.1 Data acquisition

Table B.1 shows a timeline summary of the data acquisition process and is provided in the ap-

pendix Chapter 4

4.1.1 Equinor - offshore wind farms

This master’s thesis is carried out in collaboration with the energy company Equinor, who oper-

ates and owns many offshore wind farms. Hence, in relation to the problem formulated in this

thesis, it was a natural choice to obtain SCADA and other CMS data of their offshore wind tur-

bines. However, the approval process for getting access to the live operational data and histori-

cal SCADA data of Equinor operated offshore wind farms such as Sheringham Shoal (SHS), Hy-

wind Scotland (HYS) and Dudgeon (DOW) was an unusually lengthy process. This was mainly

due to strict data sharing procedures and policies within the Renewable’s department at Equinor.

The offshore wind farm SCADA data is considered to be highly confidential information which

would need approval from all the partners of each joint venture company of the wind farms,

since they technically own the SCADA data as well. The data approval process plus the manda-

tory risk assessment was estimated to take months. Due to this and the limited time of the

master’s thesis, the scope of using Equinor’s offshore wind farms SCADA data was not viable. A

suggestion was given by the Equinor REN renewable’s asset management, of providing access

to anonymised and tweaked SCADA data, such that it would not be possible to recognise which

wind farm the data was originating from. This as well would have taken many weeks to get

36
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access to and hence it was decided in the end to use the available data from NTNU and Aneo.

Meaningful work on understanding the maintenance strategies implemented by REN Equinor

such as anomaly detection, condition-based maintenance and predictive analytic’s for offshore

wind turbines was carried out in the meantime, while waiting for access to the SCADA data.

Preparation to analyse the data and develop the fault diagnosis models and how they can be

compared was carried out.

4.1.2 Aneo - onshore wind farms

The renewable energy company Aneo was established in 2022 by TrønderEnergi and HitecVi-

sion (noa, 2023c). Aneo is demerged from TrønderEnergi and they now own and operate all

the wind power plants from TrønderEnergi’s portfolio (noa, 2023c). As part of the RAMS lab at

NTNU, several vibration sensors are amounted on the generator and rotor axle bearings of 2

onshore wind turbines at the Bessakerfjellet wind farm in Åfjord municipality. This wind farm

is owned and operated by Aneo. These accelerometer sensors were installed by students from

the Department of Mechanical and Industrial Engineering (MTP) in April 2022 and started col-

lecting vibration data since then. This data is stored to NTNU’s SKF @ptitude observer. With

agreement from my co-supervisor Thor Inge Bernhardsen, focus was shifted during the middle

of April to obtaining and analysing the generator, rotor bearing vibration data from NTNU’s SKF

@ptitude observer database. Approval from Aneo was obtained before using the vibration data.

SCADA data from Aneo of the onshore wind turbines were obtained at the end of April 2023.

This Bessakerfjellet SCADA data was originally shared for a research project in FWE Northwind

at NTNU and the same access was provided. The data included the WTs active power, nacelle

direction, turbulence, wind direction and wind speed. SCADA data from August 2017 to the end

of April 2022 was shared. Due to the already ongoing collaboration with Equinor, Aneo did not

have enough resources to assist with providing additional guidance and sharing of maintenance

logs of the wind turbines. This increased the fault detection model development difficulty with

limited knowledge of when maintenance activities were performed and assumptions for gaps

found in the data had to be made. Separating normal and possible faulty vibration became an

additional challenge.

4.2 Bessakerfjellet

4.2.1 Description of wind farm

The wind farm officially opened in 2008 and has a total of 25 WTs installed of type Enercon E-70

(NVE, [n. d.]). The average yearly wind speed is 8.5 m/s at the Bessakerfjellet (NVE, [n. d.]). The

WTs has a cut-in wind speed of 2.5 m/s, rated wind speed of 15.0 m/s and a cut-out wind speed
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of 34 m/s (Bauer and Matysik, 2023). The hub height is 64 meters and the rotor diameter is 71

meters and has a rated generator power is 2.3 MW (Bauer and Matysik, 2023). The wind farm

electricity production is on average 175 GWh annually (NVE, [n. d.]).

4.2.2 Rotor and generator axle bearing

The 3 rotor blades of the WT is mounted on a rotor axle which rotates on a double row tapered

rolling bearing. This bearing will be referred from here on as rotor bearing. The generator is

located further inside the WT which generates electricity with the rotation of the axle. The axle

here is supported and rotates on a single row cylindrical roller bearing. This bearing will be

referred here on as generator bearing. The inner ring of both the bearings is the rotating com-

ponent together with the shaft. Table 4.1 shows the rotor and generator bearing model types.

Table 4.1: Bessakerfjellet WT bearing information

Placement Rolling bearing type Bearing arrange-

ment

Model

Rotor Axle Double row tapered

roller bearing

Locating support SKF BT2-8079/HA1 OHNE

DICHTUNG

Generator Axle Single row cylindri-

cal roller bearing

Non-locating sup-

port

SKF BC1-8033/HB1VK443

The double row tapered roller bearing used for the rotor bearing provides locating support

which accommodates high radial and axial loads in both direction. The single row cylindrical

roller bearing used for the generator bearings provide a non-locating support which can accom-

modate high radial load and locate the shaft axially in one direction. Specifications of the bear-

ings are listed in table 4.2. Details about the rolling element ball diameter was proven difficult

to gather and hence, is left blank.

Table 4.2: Bessakerfjellet WT rotor and generator bearing specifications

Specification Rotor Bearing Generator Bearing

Outside diameter (D) 540 mm 1050 mm

Inside bore diameter (d) 400 mm 850 mm

Pitch diameter (PD ) 470 mm 950 mm

Number of balls (NB ) 41 12

Ball diameter BD

Contact angle (β) 11.667 ° 0°
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Figure 4.1: Bessakerfjellet wind turbine bearing placement (Meland and Haugan, 2021)

Preventive maintenance action is carried out twice a year, with one in the summer and the

other in winter (Karzon et al., 2022). The lubrication pump are filled up in the summer and

winter, while grease cartridges are changed only in the summer (Karzon et al., 2022).

4.2.3 Accelerometers

There are in total 3 accelerometers mounted by NTNU on selected WTs. The model type of

the accelerometer is SKF CMSS-WIND-100-10 which has a measurement range from 0.5 Hz to

10000 Hz, and is specially designed for the use in WT generators due to its low profile and com-

pact size (Meland and Haugan, 2021). One sensor is mounted on the rotor bearing, measuring

radial vibration, which is perpendicular to the shaft. Two sensors are mounted on the generator

bearing, one measuring axial and the other measuring radial vibration. A tachometer is used for

measuring the number of rotations per minute of the WT axle.

4.3 SKF @ptitude observer

The accelerometer and tachometer sensors are mounted on the rotor and generator bearing

of WT 4 and WT 21 in the Bessakerfjellet. These sensors were installed and configured for the

first time in April 2022 and hence only started to measure data from this month. The data is

collected and stored in ’NTNU - Bessakerfjellet’ folder within SKF @ptitude observer database.

This application provides the capability of viewing and analysing the measured vibration signals

with numerous graphic displays and diagnostic tools. The raw vibration signal can for example

be viewed in the time waveform for initial analysis, and more advanced tools such as spectra are

available which uses FFT for viewing the signal in the frequency domain.

Figure B.2 provided in the appendix Chapter 4 shows an overview of the application and

shows an example the WT 21 rotor axle enveloped radial vibration signal in a trend graph, to-
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gether with the rotor speed. Various measuring points are setup per accelerometer sensor, al-

lowing for measuring and capturing the bearing vibration in different frequency ranges. The

list below shows the measuring points setup and the information is gathered from the following

relevant NTNU project assignment (Karzon et al., 2022).

• Acceleration: 1kHz Dynamic

• Envelope 1: 5 Hz - 100 Hz Dynamic, Envelope

• Envelope 2: 50 Hz - 1 kHz Dynamic, Envelope

• Envelope 3: 500 Hz - 10 kHz Dynamic, Envelope

The first bullet point measures the acceleration of the shaft which can be either in radial or

axial direction depending on where the accelerometer is mounted. The name for this measur-

ing point is given in short form as ’ACC (1 kHz)’. The enveloped vibration signal are named in

short form as ’ENV 1, 2 or 3’ depending on the measurement frequency range. For each sensor

whether it is measuring radial or axial vibration, the four measuring points are configured ’ACC

(1 kHz)’, ’ENV 1’, ’ENV 2’ and ’ENV 3’. Figure B.2 shows this setup in the hierarchy tree. The letter

A or R is used to denote whether it is axial or radial vibration respectively.

For the trend graph in figure B.2 for ’3 Rotor aksel R ENV 3’, the x-axis is given in Time and for

the y-axis is given in ’gE PtP’. The ’g’ denotes it is a acceleration signal and the ’E PtP’ indicates

the signal is transformed with the envelope detection method and shows the peak to peak value

of the vibration signal.

4.3.1 Warning and alarm levels

The SKF application allows for setting a warning and alarm level on the trend graph. The colour

of warning level is given in orange and the alarm level has colour red. These threshold levels are

already preset by previous NTNU bachelor students in MTP department, who have setup the

sensors on the Bessakerfjellet WT and connected these to the SKF @ptitude observer. Thresh-

olding is a simple anomaly detection method which can alert an anomaly when the system vi-

bration level exceeds a threshold on a statistical metric (noa, 2023d). The thresholds were set

by referring to relevant standards such as ISO 10816 and VDI 3834, and from recommendations

from the machine supplier (Meland and Haugan, 2021). ISO 10816 specifies the measurement

and evaluation of mechanical vibration of WTs and its components, and splits the WTs into two

groups depending on if the WT has a gearbox or not.

The warning level from SKF is referred to as alert in ISO 10816 (ISO_10816-21:2015, 2015)

and the purpose is to indicate that a specified vibration limit is reached and remedial measures

are necessary. The alert signal is the first zone of an anomaly, requires an heightened awareness

and is identified with a yellow indicator (ISO_13372:2012, 2012). Additionally, ISO 10816 points
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out that it is generally permissible to allow the WT to operate until the cause of the increase

in vibration has been found and any preventive measures have been undertaken (ISO_10816-

21:2015, 2015).

The alarm level is similarly referred to as alarm in ISO 10816 and the intent is to protect the

WT and its components from function failure which can lead to unsafe operating conditions. It

indicates that an selected anomaly has occurred and the necessary corrective actions is required

(ISO_13372:2012, 2012). Crossing the threshold value further indicates that operation of the WT

will be harmful and damage the WT components (ISO_10816-21:2015, 2015).

4.4 MATLAB

The SKF @ptitude observer lacks functionalities required for multi-dimensional data analysis

and data-based approaches using machine learning for advanced fault detection, diagnosis and

prognosis model development. Hence, external programming languages such as MATLAB, can

utilized to overcome these limitations by importing the necessary condition monitoring data

from the SKF @ptitude observer database. MATLAB is developed by MathWorks and has many

useful toolboxes such as Statistics and machine learning toolbox and the PdM toolbox. Here

it becomes possible to use the vibration data for condition indicator feature extraction, visual-

ization, and ranking the features. Suitable machine learning algorithms can be explored and

trained for fault detection models.



Chapter 5

Case study

This chapter presents a extensive case study of generator and rotor bearing raw vibration analy-

sis with statistical data visualization, frequency domain vibration analysis and correlation study

with WT rotor speed. The preparation process of the data, and the unsupervised fault detection

models trained are presented.

5.1 WT Data

5.1.1 Acquiring data and formatting steps

The enveloped vibration signals and rotor speed data from SKF @ptitude observer is extracted.

The sensors started collecting data from April 2022 and data up to the time of extraction April

2023 is collected. All available data for ACC of the shaft, ENV 1, 2 and 3 radial and axial vibration

of the rotor and generator bearing for WT 4 and 21 is exported. From previous experience of

using the SKF @aptitude observer during the specialization project 2022, it was found that ex-

porting the data in an OpenDocument Spreadsheet (ODS) file gave the correct number format

for importing to MATLAB. A few formatting and editing steps are performed in excel to remove

unnecessary columns and add column names such as ’Time’, ’Vibration’, ’Rotor Speed’, ’Yellow

Warning’ and ’Red Warning.’ The processed ODS files are imported as tables into the MATLAB

workspace.

The SCADA data from Aneo is provided in Excel CSV files from August 2017 to the end of April

2022. It became difficult to make use of this data, since the NTNU mounted sensors on the two

WTs at the Bessakerfjellet only started measuring vibration and rotor speed from mid April 2022.

Additionally, the measurement sampling rate of the data from Aneo is taken once every minute,

while SKF @aptitude observer had an inconsistent measurement sampling rate through the past

year, from once every hour to sometimes once every 20 minutes. This is caused by changes in

sensor measurement settings. The amount of overlapping SCADA data from Aneo and CMS data

42
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from SKF @ptitude observer of maximum 1.5 weeks in a few cases, resulted in limited value of

using the SCADA data for fault detection model development. WT rotor speed data of the shaft

is available and stored locally in SKF @ptitude observer with the same sampling frequency as

vibration. For this reason, it became more logical to use for example the relationship between

vibration and rotor speed for fault detection model development in MATLAB.

5.1.2 Data visualization

The first step is to visualize the rotor speed data, generator and rotor bearing vibration data to

determine the condition of the bearings. This helps in making a judgement of whether the vi-

bration levels show normal or degrading conditions in relation to the preset warning and alarm

thresholds. Additionally, the wear of the bearings observed through the vibration amplitudes in

different frequency envelopes can be used to classify the bearing wear stage.

Rotor Speed

The rotor speed of WT 4 and 21 are extracted individually with ENV 1, 2 and 3 axial and radial

vibrations. The time stamps of the vibration and rotor speed data were slightly different than

each other for the different envelopes, of a maximum half a minute. The rotor speed of WT 4

and 21 are plotted in figure 5.1 to identify any variations between the envelopes. It is reasonable

to state there is little to no variation between the rotor speed data extraction. The y-axis unit for

rotor speed in SKF @ptitude observer is given as counts per minute (CPM) and is consistently

higher from October 2022 to April 2023, than when compared from April to October 2022. This

is most likely from higher wind speeds in the winter months, showing clearly the seasonality

aspect in rotor speed. Comparing the rotor speed of both WTs show the WT 21 5.1b has been

operational longer than WT 4 in 5.1a, where there are two large gaps in the data in January and

in April 2023. A reason for this can be from scheduled maintenance on WT 4. The exact reasons

is difficult to know, without the access of maintenance logs.
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(a) WT 4 (b) WT 21

Figure 5.1: WT Rotor Speed data

Vibration data

WT 4

The generator bearing axial vibration in different measurement frequencies in ENV 1, 2 and

3 together with their corresponding preset warning and alarm thresholds are plotted respec-

tively as 5.2a, 5.2d and 5.2g in figure 5.2. The axial acceleration of the shaft is plotted similarly

in section 5.2j. The vibration signals of ENV 1, 2 and 3 show generally a stable vibration and

it is clear the amplitudes of the signals are quite different. From the preset thresholds, ENV 1

and 2 indicate normal bearing operating condition, while ENV 3 consistently crosses the alarm

threshold. Indicating some possible fault development.

The validity of the warning and alarm thresholds are questionable. In the case of ENV 2, the

alarm threshold was increased by 11 fold and the warning threshold by tenfold at the end of April

2022. The reason for this is unclear. In contrast to ENV 3, both thresholds were decreased slightly

around May 2022 and the vibration signals are more visibly over passing the alarm threshold

consistently.

There are a few spikes as in the case of ENV 1 from December 2022 to February 2023 and in

ENV 3, there is a large spike in March 2023. After guidance with analysing vibration signals from

an SKF bearing engineer, the enveloped high PtP amplitude vibration spikes can be ignored,

which can be caused by a number of reasons, including background noise. However, minor

bearing component impacts can be a possible reason.

The axial acceleration of the shaft in plot 5.2j given in the y-axis unit ’g P’ where P is the

peak amplitude, show the acceleration is well below the warning threshold. It is generally stable

from April to October 2022, after which it decreases abruptly afterwards. The exact reasons are

unclear and can be from change in sensor measurement settings.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.2: WT 4 shaft, generator and rotor bearing vibration data
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The generator bearing radial vibration in ENV 1, 2 and 3 together with the warning and

alarm thresholds are plotted respectively in 5.2b, 5.2e and 5.2h. The radial acceleration of the

shaft is plotted in 5.2k. The vibration signals of ENV 1 and 3 are generally lower than the warning

thresholds and have similar PtP amplitudes. There are a few anomalous spikes in ENV 3 in

February and March 2023. This is similar to the generator axial vibration in ENV 3, which may

indicate some minor bearing component impact as in bearing wear stage two.

The ENV 2 vibration signal show a strange behaviour compared to ENV 1 and 3. There are

high amplitude spikes consistently from the end of April to December 2022. There seems to

be a low radial vibration from the start to the end of April 2022, and after which increases sud-

denly. The highest amplitudes are 0.5 gE PtP and is clearly above the alarm thresholds. From

the start of January 2023, the radial vibration is greatly lower and below the warning thresholds.

It is rather unclear the exact reasons for the vibration pattern in ENV 2, without the availability

of maintenance logs. One possibility is maintenance service may have been performed at the

end of December 2022, due to the high radial vibration. The sudden increase in vibration could

have been caused by sensor errors or from changes in sensor measurement settings for exam-

ple. Assumptions have to be made on the bearing condition vibration data when training an

fault detection model. The clear variation in the ENV 2 radial vibration from possible mainte-

nance service, allows for labeling the data into ’before’ and ’after’ maintenance with condition

labels. With this, the fault detection models can be trained using supervised machine learning

methods.

The radial acceleration of the shaft in plot 5.2k is generally well below the warning threshold.

There are a few clearly visible data gaps. The peak amplitudes after the data gap in April 2023, are

roughly half the size compared to before, indicating possible maintenance service. The different

rotor speed of WT 4 is visible in figure 5.1a from changing wind speeds from winter to summer

months. This can be a reason for lower vibration in the shaft, when overall rotor speeds are

decreased.

The rotor bearing radial vibration in ENV 1, 2 and 3 are plotted respectively as 5.2c, 5.2f

and 5.2i. The radial acceleration ACC of the shaft is plotted in section 5.2l. The vibration signals

of ENV 1 is generally lower than the warning thresholds, while ENV 2 and 3 consistently cross

it. There are a few high amplitude anomalous spikes in ENV 3 in March 2023. This is similar to

what was observed in the generator axial and radial vibration in ENV 3. Similar vibration pat-

tern across the two bearings in the same measurement frequency envelope 3 are most likely be

caused other systems within the WT4, such as increased shaft vibration from high rotor speed.

As seen in the generator bearing radial ENV 2 vibration, the rotor bearing ENV 2 show a

similar behaviour and it is rather unclear the exact reasons for the vibration pattern without the

availability of maintenance logs. It is unexpected since, they are two different bearings showing

similar vibration pattern. There are high amplitude spikes consistently from April to December
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2022. The highest amplitudes are above 1 gE PtP, clearly crossing the alarm thresholds and is

double than what is found in the ENV 2 radial vibration of the generator bearing. From the start

of January 2023, the radial vibration is greatly lower and well below the warning threshold. The

sudden decrease in PtP amplitude in ENV 2 at the end of December 2022 is also evident in ENV

1, showing a similar vibration signature.

The radial acceleration of the shaft in plot 5.2l is well below the warning threshold, while

showing anomalous spikes. Similarly to the generator shaft ACC, the peak amplitudes after the

data gap in April 2023 are much lower compared to before. This indicates possible maintenance

service or can be due to the lower rotor speeds after the data gap as seen in figure 5.1a.
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WT 21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.3: WT 21 shaft, generator and rotor bearing vibration data
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The generator bearing axial vibration in ENV 1, 2 and 3 are plotted respectively as 5.3a, 5.3d

and 5.3g. The axial acceleration of the shaft is plotted in 5.3j. The vibration signals of ENV 1, 2

and 3 all show high PtP amplitudes and are in some cases well over the alarm threshold. It is

clear the amplitudes of the signals are quite different. ENV 1 show high amplitude spikes of a

maximum 1.7 gE PtP, which is the highest compared to ENV 2 and 3. The frequency of the spikes

differ greatly between the envelopes.

It is clear the trend for the axial vibration of the generator bearing from all 3 envelopes and

the axial acceleration ACC of the shaft is increasing steadily and notably from October 2022 to

February 2023. A few infrequent high amplitude spikes in the graph can be from external factors

and background noise, which can be treated as outliers. However, it is clear the general trend

is increasing. The peak amplitude of the axial acceleration of the shaft in February 2023 is over

3 g P, which is significantly higher than when compared to WT 4 generator axial acceleration

of the shaft in 5.2j. After February 2023, a decreasing trend is visible from all four plots of the

generator bearing and shaft axial vibration, however a large spike in vibration amplitude is seen

in 5.3d and 5.3j. These increasing and decreasing trends in vibration are clearly similar to the

trend seen in the WT 21 rotor speed plot in 5.1b, from October 2022 to April 2023. This strongly

suggests the axial vibration generated is highly dependent on the rotor speed, which itself is

dependent on the seasonality aspects.

In comparison to WT4, the vibration patterns clearly indicate more degradation and move-

ment in the axial direction of the bearing and shaft. From chapter 3, the greatest forces are

experienced perpendicular to the motor shaft, which is in radial direction. The axial vibration is

expected to be low. In this case however, the axial vibration levels are generally high as in ENV 1,

2 and ACC of the shaft. Hence, this most likely is the result of misalignment or even a bent shaft,

causing greater axial movement in this rotatory machinery.

The generator bearing radial vibration in ENV 1, 2 and 3 are plotted respectively in 5.3b,

5.3e and 5.3h. The radial acceleration of the shaft is plotted in 5.3k. The vibration signals of ENV

1 show signs of infrequent high amplitude spikes, while the majority of the signals are within

the warning threshold. Minor bearing component impacts from lubrication issues can cause

the high amplitude spikes, however, they should be treated as outliers when this pattern is not

clearly visible in the other envelopes.

In ENV 2 and 3, the signals show an increasing trend, notably from October 2022 to April

2023. This is similar to what is observed with the WT 21 generator axial vibration in ENV 2 5.3d

and ENV 3 5.3g. Indicating the bearing may most likely be experiencing greater degradation.

The signals are below the warning threshold in the beginning of October 2022 and gradually

increase to cross the alarm threshold. There are also some infrequent high amplitude spikes in

ENV 2 and 3, which can be ignored from the general trend.

The radial acceleration of the shaft in plot 5.3k show the majority of the signals are below
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the warning thresholds, in spite of the infrequent high amplitude spikes above 6 g P. The in-

creasing radial acceleration of the shaft from October 2022 to February 2023, is similar to what

is observed with the bearing radial vibration in the same time frame of ENV 2 5.3e and ENV 3

5.3h. After February 2023, there is an decreasing trend. The seasonality aspects are visible here,

as observed in the generator axial vibration of WT 21.

Compared to WT 4 generator bearing, where the vibration amplitudes in ENV 1, 2 and 3 and

ACC of the shaft are much lower, indicates the generator bearing of WT 21 may have experienced

greater degradation causing higher radial vibration. The axial and radial vibration signals show

signs of stage 2 to 3 bearing wear where the increased wear generates higher amplitude vibration

with lower frequency, as observed in ENV 1 5.3b.

The rotor bearing radial vibration in ENV 1, 2 and 3 are plotted respectively as 5.3c, 5.3f and

5.3i. The radial acceleration ACC of the shaft is plotted in 5.3l. The vibration signals of ENV 1

show signs of infrequent high amplitude spikes of over 2 gE PtP, while the majority of the signals

are low amplitude and within the warning threshold. In ENV 2, the vibration signals are stable

and low from April 2022 to January 2023, after which decrease suddenly and have similar signal

amplitude as in April 2022. The reason for this is unclear and may likely be due to changes in

sensor measurement settings. A sudden drop is vibration signals are more likely to be sensor

errors, rather than after maintenance service, where in this case, there are not any significant

data gaps in January 2023. This signal pattern is similar to the rotor bearing radial vibration of

WT 4 in ENV 2 5.2f. For ENV 3, the vibration signals measured in the higher frequency range,

show a few vibration spikes from April to October 2022 crossing the alarm threshold. Minor

bearing component impacts can be a reason.

The radial acceleration of the shaft in plot 5.3l show the majority of the signals are well be-

low the warning threshold, while showing a few clear outliers of over 20 g P amplitude in June

2022. The gradual increase of the signal amplitude is notable from October 2022 to March 2023,

showing the effect on seasonality.

The observations and findings from axial and radial vibration of the bearings and shaft of

WT 4 and WT 21 can be used to decide what data can be used for training an fault detection

model. It is clear from lack of data gaps in WT 21, that it has been operational longer than WT 4.

The notable higher axial and radial vibration signal amplitudes found in the generator bearing

in WT21 compared with WT 4, indicates it has experienced more degradation. The WT 4 rotor

bearing and shaft radial vibration have similar signal amplitudes as in WT 21, when the signal

outliers are disregarded, indicating the rotor bearing and shaft have more or less similar health

conditions.
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5.2 Frequency domain analysis

SKF @ptitude observer allows for analysing the vibration signals in the frequency domain using

the ’Spectra’ tool. The purpose is to identify the current condition of the bearings by isolating

and diagnosing any bearing faults, using industry practice methods such as looking for the vi-

bration amplitude at the four bearing fault frequencies. Spalling faults in the bearing can be

easily identified when the magnitude of the vibration amplitude is high at the fault frequencies.

The lack of maintenance logs, means FFT spectrum analysis is the only method available to find

any possible developed bearing fault. The spectra graphs for the rotor and generator bearing of

WT 4 and 21 are given in appendix chapter 5. Numerous bearing fault frequencies are already

calculated and stored in a catalogue within SKF @ptitude observer. This eliminates the need to

calculate the fault frequencies by hand, when not all bearing specification data are readily avail-

able online. Table 5.1 shows the four bearing fault frequencies of the Bessakerfjellet WT rotor

and generator bearings.

Table 5.1: Bessakerfjellet WT rotor and generator bearing fault frequencies

Fault type Rotor Bearing fre-

quencies

Generator Bearing

frequencies

Outer race (BPFO) 22.5966 20.7102

Inner race (BPFI) 25.4034 23.2902

Roller (BSF) 16.68 16.995

Cage (FTF) 0.471 0.4704

SKF @ptitude observer allows for plotting together the spectra graph of multiple different

measurement frequency envelopes, which effectively simplifies the fault isolation and estima-

tion process. For WT 4, figures B.3 and B.4 provided in the appendix shows the generator bear-

ing and rotor bearing spectra graphs respectively. All the available axial and radial vibration en-

velopes are plotted together. The four fault frequencies marked with a vertical line at the respec-

tive frequencies. The vibration amplitude at the fault frequencies for both bearings are generally

low, below 0.002 gE PtP. This indicates there are not any developed bearing faults present at the

fault frequencies. There are however, higher vibration amplitudes at other frequencies, showing

no clear pattern. The ENV 3 axial shows higher amplitudes across the frequency domain, due to

the high raw vibration amplitude as seen in 5.2g. It is difficult to interpret such patterns in the

spectra graph without more frequency domain vibration analysis knowledge. From the bearing

fault frequencies, it is reasonable to conclude both bearing show normal healthy conditions.

For WT 21, figures B.5 and B.6 provided in the appendix show the generator and rotor bearing

spectra graphs respectively. The radial envelopes vibration amplitude across the rotor bearing

spectra graph are stable and there are not increased amplitudes at the fault frequencies. For the
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generator bearing however, there are clearly increased vibration amplitudes at the inner race

(BPFI) and cage (FTF) fault frequencies, suggesting some spalling faults are present. Only the

generator bearing axial envelope 1 and 2, show the BPFI and FTF fault development. The am-

plitudes at the fault frequencies are not significantly high as they are only around 0.0045 gE PtP,

suggesting the severity of the BPFI and FTF faults are low. However, there is most likely some mi-

nor defect in the inner race and possibly the cage causing the increase in vibration amplitudes.

Figure 5.4 show signs of harmonics caused by the BPFI fault in the generator bearing spectra

graph, which slowly decrease for every four order. These harmonics further damage the bearing

components.

Figure 5.4: WT 21 Generator Bearing Axial ENV 1 and 2 BPFI Fault Frequency Harmonics

5.3 Correlation study

A correlation study similar to what I conducted in the specialization project (Thiruthiyappan,

2022) is carried out here, since more vibration and rotor speed data is available. The genera-

tor bearing and shaft radial and axial vibration, and rotor bearing radial vibration in different

measurement frequency envelopes, together with the WT rotor speed is used in the correlation

analysis. The purpose is to identify the relationship between the variables and better under-

stand the condition of the bearings and shaft. Plotting together with the rotor speed gives the

vibration data another dimensionality, with the aim of giving more insight.

WT 4

All the vibration data available from WT 4 from April 2022 to April 2023 is used. Figure 5.5 show

scatter plots from the analysis, where the vibration is plotted in the y-axis and the rotor speed on

the x-axis. The scatter plots are arranged so the first column has the generator bearing and shaft

axial vibration plotted with the rotor speed. The second column shows the generator bearing

and shaft radial vibration. Similarly, the rotor bearing and shaft radial vibration in the third
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column. The correlation coefficients are provided in the legend in the scatter plots.

Both linear and non-linear patterns can be identified. There seems to be a similar linear

pattern across the generator bearing ENV 1 axial and radial vibration in 5.5d and 5.5e. They

both have a very strong correlation coefficient above 0.8. Both scatter plots however show a dis-

tinct spike in vibration amplitude at a particular rotor speed of roughly 11.8 cpm. This is rather

strange behaviour and was not previously identifiable from their individual generator bearing

ENV 1 axial and radial vibration plots in 5.2a and 5.2b. A characteristic of stage two bearing wear

from chapter 3 is the development of resonances of the machine, caused by high frequency vi-

bration increasing in amplitude. The increase in axial and radial vibration amplitude of the

generator bearing in ENV 1 at a particular rotor speed, indicates the presence of resonance in

the machine. It is however, difficult to deduce if the resonance is solely caused by the WT shaft

rotating at a particular rotor speed of 11.8 cpm. The distinct spike in vibration amplitude is sim-

ilarly visible in the rotor bearing ENV 1 radial vibration 5.5f at a rotor speed of 11.8 cpm. The

shaft at the generator and rotor bearing radial acceleration in 5.5b and 5.5c similarly show signs

of a spike in vibration amplitude at a rotor speed of 11.8 cpm. It is however, not clearly visible in

the shaft axial acceleration at the generator in 5.5a.

The generator and rotor bearing ENV 2 radial vibration in 5.5h and 5.5i show two distinct

clusters in the scatter plot. This supports the hypothesis of possible maintenance service, previ-

ously deduced from the raw generator and rotor bearing ENV 2 radial vibration analysis. The top

cluster shows a exponential growth in vibration, when rotor speed increases, while the bottom

cluster shows a minimal linear increase in vibration as rotor speed increases. This may possibly

be caused by change in sensor measurement settings as well.

The lowest correlation coefficients are found in ENV 3, generator bearing axial and radial

vibration in 5.5j and 5.5k, as well as in the rotor bearing radial vibration in 5.5l. This indicates

the high frequency vibration generated is similar in amplitude when the rotor speed increases,

which is a good sign. There is however a visible spike in the vibration amplitude at the highest

rotor speeds of above 20 cpm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: WT4 correlation analysis
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WT 21

Similarly to WT 4, all the vibration data available from April 2022 to April 2023 is used. Figure

5.6 show scatter plots from the analysis, where the vibration is plotted in the y-axis and the

rotor speed on the x-axis. The scatter plots have the same arrangement as in figure 5.5. The

correlation coefficients are provided in the legend of the scatter plots.

Non-linear patterns can be identified. Similarly to WT 4, there seems to be a similar pattern

across the generator bearing ENV 1 axial and radial vibration in 5.6d and 5.6e. The rotor bearing

ENV 1 radial vibration in 5.6f shows a similar pattern. The correlation coefficients are very low,

with the presence of outliers which are similar in the three scatter plots 5.6d, 5.6e and 5.6f. These

outliers have high amplitude and occur from rotor speeds from 5 to 10 cpm. A upper limit was

applied to the y-axis to better analysis the vibration patterns in ENV 1, hence, the outliers are not

visible. Similarly to WT 4, the ENV 1 vibration scatter plots of the generator and rotor bearing

show a distinct spike in vibration amplitude at the particular rotor speed of roughly 11.8 cpm.

This is rather strange behaviour and was also not previously identifiable from their individual

generator bearing ENV 1 axial and radial raw vibration plots in 5.3a and 5.3b, and rotor bearing

ENV 1 radial vibration in 5.3c. The stage two bearing wear characteristic of the development

of resonances in the machine, caused by high frequency vibration increasing in amplitude is

clearly visible here. The increase in axial and radial vibration amplitude of bearings in ENV

1 at a particular rotor speed, supports the hypothesis of the development of resonance in the

machine. As mentioned, it is difficult to deduce if the resonance is solely caused by the WT

shaft rotating at a particular rotor speed of 11.8 cpm. For WT 21 however, the distinct spike in

vibration amplitude is not clearly visible in the shaft axial and radial direction at the generator

and rotor. The ENV 3 plots in this case do show a small visible spike at a rotor speed of 11.8 cpm,

in 5.6k and 5.6l.

Similarly to WT 4, the generator and rotor bearing ENV 2 radial vibration in 5.6h and 5.6i

show two distinct clusters in the scatter plot. The top cluster shows a exponential growth in

vibration, when rotor speed increases, while the bottom cluster shows a minimal linear increase

in vibration as rotor speed increases. This suggests possible maintenance service, however, due

to no data gaps in WT 21, while it is present in WT 4, it is unlikely to be caused by maintenance

action. The change in sensor measurement settings for ENV 2, is more likely to have caused the

two distinct clusters.

The correlation coefficients found in ENV 3 generator bearing axial and radial vibration in

5.6j and 5.6k, as well as in the rotor bearing radial vibration in 5.6l, are low as similar to WT

4. This indicates the high frequency vibration generated is similar in amplitude when the rotor

speed increases, which is a good sign. There is however a visible spike in the vibration amplitude

at the highest rotor speeds of above 20 cpm as in WT 4.
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(g) (h) (i)

(j) (k) (l)

Figure 5.6: WT21 correlation analysis
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5.4 Data preprocessing

The generator and rotor bearing ENV 2 radial vibration data are disregarded, due to the changes

in sensor measurement settings giving incorrect formatted data. This is confirmed through a

guidance session on vibration analysis by a SKF bearing engineer.

5.4.1 Data cleaning

The acceleration enveloped bearing axial and radial vibration in different envelopes go through

a series of band pass filters which remove the low frequency machinery noise from the raw vi-

bration. This isolates the periodic and repetitive vibrations in the bearing. The signal is rectified

(demodulated) where the negative amplitudes become positive, increasing the signal density.

The acceleration ACC of the shaft goes through the same enveloping method. This process

is performed automatically in SKF @ptitude observer and additional signal cleaning steps are

required to remove outlier and background noise data as seen in many of the enveloped vi-

bration signal graphs of WT 4 and especially of WT 21. Missing data fields are removed and

signal smoothing is performed. MATLAB’s ’Clean data’ tool is used to perform the data cleaning

process. To remove the sensor outlier data as verified by an SKF Bearing engineer, the default

settings in MATLAB ’clean data’ tool involve a moving median using a threshold factor of 3 and

moving window size of 24 days. This technique effectively removes the majority of high am-

plitude signal spikes. Signal smoothing with a moving mean method of smoothing factor 0.05

is used to further reduce the high amplitude spikes and filter out the background noise. The

cleaned data set of the WTs are used for fault detection model development. The rotor speed

data is used as extracted from SKF @ptitude observer. A MATLAB function for the data cleaning

process is made, to perform the same process for future extracted data.

5.4.2 Data format

A file ensemble datastore structure of the WT vibration data is required to use the MATLAB Di-

agnostic feature designer (DFD) tool for feature extraction. The vibration data is stored in a

table of three columns, which are date, vibration and rotor speed. The table is converted to a

timetable, so the time stamp in the date column becomes associated with the rotor speed and

vibration data rows. The shaft, generator and rotor bearing vibration data are stored in separate

time tables as extracted from SKF @ptitude observer. A for loop is hence written to combine the

generator bearing and generator shaft day to day data in one ensemble datastore. This is done

similarly for the rotor bearing and the rotor shaft vibration data.

Figure 5.7 shows the generator bearing, shaft axial and radial vibration data, where the first

column has the data for one day stored in a timetable for each variable. The second row has the
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next day worth of data and so on. Additionally, the sample rate of the data is different for the

variables in a few cases and are evident in figure 5.7.

Figure 5.7: Ensemble datastore of WT 21 Generator bearing, shaft axial and radial vibration data

5.4.3 Diagnostic feature designer

The two ensemble datastore structures of the generator and rotor bearing along with the shaft

vibration data is imported to DFD. Due to the low sample rate of the enveloped vibration data,

only the time signal statistical metrics such as mean, root mean square (RMS), standard devia-

tion, shape factor, kurtosis and skewness were extracted. More time signal metrics are available

in DFD, however, these metrics give no values (NaN) or −∞ for a many instances. This gives

issues for the fault detection model development, and therefore only the six time signal statis-

tical metrics are used. The features are exported as tables. Only radial vibration is measured

for the rotor bearing and since both radial and axial measurement are taken for the generator

bearing, it is decided to spilt it into two separate feature tables. The fault detection model func-

tions in MATLAB only work with a numeric array, so the three tables are converted from table to

a numeric array and any missing data fields are removed.

Feature ranking

The unsupervised Laplacian score feature ranking method is used to select the top important

features. For the generator bearing and shaft, there are originally 30 feature columns, while the

rotor bearing and shaft has 24 columns. The ’fsulaplacian’ function in MATLAB is used and the

top 15 ranked features are selected. Figure 5.8 shows three bar charts from the Laplacian score

feature ranking. Overall, the first 15 features have a feature importance score of above 0.9 and

are selected for training the fault detection models. Features from all the variables are found in

the top 15 features.
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(a) (b) (c)

Figure 5.8: WT21 Laplacian score feature ranking

5.5 Fault detection model training

The available vibration data of the generator and rotor bearing and shaft, extracted from SKF

@ptitude observer is unlabeled data. This means the exact condition of the bearings is un-

known, as it is not clearly stated anywhere in the program. There is no direct integration in

SKF @ptitude observer with the Bessakerfjellet WT 4 and 21 maintenance records. Therefore, it

is not possible to know if any maintenance has been performed when looking at the data gaps

in the historical data. The lack of accessibility to the Bessakerfjellet wind farm maintenance logs

information and other supplementary information of WT 4 and 21 from the wind farm operator

limits what can be achievable in the fault detection model development here.

The WT 4 and 21 raw vibration data visualization for the past year show mainly signs of the

seasonality aspects. Generally higher vibration of the shaft, generator and rotor bearing for WT

4 and especially WT 21, from higher wind speeds in the winter months is visible. The frequency

domain vibration analysis showed signs of minor BPFI and FTF faults in the generator bearing

of WT 21. These are important findings and increases the knowledge of the generator bearing

condition at the time of analysis. It is however highly difficult to concretely label when these

faults may have begun to develop from the raw vibration data. For these reasons, only unsuper-

vised fault detection models will be applied. Additionally, the vibration amplitudes at the fault

frequencies are still substantially low, indicating only a very minor defect of the inner race and

cage. The fault severity is hence low. Compared to WT 4 where the vibration data show generally

stable levels with little to no clear trend than in WT 21. The sign of developing fault gives a good

case for detecting anomalies. Hence, it is decided to use the data from WT 21 for training the

fault detection models. MATLAB code from an unsupervised anomaly detection tutorial in (Un-

supervised_Anomaly_Detection, 2023), on using different models such as isolation forest, local

outlier factor, one class SVM and Mahalanobis distance is adapted and used. This is presented

in the appendix B.
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The correlation study of both WTs shows signs of higher vibration with increasing rotor

speed as expected, in both linear and non-liner correlations. An important finding in both WTs

is the sign of machine resonance from higher vibration amplitudes at rotor speeds from 11.5

to 12 CPM. Resonance in a rotatory machine can greatly lead to high damage in the shaft and

bearing components, and the surrounding sub-assemblies in the WT. Emphasis of identifying

the early signs of machine resonance is placed on the fault detection models.

5.5.1 Principal component analysis

PCA is performed initially to assess if it is suitable for using as a unsupervised fault detection

technique using the first and second principal component, together with a decision criteria for

warning and alarm levels. This technique is found in the MATLAB tutorial by (Filion, 2019). The

MATLAB code adapted and used from this tutorial for this case is presented in the appendix B.

Before performing PCA, the 3 top features table from WT 21 are standardized using the ’normal-

ize’ MATLAB function, to have all the values of the variables to contribute equally in PCA. After

performing PCA, the principal components coefficients, scores and variances are returned.

Figure 5.9 shows the PCA plots for WT 21 generator bearing and shaft axial vibration. A scat-

ter plot of total variance which is explained by the individual principal components and the

cumulative of the principal components is plotted. Here the x-axis represents the number of

principal components and the y-axis is the percentage of variance of the data set. In plot 5.9a,

the individual variances of the principal components are marked with orange circles and the

cumulative variances are marked with blue circles. Here, the first two principal components

can only explain roughly 70 % of the variance in the data, and it takes minimum 5 principal

components to explain at least 90 %. The scatter plot 5.9b shows the first and second principal

component scores plotted together, which shows a group of data points clustering in the third

quadrant of the graph. From here, there are data points which drift upwards to the second quad-

rant and also to the right in the first quadrant. This gives an early indication, the data points may

drift away from the group of cluster in the third quadrant, to the first and second quadrant, as

a fault begins to develop. Using this scatter plot, another plot in 5.9c with an initial decision

criteria for the warning and alarm signals are created from how the first and second principal

component scores data are clustered. The initial criteria is set from how the data points in 5.9b

is spread out and hence when more data of the bearing and shaft in a degraded state to allow for

setting the warning and alarm thresholds more reasonably. After guidance with Rohit Agrawal

from MathWorks, the total variance of the first and second principal components should be ex-

pected to explain a minimum of 80 %. In this case, the cumulative variance is only about 70 %

and is not the most optimal to use with the decision criteria.
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(a) (b) (c)

Figure 5.9: WT21 Generator Bearing and Shaft Axial PCA

Figure 5.10 shows the PCA plots for the generator bearing and shaft radial vibration. In plot

5.10a, the first two principal components can only explain about 64 % of the variance in the

data. This is lower than for the generator bearing and shaft axial first and second principal

component variance. The scatter plot 5.10b shows the first and second principal component

scores, and the data points are clustered in all four quadrants. It is not immediately clear how

the cluster will move when fault is developing. Since the cumulative variance of the first two

principal components is only 64 %, it would not be optimal to use a decision criteria for warning

and alarm thresholds, when the remaining variance in the data can not be captured.

(a) (b)

Figure 5.10: WT21 Generator Bearing and Shaft Radial PCA

Figure 5.11 shows the PCA plots for the rotor bearing and shaft radial vibration. In plot 5.11a,

the first two principal components can only explain about 60 % of the variance in the data. This

is lower than for the generator bearing and shaft axial and also the radial first and second prin-
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cipal component variance. The scatter plot 5.11b shows the first and second principal compo-

nent scores, and the data points here are also clustered in all four quadrants as in 5.10b. It is

not immediately clear how the cluster will move when fault is developing. Since the cumulative

variance of the first two principal components is only 60 %, it is not optimal to use a decision

criteria for warning and alarm thresholds, when the remaining variance in the data can not be

captured.

(a) (b)

Figure 5.11: WT21 Rotor Bearing and Shaft Radial PCA

5.5.2 Unsupervised model training parameters

Four different fault detection models are trained with the data from WT 21. A contamination

factor is needed to specify the percentage of outliers in the data and is used for calculating the

different models score threshold. This is used for detecting the outliers in new data, after the

model has been trained. A model threshold factor is set based on the contamination factor used

and will detect outliers in the data from this specified fraction. A best judgement from the writer

and with guidance from Rohit Agrawal, an individual contamination factor is set for the three

cases, which are the generator bearing and shaft axial vibration, generator bearing and shaft

radial vibration and rotor bearing and shaft radial vibration. The raw vibration analysis of WT

21 in figure 5.3 is used to specify the contamination factors. For the generator bearing and shaft

axial vibration, most of the vibration signals over the alarm thresholds set. For this reason, 20%

is used as the contamination factor. For the generator bearing and rotor bearing shaft radial,

only a limited amount of vibration signals are over the warning and alarm thresholds in both

cases as seen in figure 5.3. Hence, 10% is used as the contamination factor in both cases for

training the models. The choice of contamination factors will influence how the models perform
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in detecting outliers in new data. All models used are trained with the contamination factors for

the three cases, allowing to compare how the different models perform in detecting outliers.

5.5.3 Isolation forest

The isolation forest models trained for the three cases using the contamination factor set and the

models return a threshold factor, anomaly scores and anomaly indicators of the data. Histogram

of the anomaly scores for all three cases together with the threshold value as a red vertical line is

plotted in figure 5.12. Plot 5.12a, where a 20% contamination factor is set, shows a lower thresh-

old value, than in 5.12b and 5.12c, where 10% contamination factor is used. Hence, a larger

number of observations are over the threshold value in plot 5.12a. The fraction of the obser-

vations detected as outliers is checked for all three cases, by dividing the sum of the anomaly

indicators by the number of rows in the features table used. For the isolation forest model in

5.12a, the outlier fraction is 0.2005, for 5.12b is 0.0990 and in 5.12c is 0.0987. These are close to

the contamination factors used.

(a) Generator Bearing and Shaft
Axial IF

(b) Generator Bearing and Shaft
Radial IF

(c) Rotor Bearing and Shaft Radial
IF

Figure 5.12: WT21 Histogram of Anomaly scores for Isolation forest

5.5.4 Local outlier factor (LOF)

Similar to the isolation forest, LOF models are trained for the three cases using the contamina-

tion factors set and the models return a threshold factor, anomaly scores and anomaly indica-

tors of the data. Histogram of the anomaly scores for all three cases together with the threshold

value is plotted in figure 5.13. Here the threshold value is similar for all three cases, however the

distribution of the data is different as expected. Hence, for plot 5.13a„ a larger number of obser-

vations are over the threshold value and classified as outliers, while in plots 5.13b and 5.13c, the

majority of the observations are below the model threshold value. The fraction of the observa-

tions detected as outliers is checked for all three cases. For the LOF model in 5.13a, the outlier
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fraction is 0.2005, for 5.13b is 0.0990 and in 5.13c is 0.0987. These outlier fractions are similar to

that of the isolation forest models and are close to the contamination factors used.

(a) Generator Bearing and Shaft
Axial LOF

(b) Generator Bearing and Shaft
Radial LOF

(c) Rotor Bearing and Shaft Radial
LOF

Figure 5.13: WT21 Histogram of Anomaly scores for Local Outlier Factor

5.5.5 One-class support vector machine (SVM)

One-class SVM models are trained for the three cases using the contamination factors set and

the models return a threshold factor, anomaly scores and anomaly indicators of the data. His-

togram of the anomaly scores for all three cases together with the threshold value is plotted in

figure 5.14. Plot 5.14a, where a 20% contamination factor is set, shows a higher threshold value,

than in 5.14b and 5.14c, where 10% contamination factor is used. For plot 5.14a, a larger num-

ber of observations are over the threshold value and classified as outliers, while in plots 5.14b

and 5.14c, most of the observations are below the threshold value. The fraction of the observa-

tions detected as outliers is checked for all three cases. For the SVM model in 5.14a, the outlier

fraction is 0.2005, for 5.14b is 0.0990 and in 5.14c is 0.0987. These outlier fractions are similar to

the isolation forest and LOF models and are close to the contamination factors used.

(a) Generator Bearing and Shaft
Axial OCSVM

(b) Generator Bearing and Shaft
Radial OCSVM

(c) Rotor Bearing and Shaft Radial
OCSVM

Figure 5.14: WT21 Histogram of Anomaly scores for One-class support vector machine
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5.5.6 Mahalanobis distance

For each case, the robust Mahalanobis distance and the robust estimates for the mean and co-

variance of the data is calculated using the ‘robustcov’ MATLAB function. The Mahalanobis

distance from features table data to the distribution of the features table data is calculated. The

contamination factor decided for each case is used and the ‘robustcov’ function minimizes the

covariance determinant to over 1 - contamination factor of the observations. If the contamina-

tion factor is 10%, the function minimizes the covariance determinant over 90% of the observa-

tions. The function computes the outlier indicators by default with assuming the data set follows

a multivariate normal distribution and identifies 2.5% of the observations as outliers based on

the critical values from the chi-square distribution (Unsupervised_Anomaly_Detection, 2023).

(a) Generator Bearing and Shaft
Axial MD

(b) Generator Bearing and Shaft
Radial MD

(c) Rotor Bearing and Shaft Radial
MD

Figure 5.15: WT21 Histogram of Anomaly scores for Mahalanobis Distance

The multivariate normality of the data is checked with a distance-distance (DD) plot and

are plotted for the three cases in 5.15. A 45 degree reference line is given to check if the data

set used follows a multivariate normal distribution. Since the data set does not cluster around

this reference line, the data set does not follow a multivariate normal distribution. To solve

this, the quantile of the distance values for the cumulative probability which is 1 minus the

contamination factor used to calculate the new threshold (Unsupervised_Anomaly_Detection,

2023). This is done for all three cases, as the data points are not clustered along the reference

line. The anomaly indicators are again obtained with the new threshold. DD plots with the

new threshold values is plotted in 5.16. The new thresholds are much higher than the original

threshold values, and the number of detected outliers is lower. The fraction of detected outliers

is checked, for 5.16a, the outlier fraction is 0.2005, for 5.16b is 0.0990 and in 5.16c is 0.0987. This

is the same as all the other models.
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(a) Generator Bearing and Shaft
Axial MD new

(b) Generator Bearing and Shaft
Radial MD new

(c) Rotor Bearing and Shaft Radial
MD new

Figure 5.16: WT21 Histogram of Anomaly scores for Mahalanobis Distance with new threshold



Chapter 6

Results

This chapter presents comparison scatter plots of the detected normal and outlier data points

of the unsupervised fault detection models trained.

6.1 Unsupervised fault detection models

The four unsupervised fault detection models are compared using the top feature from two vari-

ables found from the Laplacian score feature ranking. The top feature of the rotor speed is used

for the y-axis and the top feature for the vibration is used for the x-axis. The observation values

of the normal and outlier points classified by each fault detection model is plotted together. This

helps to visualize where the fault detection model classifies data points as outliers.

67
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6.1.1 Generator bearing and shaft axial vibration

Figure 6.1: Generator Bearing and Shaft Axial fault detection models top variable features visual
comparison

Here the y axis is the root mean square (RMS) of the generator bearing ENV 1 axial vibration. The

measurement frequency is from 5 Hz to 100 Hz, which are the low frequency, high amplitude

vibrations. The y-axis is the RMS of the rotor speed.
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6.1.2 Generator bearing and shaft radial vibration

Figure 6.2: Generator Bearing and Shaft Radial fault detection models top variable features vi-
sual comparison

Here the y axis is the RMS of the generator bearing ENV 1 radial vibration. This is similar to the

figure 6.1 where the top feature is RMS. The y-axis is also the RMS of the rotor speed.
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6.1.3 Rotor bearing and shaft radial vibration

Figure 6.3: Rotor Bearing and Shaft Radial fault detection models top variable features visual
comparison

Similar to figure 6.2, the y-axis is the RMS value and here it is for the rotor bearing ENV 1 radial

vibration. The y-axis is also the RMS of the rotor speed.



Chapter 7

Discussion

This chapter presents an in-depth evaluation of the initial use of supervised fault detection tech-

niques with the assumption of condition labels, the limitations with model training with low

data size and accounting for seasonality aspects and the strengths and weakness of the unsu-

pervised fault detection models used.

7.1 Early supervised fault detection model development

Since only vibration data with unlabeled bearing condition is available, it was first decided to vi-

sualize all the available data and look for trends, patterns and outliers. From this visual analysis,

assumptions of the raw vibration data condition can be made for developing a fault detection

model.

In the case of WT 4 generator and rotor bearing ENV 2 radial vibration respectively in plot

5.2e and 5.2f, there is a clear visible change in vibration amplitudes as previously discussed.

From May to the end of December 2022, high vibration amplitudes crossing the alarm thresh-

olds exist and from January 2023, the vibration amplitudes decrease significantly and stay gen-

erally low within the warning threshold. This distinct change in bearing vibration, supported the

idea of using condition labels as ’before’ and ’after’ maintenance service. Here ’before’ classifies

the bearing has a fault present, while ’after’ means the bearing is in normal operating condition

after maintenance has been performed. Additionally, there are visible data gaps found in the

vibration data at the end of December 2022 in WT 4, from possible maintenance service, which

further supported the idea of using the condition labels.

The PdM fault detection model workflow in figure 3.1 (a) and the MATLAB diagnostic feature

designer application workflow in 3.1 (b) was followed thoroughly. Relevant time signal features

were extracted and ranked using supervised machine learning ranking methods such as T-Test.

The top ranking features were exported to train a fault detection model. Vibration as the re-

sponse variable and rotor speed as the predictor variable was used in the classification learner.

71



CHAPTER 7. DISCUSSION 72

To avoid overfitting, cross validation with 5 fold and 20% of data was kept our for testing. Various

supervised machine learning techniques such as SVM, neural networks, decision trees, Nearest

neighbors (kNN) and Ensemble Classification methods were trained. An optimal decision tree

fault detection model with a test accuracy of roughly 85%, and only minor type I and type II

misclassification errors was trained.

After guidance with an SKF bearing engineer about vibration data in the SKF @ptitude ob-

server application, it was only found lately that the distinct change from the WT 4 generator and

rotor bearing ENV 2 vibration amplitudes was solely caused by changes in the sensor measure-

ment settings. The unit of measurement was changed from gE PtP, to m/s2E PtP, and then back

to gE PtP. The change in measurement unit caused the vibration levels to be 9.81 times higher.

The correct sensor measurement settings as recommended from SKF @ptitude observer is gE

PtP, as used for the other measurement envelopes. This meant the raw vibration data of the WT

4, generator and rotor bearing ENV 2 radial vibration had to be excluded from the fault detection

model development. The vibration measured does not reflect the condition of the bearings and

is solely related to change in sensor measurement settings. As a result of this finding, the work

on using supervised machine learning methods with bearing condition label assumptions had

to be disregarded, since the work is no longer valid.

After guidance with Thibaut Forest from REN Equinor and Rohit Agrawal from MathWorks

on the WT data I have access to, it was recommended to use unsupervised machine learning

techniques such as cluster analysis and anomaly detection models for detecting outliers. This

allowed for implementing suitable fault detection model and the following methods were there-

fore used; isolation forest, local outlier factor, one-class support vector machine (SVM) and Ma-

halanobis distance.

7.2 Model training

7.2.1 Seasonality aspects

Ideally, the fault detection model should be trained on the full year worth of data, to account and

capture the seasonality aspects. Winter months often have much higher wind speeds than when

compared with the summer months. Due to this, the rotor speed of the WTs are greater. Hence,

the seasonality aspect needs to be captured between rotor speed and vibration. For example, a

fault detection model should be trained on one whole year worth of data and then be tested on

the next year, to identify any faults.

In our case, there is lack of vibration and rotor speed sensor data for the first three months

of 2022, meaning the model can be only trained from April to December for 2022. Due to this,

we will not be able to capture the seasonality aspects to the full extent, and this will be unfair
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for our model, mainly due to different environmental conditions. Since, we have data for 2023

from January to April 2023, we can compensate for this, by using the data from 2023. However,

it is a caveat to the model and the results, the validity of the model is affected.

If more data is available of the WTs at the Bessakerfjellet, it will be possible to identify the

seasonality aspects and its influence in the data measured. This is crucial for modelling an op-

timal and robust fault detection model, by taking into account the effect of seasonality on the

data. This will allow the fault detection model to more precisely detect faults. With the vibration

data available, it is possible to observe signs of increasing vibration from higher rotor speeds

in the winter months. More vibration data, will help verify if this is the case and will help with

training our model.

7.2.2 Resolution of data

A major limitation of the data available is the sampling rate is varied for the different envelopes

of the axial and radial vibration. The sample rate of the generator and rotor bearing, and shaft

axial and radial vibration is different in many instances throughout the time period from April

2022 to April 2023. The highest sample rate commonly observed per day is 72 measurements

while the lowest is 24 measurements per day. This is already evident in the first 9 days of the

ensemble datastore for WT 21 in figure 5.7. This results in the table row size is not being the

same when comparing many of the different measurement frequency envelopes. Due to this,

it is not possible to contain all the different generator bearing raw axial vibration in different

envelopes in one table for example, to use for performing PCA and implementing unsupervised

fault detection modes.

A solution to overcome this, is to use some statistical metric calculation of the data per day

of the different variables for the whole year. Using this method allows for getting the same table

row size of all the variables. First, it was decided to calculate the mean of the data per day of the

different variables, however, it is difficult to access if it can capture the trends and patterns in the

data thoroughly. Hence, six statistical metrics using the DFD was extracted for all the variables

such as rotor speed and the different envelopes axial and radial vibration. These metrics are

mean, root mean square (RMS), standard deviation, shape factor, kurtosis and skewness. It

is not immediately clear which features best explain the available data and the unsupervised

machine learning ranking method Laplacian score is used to select the top features.

The resolution of the data is greatly reduced to only one data value per day. This results in

the loss of information and all the variations, trends and patterns in the data can not be cap-

tured thoroughly. Most of the outliers will in addition be lost. Hence, the fault detection models

trained will not be robust enough take into account the variations in data and detect outliers

more precisely. This low resolution of data used is a major limitation and the sensor measure-

ment settings in the SKF @ptitude observer needs to be standardized to be similar to all the
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different envelopes.

7.3 Fault detection models

7.3.1 Principal component analysis

The PCA fault detection technique as found in the MATLAB tutorial (Filion, 2019) did not per-

form as optimal in this case. The top 15 ranking features from all the variables are used to per-

form PCA, however, in all three cases the cumulative variances of the first and second principal

components are below 80 % and they are not able to capture a large amount of variance in the

data. It is therefore not suitable to use the first two principal components scores in a scatter plot,

as a robust fault detection technique using warning and alarm level decision criteria in this case.

It is however expected the cumulative variance of the first and second principal components to

be much higher, if only the raw vibration data of all the different envelopes and acceleration of

the shaft is used for performing PCA. The only major limitation here is the sample rate difference

found in many cases of the different variables, resulting in different table row sizes.

Performing PCA is a great technique for reducing the data dimensionality size of the bear-

ing radial and axial vibration in combination with the rotor speed. The most important and

essential data is retained and is analyzed. However, a limitation of the PCA performed, is that

it is a linear technique, meanwhile real-world processes are most generally nonlinear as seen

evidently from the correlation analysis of rotor speed and vibration data. This reduces the ef-

fectiveness of PCA for using it as a fault detection technique. Hence, more advanced techniques

than PCA are required such as the unsupervised fault detection models.

7.3.2 Unsupervised fault detection models

The four unsupervised fault detection models trained for the three different cases are presented

with a visual comparison of the normal and outliers data points in figure 6.1, 6.2 and 6.3. Com-

monly for all three figures, the RMS of the ENV 1 axial and radial vibration is the top vibration

feature from the Laplacian score feature ranking and is used for the y-axis. With the RMS of

the rotor speed on the y-axis, it allows for comparing the outlier classification of the different

models more easily.

Emphasis is placed on if the fault detection models are able to detect the machine resonance

in the generator and rotor bearing identified from the WT 21 correlation analysis in chapter 5.

At rotor speeds from 11.5 to 12 CPM, there is increased vibration amplitudes showing a clear

spike in the ENV 1 vibration levels. The machine resonance is easily identifiable in plots 5.6d,

5.6e and 5.6f. Since, the model comparison figures in 6.1, 6.2 and 6.3 use the same variables, we

can evaluate the performance of the models through the detection of the machine resonance
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and the overall outliers from the general cluster in the data. An important observation when

comparing the ENV 1 vibration plots from the correlation study and in the fault detection model

comparisons is the majority of noise and general outliers in the data are removed through the

data cleaning process. The decreased resolution in the data used for training the models is also

visible from the fault detection model comparisons.

Detection of machine resonance

In figure 6.1, there are only three data points showing the machine resonance. This is not ideal

and is mainly caused by the low resolution of data used. This issue can be resolved if the sample

rate of all the different measurement frequency envelopes is the same in SKF @ptitude observer.

This is a particularly weak point and greatly influences the performance of the model in detect-

ing outliers in the data. From figures 6.1, 6.2 and 6.3, it is only the Mahalanobis distance and

isolation forest models which are able to detect the machine resonance in the data. The local

outlier factor and one class SVM models however are not able to detect the resonance in all

three cases at all. The Mahalanobis distance model detects all the data points in the vibration

spike as outliers, then the isolation forest model, where either 1 or 2 data point are not detected.

Hence, from this initial analysis, the Mahalanobis distance model performs best in detecting the

machine resonance found from the generator and rotor bearing and shaft axial and radial vibra-

tion. Higher resolution in the data can however help confirm the performance of the models

more accurately.

General outliers in the data

The general outliers here are classified as data points deviating and located far from the cluster

of the data points. From figures 6.1, 6.2 and 6.3, the local outlier factor model is not able to detect

any of the data points deviating from the general clusters as outliers. The outliers detected are

mainly within the clusters of the data. This is due to fundamentally how the model works. This

observation is similar to what is found in the research paper by Wang et al. (Wang et al., 2022).

The model compares the density of the local neighboring data points with the density around

the data points. This greatly limits the performance of the model with outliers located far from

the general cluster, since only local anomalies are detected. As Wang et al. (Wang et al., 2022)

suggest, distance-based methods such as the Mahalanobis distance are more effective in these

cases.

The isolation forest, one class SVM and Mahalanobis distance models perform significantly

better than the local outlier factor model in detecting the outliers far from the cluster of data,

as in the cases where rotor speed is highest at above 20 CPM. Here the outliers have high vibra-

tion amplitude and are spread out at the highest rotor speeds. Greater axial and radial vibration
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are expected when rotor speeds are high, however, the isolation forest, one class SVM and Ma-

halanobis distance models comparison plots confirm that they are able to detect these high

vibration amplitude data points at the higher rotor speeds as outliers. Hence, when more data is

available of the generator and rotor bearing of when they become degraded and produce greater

vibration signal amplitudes at higher rotor speeds, it is expected these three models to be able

to detect these outliers.

The three models which are the isolation forest, one class SVM and Mahalanobis distance,

however, do detect a few data points located within the cluster of data as outliers. This is vis-

ible in all three figures 6.1, 6.2 and 6.3. These false alarm detections of outliers range from a

rotor speed from 6 and up to 20 CPM. These outlier detections within the data is challenging to

explain and is not ideal for a fault detection model. The best performance of these three mod-

els needs to be judged from the detection of general outliers away from the main data clusters

and the local false outliers detected within the cluster. With these criteria, it is the isolation for-

est and Mahalanobis distance which are able to achieve this in comparison to one class SVM,

where a greater portion of outliers within the data cluster exist. This is clearly evident in figures

6.1 of the generator bearing and in figure 6.3 of the rotor bearing. Tutiven et al. (Tutivén et al.,

2022) applied one class SVM for early fault diagnosis of the WT generator bearings based on only

normal condition SCADA data such as wind speed, ambient temperature and the main bearing

temperature. Their results however showed very few false alarms, and this is not the case here,

where a high amount of misclassification of outliers within the cluster of data exist.

When comparing the isolation forest and Mahalanobis distance models, both function dif-

ferently in classifying outliers from normal data, however in this case the detected outliers are

nearly identical, and it is difficult to pick the best performing model. When emphasis is placed

on detecting early signs of resonance, which can damage WT components significantly, then

the clear choice is the Mahalanobis distance model. Both resonance and outliers far from the

data cluster is detected, while a few falsely detected outliers exist. This model provides greater

insight from the detected outliers than the warning and alarm thresholds used in SKF @ptitude

observer.

Contamination factor

The use of contamination factor on training the fault detection models can significantly influ-

ence the number of detected outliers in the data. Additionally, the number of false alarms and

non-detection of outliers due to faults is influenced. A high contamination factor will give higher

false alarms, when the condition of the bearing is normal, however the fault detection model de-

tects a fault is present. A lower contamination factor will mean, the fault detection model will be

trained with faulty data treated as normal. This leads to higher non-detection of possible faults

in the bearings which may be present. The number of false alarms and non-detection of bearing
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faults should be ideally low.

Access to the Bessakerfjellet wind farm maintenance logs and other supplementary informa-

tion such as results from bearing oil analysis, can help in making a more informed decision of

the choice of contamination factor for unsupervised fault detection models. The percentage of

abnormality and outliers in the data due to possible faults can be more accurately decided. Ad-

ditionally, confirmation of the bearing condition allows for the possibility of using supervised

fault detection methods and the use of a contamination factor can be avoided. If there have

been bearing faults which have occurred and have been repaired with preventive maintenance

for example, supervised fault detection methods such as SVM, neural networks, decision trees

and nearest neighbors (kNN) can be utilized. A challenge here is if the vibration data can be

accurately labeled with condition labels such as normal and bearing fault types, as the classi-

fication models will be trained using this information. Consequently, the performance of the

model is dependent on the quality of the data used.

A whole year worth of unlabeled generator and rotor bearing vibration data is available from

the Bessakerfjellet, and it is clear the vibration amplitudes are higher in the winter months.

However, it is difficult to determine if the higher vibration of the generator and rotor bearing

are solely caused by the increased rotor speeds of the WT. It is highly likely some other bearing

defect may have developed, as found in the case of WT 21 generator bearing, where the fre-

quency domain analysis showed signs of beginning bearing damage in the inner race and cage

of the bearing. From this finding, it is however not possible to determine how long the signs of

these bearing faults have existed and if any minor damage in the bearing has occurred. This is a

particularly weak point, without the access to the wind farm maintenance logs.

The contamination factor used for training the fault detection models were solely based on

the raw vibration analysis of WT 21 in 5.3. Vibration signals which had crossed the alarm thresh-

olds are considered to be abnormal and regarded as outliers, while signals below the alarm

threshold is treated as normal. The major limitation of this method is in the uncertainty re-

garding the choice of value for the warning and alarm thresholds. These threshold values were

extracted from SKF @ptitude observer along with the vibration and rotor speed data. From the

raw vibration analysis, there are many instances where the warning and alarm thresholds were

increased or decreased, and the reasons for this is unclear. Hence, there is underlying uncer-

tainties with these thresholds values and the choice should be standardized for all WTs. Since,

the threshold values differ for WT 4 and 21 in a few instances such as the rotor bearing ENV 1

radial vibration. Guidance from Rohit Agrawal from MathWorks was required to set a reason-

able contamination factor for the WT 21 generator and rotor bearing and shaft vibration data.

The fault detection models trained such as the isolation forest and Mahalonobis distance using

this contamination factor, were able to detect the resonance and the high vibration amplitudes

at high rotor speeds as outliers. The isolation forest model has a few non-detection errors of
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the resonance data points. However, both models had false alarm detection of outliers which

where generally within the cluster of data as seen in figure 6.1, 6.2 and 6.3. The contamination

factors used are reasonable from this initial analysis, and when more vibration data is available,

the values can be adjusted to reduce the false alarm detections and non-detection of possible

bearing faults.



Chapter 8

Conclusions, Discussion, and

Recommendations for Further Work

This final chapter presents a through summary of if the thesis objectives have been met, the key

findings from the thesis work and the applications it has for early fault detection in WT main

shaft bearings in the wind industry, and recommendations for extension to work carried out in

this theses are given.

8.1 Summary and Conclusions

The main focus of this mater thesis was to investigate and compare different early fault detection

techniques for the use in WT generator and rotor bearings using a relevant case study. Six ob-

jectives were presented. The first objective’s aim was educating the reader and giving a broader

context of WTs. This is met in Chapter 2, which presents the state-of-the-art and industrial back-

ground of WTs, how they function, WT structures, offshore and onshore installation capacities

and available condition monitoring technologies. The major, minor faults and failures of WTs

are presented.

The second objective’s aim was to provide a through theoretical background for the reader

to follow the work carried out in the thesis, especially the case study. This objective is met in

Chapter 3, where theory about fault diagnostics, fault detection model development workflow,

four unsupervised fault detection models and maintenance strategies for WTs and of which are

used in the industry. Here the maintenance practices and key priorities for offshore wind farms

is presented.

The third objective’s aim was to educate and provide the reader with knowledge of indus-

trial roller bearing, which is a critical WT component and is relevant to the thesis topic. They

are required for the smooth rotation of the rotor blades and shaft. The third objective is met in

Chapter 3, where knowledge of how bearings function, components of a vibration signal, sen-
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sor measurement positions in industrial machinery, vibration analysis methods used in fault

diagnostics are presented. The four distinct bearing fault frequencies, and how the faults and

failures in bearings develop in four stages are provided. This extensive knowledge of bearings

is required to support the reader in understanding the thesis work and analysis carried out in

Chapter 5.

The fourth objective’s aim was to thoroughly examine the WT SCADA, and or CMS data

acquired, before implementing the fault detection models. This objective is met in Chapter 5

case study, where the raw axial and radial vibration data in different envelope frequencies of the

Bessakerfjellet WT 4 and 21 generator and rotor bearing and shaft is presented. The data is in-

vestigated first with statistical visualization analysis by plotting the available vibration data with

the warning and alarm thresholds found in SKF @ptitude observer. The next analysis method

was the frequency domain vibration analysis in SKF @ptitude observer using the ‘spectra’ tool

of the generator and rotor bearings. Lastly the correlation analysis between the WT rotor speed

and vibration data is performed. From all three analysis methods, a through investigation was

conducted to identify and uncover the trends, outliers and patterns in the acquired data. Three

outcomes from the analysis respectively are identifying the seasonality aspects in vibration lev-

els, observation of developing defect in the inner race and cage of the WT 21 generator bearing

and discovery of machine resonance occurring at a particular rotor speed in both WTs.

The fifth objective’s aim was to use suitable fault detection methods to detect outliers and

abnormal data using the acquired WT SCADA, and or CMS data. Greater emphasis on offshore

wind turbine early fault detection of bearing minor failures was placed in Chapter 1, however,

it proved to be challenging to get access to relevant offshore wind turbines SCADA and CMS

data, along with maintenance logs to determine the condition of the WT components. Strict off-

shore wind farm historical and operational data sharing procedures resulted in extensive data

access delay. To compensate for this, vibration data from generator and rotor bearing from on-

shore wind turbines at the Bessakerfjellet was used. The unlabeled bearing condition data, and

unavailability of the wind farm maintenance log, allowed for only implementing unsupervised

fault detection models. Fault diagnosis could not be implemented with the model, since the

condition of the bearing could not be accurately labeled in the acquired data. Therefore, un-

supervised fault detection is used, where the models are trained with parameters such as the

contamination factor to detect outliers at the specified fraction in the data. The root cause of

the outliers is highly difficult to be determined just from the fault detection. Hence, this objec-

tive is partially met in Chapter 5, where only fault detection could be achieved, and diagnosis of

the detected fault could not be achieved. This is primarily due to the lack of labeled WT bearing

condition data such as normal and faulty types.

The sixth objective’s aim was to compare the performance of the fault detection models

used. The results from objective 4 analysis of the acquired data performed in Chapter 5 is uti-
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lized for judging the performance of the fault detection models trained. Since the fault detec-

tion models were trained using the contaminated data, where outliers are present as found from

the vibration analysis, only a visual analysis of the model performance was possible. This was

hence carried out using scatter plots of the normal and detected outliers of the models, where

the top-ranking time signal statistical metric for the rotor speed and vibration is used. The fault

detection model normal and outlier comparison scatter plots for the three cases which are the

generator bearing and shaft axial vibration, generator bearing and shaft radial vibration, and

the rotor bearing and shaft radial vibration are presented in Chapter 6. The performance of the

models outlier detection are discussed thoroughly in Chapter 7.

8.2 Discussion

The minor failures of offshore WT components such as main shaft bearings causing longer pro-

duction downtime than for onshore WTs, require further rigorous research in academia for early

fault detection, diagnostics and prognostics. This will improve all aspects of reliability, avail-

ability, maintainability and safety for offshore WT components, ensuring a sustainable energy

transition, greater production of low-cost renewable energy and reduction in environmental

impacts from optimized ‘just in time’ maintenance strategy. Onshore WT minor failure of sub-

assemblies are less complex to perform corrective maintenance than for offshore WTs and effec-

tive maintenance planning is the key to achieving a lower OPEX. Early fault detection supports

the decision-making process for wind farm asset managers, by providing indications of devel-

oping faults and performing timely maintenance action. The maintenance scheduling can be

optimized for safe execution at offshore wind farms.

As found from the specialization project (Thiruthiyappan, 2022), fault diagnostics and prog-

nostics of major failures in WT sub-assemblies have been a key research area, while minor fail-

ures are studied less frequently. To address these issues, the thesis focused on early fault detec-

tion of minor failures in offshore WTs. However, CMS data from onshore WTs had to be used due

to extensive lack of access to offshore WT SCADA, and CMS data. The acquired vibration data

of the generator and rotor bearings on onshore WTs in the Bessakerfjellet is used for training

fault detection models to provide the wind farm asset managers with early indication of bearing

faults. Unlabeled vibration data and lack of wind farm maintenance logs allowed for implement-

ing only unsupervised fault detection models. These were isolation forest, local outlier factor,

one class SVM and Mahalanobis distance.

The detected outlier result of the fault detection models from the case study, showed strong

outlier detection performance from the isolation forest and Mahalanobis distance, with minor

false detections within the normal vibration data cluster. The one class SVM and local outlier

factor had limitations in detecting the outliers found in the vibration analysis. Emphasis was
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placed on detecting the machine resonance, outlier data points of high vibration amplitude at

higher rotor speeds and general deviation from the data clusters. From these criteria, it was

evaluated the Mahalanobis distance-based method performed robustly in detecting outliers in

all three cases. The Mahalanobis distance measures the distance from a data point to the distri-

bution of the data points and uses the covariance matrix of the data set. This initial analysis with

unlabeled WT CMS data shows the unsupervised fault detection method Mahalanobis distance,

is capable of detecting early abnormal conditions in onshore WT generator and rotor bearings.

Hence, provides strong implications for the use in onshore wind industry. The original intent of

the thesis of using offshore WT SCADA, CMS data was not achieved due to data access issues.

Nevertheless, the author believes the findings from the unsupervised fault detection models

performance comparison from using onshore WT CMS data, useful applications in the offshore

wind industry, for detecting early abnormal conditions in offshore WT bearings.

An unexpected and important finding from the case study is the signs of resonance from

the correlation analysis of vibration and rotor speed. The result is unforeseen and is present in

both WTs. This finding has strong implications for the wind industry. Resonance is capable of

doing extensive damage and can severely reduce the useful life of critical WT components. Early

detection of harmful machine resonance is vital in the wind industry, for taking the necessary

mitigation steps to prolong the assets lifetime.

A major limitation of the study is the low resolution of data used for training the fault detec-

tion models. One data value per day of the time period of data acquired is used. The sample

rate variations from SKF @ptitude observer, showed some vibration envelopes had much higher

sample rate than other envelopes, giving large differences in the table row size of the variables

in the vibration data. Due to this, statistical metric calculations of the data per day of the dif-

ferent variables had to be performed to have the data in one table with the same row size. This

greatly influences the fault detection model training, and it is highly possible, the other mod-

els such as isolation forest, one class SVM and local outlier factor may show promising results

than the Mahalanobis distance, if only raw data was used. The findings from this initial analysis

can be utilized and implemented by the Bessakerfjellet wind farm asset managers for early fault

detection, using the similar data resolution used to train the models. However, using greater

resolution of the vibration data, may likely result in the model giving higher false alarm and

non-detections of possible bearing faults, hence, the model should be retrained.

A minor limitation in the unsupervised fault detection model training is the assumption of

contamination factor. There are no set guidelines choosing such contamination factor for any

given case and it was chosen based on best judgement and along with guidance from an exter-

nal supervisor. The choice of the value has influence in the performance of the fault detection

models and is therefore a limitation in using the results.

The findings from this thesis can be employed in other domains, where unlabeled condition
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data of industrial roller bearings are available. The unsupervised fault detection model Maha-

lanobis distance can be trained for early detection of abnormal conditions. The performance of

the fault detection should be evaluated, and the necessary parameters of the model should be

adjusted to optimize the model performance. Relevant domains include the automotive, power

generation, marine and offshore, as well as the aerospace industries.

8.3 Recommendations for Further Work

• The sample rate of the vibration measurement data collection for the generator and rotor

bearings in SKF @ptitude observer needs to be standardized for all WTs. This will give

the same data table dimensions of the 3 vibration measurement envelopes. The collected

data needs to be quality checked for measurement accuracy.

• The PCA is expected to have higher cumulative variance in the first and second princi-

pal components, which can be used for fault detection with decision criteria. This needs

further investigation and is expected to perform better than the individual warning and

alarm thresholds which are set in the SKF @ptitude observer.

• The unsupervised fault detection models are expected to yield more robust outlier detec-

tion performance from training with higher resolution raw vibration data. The models

can be evaluated more thoroughly based on the false and non-detections through visual

analysis. This is allow for choosing the most optimal fault detection model.

• Request access to the wind farm maintenance logs and other relevant information to ac-

curately determine the condition of the bearings. This will allow for using supervised ma-

chine learning techniques with condition labels for fault detection. These methods are

expected to more accurately detect faults of the bearings and requires further investiga-

tion.

• Use more CMS data from a higher number of WTs at the Bessakerfjellet to train and evalu-

ate the fault and abnormal condition detection of the unsupervised fault detection meth-

ods. This will allow for finding the most optimal model.

• Investigate and mitigate the effects of resonance found in the Bessakerfjellet WT 4 and 21

rotor and generator bearings. Further investigation is required to identify if the resonance

is caused solely by the shaft rotation at a particular rotor speed from 11.5 to 12 CPM.

• Get access to offshore WT SCADA, and or CMS data of the generator and rotor bearing,

to investigate if the findings from this thesis of using unsupervised early fault detection
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method with onshore WT CMS data is applicable to the offshore WTs. Compare the fault

detection performance of the different models.



Appendix A

Acronyms

CBM Condition based maintenance

CM Corrective maintenance

CMS Condition monitoring system

DFD Diagnostic feature designer

FFT Fast Fourier Transform

FOW Floating offshore wind

LOF Local outlier factor

OPEX Operational expenditure

PCA Principal component analysis

PdM Predictive maintenance

PM Preventive mainteance

RAMS Reliability, availability, maintainability, and safety

RUL Remaining useful life

SCADA Supervisory control and data acquisition

SVM Support vector machine

TBM Time-based maintenance

WT Wind turbines
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B.1 Chapter 3

Figure B.1: Overview of Equinor’s failure management strategies (Svennevig, 2022)
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B.2 Chapter 4

Table B.1: Data acquisition process timeline for wind farm SCADA & CMS data

Date Company Progress

27th March 2023 Equinor Requested access for Equinor operated

offshore wind farms such as Sheringham

Shoal (SHS), Hywind Scotland (HYS) and

Dudgeon (DOW)

13th April 2023 Equinor Due to delay with wind farm SCADA

data acquisition from Equinor, it was sug-

gested by my co-supervisor Thor Inge

Bernhardsen to use vibration data from

NTNU’s SKF @ptitude observer, in the

case access to Equinor SCADA data would

take more time.

19th April 2023 Aneo (TrønderEn-

ergi)

Approval received to use generator and

rotor bearing vibration and rotor speed

data from SKF @ptitude observer.

20th April 2023 Equinor Meeting with SCADA data owner and

risk assessment performer together with

co-supervisor to discuss about access to

Equinor wind farm SCADA data and even-

tually anonymised and tweaked data. It

was informed that it may take a few more

weeks to access anonymised data and

hence we reached the decision to use vi-

bration data from onshore wind turbines

at the Bessakerfjellet, stored in SKF @pti-

tude observer.

25th April 2023 Aneo (TrønderEn-

ergi)

Signed thesis collaboration and confi-

dentiality agreement and access given

to Bessakerfjellet onshore wind turbines

SCADA data such as active power, nacelle

direction, turbulence, wind direction and

wind speed.

3rd May 2023 Aneo (TrønderEn-

ergi)

Access to wind turbine maintenance log

data not approved due to lack of resources

and the already ongoing collaboration

with Equinor.
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Figure B.2: SKF @ptitude observer program
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B.3 Chapter 5

WT 4

Figure B.3: WT 4 Generator Bearing Fault Frequencies

Figure B.4: WT 4 Rotor Bearing Fault Frequencies
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WT 21

Figure B.5: WT 21 Generator Bearing Fault Frequencies

Figure B.6: WT 21 Rotor Bearing Fault Frequencies
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